WorldWideScience

Sample records for stagnation flow burner

  1. Approximate Model for Turbulent Stagnation Point Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  2. Inertioelastic Flow Instability at a Stagnation Point

    Science.gov (United States)

    Burshtein, Noa; Zografos, Konstantinos; Shen, Amy Q.; Poole, Robert J.; Haward, Simon J.

    2017-10-01

    A number of important industrial applications exploit the ability of small quantities of high molecular weight polymer to suppress instabilities that arise in the equivalent flow of Newtonian fluids, a particular example being turbulent drag reduction. However, it can be extremely difficult to probe exactly how the polymer acts to, e.g., modify the streamwise near-wall eddies in a fully turbulent flow. Using a novel cross-slot flow configuration, we exploit a flow instability in order to create and study a single steady-state streamwise vortex. By quantitative experiment, we show how the addition of small quantities (parts per million) of a flexible polymer to a Newtonian solvent dramatically affects both the onset conditions for this instability and the subsequent growth of the axial vorticity. Complementary numerical simulations with a finitely extensible nonlinear elastic dumbbell model show that these modifications are due to the growth of polymeric stress within specific regions of the flow domain. Our data fill a significant gap in the literature between the previously reported purely inertial and purely elastic flow regimes and provide a link between the two by showing how the instability mode is transformed as the fluid elasticity is varied. Our results and novel methods are relevant to understanding the mechanisms underlying industrial uses of weakly elastic fluids and also to understanding inertioelastic instabilities in more confined flows through channels with intersections and stagnation points.

  3. Burners

    Science.gov (United States)

    ... among people who play contact sports. These include football, rugby, and wrestling. Symptoms of a burner A ... to your arm. Burners often happen when the force of a hit or fall pushes the head ...

  4. Flashback Avoidance in Swirling Flow Burners

    Directory of Open Access Journals (Sweden)

    Vigueras-Zúñiga Marco Osvaldo

    2014-10-01

    Full Text Available Lean premixed combustion using swirling flows is widely used in gas turbines and combustion. Although flashback is not generally a problem with natural gas combustion, there are some reports of flashback damage with existing gas turbines, whilst hydrogen enriched fuel blends cause concerns in this area. Thus, this paper describes a practical approach to study and avoid flashback in a pilot scale 100 kW tangential swirl burner. The flashback phenomenon is studied experimentally via the derivation of flashback limits for a variety of different geometrical conditions. A high speed camera is used to visualize the process and distinguish new patterns of avoidance. The use of a central fuel injector is shown to give substantial benefits in terms of flashback resistance. Conclusions are drawn as to mitigation technologies.

  5. Estimation of fluid flow fields and their stagnation points

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    Given a temporal sequence of images of fluids we will use local polynomials to regularise obser-vations of normal flows into smooth flow fields. This technique furthermore allows us to give a qualitative local description of the flow field and to estimate the position of stagnation points...

  6. Estimation of Centers and Stagnation points in optical flow fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    distribution of spatio-temporal energy, which is sampled using a set of spatio-temporal quadrature filters. These observations of normal flows are then integrated into smooth flow fields by locally approximating first order polynomials in the spatial coordinates to the flow vectors. This technique furthermore......In a topological sense fluid flows are characterised by their stagnation points. Given a temporal sequence of images of fluids we will consider the application of local polynomials to the estimation of smooth fluid flow fields. The normal flow at intensity contours is estimated from the local...... allows us to give a qualitative local description of the flow field and to estimate the position of stagnation points (e.g. nodes, saddles, and centers). We will apply the algorithm to two data sets. The first sequence consists of infrared images from the meteorological satellite Meteosat. Here...

  7. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  8. Nested separatrices in simple shear flows: the effect of localized disturbances on stagnation lines

    OpenAIRE

    Wilson, M.C.T.; Gaskell, P.H.; Savage, M.D.

    2005-01-01

    The effects of localized two-dimensional disturbances on the structure of shear flows featuring a stagnation line are investigated. A simple superposition of a planar Couette flow and Moffatt's [J. Fluid Mech. 18, 1--18 (1964)] streamfunction for the decay of a disturbance between infinite stationary parallel plates shows that in general the stagnation line is replaced by a chain of alternating elliptic and hyperbolic stagnation points with a separation equal to 2.78 times the half-gap betwee...

  9. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    A theoretical study is made in the region near the stagnation point when a lighter incompressible viscoelastic fluids impinges orthogonally on the surface of another quiescent heavier incompressible viscous fluid. Similarity solutions of the momentum balance equations for both fluids are equalized at the interface. It isnoted ...

  10. Linear stability analysis of laminar flow near a stagnation point in the slip flow regime

    Science.gov (United States)

    Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    The aim of the present contribution is to analyze the effect of slip parameter on the stability of a laminar incompressible flow near a stagnation point in the slip flow regime. The analysis is based on the traditional normal mode approach and assumes parallel flow approximation. The Orr-Sommerfeld equation that governs the infinitesimal disturbance of stream function imposed to the steady main flow, which is an exact solution of the Navier-Stokes equation satisfying slip boundary conditions, is obtained by using the powerful spectral Chebyshev collocation method. The results of the effect of slip parameter K on the hydrodynamic characteristics of the base flow, namely the velocity profile, the shear stress profile, the boundary layer, displacement and momentum thicknesses are illustrated and discussed. The numerical data for these characteristics, as well as those of the eigenvalues and the corresponding wave numbers recover the results of the special case of no-slip boundary conditions. They are found to be in good agreement with previous numerical calculations. The effects of slip parameter on the neutral curves of stability, for two-dimensional disturbances in the Reynolds-wave number plane, are then obtained for the first time in the slip flow regime for stagnation point flow. Furthermore, the evolution of the critical Reynolds number against the slip parameter is established. The results show that the critical Reynolds number for instability is significantly increased with the slip parameter and the flow turn out to be more stable when the effect of rarefaction becomes important.

  11. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  12. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology of Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology of Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084 (China); School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3083 (Australia); Jiang, Shengyao, E-mail: jiangshy@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2014-04-01

    Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested.

  13. Design of Counter Flow Burner for Oxy-Combustion Studies Using CFD

    Science.gov (United States)

    Holifield, Laura; Uddi, Mruthunjaya

    2017-11-01

    Flat flames are useful for studying the fundamental physics of combustion through laser diagnostics and comparison with commercially (or open source) available 1D software such as Chemkin or Cantera. A counter flow burner is capable of producing this flat flame by achieving a flat velocity profile along the outlet. However, what is necessary to achieve this is not readily available. In order to find the optimal design parameters for a counter flow burner, different geometries and velocities were tested at the University of Alabama using Ansys Fluent CFD software. The geometry was axisymmetric and oriented horizontally on the xy-plane. The design of this burner was aimed at reducing the boundary layer while keeping the radial velocity at a minimum. The objective of this paper is to examine the effects of varying the angle, nozzle length, filet radius, inlet to outlet ratio, and velocity on the boundary layer and radial velocity of a counter flow burner. NSF Grant: EEC 1659710.

  14. Experiments on Stability of Bunsen-Burner Flames for Turbulent Flow

    Science.gov (United States)

    Bollinger, Lowell M; Williams, David T

    1948-01-01

    The results of a study of the stability of propane-air flames on bunsen-burner tubes are presented. Fuel-air ratio, tube diameter, and Reynolds number were the primary variables. Regions of stability are outlined in plots of fuel-air ratio as a function of Reynolds number for flames seated on the burner lip and for flames suspended well above the burner. For fully developed flow, turbulent as well as laminar, the velocity gradient at the burner wall is a satisfactory variable for correlating the fuel-air ratio required for blow-off of seated flames for fuel-air ratios of less than 15 percent. For turbulent flames, wall velocity serves as a correlating variable in the same fuel-air-ratio range. (author)

  15. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid

    OpenAIRE

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2011-01-01

    An analysis is carried out to study the steady two-dimensional stagnation-point flow of a nanofluid over a stretching/shrinking sheet in its own plane. The stretching/shrinking velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The similarity equations are solved numerically for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid with Prandtl number Pr = 6.2. The skin friction coefficient, Nu...

  16. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  17. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.

    Science.gov (United States)

    Johnson, W P; Li, Xiqing; Yal, Gozde

    2007-02-15

    A three-dimensional particle tracking model for colloid transport in porous media was developed that predicts colloid retention in porous media in the presence of an energy barrier via two mechanisms: (1) wedging of colloids within grain to grain contacts; (2) retention of colloids (without attachment) in flow stagnation zones. The model integrates forces experienced by colloids during transport in porous media, i.e., fluid drag, gravity, diffusion, and colloid-surface Derjaguin-Landau-Verwey-Overbeek interactions. The model was implemented for a fluid flow field that explicitly represented grain to grain contacts. The model utilized a variable time stepping routine to allow finer time steps in zones of rapid change in fluid velocity and colloid-surface interaction forces. Wedging was favored by colloid: collector ratios greater than about 0.005, with this threshold ratio increasing with decreasing fluid velocity. Retention in flow stagnation zones was demonstrated for colloid: collector ratios less than about 0.005, with this threshold decreasing with increasing fluid velocity. Both wedging and retention in flow stagnation zones were sensitive to colloid-surface interaction forces (energy barrier height and secondary energy minimum depth). The model provides a mechanistic basis for colloid retention in the presence of an energy barrier via processes that were recently hypothesized to explain experimental observations.

  18. On two special values of temperature factor in hypersonic flow stagnation point

    Science.gov (United States)

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable cylindrical and spherical surfaces laminar boundary layer heat and mass transfer control mathematical model properties are investigated. The nonlinear algebraic equations systems are obtained for two special values of temperature factor in the hypersonic flow stagnation point. The mappings bijectivity between heat and mass transfer local parameters and controls is established. The computation experiments results are presented: the domains of allowed values “heat-friction” are obtained.

  19. Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder

    Science.gov (United States)

    Nadeem, S.; Abbas, Nadeem; Khan, A. U.

    2018-03-01

    The characteristics of three-dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder are explored. The fluid flow is entertained in the presence/absence of thermal slip effects. The flow model is controlled through the partial differential equations. Since these equations are highly non-linear in character. So for the order reduction a suitable set of transformation is used. The reduced system is solved by using shooting method. The obtained results are offered through graphs and tables. It is noticed that the heat transfer rate is high in Hybrid nanofluid as compared to nanofluid. The present work is validated by developing comprising with existing literature.

  20. Off-centered stagnation point flow of a couple stress fluid towards a rotating disk.

    Science.gov (United States)

    Khan, Najeeb Alam; Riaz, Fatima

    2014-01-01

    An investigation has been made to study the off-centered stagnation flow of a couple stress fluid over a rotating disk. The model developed for the governing problem in the form of partial differential equations has been converted to ordinary differential equations with the use of suitable similarity transformation. The analytical approximation has been made with the most promising analytical approach, homotopy analysis method (HAM). The convergence region of the obtained solution is determined and plotted. The effects of couple stress and nondimensional parameters have been observed on the flows of couple stress fluid. Also comparison has been made with the Newtonian fluid as the special case of considered problem.

  1. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  2. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    Science.gov (United States)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  3. Categorization of flow conditions using Integral quantities for characterizing stagnation and recirculation

    International Nuclear Information System (INIS)

    Han, M.H.; Hwang, W.T.; Jeong, H.J.; Kim, E.H.

    2008-01-01

    This paper describes a method for categorizing an atmospheric flow condition of a site by using integral quantities for characterizing stagnation and recirculation. Authors have devised a method for categorizing flow conditions using distribution curves which represent the flow condition of the whole of Korea. It was found that the flow conditions for four nuclear power plant sites were good enough from a meteorological aspect. Among the four sites, Kori nuclear power plant site which is located at the south-eastern part of the Korean peninsular shows the best condition. Meteorological condition is the key factor for estimating the environmental effects of a nuclear facility. The devised method can be used for assessing the relative environmental risk of a nuclear facility with only meteorological data. And the devised categorization method can be used for choosing a suitable site for an industrial facility such as a nuclear power plant and a chemical complex. (author)

  4. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  5. Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects

    Directory of Open Access Journals (Sweden)

    Khairy Zaimi

    2016-04-01

    Full Text Available The effects of partial slip on stagnation-point flow and heat transfer due to a stretching vertical sheet is investigated. Using a similarity transformation, the governing partial differential equations are reduced into a system of nonlinear ordinary differential equations. The resulting equations are solved numerically using a shooting method. The effect of slip and buoyancy parameters on the velocity, temperature, skin friction coefficient and the local Nusselt number are graphically presented and discussed. It is found that dual solutions exist in a certain range of slip and buoyancy parameters. The skin friction coefficient decreases while the Nusselt number increases as the slip parameter increases.

  6. Mixed Convection Unsteady Stagnation-Point Flow towards a Stretching Sheet with Slip Effects

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2014-01-01

    Full Text Available The paper studies the unsteady mixed convection flow of an incompressible viscous fluid about a stagnation point on a stretching sheet in presence of velocity and thermal slips. The governing equations are transformed into the ordinary differential equations by using similarity transformations. The transformed equations are solved numerically by an efficient shooting method. The characteristics of the flow and heat transfer features for governing parameters are analyzed and discussed for both the assisting and opposing flows. It is found that dual solutions exist for certain range of buoyancy parameter λ which again depend on the unsteadiness parameter α and the slip parameters (i.e., δ and γ. The numerical results show that the increase of unsteadiness parameter and the slip effects cause increment in the existence range of similarity solution. The effects of unsteadiness parameter, the velocity ratio parameter, and the velocity and thermal slip parameters on the velocity and temperature distributions are analyzed and discussed.

  7. THERMOSS: a thermohydraulic model of flow stagnation in a horizontal fuel channel

    International Nuclear Information System (INIS)

    Gulshani, P.; Caplan, M.Z.; Spinks, N.J.

    1984-01-01

    Following a postulated inlet-side small break in the CANDU reactor, emergency coolant is injected to refull the horizontal fuel channels and remove the decay heat. As part of the accident analysis, the effects of loss of forced circulation during the accident are predicted. A break size exists for which, at the end of pump rundown, the break force balances the natural circulation force and the channel flow is reduced to near zero. The subcooled, stagnant channel condition is referred to as the standing-start condition. Subsequently, the channel coolant boils and stratifies. Eventually the steam flow from the channel heats up the endfitting to the saturation temperature and reaches the vertical feeder. The resulting buoyancy-induced flow then refills the channel. One dimensional, two-fluid conservation equations are solved in closed form to predict the duration of stagnation. In this calculation the channel water level is an important intermediate variable because it determines the amount of steam production

  8. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  9. Stagnation point flow of hyperbolic tangent fluid with Soret-Dufour effects

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Combined effects of Soret (thermal-diffusion and Dufour (diffusion-thermo in MHD stagnation point flow of tangent hyperbolic fluid by a stretching sheet are discussed in the present article. The laws of conservation of mass, momentum, energy and concentration are employed to develop the mathematical model of physical phenomenon. Suitable transformations lead to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations along with boundary conditions are obtained. Convergence of the developed series solutions is discussed via plots and numerical values. The behaviors of different physical parameters on the velocity, temperature and concentration fields are plotted and analyzed. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively. Furthermore a comparison is presented with the previous published results in a limiting way to justify the present solutions. Keywords: Magnetohydrodynamics (MHD, Stagnation point flow, Tangent hyperbolic fluid, Soret-Dufour effects

  10. MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions

    Directory of Open Access Journals (Sweden)

    N.S. Akbar

    2014-12-01

    Full Text Available Present analysis is carried out to study the two-dimensional stagnation-point flow of an in-compressible Carreau fluid toward a shrinking surface. The formulation of the Carreau fluid model has been developed first time for boundary layer problem of shrinking sheet and the governing partial differential equations are rehabilitated into ordinary differential equations using similarity transformations. The simplified nonlinear boundary value problem is solved by Runge-Kutta method after converting into the system of initial value problem using shooting method. Dual solutions are obtained graphically and results are shown for various parameters involved in the flow equations. Numerical values of skin friction coefficients are also computed.

  11. Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder.

    Science.gov (United States)

    Najib, Najwa; Bachok, Norfifah; Arifin, Norihan Md; Ishak, Anuar

    2014-02-26

    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.

  12. Development of an advanced high efficiency coal combustor for boiler retrofit. Task 1, Cold flow burner development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, ``Cold Flow Burner Development``. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  13. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Directory of Open Access Journals (Sweden)

    Masood Khan

    2016-05-01

    Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  14. Free convection nanofluid flow in the stagnation-point region of a three-dimensional body.

    Science.gov (United States)

    Farooq, Umer; Xu, Hang

    2014-01-01

    Analytical results are presented for a steady three-dimensional free convection flow in the stagnation point region over a general curved isothermal surface placed in a nanofluid. The momentum equations in x- and y-directions, energy balance equation, and nanoparticle concentration equation are reduced to a set of four fully coupled nonlinear differential equations under appropriate similarity transformations. The well known technique optimal homotopy analysis method (OHAM) is used to obtain the exact solution explicitly, whose convergence is then checked in detail. Besides, the effects of the physical parameters, such as the Lewis number, the Brownian motion parameter, the thermophoresis parameter, and the buoyancy ratio on the profiles of velocities, temperature, and concentration, are studied and discussed. Furthermore the local skin friction coefficients in x- and y-directions, the local Nusselt number, and the local Sherwood number are examined for various values of the physical parameters.

  15. Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet.

    Science.gov (United States)

    Mustafa, Meraj; Farooq, Muhammad A; Hayat, Tasawar; Alsaedi, Ahmed

    2013-01-01

    This investigation is concerned with the stagnation-point flow of nanofluid past an exponentially stretching sheet. The presence of Brownian motion and thermophoretic effects yields a coupled nonlinear boundary-value problem (BVP). Similarity transformations are invoked to reduce the partial differential equations into ordinary ones. Local similarity solutions are obtained by homotopy analysis method (HAM), which enables us to investigate the effects of parameters at a fixed location above the sheet. The numerical solutions are also derived using the built-in solver bvp4c of the software MATLAB. The results indicate that temperature and the thermal boundary layer thickness appreciably increase when the Brownian motion and thermophoresis effects are strengthened. Moreover the nanoparticles volume fraction is found to increase when the thermophoretic effect intensifies.

  16. Stagnation point flow and heat transfer over a nonlinear shrinking sheet with slip effects

    Directory of Open Access Journals (Sweden)

    N.F. Fauzi

    2015-12-01

    Full Text Available In this paper, an investigation is performed to analyze the effects of the slip parameters A and B on the steady stagnation-point flow and heat transfer due to a shrinking sheet in a viscous and incompressible fluid. Using similarity transformations, the governing boundary layer equations are transformed into the nonlinear ordinary (similar differential equations. The transformed equations are solved numerically using the shooting method. The dual solutions for velocity and temperature distribution exist for certain values of the positive constant velocity and temperature slip parameters. Likewise, a stability analysis has been performed to find the nature of the dual solutions. The velocity slip will delay the boundary layer separation whereas the temperature slip does not affect the boundary layer separation.

  17. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)

    2016-05-15

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  18. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2016-01-01

    Full Text Available This work concentrates on the mathematical modeling for stagnation point flow of nanofluids over an impermeable stretching sheet with variable thickness. Carbon nanotubes [single-wall carbon nanotubes (SWCNTs and multi-wall carbon nanotubes (MWCNTs] as the nanoparticles are utilized. Water and kerosene oil are taken as the base fluids. Heat transfer through melting effect is discussed. Transformation procedure is adapted to obtain the non-linear ordinary differential equations from the fundamental laws of mass, linear momentum and energy. The optimal values of convergence control parameters and corresponding individual and total residual errors for SWCNTs and MWCNTs are computed by means of homotopy analysis method (HAM based BVPh 2.0. Characteristics of different involved parameters on the velocity, temperature, skin friction coefficient and Nusselt number are discussed. Higher velocity profile is observed for wall thickness parameter in case of water carbon nanotubes when compared with the kerosene oil carbon nanotubes.

  19. Analytical study of the non orthogonal stagnation point flow of a micro polar fluid

    Directory of Open Access Journals (Sweden)

    M. Ali. Abbas

    2017-01-01

    Full Text Available In this paper we consider the steady two dimensional flow of micro polar fluids on a flat plate. The flow under discussion is the modified Hiemenz flow for a micro polar fluid which occurs in the hjkns + skms boundary layer near an orthogonal stagnation point. The full governing equation reduced to a modified Hiemenz flow. The solution to the boundary value problem is governed by two non dimensional parameters, the material parameter K and the ratio of the micro rotation to skin friction parameter n. The obtained nonlinear coupled ordinary differential equations are solved by using the Homotopy perturbation method. Comparison between numerical and analytical solutions of the problem is shown in tables form for different values of the governing parameters K and n. Effects of the material parameter K on the velocity profile and microrotation profiles for different cases of n are discussed graphically as well as numerically. Velocity profile decreases as the material parameter K increases and the microrotation profile increases as the material parameter K increases for different cases of n.

  20. Flow field and thermal characteristics in a model of a tangentially fired furnace under different conditions of burner tripping

    Science.gov (United States)

    Habib, M. A.; Ben-Mansour, R.; Antar, M. A.

    2005-08-01

    Tangentially fired furnaces are vortex-combustion units and are widely used in steam generators of industrial plants. The present study provides a numerical investigation of the problem of turbulent reacting flows in a model furnace of a tangentially fired boiler. The importance of this problem is mainly due to its relation to large boiler furnaces used in thermal power plants. In the present work, calculation of the flow field, temperature and species concentration-contour maps in a tangentially-fired model furnace are provided. The safety of these furnaces requires that the burner be tripped (its fuel is cut off) if the flame is extinguished. Therefore, the present work provides an investigation of the influence of number of tripped burners on the characteristics of the flow and thermal fields. The details of the flow, thermal and combustion fields are obtained from the solution of the conservation equations of mass, momentum and energy and transport equations for scalar variables in addition to the equations of the turbulence model. Available experimental measurements were used for validating the calculation procedure. The results show that the vortex created due to pressure gradient at the furnace center only influenced by tripping at least two burners. However, the temperature distributions are significantly distorted by tripping any of the burners. Regions of very high temperature close to the furnace walls appear as a result of tripping the fuel in one or two of the burners. Calculated heat flux along the furnace walls are presented.

  1. Pair distribution functions of colloidal particles on a quartz collector in a parallel plate and stagnation point flow chamber

    NARCIS (Netherlands)

    Yang, JL; Busscher, HJ; Bos, R.R.M.

    2000-01-01

    Pair distribution functions of polystyrene particles adhering on a quartz collector surface are compared for a parallel plate (PP) and stagnation point (SP) flow chamber at a common Peclet number and identical surface coverage. Radial pair distribution functions of deposition patterns around the

  2. On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface

    Science.gov (United States)

    Khan, Masood; Sardar, Humara; Mudassar Gulzar, M.

    2018-03-01

    This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infinite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with convective boundary condition is performed. Moreover effects of Joule heating is observed and mathematical analysis is presented in the presence of viscous dissipation. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The subsequent non-straight common ordinary differential equations are solved numerically by an effective numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is found that the higher values of Hartmann number (M) correspond to thickening of the thermal and thinning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is diminished by increasing the viscosity ratio parameter (β∗) and opposite trend is observed for temperature profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer thickness is increased with velocity ratio parameter (α) and opposite is true for thermal boundary layer thickness.

  3. Effects of the reacting flowfield on combustion processes in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Gopalakrishnan, Priya

    The performance of dry, low NOx gas turbines, which employ lean premixed (or partially premixed) combustors, is often limited by static and dynamic combustor stability, and they require complicated mixing hardware. To overcome these issues, a novel design, referred to as a Stagnation Point Reverse Flow (SPRF) combustor, has been recently demonstrated. The SPRF combustor has been shown to operate with ultra low NOx emissions in premixed and nonpremixed modes with gaseous and liquid fuels. The objective of this thesis is to elucidate the interactions between the flowfield and combustion processes in this novel combustor for gas- and liquid-fueled operation. This is achieved with experimental measurements employing various optical diagnostic techniques, which include Particle Image Velocimetry (PIV), chemiluminescence imaging, Planar Laser-Induced Fluorescence (PLIF) of OH radicals and elastic laser scattering from liquid droplets. The velocity measurements obtained during gas-fueled operation show that both nonreacting and reacting flows exhibit a "stagnation" region with low mean velocity and high RMS fluctuations. In nonreacting flow, it has been shown that the decay rate of the jet can be modeled as a combination of a free jet and a jet in a uniform opposed flow. The high shear between the forward and reverse flows causes significant recirculation, resulting in enhanced entrainment and mixing of the returning hot product gases into the incoming reactant jet for the reacting flow cases, which enables stable operation of the combustor at very lean equivalence ratios. Nonpremixed operation produces a flowfield similar to that of the premixed case except in the near-field region. The coaxial injector design results in high turbulence intensities close to the injector exit leading to significant fuel-air premixing before combustion occurs. The operation of the SPRF combustor fueled with liquid Jet-A is also experimentally investigated. The results indicate that while

  4. Stagnation-point flow past a shrinking sheet in a nanofluid

    Science.gov (United States)

    Nazar, Roslinda; Jaradat, Mihaela; Arifin, Norihan M.; Pop, Ioan

    2011-10-01

    In this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that solutions do not exist for larger shrinking rates and dual solutions exist when λ < -1.0.

  5. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.

    Science.gov (United States)

    Tsuji, Masanori; Ishikawa, Tatsuya; Ishida, Fujimaro; Furukawa, Kazuhiro; Miura, Yoichi; Shiba, Masato; Sano, Takanori; Tanemura, Hiroshi; Umeda, Yasuyuki; Shimosaka, Shinichi; Suzuki, Hidenori

    2017-05-01

    OBJECT Histopathological examination has revealed that ruptured cerebral aneurysms have different hemostatic patterns depending on the location of the clot formation. In this study, the authors investigated whether the hemostatic patterns had specific hemodynamic features using computational fluid dynamics (CFD) analysis. METHODS Twenty-six ruptured middle cerebral artery aneurysms were evaluated by 3D CT angiography and harvested at the time of clipping. The hemostatic patterns at the rupture points were assessed by means of histopathological examination, and morphological parameters were obtained. Transient analysis was performed, and wall shear stress-related hemodynamic parameters and invariant Q (vortex core region) were calculated. The morphological and hemodynamic parameters were compared among the hemostatic patterns. RESULTS Hematoxylin and eosin staining of the aneurysm wall showed 13 inside-pattern, 9 outside-pattern, and 4 other-pattern aneurysms. Three of the 26 aneurysms were excluded from further analysis, because their geometry models could not be generated due to low vascular CT values. Mann-Whitney U-tests showed that lower dome volume (0.04 cm 3 vs 0.12 cm 3 , p = 0.014), gradient oscillatory number (0.0234 vs 0.0289, p = 0.023), invariant Q (-0.801 10 -2 /sec 2 vs -0.124 10 -2 /sec 2 , p = 0.045) and higher aneurysm formation indicator (0.986 vs 0.963, p = 0.041) were significantly related to inside-pattern aneurysms when compared with outside-pattern aneurysms. CONCLUSIONS Inside-pattern aneurysms may have simpler flow patterns and less flow stagnation than outside-pattern aneurysms. CFD may be useful to characterize the hemostatic pattern of ruptured cerebral aneurysms.

  6. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  7. THERMOSS: A thermohydraulic model of flow stagnation in a horizontal fuel channel

    International Nuclear Information System (INIS)

    Gulshani, P.; Caplan, M.Z.; Spinks, N.J.

    1984-01-01

    A model, called THERMOSS, is developed to compute the duration of stagnation in a CANDU reactor fuel channel with subcooled, stagnant initial conditions. The model solves, in closed form, the one dimensional, two-fluid conservation equations. In the computation of the duration of stagnation, the channel water level is an important intermediate variable because it determines the amount of steam production. A feature of the model is that water level is determined by a momentum balance between frictional pressure drop in the steam phase and hydrostatic head in the liquid phase. This is in contrast to an ealier model in which the level was determined from mass balance considerations. A satisfactory agreement between the predicted and experimentally observed channel water level and duration of stagnation is obtained. (orig.)

  8. Investigation of pore-scale flow physics in porous media burners

    Science.gov (United States)

    Sobhani, Sadaf; Muhunthan, Priyanka; Boigne, Emeric; Mohaddes, Danyal; Ihme, Matthias; Stanford University Team

    2017-11-01

    Porous media burners (PMBs) operate on the principle that the solid porous matrix serves as a means of internally recirculating heat from the combustion products upstream to the reactants, enabling a reduction of the lean-flammability limit, higher power dynamic range, and lower NOx and CO emissions as compared to conventional systems. Accurate predictions of the flow features and properties such as pressure loss in reticulated ceramic foams is an important step in the characterization and optimization of combustion in porous media. In this work, an integrated framework is proposed from obtaining the porous sample to performing a computational fluid dynamics simulation, including X-ray microtomography scanning, digital topology rendering, and volume meshing. Three-dimensional numerical simulations of the flow in the complex geometries of porous foams are obtained by solution of the Navier-Stokes equations using an unstructured, finite-volume solver. This capability enables the investigation of pore-scale flow physics in a wide range of porous materials used in PMBs. In this talk, results obtained at pore-scale Reynolds numbers of order 10 to 100 in a Silicone Carbide foam are presented to demonstrate this capability.

  9. System and method for confining an object to a region of fluid flow having a stagnation point

    Science.gov (United States)

    Schroeder, Charles M. (Inventor); Shaqfeh, Eric S. G. (Inventor); Babcock, Hazen P. (Inventor); Chu, Steven (Inventor)

    2006-01-01

    A device for confining an object to a region proximate to a fluid flow stagnation point includes one or more inlets for carrying the fluid into the region, one or more outlets for carrying the fluid out of the region, and a controller, in fluidic communication with the inlets and outlets, for adjusting the motion of the fluid to produce a stagnation point in the region, thereby confining the object to the region. Applications include, for example, prolonged observation of the object, manipulation of the object, etc. The device optionally may employ a feedback control mechanism, a sensing apparatus (e.g., for imaging), and a storage medium for storing, and a computer for analyzing and manipulating, data acquired from observing the object. The invention further provides methods of using such a device and system in a number of fields, including biology, chemistry, physics, material science, and medical science.

  10. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  11. Flame stabilization and mixing characteristics in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Bobba, Mohan K.

    A novel combustor design, referred to as the Stagnation Point Reverse-Flow (SPRF) combustor, was recently developed that is able to operate stably at very lean fuel-air mixtures and with low NOx emissions even when the fuel and air are not premixed before entering the combustor. The primary objective of this work is to elucidate the underlying physics behind the excellent stability and emissions performance of the SPRF combustor. The approach is to experimentally characterize velocities, species mixing, heat release and flame structure in an atmospheric pressure SPRF combustor with the help of various optical diagnostic techniques: OH PLIF, chemiluminescence imaging, PIV and Spontaneous Raman Scattering. Results indicate that the combustor is primarily stabilized in a region downstream of the injector that is characterized by low average velocities and high turbulence levels; this is also the region where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product entrainment levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on chemical timescales and the flame structure is illustrated with simple reactor models. Although reactants are found to burn in a highly preheated (1300 K) and turbulent environment due to mixing with hot product gases, the residence times are sufficiently long compared to the ignition timescales such that the reactants do not autoignite. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor, and it tends to become more flamelet like with increasing distance from the injector. Fuel-air mixing measurements in case of non-premixed operation indicate that the fuel is shielded from hot products until it is fully mixed with air, providing nearly premixed performance without the safety issues associated with premixing. The reduction in NOx emissions in the SPRF

  12. The effect of mixing rates on the formation and growth of condensation aerosols in a model stagnation flow

    KAUST Repository

    Alshaarawi, Amjad

    2015-03-01

    A steady, laminar stagnation flow configuration is adopted to investigate numerically the interaction between condensing aerosol particles and gas-phase transport across a canonical mixing layer. The mixing rates are varied by adjusting the velocity and length scales of the stagnation flow parametrically. The effect of mixing rates on particle concentration, polydispersity, and mean droplet diameter is explored and discussed. This numerical study reveals a complex response of the aerosol to varying flow times. Depending on the flow time, the variation of the particle concentration in response to varying mixing rates falls into one of the two regimes. For fast mixing rates, the number density and volume fraction of the condensing particles increase with residence time (nucleation regime). On the contrary, for low mixing rates, number density decreases with residence time and volume fraction reaches a plateau (condensation regime). It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes. The results reported here are general and illustrate genuine features of the evolution of aerosols forming by condensation of supersaturated vapor from heat and mass transport across mixing layers.

  13. Vaporisation characteristics of methanol, ethanol and heptane droplets in opposed stagnation flow at low temperature and pressure

    Science.gov (United States)

    Zhu, Huayang; Kee, Robert J.; Chen, Longhua; Cao, Jingjing; Xu, Min; Zhang, Yuyin

    2012-08-01

    A computational model is developed and applied to study the vaporisation behaviour of three liquid fuels. This fundamental study is motivated by a need to understand how the performance of direct-injection-spark-ignition (DISI) engines may be affected by changes in fuel composition, especially alcohols. Currently, most DISI engines are designed for homogeneous-charge combustion, where the in-cylinder fuel injection, vaporisation and mixing is accomplished during the intake and early in the compression process. Thus the temperature and pressure are low, compared to post-compression conditions. The two-phase axisymmetric model is based upon an ideal opposed stagnation flow field. Liquid droplets are carried in one air stream that is met by an opposed air flow. Because of stagnation-flow similarity, the mathematical model can be represented as a one-dimensional boundary-value problem. Results show significant differences between methanol, ethanol and heptane fuels, which have potentially important impacts on the design and modification of fuel-injection systems for direct-injection engines with alternative fuels.

  14. A stochastic model of turbulent mixing with chemical reaction: Nitric oxide formulation in a plug-flow burner

    Science.gov (United States)

    Flagan, R. C.; Appleton, J. P.

    1973-01-01

    A stochastic model of turbulent mixing was developed for a reactor in which mixing is represented by n-body fluid particle interactions. The model was used to justify the assumption (made in previous investigations of the role of turbulent mixing on burner generated thermal nitric oxide and carbon monoxide emissions) that for a simple plug flow reactor, composition nonuniformities can be described by a Gaussian distribution function in the local fuel:air equivalence ratio. Recent extensions of this stochastic model to include the combined effects of turbulent mixing and secondary air entrainment on thermal generation of nitric oxide in gas turbine combustors are discussed. Finally, rate limited upper and lower bounds of the nitric oxide produced by thermal fixation of molecular nitrogen and oxidation of organically bound fuel nitrogen are estimated on the basis of the stochastic model for a plug flow burner; these are compared with experimental measurements obtained using a laboratory burner operated over a wide range of test conditions; good agreement is obtained.

  15. The effect of residence time on the dynamics of a condensating aerosol in a Hiemenz-type stagnation flow

    Science.gov (United States)

    Alshaarawi, Amjad; Zhou, Kun; Scribano, Gianfranco; Attili, Antonio; Bisetti, Fabrizio; Clean Combustion Research Center Team

    2013-11-01

    The effect of residence time on the formation and growth of a condensating aerosol is simulated in a Hiemenz-type stagnation flow setup, for which a unique and well-defined time scale characterizes the velocity field. In this configuration, a hot stream saturated with dibutyle phthalate (DBP) vapor mixes with a cold dry stream. A mixing layer forms at the stagnation plane triggering supersaturation and droplets are generated by homogeneous nucleation. Aerosol dynamics are simulated using the Quadrature Method of Moments (QMOM). Two regimes related to the flow residence time are observed, i.e., a nucleation regime and a condensation regime. The nucleation regime, at short residence times, is characterized by the consumption of DBP vapor into droplets having a negligible effect on the vapor phase. In this regime, both the number density and volume fraction of droplets increase with residence time. In the condensation regime, at long residence times, vapor condensation consumes the vapor phase considerably. For longer residence times, more vapor is consumed, resulting in lower number densities due to the lower nucleation rates, whereas the volume fraction saturates.

  16. Stagnation-Point Flow and Heat Transfer over a Nonlinearly Stretching/Shrinking Sheet in a Micropolar Fluid

    Directory of Open Access Journals (Sweden)

    Khairy Zaimi

    2014-01-01

    Full Text Available This paper considers the problem of a steady two-dimensional stagnation-point flow and heat transfer of an incompressible micropolar fluid over a nonlinearly stretching/shrinking sheet. A similarity transformation is employed to convert the partial differential equations into nonlinear ordinary ones which are then solved numerically using a shooting method. Numerical results obtained are presented graphically, showing the effects of the micropolar or material parameter and the stretching/shrinking parameter on the flow field and heat transfer characteristics. The dual solutions are found to exist in a limited range of the stretching/shrinking parameter for the shrinking case, while unique solutions are possible for all positive values of the stretching/shrinking parameter (stretching case. It is also observed that the skin friction coefficient and the magnitude of the local Nusselt number increase as the material parameter increases.

  17. Unsteady mixed convection flow of a micro-polar fluid near the stagnation point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2006-12-15

    The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)

  18. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  19. MHD Stagnation Point Flow of Williamson Fluid over a Stretching Cylinder with Variable Thermal Conductivity and Homogeneous/Heterogeneous Reaction

    Science.gov (United States)

    Bilal, M.; Sagheer, M.; Hussain, S.; Mehmood, Y.

    2017-06-01

    The present study reveals the effect of homogeneous/hetereogeneous reaction on stagnation point flow of Williamson fluid in the presence of magnetohydrodynamics and heat generation/absorption coefficient over a stretching cylinder. Further the effects of variable thermal conductivity and thermal stratification are also considered. The governing partial differential equations are converted to ordinary differential equations with the help of similarity transformation. The system of coupled non-linear ordinary differential equations is then solved by shooting technique. MATLAB shooting code is validated by comparison with the previously published work in limiting case. Results are further strengthened when the present results are compared with MATLAB built-in function bvp4c. Effects of prominent parameters are deliberated graphically for the velocity, temperature and concentration profiles. Skin-friction coefficient and Nusselt number for the different parameters are investigated with the help of tables.

  20. Characteristics of buoyancy force on stagnation point flow with magneto-nanoparticles and zero mass flux condition

    Science.gov (United States)

    Uddin, Iftikhar; Khan, Muhammad Altaf; Ullah, Saif; Islam, Saeed; Israr, Muhammad; Hussain, Fawad

    2018-03-01

    This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution.

  1. Effects of ohmic heating and viscous dissipation on steady MHD flow near a stagnation point on an isothermal stretching sheet

    Directory of Open Access Journals (Sweden)

    Sharma Pushkar Raj

    2009-01-01

    Full Text Available Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.

  2. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  3. Deposition of oral bacteria and polystyrene particles to quartz and dental enamel in a parallel plate and stagnation point flow chamber

    NARCIS (Netherlands)

    Yang, JL; Belder, GF; Busscher, HJ; Bos, R.R.M.

    1999-01-01

    The aim of this paper is to determine to what extent (i) deposition of oral bacteria and polystyrene particles, (ii) onto quartz and dental enamel with and without a salivary conditioning film, (iii) in a parallel plate (PP) and stagnation point (SP) flow chamber and at common Peclet numbers are

  4. Stagnation zone formation on the axis of a closed vortex flow

    DEFF Research Database (Denmark)

    Naumov, I. V.; Okulov, Valery; Mikkelsen, Robert Flemming

    2014-01-01

    The features of developing a counterflow zone (bubble-mode vortex breakdown or vortex explosion) at the center of an intensively swirled flow produced in a liquid-filled cylindrical container with a rotating endwall have been studied. The observation showed that the scenario of developing a bubble......-mode breakdown zone with generation of counterflow is the same for cylinders with low or high aspect ratio, and it remains independent of stationary-nonstationary transition boundary for the main vortex flow....

  5. Critical two-phase flow in pipes for subcooled stagnation states with cavity flooding incipient flashing model

    International Nuclear Information System (INIS)

    Lee, S.Y.; Schrock, V.E.

    1990-01-01

    Analysis of loss of coolant accident (LOCA) scenarios in nuclear reactor safety evaluation depends on knowledge of many complex phenomena. A primary phenomenon controlling the sequence of events, by determining the residual coolant mass inventory within the primary system, is the critical flow process. Critical flow of a flashing liquid is complicated by marked departure from thermal equilbrium. Several complex models have been proposed to represent the non-equilibrium effects, including six-equation two-fluid models. In the present paper a new cavity flooding model is used for the evaluation of pressure undershoot at flashing inception. This model is similar to the one developed by Fabic (1964) for the evaluation of liquid superheat required for boiling on a surface subjected to transient heating. The model contains an experimentally deduced factor, which is correlated against stagnation subcooling using the experimental data of Amos and Schrock (1983, 1984), Jeandey et al. (1981), and the Marviken tests (Anon., 1979). The model was then tested against seven additional data sets and shown to be very accurate in predicted mass flux (standard deviation of 10.9% for all data). The cavity flooding model is thought to represent the true physics more correctly than does the earlier model, which had its origin in molecular fluctuation theory

  6. Unsteady three-dimensional stagnation-point flow and heat transfer of a nanofluid with thermophoresis and Brownian motion effects

    Science.gov (United States)

    Dinarvand, S.; Hosseini, R.; Tamim, H.; Damangir, E.; Pop, I.

    2015-07-01

    An unsteady three-dimensional stagnation-point flow of a nanofluid past a circular cylinder with sinusoidal radius variation is investigated numerically. By introducing new similarity transformations for the velocity, temperature, and nanoparticle volume fraction, the basic equations governing the flow and heat and mass transfer are reduced to highly nonlinear ordinary differential equations. The resulting nonlinear system is solved numerically by the fourth-order Runge-Kutta method with the shooting technique. The thermophoresis and Brownian motion effects occur in the transport equations. The velocity, temperature, and nanoparticle concentration profiles are analyzed with respect to the involved parameters of interest, namely, unsteadiness parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, and Lewis number. Numerical values of the friction coefficient, diffusion mass flux, and heat flux are computed. It is found that the friction coefficient and heat transfer rate increase with increasing unsteadiness parameter (the highest heat transfer rate at the surface occurs if the thermophoresis and Brownian motion effects are absent) and decrease with increasing both thermophoresis and Brownian motion parameters. The present results are found to be in good agreement with previously published results.

  7. Transport phenomena of carbon nanotubes and bioconvection nanoparticles on stagnation point flow in presence of induced magnetic field

    Science.gov (United States)

    Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.

    2017-07-01

    This article is a numerical study of stagnation point flow of carbon nanotubes over an elongating sheet in presence of induced magnetic field submerged in bioconvection nanoparticles. Two types of carbon nanotubes are considered i.e. single wall carbon nanotube and multi wall carbon nanotube mixed in based fluid taken to be water as well as kerosene-oil. The emphasis of present study is to examine effect of induced magnetic field on boundary layer flows along with influence of SWCNT and MWCNT. Physical problem is mathematically modeled and simplified by using appropriate similarity transformations. Shooting method with Runge-Kutta of order 5 is employed to compute numerical results for non-dimensional velocity, induced magnetic field and temperature. The effects of pertinent parameters are portrayed through graphs. Numerical values of skinfriction coefficient and Nusselt number are tabulated to study the behaviors at the stretching surface. It is depicted that induced magnetic field is an increasing function of solid nanoparticles volumetric fraction. Moreover, MWCNT contributes in rising induced magnetic field more as compared to SWCNT for both water and kerosene-oil based fluids.

  8. Heat transfer in MHD unsteady stagnation point flow with variable wall temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.; Takhar, H.S.

    is considered. Neglecting induced magnetic field, the unsteady flow is governed by the following equations: 8u + u ou + v cu at ax oy 8uoo + 8uoo 0 2 U = 01 U oo ax + v oy2 aB~ + p (uoo - u) ...(1) au a,· - + -- = 0 ox ay oT + U _oT + v 8T_ ::::II~()2 r...

  9. Nonlinear radiative heat transfer in magnetohydrodynamic (MHD stagnation point flow of nanofluid past a stretching sheet with convective boundary condition

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    2015-12-01

    Full Text Available Two-dimensional boundary layer flow of nanofluid fluid past a stretching sheet is examined. The paper reveals the effect of non-linear radiative heat transfer on magnetohydrodynamic (MHD stagnation point flow past a stretching sheet with convective heating. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is considered. The nanoparticle fractions on the boundary are considered to be passively controlled. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. Prandtl number Pr, velocity ratio parameter A, magnetic parameter M, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Moreover, the problem is governed by temperature ratio parameter (Nr=TfT∞ and radiation parameter Rd. Similarity transformation is used to reduce the governing non-linear boundary-value problems into coupled higher order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab software for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient Cf increases as the values of magnetic parameter M increase and decreases as the values of velocity ratio parameter A increase. The local Nusselt number −θ′(0 decreases as the values of thermophoresis parameter Nt and radiation parameter Nr increase and it increases as the values of both Biot number Bi and Prandtl number Pr increase. Furthermore, radiation has a positive effect on temperature and concentration profiles.

  10. Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows

    Science.gov (United States)

    Ikeda, H.; Sato, J.; Williams, F. A.

    1995-03-01

    Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.

  11. Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Layek, G C; Seth, G S

    2014-01-01

    A mathematical model is presented to study the Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous incompressible fluid towards a shrinking surface. Suitable similarity transformations are used to convert the governing partial differential equations into self-similarity ordinary differential equations that are then numerically solved by shooting method. Dual solutions for temperature and concentration are obtained in the presence of Soret and Dufour effects. Graphical representations of the heat and mass transfer coefficients, the dimensionless thermal and solute profiles for various values of Prandtl number, Lewis number, Soret number and Dufour number are demonstrated. With Soret number the mass transfer coefficient which is related to mass transfer rate increases for both solutions and the heat transfer coefficient (related to heat transfer rate) for both solutions becomes larger with Dufour number. The Prandtl number causes reduction in heat and the mass transfer coefficients and similarly with the Lewis number mass transfer coefficient decreases. Also, double crossing over is found in dual dimensionless temperature profiles for increasing Soret number and in dual dimensionless concentration profiles for the increase in Dufour number. Due to the larger values of Dufour number the thermal boundary layer increases and for Prandtl number increment it decreases; whereas, the solute boundary layer thickness reduces with increasing values of Prandtl number and Lewis number. (paper)

  12. Dual solutions for MHD stagnation-point flow of a nanofluid over a stretching surface with induced magneticfield

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2015-11-01

    Full Text Available Present study deals with the buoyancy-driven MHD mixed convection stagnation-point flow, heat and mass transfer of a nanofluid over a non-isothermal stretching sheet in presence of induced magneticfield, radiation, chemical reaction, suction/injection and heat source/sink. The basic governing partial differential equations are reduced to a set of ordinary differential equations by using appropriate similarity transformation. The resulting system is solved numerically by bvp5c Matlab package. Numerical results are validated by comparing with the published results. The influence of non-dimensional governing parameters on velocity, induced magneticfield, temperature and concentration profiles along with coefficient of skin friction, local Nusselt and Sherwood numbers are discussed and presented with the help of graphs and tables. Comparisons are made with the existed studies. Results indicate that dual solutions exists only for certain range of suction/ injection parameter and injection parameter have tendency to enhance the momentum, thermal and concentration boundary layer thickness.

  13. Isothermal modeling of aerodynamic structure of the swirling flow in a two-stage burner

    Directory of Open Access Journals (Sweden)

    Yusupov Roman

    2017-01-01

    Full Text Available The work deals with the experimental study of the aerodynamic structure of a swirling flow in the isothermal model of two-stage vortex combustion chamber. The main attention is focused on the process of flow mixing of two successively connected tangential swirlers of the first and second stages of the working section. Data on flow visualization are presented for two patterns of flow swirling. Time-averaged profiles of the axial and tangential velocity components are obtained with the help of laser-Doppler anemometer. In the case of flow co-swirling between two stages of the working section, instability of a secondary flow in the form of precessing vortex was distinguished. For the regime with counter flow swirling, effective mixing of the swirl flows was found; this was reflected by formation of the flow with uniform distribution of axial velocity over the cross-section.

  14. Stagnation point flow of third-grade liquid due to variable thickness: A useful application to non-Fourier heat flux approach

    Science.gov (United States)

    Zubair, M.; Waqas, M.; Hayat, T.; Alsaedi, A.; Ayub, M.

    2018-03-01

    The impact of modified Fourier's relation in non-linear mixed convective flow of third grade liquid is examined in this article. Stagnation point flow is considered. Variable thermal conductivity and thermal stratification are examined. Non-Fourier heat flux in heat transfer process is retained. Convergent local similar solutions for the nonlinear differential systems are achieved by homotopic procedure. Skin friction is computed and analyzed. Our computations certifies that velocity is higher when nonlinear convection and local buoyancy parameters are augmented. However temperature and thermal layer thickness are reduced for larger thermal relaxation factor.

  15. A comparison of three turbulence models for axisymmetric isothermal swirling flows in the near burner zone

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-12-31

    In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.

  16. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Directory of Open Access Journals (Sweden)

    Fiaz Ur Rehman

    2018-03-01

    Full Text Available In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3 types of nanoparticles considered in this study namely, CuO (Copper oxide, Fe3O4 (Magnetite, and Al2O3 (Alumina are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid. Keywords: Heat transfer, Nanofluids, Stagnation-point flow, Three-dimensional flow, Nano particles, Boundary layer

  17. Large Eddy Simulation of Flow Structures in the Sydney Swirl Burner

    DEFF Research Database (Denmark)

    Yang, Yang

    . There are two reverse flow zones presented in the medium isothermal case: the upstream one is induced by the bluff‐body, the downstream one is formed by bubble type vortex breakdown. The precessing vortex core is divided into several branches. In the high isothermal case, there is only one long recirculation...

  18. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    International Nuclear Information System (INIS)

    Yang Yang; Kær, Søren Knudsen

    2012-01-01

    Highlights: ► Rational mesh and grid system for LES are discussed. ► Validated results are provided and discrepancy of mean radial velocity component is discussed. ► Flow structures are identified using vorticity field. ► We performed POD on cross sections to assist in understanding of coherent structures. - Abstract: This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time averaged results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics.

  19. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  20. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    Science.gov (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  1. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  2. Numerical analysis for MHD thermal and solutal stratified stagnation point flow of Powell-Eyring fluid induced by cylindrical surface with dual convection and heat generation effects

    Science.gov (United States)

    Khalil-Ur-Rehman; Malik, M. Y.; Bilal, S.; Bibi, M.

    The current analysis reports the untapped characteristics of magneto-hydrodynamic dual convection boundary layer stagnation point flow of Powell-Eyring fluid by way of cylindrical surface. Flow exploration is carried out with the combined effects of thermal and solutal stratification. The strength of temperature and concentration adjacent to the cylindrical surface is assumed to be greater than the ambient fluid. Flow conducting mathematically modelled equations are fairly transformed into system of coupled non-linear ordinary differential equations with the aid of suitable transformations. The computations are made against these resultant coupled equations through shooting technique by the support of fifth order Runge-Kutta algorithm. A parametric study is performed to examine the effect logs of various pertinent flow controlling parameters on the velocity, temperature and concentration flow regime. The achieved outcomes are validated by developing comparison with existing published literature. In addition, numerical values of skin friction coefficient and Nusselt number are presented graphically for two different geometries namely, plate and cylinder.

  3. MHD stagnation point flow and heat transfer of a nanofluid over a permeable nonlinear stretching/shrinking sheet with viscous dissipation effect

    Science.gov (United States)

    Jusoh, Rahimah; Nazar, Roslinda

    2018-04-01

    The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.

  4. Analytical and Numerical Study on Magnetoconvection Stagnation-Point Flow in a Porous Medium with Chemical Reaction, Radiation, and Slip Effects

    Directory of Open Access Journals (Sweden)

    H. Niranjan

    2016-01-01

    Full Text Available We investigate the effects of slip and radiation on magnetoconvection flow of a chemically reacting fluid near a stagnation-point towards a vertical plate embedded in a porous medium analytically and numerically. The governing partial differential equations are diminished into the coupled ordinary differential equations by similarity transformations. Then they are solved analytically by homotopy analysis method and solved numerically by shooting method with RK fourth-order method. In this study, the analytical and numerical results are compared for many combinations of parameters. The rates of heat and mass transfer are calculated. The velocity profile near the plate overshoots on increasing the slip parameter. The concentration and temperature are decreasing on increasing the slip parameter.

  5. Radiative Flow of Powell-Eyring Magneto-Nanofluid over a Stretching Cylinder with Chemical Reaction and Double Stratification near a Stagnation Point.

    Science.gov (United States)

    Ramzan, Muhammad; Bilal, Muhammad; Chung, Jae Dong

    2017-01-01

    This exploration addresses MHD stagnation point Powell Eyring nanofluid flow with double stratification. The effects of thermal radiation and chemical reaction are added in temperature and nanoparticle concentration fields respectively. Furthermore, appropriate transformations are betrothed to obtain nonlinear differential equations from the system of partial differential equations and an analytical solution of system of coupled differential equations is obtained by means of the renowned Homotopy Analysis method. Through graphical illustrations, momentum, energy and concentration distributions are conversed for different prominent parameters. Comparison in limiting case is also part of present study to validate the obtained results. It is witnessed that nanoparticle concentration is diminishing function of chemical reaction parameter. Moreover, mounting values of thermal and solutal stratification lowers the temperature and concentration fields respectively.

  6. Radiative Flow of Powell-Eyring Magneto-Nanofluid over a Stretching Cylinder with Chemical Reaction and Double Stratification near a Stagnation Point.

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan

    Full Text Available This exploration addresses MHD stagnation point Powell Eyring nanofluid flow with double stratification. The effects of thermal radiation and chemical reaction are added in temperature and nanoparticle concentration fields respectively. Furthermore, appropriate transformations are betrothed to obtain nonlinear differential equations from the system of partial differential equations and an analytical solution of system of coupled differential equations is obtained by means of the renowned Homotopy Analysis method. Through graphical illustrations, momentum, energy and concentration distributions are conversed for different prominent parameters. Comparison in limiting case is also part of present study to validate the obtained results. It is witnessed that nanoparticle concentration is diminishing function of chemical reaction parameter. Moreover, mounting values of thermal and solutal stratification lowers the temperature and concentration fields respectively.

  7. Solar wind stagnation near comets

    International Nuclear Information System (INIS)

    Galeev, A.A.; Cravens, T.E.; Gombosi, T.I.

    1983-03-01

    The nature of the solar wind flow near comets is examined analytically. In particular, the typical values for the stagnation pressure and magnetic barrier strength are estimated, taking into account the magnetic field line tension and the charge exchange cooling of the mass loaded solar wind. Knowledge of the strength of the magnetic barrier is required in order to determine the location of the contact discontinuity which separates the contaminated solar wind plasma and the outflowing plasma of the cometary ionosphere. (author)

  8. Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic-nanofluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    M. Jayachandra Babu

    2016-09-01

    Full Text Available The current study covers the relative study of non-aligned magnetohydrodynamic stagnation point flow of a nanofluid comprising gyrotactic microorganisms across a stretching sheet in the presence of nonlinear thermal radiation and variable viscosity. The governing equations transitioned as nonlinear ordinary differential equations with suited similarity transformations. With the assistance of Runge-Kutta based shooting method, we derived solutions. Results for oblique and free stream flow cases are exhibited through plots for the parameters of concern. In tabular form, heat and mass transfer rate along with the local density of the motile microorganisms are analyzed for some parameters. It is found that local density of the motile microorganisms is highly influenced by the Biot and Peclet numbers. Rising values of the magnetic field parameter, Biot number, thermal radiation parameter and thermophoresis parameter increase the thermal boundary layer. Bioconvection Peclet number and bioconvection Lewis number have tendency to reduce the density of the motile microorganisms. It is also found that thermal and concentration boundary layers become high in free stream flow when compared with the oblique flow.

  9. DESIGN AND DEVELOPMENT OF MILD COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2013-12-01

    Full Text Available This paper discusses the design and development of the Moderate and Intense Low oxygen Dilution (MILD combustion burner using Computational Fluid Dynamics (CFD simulations. The CFD commercial package was used to simulate preliminary designs for the burner before the final design was sent to the workshop for fabrication. The burner is required to be a non-premixed and open burner. To capture and use the exhaust gas, the burner was enclosed within a large circular shaped wall with an opening at the top. An external EGR pipe was used to transport the exhaust gas which was mixed with the fresh oxidant. To control the EGR and exhaust flow, butterfly valves were installed at the top opening as a damper to close the exhaust gas flow at a certain ratio for EGR and exhaust out to the atmosphere. High temperature fused silica glass windows were installed to view and capture images of the flame and analyze the flame propagation. The burner simulation shows that MILD combustion was achieved for the oxygen mole fraction of 3-13%. The final design of the burner was fabricated and ready for the experimental validation.

  10. RELAP4 stagnation properties option

    International Nuclear Information System (INIS)

    DeYoung, T.L.

    1979-01-01

    The stagnation properties option in RELAP4/MOD6 was completely reviewed, from theoretical foundation to code application. The result of this investigation was the identification of a fundamental mismatch between the essentially homogeneous, equilibrium-based, RELAP4 code and the nonhomogeneous and/or nonequilibrium critical flow models imposed on the code. By continuously monitoring fluid Mach numbers and adjusting flow areas such that sonic velocity was never exceeded, the mismatch could be accommodated. This approach was implemented, found to work correctly, and will be incorporated into the MOD7 version of the code

  11. Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    S. Baag

    2017-01-01

    Full Text Available In this paper, the steady magnetohydrodynamic (MHD mixed convection stagnation point flow of an incompressible and electrically conducting micropolar fluid past a vertical flat plate is investigated. The effects of induced magnetic field, heat generation/absorption and chemical reaction have been taken into account during the present study. Numerical solutions are obtained by using the Runge–Kutta fourth order scheme with shooting technique. The skin friction and rate of heat and mass transfer at the bounding surface are also calculated. The generality of the present study is assured of by discussing the works of Ramachandran et al. (1988, Lok et al. (2005 and Ishak et al. (2008 as particular cases. It is interesting to note that the results of the previous authors are in good agreement with the results of the present study tabulated which is evident from the tabular values. Further, the novelty of the present analysis is to account for the effects of first order chemical reaction in a flow of reactive diffusing species in the presence of heat source/sink. The discussion of the present study takes care of both assisting and opposing flows. From the computational aspect, it is remarked that results of finite difference (Ishak et al. (2008 and Runge–Kutta associated with shooting technique (present method yield same numerical results with a certain degree of accuracy. It is important to note that the thermal buoyancy parameter in opposing flow acts as a controlling parameter to prevent back flow. Diffusion of lighter foreign species, suitable for initiating a destructive reaction, is a suggestive measure for reducing skin friction.

  12. Mixed convection stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with internal heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2015-05-01

    Full Text Available In this paper, we analyzed the buoyancy-driven radiative non-isothermal heat transfer in a nanofluid stagnation-point flow over a stretching/shrinking sheet embedded in a porous medium.The effects of thermal radiation and internal heat generation/absorption along with suction/injection at the boundary are also considered. Three different types of nanofluids, namely the Copper-water, the Alumina-water and the Titanium dioxide water are considered. The resulting coupled nonlinear differential equations are solved numerically by a fifth-order Runge-Kutta-Fehlberg integration scheme with a shooting technique. A good agreement is found between the present numerical results and the available results in the literature for some special cases. The effects of the physical parameters on the flow and temperature characteristics are presented through tables and graphs, and the salient features are discussed. The results obtained reveal many interesting behaviors that warrant further study on the heat transfer enhancement due to the nanofluids.

  13. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    Science.gov (United States)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  14. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Science.gov (United States)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  15. Stability solutions on stagnation point flow in Cu-water nanofluid on stretching/shrinking cylinder with chemical reaction and slip effect

    Science.gov (United States)

    Najib, N.; Bachok, N.; Arifin, N. M.; Ali, F. M.; Pop, I.

    2017-09-01

    A study on boundary layer flow and mass transfer near stagnation point past a stretching or shrinking cylinder in copper water nanofluid under consideration of chemical reaction and slip effect was investigated. The partial differential equations were converted to ordinary differential equations by applying appropriate similarity variables then next substituted into bvp4c code in Matlab software to get the mathematical results. The graphical results were presented and discussed further. The numerical results indicate that with consideration of slip at the boundary causes to decrease the skin friction coefficient but increased the mass transfer rate. Meanwhile, the curvature parameter results in increasing the skin friction coefficient and mass transfer rate. The presence of slip and curvature parameter and also expanded the region of dual solutions. The constructive chemical reaction parameter leads to increase rate of mass transfer at the surface. Since there admit solutions in dual, we carry out the stability analysis to validate either first or second solutions is stable and physically realizable.

  16. The unsteady flow of a nanofluid in the stagnation point region of a time-dependent rotating sphere

    Directory of Open Access Journals (Sweden)

    Malvandi Amir

    2015-01-01

    Full Text Available This paper deals with the unsteady boundary layer flow and heat transfer of nanofluid over a time-dependent rotating sphere where the free stream velocity varies continuously with time. The boundary layer equations were normalized via similarity variables and solved numerically. Best accuracy of the results has been obtained for regular fluid with previous studies. The nanofluid is treated as a two-component mixture (base fluid+nanoparticles that incorporates the effects of Brownian diffusion and thermophoresis simultaneously as the two most important mechanisms of slip velocity in laminar flows. Our outcomes indicated that as A and λ increase, surface shear stresses, heat transfer and concentration rates, climb up. Also, Increasing the thermophoresis Nt is found to decrease in the both values of heat transfer and concentration rates. This decrease supresses for higher thermophoresis number. In addition, it was observed that unlike the heat transfer rate, a rise in Brownian motion Nb, leads to an increase in concentration rate.

  17. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  18. Pulverized fuel-oxygen burner

    Science.gov (United States)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    2017-09-05

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  19. Fuel burner and combustor assembly for a gas turbine engine

    Science.gov (United States)

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  20. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Makmool, U.; Jugjai, S.; Tia, S.; Vallikul, P.; Fungtammasan, B.

    2007-01-01

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  1. Burner ignition system

    Science.gov (United States)

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  2. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  3. LOW NOX BURNER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.

    2004-09-30

    The objective of the task is to develop concepts for ultra low NOx burners. One approach that has been tested previously uses internal recirculation of hot gases and the objective was to how to implement variable recirculation rates during burner operation. The second approach was to use fuel oil aerosolization (vaporization) and combustion in a porous medium in a manner similar to gas-fired radiant burners. This task is trying the second approach with the use of a somewhat novel, prototype system for aerosolization of the liquid fuel.

  4. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  5. On stagnation pressure increases in calorically perfect, ideal gases

    International Nuclear Information System (INIS)

    Williams, D.M.; Kamenetskiy, D.S.; Spalart, P.R.

    2016-01-01

    Highlights: • Unaveraged transport equation is obtained for the stagnation pressure. • Reynolds-averaged transport equation is obtained for the stagnation pressure. • Transport equations apply to compressible flow of calorically perfect, ideal gas. • Stagnation pressure is shown to be capable of naturally or artificially increasing. • Spurious overshoots likely in shear layers displaying convex streamline curvature. - Abstract: When stagnation pressure rises in a natural or numerically simulated flow it is frequently a cause for concern, as one usually expects viscosity and turbulence to cause stagnation pressure to decrease. In fact, if stagnation pressure increases, one may suspect measurement or numerical errors. However, this need not be the case, as the laws of nature do not require that stagnation pressure continually decreases. In order to help clarify matters, the objective of this work is to understand the conditions under which stagnation pressure will rise in the unsteady/steady flows of compressible, viscous, calorically perfect, ideal gases. Furthermore, at a more practical level, the goal is to understand the conditions under which stagnation pressure will increase in flows simulated with the Reynolds averaged Navier–Stokes equations and eddy-viscosity turbulence models. In order to provide an improved understanding of increases in stagnation pressure for both these scenarios, transport equations are derived that govern its behavior in the unaveraged and Reynolds averaged settings. These equations are utilized to precisely determine the relationship between changes in stagnation pressure and zeroth, first, and second derivatives of fundamental flow quantities. Furthermore, these equations are utilized to demonstrate the relationship between changes in stagnation pressure and fundamental non-dimensional quantities that govern the conductivity, viscosity, and compressibility of the flow. In addition, based on an analysis of the Reynolds

  6. Advances in measurements and simulation of gas-particle flows and coal combustion in burners/combustors

    International Nuclear Information System (INIS)

    Zhou, L X

    2009-01-01

    Innovative coal combustors were developed, and measurement and simulation of gas-particle flows and coal combustion in such combustors were done in the Department of Engineering Mechanics, Tsinghua University. LDV/PDPA measurements are made to understand the behavior of turbulent gas-particle flows in coal combustors. Coal combustion test was done for the non-slagging cyclone coal combustor. The full two-fluid model developed by the present author was used to simulate turbulent gas-particle flows, coal combustion and NO x formation. It is found by measurements and simulation that the optimum design can give large-size recirculation zones for improving the combustion performance for all the combustors. The combustion test shows that the nonslagging coal combustor can burn 3-5mm coal particles with good combustion efficiency and low NO emission. Simulation in comparison with experiments indicates that the swirl number can significantly affect the NO formation in the swirl coal combustor.

  7. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial

  8. Public debt, secular stagnation and functional finance

    DEFF Research Database (Denmark)

    Skott, Peter

    2016-01-01

    Fiscal policy and public debt may be required to maintain full employment and avoid secular stagnation. This conclusion emerges from a range of different models, including OLG specifications and stock-flow consistent (post-) Keynesian models. One of the determinants of the required long-run debt ...... consumption and the structure of taxation influence the required debt ratio and, paradoxically, austerity policies are counterproductive on their own terms: cuts in government consumption lead to an increase in the required level of debt....

  9. Experimental Determination of the Recovery Factor and Analytical Solution of the Conical Flow Field for a 20 deg Included Angle Cone at Mach Numbers of 4.6 and 6.0 and Stagnation Temperatures to 2600 degree R

    Science.gov (United States)

    Pfyl, Frank A.; Presley, Leroy L.

    1961-01-01

    The local recovery factor was determined experimentally along the surface of a thin-walled 20 deg included angle cone for Mach numbers near 6.0 at stagnation temperatures between 1200 deg R and 2600 deg R. In addition, a similar cone configuration was tested at Mach numbers near 4.5 at stagnation temperatures of approximately 612 deg R. The local Reynolds number based on flow properties at the edge of the boundary layer ranged between 0.1 x 10(exp 4) and 3.5 x 10(exp 4) for tests at temperatures above 1200 deg R and between 6 x 10(exp 4) and 25 x 10(exp 4) for tests at temperatures near 612 deg R. The results indicated, generally, that the recovery factor can be predicted satisfactorily using the square root of the Prandtl number. No conclusion could be made as to the necessity of evaluating the Prandtl number at a reference temperature given by an empirical equation, as opposed to evaluating the Prandtl number at the wall temperature or static temperature of the gas at the cone surface. For the tests at temperatures above 1200 deg R (indicated herein as the tests conducted in the slip-flow region), two definite trends in the recovery data were observed - one of increasing recovery factor with decreasing stagnation pressure, which was associated with slip-flow effects and one of decreasing recovery factor with increasing temperature. The true cause of the latter trend could not be ascertained, but it was shown that this trend was not appreciably altered by the sources of error of the magnitude considered herein. The real-gas equations of state were used to determine accurately the local stream properties at the outer edge of the boundary layer of the cone. Included in the report, therefore, is a general solution for the conical flow of a real gas using the Beattie-Bridgeman equation of state. The largest effect of temperature was seen to be in the terms which were dependent upon the internal energy of the gas. The pressure and hence the pressure drag terms were

  10. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  11. Design and analysis of the federal aviation administration next generation fire test burner

    Science.gov (United States)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  12. Secular stagnation or stagnation policy? Steindl after Summers

    Directory of Open Access Journals (Sweden)

    Eckhard Hein

    2016-03-01

    Full Text Available The debate on secular stagnation suffers from vagueness and several shortcomings, which affect its economic policy implications. In this work we provide an alternative view on the advanced economies’ tendencies to stagnation, based on Josef Steindl’s contributions. Steindl’s pioneering 1952 book in particular is not prone to several problems that affect the current debate on secular stagnation. It does not rely on the dubious notion of an equilibrium real interest rate as the equilibrating force of saving and investment at full employment levels. Rather, it is based on the notion that modern capitalist economies face aggregate demand constraints, and that saving adjusts to investment through income growth and changes in capacity utilisation in the long run. Steindl’s treatment allows for potential growth to become endogenous to actual demand, and it seriously considers the role of institutions and power relationships for long-run growth. In illustrating Steindl’s contributions on this topic, the article presents an original model synthetizing the main points in particular concerning long run growth and stagnation. JEL codes: B22, E11, E12, E65, O11

  13. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  14. The stagnation of international law

    NARCIS (Netherlands)

    Pauwelyn, Joost; Wessel, Ramses A.; Wouters, Jan

    2012-01-01

    Traditional international law and its instruments are stagnating both in terms of quantity and quality. New, alternative forms of cross-border cooperation, in particular processes of informal international lawmaking, have emerged and gained prominence since the 2000s in response to an increasingly

  15. Simulation tools for the design of natural gas domestic burners

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [DEG Gaz de France, Saint Denise la Plaine (France). Direction de la Recherche; Quilichini, V.; Gicquel, O.; Darabiha, N. [Laboratoire E.M2.C., Ecole Centrale Paris, CNRS, Chatenay-Malabry (France)

    2000-07-01

    The design of domestic burners crucially depends on the availability of tools taking into account complex interactions between flame chemistry, heat transfer and fluid flow. A very promising approach is therefore the development of modern simulation tools incorporating appropriate physical models that enable the predicition of flame stability and pollutant formation in practical devices. Given the complex, 3D geometry of practical burners, we decided to adapt the commercially available, general purpose CFD-code ESTET to the simulation of combustion in domestic burners. This has been achieved through the implementation of a complex chemical kinetics library (BISCUIT) within the CFD code and an adaptation of the graphical user interface. The resulting tool is capable to predict partially premixed flames that characterize domestic burners, as well as the formation of pollutants such as NO{sub x} and has been carefully validated against experimental data obtained for a model burner. Computational ressources required for multi-dimensional burner configurations are standard UNIX workstations. Computing time typically varies from 3 h to 150 h, depending on the physical models used. (orig.)

  16. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  17. Coal-water mixture fuel burner

    Science.gov (United States)

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  18. Ecothal burner development; Ecothal braennarutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, Thomas [KANTHAL AB, Hallstahammar (Sweden)

    2004-08-01

    A SER burner system with catalytic cleaning have been optimised for an outer tube OD 100-115 mm. The aim has been to develop a burner with an emission of nitrogen oxides below 50 ppm and an efficiency higher than 80%. An optimised burner system have been realised but will not be stable enough for commercialisation. In order to fullfill the requirements it have to be regulated with closed loop oxygen sensor system regulating the air/gas supply (Lambda-value). Practically it is possible to reach 200-300 ppm nitrogen oxide with an efficiency around 70-80%. Following work have to focus on how to improve the stability considering geometrical changes when in operation but also towards accomodation of production tolerances and fluctuations in gas supply systems.

  19. Stability of stagnation via an expanding accretion shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Velikovich, A. L.; Giuliani, J. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Taylor, B. D. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States); Zalesak, S. T. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States); Iwamoto, Y. [Ehime University, Matsuyama, Ehime Pref. 790-8577 (Japan)

    2016-05-15

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  20. Stability of stagnation via an expanding accretion shock wave

    Science.gov (United States)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  1. IEN project - Fluidized bed burner

    International Nuclear Information System (INIS)

    1985-08-01

    Due to difficulties inherent to the organic waste storage from laboratories and institutes which use radioactive materials for scientific researches, the Nuclear Facilities Division (DIN/CNEN); elaborated a project for constructing a fluidized burner, in laboratory scale, for burning the low level organic radioactive wastes. The burning system of organic wastes is described. (M.C.K.) [pt

  2. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  3. Characterization of a Rijke Burner as a Tool for Studying Distribute Aluminum Combustion

    OpenAIRE

    Newbold, Brian R.

    1996-01-01

    As prelude to the quantitative study of aluminum distributed combustion, the current work has characterized the acoustic growth, frequency, and temperature of a Rijke burner as a function of mass flow rate, gas composition, and geometry. By varying the exhaust temperature profile, the acoustic growth rate can be as much as tripled from the baseline value of approximately 120 s-1• At baseline, the burner operated in the third harmonic mode at a frequency of 1300 Hz, but geometry or temperature...

  4. Furnaces with multiple ?ameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple ?ameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a

  5. Industrial burner and process efficiency program

    Science.gov (United States)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  6. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    Gueorguieva, A.

    2001-01-01

    The main objective of this project is prediction and reduction of NOx and CO 2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO 2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  7. Flashback Analysis in Tangential Swirl Burners

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2011-10-01

    Full Text Available Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blowoff limits coupled with low NOx emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front.

  8. Combustion characteristics of porous media burners under various back pressures: An experimental study

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2017-07-01

    Full Text Available The porous media combustion technology is an effective solution to stable combustion and clean utilization of low heating value gas. For observing the combustion characteristics of porous media burners under various back pressures, investigating flame stability and figuring out the distribution laws of combustion gas flow and resistance loss, so as to achieve an optimized design and efficient operation of the devices, a bench of foamed ceramics porous media combustion devices was thus set up to test the cold-state resistance and hot-state combustion characteristic of burners in working conditions without back pressures and with two different back pressures. The following results are achieved from this experimental study. (1 The strong thermal reflux of porous media can preheat the premixed air effectively, so the flame can be kept stable easily, the combustion equivalent ratio of porous media burners is lower than that of traditional burners, and its pollutant content of flue gas is much lower than the national standard value. (2 The friction coefficient of foamed ceramics decreases with the increase of air flow rate, and its decreasing rate slows down gradually. (3 When the flow rate of air is low, viscosity is the dominant flow resistance, and the friction coefficient is in an inverse relation with the flow rate. (4 As the flow rate of air increases, inertia is the dominant flow resistance, and the friction coefficient is mainly influenced by the roughness and cracks of foamed ceramics. (5 After the introduction of secondary air, the minimum equivalent ratio of porous media burners gets much lower and its range of equivalent ratio is much larger than that of traditional burners.

  9. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  10. Similarity Analysis for Effects of Variable Diffusivity and Heat Generation/Absorption on Heat and Mass Transfer for a MHD Stagnation-Point Flow of a Convective Viscoelastic Fluid over a Stretching Sheet with a Slip Velocity

    Directory of Open Access Journals (Sweden)

    H. M. El-Hawary

    2013-01-01

    Full Text Available A mathematical analysis has been carried out for stagnation-point heat and mass transfer of a viscoelastic fluid over a stretching sheet with surface slip velocity, concentration dependent diffusivity, thermal convective boundary conditions, and heat source/sink. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using Lie group analysis. Numerical solutions of the resulting ordinary differential equations are obtained using shooting method. The influences of various parameters on velocity, temperature, and mass profiles have been studied. Also, the effects of various parameters on the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are given in graphics form and discussed.

  11. Passive safety design characteristics of the KALIMER-600 burner reactor

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Cho, Chung-Ho; Ha, Ki-Seok; Kim, Sang-Ji

    2009-01-01

    The Korea Atomic Energy Research Institute (KAERI) has recently studied several burner core designs for a transuranics (TRU) transmutation based on the breakeven core geometry of KALIMER-600. The KALIMER-600 is a net electrical rating of 600MWe, sodium-cooled, metallic-fueled, pool-type reactor. For the burner core concept selected for the present analysis, the smearing fractions of the fuel rods in three fuel zones are changed while maintaining the cladding outer diameter and cladding thickness. The resulting fuel slug smearing fractions of the inner, middle, and outer core zones are 36%, 40%, and 48%, respectively. The TRU conversion ratio is 0.57 and the TRU enrichment of the driver fuel is set to 30.0 w/o because of the current practical limitation of the U-TRU-10%Zr metal fuel database. The purpose of this paper is to evaluate the safety performance characteristics provided by the passive safety design features in the KALIMER-600 burner reactor by using a system-wide safety analysis code. The present scoping analysis focuses on an assessment of the enhanced safety design features that provide passive and self-regulating responses to transient conditions and an evaluation of the safety margin during unprotected overpower, unprotected loss of flow, and unprotected loss of heat sink events. The analysis results show that the KALIMER-600 burner reactor provides larger safety margins with respect to the sodium boiling, fuel rod integrity, and structural integrity. The overall inherent safety can be enhanced by accounting for the reactivity feedback mechanisms in the design process. (author)

  12. Stagnation, Acceleration And Deceleration In Agricultural Production ...

    African Journals Online (AJOL)

    This study investigated the hypothesis of stagnation/acceleration/deceleration in agricultural production in Nigeria for the period 1970-2000 by fitting exponential trend equations to the output data of the country's 23 major agricultural commodities and computing compound annual growth rates of agricultural production.

  13. Aggregate demand, functional finance and secular stagnation

    DEFF Research Database (Denmark)

    Skott, Peter

    2016-01-01

    This paper makes three main points. Fiscal policy, first, may be needed in the long run to maintain full employment and avoid secular stagnation. If fiscal policy is used in this way, second, the long-run debt ratio depends (i) inversely on the rate of growth, (ii) inversely on government consump...

  14. Why did Danish women's life expectancy stagnate?

    DEFF Research Database (Denmark)

    Lindahl-Jacobsen, Rune; Oeppen, James; Rizzi, Silvia

    2016-01-01

    The general health status of a population changes over time, generally in a positive direction. Some generations experience more unfavourable conditions than others. The health of Danish women in the interwar generations is an example of such a phenomenon. The stagnation in their life expectancy ...

  15. Technological Progress, Globalization, and Secular Stagnation

    Directory of Open Access Journals (Sweden)

    Popović Milenko

    2018-01-01

    Full Text Available After the 2008 crisis, despite economic recovery that started in 2009, the world economy has experienced a downward shift of its growth path and a consequent decline. As shown at the beginning of this paper, this shift and growth rate stagnation are totally attributable to the economic dynamics in developed economies, the USA and the EU. Explanations of this phenomenon can be divided into two large groups: explanations that belong to the demand side and those that belong to the supply side. The aim of this paper is to give a critical survey of the most important explanations for the ongoing growth stagnation in developed countries and consequently in the entire world economy. This ongoing prolonged stagnation can only be explained by looking at both, the demand and supply sides of the explanation, and particularly by taking a closer look at the interaction between aggregate demand and aggregate supply. In other words, secular stagnation manifests itself as a problem of the limitation of long run growth of aggregate demand. However, in order to explain the causes of those demand limitations, we have to undertake a careful analysis of the supply side dynamics, especially the dynamics of innovations, which bring us to circular and cumulative causation. In order to explain the numerous consequences of this stagnation and to solve some important puzzles, like the productivity paradox for example, a special emphasis is given to the analysis of deindustrialization and the consequent strange reoccurrence of a dual economy within most developed countries during the period of the IT revolution and hyper-globalization. It will also be shown that this new dual economy presents serious limitations for further technological advancement and economic development, quite contrary to the old dualism which contributed to an acceleration of economic growth.

  16. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  17. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  18. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  19. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  20. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  1. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  2. Fuel-flexible burner apparatus and method for fired heaters

    Energy Technology Data Exchange (ETDEWEB)

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S. (Jamal); Benson, Charles E.; Pellizzari, Roberto O.; Little, Cody L.; Marty, Seth A.; Imel, K. Parker; Barnes, Jonathon E.; Parker, Chris S.

    2017-03-14

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in the burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.

  3. Periodic motion of a bunsen flame tip with burner rotation

    Energy Technology Data Exchange (ETDEWEB)

    Gotoda, Hiroshi; Maeda, Kazuyuki; Ueda, Toshihisa; Cheng, Robert K.

    2003-09-01

    Effects of burner rotation on the shapes and dynamics of premixed Bunsen flames have been investigated experimentally in normal gravity and in microgravity. Mixtures of CH{sub 4}-air and C{sub 3}H{sub 8}-air are issued from the burner tube with mean flow velocity U = 0.6 m/s. The burner tube is rotated up to 1400 rpm (swirl number S = 1.58). An oscillating flame with large amplitude is formed between a conical-shape flame and a plateau flame under the condition of Lewis number Le > 1 mixtures (rich CH{sub 4}-air and lean C{sub 3}H{sub 8}-air mixtures). In contrast, for Le = 1 mixtures (lean CH{sub 4}-air and rich C{sub 3}H{sub 8}-air), asymmetric, eccentric flame or tilted flame is formed under the same swirl number range. Under microgravity condition, the oscillating flames are not formed, indicating that the oscillation is driven by buoyancy-induced instability associated with the unstable interface between the hot products and the ambient air. The flame tip flickering frequency {nu} is insensitive to burner rotation for S < 0.11. For S > 0.11, {nu} decreases linearly with increasing S. As S exceeds 0.11, a minimum value of axial mean velocity along the center line uj,m due to flow divergence is found and it has a linear relationship with {nu}. This result shows that uj,m has direct control of the oscillation frequency. When S approaches unity, the flame oscillation amplitude increases by a factor of 5, compared to the flickering amplitude of a conical-shape flame. This is accompanied by a hysteresis variation in the flame curvature from positive to negative and the thermo-diffusive zone thickness varying from small to large. With S > 1.3, the plateau flame has the same small flickering amplitudes as with S = 0. These results show that the competing centrifugal and buoyancy forces, and the non-unity Lewis number effect, play important roles in amplifying the flame-tip oscillation.

  4. Methane combustion in catalytic premixed burners

    International Nuclear Information System (INIS)

    Cerri, I.; Saracco, G.; Specchia, V.

    1999-01-01

    Catalytic premixed burners for domestic boiler applications were developed with the aim of achieving a power modularity from 10 to 100% and pollutant emissions limited to NO x 2 , where the combustion took place entirely inside the burner heating it to incandescence and allowing a decrease in the flame temperature and NO x emissions. Such results were confirmed through further tests carried out in a commercial industrial-scale boiler equipped with the conical panels. All the results, by varying the excess air and the heat power employed, are presented and discussed [it

  5. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  6. Demographic stagnation and decline in Spain: A cause for concern?

    Directory of Open Access Journals (Sweden)

    Serrano-Martínez José-María

    2018-03-01

    Full Text Available For years, the Spanish population has been rapidly ageing, showing signs of atony and stagnation. Between 1996 and 2007, in a phase of economic growth, the entry of foreign immigrants drove a global increase in population. But after the economic recession migratory flows show negative net balances. Our objective is to explain and confirm the demographic regression suffered by Spain. We are also interested in showing how the recent and intense immigration process has failed to generate significant changes in natural demographic characteristics and trends. National censuses, published by the National Institute of Statistics (INE, are our main source of demographic data. The analysis of the most recent relevant scientific literature has allowed us to compare opinions and discuss results. The data confirm an uncertain and worrying future for the Spanish population.

  7. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  8. Pressure Melting and Ice Skating / Bunsen Burner

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Pressure Melting and Ice Skating / Bunsen Burner - Revisited. Classroom Volume 1 Issue 5 May 1996 pp 71-78. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0071-0078. Resonance ...

  9. Burner Characteristics for Activated Carbon Production

    Directory of Open Access Journals (Sweden)

    zakaria Supaat

    2017-01-01

    Full Text Available Carbonization process has become an important stage in developing activated carbon. However, existing burner are not efficient in time production which take 24 hours to15 days for charcoal production. Therefore, new design of burner/kilns is quite needed in order to produce larger number of charcoal in short time production, to improve charcoal quality regarding to the smooth surface area and pore volume. This research proposed new design burner which divided into two types which are vertical and horizontal types. Vertical is not completed by auto-rotating system while horizontal type is complete by auto-rotating and fume handling system. It developed using several equipment such as welding, oxy-cutting, drilling grinding and cutting machine. From the result of carbonization process shows that coconut shell charcoal need shorter time of 30 minutes as compared to palm shell charcoal of 2 h to completely carbonized. This result claim that the new design better than existing kiln that need longer time up to 24 h. The result of the palm and coconut shell charcoal believe will produce better properties of activated carbon in large surface area and higher total volume of pores. Therefore, this burner is high recommended for producing palm and coconut shell charcoal as well as other bio-based material.

  10. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  11. Energy-political stagnation or innovation

    International Nuclear Information System (INIS)

    Kitschelt, H.

    1982-01-01

    The author discusses the enquete report 1980. He makes an inventory for a political and sociological interpretation of the interim report between meaningful innovation and political insignificance as well as intellectual stagnation. The report is considered as an indicator for the transformation of the energy-political arena in the Federal Republic of Germany over the last years. ''Stagnation'' or ''innovation'' of the argumentation patterns in the report of the enquete commission relate to the question whether the analyses in that document are rather a brake or a motor to a shift of political perspectives in energy policy. A progress can be seen in the report regarding political debate about energy-options in the semi-official political spectrum of the Federal Republic of Germany, in as far as differring options of energy-political development are being acknowledged for the first time. At the same time, debate inside the commission directs the attention to issues of institutional policy in the energy sector. Considering the fights within the commission before the report was agreed on, it seems doubtful if its proposals for compromise will prove a sound political basis. The tensions inside the commission are just a first sign of the power conflicts due above all if the recommendations for energy conservation are intransigently carried out. (orig./HSCH) [de

  12. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  13. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  14. Recirculation, stagnation and ventilation: The 2014 legionella episode

    Science.gov (United States)

    Russo, Ana; Soares, Pedro M. M.; Gouveia, Célia M.; Cardoso, Rita M.; Trigo, Ricardo M.

    2017-04-01

    Legionella transmission through the atmosphere is unusual, but not unprecedented. A scientific paper published in 2006 reports a surge in Pas-de-Calais, France, in which 86 people have been infected by bacteria released by a cooling tower more than 6 km away [3]. Similarly, in Norway, in 2005, there was another case where contamination spread beyond 10 km, although more concentrated within a radius of 1 km from an industrial unit [2]. An unprecedented large Legionella outbreak occurred in November 2014 nearby Lisbon, Portugal. As of 7 November 2014, 375 individuals become hill and 12 died infected by the Legionella pneumophila bacteria, contracted by inhalation of steam droplets of contaminated water (aerosols). These droplets are so small that can carry the bacteria directly to the lungs, depositing it in the alveoli. One way of studying the propagation of legionella episodes is through the use of aerosol dispersion models. However, such approaches often require detailed 3D high resolution wind data over the region, which isn't often available for long periods. The likely impact of wind on legionella transmission can also be understood based on the analysis of special types of flow conditions such as stagnation, recirculation and ventilation [1, 4]. The Allwine and Whiteman (AW) approach constitutes a straightforward method to assess the assimilative and dispersal capacities of different airsheds [1,4], as it only requires hourly wind components. Thus, it has the advantage of not needing surface and upper air meteorological observations and a previous knowledge of the atmospheric transport and dispersion conditions. The objective of this study is to analyze if the legionella outbreak event which took place in November 2014 had extreme potential recirculation and/or stagnation characteristics. In order to accomplish the proposed objective, the AW approach was applied for a hindcast time-series covering the affected area (1989-2007) and then for an independent

  15. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  16. Orality disorders in melancholia: acedia as stagnation

    Directory of Open Access Journals (Sweden)

    Ana Cecília Magtaz

    2012-09-01

    Full Text Available In this article valuable contributions by Lasègue, Freud and Abraham are discussed, as they are all indispensible to the understanding of orality disorders in melancholia. Although none of the above authors used the exact term "orality disorders," their understandings of both hysteria and melancholia are important in the debate surrounding the clinical treatment of these difficulties. Sadness is a common denominator for the authors, but contributions on acedia, the "noonday demon" mentioned by Agamben, are also important. Acedia is defined as stagnation, a desperate lack of vigor when faced with a wearying and demanding situation. Those who suffer from chronic acedia feel great inertia and are unable to envision a future. They see their creativity wane away, especially due to the painful isolation caused by what might be called anguished sadness - a denial of sadness through manic action.

  17. CFD simulations on marine burner flames

    DEFF Research Database (Denmark)

    Cafaggi, Giovanni; Jensen, Peter Arendt; Glarborg, Peter

    of marine burners. The resulting auxiliary boilers shall be compact and able to operate with different fuel types, while reducing NOX emissions. The specific boiler object of this study uses a swirl stabilized liquid fuel burner, with a pressure swirl spill-return atomizer (Fig.1). The combustion chamber...... is enclosed in a water jacket used for water heating and evaporation, and a convective heat exchanger at the furnace outlet super-heats the steam. The purpose of the present study is to gather detailed knowledge about the influence of fuel spray conditions on marine utility boiler flames. The main goal...... of work presented in this paper was to obtain a spray description to setup a particle injection region in the CFD simulations of the boiler....

  18. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  19. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  20. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  1. Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner

    Science.gov (United States)

    Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto

    2018-01-01

    In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.

  2. A New Low NOx Combustion Concept for Fan-assisted gas Burners

    International Nuclear Information System (INIS)

    Jaeger, F. Kleine; Koehne, H.

    1999-01-01

    The Department of Heat and Mass Transfer at Aachen Technical University has developed a combustion concept which makes low-emission combustion inside a burn-up chamber possible. In addition to the very low NOx emissions (ENOX < 10 mg/kWh) the fan-assisted gas burner is characterised by the comparatively low noise emissions which are obtained from the stabilisation of the flame within the burn-up chamber and the low flow rates in the flame. The main aim of the fan-assisted gas burner development work is to influence the thermal nitrogen oxide formation in order to obtain minimum emissions combined with low combustion noise. High fan pressures and the resulting increase in turbulence energy in marketable fan-assisted burner concepts often cause a high excitation of thermo-acoustic vibrations which are heard as interfering combustion noises and are often emitted via the chimney into the living space. Low noise emission must therefore be taken into consideration when approaches to reduce nitrogen oxide emissions are developed. One approach which achieves this aim and is in use is combustion on porous surfaces. This reduces the flow rates and therefore the kinetic turbulence energy. One problem with these concepts is, however, the thermal loading of the material which is exposed to a high thermal alternating stress which sometimes makes it brittle. An uneven flow rate distribution can also lead to increased emission of harmful substances. (author)

  3. Optimization of gas mixing system of premixed burner based on CFD analysis

    International Nuclear Information System (INIS)

    Zhang, Tian-Hu; Liu, Feng-Guo; You, Xue-Yi

    2014-01-01

    Highlights: • New multi-ejectors gas mixing system for premixed combustion burner is provided. • Two measures are proposed to improve the flow uniformity at the outlet of GMS. • Small improvement of uniformity induces significant decrease of pollutant emission. • Uniformity of velocity and fuel–gas mixing of ejector increases 234.2% and 2.9%. • Uniformity of flow rate and fuel–gas mixing of ejectors increases 1.9% and 2.2%. - Abstract: The optimization of gas mixing system (GMS) of premixed burner is presented by Computational Fluid Dynamics (CFD) and the uniformity at the outlet of GMS is proved experimentally to have strong influence on pollutant emission. To improve the uniformity at the outlet of GMS, the eleven distribution orifice plates and a diversion plate are introduced. The quantified analysis shows that the uniformity at the outlet of GMS is improved significantly. With applying the distribution orifice plates, the uniformity of velocity and fuel–gas mixing of single ejector is increased by 234.2% and 2.9%, respectively. With applying the diversion plate, the uniformity of flow rate and fuel–gas mixing of different ejectors is increased by 1.9% and 2.2%, respectively. The optimal measures and geometrical parameters provide an applicable guidance for the design of commercial premixed burner

  4. Development of a non-premix radiant burner. Evaluation of design possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P.; Myken, A.N.; Rasmussen, N.B.

    1996-12-31

    traditional surface burners to reduce flue gas losses and increase the effective radiant surface area. The ceramic foam of the outlet section is heated by the flue gasses and will obtain a temperature not much lower than this. The irradiation from this surface will increase the radiant efficiency of the system and this effect will be even more significant at high flue gas temperatures and combustible components in the flue gas. The calculations of the temperature in the burner give a maximum of approximately 1730 deg. C. This means that the chosen material, zirconia, can be used for the foams. It has not yet been decided which material the ceramic tubes should be made of. It is possible to get tubes that can resist temperatures up to about 1700-1750 deg. C. The surface temperature of the tubes will never get as high as the calculations show (1500-1600 deg. C) because they are cooled by the gas flow inside. After the initiation of the project the goal for the NPRB has been changed. The combustion air preheat temperature has been raised from 800 deg. C to 1000 deg. C. Also the geometrical restrictions has been changed from 300 mm x 300 mm (width x height) to 1000 mm x 1000 mm. However the qualitatively result of this report provides sufficient information for the implementation of these changed design parameters into the prototype construction. (EHS)

  5. 0.20-m (8-in.) primary burner development report

    International Nuclear Information System (INIS)

    Stula, R.T.; Young, D.T.; Rode, J.S.

    1977-12-01

    High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy

  6. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    M REZA

    2017-11-09

    Newtonian fluid) on the surface of water. (viscous fluid) has motivated us to study this problem. In general, crude oils have different rheological properties based on dilution. For example, crude oil [15, 16] has viscoelastic prosperities.

  7. Stagnation point flow and heat transfer for a viscoelastic fluid ...

    Indian Academy of Sciences (India)

    M REZA

    2017-11-09

    Nov 9, 2017 ... 0 sNًsقds and terms involving. R1. 0. snNًsقds ًn ! 2ق have been neglected. Further- more, D / Dt denotes convected differentiation of a tensor quantity in relation to the material in motion as defined by Oldroyd [20]. For a contravariant tensor bik,. Dbik. Dt. ¼ obik ot. vm obik oxm. ہ ovk oxm bim ہ ovi oxm bmk.

  8. Laminar partially premixed flame stability - application to domestic burner; Stabilite de flammes laminaires partiellement premelangees. Application aux bruleurs domestiques

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, C.

    2006-05-15

    Phenomena responsible of partially premixed laminar flame stabilisation are investigated on a rich premixed burner configuration. The structure and aerodynamic of the flame generated by a cooking model burner are characterized by Planar Laser Induced Fluorescence of OH radical and Particle Image Velocimetry. The flame behaviour is studied from a stable reference case toward blow-out by varying the flow inlet conditions, the burner geometry and its thermal properties. The flame can be considered as two neighbour and independent reactive zones, each consisting of a double edge flame. The upper double flame stabilisation is similar to the one of a Bunsen burner with a flame-holder attached base and a flame tip stabilized in the flow according to the ratio of the flow velocity and flame speed of the rich pre-mixture. The bottom double flame is stabilized at the crossing point of the stoichiometric flame speed. The flame is finally blown out when there is no more crossing point. (author)

  9. Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners

    Science.gov (United States)

    Orain, M.; Hardalupas, Y.

    2011-11-01

    Local, time-dependent measurements of mixture fraction of the reacting mixture were obtained in a swirl-stabilised natural gas-fuelled, nominally non-premixed burner using the intensity of chemiluminescence from OH∗ and CH∗ radicals. The measurements quantified the mean, rms of fluctuations and probability density functions of local mixture fraction at the stabilisation region of the flame. In addition, the probability of flame presence and the degree of lean or rich versus stoichiometric reaction is reported. The burner was operated for three air flow Reynolds numbers (Re=18970, 29100 and 57600), at an overall equivalence ratio of 0.32, without and with imposed oscillations to the air flow of the burner at the resonance frequency of 350 Hz. Results show that combustion occurred in a partially premixed mode for all flow conditions, although fuel and air were injected separately in the reaction zone. The mean local mixture fraction was nearly stoichiometric at the base of the flame without imposed air oscillations, but with large fluctuations leading to around 80% of lean or rich reaction. The degree of non-stoichiometric reaction increased with axial distance from the burner exit and Reynolds number and lean reaction dominated. Imposed air oscillations led to lifted flames and increased the degree of non-stoichiometric reaction for Re=18970 and 29100, whereas the flame remained attached onto the injector for Re=57600 and little modification of the mixture fraction was observed.

  10. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  11. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    Science.gov (United States)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  12. Stagnation morphology in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.

    2017-10-01

    In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  13. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  14. Performance evaluation of premixed burner fueled with biomass derived producer gas

    Directory of Open Access Journals (Sweden)

    P. Punnarapong

    2017-03-01

    Full Text Available Energy consumption of liquefied petroleum gas (LPG in ceramic firing process accounts for about 15–40% of production cost. Biomass derived producer gas may be used to replace LPG. In this work, a premixed burner originally designed for LPG was modified for producer gas. Its thermal performance in terms of axial and radial flame temperature distribution, thermal efficiency and emissions was investigated. The experiment was conducted at various gas production rates with equivalence ratios between 0.8 and 1.2. Flame temperatures of over 1200 °C can be achieved, with maximum value of 1260 °C. It was also shown that the burner can be operated at 30.5–39.4 kWth with thermal efficiency in the range of 84 – 91%. The maximum efficiency of this burner was obtained at producer gas flow rate of 24.3 Nm3/h and equivalence ratio of 0.84.

  15. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  16. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  17. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  18. Core design studies for advanced burner test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.S.; Kim, T.K.; Hill, R.N. [Argonne National Laboratory, Argonne, IL (United States)

    2007-07-01

    This paper describes the core design and performance characteristics of 250 MWt Advanced Burner Test Reactor (ABTR) designs. A phased approach was adopted with initial startup using conventional enrichment plutonium-based fuel and gradual transition to full core loading of transmutation fuel after its qualification phase. Reference core designs were developed for ternary metal alloy and mixed oxide fuels based on weapons-grade plutonium feed. The transuranics (TRU) transmutation fuel tests can be accommodated in the designated test assemblies, and if fully developed, core conversion to TRU transmutation fuel can be envisioned. For the startup core designs, the calculated TRU conversion ratio is 0.65 for the metal fuel core and 0.64 for the oxide fuel core. The metal fuel core requires an average TRU enrichment of 18.8% and has a TRU loading of 732 kg. Compared to the metal fuel core, the lower density oxide fuel core requires an average TRU enrichment of 21.8%, which results in a 780 kg TRU loading despite a {approx} 9% smaller heavy metal inventory. Alternative designs were also studied for a light water reactor spent fuel TRU feed and a low conversion ratio, including the recycle of the ABTR spent fuel TRU. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core parameters, mass flow rates, power distributions, kinetic parameters, reactivity feedback coefficients, and reactivity control requirements and shutdown margins. (authors)

  19. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  20. Experimental and numerical investigation of the acoustic response of multi-slit Bunsen burners

    Energy Technology Data Exchange (ETDEWEB)

    Kornilov, V.N.; de Goey, L.P.H. [Department of Mechanical Engineering, Combustion Technology Group, TU/e, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rook, R.; ten Thije Boonkkamp, J.H.M. [Department of Mathematics and Computer Science, Scientific Computing Group, TU/e, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-10-15

    Experimental and numerical techniques to characterize the response of premixed methane-air flames to acoustic waves are discussed and applied to a multi-slit Bunsen burner. The steady flame shape, flame front kinematics and flow field of acoustically exited flames, as well as the flame transfer function and matrix are computed. The numerical results are compared with experiments. The influence of changes in the mean flow velocity, mixture equivalence ratio, slit width and distance between the slits on the transfer function is studied, both numerically and experimentally. Good agreement is found which indicates the suitability of both the experimental and numerical approach and shows the importance of predicting the influence of the flow on the flame and vice versa. On the basis of the results obtained, the role and physical nature of convective flow structures, heat transfer between the flame and burner plate and interaction between adjacent flames are discussed. Suggestions for analytical models of premixed flame-acoustics interaction are formulated. (author)

  1. Occurrence and persistence of future atmospheric stagnation events

    Science.gov (United States)

    Horton, Daniel E.; Skinner, Christopher B.; Singh, Deepti; Diffenbaugh, Noah S.

    2014-08-01

    Poor air quality causes an estimated 2.6-4.4 million premature deaths per year. Hazardous conditions form when meteorological components allow the accumulation of pollutants in the near-surface atmosphere. Global-warming-driven changes to atmospheric circulation and the hydrological cycle are expected to alter the meteorological components that control pollutant build-up and dispersal, but the magnitude, direction, geographic footprint and public health impact of this alteration remain unclear. We used an air stagnation index and an ensemble of bias-corrected climate model simulations to quantify the response of stagnation occurrence and persistence to global warming. Our analysis projects increases in stagnation occurrence that cover 55% of the current global population, with areas of increase affecting ten times more people than areas of decrease. By the late twenty-first century, robust increases of up to 40 days per year are projected throughout the majority of the tropics and subtropics, as well as within isolated mid-latitude regions. Potential impacts over India, Mexico and the western US are particularly acute owing to the intersection of large populations and increases in the persistence of stagnation events, including those of extreme duration. These results indicate that anthropogenic climate change is likely to alter the level of pollutant management required to meet future air quality targets.

  2. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  3. Analysis of tangent hyperbolic nanofluid impinging on a stretching cylinder near the stagnation point

    Directory of Open Access Journals (Sweden)

    T. Salahuddin

    Full Text Available An analysis is executed to study the influence of heat generation/absorption on tangent hyperbolic nanofluid near the stagnation point over a stretching cylinder. In this study the developed model of a tangent hyperbolic nanofluid in boundary layer flow with Brownian motion and thermophoresis effects are discussed. The governing partial differential equations in terms of continuity, momentum, temperature and concentration are rehabilitated into ordinary differential form and then solved numerically using shooting method. The results specify that the addition of nanoparticles into the tangent hyperbolic fluid yields an increment in the skin friction coefficient and the heat transfer rate at the surface. Comparison of the present results with previously published literature is specified and found in good agreement. It is noticed that velocity profile reduces by enhancing Weissenberg number λ and power law index n. The skin friction coefficient, local Nusselt number and local Sherwood number enhances for large values of stretching ratio parameter A. Keywords: Stagnation point flow, Tangent hyperbolic nanofluid, Stretching cylinder, Heat generation/absorption, Boundary layer, Shooting method

  4. Effects of Gyejibongnyeong-hwan on dysmenorrhea caused by blood stagnation: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Park Jeong-Su

    2012-01-01

    Full Text Available Abstract Background Gyejibongnyeong-hwan (GJBNH is one of the most popular Korean medicine formulas for menstrual pain of dysmenorrhea. The concept of blood stagnation in Korean medicine is considered the main factor of causing abdominal pain, or cramps, during menstrual periods. To treat the symptoms, GJBNH is used to fluidify the stagnated blood and induce the blood flow to be smooth, reducing pain as the result. The purpose of this trial is to identify the efficacy of GJBNH in dysmenorrhea caused by blood stagnation. Methods This study is a multi-centre, randomised, double-blind, controlled trial with two parallel arms: the group taking GJBNH and the group taking placebo. 100 patients (women from age 18 to 35 will be enrolled to the trial. Through randomization 50 patients will be in experiment arm, and the other 50 patients will be in control arm. At the second visit (baseline, all participants who were already screened that they fulfil both the inclusion and the exclusion criteria will be randomised into two groups. Each group will take the intervention three times per day during two menstrual cycles. After the treatment for two cycles, each patient will be followed up during their 3rd, 4th and 5th menstrual cycles. From the screening (Visit 1 through the second follow-up (Visit 6 the entire process will take 25 weeks. Discussion This trial will provide evidence for the effectiveness of GJBNH in treating periodical pain due to dysmenorrhea that is caused by blood stagnation. The primary outcome between the two groups will be measured by changes in the Visual Analogue Score (VAS of pain. The secondary outcome will be measured by the Blood Stagnation Scale, the Short-form McGill questionnaire and the COX menstrual symptom scale. Analysis of covariance (ANCOVA and repeated measured ANOVA will be used to analyze the data analysis. Trial registration Current Controlled Trials: ISRCTN30426947

  5. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    Science.gov (United States)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  6. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    Martinez, Camilo; Cardona, Mario; Arrieta, Andres Amell

    2001-01-01

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  7. [Analysis on establishment and affecting factors of qi stagnation and blood stasis rat model].

    Science.gov (United States)

    Wang, Tingting; Jia, Cheng; Chen, Yu; Li, Xin; Cheng, Jiayi

    2012-06-01

    To study on the method for establishing the Qi stagnation and blood stasis rat model and analyze the affecting factors. The orthogonal design was adopted to study the influences of joint stimulations including noise, light, electricity, ice water bath, tail-clamping on model rats. The 'flying spot' method was used to dynamically simulate blood flow velocity in microcirculation. the pressure sensing technology of MOTO was adopted to detect hemorheology-related indicators. And the coagulation method was used to detect blood coagulation-related indicators. Compared with the negative control group, all model groups showed significant reduction in the blood flow velocity in mesenteric microcirculation and increase in the whole blood viscosity at high, medium and low shear rate, the plasma viscosity and the fibrinogen content in four blood coagulation indicators. Noise, light, electricity, tail-clamping, bondage and icewater-bath make significant impact on model rats.

  8. Investigation of plasma instabilities in the stagnated Z pinch

    Science.gov (United States)

    Ivanov, V. V.; Chittenden, J. P.; Mancini, R. C.; Papp, D.; Niasse, N.; Altemara, S. D.; Anderson, A. A.

    2012-10-01

    High-resolution laser probing diagnostics at a wavelength of 266 nm allow observation of the internal structure and instabilities in dense stagnated Z pinches, typically hidden by trailing material. The internal structure of the 1-MA Z pinch includes strong kink and sausage instabilities, loops, flares, and disruptions. Mid- and small-scale density perturbations develop in the precursor and main pinch. The three-dimensional shape and dynamics of the wire-array Z pinch are predetermined by the initial configuration of the wire array. Cylindrical, linear, and star wire-array Z pinches present different sets of instabilities seeded to the pinch at the implosion stage. Prolonged implosion of trailing mass can enhance x-ray production in wire arrays. Fast plasma motion with a velocity >100 km/s was observed in the Z pinch at stagnation with two-frame shadowgraphy. Development of instabilities in wire arrays is in agreement with three-dimensional magnetohydrodynamic simulations.

  9. Xeroradiography: Stagnated after a Promising Beginning? A Historical Review

    OpenAIRE

    Udoye, Christopher I.; Jafarzadeh, Hamid

    2010-01-01

    Various methods have been introduced for obtaining radiographs. Xeroradiography which is a method of imaging uses the xeroradiographic copying process to record images produced by diagnostic x-rays. It differs from halide film technique in that it involves neither wet chemical processing nor the use of dark room. Literature on this subject is scarce. After an initial promising beginning, this imaging method, once thought to hold the key to endodontic imaging, got stagnated. A revisit of this ...

  10. Lumbar burner and stinger syndrome in an elderly athlete.

    Science.gov (United States)

    Wegener, Veronika; Stäbler, Axel; Jansson, Volkmar; Birkenmaier, Christof; Wegener, Bernd

    2018-01-01

    Burner or stinger syndrome is a rare sports injury caused by direct or indirect trauma during high-speed or contact sports mainly in young athletes. It affects peripheral nerves, plexus trunks or spinal nerve roots, causing paralysis, paresthesia and pain. We report the case of a 57-year-old male athlete suffering from burner syndrome related to a lumbar nerve root. He presented with prolonged pain and partial paralysis of the right leg after a skewed landing during the long jump. He was initially misdiagnosed since the first magnet resonance imaging was normal whereas electromyography showed denervation. The insurance company refused to pay damage claims. Partial recovery was achieved by pain medication and physiotherapy. Burner syndrome is an injury of physically active individuals of any age and may appear in the cervical and lumbar area. MRI may be normal due to the lack of complete nerve transection, but electromyography typically shows pathologic results.

  11. Investigation of Hypersonic Laminar Heating Augmentation in the Stagnation Region

    Science.gov (United States)

    Marineau, Eric C.; Lewis, Daniel R.; Smith, Michael S.; Lafferty, John F.; White, Molly E.; Amar, Adam J.

    2012-01-01

    Laminar stagnation region heating augmentation is investigated in the AEDC Tunnel 9 at Mach 10 by performing high frequency surface pressure and heat transfer measurements on the Orion CEV capsule at zero degree angle-of-attack for unit Reynolds numbers between 0.5 and 15 million per foot. Heating augmentation increases with Reynolds number, but is also model size dependent as it is absent on a 1.25-inch diameter model at Reynolds numbers where it reaches up to 15% on a 7-inch model. Heat transfer space-time correlations on the 7-inch model show that disturbances convect at the boundary layer edge velocity and that the streamwise integral scale increases with distance. Therefore, vorticity amplification due to stretching and piling-up in the stagnation region appears to be responsible for the stagnation point heating augmentation on the larger model. This assumption is reinforced by the f(exp -11/3) dependence of the surface pressure spectrum compared to the f(exp -1) dependence in the free stream. Vorticity amplification does not occur on the 1.25- inch model because the disturbances are too large. Improved free stream fluctuation measurements will be required to determine if significant vorticity is present upstream or mostly generated behind the bow shock.

  12. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  13. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    Science.gov (United States)

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  14. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Burner fuel-oil service systems. 56.50-65 Section 56.50... SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-65 Burner fuel-oil service systems. (a) All discharge piping from the fuel oil service pumps to burners must be seamless...

  15. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  16. Gaseous emissions from burning diesel, crude and prime bleachable summer yellow cottonseed oil in a burner for drying seedcotton

    International Nuclear Information System (INIS)

    Holt, G.A.; Hooker, J.D.

    2004-01-01

    Cottonseed oil has been used as a fuel source either as a blend with diesel in varying proportions or undiluted (100 %) in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-fueled burner similar to those used by cottonseed oil mills and cotton gins in their drying operations. The purpose of this study was to evaluate emissions from five fuel oil treatments while firing a multi-fueled burner in a setup similar to those used for drying operations of both cottonseed oil mills and cotton gins. For each treatment, gaseous emissions were measured while firing the burner at three fuel flow rates. The five fuel oil treatments evaluated were: (1) No.2 diesel at 28.3 deg C, (2) prime bleachable summer yellow (PBSY) cottonseed oil at 28.3 deg C (PBSY-28), (3) crude cottonseed oil at 28.3 deg C (Crude-28), (4) PBSY at 60 deg C (PBSY-60), and (5) crude at 60 deg C (Crude-60). Results indicate that PBSY treatments had the lowest overall emissions of all treatments. The other treatments varied in emission rates based on treatment and fuel flow rate. Preheating the oil to 60 deg C resulted in higher NO x emissions but displayed varying results in regards to CO. The CO emissions for the crude treatments were relatively unaffected by the 60 deg C preheat temperature whereas the preheated PBSY treatments demonstrated lower CO emissions. Overall, both cottonseed oils performed well in the multi-fueled burner and displayed a promising potential as an alternative fuel source for cottonseed oil mills and cotton gins in their drying operations. (Author)

  17. Process development report: 0.20-m primary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1978-09-01

    HTGR reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite, separating the fissile and fertile particles, crushing and burning the SiC-coated fuel particles to remove the remainder of the carbon, dissolution and separation of the particles from insoluble materials, and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel elements is accomplished in a primary burner. This is a batch-continuous, fluidized-bed process utilizing above-bed gravity fines recycle. In gas-solid separation, a combination of a cyclone and porous metal filters is used. This report documents operational tests performed on a 0.20-m primary burner using crushed fuel representative of both Fort St. Vrain and large high-temperature gas-cooled reactor cores. The burner was reconstructed to a gravity fines recycle mode prior to beginning these tests. Results of two separate and successful 48-hour burner runs and several short-term runs have indicated the operability of this concept. Recommendations are made for future work

  18. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Th.H.

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbu- lence? To that end an active grid is constructed that consists of two perforated disks of which one is rotat- ing, creating a system of pulsating jets, which in the end can be used as a central

  19. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    2012-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central

  20. Core Design Studies for a 300 MWe TRU Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has also been performed. In the early days of a fast reactor, the main purpose was an economical use of a uranium resource, but nowadays, in addition to the maximum utilization of a uranium resource, the burning of high level radioactive waste is taken as an additional interest for the harmony with the environment. In this paper, a 300 MWe burner core design is presented to demonstrate reactor performance for the reference KALIMER-600 burner. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in the design of the KALIMER-600 burner, the two enrichment zoning approach was adapted. Considering that the TRU fuel may not be qualified due to limited database, the uranium core was designed to permit the TRU core operation to cover after the uranium core is operated at an early stage.

  1. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  2. How Efficient is a Laboratory Burner in Heating Water?

    Science.gov (United States)

    Jansen, Michael P.

    1997-01-01

    Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…

  3. Stagnation and interpenetration of laser-created colliding plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pollaine, S.M.; Albritton, J.R.; Kauffman, R.; Keane, C.J. (Lawrence Livermore National Lab., CA (USA)); Berger, R.L.; Bosch, R.; Delameter, N.D.; Failor, B.H. (KMS Fusion, Inc., Ann Arbor, MI (USA))

    1990-11-05

    A KMS laser experiment collides Aluminum (A1) and Magnesium (Mg) plasmas. The measurements include electron density, time and space resolved Ly-alpha and He-alpha lines of Al and Mg, and x-ray images. These measurements were analyzed with a hydrodynamic code, LASNEX, and a special two-fluid code OFIS. The results strongly suggest that at early times, the Al interpenetrates the counterstreaming Mg and deposits in the dense Mg region. At late times, the Al plasma stagnates against the Mg plasma.

  4. Pressure and temperature development in solar heating system during stagnation

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Chen, Ziqian

    2010-01-01

    of the pipes of the solar collector loop. During the investigation the pre-pressure of the expansion vessel and system filling pressure was changed. The investigations showed that a large pressurised expansion vessel will protect the collector loop from critically high temperatures as long as the solar......This paper presents an investigation of stagnation in solar collectors and the effects it will have on the collector loop. At a laboratory test stand at the Technical University of Denmark, a pressurized solar collector loop was designed to test different numbers of collectors and different designs...

  5. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-09-11

    Characteristics of propagating nonpremixed edge-flames were investigated in a counterflow, annular slot burner. A high-voltage direct current (DC) was applied to the lower part of the burner and the upper part was grounded, creating electric field lines perpendicular to the direction of edge-flame propagation. Upon application of an electric field, an ionic wind is caused by the migration of positive and negative ions to lower and higher electrical potential sides of a flame, respectively. Under an applied DC, we found a significant decrease in edge-flame displacement speeds unlike several previous studies, which showed an increase in displacement speed. Within a moderate range of field intensity, we found effects on flame propagation speeds to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little or no impact on propagation speed. The ionic wind also influenced the location of the stoichiometric contour in front of the propagating edge in a given configuration such that a propagating edge was relocated to the higher potential side due to an imbalance between ionic winds originating from positive and negative ions. In addition, we observed a steadily wrinkled flame following transient propagation of the edge-flame, a topic for future research. © 2016 The Combustion Institute

  6. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    Science.gov (United States)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  7. Wide Range Flow and Heat Flux Sensors for In-Flight Flow Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The tracking of critical flow features (CFFs) such as stagnation point, flow separation, shock, and transition in flight provides insight into actual aircraft...

  8. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos

    2012-01-01

    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  9. Standard Test Method for Calculation of Stagnation Enthalpy from Heat Transfer Theory and Experimental Measurements of Stagnation-Point Heat Transfer and Pressure

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the calculation from heat transfer theory of the stagnation enthalpy from experimental measurements of the stagnation-point heat transfer and stagnation pressure. 1.2 Advantages 1.2.1 A value of stagnation enthalpy can be obtained at the location in the stream where the model is tested. This value gives a consistent set of data, along with heat transfer and stagnation pressure, for ablation computations. 1.2.2 This computation of stagnation enthalpy does not require the measurement of any arc heater parameters. 1.3 Limitations and ConsiderationsThere are many factors that may contribute to an error using this type of approach to calculate stagnation enthalpy, including: 1.3.1 TurbulenceThe turbulence generated by adding energy to the stream may cause deviation from the laminar equilibrium heat transfer theory. 1.3.2 Equilibrium, Nonequilibrium, or Frozen State of GasThe reaction rates and expansions may be such that the gas is far from thermodynamic equilibrium. 1.3.3 Noncat...

  10. Combustion stability and thermal efficiency in a porous media burner for LPG cooking in the food industry using Al2O3 particles coming from grinding wastes

    International Nuclear Information System (INIS)

    Herrera, Bernardo; Cacua, Karen; Olmos-Villalba, Luis

    2015-01-01

    Cooking is one of the most thermal-energy consuming processes in the food industry and development of devices that contribute to decrease the consumption of fossil fuel is a matter of great importance. This decreasing in consumption can both enlarge competitiveness in the enterprises of this sector and reduce emissions of greenhouse gases and other toxic combustion by products such as, carbon monoxide and nitrogen oxides. A porous burner made of a bed of Al 2 O 3 particles coming from grinding residues and combined with ceramic foam of SiSiC has been evaluated respect to Liquefied Petroleum Gas combustion stability and thermal efficiency for cooking in food industry. The results showed that for specific heat input rate lower than 154 kW/m 2 , the upper and lower equivalence ratio on the stability limit follow approximately a linear trend, as well as the wide of the range of stability remains constant. But this trend is broken when higher heat input rate is applied. Also, every equivalence ratio for stable combustion was in the lean ratio and stoichiometric combustion values were not feasible because flashback occurred. Emissions of CO were in acceptable values lower than 25 ppm for specific heat input rate lower than 154 kW/m 2 but an important rising in the CO emissions could be seen when the burner worked at higher heat input rate due to a moderate lift-off and quenching on the surface of the burner. Thermal efficiency was calculated in two different working ways: the “radiation–convection” and “conduction”. Thermal efficiency in the “radiation–convection” was between 15.7% and 23.6%, which are lower than the average thermal efficiency of the conventional free-flame burner. But the “conduction” mode showed a significant advantage respect to free flame conventional burners, since it could improve the thermal efficiency between 7% and 14%. The improvement in efficiency and the possibility of interrupting the flow of fuel in a cyclical

  11. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  12. Characteristics of combustion and heat transfer of excess enthalpy flames stabilized in a stagnation flow. 2nd Report. ; Heat flux at high flow rate and effects of Lewis number. Yodomi nagarechu ni anteika sareta choka enthalpy kaen no nensho oyobi etsudentatsu tokusei. 2. ; Koryuryo ni okeru netsuryusoku oyobi Lewis su no koka

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S. (Daido Institute of Technology, Nagoya (Japan)); Asato, K.; Kawamura, T. (Gifu University, Gifu (Japan). Faculty of Engineerirng); Mazaki, T. (Daido Senior High School, Nagoya (Japan)); Umemura, H. (Mitsubishi Electric Corp., Tokyo (Japan))

    1993-08-25

    For the purpose of developing small-sized combustors of high heat transfer efficiency for household and business uses, a study has been carried out on the characteristics of an excess enthalpy flame stabilized in a stagnant flow, the maximum heat flux utilizable from flames through a heat receiver wall, the heat transfer characteristics near the extinction limits, and the effects of Lewis number (Le). Even when heat is drawn from the heat receiver wall in the downstream of flames, stable flames are kept until they extremely approach the heat receiver wall by the effect of preheating for lean methane-air flames of Le[approx equal]1.0 and lean propane-air flames of Le>1.0 and by the effect of preheating and Lewis effect for lean hydrogen-air flames of Le<1.0. In any flames, therefore, the heat flux to the heat receiver wall increases abruptly with the increase of stagnant velocity gradient and thereby the heat transfer characteristics at the heat receiver wall are improved. Heat transfer in the cases where flames exist on the outside and inside of the temperature boundary layer depend not on the thickness of the temperature boundary layer but on the position of flames. 6 refs., 9 figs.

  13. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    Science.gov (United States)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of

  14. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.

    2002-04-15

    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  15. Microbiological tap water profile of a medium-sized building and effect of water stagnation.

    Science.gov (United States)

    Lipphaus, Patrick; Hammes, Frederik; Kötzsch, Stefan; Green, James; Gillespie, Simon; Nocker, Andreas

    2014-01-01

    Whereas microbiological quality of drinking water in water distribution systems is routinely monitored for reasons of legal compliance, microbial numbers in tap water are grossly understudied. Motivated by gross differences in water from private households, we applied in this study flow cytometry as a rapid analytical method to quantify microbial concentrations in water sampled at diverse taps in a medium size research building receiving chlorinated water. Taps differed considerably in frequency of usage and were located in laboratories, bathrooms, and a coffee kitchen. Substantial differences were observed between taps with concentrations (per mL) in the range from 6.29 x 10(3) to 7.74 x 10(5) for total cells and from 1.66 x 10(3) to 4.31 x 10(5) for intact cells. The percentage of intact cells varied between 7% and 96%. Water from taps with very infrequent use showed the highest bacterial numbers and the highest proportions of intact cells. Stagnation tended to increase microbial numbers in water from those taps which were otherwise frequently used. Microbial numbers in other taps that were rarely opened were not affected by stagnation as their water is probably mostly stagnant. For cold water taps, microbial numbers and the percentage of intact cells tended to decline with flushing with the greatest decline for taps used least frequently whereas microbial concentrations in water from hot water taps tended to be somewhat more stable. We conclude that microbiological water quality is mainly determined by building-specific parameters. Tap water profiling can provide valuable insight into plumbing system hygiene and maintenance.

  16. Core Design Studies for a 1000 MWth Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.K.; Yang, W.S.; Grandy, C.; Hill, R.N. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-07-01

    This paper describes the core design and performance characteristics of 1000 MWth Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of approx0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with a wide range of TRU conversion ratio were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from approx0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties. (authors)

  17. Physicochemical properties of nanoparticles titania from alcohol burner calcination

    Directory of Open Access Journals (Sweden)

    Supan Yodyingyong

    2011-08-01

    Full Text Available The physicochemical properties of synthesized TiO2 nanoparticles from integrating sol-gel with flame-based techniques were studied. The synthesized nanoparticles properties were compared after using methanol, ethanol, and propanol fuel sources. The synthesized TiO2 were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, thermal analysis (thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC, and surface area Brunauer–Emmett–Teller (BET method. The photocatalytic activity of TiO2 nanoparticles was investigated by measuring the degradation of methylene blue. It was found that methanol and ethanol burners can be used as an alternative furnace that can yield TiO2 nanoparticles with physicochemical properties comparable to that of commercial TiO2 nanoparticles, while a propanol burner cannot be used as an alternative fuel.

  18. Effect of cycled combustion ageing on a cordierite burner plate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eugenio [Instituto de Ceramica y Vidrio, CSIC, c/ Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Gancedo, J. Ramon [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain); Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain)

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  19. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600 0 C), lower fluid bed operating temperature (850 0 C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  20. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  1. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  2. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  3. Rise, stagnation, and rise of Danish women's life expectancy

    DEFF Research Database (Denmark)

    Lindahl-Jacobsen, Rune; Rau, Roland; Jeune, Bernard

    2016-01-01

    Health conditions change from year to year, with a general tendency in many countries for improvement. These conditions also change from one birth cohort to another: some generations suffer more adverse events in childhood, smoke more heavily, eat poorer diets, etc., than generations born earlier...... favor forecasts that hinge on cohort differences. We use a combination of age decomposition and exchange of survival probabilities between countries to study the remarkable recent history of female life expectancy in Denmark, a saga of rising, stagnating, and now again rising lifespans. The gap between...... female life expectancy in Denmark vs. Sweden grew to 3.5 y in the period 1975-2000. When we assumed that Danish women born 1915-1945 had the same survival probabilities as Swedish women, the gap remained small and roughly constant. Hence, the lower Danish life expectancy is caused by these cohorts...

  4. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    Science.gov (United States)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  5. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  6. Core design studies for advanced burner test reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  7. Low NO{sub x} pulverised fuel burners: Summary of plant experience

    Energy Technology Data Exchange (ETDEWEB)

    King, J.L. [Babcock Energy Limited, Renfrew (United Kingdom)

    1996-01-01

    Over the past six years Babcock Energy have retrofitted over 10,000 MW of electrical-power plant around the world with an advanced pulverised fuel fired low NO{sub x} burner. The burner was developed in 1989 in the Babcock Energy Large Scale Burner Test Facility in the United Kingdom. The paper summarises the significant results from the operational experience gained in the burner retrofits on a wide variety of wall fired boiler configurations and with a range of fuel qualities. NO{sub x} reductions of up to 70% have been achieved with no significant adverse effect on boiler efficiency and with positive operational benefits.

  8. An automatic, stagnation point based algorithm for the delineation of Wellhead Protection Areas

    Science.gov (United States)

    Tosco, Tiziana; Sethi, Rajandrea; di Molfetta, Antonio

    2008-07-01

    Time-related capture areas are usually delineated using the backward particle tracking method, releasing circles of equally spaced particles around each well. In this way, an accurate delineation often requires both a very high number of particles and a manual capture zone encirclement. The aim of this work was to propose an Automatic Protection Area (APA) delineation algorithm, which can be coupled with any model of flow and particle tracking. The computational time is here reduced, thanks to the use of a limited number of nonequally spaced particles. The particle starting positions are determined coupling forward particle tracking from the stagnation point, and backward particle tracking from the pumping well. The pathlines are postprocessed for a completely automatic delineation of closed perimeters of time-related capture zones. The APA algorithm was tested for a two-dimensional geometry, in homogeneous and nonhomogeneous aquifers, steady state flow conditions, single and multiple wells. Results show that the APA algorithm is robust and able to automatically and accurately reconstruct protection areas with a very small number of particles, also in complex scenarios.

  9. Self-Generated Magnetic Fields in Stagnation-Phase ICF Implosions

    Science.gov (United States)

    Walsh, Christopher; Chittenden, Jeremy; McGlinchey, Kristopher; Niasse, Nicolas

    2016-10-01

    3-D extended-MHD simulations of the stagnation phase of an ICF implosion are presented, showing significant self-generated magnetic fields (1000-5000T) due to the Biermann Battery effect. Perturbed hot-spots generate magnetic fields at their edges, as the extremities of hot bubbles are rapidly cooled by the surrounding low temperature fuel, giving non-parallel electron pressure and density gradients. Larger amplitude and higher mode-number perturbations lead to an increased hot-spot surface area and more heat flow, developing greater non-parallel gradients and therefore larger magnetic fields. Due to this, largely perturbed hot-spots can be affected more by magnetic fields, although the accelerated cooling associated with greater deviations from symmetry lowers magnetisation. The Nernst effect advects magnetic field down temperature gradients towards the outer region of the hot-spot, which can also lower the magnetisation of the plasma. In some regions, however, the Nernst velocity is convergent, magnetising the tips of cold fuel spikes, resulting in anisotropic heat-flow and an improvement in energy containment. Low-mode and multi-high-mode simulations are shown, with magnetisations reaching sufficiently high levels in some regions of the hot-spot to suppress thermal conduction to lower than 50% of the unmagnetised case. A quantitative analysis of how this affects the hot-spot energy balance is included.

  10. Distributed combustion in a cyclonic burner

    Science.gov (United States)

    Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele

    2017-11-01

    Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion

  11. Research on Performance of H2 Rich Blowout Limit in Bluff-Body Burner

    Directory of Open Access Journals (Sweden)

    Hongtao Zheng

    2012-01-01

    Full Text Available In order to investigate H2 rich blowout limit at different blockage ratios and flow velocities, a CFD software FLUENT was used to simulate H2 burning flow field in bluff-body burner, and the software CHEMKIN was adopted to analyze the sensitivity of each elementary reaction. Composition Probability Density Function (C-PDF model was adopted to simulate H2 combustion field in turbulence flame. The numerical results show that reactions R2 and R9 possess the largest positive and negative temperature sensitivity. Temperature has a very important influence on these two reactions. When equivalence ratio is 1, the mixture is most ignitable, and the critical ignition temperature is 1550 K. There should be an optimal blockage ratio which can stabilize the flame best. When the blockage ratio remains unchanged, the relationship between H2 RBL and flow velocity is a logarithmic function. When the flow velocity remains unchanged, the relationship between H2 RBL and blockage ratio is a parabolic function. A complete extinction requires three phases: the temperature sudden decline in the main stream, the energy dissipation from the recirculation zone to the main stream, and the complete extinction of the flame.

  12. Pollutant Concentrations and Emission Rates from Scripted Natural Gas Cooking Burner Use in Nine Northern California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lorenzetti, David M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    in the kitchen and bedroom of several homes. A hood with large capture volume and a measured flow of 108 L/s reduced concentrations 80-95%. IMPLICATIONS: These measurements demonstrate that operation of natural gas cooking burners without venting can cause short-term kitchen concentrations of NO2 to exceed the US outdoor health standard, and can elevate concentrations of NO, NO2, and ultrafine particles throughout the home. Results are generally consistent with a recent simulation study that estimated widespread 1h NO2 exposures exceeding 100 ppb in homes that use gas burners without venting. While operating a venting range hood can greatly reduce pollutant levels from burner use (and presumably from cooking as well), performance varies widely across hoods. Increased awareness of the need to ventilate when cooking would substantially reduce in-home exposure to NO2 and ultrafine particles in California homes. Helping consumers select effective hoods, for example by publishing capture efficiency performance ratings, also would help reduce exposure.

  13. Safety aspects of Particle Bed Reactor plutonium burner system

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-01-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling

  14. Rate Controlling Factors in a Bunsen Burner Flame

    Science.gov (United States)

    Andrade-Gamboa, Julio; Corso, Hugo L.; Gennari, Fabiana C.

    2003-05-01

    Combustion and flames have been extensively investigated during past decades due to their industrial importance. The associated phenomena are both physical and chemical in nature, and the rigorous mathematical description is beyond the undergraduate teaching level. While thermodynamic calculations of temperature of a Bunsen burner flame can be made at the college level, there are not accessible chemical kinetic descriptions that can be used for instruction. In this paper we present a simple model that accounts for mass transfer, energy transfer, and kinetics of chemical reaction. From such a description, different controlling regimes can be deduced and tested with experimental data.

  15. On open and closed tips of bunsen burner flames

    Science.gov (United States)

    Kozlovsky, G.; Sivashinsky, G. I.

    1994-04-01

    An adiabatic, constant-density reaction-diffusion-advection model for the Bunsen burner flame tip is studied numerically. It is shown that for Lewis numbers exceeding unity the reaction rate and flame speed gradually increase toward the flame tip. For small Lewis numbers the picture is quite different. The reaction rate drops near the tip. In spite of this the flame survives and, moreover, manages to consume all the fuel supplied to the reaction zone. There is no leakage of the fuel through the front. The flame speed varies nonmonotonously along the front from gradual reduction to steep increase near the tip.

  16. Premixed Combustion of Coconut Oil on Perforated Burner

    OpenAIRE

    Wirawan, I.K.G; Wardana, I.N.G; Soenoko, Rudy; Wahyudi, Slamet

    2013-01-01

    Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ) varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL) is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ ...

  17. Stagnating Jatropha Biofuel Development in Southwest China: An Institutional Approach

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-05-01

    Full Text Available Biodiesel from jatropha has been considered as a promising alternative to fossil fuels for some time. Consequently, China started promoting jatropha as one of the options to meet its ever-increasing energy consumption, and the Chinese biodiesel industry also gained interest. However, the excitement of the biofuel industry in jatropha faded after it did not bring about the expected results. This article investigates the stagnation in jatropha development and production for biodiesel in China, using two detailed case studies of jatropha biofuel production in southeast China. It is found that the underdeveloped biodiesel policy and regulation, such as a rather late formulation of standards for biodiesel (especially the B5 and the absence of mandatory targets, is an important reason for hampering jatropha development. Besides that, lack of financial support undermined sustained jatropha planting at the farm level and lack of sustained commitment from state-owned enterprises or private companies over a long time span further contributed to jatropha project’s failure. Better implementation of the rule of law, mandatory blending requirements, hazard insurance, as well as continuous financial support, might improve the continuation of jatropha plantation schemes.

  18. Wage Dispersion, Public Sector Wages and the Stagnating Danish Gender Wage Gap

    DEFF Research Database (Denmark)

    Gupta, Nabanita Datta; Oaxaca, Ronald L.; Smith, Nina

    1998-01-01

    The gender wage gap in Denmark has virtually stagnated since the early 70s. This study examines whether this stagnation is mainly due to a changing wage dispersion or to changing prices on observed and unobserved skills. Since about half the female labour force is employed in the public sector....... These techniques are applied to a sample of Danish wage earners in the period 1983-94. The decomposition results suggest different explanations behind the stagnation of the gender wage gap in the public and private sectors. The development in average public sector wages is calculated assuming observed...

  19. Pulverized coal burners from the German Democratic Republic in the Tisova power plant

    Energy Technology Data Exchange (ETDEWEB)

    Cech, F.; Frank, M.

    1984-06-01

    The installation, operation and performance of pulverized coal burners produced by the Braunkohlekraftwerke Peitz in the GDR are discussed. The burners were used in the Tisova power plant in Czechoslovakia in a K 11 boiler with a rated power of 100 kW, steam pressure 14.5/3.4 MPa, steam temperature 540/535 C, fired with brown coal with a calorific value from 8.4 to 10.8 MJ/kg from the Sokolov basin. Burners supplied by the Braunkohlekraftwerke used steam at a pressure of 3.4 MPa and a temperature of 510 C for transport of pulverized brown coal to the combustion chamber; the burners replaced ones fired with mazout. The burners were used for stabilizing boiler output. Comparative evaluations showed that efficiency of stabilizing burners using pulverized brown coal was similar to those using mazout. Replacing mazout burners in the K 11 boiler with pulverized fuel burners economized 600 t mazout per year. 1 reference.

  20. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  1. Interim results: fines recycle testing using the 4-inch diameter primary graphite burner

    International Nuclear Information System (INIS)

    Palmer, W.B.

    1975-05-01

    The results of twenty-two HTGR primary burner runs in which graphite fines were recycled pneumatically to the 4-inch diameter pilot-plant primary fluidized-bed burner are described. The result of the tests showed that zero fines accumulation can easily be achieved while operating at plant equivalent burn rates. (U.S.)

  2. The precessing jet gas burner - a low NO[sub x] burner providing process efficiency and product quality improvements

    Energy Technology Data Exchange (ETDEWEB)

    Manias, C.G. (Adelaide Brighton Cement Ltd. (Australia)); Nathan, G.J. (Adelaide Univ., SA (Australia))

    1993-03-01

    Most of the world's cement clinker is produced with coal firing in kilns as the most economical fuel source for this heat-intensive process. However, in many parts of the world, including Australia, North and South America, the Middle East and the former Eastern Block countries, availability of natural gas makes this fuel an economical alternative. Adelaide Brighton Cement has some 25 years' experience in using natural gas to fire cement kilns in its South Australian operations. Natural gas has many attractions as a fuel source, in comparison to coal. However, it also has disadvantages which relate to its combustion characteristics. Clinker quality is largely dependent on the heat treatment in the kiln, where rapid heat-up rates, short time at high temperature and rapid cool down rates give the best crystal structure for cement reactivity and strength development. At Adelaide Brighton Cement, there have been many attempts over the years to improve the heat profile in the kiln for clinker quality. Nevertheless, although conditions were optimized, the basic disadvantages of gas flames remained. Now, however, the development of a new gas burner, based on novel and patented research by the Mechanical Engineering Department of Adelaide University, has exciting implications for natural gas firing. The precessing jet (P.J.) burner has demonstrated, in a full scale industrial application, the ability to produce a very short, sharp and luminous flame, reduce NO[sub x] emission by one half or more, improve clinker quality, as a result of better heat profiles in the kiln, and prior to increase kiln outputs and reduce fuel consumptions as a consequence of improved flame characteristics. This is achieved with a very simple configuration (the P.J. burner is almost as simple as the plain pipe) and without the use of primary air. (author)

  3. Chemical reaction on MHD flow and heat transfer of a nanofluid ...

    African Journals Online (AJOL)

    Chemical reaction on MHD flow and heat transfer of a nanofluid near the stagnation point over a permeable stretching surface with non-uniform heat source/sink. ... and is found to be in excellent agreement. Keywords: Stagnation point flow; Chemical reaction; Heat transfer; Stretching surface; Nanofluid; Numerical solution.

  4. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  5. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  6. Experimental Investigation of Flame Stability in Porous Media Burners

    Science.gov (United States)

    Mohaddes, Danyal; Sobhani, Sadaf; Boigne, Emeric; Muhunthan, Priyanka; Ihme, Matthias

    2017-11-01

    Porous media burners (PMBs) facilitate the stabilization of a flame inside the pores of a solid porous material, and have benefits when compared to traditional burners in terms of emissions reduction and operating envelope extension. PMBs can potentially find application in a wide variety of domains, including household and industrial heating, internal combustion engines, and gas turbine engine combustors. The current study aims to motivate the use of PMBs in such applications on a thermodynamic basis, and subsequently compares the performance of two PMB designs. To this end, an experiment was devised and conducted to determine the stable operating conditions of a continuously varying and a discontinuously varying pore diameter profile PMB. In addition to investigating the stability regime of each design, pressure drop and axial temperatures were measured and compared at different operating conditions. The collected experimental data will be used both to inform computational studies of combustion within porous media and to aid in future optimizations of the design of PMBs. This work is supported by a Leading Edge Aeronautics Research for NASA (LEARN) Grant (Award No. NNX15AE42A).

  7. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  8. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  9. Root-cause analysis of burner tip failures in coal-fired power plants

    International Nuclear Information System (INIS)

    Citirik, E.

    2014-01-01

    Warpage and complete or partial tear of burner material was frequently experienced in coal-fired power plants due to material overheating. Root-cause analysis of a burner tip failure is investigated employing stress modeling in the burner tip material in this study. The analyses performed in this research paper include heat transfer and stress analyses employing computational tools. Thermal analysis was performed using Computational Fluid Dynamics (CFD) software FLUENT for computing temperature distribution within the burner tip due to convection and radiation. Once the temperature distribution in the burner tip is determined, Finite Element Analysis (FEA) is employed using ANSYS to determine the maximum stress and deformations in burner tip material. Both FLUENT and ANSYS are numerical commercial simulation tools employed in this study. Large temperature gradients along the burner tip result in local bending stresses. These stresses resulting in creep stresses might be causing warpage in the burner tip. In this study, a design option was exercised to eliminate the excessive stress gradient in the burner tip material. Seven different FEA models were developed to simulate different operating conditions. Proposed design modification (Model 5) was able to reduce the maximum compressive stress from 76.09 MPa to 33.59 MPa. Significant reduction in the thermal stress due to design modification in Model 5 made author believe that the proposed design solution would eliminate the burner tip failures in this particular power plant. - Highlights: • Maximum stress and displacement values in the baseline model were computed. • Computations were performed using commercial FEA software ANSYS. • Different operating conditions were simulated in models 1-2-3-4. • Proposed geometry to prevent the failure is simulated in Models 5 and 6. • The proposed design solution reduced the maximum compressive stresses by ∼50%

  10. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Aspfors, Jonas; Larfeldt, Jenny

    1999-01-01

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm 3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/m n 3 and OGC to 125 mg/m n 3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/m n 3 at half load while the emission of CO increased to 800 mg/m n 3 . The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  11. Modelling and exergoeconomic-environmental analysis of combined cycle power generation system using flameless burner for steam generation

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Ganjehkaviri, Abdolsaeid; Wahid, Mazlan Abdul; Mohd Jaafar, M.N.

    2017-01-01

    Highlights: • Using flameless burner as a supplementary firing system after gas turbine is modeled. • Thermodynamic, economic and environmental analyses of this model are performed. • Efficiency of the plant increases about 6% and CO 2 emission decreases up to 5.63% in this design. • Available exergy for work production in both gas cycle and steam cycle increases in this model. - Abstract: To have an optimum condition for the performance of a combined cycle power generation, using supplementary firing system after gas turbine was investigated by various researchers. Since the temperature of turbine exhaust is higher than auto-ignition temperature of the fuel in optimum condition, using flameless burner is modelled in this paper. Flameless burner is installed between gas turbine cycle and Rankine cycle of a combined cycle power plant which one end is connected to the outlet of gas turbine (as primary combustion oxidizer) and the other end opened to the heat recovery steam generator. Then, the exergoeconomic-environmental analysis of the proposed model is evaluated. Results demonstrate that efficiency of the combined cycle power plant increases about 6% and CO 2 emission reduces up to 5.63% in this proposed model. It is found that the variation in the cost is less than 1% due to the fact that a cost constraint is implemented to be equal or lower than the design point cost. Moreover, exergy of flow gases increases in all points except in heat recovery steam generator. Hence, available exergy for work production in both gas cycle and steam cycle will increase in new model.

  12. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  13. Safe, Non-Corrosive Dielectric Fluid for Stagnating Radiator Thermal Control System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon Space Development Corporation proposes to develop a single-loop, non-toxic, active pumped radiator design with robust, reliable operation near stagnation...

  14. Safe, Non-Corrosive Dielectric Fluid for Stagnating Radiator Thermal Control System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon proposes to develop a single-loop, non-toxic, stagnating active pumped loop thermal control design for NASA's Orion or Lunar Surface Access Module (LSAM)...

  15. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  16. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  17. A small porous-plug burner for studies of combustion chemistry and soot formation

    Science.gov (United States)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  18. A new scaling methodology for NO(x) emissions performance of gas burners and furnaces

    Science.gov (United States)

    Hsieh, Tse-Chih

    1997-11-01

    A general burner and furnace scaling methodology is presented, together with the resulting scaling model for NOsb{x} emissions performance of a broad class of swirl-stabilized industrial gas burners. The model is based on results from a set of novel burner scaling experiments on a generic gas burner and furnace design at five different scales having near-uniform geometric, aerodynamic, and thermal similarity and uniform measurement protocols. These provide the first NOsb{x} scaling data over the range of thermal scales from 30 kW to 12 MW, including input-output measurements as well as detailed in-flame measurements of NO, NOsb{x}, CO, Osb2, unburned hydrocarbons, temperature, and velocities at each scale. The in-flame measurements allow identification of key sources of NOsb{x} production. The underlying physics of these NOsb{x} sources lead to scaling laws for their respective contributions to the overall NOsb{x} emissions performance. It is found that the relative importance of each source depends on the burner scale and operating conditions. Simple furnace residence time scaling is shown to be largely irrelevant, with NOsb{x} emissions instead being largely controlled by scaling of the near-burner region. The scalings for these NOsb{x} sources are combined in a comprehensive scaling model for NOsb{x} emission performance. Results from the scaling model show good agreement with experimental data at all burner scales and over the entire range of turndown, staging, preheat, and excess air dilution, with correlations generally exceeding 90%. The scaling model permits design trade-off assessments for a broad class of burners and furnaces, and allows performance of full industrial scale burners and furnaces of this type to be inferred from results of small scale tests.

  19. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  20. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  1. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...... modelling, data collection and observations at an industrial cement plant firing alternative fuels. Alternative fuels may differ from conventional fossil fuels in combustion behaviour through differences in physical and chemical properties and reaction kinetics. Often solid alternative fuels are available...

  2. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  3. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  4. Numerical Study of Flame Stabilization Mechanism in a Premixed Burner with LES Non-adiabatic Flamelet Approach

    Science.gov (United States)

    Tang, Yihao; Hassanaly, Malik; Raman, Venkat

    2015-11-01

    In the development of highly efficient gas turbine combustion system, using high-hydrogen-content fuels is a new solution that limits pollutant emissions but also triggers flame stabilization issues. One promising concept to handle such instabilities within a large range of operating conditions is the FLOX® burner. A noticeable feature of the FLOX® burner is that it discharges high momentum jets without swirl, and flame stabilization is achieved in the shear layer around the jets. Experimental investigations have concluded that low velocity zones were absent and the flashback propensity was effectively decreased. It is proposed to study the stabilization mechanism to understand what physical phenomena are decisive in the process. In a preliminary numerical study, an adiabatic flamelet table was used along with LES simulations. Although the flow field's main features were captured, the simulation had issues in accurately predicting some important thermochemical quantities, including near wall quenching effects and OH mass fraction distribution. This work focuses on the effect of the adiabatic hypothesis on the flame stabilization mechanism. A non-adiabatic flamelet model is implemented and the impact on the stabilization mechanism is being quantified.

  5. Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor

    International Nuclear Information System (INIS)

    C. B. Davis

    2007-01-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid that are not currently represented with internal code models, including axial and radial heat conduction in the fluid and subchannel mixing. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor. An evaluation was also performed to determine if the existing centrifugal pump model could be used to simulate the performance of electromagnetic pumps

  6. A Modeling Tool for Household Biogas Burner Flame Port Design

    Science.gov (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  7. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Fantuzzi, M.; Ballarino, L.

    2008-01-01

    Environmental emissions constraints have led manufacturers to improve their low NO x recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO x emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O 2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  8. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  9. The influence of combustion liner holes on noise production by ducted burners

    Science.gov (United States)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    The thermoacoustic energy conversion process in a turbulent flame is not yet sufficiently well understood to allow accurate prediction of the sound pressure field of even the simplest of laboratory burners. The present contribution is intended to be a step toward fuller understanding of this process. In particular, the possibility is explored that the source structure, in the form of the thermoacoustic efficiency spectrum, might be influenced by the acoustic response of the burner itself. Experimental results are presented which seem to establish that, at least for the gas-fueled laboratory burner studied, source activity is not affected by the addition of downstream combustion liner holes which otherwise alter the acoustic response of the burner.

  10. Low-NOx Burner Technologies for High-Temperature Processes With High Furnace Heating Density

    International Nuclear Information System (INIS)

    Boss, M.; Brune, M.; Flamme, M.

    1999-01-01

    The general objective of the presented work is process intensification by means of reduced furnace chamber volumes in combination with the use of low-NOx burner technologies. Fundamental experimental investigations of the reaction zone of different burner types were made. For the development of new burner designs the CFD code FLUENT was used. Throughout the investigations it was possible to increase the furnace heating density from 62 kW/m3 up to 1133 kW/m3. To demonstrate possible technical applications two simulated industrial furnaces designs have been investigated. One main conclusion the work gave is that process intensification without an increase of pollutant emissions is possible by optimizing furnace and burner design and also position and geometry of the furnace load in a combined strategy. (author)

  11. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    Science.gov (United States)

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  12. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  13. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner

    Directory of Open Access Journals (Sweden)

    Yik Siang Pang

    2018-01-01

    Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec

  14. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation

    OpenAIRE

    Valera Medina, Agustin; Marsh, Richard; Runyon, Jon; Pugh, Daniel; Beasley, Paul; Hughes, Timothy Richard; Bowen, Philip John

    2017-01-01

    Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were...

  15. Calibration of X-ray computed tomography (XCT) using a flat flame burner

    Science.gov (United States)

    Muhunthan, Priyanka; Sobhani, Sadaf; Boigne, Emeric; Mohaddes, Danyal; Hinshaw, Waldo; Ihme, Matthias

    2017-11-01

    As a non-invasive, high-resolution technique, X-ray computed tomography (XCT) enables interrogation of three-dimensional field data, such as temperature and density variations, in a combustion context. The objective of this research is the calibration and uncertainty quantification of X-ray based diagnostics using a well-characterized, stable flame, where temperature, concentration, and flow speed can be predictably controlled. To this end, a flat-flame burner is designed and used for the calibration of a tabletop X-ray system consisting of a source, collimator, and flat-panel detector. A premixed methane/air flame, operated from fuel-lean to fuel-rich conditions, is used to characterize features of the scanner, such as drift, attenuation, and noise. Implied temperature fields based on X-ray attenuation are compared to thermocouple measurements. This work furthers the development of XCT as a combustion diagnostic capable of yielding non-intrusive 3D temperature datasets in optically inaccessible environments.

  16. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-06-19

    The mechanism behind improved flame propagation speeds under electric fields is not yet fully understood. Although evidence supports that ion movements cause ionic wind, how this wind affects flame propagation has not been addressed. Here, we apply alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame displacement speed decreased with applied AC voltage, and, depending on the applied AC frequency, the trailing flame body took on an oscillatory wavy motion. When flame displacement speeds were corrected using measured unburned flow velocities, we found no significant difference in flame propagation speeds, indicating no thermal or chemical effects by electric fields on the burning velocity. Thus, we conclude that the generation of bidirectional ionic wind is responsible for the impact of electric fields on flames and that an interaction between this bidirectional ionic wind and the flame parameters creates visible and/or measurable phenomenological effects. We also explain that the presence of trailing flame bodies is a dynamic response to an electric body force on a reaction zone, an area that can be considered to have a net positively charged volume. In addition, we characterize the wavy motion of the transient flame as a relaxation time independent of mixture strength, strain rate, and Lewis number.

  17. Curved wall-jet burner for synthesizing titania and silica nanoparticles

    KAUST Repository

    Ismail, Mohamed

    2015-01-01

    A novel curved wall-jet (CWJ) burner was designed for flame synthesis, by injecting precursors through a center tube and by supplying fuel/air mixtures as an annular-inward jet for rapid mixing of the precursors in the reaction zone. Titanium dioxide (TiO2) and silicon dioxide (SiO2) nanoparticles were produced in ethylene (C2H4)/air premixed flames using titanium tetraisopropoxide (TTIP) and hexamethyldisiloxane (HMDSO) as the precursors, respectively. Particle image velocimetry measurements confirmed that the precursors can be injected into the flames without appreciably affecting flow structure. The nanoparticles were characterized using X-ray diffraction, Raman spectroscopy, the Brunauer-Emmett-Teller (BET) method, and high-resolution transmission electron microscopy. In the case of TiO2, the phase of nanoparticles could be controlled by adjusting the equivalence ratio, while the particle size was dependent on the precursor loading rate and the flame temperature. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ > 1.3). In the case of SiO2, the particle size could be controlled from 11 to 18 nm by adjusting the precursor loading rate. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  18. Design evaluation of the 20-cm (8-inch) secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated.

  19. Design evaluation of the 20-cm (8-inch) secondary burner system

    International Nuclear Information System (INIS)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated

  20. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  1. Stagnation pressure activated fuel release mechanism for hypersonic projectiles

    Science.gov (United States)

    Cartland, Harry E.; Hunter, John W.

    2003-01-01

    A propulsion-assisted projectile has a body, a cowl forming a combustion section and a nozzle section. The body has a fuel reservoir within a central portion of the body, and a fuel activation system located along the central axis of the body and having a portion of the fuel activation system within the fuel reservoir. The fuel activation system has a fuel release piston with a forward sealing member where the fuel release piston is adapted to be moved when the forward sealing member is impacted with an air flow, and an air-flow channel adapted to conduct ambient air during flight to the fuel release piston.

  2. Stagnation and Storage of Strongly Depleted Melts in Slow-Ultraslow Spreading Oceans: Evidence from the Ligurian Tethys

    Science.gov (United States)

    Piccardo, Giovanni; Guarnieri, Luisa; Padovano, Matteo

    2013-04-01

    Our studies of Alpine-Apennine ophiolite massifs (i.e., Lanzo, Voltri, Ligurides, Corsica) show that the Jurassic Ligurian Tethys oceanic basin was a slow-ultraslow spreading basin, characterized by the exposures on the seafloor of mantle peridotites with extreme compositional variability. The large majority of these peridotites are made of depleted spinel harzburgites and plagioclase peridotites. The former are interpreted as reactive peridotites formed by the reactive percolation of under-saturated, strongly trace element depleted asthenospheric melts migrated by porous flow through the mantle lithosphere. The latter are considered as refertilized peridotites formed by peridotite impregnation by percolated silica-saturated, strongly trace element depleted melts. Strongly depleted melts were produced as low-degrees, single melt increments by near fractional melting of the passively upwelling asthenosphere during the rifting stage of the basin. They escaped single melt increment aggregation, migrated isolated through the mantle lithosphere by reactive porous or channeled flow before oceanic opening, and were transformed into silica-saturated derivative liquids that underwent entrapment and stagnation in the shallow mantle lithosphere forming plagioclase-enriched peridotites. Widespread small bodies of strongly depleted gabbro-norites testify for the local coalescence of these derivative liquids. These melts never reached the surface (i.e., the hidden magmatism), since lavas with their composition have never been found in the basin. Subsequently, aggregated MORB melts upwelled within replacive dunite channels (as evidenced by composition of magmatic clinopyroxenes in dunites), intruded at shallow levels as olivine gabbro bodies and extruded as basaltic lavas, to form the crustal rocks of the oceanic lithosphere (i.e., the oceanic magmatism). Km-scale bodies of MORB olivine gabbros were intruded into the plagioclase-enriched peridotites, which were formed in the

  3. Propagation of microwave beams through the stagnation zone in an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, M. A., E-mail: maxt@inbox.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2017-01-15

    A study is made of the microwave beam evolution due to passing through the stagnation zone, where the group velocity vanishes, thus making the paraxial approximation for the wavefield inappropriate. An extension to the standard beam tracing technique is suggested that allows one to calculate the microwave beam parameters on either branch of its path apart from the stagnation zone, omitting the calculation of the wavefield inside it. Application examples of the extended technique are presented for the case of microwave reflection from the upper hybrid resonance layer in a tokamak plasma.

  4. Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners (MOB) gasifier

    International Nuclear Information System (INIS)

    Unar, Imran Nazir; Wang, Lijun; Pathan, Abdul Ghani; Mahar, Rasool Bux; Li, Rundong; Uqaili, M. Aslam

    2014-01-01

    Highlights: • We simulated a double stage 3D entrained flow coal gasifier with multi-opposite burners. • The various reaction mechanisms have evaluated with experimental results. • The effects of coal and oxygen distribution between two stages on the performance of gasifier have investigated. • The local coal to oxygen ratio is affecting the overall efficiency of gasifier. - Abstract: A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–ε turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance

  5. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  6. Preliminary Results on the Effects of Distributed Aluminum Combustion Upon Acoustic Growth Rates in a Rijke Burner

    OpenAIRE

    Newbold, Brian R.

    1998-01-01

    Distributed particle combustion in solid propellant rocket motors may be a significant cause of acoustic combustion instability. A Rijke burner has been developed as a tool to investigate the phenomenon. Previous improvements and characterization of the upright burner lead to the addition of a particle injection flame. The injector flame increases the burner's acoustic driving by about 10% which is proportional to the injector's additional 2 g/min of gas. Frequency remained fairly constant fo...

  7. A multifactorial approach to explaining the stagnation in national smoking rates


    DEFF Research Database (Denmark)

    Pisinger, Charlotta; Jørgensen, Torben; Toft, Ulla

    2018-01-01

    of tobacco had remained almost unchanged, tobacco control legislation and anti-smoking campaigns had not been very intensive, assistance to quit and the Health Authority's manpower allocated to tobacco control had decreased temporarily while the use of e-cigarettes had increased in the stagnation period...

  8. Prediction and experimental validation of stagnation temperature attained by a solar cooker of hot box type

    Energy Technology Data Exchange (ETDEWEB)

    Narasimha Rao, A. V; Srikrishna, D. V. N [Warangal (India)

    2000-07-01

    A hot box type solar cooker, having double glass covers and a plane mirror reflector, is tested for stagnation temperature. A computer code is developed based on the analytical model proposed by Vaishya et. al. The global and beam components of solar radiation measured at Warangal are made use to predict the stagnation temperature of the cooker. The observed values of stagnation temperature at Warangal are compared with those of predicted values. A good agreement of the measured and observed values of the stagnation temperature is observed during the afternoon period. The lag in the observed values during the forenoon may be due to thermal inertia of the cooker. [Spanish] Se probo una estufa solar de tipo caja caliente con cubiertas dobles de vidrio y un espejo reflector plano para medir la temperatura de estancamiento. Se desarrollo un codigo de computacion basado en el modelo analitico propuesto por Vaishya et. al. Los componentes de la radiacion solar globales y de rayo medidos en Warangal se usan para predecir la temperatura de estancamiento de la estufa. Los valores observados de la temperatura de estancamiento en Warangal se comparan con los valores predichos. Se aprecia una buena concidencia de los valores medidos y observados de la temperatura de estancamiento durante el periodo de la tarde. El retraso de los valores observados durante la manana puede ser debido a la inercia termica de la estufa.

  9. Atmospheric stagnation, recirculation and ventilation potential of several sites in Argentina

    Science.gov (United States)

    Venegas, L. E.; Mazzeo, N. A.

    Conditions for stagnation, recirculation and ventilation potential of the atmosphere were studied in five argentine cities: Resistencia, Córdoba, Buenos Aires, Mar del Plata and Comodoro Rivadavia, located in different regions of the country. Wind run and recirculation factors were calculated for a 24-h transport time using 2 years of hourly surface measurements of wind speed and direction. The largest stagnation frequency (45% of the time) was observed in Resistencia, located in the northeastern part of the country, in an area where winds are weak. The least frequency of stagnations (2%) was observed in Comodoro Rivadavia, in the southern region of the country, a region dominated by strong westerly winds. Comodoro Rivadavia and Córdoba registered the largest frequency of recirculations. Comodoro Rivadavia exposed to sea-land breezes and Córdoba, located on a complex terrain area and exposed to local circulations, experienced recirculation events during 10% of the time. Good atmospheric ventilation occurs when a high value of wind run and a low value of the recirculation factor are observed and it can be associated with the atmosphere's capacity to replace polluted air with clean air. Ventilation events occurred 58% of the time at Comodoro Rivadavia, 52% at Mar del Plata, 40% at Buenos Aires, 35% at Córdoba and 18% at Resistencia. In general, stagnation was more frequently observed during autumn and winter, recirculation during spring and summer and good ventilation conditions occurred during spring.

  10. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    Science.gov (United States)

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.

  11. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  12. On the Analytical Solution of Non-Orthogonal Stagnation Point Flow towards a Stretching Sheet

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Bagheri, G. H.; Barari, Amin

    2011-01-01

    in the literature and are solved analytically by means of the Homotopy Analysis Method (HAM). The comparison of results from this paper and those published in the literature confirms the precise accuracy of the HAM. The resulting analytical equation from HAM is valid for entire physical domain and effective...

  13. Effects of the Burner Diameter on the Flame Structure and Extinction Limit of Counterflow Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Chang Bo Oh

    2010-09-01

    Full Text Available Experiments and numerical simulations were conducted to investigate the effects of the burner diameter on the flame structure and extinction limit of counterflow non-premixed methane flames in normal gravity and microgravity. Experiments were performed for counterflow flames with a large inner diameter (d of 50 mm in normal gravity to compare the extinction limits with those obtained by previous studies where a small burner (d < 25 mm was used. Two-dimensional (2D simulations were performed to clarify the flame structure and extinction limits of counterflow non-premixed flame with a three-step global reaction mechanism. One-dimensional (1D simulations were also performed with the same three-step global reaction mechanism to provide reference data for the 2D simulation and experiment. For microgravity, the effect of the burner diameter on the flame location at the centerline was negligible at both high (ag = 50 s−1 and low (ag = 10 s−1 strain rates. However, a small burner flame (d = 15 mm in microgravity showed large differences in the maximum flame temperature and the flame size in radial direction compared to a large burner flame (d = 50 mm at low strain rate. In addition, for normal gravity, a small burner flame (d = 23.4 mm showed differences in the flame thickness, flame location, local strain rate, and maximum heat release rate compared to a large burner flame (d = 50 mm at low strain rate. Counterflow non-premixed flames with low and high strain rates that were established in a large burner were approximated by 1D simulation for normal gravity and microgravity. However, a counterflow non-premixed flame with a low strain rate in a small burner could not be approximated by 1D simulation for normal gravity due to buoyancy effects. The 2D simulations of the extinction limits correlated well with experiments for small and large burner flames. For microgravity, the extinction limit of a small burner flame (d = 15 mm was much lower than that

  14. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  15. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  16. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  17. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Energy Technology Data Exchange (ETDEWEB)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  18. 16 CFR Figure 10 to Part 1633 - Jig for Setting Burners at Proper Distances From Mattress/Foundation

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Jig for Setting Burners at Proper Distances From Mattress/Foundation 10 Figure 10 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY....1633, Fig. 10 Figure 10 to Part 1633—Jig for Setting Burners at Proper Distances From Mattress...

  19. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Science.gov (United States)

    2010-07-01

    ..., fuel oil (diesel and burner), kerosene, and solvents. 101-26.602-3 Section 101-26.602-3 Public... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a...,000 Diesel oil 10,000 Kerosene 10,000 Solvents 500 (2) Estimates shall not be submitted when the...

  20. Large eddy simulations of flow and mixing in jets and swirl flows: application to a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, J.U.

    2000-07-01

    Large Eddy Simulations (LES) are an accepted tool in turbulence research. Most LES investigations deal with low Reynolds-number flows and have a high spatial discretization, which results in high computational costs. To make LES applicable to industrial purposes, the possibilities of LES to deliver results with low computational costs on high Reynolds-number flows have to be investigated. As an example, the cold flow through the Siemens V64.3A.HR gas turbine burner shall be examined. It is a gas turbine burner of swirl type, where the fuel is injected on the surface of vanes perpendicular to the main air flow. The flow regime of an industrial gas turbine is governed by several flow phenomena. The most important are the fuel injection in form of a jet in cross flow (JICF) and the swirl flow issuing into a combustion chamber. In order to prove the ability of LES to deal with these flow phenomena, two numerical investigations were made in order to reproduce the results of experimental studies. The first one deals with JICF. It will be shown that the reproduction of three different JICF is possible with LES on meshes with a low number of mesh points. The results are used to investigate the flow physics of the JICF, especially the merging of two adjacent JICFs. The second fundamental investigation deals with swirl flows. Here, the accuracy of an axisymmetric assumption is examined in detail by comparing it to full 3D LES computations and experimental data. Having demonstrated the ability of LES and the flow solver to deal with such complex flows with low computational efforts, the LES approach is used to examine some details of the burner. First, the investigation of the fuel injection on a vane reveals that the vane flow tends to separate. Furthermore the tendency of the fuel jets to merge is shown. Second, the swirl flow in the combustion chamber is computed. For this investigation the vanes are removed from the burner and swirl is imposed as a boundary condition. As

  1. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  2. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  3. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  4. Low NO[sub x] clinker production. [Gyro-therm burners in cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Manias, C.G. (Adelaide Brighton Management Ltd. (Australia)); Nathan, G.J. (Adelaide Univ., SA (Australia))

    1994-05-01

    Gyro-Therm gas burners have been developed for rotary kiln use in the cement industry. They are based on the new and innovative processing jet technology which provides a unique way for mixing natural gas fuel into a surrounding air stream by utilising a gyratory motion of a fluid jet induced by a particular nozzle design. The first installation of a Gyro-Therm kiln burner of commercial design has produced a marked improvement in production efficiency on kiln 3 at Swan Portland Cement, as well as a spectacular reduction in NO[sub x] emissions. (UK)

  5. Burner redesign for the reduction of the unburned particulate emission in thermal power stations of Comision Federal de Electricidad; Rediseno de quemadores para la reduccion de la emision de particulas inquemadas en centrales termicas de la Comisionon Federal de Electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Espipnoza Garza, Jesus; Mani Gonzalez, Alejandro; Giles Alarcon, Armando; Pena Garcia, Adriana; Albarran Sanchez, Irma L.; Mendez Aranda, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    In the presence of the increasing demand for reaching higher efficiencies and a smaller production of polluting emissions in combustion systems, studies focused to the optimization of the present designs of burners are required. The Comision Federal de Electricidad (CFE) and the Instituto de Investigaciones Electricas (IIE) have established a project that contemplates the redesign of burners in ten of its units of thermoelectric generation. In this work the redesign of the flame stabilizer or diffuser for the reduction of the unburned particulate emission is explained. The results of the modeling of a burner of rotational flow of steam generators of the CFE are shown, as well as the graphs of the contours of the recirculation zone generated by each diffuser without combustion and a figure of the velocity profile that is generated in front of the diffuser. In agreement with the results obtained in the aerodynamic evaluation of frontal burners of rotational flow, it is possible to established that the characteristics of the recirculation zone, generated by this type of burners, are related to geometric parameters of the diffuser that identify with the number of turns and the pressure drop, where it is necessary to look for designs that improve the conditions of the mixing process and combustion in the burner. [Spanish] Ante la creciente demanda por alcanzar mayores eficiencias y una menor produccion de emisiones contaminantes en sistemas de combustion, se requieren estudios enfocados a la optimizacion de los disenos actuales de quemadores. La Comision Federal de Electricidad (CFE) y el Instituto de Investigaciones Electricas (IIE) han establecido un proyecto que contempla el rediseno de quemadores en diez de sus unidades de generacion termoelectrica. En este trabajo se explica el rediseno del estabilizador de flama o difusor para la reduccion de la emision de particulas inquemadas. Se muestran los resultados de la modelacion de un quemador de flujo rotacional de

  6. Energy-saving heating technology in a shaft furnace with modern recuperator burners; Energiesparende Beheizung eines Schachtofens mit modernen Rekuperator-Brennern

    Energy Technology Data Exchange (ETDEWEB)

    Kaczor, H.E. [Buderus Ederstahlwerke AG, Wetzlar (Germany); Bonnet, U. [WS Waermeprozesstechnik GmbH, Tech. Verkauf Nord/West, Witten (Germany)

    2006-06-15

    The article reports on the successful use of recuperator burners in a shaft furnace for reheating of forging ingots at Buderus Edelstahl GmbH. The cold-air burner equipped shaft furnace was converted in just twenty days to use modern recuperator burners, in order to achieve high energy savings. (orig.)

  7. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant Unit...

  8. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    Science.gov (United States)

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.

  9. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  10. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  11. Bulk damping of sound in superfluid 3He--4He under stagnation of the normal component

    International Nuclear Information System (INIS)

    Karchava, T.A.; Sanikidze, D.G.; Chkhaidze, N.D.

    1983-01-01

    The propagation of waves in superfluid 3 He-- 4 He solutions is considered under partial stagnation of the normal component. The wave processes in capillaries are presented as a superposition of the first sound, second sound, and viscous and diffusion waves. The damping coefficients are calculated for the modified first sound and for the thermal wave in superfluid 3 He-- 4 He solutions and related to the viscosity, thermal conductivity, diffusion, barodiffusion, and thermodiffusion coefficients

  12. Study of atmospheric stagnation, recirculation, and ventilation potential at Narora Atomic Power Station site

    International Nuclear Information System (INIS)

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Rao, K.S.; Kumar, Jaivender; Ravi, P.M.

    2011-01-01

    Atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. Estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This article describes the meteorological characteristics of Narora Atomic Power Station (NAPS) site by using the integral parameters developed by Allwine and Whiteman. Meteorological data measured during the period 2006-2010 were analyzed. The integral quantities related to the occurrence of stagnation, recirculation, and ventilation characteristics were studied for NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation, and ventilation characteristics during 2006-2010 at NAPS site is observed to be 33.8% of the time, 19.5% of the time, and 34.7% of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1% and 44.3%) and recirculation (32.6% of the summer season). The presence of light winds and more dispersed winds during prewinter season with predominant wind directions W and WNW results in more stagnation (59.7% of the prewinter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent releases from any nuclear industry. (author)

  13. The Role of Rumination and Stressful Life Events in the Relationship between the Qi Stagnation Constitution and Depression in Women: A Moderated Mediation Model

    Directory of Open Access Journals (Sweden)

    Mingfan Liu

    2017-01-01

    Full Text Available The qi stagnation constitution is associated with depression in traditional Chinese medicine. It is unclear how rumination and stressful life events affect the relationship between the qi stagnation constitution and depression. The Qi Stagnation Constitution Scale, Ruminative Response Scale, Center for Epidemiologic Studies Depression Scale, and Adolescent Self-Rating Life Events Checklist were used to assess this association in 1200 female college students. The results revealed that the qi stagnation constitution was positively associated with depression. Furthermore, rumination was a partial mediator of the relationship between the qi stagnation constitution and depression. In addition, stressful life events moderated the direct effect and mediating effect of the qi stagnation constitution on depression. These findings indicate that rumination and stressful life events may affect the relationship between the qi stagnation constitution and depression in women.

  14. CAPRA exploratory studies of U-free fast Pu burner cores

    International Nuclear Information System (INIS)

    Conti, A.; Garnier, J.C.; Lo Pinto, P.; Sunderland, R.E.; Newton, T.; Maschek, W.

    1995-01-01

    The exploratory studies are summarized that were carried out in the framework of the CAPRA project, on advanced plutonium burner cores, based on the uranium-free fuel concept (allowing the highest plutonium consumption rates to be reached). Taking into account the different requirements to be met in each of the fuel, core physics and safety domains, a conceptual approach is proposed. (author)

  15. Modernization of burner devices of gas- and liquid-fueled power boilers

    Science.gov (United States)

    Shestakov, N. S.; Leikam, A. E.; Asoskov, V. A.; Sorokin, A. P.

    2012-03-01

    The paper describes three types of low-toxic gas-fuel-oil burners that have up to now been implemented at several of Russia's power stations in the conversion of coal-fired boilers to natural-gas and fuel-oil combustion and modernization of gas-fuel oil boilers using known combustion technologies to suppress the formation of nitric oxides.

  16. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    Science.gov (United States)

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  17. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...

  18. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sholes, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

  19. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  20. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  1. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  2. The development of low NOx burners under the IEA Coal Combustion Sciences agreement

    Energy Technology Data Exchange (ETDEWEB)

    Whaley, H. [CANMET Energy Technology Centre, Ottawa, Ontario (Canada)

    1997-09-01

    Canada has been involved in the International Energy Agency (IEA) implementing agreement on coal combustion sciences since 1985. The other countries belonging to this agreement are Australia, Germany, Denmark, Finland, Italy, the Netherlands, Sweden, the United Kingdom and the US. There are two operating annexes, the first, Annex 1 being task-shared, in which designated research projects within the participating countries are reported on an annual basis. Annex 2 is cost-shared and the research is conducted at the International Flame Research Foundation (IFRF) in the Netherlands and paid for by the participants, Canada, Germany, the Netherlands and the UK. The objectives of Annex 2 are to develop advanced low NOx coal burners for power boilers and to characterize their performance with a wide range of coals and coal blends. Two burners have been selected as showing great promise in suppressing NOx formation, thereby reducing emissions to below regulatory levels. One is an aerodynamically air-staged burner (AASB) and the other an internally fuel-staged burner (IFSB). Both can utilize a single boiler entry port, which makes them ideal for retrofitting, the former relies on combustion air staging, the latter on fuel staging or reburning. The IFSB, when developed to a commercial stage, is anticipated to meet projected Canadian NOx regulations for the foreseeable future. Supplementary aspects of the program have been coal characterization, ash behavior and deposition, advanced in-flame measurement technique development and validation data bases for flame, combustion and NOx modeling. This presentation will focus on the two low NOx burners developed under the Annex 2 program.

  3. Construction and analysis of compressible flow calculation algorithms

    International Nuclear Information System (INIS)

    Desideri, Jean-Antoine

    1993-01-01

    The aim of this study is to give a theoretical rationale of a 'paradox' related to the behavior at the stagnation point of some numerical solutions obtained by conventional methods for Eulerian non-equilibrium flows. This 'paradox' concerns the relationship between the solutions given by equilibrium and non-equilibrium models and was raised by several experts during the 'Workshop on Hypersonic Flows for Reentry Problems, Part 1. Antibes 1990'. In the first part, we show that equilibrium conditions are reached at the stagnation point and we analyse the sensitivity of these equilibrium conditions to the flow variables. In the second part, we develop an analysis of the behavior of the mathematical solution to an Eulerian non-equilibrium flow in the vicinity of the stagnation point, which gives an explanation to the described 'paradox'. Then, a numerical procedure, integrating the species convection equations projected on the stagnation point streamline in a Lagrangian time approach, gives a numerical support to the theoretical predictions. We also propose two numerical integration procedures, that allow us to recompute, starting from the equilibrium conditions at the stagnation point, the flow characteristics at the body. The validity limits of these procedures are discussed and the results obtained for a Workshop test-case are compared with the results given by several contributors. Finally, we survey briefly the influence of the local behavior of the solution on the coupling technique to a boundary layer calculation. (author) [fr

  4. Burners. Reduction of nitrogen oxides in combustion: 2. generation of GR LONOxFLAM burner; Les bruleurs. La reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    This paper presents the research work carried out by the French Pillard company in collaboration with Gaz de France for the design of low NO{sub x} burners. The different type of low NO{sub x} burners are presented according to the type of fuel: gas, liquid fuels and fuel oils. The gas burner uses the fuel staging principle and the recirculation of smokes and leads to NO{sub x} emissions lower than 100 mg/Nm{sup 3}. The liquid fuel and fuel oil burners use the separate flames and the smoke self-recirculation methods (fuel-air mixture staging, reduction of flame temperature and of the residence time in flames). (J.S.)

  5. Hatchability of African Catfish Clarias gariepinus Eggs in Hapas and in Basins: a Diagnostic Study of Frequent Inhibition by Rainfall and Water Stagnation

    Directory of Open Access Journals (Sweden)

    Yong-Sulem, S.

    2008-01-01

    Full Text Available To diagnose inhibition of egg hatchability by rainfall and water stagnation, some incubating eggs were protected against the physical impact of raindrops, some were subjected to various turbidity levels and others, to various incubation densities (number of eggs/litre of water in flowing vs. stagnant water. Data analyses showed that, unaffected by raindrops (P> 0.05, hatchability was inversely proportional to both turbidity (coefficient= -0.971 and incubation density (coefficient= -0.973. Only the properly constructed ponds (i.e., with elevated and compacted dykes which do not receive any runoff should therefore be chosen for to hold incubation hapas, and the pond inlets should be turned off during heavy rainfall. Hatchability depression by stagnant water could be forestalled by limiting incubation density to 480 eggs / litre or by partially renewing the incubation water on a daily basis. By so doing, some Cameroon smallholders have successfully engaged in regular on-farm reproduction of Clarias gariepinus.

  6. Burners. The decrease of nitrogen oxides in combustion process: the 2 nd generation GR LONOxFLAM burner; Les bruleurs, la reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    The Pillard company has developed, in cooperation with GDF (the French national gas utility), the GR-LONOxFLAM burner concept for reducing NOx emission levels and solid combustion products. The concept consists, for gaseous fuels, in the combination of an internal recirculation and a gas staging process; for liquid fuels, a separated flame process and air staging are combined. These concepts allow for an important reduction in NOx and non-burned residues, even with standard-size burners

  7. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    Science.gov (United States)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a

  8. Growth or stagnation in pre-industrial Britain? A revealed income growth approach

    DEFF Research Database (Denmark)

    Groth, Christian; Persson, Karl Gunnar

    2016-01-01

    The extent of growth in pre-industrial Europe in general and in Britain in particular has attracted intense scholarly focus. Growth or Malthusian stagnation? No consensus has evolved. Reconstructions of national income from 1300 and up to the Industrial Revolution come to opposing conclusions...... and so do econometric studies. Applying Engels’ law, we suggest a new approach in which income growth is revealed by changes in occupational structure. Data needed for this approach are less contested than the wage and output series used in the existing literature. We find that pre-industrial Britain...

  9. Low-NO sub x modification of a 200 MMBTU/HR natural gas-fired ring burner

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Rib, D. (Luz Engineering Corp., Boron, CA (US)); Czerniak, D.; Blakeslee, C. (Carnot, Tustin, CA (US))

    1990-01-01

    This paper presents a program to reduce emissions of oxides of nitrogen (NO{sub x}) from the boilers on solar electric generating stations (SEGS) located in Boron, California. The primary goal of the program was to reduce emissions by 20 ppm, from 80 to 60 ppm, at a low cost relative to total burner replacement with new commercial low-NO{sub x} burners. Each SEGS unit includes a 33 MW Westinghouse/Mitsubishi Heavy Industries (MHI) natural gas-fired boiler originally equipped with two MHI type SE-100 low-NO{sub x} burners rate at 200 MMBtu/hr. The type and size of these burners are typical of large utility boilers. The boiler is also equipped with steam injection to the combustion air to control NO{sub x} emission from approximately 100 ppm (uncontrolled) to 80 ppm for the original design.

  10. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2016-03-01

    The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1].

  11. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    Science.gov (United States)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  12. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J. [and others

    1994-07-01

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  13. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    Science.gov (United States)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  14. Core Design Studies for a 600 MWe Demonstration TRU Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Park, Won Seok; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The conceptual core design of the demonstration sodium cooled fast reactor (SFR) for TRU burning is being developed by the Korea Atomic Energy Research Institute (KAERI). The main objective of demonstration reactor for the construction and operation is to test and demonstrate the TRU fuel, the operation of the large sized (1500 MWth) sodium fast reactor and the TRU burning capability of commercial burner reactor. In this paper, a 600 MWe demonstration burner core design is presented. It is scheduled to use the uranium fuel for start core due to the uncertainty of the demonstration of TRU fuel, and to change core fuel to the LTRU core fuel from LWR spent fuel and core fuel to the MTRU core which consists of the LMR spent fuel and the self recycled fuel progressively so that total 4 cores having the different function, which consists of uranium core, LTRU core, MTRU core and Mod.MTRU core, were designed

  15. Core design studies for a 1000 MW{sub th} Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: tkkim@anl.gov; Yang, W.S.; Grandy, C.; Hill, R.N. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    This paper describes the core design and performance characteristics of 1000 MW{sub th} Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of {approx}0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with low and high TRU conversion ratios were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from {approx}0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties.

  16. Core design studies for a 1000 MW{sub th} advanced burner reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Yang, W. S.; Grandy, C.; Hill, R.; Nuclear Engineering Division

    2009-04-01

    This paper describes the core design and performance characteristics of 1000 MW{sub th} Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of {approx}0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with low and high TRU conversion ratios were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from {approx}0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties.

  17. Heat transfer efficiency evaluation for outward and inward multi-flame-hole gas burner

    Science.gov (United States)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Katayama, Takashi; Inaba, Hideo

    2012-04-01

    The purpose of this study is to understand the factor that influence the heating efficiency of the outward and inward multi-hole gas burner. The flame-hole angle and the distance from flame hole to heating object are chosen as the experimental parameters. The measurement of the flame temperature distribution is carried out on each experimental condition. The observation of combustion flame, by the Schlieren method, is done from the purpose to understand the combustion phenomenon on the heating efficiency. LPG (Liquefied petroleum gas) is used for the test fuel gas. The compositions of LPG are propane 97.5vol%, butane 0.2vol% and methane + ethylene 2.3vol%. The optimum ranges of the flame-hole angle and the distance from flame hole to heating object are clarified. The experimental correlation equations for the outward and inward multi-flame-hole gas burner are proposed.

  18. Numerical simulation of thermoacoustic response of laboratory scale premixed multi-slit burner flames

    Science.gov (United States)

    O'Brien, Adam

    Thermoacoustic instabilities are an entirely unwanted, yet nearly inevitable phenomenon occurring in many practical premixed combustors. If not properly accounted and designed for, they can incur significant increases in the development combustion systems. The fact that such unexpected issues are encountered is indicative of a fundamental lack of understanding regarding the mechanisms that drive thermoacoustic phenomena. Numerical techniques are used to characterize the thermoacoustic response of premixed multi-slit bunsen burner flames. A symmetrical representation of the multi-slit burner is used, and the transfer function is computed at several different frequencies and at three different equivalence ratios. The numerical results are then compared against experimental results in order to determine the suitability of numerical techniques for studying thermoacoustics. A fully compressible Navier-Stokes combustion solver is used in conjunction with adaptive mesh refinement (AMR) for improved resolution at the flame interface.

  19. Method for reducing NOx during combustion of coal in a burner

    Science.gov (United States)

    Zhou, Bing [Cranbury, NJ; Parasher, Sukesh [Lawrenceville, NJ; Hare, Jeffrey J [Provo, UT; Harding, N Stanley [North Salt Lake, UT; Black, Stephanie E [Sandy, UT; Johnson, Kenneth R [Highland, UT

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  20. Interactions of Flow Field and Combustion Characteristics in a Swirl Stabilized Burner

    OpenAIRE

    Emara, Ahmed Abdelrazek

    2011-01-01

    Die vorliegende Arbeit beschäftigt sich mit Verbrennungscharakteristiken, Strömungsfelduntersuchungen sowie Wechselwirkungen des Strömungsfeldes in einem drallstabilisierten Brenner. Das Hauptziel ist es, eine stabile Verbrennung bei geringen Emissionen zu gewährleisten. Um das zu erreichen, werden drei Ideen untersucht. Die erste Idee ist die Verwendung eines neuen Modells eines in den Brenner integrierten rückgekoppelten fluidischen Oszillators. Die zweite ist die Modulation einer in densel...

  1. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen

    2012-01-01

    This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time average...

  2. Compositional mantle layering revealed by slab stagnation at ~1000-km depth.

    Science.gov (United States)

    Ballmer, Maxim D; Schmerr, Nicholas C; Nakagawa, Takashi; Ritsema, Jeroen

    2015-12-01

    Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection.

  3. Stagnation of the exploitation of Al ores and the depression of world prices of Al

    Directory of Open Access Journals (Sweden)

    Slavkovský Jozef

    1999-03-01

    Full Text Available In the contribution, data on Al – a metal of the 20th century are compiled together with the problems of genesis of the Al mineral raw ma-terials as well as types of bauxite and Al-laterite deposits. Furthermore, an overview of the world exploitation of bauxite during 1935-1980 is given along with the prognoses to 2000 and present situation (1992-1996. Overviews of the production of Al follows, providing its rela-tion to the bauxite exploitation. Contrary to the prognoses, a stabilization or stagnation has been observed in the exploitation of bauxite and production of Al during nineties, which a tendency is directly reflected in the world price of this commodity. When analyzing the Al prices for a longer period, some serious deviations can be noticed, that however presently represent a long-term minimum. We hope the stagnation of the production and the price decline are only temporary and new possibilities of the utilization of Al will be found soon.

  4. Athlete atypicity on the edge of human achievement: performances stagnate after the last peak, in 1988.

    Directory of Open Access Journals (Sweden)

    Geoffroy Berthelot

    2010-01-01

    Full Text Available The growth law for the development of top athletes performances remains unknown in quantifiable sport events. Here we present a growth model for 41351 best performers from 70 track and field (T&F and swimming events and detail their characteristics over the modern Olympic era. We show that 64% of T&F events no longer improved since 1993, while 47% of swimming events stagnated after 1990, prior to a second progression step starting in 2000. Since then, 100% of swimming events continued to progress.We also provide a measurement of the atypicity for the 3919 best performances (BP of each year in every event. The secular evolution of this parameter for T&F reveals four peaks; the most recent (1988 followed by a major stagnation. This last peak may correspond to the most recent successful attempt to push forward human physiological limits. No atypicity trend is detected in swimming. The upcoming rarefaction of new records in sport may be delayed by technological innovations, themselves depending upon economical constraints.

  5. Quantification of MagLIF stagnation morphology using the Mallat Scattering Transformation

    Science.gov (United States)

    Glinsky, Michael; Weis, Matthew; Jennings, Christopher; Ampleford, David; Harding, Eric; Knapp, Patrick; Gomez, Matthew

    2017-10-01

    The morphology of the stagnated plasma resulting from MagLIF is measured by imaging the self-emission x-rays coming from the multi-keV plasma. Equivalent diagnostic response can be derived from integrated rad-hydro simulations from programs such as Hydra and Gorgon. There have been only limited quantitative ways to compare the image morphology, that is the texture, of the simulations to that of the experiments, to compare one experiment to another, or to compare one simulation to another. We have developed a metric of image morphology based on the Mallat Scattering Transformation, a transformation that has proved to be effective at distinguishing textures, sounds, and written characters. This metric has demonstrated excellent performance in classifying an ensemble of synthetic stagnations images. A good regression of the scattering coefficients to the parameters used to generate the synthetic images was found. Finally, the metric has been used to quantitatively compare simulations to experimental self-emission images. Sandia National Laboratories is a multi-mission laboratory managed and operated by NTESS, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the USDoEs NNSA under contract DE-NA0003525.

  6. Optimizing the flame aerodynamics and the design of tangentially arranged burners in a TGMP-314 boiler

    Science.gov (United States)

    Zroichikov, N. A.; Prokhorov, V. B.; Arkhipov, A. M.; Kirichkov, V. S.

    2011-08-01

    Technical solutions for optimizing the flame aerodynamics and the design of tangentially arranged burners in a TGMP-314 boiler are proposed. The implementation of these solutions will make it possible to achieve more reliable operation of the boiler during fuel oil combustion, smaller amount of NO x emissions during the combustion of gas and fuel oil, and a somewhat lower air excess factor in the furnace.

  7. Performance evaluation of premixed burner fueled with biomass derived producer gas

    OpenAIRE

    Punnarapong, P.; Sucharitakul, T.; Tippayawong, N.

    2017-01-01

    Energy consumption of liquefied petroleum gas (LPG) in ceramic firing process accounts for about 15–40% of production cost. Biomass derived producer gas may be used to replace LPG. In this work, a premixed burner originally designed for LPG was modified for producer gas. Its thermal performance in terms of axial and radial flame temperature distribution, thermal efficiency and emissions was investigated. The experiment was conducted at various gas production rates with equivalence ratios betw...

  8. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  9. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  10. Diesel burner for particle filter regeneration at mobile machinery; Vollstrombrenner zur Partikelfilterregeneration bei mobilen Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Karsten, Waldemar [Physitron GmbH, Wirges (Germany); Goy, Martina; Schloss, Heide vom; Pillai, Rishi [Oel-Waerme-Institut GmbH, Herzogenrath (Germany)

    2013-07-15

    As part of a joint project which was supported within the Bundesministerium fuer Wirtschaft und Technologie in the Zentrales Innovationsprogramm Mittelstand (ZIM), Physitron cooperating with the Oel-Waerme-Institut, an affiliated institute of the RWTH Aachen, developed a compact and adjustable diesel burner for the regeneration of particle filters in the case of non-road mobile machinery applications. It enables the regeneration of a soot particle filter system during engine operation. (orig.)

  11. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    OpenAIRE

    Ariyaratne, W. K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of...

  12. Premixed Combustion of Kapok (Ceiba Pentandra) Seed Oil on Perforated Burner

    OpenAIRE

    Wirawan, I.K.G; Wardana, I.N.G; Soenoko, Rudy; Wahyudi, Slamet

    2014-01-01

    Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra) seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ) varie...

  13. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance

  14. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  15. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    Science.gov (United States)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  16. Application of CALPUFF to PM10 emissions from beehive burners in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Ciccone, A.D. [Jacques Whitford and Associates Limited, Vancouver, BC (Canada); Waddell, G. [Canadian Forest Products Ltd., Prince George, BC (Canada)

    2000-07-01

    The complex local topography of the Bulkley Valley in the British Columbia interior greatly influences the local meteorology and climatology. The communities of Smithers and Houston which are located in the valley are hosts to three mills which operate conical burners for waste disposal and which define the extent of airshed. The CALMET/CALPUFF modelling system was chosen as a means to evaluate the contribution of the burners to the local airshed. CALPUFF was chosen because of the combined conditions of complex terrain and low wind speed in the region. Since MM5 gridded meteorological data was available from the BC Ministry of Environment to initialize the wind fields for CALMET in 1995, modelling was conducted in that year. CALPUFF provided 24-hour PM10 ground level concentrations over a 54 km by 72 km range. This included monitoring stations in the airshed. The impact from the conical burners was found to be low compared to the monitoring data which was collected. However, it was determined that the model was able to describe hourly changes in ambient PM10 levels, which reflected the hourly monitoring station data. The region is now equipped with a modelling platform that can be used to help in air pollution source appointment as well as for the management general air quality.

  17. Sensitivity of Transmutation Capability to Recycling Scenarios in KALIMER-600 TRU Burner

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Myung Hyun

    2013-01-01

    The purpose of this study is to test transmutation and design feasibility of KALIMER burner caused from many limitations in recycling options; such as low recovery factors and external feed. Design impact from many recycling options will be tested as a sensitivity to various recycling process parameters under many recycling scenarios. Through this study, possibilities when Pyro-processing is realized with SFR can be expected in the recycling scenarios. For the development of sodium-cooled fast reactor(SFR) technology, prototype KALIMER plant is now under R and D stage in Korea. For the future application of SFR for waste transmutation, KALIMER core was designed for TRU burner by KAERI. Feasibility of TRU burner cannot be evaluated exactly because overall functional parameters in pyro-processing recycling process has not been verified yet. There is great possibility to accept undesirable process functions in pyro-processing. Only TRU nuclides composition a little differs between PWR SF and CANDU SF so first scenario has no problem operating SFR. In second scenario, the radiotoxicity of waste at 99% of TRU RF have to be confirmed whether it is proper level to reposit as Low and Intermediate Level Wastes or not. And the reactor safety at high RF of RE must be inspected. Not only third scenario but also several scenarios for good measure are being calculated and will be evaluated

  18. Design Strategy and Constraints for Medium-Power Lead-Alloy-Cooled Actinide Burners

    International Nuclear Information System (INIS)

    Hejzlar, Pavel; Buongiorno, Jacopo; MacDonald, Philip E.; Todreas, Neil E.

    2004-01-01

    We outline the strategy and constraints adopted for the design of medium-power lead-alloy-cooled actinide-burning reactors that strive for a lower cost than accelerator-driven systems and for robust safety. Reduced cost is pursued through the use of (1) a modular design and maximum power rating to capitalize on an economy of scale within the constraints imposed by modularity, (2) a very compact and simple supercritical-CO 2 power cycle, and (3) simplifications of the primary system allowed by the use of lead coolant. Excellent safety is pursued by adopting the integral fast reactor approach of achieving a self-controllable reactor that responds to all key abnormal occurrences, including anticipated transients without scrams, by a safe shutdown without exceeding core integrity limits. The three concepts developed are the fertile-free actinide burner for incineration of all transuranics from light water reactor (LWR) spent fuel, the fertile-free minor actinide (MA) burner for preferential burning of MAs working in tandem with LWRs or gas-cooled thermal reactors, and the actinide burner with thorium fuel aimed also at reducing the electricity generation costs through longer-cycle operation

  19. The Effects of Combustion Parameters on Pollutant Emissions in a Porous Burner

    Directory of Open Access Journals (Sweden)

    Negin Moallemi Khiavi

    2014-06-01

    Full Text Available This paper reports a two-dimensional numerical prediction of premixed methane/air combustion in inert porous media. The two dimensional Navier-stokes equations, the two separate energy equations for solid and gas and conservation equations for chemical species are solved using finite volume method based on SIMPLE algorithm. The burner under study is a rectangular one with two different regions. First region is a preheating zone (low porosity matrix that followed by the actual combustion region (high porosity matrix. For simulating the chemical reactions, skeletal mechanism (26 species and 77 reactions is used. For studying the pollutant emissions in this porous burner, the effects of porous matrix properties, excess air ratio and inlet velocity are studied. The predicted gas temperature contour and pollutant formations are in good agreement with the available experimental data. The results indicate that the downstream of the burner should be constructed from materials with high conductivity, high convective heat transfer coefficient and high porosity in order to decrease the CO and NO emissions. Also, with increasing the inlet velocity of gas mixture and the excess air ratio, the pollutant emissions are decreased.

  20. Residence Time Distributions in a Cold, Confined Swirl Flow

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1997-01-01

    -burner zone of the laboratory furnace-model were studied. RTD results have been used to derive a chemical reaction engineering model for the mixing process. The model is based on a combination of plug flow reactors and continuous stirred tank reactors, which represent the main flow characteristics in regard......, well characterised flow pattern makes it possible to investigate the importance of mixing intensity on the (pollution) chemistry in furnaces. The reactor model developed here will be the basis for the development of a chemical reaction engineering combustion model.......Residence time distributions (RTD) in a confined, cold swirling flow have been measured with a fast-response probe and helium as a tracer. The test-rig represented a scaled down version of a burner. The effect of variation of flow velocities and swirl angle on the flow pattern in the near...

  1. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    Science.gov (United States)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  2. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  3. Rainy Periods and Bottom Water Stagnation Initiating Brine Accumulation and Metal Concentrations: 1. The Late Quaternary

    Science.gov (United States)

    Rossignol-Strick, Martine

    1987-06-01

    A working hypothesis is proposed to account for the present accumulation of brines in isolated pockets of the ocean floor and for the formation of the underlying organic and metal-rich sediments. These are the Tyro and Bannock basins in the East Mediterranean, the Red Sea Deeps, and the Orca Basin in the northern Gulf of Mexico. Initiation of brine-derived deposition in the Red Sea Deeps and Orca Basin occurred between 12,000 and 8000 years B.P. This time bracket also encompasses the formation of the latest East Mediterranean sapropel and the wettest global climate since the last glacial maximum. This wet period first appeared in the tropics around 12,000 years B.P, then in the subtropical and middle latitudes. During the same period, the 23,000 year precession cycle brought the summer insolation of the northern hemisphere to its peak at 11,000 years B.P. with retreating northern hemisphere ice sheets. The Red Sea Deeps and the Orca Basin became anoxic during this humid period, and metal-rich sapropel deposition then began. In contrast, the Tyro and Bannock basins began accumulating a brine long before and persisted beyond this climatic stage. The hypothesis involves two propositions: (1) As in the Eastern Mediterranean Sea, marine anoxia was mainly the consequence of the large influx of continental runoff and local precipitation. Longer residence time of bottom waters, so-called "stagnation," in silled rimmed basins would have resulted from lower salinity at the sea surface in areas of deep water formation in the Eastern Mediterranean, the Red Sea, and the Gulf of Mexico and (2) Miocene or older evaporites underlie these basins or outcrop on their flanks. Leaching from these evaporites was an ongoing process before the quasi-stagnation phase, but the initial leachate, much less saline than the present brines, was continuously flushed by bottom circulation. The climate-induced quiescence of bottom waters in these basins enabled the leachate to accumulate. The

  4. The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet

    Science.gov (United States)

    Jeffers, Nicholas; Stafford, Jason; Conway, Ciaran; Punch, Jeff; Walsh, Edmond

    2016-02-01

    Low profile impinging jets provide a means to achieve high heat transfer coefficients while occupying a small quantity of space. Consequently, they are found in many engineering applications such as electronics cooling, annealing of metals, food processing, and others. This paper investigates the influence of the stagnation zone fluid dynamics on the nozzle exit flow condition of a low profile, submerged, and confined impinging water jet. The jet was geometrically constrained to a round, 16-mm diameter, square-edged nozzle at a jet exit to target surface spacing ( H/ D) that varied between 0.25 influence of turbulent flow regimes is the main focus of this paper; however, laminar flow data are also presented between 1350 influences the nozzle exit velocity profile at confinement heights between 0 choice of inlet boundary conditions in numerical models, and it was found that it is necessary to model a jet tube length {{ L}{/}{ D}} > 0.5—where D is the inner diameter of the jet—in order to minimise modelling uncertainty.

  5. Recent productivity developments and technical change in Danish organic farming - stagnation?

    DEFF Research Database (Denmark)

    Sauer, Johannes; Graversen, Jesper Tranbjerg; Park, Tim

    This paper attempts to quantitatively measure the change in the productivity of Dan-ish organic farming in recent years by using panel data on 56 organic farms mainly engaged in milk production for the period 2002 to 2004. Based on a translog pro-duction frontier framework the technical and scale...... growth in organic production by estimating a bootstrapped bivariate probit model with respect to factors influencing the probability of organic market exit. The results revealed significant differencies in the organic farms’ technical efficiencies, no sig-nificant total factor productivity growth...... and even a slightly negative rate of technical change in the period investigated. These empirical results seem not strong enough to support the view of a profound stagnation in organic milk farming over the last years. We found evidence for a positive relationship between subsidy payments and an increase...

  6. The stagnation of the Mexican male life expectancy in the first decade of the 21st century

    DEFF Research Database (Denmark)

    Canudas-Romo, Vladimir; García-Guerrero, Víctor Manuel; Echarri-Cánovas, Carlos Javier

    2015-01-01

    OBJECTIVES: In the first decade of the 21st century, the Mexican life expectancy changed from a long trend of increase to stagnation. These changes concur with an increase in deaths by homicides that the country experienced in that decade, and an obesity epidemic that had developed over the last ...

  7. Interdependence between core and peripheries of the European economy: secular stagnation and growth in the Western Balkans

    Directory of Open Access Journals (Sweden)

    Will Bartlett

    2017-09-01

    Full Text Available European countries are economically dependent upon each other. This paper therefore embeds the analysis of the Western Balkan countries within a wider perspective of the European economy as a whole. It combines a simple core-periphery model with an under-consumption model to provide an explanation of the emergence of secular stagnation, the dependency relationships between the core and peripheries of the European economy, and the spillover effects of Eurozone crisis to the Western Balkans. Due to tendencies to under-consumption, the core countries have been vulnerable to secular stagnation. In order to overcome this tendency within the Eurozone they are dependent on export revenues from the peripheries to sustain their economic growth. This has led to high trade and current account deficits during the boom and placed the peripheries in a highly vulnerable position during the recession period. Financialisation of the European economy has emerged as a response to the tendency towards secular stagnation, as the provision of consumer credit stimulated demand and temporarily overcame under consumption tendencies. The paper argues that continuing austerity, as a method to create internal devaluation, is unlikely to succeed as a means to extricate the periphery countries from the crisis. Given the dependencies of the European economies upon one another, a possibly better way out of the current period of low growth and stagnation would be a coordinated fiscal expansion to stimulate domestic and Europe-wide demand.

  8. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal

  9. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  10. A Comparative Depletion Analysis using MCNP6 and REBUS-3 for Advanced SFR Burner Core

    Energy Technology Data Exchange (ETDEWEB)

    You, Wu Seung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    In this paper, we evaluated the accuracy of fast reactor design codes by comparing with MCNP6-based Monte Carlo simulation and REBUS-3-based the nodal transport theory for an initial cycle of an advanced uranium-free fueled SFR burner core having large heterogeneities. It was shown that the nodal diffusion calculation in REBUS-3 gave a large difference in initial k-effective value by 2132pcm when compared with MCNP6 depletion calculation using heterogeneous model.The code system validation for fast reactor design is one of the important research topics. In our previous studies, depletion analysis and physics parameter evaluation of fast reactor core were done with REBUS-3 code and DIF3D code, respectively. In particular, the depletion analysis was done with lumped fission products. However, it is need to verify the accuracy of these calculation methodologies by using Monte Carlo neutron transport calculation coupled with explicit treatment of fission products. In this study, the accuracy of fast reactor design codes and procedures were evaluated using MCNP6 code and VARIANT nodal transport calculation for an initial cycle of an advanced sodium-cooled burner core loaded with uranium-free fuels. It was considered that the REBUS-3 nodal diffusion option can not be used to accurately estimate the depletion calculations and VARIANT nodal transport or VARIANT SP3 options are required for this purpose for this kind of heterogeneous burner core loaded with uranium-free fuel. The control rod worths with nodal diffusion and transport options were estimated with discrepancies less than 12% while these methods for sodium void worth at BOC gave large discrepancies of 12.2% and 16.9%, respectively. It is considered that these large discrepancies in sodium void worth are resulted from the inaccurate consideration of spectrum change in multi-group cross section.

  11. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    Energy Technology Data Exchange (ETDEWEB)

    Burgoyne, R.M.

    1976-12-01

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners.

  12. Combustion of low calorific value gases in porous burners; Verbrennung von niederkalorischen Gasen in Porenbrennern

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.; Talukdar, P.; Issendorff, F. von; Trimis, D. [Lehrstuhl fuer Stroemungsmechanik Friedrich-Alexander-Univ., Erlangen-Nuernberg (Germany)

    2005-04-01

    By the use of low calorific value gases significant energy amounts can be saved, emissions can be reduced and system efficients can be increased. These mixtures are generated in different fields like waste sites and fuel cell systems with reformation of hydrocarbons. Conventional combustion techniques are not suited for the combustion of this kind of gases. Due to its high internal heat recuperation the porous burner technology has great potential for the combustion of low calorific value gases. In this work the influence of the combustion zone properties, the surface load and the educt temperature were determined by numerical simulations and experiments. (orig.)

  13. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  14. Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner

    Science.gov (United States)

    Cawley, J. D.; Handschuh, R. F.

    1985-01-01

    Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix.

  15. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    Science.gov (United States)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory and the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  16. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  17. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    Energy Technology Data Exchange (ETDEWEB)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  18. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Energy Technology Data Exchange (ETDEWEB)

    Ariyaratne, W.K. Hiromi; Melaaen, Morten C.; Tokheim, Lars-Andre [Telemark University College, Faculty of Technology, Kjoelnes Ring 56, P.O. Box 203, N-3901, Porsgrunn (Norway)

    2013-07-01

    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  19. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  20. Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner

    Energy Technology Data Exchange (ETDEWEB)

    Galpin, Jeremy [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France); INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Naudin, Alexandre; Vervisch, Luc; Domingo, Pascale [INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Angelberger, Christian; Colin, Olivier [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France)

    2008-10-15

    Large-eddy simulation (LES) of a fuel-lean premixed turbulent swirling flame is performed, in the configuration of a burner experimentally studied by Meier et al. [Combust. Flame 150 (1-2) (2007) 2-26]. Measurements of velocity field, temperature, and major species concentrations are compared against LES results. The unresolved sub-grid scale turbulent species and temperature fluctuations are accounted for using a presumed probability density function and flamelet tabulated detailed chemistry. Before the turbulent burner is simulated, various strategies to introduce tabulated detailed chemistry into a fully compressible Navier-Stokes solver are discussed and tested for laminar flames. The objective is to ensure a proper coupling between chemical tables and unsteady solutions of the Navier-Stokes equations in their fully compressible form, accounting for the inherent constraints of high-performance computing. Comparisons of LES results with experiments are discussed in terms of filtered quantities, leading to the introduction of an extra term to account for the difference in filter sizes used in experiment and LES. Velocity, temperature, and major species LES fields are then compared against measurements. Most of the turbulent flame features are reproduced, and observed discrepancies are analyzed to seek out possible improvements of the subgrid-scale modeling. (author)

  1. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    International Nuclear Information System (INIS)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-01-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% Δk. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% Δk. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  2. Hazardous waste and used oil fuel burning; Continuing regulatory concerns for generators, marketers and burners

    Energy Technology Data Exchange (ETDEWEB)

    Voelpel, J.W. (Honigman Miller Schwartz and Cohn, Detroit, MI (US))

    1987-01-01

    With the closing of interim status 'windows' and with the interest of many present HWF blenders and burners in restricting entry into the field, the concerns and opportunities associated with the blending and burning marketplace remain topical and in some areas not yet clearly defined. Also, further regulation, such as the promised rules for burners due in April, 1987, may force some to leave the field, thus creating additional concerns and opportunities. In any event, because hazardous wastes with substantial heat value will be generated for many years to come and because of the present load on available hazardous waste incinerators, blending and burning of HWF and used oil promise to remain an extremely important means of destruction of these materials. The author presents a discussion of the following areas: history, who can blend and who can't, who can burn and who can't, regulation of combustion residuals, impact of the land disposal ban rules, and state and other federal regulatory impacts.

  3. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  4. NON-INTRUSIVE GAS-PHASE THERMOMETRY FOR INDUSTRIAL OXY-FUEL BURNERS

    Directory of Open Access Journals (Sweden)

    J. W. Tröger

    2015-03-01

    Full Text Available The use of oxy-fuel combustion processes is of large interest for several industrial fields applications since it offers the advantages of low NOx emissions in combination with high combustion temperatures even without additional preheating. For optimization of such processеs a detailed understanding based on precise experimental data is necessary. So far there is still a lack of precise experimental data achieved with high spatial and temporal resolution from industrial relevant turbulent oxy-fuel combustion processes. Beside species concentration information the gas phase temperature is of utmost importance for an improved understanding of the basic chemical reactions and the pollutant formation. The coherent anti-Stokes Raman spectroscopy (CARS technique is a very well suited laser based tool for a non-intrusive investigation of such turbulent high temperature combustion processes. In this work we analysed an industrial 400 kW oxy-fuel burner with the help of O2 based vibrational CARS system which is integrated in an industrial relevant test furnace. The burner is fed with pure oxygen and natural gas at an equivalence ratio of =0.9. At one downstream position temporal and spatial resolved temperatures were measured along a 600 mm line. Additional air sucked in from the environment seems to influence the gas phase temperature significantly.

  5. Non-periodic motion of a Bunsen flame tip with burner rotation

    Science.gov (United States)

    Hiroshi, Gotoda; Toshihisa, Ueda

    2004-11-01

    In relation to the local structure of a turbulent premixed flame, unsteady flame tip motion with burner rotation, are experimentally investigated from the viewpoint of nonlinear dynamics. The mean exit velocity from the burner tube, U, is varied from 0.6 to 1.3 m/s, keeping the swirl number S = 1.14 constant. Rich methane - air mixture with equivalence ratio is used. The variation in the flame tip motion is quantitatively evaluated by calculating mean value of a parallel trajectory value G. At U > 0.7 m/s, the value of G is estimated at about zero, indicating periodic motion. As U increases, the trajectory of the attractor becomes complicated and G gradually increases. The value of G approaches the value of the Fourier transformed surrogate data with further increase in U. This suggests that, the flame tip motion varies from periodic to chaotic due to the influence of phase random with increasing U. The short-term forward prediction method based on the orbit of the attractor, can be performed. The modification of the short-term forward prediction method can extend the prediction term successfully, keeping that the correlation coefficient R(p) between the measured data and the predicted data is enough high even in the case of a non - periodic flame motion. The results suggest that the modified short-term forward prediction method proposed in the present study is valid for predicting the motion of unsteady flames.

  6. Numerical Investigation of the Low-Caloric Gas Burning Process in a Bottom Burner

    Directory of Open Access Journals (Sweden)

    Redko A.

    2017-08-01

    Full Text Available The use of low-grade gases in the fuel and energy balance of enterprises makes it possible to increase the energy efficiency of technological processes. The volumes of low-grade gases (blast furnace and coke oven gases, synthesis gas of coal gasification processes, biogas, coal gas, etc. that are utilized more significant in technological processes but their calorific value are low. At the same time artificial gases contain ballast gaseous (СО2, H2O and mechanical impurities that are harmful gas impurities. Their use requires technological preparation. Thus coal methane is characterized of high humidity, coal dust and drip moisture, variable composition. Thus was effective burning of coal methane it is required the development of constructive and regime measures that ensure a stable and complete burning of gaseous fuels. In this article it is presented the results of computer simulation of a stationary turbulent diffusion flame in a restricted space in the process of burning natural gas and coal methane in a bottom burner. The calculation results contain the fields of gear, temperature, concentration of CH4‚ CO‚ H2O‚ CO2 and nitrogen oxides. The structural elements of the flame (recirculation zone, hot "dome", mixing layer and far trace are determined. It has been established that complete combustion of coal methane in a modified bottom burner is ensured and the numerical values of nitrogen oxide concentrations in the flame are consistent with the literature data.

  7. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  8. Diagnosing the Stagnation Conditions of MagLIF Implosions Using Co and Kr dopants

    Science.gov (United States)

    Harding, E. C.; Hansen, S. B.; Harvey-Thompson, A. J.; Weis, M. R.; Hahn, K. D.; Gomez, M. R.; Knapp, P. F.; Slutz, S. A.; Geissel, M.; Ampleford, D. J.; Jennings, C. A.; Peterson, K.; Rochau, G. A.; Doron, R.; Stambulchik, E.; Nedostup, O.; Maron, Y.; Golovkin, I.

    2017-10-01

    Recent experiments on the Z-machine tested several new diagnostic techniques for investigating the stagnation conditions and the origins of the mix present in a Magnetized Liner Inertial Fusion (MagLIF) target. For the first time we have collected K-shell spectra from a low-concentration, Kr dopant placed in the gaseous D2 fuel. In addition, thin Co coatings were strategically applied to three different internal surfaces of the target in order to assess which surfaces actively contribute to the contamination of the fuel. Both imaging spectroscopy and narrow-band crystal imaging were used to identify the location of He-like Co ions. The Te and ne of the Co is inferred by fitting the He-alpha lines and the near-by Li-like satellites. The experimental measurements and the challenges associated with the analysis will be discussed. Sandia Natl Lab is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE NNSA under contract DE-NA-0003525.

  9. Burner (Stinger)

    Science.gov (United States)

    ... as possible. This will help you withstand the force of an impact to this area. Gently stretch your neck muscles before any athletic activity. Use protective gear. Equipment like a football neck collar or specially designed shoulder pads can ...

  10. Life Disparity before, during and after Stagnation of Danish Female Life Expectancy. a Cause of Death Analysis and a Comparison with Their Scandinavian Counterparts

    DEFF Research Database (Denmark)

    Aburto, José Manuel; Wensink, Maarten Jan; Lindahl-Jacobsen, Rune

    Low lifespan tends to go with high lifespan inequality. We find that stagnation in lifespan of Danish women (roughly 1975-1995) was accompanied by a similar albeit shorter period of stagnation in lifespan inequality. Cause-specifically, we find that this stagnation results largely from death from...... that as Norway increasingly came to resemble Sweden in terms of high life expectancy, it also came to resemble Sweden in terms of low lifespan inequality. Next, we aim to make similar decompositions for Sweden and Norway, and aim to disentangle cohort effects from the question: what can Denmark do now...

  11. Role Overload, Role Self Distance, Role Stagnation as Determinants of Job Satisfaction and Turnover Intention in Banking Sector

    OpenAIRE

    Kunte, Monica; Gupta, Priya; Bhattacharya, Sonali; Neelam, Netra

    2017-01-01

    Purpose: This study examined the relationship of the organizational role stress: Role overload, role self-distance, and role stagnation with job satisfaction and turnover intention with a sample of banking employees in India. Methodology: In this research, we used the RODS scale developed by Prohit and Pareek (2010) for measuring occupational role scale. The reliability of the scale came out to be 0.71. Findings: The majority of employees of all ranks, in both private and public sector banks,...

  12. Flashback analysis in tangential swirl burners; Analisis de reflujo de flama en combustores tangenciales de flujo giratorio

    Energy Technology Data Exchange (ETDEWEB)

    Valera-Medina, A. [CIATEQ A.C., Centro de Tecnologia Avanzada, Queretaro (Mexico)]. E-mail: agustin.valera@ciateq.mx; Syred, N. Abdulsada, M. [United Kingdom Cardiff University (United Kingdom)]. E-mails: syredn@cf.ac.uk; abdulsadam@cf.ac.uk

    2011-10-15

    Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NO{sub x} emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front. [Spanish] La combustion ligera premezclada se utiliza ampliamente en los procesos de combustion debido a los beneficios que brinda en terminos de buena estabilidad de flama y limites de extincion, aunado a la baja emision de NO{sub x}. Sin embargo, el uso de nuevos combustibles y de flujos complejos han incrementado la preocupacion por el reflujo de flama, especialmente para el uso de gas sintetico (syngas) y mezclas altamente hidrogenadas. Por ello, en este articulo se describe un metodo practico y numerico para el estudio del fenomeno a modo de reducir los efectos del reflujo de flama en un combustor piloto de tipo tangencial de flujo giratorio de 100 kW. Se usa gas natural para establecer la linea base de resultados y los efectos del cambio de diferentes parametros. El fenomeno de reflujo de flama se estudia por medio de fotografia de rapida adquisicion. El uso de un inyector central de combustible

  13. Reduction of NO{sub x} from a pellet burner - a parametric study; Reduktion av NOx fraan en pelletsbraennare - en parameterstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    2000-05-01

    NO{sub x} emissions from small-scale combustion of pellets derive mainly from the fuel nitrogen. A conversion from combustion of oil to pellets will probably lead to increasing NO{sub x}-emissions. Today, pellets are produced mainly from sawdust and wood shavings which consist of pure wood with a low nitrogen content. The expected increase in pellet utilisation will probably lead to that other raw materials with higher nitrogen content will be used. This means that NOx-emissions from small-scale BAKE combustion of pellets can increase dramatically if not 'low-NO{sub x} burners' are developed. This report can be used as a support in the development of new design and automatic control strategies for pellet burners. NH{sub 3} and HCN dominate the nitrogen compounds in the volatiles leaving the pellet during the devolatilisation. The fuel properties, the residence time and the devolatilisation conditions affect the ratio between these two compounds. The transformation of NH{sub 3} to N{sub 2} takes place through a short and relatively uncomplicated reaction path while the reduction of HCN has a much more complex reaction path with a slower chemical kinetics which leads to longer reaction times. The optimal stoichiometry depends on the residence time, mixing and the composition of the devolatilisation gas in the primary zone. The objective with this study has been to, with a modified pellet burner, minimise NOx in practical experiments with a small literature study as background. In the experiments reported in this project, the performance of a modified pellet burner and the emissions have been studied while the ratio between primary- and secondary air and the addition of primary air have been varied. During the experiments, the air flow, the different emissions, the boiler effect and the temperature in the burner have been measured continuously. A few parameters have been identified as crucial for the NO{sub x}-emissions: Addition of primary air: The primary

  14. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  15. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory-Scale Swirl Burner

    DEFF Research Database (Denmark)

    Lin, Weigang; Jensen, Peter Arendt; Jensen, Anker Degn

    2009-01-01

    A systematic study was performed in a suspension fired 20 kW laboratory-scale swirl burner test rig for combustion of biomass and co-combustion of natural gas and biomass. The main focus is put on the effect of two-stage combustion on the NO emission, as well as its effect on the incomplete combu...

  16. Increasing the speed of computational fluid dynamics procedure for minimization the nitrogen oxide polution from the premixed atmospheric gas burner

    Directory of Open Access Journals (Sweden)

    Fotev Vasko G.

    2017-01-01

    Full Text Available This article presents innovative method for increasing the speed of procedure which includes complex computational fluid dynamic calculations for finding the distance between flame openings of atmospheric gas burner that lead to minimal NO pollution. The method is based on standard features included in commercial computational fluid dynamic software and shortens computer working time roughly seven times in this particular case.

  17. Low void effect (CFV) core concept flexibility: from self-breeder to burner core - 15091

    International Nuclear Information System (INIS)

    Buiron, L.; Dujcikova, L.

    2015-01-01

    In the frame of the French strategy on sustainable nuclear energy, several scenarios consider fuel cycle transition toward a plutonium multi-recycling strategy in sodium cooled fast reactor (SFR). Basically, most of these scenarios consider the deployment of a 60 GWe SFR fleet in 2 steps to renew the French PWR fleet. As scenarios do investigate long term deployment configurations, some of them require tools for nuclear phase-out studies. Instead of designing new reactors, the adopted strategy does focus on adaptation of existing ones into burner configurations. This is what was done in the frame of the EFR project at the end of the 90's using the CAPRA approach (French acronym for Enhance Plutonium Consumption in Fast Reactor). The EFR burner configuration was obtained by inserting neutronic penalties inside the core (absorber material and/or diluent subassembly). Starting from the preliminary industrial image of a SFR 3600 MWth core based on Low Sodium Void concept (CFV in French), a 'CAPRA-like' approach has been studied. As the CFV self-breeding is ensured by fertile blankets, a first modification consisted in the substitution of the corresponding depleted uranium by 'inert' or absorber material leading to a 'natural burner' core with only small impacts on flux distribution. The next step forward CAPRA configuration was the substitution of 1/3 of the fuel pins by 'dummy' pins (MgO pellets). The small spectrum shift due to MgO material insertion leads to an increase Doppler constant which exceeds the value of the reference case. As the core sodium void worth value is conserved, the CFV CAPRA core 'safety' potential is quite similar to the one of the reference core. Fuel thermo-mechanical requirements are met by both nominal core power and fuel time residence reduction. However, these reduction factors are lower than those obtained for EFR core. The management of the enhanced reactivity swing is discussed

  18. Investigation of the effects of pressure gradient, temperature and wall temperature ratio on the stagnation point heat transfer for circular cylinders and gas turbine vanes

    Science.gov (United States)

    Nagamatsu, H. T.; Duffy, R. E.

    1984-01-01

    Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.

  19. Life Disparity before, during and after Stagnation of Danish Female Life Expectancy. a Cause of Death Analysis and a Comparison with Their Scandinavian Counterparts

    DEFF Research Database (Denmark)

    Aburto, José Manuel; Wensink, Maarten Jan; Lindahl-Jacobsen, Rune

    Low lifespan tends to go with high lifespan inequality. We find that stagnation in lifespan of Danish women (roughly 1975-1995) was accompanied by a similar albeit shorter period of stagnation in lifespan inequality. Cause-specifically, we find that this stagnation results largely from death from...... cancers and non-infectious respiratory diseases, offsetting continuous improvement in cardiovascular mortality. Before and after stagnation, life expectancy increased as disparity decreased, as the cardiovascular revolution unfolded. Comparing Denmark and its Scandinavian counterparts, we find...... that as Norway increasingly came to resemble Sweden in terms of high life expectancy, it also came to resemble Sweden in terms of low lifespan inequality. Next, we aim to make similar decompositions for Sweden and Norway, and aim to disentangle cohort effects from the question: what can Denmark do now...

  20. Magnetohydrodynamic (MHD boundary layer stagnation point flow and heat transfer of a nanofluid past a stretching sheet with melting

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    2017-09-01

    The numerical results are obtained for velocity, temperature and concentration profiles. It is found that the skin friction coefficient and Sherwood number decrease with an increase in B and M parameters. However, the local Nusselt number -θ′(0 increases with an increase in B and Nt. Then, the results are compared and found to be in good agreement with the previously published results in limiting cases of the problem.

  1. Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface

    Science.gov (United States)

    Soomro, Feroz Ahmed; Haq, Rizwan Ul; Al-Mdallal, Qasem M.; Zhang, Qiang

    2018-03-01

    In this study, heat generation/absorption effects are studied in the presence of nonlinear thermal radiation along a moving slip surface. Uniform magnetic field and convective condition along the stretching surface are adjusted to deal the slip mechanisms in term of Brownian motion and thermophoresis for nanofluid. The mathematical model is constructed in the form of coupled partial differential equations. By introducing the suitable similarity transformation, system of coupled nonlinear ordinary differential equations are obtained. Finite difference approach is implemented to obtain the unknown functions of velocity, temperature, nanoparticle concentration. To deduct the effects at the surface, physical quantities of interest are computed under the effects of controlled physical parameters. Present numerical solutions are validated via numerical comparison with existing published work for limiting cases. Present study indicates that due to increase in both Brownian motion and thermophoresis, the Nusselt number decreases while Sherwood number shows the gradual increase.

  2. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    Directory of Open Access Journals (Sweden)

    Pan Ji

    Full Text Available A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing. To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10 had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  3. Development of an Advanced Fluid Mechanics Measurement Facility for Flame Studies of Neat Fuels, Jet Fuels, and their Surrogates

    Science.gov (United States)

    2009-08-26

    Bunsen state. The stagnation flow configuration can be used also to provide fundamental data on flame ignition and extinction limits. The ignition...is highly desirable that, for maximum throughput, each burner configuration has a dedicated measurement system. Cost efficiency Updating of the...that allows the two independent DPIV systems to share the same laser. This experimental arrangement was possible as two of the new burner rigs were

  4. Neutronics design study on a minor actinide burner for transmuting spent fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs

  5. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  6. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  7. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  8. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group; Klepeis, Neil E. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; San Diego Univ., CA (United States). Center for Behavioral Epidemiology and Community Health; Lobscheid, Agnes B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group; Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  9. Studi Eksperimen Distribusi Temperatur Nyala Api Kompor Bioetanol Tipe Side Burner dengan Variasi Diameter Firewall

    Directory of Open Access Journals (Sweden)

    R.R. Vienna Sona Saputri Soetadi

    2012-09-01

    Full Text Available Untuk mendapatkan kompor bioetanol efisiensi thermal maksimal diperlukan penelitian komprehensif. Salah satunya adalah penelitian terhadap posisi peletakkan beban pada kompor bioetanol kompak. Pengujian dilakukan pada kompor uji bioetanol dengan kadar 99%, yaitu kompor bioetanol tipe side burner dengan firewall 2.5 inci dan firewall 3 inci. Pengukuran temperatur api dengan 13 thermocouple K dengan pengukuran searah api keatas setiap 5 mm-an. Kemudian, water boiling test dilakukan untuk mendapatkan daya dan beban dan dilanjutkan mengukur waktu pendidihan air. Hasil penelitian ini menunjukkan gambaran total distribusi temperatur nyala api difusi. Hasil menunjukkan untuk kompor 2.5 inci dengan daya 1.6 kW mempunyai temperatur 542 ºC dengan jarak ketinggian 5 mm dari rim kompor sedangkan kompor 3 inci menghasilkan daya 2.38 kW dengan temperatur 516 ºC.

  10. ASSESSMENT OF THE USE FOR FERTILISATION PURPOSES INCINERATION ASH PELLETS USING GASIFICATION BURNER LESTER

    Directory of Open Access Journals (Sweden)

    Marzena Gibczyńska

    2016-12-01

    Full Text Available The use of biomass in system energetics for the purpose of increasing the share of renewable energy sources in the overall energy mix by biomass and coal co-combustion is not an optimal solution in the light of previous experience in Poland. It is appropriate to develop local biomass market for energy purposes as a basis for future distributed energy generation based on biomass. This solution facilitates the use of ash from biomass combustion for plant fertilisation. The present paper concerns the assessment of the use of ash from combustion of pellets in an innovative gasifying pellet burner – LESTER type, for soil fertilisation. The paper presents the analysis of the content of macro- and microelements in ash against the chemical composition of pellets in relation to permissible contents in fertilisers. The content of phosphorus, potassium, calcium and magnesium in bottom and fly ash from combustion of wood pellet and rye straw in LESTER gasifying burner validates the use of this material for soil fertilisation purposes. However, due to low nitrogen content – comparable to that found in soil, the material is not to be considered as fertiliser supplying this macroelement to soil. The analysed bottom ash used for fertilisation meets the conditions set out in the Regulation of the Minister of Environment of 9 September 2002. However, fly ash should be used with considerable caution due to high content of iron, zinc and nickel. The yield of bottom ash is several times higher than that of fly ash, therefore the possibility of its use in the form of mixtures in adequate proportions should be considered.

  11. Experimental and theoretical study on characteristics of pulse excitation in T-burners

    Science.gov (United States)

    Yan, Mi; Wang, Ningfei; Li, Junwei; Song, Anchen; Ma, Yu

    2017-05-01

    Pulse excitation is the key to measure the pressure-coupling response function of composite propellant. It is also a key trigger factor for nonlinear combustion instability. This paper aims at understanding characteristics of pulse excitation in T-burners. Pulse excitation is provided by black powder (BP). D2 law is used to calculate BP burning properties. Firstly, the experimental pressure history of a pulse excitation is analyzed. Pressure pulse and mean pressure increment are introduced to describe pulse excitation. Secondly, the modified zero-dimension model and one-dimension model of pressure pulse are established based on energy conservation and modification. The results of models indicate that the modified zero-dimensional model can accurately predict the pressure pulse. The modified zero-dimension model demonstrates that the pressure pulse is determined by pulse build-up time threshold, volume coefficient, effective weight fraction of BP, weight of BP et. al. When burning time of BP is larger than the threshold, volume coefficient is equal to 2, and effective weight fraction of BP is less than 1. The pressure pulse is approximately linear correlation with weight and effective weight fraction of BP. Otherwise, volume coefficient is larger than 2, and effective weight fraction of BP is equal to 1. The pressure pulse is approximately linear correlation with volume coefficient and BP weight. Thirdly, a zero-dimensional prediction model of mean pressure is established based on conservations of energy and mass. The prediction models of pressure pulse and mean pressure are validated by T-burner experiments. Finally, effects of BP burning properties on pressure pulse and mean pressure increment are studied. The results show that both pressure pulse and mean pressure increment increase with increasing BP weight, linearly. The pressure pulse is more sensitivity to the variations of burning time of BP. As burning time of BP decreases, the mean pressure increment

  12. Measurements of the concentration of major chemical species in the flame of a test burner with a air swirling system; Mesures de concentration d`especes chimiques majoritaires dans la flamme d`un bruleur modele avec mise en rotation de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Albert, St. [Gaz de France (GDF), 93 - La Plaine-Saint-Denis (France); Most, J.M.; Poireault, B. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1996-12-31

    The study of combustion in industrial burners remains difficult because of the complexity of the equipments used: materials geometry, tri-dimensional flows etc.. The phenomena that control the combustion in a gas burner with a swirl air system has been studied thanks to a collaboration between the Direction of Research of Gaz de France (GdF) and the Laboratory for Combustion and Detonation Research (LCD) of the French National Centre of Scientific Research (CNRS). The burner used is developed by the LCD and the measurements of stable chemical species were performed by the CERSTA centre of GdF. These series of tests, performed in confined environment, have permitted to identify some of the parameters that influence combustion chemistry. Mapping of chemical species allows to distinguish 5 zones of flame development and also the zones of nitrogen oxides formation. Methane is rapidly centrifuged a few millimeters above the injection pipe and centrifuged with rotating combustion air. Carbon monoxide occurs immediately in the central recirculation zone which is weakly reactive (no oxygen and no methane). Oxygen content increases downflow from this area and carbon dioxide reaches its concentration maxima. CO formation decreases when the swirl number increases and CO{sub 2} formation occurs earlier. On the contrary, the emissions of CO and CH{sub 4} do not depend on the swirl value and the NO{sub x} values are only slightly dependent on this value. (J.S.)

  13. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  14. Stagnation of histopathological improvement is a predictor of hepatocellular carcinoma development after hepatitis C virus eradication.

    Science.gov (United States)

    Motoyama, Hiroyuki; Tamori, Akihiro; Kubo, Shoji; Uchida-Kobayashi, Sawako; Takemura, Shigekazu; Tanaka, Shogo; Ohfuji, Satoko; Teranishi, Yuga; Kozuka, Ritsuzo; Kawamura, Etsushi; Hagihara, Atsushi; Morikawa, Hiroyasu; Enomoto, Masaru; Murakami, Yoshiki; Kawada, Norifumi

    2018-01-01

    Hepatocellular carcinoma (HCC) develops in some patients who achieve sustained virological response (SVR) against hepatitis C virus (HCV) infection via anti-HCV therapy. To examine the pathogenesis of HCC development after HCV eradication, histopathological changes and clinical markers were evaluated in SVR patients. Of 654 SVR patients treated with interferon (IFN)-based therapies, 34 patients who had undergone liver biopsy before initiating IFN therapy and after SVR achievement were enrolled: 11 patients with HCC and 23 patients without HCC (male/female, 9/2 and 8/15, respectively: age, 58 ± 5 and 54 ± 11 years, respectively). We compared the clinical and histopathological factors between the two groups. Immunohistochemistry for Cytoglobin (CYGB) and α smooth muscle actin (α-SMA) was also performed. At baseline, prior to initiating the IFN-based therapy, there were significant differences between the SVR-non-HCC and SVR-HCC groups in the male gender, HBc antibody positivity, prothrombin activity, and histological inflammatory grade. Histopathological evaluation, using the new Inuyama classification system, revealed an improvement in the inflammatory grade, from 2.1 ± 0.6 to 1.0 ± 0.6 (p < 0.0001), whereas the fibrosis stage remained unchanged, from 2.3 ± 0.9 to 2.0 ± 1.2 (p = 0.2749), during the 97 ± 72-month observation period in the SVR-HCC group. Both the grade and stage scores were significantly improved in the SVR-non-HCC group. The area of collagen deposition, evaluated using Sirius red staining, showed a marked decrease, from 18.6 ± 7.6% to 7.7 ± 4.6%, in the SVR-non-HCC group, with no change in the SVR-HCC group. CYGB- and α-SMA-positive hepatic stellate cells (HSCs), indicative of the HSC activated phenotype, remained in the fibrotic tissue of livers among patients in the SVR-HCC group. Stagnation of fibrosis regression is associated with a high risk for HCC after SVR. HSC activation may inhibit improvement in fibrosis after SVR and

  15. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  16. A CFD-Based Study of the Feasibility of Adapting an Erosion Burner Rig for Examining the Effect of CMAS Deposition Corrosion on Environmental Barrier Coatings

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria A.

    2015-01-01

    Thermodynamic and computational fluid dynamics modeling has been conducted to examine the feasibility of adapting the NASA-Glenn erosion burner rigs for use in studies of corrosion of environmental barrier coatings by the deposition of molten CMAS. The effect of burner temperature, Mach number, particle preheat, duct heating, particle size, and particle phase (crystalline vs. glass) were analyzed. Detailed strategies for achieving complete melting of CMAS particles were developed, thereby greatly improving the probability of future successful experimental outcomes.

  17. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    Energy Technology Data Exchange (ETDEWEB)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal

  18. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    n/a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed

  19. Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Prabal; Mishra, S.C. E-mail: scm_iitg@yahoo.com; Trimis, D.; Durst, F

    2004-04-01

    This paper deals with the heat transfer analysis of a 2-D rectangular porous radiant burner. Combustion in the porous medium is modelled as a spatially dependent heat generation zone. The gas and the solid phases are considered in non-local thermal equilibrium, and separate energy equations are used for the two phases. The solid phase is assumed to be absorbing, emitting and scattering, while the gas phase is considered transparent to radiation. The radiative part of the energy equation is solved using the collapsed dimension method. The alternating direction implicit scheme is used to solve the transient 2-D energy equations. Effects of various parameters on the performance of the burner are studied.

  20. Computational Fluid Dynamic Analysis of the Flow around the Pivot Bearing of the Centrifugal Ventricular Assist Device

    Science.gov (United States)

    Nishida, Masahiro; Yamane, Takashi; Maruyama, Osamu; Sankai, Yoshiyuki; Tsutsui, Tatsuo

    Flow mechanisms within a monopivot centrifugal pump were clarified in order to prevent stagnation around the pivot bearing, which may cause thrombogenesis. We focused on the geometric effects of the pump, which included the effects of the washout hole diameter, the pivot friction area and the back gap width of the impeller relative to the washout around the pivot bearing. Flow patterns were carefully examined around the pivot bearing, including the region inside the washout hole and the back gap of the impeller, by computational fluid dynamic analysis. Based on the results from the computational fluid dynamic analyses, we found that a balance relationship between the washout hole diameter and the back gap width of the impeller affected the secondary flow toward the pivot bearing that eliminated the stagnation around the pivot bearing. In addition, while increasing in the pivot friction area eliminated stagnation around the pivot bearing, it also increased hemolysis within the pump.

  1. Measurement of OH radical density in DBD-enhanced premixed burner flame by laser-induced fluorescence

    Science.gov (United States)

    Zaima, Kazunori; Sasaki, Koichi

    2013-09-01

    We examined OH density in DBD-enhanced premixed burner flame by laser-induced fluorescence (LIF). We ignited a premixed flame with CH4 /O2 / Ar mixture using a burner which worked as the ground electrode. The upper part of the flame was covered with a quartz tube, and we attached an aluminum electrode on the outside of the quartz tube. DBD inside the quartz tube was obtained between the aluminum electrode and the burner nozzle. The planar beam from a pulsed tunable laser excited OH in X2 Π (v'' = 0) to A2Σ+ (v' = 0) , and we captured two-dimensional distribution of the LIF intensity using an ICCD camera. We employed three pump lines of Q1(J=4, 8 and 10), and the rotational temperature of OH(X) was deduced from the ratio of the LIF intensities. The total density of OH was obtained from the LIF intensities and the rotational temperature. A principal experimental result was that no remarkable increase was observed in the OH density by the superposition of DBD. The correlation between the pulsed discharge current and the temporal variation of the OH density was not clear, suggesting that the oscillation of the OH density with a small amplitude is related to the transittion time constant between equilibrium and nonequilibrium combustion chemistries.

  2. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Role Overload, Role Self Distance, Role Stagnation as Determinants of Job Satisfaction and Turnover Intention in Banking Sector

    Science.gov (United States)

    Kunte, Monica; Gupta, Priya; Bhattacharya, Sonali; Neelam, Netra

    2017-01-01

    Purpose: This study examined the relationship of the organizational role stress: Role overload, role self-distance, and role stagnation with job satisfaction and turnover intention with a sample of banking employees in India. Methodology: In this research, we used the RODS scale developed by Prohit and Pareek (2010) for measuring occupational role scale. The reliability of the scale came out to be 0.71. Findings: The majority of employees of all ranks, in both private and public sector banks, suffer from high role stress of all types. It was found that role overload and role stagnation are inversely associated with banking employees' job satisfaction. Private sector bank employees have more role stress and more unsatisfied than employees of public sector banks. Employees Turnover intention was found to be positively impacted by job satisfaction, contrary to many other studies. Possible reasons have been suggested. Job satisfaction was found to play a partial mediating role in the relationship between role overload and turnover intention with 40% mediation. Further, employees with longer tenure (work experience) have less role stress and are more satisfied. Originality: This study is unique in the sense there is hardly any study linking role stress to job satisfaction and turnover intention, specially in Indian context. PMID:29200554

  4. Role Overload, Role Self Distance, Role Stagnation as Determinants of Job Satisfaction and Turnover Intention in Banking Sector.

    Science.gov (United States)

    Kunte, Monica; Gupta, Priya; Bhattacharya, Sonali; Neelam, Netra

    2017-01-01

    This study examined the relationship of the organizational role stress: Role overload, role self-distance, and role stagnation with job satisfaction and turnover intention with a sample of banking employees in India. In this research, we used the RODS scale developed by Prohit and Pareek (2010) for measuring occupational role scale. The reliability of the scale came out to be 0.71. The majority of employees of all ranks, in both private and public sector banks, suffer from high role stress of all types. It was found that role overload and role stagnation are inversely associated with banking employees' job satisfaction. Private sector bank employees have more role stress and more unsatisfied than employees of public sector banks. Employees Turnover intention was found to be positively impacted by job satisfaction, contrary to many other studies. Possible reasons have been suggested. Job satisfaction was found to play a partial mediating role in the relationship between role overload and turnover intention with 40% mediation. Further, employees with longer tenure (work experience) have less role stress and are more satisfied. This study is unique in the sense there is hardly any study linking role stress to job satisfaction and turnover intention, specially in Indian context.

  5. Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 · °C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 ·° C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

  6. Pollutant Emission Validation of a Heavy-Duty Gas Turbine Burner by CFD Modeling

    Directory of Open Access Journals (Sweden)

    Roberto Meloni

    2013-10-01

    Full Text Available 3D numerical combustion simulation in a can burner fed with methane was carried out in order to evaluate pollutant emissions and the temperature field. As a case study, the General Electric Frame 6001B system was considered. The numerical investigation has been performed using the CFD code named ACE+ Multiphysics (by Esi-Group. The model was validated against the experimental data provided by Cofely GDF SUEZ and related to a real power plant. To completely investigate the stability of the model, several operating conditions were taken into account, at both nominal and partial load. In particular, the influence on emissions of some important parameters, such as air temperature at compressor intake and steam to fuel mass ratio, have been evaluated. The flamelet model and Zeldovich’s mechanism were employed for combustion modeling and NOx emissions, respectively. With regard to CO estimation, an innovative approach was used to compute the Rizk and Mongia relationship through a user-defined function. Numerical results showed good agreement with experimental data in most of the cases: the best results were obtained in the NOx prediction, while unburned fuel was slightly overestimated.

  7. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  8. Characterization of ceramic ornaments of a theatre-like incense burner

    International Nuclear Information System (INIS)

    Lopez-Valenzuela, R.; Lopez-Palacios, J.A.; Jimenez-Reyes, M.; Tenorio, D.; Catano, G.

    2010-01-01

    Thirteen Teotihuacan-style ornaments of an incense burner were studied. Ceramic pastes, pigments and mica were analyzed by neutron activation, X-ray diffraction and scanning electron microscopy. Elemental (Sc, Cr, Fe, Co, Rb, Cs, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Hf, Th and U) and statistical analyses of ceramic-body data showed that these pieces were made from the same raw material, which is chemically different from the fine orange ceramic of Teotihuacan. Montmorillonite and the classical components of sand were the minerals identified in the ceramic pastes. The white pigment contained calcium, titanium and aluminium, the yellow pigment was ocher, and the red pigment was a mixture of red ocher and cinnabar, the binder of the pigments being clay. Exoskeletons of diatoms and locust ootecs were found in the pigments. Mica was identified as biotite, identical with that coming from Monte Alban Oaxaca. We wish to undertake a historical reconstruction of these ornaments based on archaeometric and literature data. (author)

  9. Experimental study of a burner with high temperature heat recovery system for TPV applications

    International Nuclear Information System (INIS)

    Colangelo, G.; De Risi, A.; Laforgia, D.

    2006-01-01

    An experimental investigation to develop and test a burner and a heat recovery system for thermophotovoltaic (TPV) applications is presented. Experimental data have been compared with theoretical calculations and considerations in the pre-design and design phases of the project to find the weakest point of the concept and to validate the expected performance. The TPV generator has been designed as a compact module in order to be used as a range extender in an electric car. The heat recovery system is the key element to increase the efficiency of the system. The heat recovery system presented in this paper is a rotary type regenerator that is very compact and has higher effectiveness in comparison with other types of regenerators with the same number of transfer units (NTU). The experimental data have been used to verify the numerical models used in the calculations for design of the regenerator matrix. A new version of the numerical model has been developed to take into account the variation of the thermal properties of the system with the temperature. Dimensions, weight, efficiency, emissions and high working temperatures have been the most important competitive constraints to observe for design of the system

  10. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  11. Chemical and biological characterization of residential oil burner emission. A literature survey

    International Nuclear Information System (INIS)

    Westerholm, R.; Peterson, A.

    1994-02-01

    This literature study covers the time period 1980 to 1993 and is concerned with oil burners used for residential heating with a nominal heating power of less than 20 kW, which are normally used in one-family houses. Emission samples from domestic heaters using organic fuels consists of a very complex matrix of pollutants ranging from aggregate states solid to gaseous. Biological effects elicited by exhaust emissions have been detected and determined. It has been shown for diesel vehicles that selection of fuel properties has an impact on combustion reaction paths which results in different exhaust chemical compositions. It was also determined that diesel fuel properties have an impact on the biological activity of diesel exhaust emissions, which is to be expected from their chemical characterization. As a result of this, Sweden has an environmental classification of diesel fuels which has been in force since 1991. Analogously, the Swedish Environmental Protection Agency has asked whether detrimental environmental and health effects from residential heating can be reduced by selection of fuel properties, and if so by how much? In addition, which properties are most important to control in a future environmental classification of heating oils? As a first step in this process, a literature survey was performed. Major topics were: Sampling technology, chemical composition, biological activity, and risk assessment of emissions. 33 refs, 11 tabs

  12. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    International Nuclear Information System (INIS)

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  13. Comparative Study of the Reactor Burner Efficiency for Transmutation of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko sq. 1, Obninsk, Kaluga region, 249020 (Russian Federation); Degtyarev, A.; Kalugin, A.; Ponomarev, L. [Russian Research Center ' Kurchatov Institute' , Kurchatov sq. 1, Moscow, 123182 (Russian Federation); Konev, V.; Seliverstov, V. [Institute of Theoretical and Experimental Physics, ul. B. Cheremushinskaya 25, Moscow, 117259 (Russian Federation)

    2009-06-15

    Transmutation of minor actinides (MA) in the closed nuclear fuel cycle (NFC) is a one of the most important problem for future nuclear energetic. There are several approaches for MA transmutation but there are no common criteria for the comparison of their efficiency. In paper [1] we turned out the attention to the importance of taking into account the duration of the closed NFC in addition to a usual criterion of the neutron economy. In accordance with these criteria the transmutation efficiency are compared of two fast reactors (sodium and lead cooled) and three types of ADS-burners: LBE-cooled reactors (fast neutron spectrum), molten-salt reactor (intermediate spectrum) and heavy water reactor (thermal spectrum). It is shown that the time of transmutation of loaded MA in the closed nuclear fuel cycle is more than 50 years. References: A. Gulevich, A. Kalugin, L. Ponomarev, V. Seliverstov, M. Seregin, 'Comparative Study of ADS for Minor Actinides Transmutation', Progress in Nuclear Energy, 50, March-August, p. 358, 2008. (authors)

  14. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  15. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.

    1992-01-01

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  16. Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner

    KAUST Repository

    Kruse, Stephan

    2018-04-11

    Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.

  17. Performance analysis of cooling stabilizing burners for different stress boiler unit

    OpenAIRE

    Fialko, N. M.; Prokopov, V. H.; Alyosha, S. A.; Sherenkovskyy, Y.; Meranova, N. A.; Polozenko, N. P.; Malecki, A. E.

    2013-01-01

    The numerical research data of the jet–stabilization burners cooling system of with different baffles are presented of the jet airflow of inside end surface by flat and round jets with different width pylon is presented. The analysis of the load influence on the boiler efficiency cooling system is carried out. Наведено дані числових досліджень систем охолодження струменево- стабілізаторних пальникових пристроїв за схемою із струменевим обдувом внутрішньої торцевої ...

  18. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Therkelsen, Peter L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-13

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements, researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state

  19. Numerical modelling of flow pattern for high swirling flows

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available This work focuses on the interaction of two coaxial swirling jets. High swirl burners are suitable for lean flames and produce low emissions. Computational Fluid Dynamics has been used to study the isothermal behaviour of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model is a Total Variation Diminishing and PISO is used to pressure velocity coupling. Transient analysis let identify the non-axisymmetric region of reverse flow. The center of instantaneous azimuthal velocities is not located in the axis of the chamber. The temporal sampling evidences this center spins around the axis of the device forming the precessing vortex core (PVC whose Strouhal numbers are more than two for Swirl numbers of one. Influence of swirl number evidences strong swirl numbers are precursor of large vortex breakdown. Influence of conical diffusers evidence the reduction of secondary flows associated to boundary layer separation.

  20. Numerical modelling of flow pattern for high swirling flows

    Science.gov (United States)

    Parra, Teresa; Perez, J. R.; Szasz, R.; Rodriguez, M. A.; Castro, F.

    2015-05-01

    This work focuses on the interaction of two coaxial swirling jets. High swirl burners are suitable for lean flames and produce low emissions. Computational Fluid Dynamics has been used to study the isothermal behaviour of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model is a Total Variation Diminishing and PISO is used to pressure velocity coupling. Transient analysis let identify the non-axisymmetric region of reverse flow. The center of instantaneous azimuthal velocities is not located in the axis of the chamber. The temporal sampling evidences this center spins around the axis of the device forming the precessing vortex core (PVC) whose Strouhal numbers are more than two for Swirl numbers of one. Influence of swirl number evidences strong swirl numbers are precursor of large vortex breakdown. Influence of conical diffusers evidence the reduction of secondary flows associated to boundary layer separation.

  1. Dye visualization near a three-dimensional stagnation point: application to the vortex breakdown bubble

    DEFF Research Database (Denmark)

    Brøns, Morten; Thompson, M. C.; Hourigan, K.

    2009-01-01

    flows are typically visualized. Predictions based on the model are made for the steady vortex breakdown bubble in a torsionally driven cylinder and compared with computational fluid dynamics predictions and experimental observations. Previous experimental observations using tracer visualization...... techniques have suggested that even for low-Reynolds-number flows, the steady vortex breakdown bubble in a torsionally driven cylinder is not axisymmetric and has an inflow/outflow asymmetry at its tail. Recent numerical and theoretical studies show that the asymmetry of the vortex breakdown bubble......, and consequently its open nature, can be explained by the very small imperfections that are present in any experimental rig. Distinct from this, here it is shown that even for a perfectly axisymmetric flow and breakdown bubble, the combined effect of dye diffusion and the inevitable small errors in the dye...

  2. Deglaciation of the Appalachian Plateau, northeastern Pennsylvania—till shadows, till knobs forming “beaded valleys”: Revisiting systematic stagnation-zone retreat

    Science.gov (United States)

    Braun, Duane D.

    2006-04-01

    Glacial retreat from valleys in the moderate relief (300-500 m) Small Lakes Section of the Appalachian Plateau in northeastern Pennsylvania was characterized by episodic deposition of till in a series of knobs that formed "beaded valleys". Individual valleys have a north to south series of till knobs alternating with wetlands or lakes at a spacing of one to five kilometers. Outcrop and well data, while small and few in any individual knob, when put together from the more than 1000 knobs mapped in region, show that the till knobs are typically 30 to 50 m thick. The knobs are cored by subglacial till (lodgment-deformation till) with a wedge of supraglacial till (flow or re-sedimented till) on the south sides, push structures in the interiors and north sides, and an overall veneer of "colluviated till" that thickens downslope on all sides. Glaciofluvial deposits are scarce, usually appearing as thin lenses on the flank of the knobs. The knobs are interpreted to be the periglacially and post-glacially modified remnants of recessional moraines. Individual till knobs were rapidly deposited in a few decades, probably through layer by layer stacking of deformation till and till block melanges. Active ice shearing over inactive ice could form an adverse slope where rapid till deposition could take place. The ice retreated systematically in a stagnation-zone retreat mode, with active ice leaving till knobs and 1-5 km wide stagnant-zone ice leaving the lake basins between the knobs. The till knobs can be connected from valley to valley, in lines perpendicular to the southwesterly ice flow, to delineate ice margin positions across the region. Valleys transverse to ice flow have "till shadows", 30 to 50 m thick till deposits on the north or lee side of the valley. "One-sided" post-glacial bedrock gorges with bedrock on the south side and till on the north side, are ubiquitous in "till shadow" valleys and form as the stream incises down the bedrock-till contact. Till outcrops in

  3. Blood flow competition after aortic valve bypass: an evaluation using computational fluid dynamics.

    Science.gov (United States)

    Kawahito, Koji; Kimura, Naoyuki; Komiya, Kenji; Nakamura, Masanori; Misawa, Yoshio

    2017-05-01

    Aortic valve bypass (AVB) (apico-aortic conduit) remains an effective surgical alternative for patients in whom surgical aortic valve replacement or transcatheter aortic valve implantation is not feasible. However, specific complications include thrombus formation, possibly caused by stagnation arising from flow competition between the antegrade and retrograde flow, but this has not been fully investigated. The aim of this study was to analyse flow characteristics after AVB and to elucidate mechanisms of intra-aortic thrombus using computational fluid dynamics (CFD). Flow simulation was performed on data obtained from a 73-year-old postoperative AVB patient. Three-dimensional cine phase-contrast magnetic resonance imaging at 3 Tesla was used to acquire flow data and to set up the simulation. The vascular geometry was reconstructed using computed tomography angiograms. Flow simulations were implemented at various ratios of the flow rate between the ascending aorta and the graft. Results were visualized by streamline and particle tracing. CFD demonstrated stagnation in the ascending aorta-arch when retrograde flow was dominant, indicating that the risk of thrombus formation exists in the ascending arch in cases with severe aortic stenosis and/or poor left ventricular function. Meanwhile, stagnation was observed in the proximal descending aorta when the antegrade and retrograde flow were equivalent, suggesting that the descending aorta is critical when aortic stenosis is not severe. Flow stagnation in the aorta which may cause thrombus was observed when retrograde flow was dominant and antegrade/retrograde flows were equivalent. Our results suggest that anticoagulants might be recommended even in patients who receive biological valves. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Craft-Joule Project: Stagnation proof transparently insulated flat plate solar collector (static)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Cadafalch, J; Perez-Segarra, C.D. [Universitat Politecnica de Catalunya, Barcelona (Spain)] (and others)

    2000-07-01

    The STATIC (STAgnation proof Transparently Insulated flat plate Solar Collector) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The core group of SMEs involved in the project has its main economical activity in the field of solar thermal systems at low temperature level (domestic hot water, solar heating, etc.). Beyond this, a large application potential exists for solar heating at medium temperature level (from 80 to 160 Celsius degrees) : industrial process heat, solar cooling and air conditioning, solar drying , distillation and desalination. Three of the four SME proposers are located in Southern Europe and in the Caribean, where a continuos increase of the demand for air conditioning and cooling has been demonstrated in the last years. The recent development of flat plate solar collectors with honeycomb-type transparent insulation cover has shown that this type of collectors can become a low cost alternative to evacuated tube and high concentrating CPC collectors in the medium temperature range from 80 to 160 Celsius degrees. With the expected reduction of collector cost, that forms 30%-50% of total system cost, a decisive break-through of solar thermal systems using heat in the medium temperature range can be achieved. The feasibility and good performance of these solar collectors has been proved in several prototypes. Nevertheless, up to now no commercial products are available. In order to reach this, the following developments of new concepts are necessary and are being carried out within this project: solution of the problem of overheating: development of collector versions for different working temperatures: optimization of the design with the support of high level numerical simulation. Several prototypes of the new solar collectors are being tested. System tests will also be carried or for two test arrays of optimized collector

  5. Tables of homogeneous equilibrium critical flow parameters for water in SI units

    International Nuclear Information System (INIS)

    Hall, D.G.; Czapary, L.S.

    1980-09-01

    This reference document presents tables and charts containing data calculated using the homogeneous equilibrium critical flow model (HEM). The ranges of stagnation state properties for which data are presented include: pressures from 2 to 22 120kPa, temperatures from 290 to 640 K, and thermodynamic qualities from 0 to 1

  6. A 5 kW{sub t} catalytic burner for PEM fuel cells: Effect of fuel type, fuel content and fuel loads on the capacity of the catalytic burner

    Energy Technology Data Exchange (ETDEWEB)

    Sarioglan, A.; Can Korkmaz, Oe.; Kaytaz, A.; Akar, E.; Akguen, F. [TUeBiTAK Marmara Research Center, Energy Institute, P.O. 21, Gebze/Kocaeli (Turkey)

    2010-11-15

    For proton exchange membrane fuel cell systems (PEMFC) integrated with fuel processors, the calorific value of reformate gases produced during the start-up phase must be recovered. An appropriate exhaust after treatment system has crucial importance for PEMFC systems. Catalytic combustion is a promising alternative regarding its total oxidation capability of low calorific value gases at low temperatures, thereby reducing environmentally hazardous emissions. The aim of the study is to develop an after treatment system using a catalytic burner with a nominal capacity of 5 kW{sub t}, which is also adaptive to partial loads of PEM fuel cell capacity. Fuel type, fuel composition and fuel loads are important parameters determining the operating window of the catalytic burner. Precious metal based catalysts, as proved to be the most active catalysts for the oxidation of hydrocarbons, can withstand temperatures of about 1073 K without exhibiting a rapid deactivation. This is the main barrier dictating the operating window and thereby determining the capacity of the burner. In this work, 1.5% natural gas (NG) alone was found to be the upper limit to control the catalyst bed temperature below 1073 K. In the case of catalytic combustion of hydrogen-NG mixture, 7% of hydrogen with NG up to 0.6% could be totally oxidized below 1073 K. Within the experimented ranges of fuel loads, between 2.5 kW{sub t} and 5.5 kW{sub t}, the temperature of the catalyst bed was seen to increase with increasing the fuel load at constant fuel percentages. It has been observed that fuel type was another parameter affecting the exhaust gas temperature. (author)

  7. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2014-05-01

    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  8. Fusion-driven actinide burner design study. Second quarterly progress report

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides

  9. Fusion-driven actinide burner design study. Second quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides.

  10. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Cutting edge SRU control : improved environmental compliance with Jacobs advanced burner control+ (ABC+)

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, G. [Jacobs Canada Inc., Calgary, AB (Canada); Henning, A.; Kobussen, S. [Jacobs Nederland BV, Hoogvliet (Netherlands)

    2009-07-01

    Oil sands bitumen contains approximately 4 to 5 per cent sulphur by weight and the bitumen is upgraded to produce lighter fractions. During coking the bitumen is heated and cracked into lighter molecules and a mixture of kerosene, naphtha and gas oil is recovered via fractionation. Then, the vapors leaving the fractionator are processed through hydrodesulphurization, followed by removal by amine based sweetening units. The acid gas from the ASUs is sent to the sulphur recovery units (SRUs) where most of the sulphur is recovered as elemental sulphur. The oil sands industry faces many challenges with respect to environmental impact, energy use and greenhouse gas emissions including the recovery of sulphur and minimizing hydrogen sulfide (H{sub 2}S) and sulphur dioxide (SO{sub 2}) emissions from the oil sands production facilities. In order to improve the SRU control response to acid gas feed variations, Jacobs Comprimo Sulphur Solutions implemented advanced burner control+ (ABC+) at Suncor's Simonette Gas Plant's SRU in northern Alberta. This control system used an acid gas feed analyzer and dynamic algorithms to control the combustion air to the reaction furnace. The analyzer measures H{sub 2}S, total hydrocarbons, carbon dioxide (CO{sub 2}) and water (H{sub 2}O) accurately and quickly, which is important for having effective and fast air-to-acid gas ratio control. The paper provided background information on the Suncor Simonette Gas Plant and discussed ABC+ versus conventional control. An overview of the simplified ABC and ABC+ systems was then illustrated and presented. The ABB multiwave process photometer was also explained. Last, a dynamic simulation of the potential benefits of ABC+ was discussed and the ABC+ benefits for oil sands were presented. It was concluded that ABC+ provides improved SRU performance, reduced SO{sub 2} emissions and violations, and reduced flaring. 1 tab., 3 figs.

  13. Duquesne Light Company`s burner modification for NO{sub x} RACT compliance on a 200 MW single face fired pulverized coal unit

    Energy Technology Data Exchange (ETDEWEB)

    Bionda, J.P. [Energy Systems Associates, Pittsburgh, PA (United States); Gabrielson, J.E.; Hallo, A.

    1994-12-31

    This paper discusses the result of a research test program conducted on Duquesne Light Company`s Elrama Unit 4. The program was designed to determine the viability of achieving compliance with the recently enacted PA DER Reasonably Available Control Technology (RACT) regulations. These regulations stipulate presumptive RACT requirements for wall fired boilers which include the installations and operation of low NO{sub x} burners with separated overfire air. Duquesne Light Company contracted Energy Systems, Associates (ESA) to aide in the design and testing of a novel low NO{sub x} burner design and separated overfire air system. By modifying the coal burners, it has been possible to reduce the NO{sub x} emissions by 50% to 60% on Unit 4, with minimal impact to the unburned carbon in the ash. The burner modifications create fuel rich streams which are surrounded by air rich zones in the primary flame region, thus staging combustion at the burner. Additional NO{sub x} reductions are realized when the combustion is further staged by use of the separated overfire air system.

  14. Problems in vibration measurement by laser techniques through combusting flows

    Science.gov (United States)

    Paone, Nicola; Revel, Gian M.

    1996-08-01

    A study of the metrologic problems connected to performing laser vibrometer measurements through combusting flows has been presented in this paper, in order to test the real applicability of laser vibrometer techniques to carry out measurements on full-scale burners. A model of the instrument is developed to describe main effects on the measurement system due to time varying refractive index within the flame; measurement uncertainty sources are discussed. Variations in the optical path length of the measuring arm of the interferometer due to changes in the laser beam wavelength and propagation direction caused by refractive index gradients seem to be the most influent effects and they are modulated at the natural flickering frequency of the flame. Experimental results from measurements performed by a single-point laser vibrometer through an unconfined CH4 flame from a Bunsen burner are in agreement with the model and provide an explanation of the phenomena which affect uncertainty in these particular measurements.

  15. Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium

    Science.gov (United States)

    Englert, Gerald W.; Kochendorfer, Fred D.

    1959-01-01

    The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.

  16. Recurrent burner syndrome due to presumed cervical spine osteoblastoma in a collision sport athlete – a case report

    Directory of Open Access Journals (Sweden)

    Goins Maurice L

    2007-06-01

    Full Text Available Abstract We present a case of a 35-year-old active rugby player presenting with a history of recurrent burner syndrome thought secondary to an osteoblastoma involving the posterior arch of the atlas. Radiographically, the lesion had features typical for a large osteoid osteoma or osteoblastoma, including osseous expansion, peripheral sclerosis and bony hypertrophy, internal lucency, and even suggestion of a central nidus. The patient subsequently underwent an en bloc resection of the posterior atlas via a standard posterior approach. The surgery revealed very good clinical results. In this report, we will discuss in detail, the presentation, treatment, and return to play recommendations involving this patient.

  17. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of

  19. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  20. Numerical modelling of unsteady flow behaviour in the rectangular jets with oblique opening

    Directory of Open Access Journals (Sweden)

    James T. Hart

    2016-09-01

    Full Text Available Vortex shedding in a bank of three rectangular burner-jets was investigated using a CFD model. The jets were angled to the wall and the whole burner was recessed into a cavity in the wall; the ratio of velocities between the jets varied from 1 to 3. The model was validated against experimentally measured velocity profiles and wall pressure tapings from a physical model of the same burner geometry, and was generally found to reproduce the mean flow field faithfully. The CFD model showed that vortex shedding was induced by a combination of an adverse pressure gradient, resulting from the diffuser-like geometry of the recess, and the entrainment of fluid into the spaces separating the jets. The asymmetry of the burner, a consequence of being angled to the wall, introduced a cross-stream component into the adverse pressure gradient that forced the jets to bend away from their geometric axes, the extent of which depended upon the jet velocity. The vortex shedding was also found to occur in different jets depending on the jet velocity ratio.

  1. Numerical and experimental investigation of combustion processes of low-calorific gases in pore burners; Numerische und experimentelle Untersuchung von Verbrennungsvorgaengen niederkalorischer Gase in Porenbrennern

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.; Steven, M.; Talukdar, P.; Al-Hamamre, Z.; Issendorff, F. von; Trimis, D. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Stroemungsmechanik

    2005-07-01

    Combustion of H2-containing low-calorific mixtures in a pore burner was investigated both numerically and experimentally. The mixtures under investigation are representative of SOFC exhaust and pyrolysis gases. In preliminary experiments, the limits of operation of a pore burner were identified by equilibrium calculations and kinetic calculations. On this basis, 3D simulations of the combustion processes were made, taking into account all relevant heat and mass transfer processes including radiation in porous media. Finally, the limits of operation of both mixtures were identified experimentally, as were the CO and NOx emissions. (orig.)

  2. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  3. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  4. Numerical modeling of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB

    Directory of Open Access Journals (Sweden)

    Kanokkarn Jirakulsomchok

    2017-08-01

    Full Text Available This article presents a numerical study of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB. The LMPB consists of four main components, i.e., the fuel preheating porous (FP, the porous combustor (PC, the air jacket, and the mixing chamber. Interestingly, this LMPB was able to highly preheated and it still maintained high safety in operation. A single-step global reaction, steady state approach and a one-dimensional model were considered. The necessary information for burner characteristics, i.e., temperature profile, flame location and maximum temperature were also presented. The results indicated that stable combustion of a low-calorific-producer-gas within LMPB was possible achieved. Increasing equivalence ratio resulted in increasing in the flame temperature. Meanwhile, increasing the firing rate caused slightly decrease in flame temperature. The flame moved to downstream zone of the PC when the firing rate increased. Finally, it was found that the equivalence ratio did not affect the flame location.

  5. Buoyant low stretch stagnation point diffusion flames over a solid fuel

    Science.gov (United States)

    Olson, Sandra L.

    Many diffusion flames in microgravity are subject to very low stretch. To study flame structure and extinction characteristics of these unusual flames, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Solid-phase conductive heat loss was also varied by modifying the back surface boundary conditions on the samples. Burning rates, flame thickness and standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 7-8 secsp{-1}, as determined by the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame. Applications of this work include fire safety in spacecraft where low velocity flows from spacecraft ventilation equipment or small cooling fans for electronic hardware can impinge upon flammable surface materials and create low stretch environments. Knowledge of the characteristics of these potential fires is vital to prompt detection and proper response to such events.

  6. FLEET velocimetry for combustion and flow diagnostics.

    Science.gov (United States)

    DeLuca, Nicholas J; Miles, Richard B; Jiang, Naibo; Kulatilaka, Waruna D; Patnaik, Anil K; Gord, James R

    2017-11-01

    We report the use of femtosecond laser electronic excitation tagging (FLEET) for velocimetry at a 100-kHz imaging rate. Sequential, single-shot, quantitative velocity profiles of an underexpanded supersonic nitrogen jet were captured at a 100-kHz rate. The signal and lifetime characteristics of the FLEET emission were investigated in a methane flame above a Hencken burner at varying equivalence ratios, and room temperature gas mixtures involving air, methane, and nitrogen. In the post-flame region of the Hencken burner, the emission lifetime was measured as two orders of magnitude lower than lab air conditions. Increasing the equivalence ratio above 1.1 leads to a change in behavior, with a doubled lifetime. By measuring the emission in a cold methane flow, a short-lived signal was measured that decayed after the first microsecond. As a proof of concept for velocimetry in a reacting environment, the exhaust of a pulsed detonator was measured by FLEET. Quantitative velocity information was obtained that corresponded to a maximum centerline velocity of 1800 m/s for the detonation wave. Extension of FLEET to larger scale, complex flow environments is now a viable option.

  7. Development of a novel heterogeneous flow reactor -- Soot formation and nanoparticle catalysis

    Science.gov (United States)

    Camacho, Joaquin

    The development of novel experimental approaches to investigate fundamental surface kinetics is presented. Specifically, fundamental soot formation and surface catalysis processes are examined in isolation from other competing processes. In terms of soot formation, two experimental techniques are presented: the Burner Stabilized Stagnation (BSS) flame configuration is extended to isolate the effect of the parent fuel structure on soot formation and the fundamental rate of surface oxidation for nascent soot is measured in a novel aerosol flow reactor. In terms of nanoparticles, the physical and chemical properties of freely suspended nanoparticles are investigated in a novel aerosol flow reactor for methane oxidation catalyzed by palladium. The role of parent fuel structure within soot formation is examined by following the time resolved formation nascent soot from the onset of nucleation to later growth stages for premixed BSS flames. Specifically, the evolution of the detailed particle size distribution function (PSDF) is compared for butanol, butane and C6 hydrocarbons in two separate studies where the C/O ratio and temperature are fixed. Under this constraint, the overall sooting process were comparable as evidenced by similar time resolved bimodal PSDF. However, the nucleation time and the persistence of nucleation with time is strongly dependent upon the structure of the parent fuel. For the C6 hydrocarbon fuels, the fastest onset of soot nucleation is observed in cyclohexane and benzene flames and this may be due to significant aromatic formation that is predicted in the pre-flame region. In addition, the evolution of the PSDF shows that nucleation ends sooner in cylclohexane and benzene flames and this may be due to relatively quick depletion of soot precursors such as acetylene and benzene. Interestingly,within the butanol fuels studied the effect of the branched chain in i-butanol and i-butane was more significant than the presence of fuel bound oxygen. A

  8. Impedance spectroscopy and structural properties of the perovskite-like Sn(Ba,Sr)O{sub 3} stagnate

    Energy Technology Data Exchange (ETDEWEB)

    Cuervo Farfan, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia); Ciencias Basicas, Universidad Manuela Beltran, Bogota DC (Colombia); Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota DC (Colombia); Vera Lopez, E. [Grupo de Superficies, Electroquimica y Corrosion, Universidad Pedagogica y Tecnologica de Colombia, Tunja (Colombia); Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia)

    2012-08-15

    An exhaustive study of structural, electrical and transport properties on the perovskite stagnate Sn(Ba,Sr)O{sub 3} was performed. Samples of SnBa{sub 1-x}Sr{sub x}O{sub 3} with 0{<=}x{<=}1.00 were prepared by the solid state reaction method. The crystallographic structure was studied by X-ray diffraction experiments and Rietveld refinement using the GSAS code. Results reveal the material synthesized in a cubic structure (space group Pm3-bar m, no. 221) for 0{<=}x{<=}0.50 and in an orthorhombic (space group Pnma, no. 62) for x>0.50. The approximate grain size was found from experiments' Scanning Electron Microscopy. The electric response was studied by the Impedance Spectroscopy technique from 10.0 mHz up to 0,10 MHz. Electric polarization measurements for SnSrO{sub 3} and SnBaO{sub 3} were determined through curves of polarization as a function of applied electric field, which reveal the ferroelectric character of the material. From the saturation polarization the dielectric constants of materials were calculated.

  9. Impedance spectroscopy and structural properties of the perovskite-like Sn(Ba,Sr)O3 stagnate

    International Nuclear Information System (INIS)

    Cuervo Farfán, J.; Olaya, J.J.; Vera López, E.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2012-01-01

    An exhaustive study of structural, electrical and transport properties on the perovskite stagnate Sn(Ba,Sr)O 3 was performed. Samples of SnBa 1-x Sr x O 3 with 0≤x≤1.00 were prepared by the solid state reaction method. The crystallographic structure was studied by X-ray diffraction experiments and Rietveld refinement using the GSAS code. Results reveal the material synthesized in a cubic structure (space group Pm3-bar m, no. 221) for 0≤x≤0.50 and in an orthorhombic (space group Pnma, no. 62) for x>0.50. The approximate grain size was found from experiments' Scanning Electron Microscopy. The electric response was studied by the Impedance Spectroscopy technique from 10.0 mHz up to 0,10 MHz. Electric polarization measurements for SnSrO 3 and SnBaO 3 were determined through curves of polarization as a function of applied electric field, which reveal the ferroelectric character of the material. From the saturation polarization the dielectric constants of materials were calculated.

  10. Extending the predictions of chemical mechanisms for hydrogen combustion by Comparison of predicted and measured flame temperatures in burner-stabilized, 1-D flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    A method is presented for extending the range of conditions for which the performance of chemical mechanisms used to predict hydrogen burning velocities can be evaluated. Specifically, by comparing the computed variation of flame temperature with mass flux in burner-stabilized flat flames with those

  11. From Bunsen Burners to Fuel Cells: Invoking Energy Transducers to Exemplify "Paths" and Unify the Energy-Related Concepts of Thermochemistry and Thermodynamics

    Science.gov (United States)

    Hladky, Paul W.

    2009-01-01

    The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…

  12. Study on the effect of the side secondary air velocity on the aerodynamic field in a tangentially fired furnace with HBC-SSA Burner

    Science.gov (United States)

    Zhu, Tong; Sun, Shaozeng; Wu, Shaohua; Qin, Yukun

    1999-12-01

    The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal Burner with Side Secondary Air (HBC-SSA Burner). Experimental results show that, when the ram pressure ratio of side secondary air (SSA) to primary air (PA) (ρ2sv 2s /2 /ρ1v 1 2 ) is between 1.0 2.4, the furnace aerodynamic field only varies slightly. The relative rotational diameters (φ/L) in the burner domain are moderate and the furnace is in good fullness. When ρ2sv 2s /2 /ρ1v 1 2 is beyond 4, φ/L is so large that the stream sweeps water-cooled wall and rotates strongly in the furnace. Therefore, slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation. This investigation provides the basis for the application of this new type burner. In addition, numerical simulations are conducted, and some defects in the numerical simulation are also pointed out and analyzed in this paper.

  13. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  14. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system

    OpenAIRE

    Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G.

    2017-01-01

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and tem...

  15. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  16. Flow structure and channel morphodynamics of meander bend chute cutoffs: A case study of the Wabash River, USA

    Science.gov (United States)

    Zinger, Jessica A.; Rhoads, Bruce L.; Best, James L.; Johnson, Kevin K.

    2013-12-01

    paper documents the three-dimensional structure of flow and bed morphology of two developing chute cutoffs on a single meander bend on the lower Wabash River, USA, and relates the flow structure to patterns of morphologic change in the evolving cutoff channels. The upstream end of the cutoff channels is characterized by: (1) a zone of flow velocity reduction/stagnation and bar development in the main channel across from the cutoff entrance, (2) flow separation and bar development along the inner (left) bank of the cutoff channel immediately downstream from the cutoff entrance, and (3) helical motion and outward advection of flow momentum entering the cutoff channel, leading to erosion of the outer (right) bank of the cutoff channel. At the downstream end of the cutoff channels, the major hydrodynamic and morphologic features are: (1) flow stagnation along the bank of the main channel immediately upstream of the cutoff channel mouth, (2) convergence of flows from the cutoff and main channels, (3) helical motion of flow from the cutoff, (4) a zone of reduced velocity along the bank of the main channel immediately downstream from the cutoff channel mouth, and (5) development of a prominent bar complex that penetrates into the main channel and extends from the stagnation zone upstream to downstream of the cutoff mouth. These results provide the basis for a conceptual model of chute-cutoff dynamics in which the upstream and downstream ends of a cutoff channel are treated as a bifurcation and confluence, respectively.

  17. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    ) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle...... conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion....... The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen...

  18. Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing

    International Nuclear Information System (INIS)

    Hiro, Kazuki; Ohde, Yoshihito; Tanzawa, Yasutoshi

    2003-01-01

    To investigate effects of mechanical sealing on negative pressures in water/metal tube Berthelot systems, trends in negative pressure are observed through runs of temperature cycles below 90 deg. C in two systems made of metals having small amounts of gas inclusions. The first system is a pre-degassed all-stainless-steel tube/plug system. The steel is a special product for vacuum engineering. The second is the same tube sealed with plugs made of silver solidified one-dimensionally in a vacuum furnace. A new type of trend, stagnation for intermediate cycles is found in both systems so long as sealing distortion of each plug is small in amount. The stagnation period for the first system is longer than that for the second one. A metallurgical mechanism of a gas-being-replenished crevice model is proposed: distorted parts of metals undergo heat-treatment during runs of temperature cycles, and the heat-treatment enhances the rates of impurity gas transports to crevices on the metal surface where cavitation occurs, and the transport causes the stagnation for cycles during which the rates are still high

  19. Modelling of flow stabilization by the swirl of a peripheral flow as applied to plasma reactors

    International Nuclear Information System (INIS)

    Volchkov, E.P.; Lebedev, V.P.; Terekhov, V.I.; Shishkin, N.E.

    2000-01-01

    The gas-swirl stabilization of plasma jets is one of effective methods of its retention in the near-axial area of channels in generators of low-temperature plasma. Except the effect of gas-dynamic compression, the peripheral swirl allows to solve another urgent problem - to protect the reactor walls from the heat influence of the plasma jet. Swirl flows are also used for the flow structure formation and control of the heat and gas-dynamic characteristics of different power devices and apparatuses, using high-temperature working media: in swirl furnaces and burners, in aviation engines, etc. Investigations show that during swirl stabilization the gas-dynamic structure of the flow influences significantly the spatial stability of the plasma column and its characteristics

  20. Effects of plasma jet parameters, ionization, thermal conduction, and radiation on stagnation conditions of an imploding plasma liner

    Science.gov (United States)

    Stanic, Milos

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal expansion rates and leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ≈ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear

  1. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  2. Page 1 Tube-in-basket burner for rice husk. I 299 from the heat ...

    Indian Academy of Sciences (India)

    The ash at this stage was of light grey colour, had less than 2 to 3% carbon and was amorphous and very reactive with a surface area of ... drive out the volatile matter at relatively low temperatures and to prevent sealing of pores, was fulfilled. This coupled with a high air flow rate assured high combustion radial distance ...

  3. DIDACTICS: DEVELOPMENT OR STAGNATION?

    Directory of Open Access Journals (Sweden)

    I. P. Smirnov

    2016-01-01

    Full Text Available ARTICLE RETRACTEDThe aim of the paper – the detailed analysis of the monograph «Contents and Structure of Regularities of Process of Training (Theory and Experiment» which is written by the corresponding member of the Russian Academy of Education (RAE, Doctor of pedagogical sciences, Professor I. I. Logvinov. The book was included into a series «Basic researches of institute of the theory and history of pedagogics of the Russian Academy of Education. Proceedings 2008–2012».The review of the monograph of I. I. Logvinov has become a reason for reflections of the author of the present publication about actual, most burning issues of a modern Russian educational system: on the status of pedagogics in modern domestic science; evolutions of didactic knowledge and its typology; quality of dissertation researches and emasculation in scientific pedagogical concepts of the fundamental bases; ideologization of didactics and a role of the state in this process.Sorting basic thesis of I. I. Logvinov’s work, in something agreeing, and in something arguing with the scientist, the author of article claims that it is a serious and necessary work where the extremely important questions concerning the most painful points of the Russian pedagogical science and a condition of our education in general are brought up.

  4. Breathtaking or stagnation?

    DEFF Research Database (Denmark)

    Sauer, Johannes; Graversen, Jesper Tranbjerg; Park, Tim

    2006-01-01

    techniques. Finally we try to conclude on the significance of subsidies for promoting long term growth in organic production by estimating a bootstrapped bivariate probit model with respect to factors influencing the probability of organic market exit. The results revealed significant difference...... in the organic farms' technical efficiency, no significant total factor productivity growth and even a slightly negative rate of technical change in the period investigated. We found evidence for a positive relationship between subsidy payments and an increase in farm efficiency, technology improvements...... and a decreasing probability of organic market exit which was also confirmed for off farm income. Finally the general index mode specification was found to deliver a more accurate mapping of total factor productivity growth....

  5. Heating plant privatization stagnates

    International Nuclear Information System (INIS)

    Janoska, J.; Benka, M.; Sobinkovic, B.; Haluza, I.

    2005-01-01

    The state has been talking about privatization of 6 municipal heating plants since 2001. The tenders were to start last year. But nothing has happened and the future is uncertain. The city councils would prefer to receive, if not 100%, then at least a majority stake in the heating plants free of charge. But the Cabinet has decided to sell 51% to investors. The privatization agency - the National Property Fund (FNM) is preparing a proposal to increase the stake offered for sale to 67%. According to information provided by the FNM the sale will begin after Cabinet approval. The Fund intends to apply the same model to the sale of all the heating plants. Last year, a major German company Verbundnetz Gas declared its interest in purchasing large municipal heating plants in Slovakia. But it has been waiting for a response ever since. The French company - Dalkia, which has 10-years' experience of doing business in Slovakia, is interested in all the heating plants to be offered for sale. The Austrian company - Stefe is not new to the business either, it is interested mainly in the regions where it has already established itself - Central and Eastern Slovakia. Strategic investors expect financial groups to show interest too. The Penta Group has not hid its ambitions - it has already privatised a company which represents the key to the future development of heat management in Bratislava - Paroplynovy cyklus. Whereas Penta is not new to the heat production business another financial group - Slavia Capital is still surveying the sector. Should it not succeed, it plans several projects that would allow it to take a stake in the sector

  6. Energetic evaluation of low potential biomass gasifier coupled with a burner of the produced gas for generation of heat; Avaliacao energetica de um gaseificador de biomassa de baixa potencia, associado a um combustor do gas produzido, para geracao de calor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Samuel [Universidade de Brasilia (FAV/UNB), DF (Brazil). Fac. de Agronomia e Medicina Veterinaria], email: samuelmartin@unb.nr; Silva, Jadir Nogueira [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Machado, Cassio Silva; Zanatta, Fabio Luis; Galvarro, Svetlana F.S. [Universidade Federal de Vicosa (UFV), MG (Brazil)

    2011-07-01

    In the search of alternatives for sustainable socio-economic development, this study had the objective of evaluating the energetic performance of a concurrent flow biomass gasifier associated with a burner for the gas produced which was of low potential for air heating using a renewable energy source (substituting non-renewable). In this system 4 tests were performed using eucalyptus chips (tests 1 and 2) and logs (tests 3 and 4) as fuel, for the two fan motor frequencies of 60 and 50 hertz. Temperature in the combustion chamber was monitored, along with fuel consumption and other variables. In the tests, the average exhaust air temperature was maintained between 92.7 and 100.4 deg C, and the reduction in the motor frequency from 60 to 50 Hz caused an increase in the duration of the tests. The system presented the best energetic performance when utilizing a frequency of 60 Hz for both fuel types. However, the results of energy efficiency varied very little when comparing tests performed at the same fan frequency. Thus, the gasification process was little affected by variation in the physical characteristics of the tested fuels, and it was recommended that the equipment operate with a frequency of 60 Hz. (author)

  7. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  8. Evaluating the influence of particulate matter on spectroscopic measurements of a combusting flow

    Science.gov (United States)

    Herlan, Jonathan; Murray, Nathan

    2017-11-01

    An adiabatic table-top burner has been used to develop a method for estimating the temperature and concentration of OH in a measurement volume of a non-premixed, hydrogen-air flame. The estimation method uses a nonlinear curve-fitting routine to compare experimental absorption spectra with a model derived, using statistical mechanics, from the Beer-Lambert law. With the aim of applying this method to the analysis of rocket exhaust plumes, this study evaluates whether or not it provides faithful estimates of temperature and OH concentration when the combusting flow contains particulate matter-such as soot or tracers used for particle image velocimetry (PIV) measurements. The hydrogen line of the table-top burner will be seeded with alumina, Al2O3, particles and their influence on spectroscopic measurements elucidated. The authors wish to thank Mr. Bernard Jansen for his support and insight in laboratory activities.

  9. A controlled gradation with non-stoichiometric burners for oxyfuel power plants. An experimental proof; Kontrollierte Stufung mit Nicht-Stoechiometrischen Brennern fuer Oxyfuel Kraftwerke. Experimenteller Nachweis

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Valentin; Goanta, Adrian; Bohn, Jan-Peter; Gleis, Stephan; Spliethoff, Hartmut [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl Energiesysteme

    2008-07-01

    The authors of the contribution under consideration present the concept of the controlled gradation with non-stoichiometric burners and its experimental proof with natural gas. In an air-cooled combustion chamber attempts with air combustion, oxygen-enriched combustion and recirculation of flue gas (oxyfuel) are accomplished. These attempts are compared by gas temperature profiles. The flame temperatures remain in the tolerable range and are affected by the stoichiometry. Thus, the radiation characteristics in the combustion chamber can be regulated.

  10. COMPUTER MODELING ON THE BASIS OF THE PROGRAM “PRON R S-2” OF LONGITUDINAL STRESSES IN THE INGOT, BEING COOLED BY FLAT-FLAME BURNER

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2004-01-01

    Full Text Available There are presented the computer calculations of^ longitudinal stresses of the crystallizing continuously cast ingot, being cooled by flat-flame spray burners. The character of the stresses changes in the zone of secondary cooling along the length of ingot and in the different cross sections is established. The possibility of occurrence of the longitudinal stresses skewness in the ingot cross section is shown

  11. Influence ofde qion the immediate analgesic effect of SP6 acupuncture in patients with primary dysmenorrhoea andcold and dampness stagnation: a multicentre randomised controlled trial.

    Science.gov (United States)

    Zhao, Min-Yi; Zhang, Peng; Li, Jing; Wang, Lin-Peng; Zhou, Wei; Wang, Yan-Xia; She, Yan-Fen; Ma, Liang-Xiao; Wang, Pei; Hu, Ni-Juan; Lin, Chi; Hu, Shang-Qin; Wu, Gui-Wen; Wang, Ya-Feng; Sun, Jun-Jun; Jiang, Si-Zhu; Zhu, Jiang

    2017-10-01

    The aim of this multicentre randomised controlled trial was to investigate the contribution of de qi to the immediate analgesic effect of acupuncture in patients with primary dysmenorrhoea and the specific traditional Chinese medicine diagnosis cold and dampness stagnation . Eighty-eight patients with primary dysmenorrhoea and cold and dampness stagnation were randomly assigned to de qi (n=43) or no de qi (n=45) groups and underwent 30 min of SP6 acupuncture. The de qi group received deep needling at SP6 with manipulation using thick needles; the no de qi group received shallow needling with no manipulation using thin needles. In both groups the pain scores and actual de qi sensation were evaluated using a visual analogue scale for pain (VAS-P) and the acupuncture de qi clinical assessment scale (ADCAS), respectively. Both groups showed reductions in VAS-P, with no signficant differences between groups. ADCAS scores showed 43/43 and 25/45 patients in de qi and no de qi groups, respectively, actually experienced de qi sensation. Independent of original group allocation, VAS-P reductions associated with actual de qi (n=68) were greater than those without (28.4±18.19 mm vs 14.6±12.28 mm, p=0.008). This study showed no significant difference in VAS-P scores in patients with primary dysmenorrhoea and cold and dampness stagnation immediately after SP6 acupuncture designed to induce or avoid de qi sensation. Both treatments significantly reduced VAS-P relative to baseline. Irrespective of group allocation, patients experiencing actual de qi sensation demonstrated larger reductions in pain score relative to those without, suggesting greater analgesic effects. Chinese Clinical Trial Registry (ChiCTR-TRC-13003086); Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Biological nitrate transport in sediments on the Peruvian margin mitigates benthic sulfide emissions and drives pelagic N loss during stagnation events

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Bourbonnais, A.; Wallmann, K.

    2016-06-01

    Benthic N cycling in the Peruvian oxygen minimum zone (OMZ) was investigated at ten stations along 12 °S from the middle shelf (74 m) to the upper slope (1024 m) using in situ flux measurements, sediment biogeochemistry and modeling. Middle shelf sediments were covered by mats of the filamentous bacteria Thioploca spp. and contained a large 'hidden' pool of nitrate that was not detectable in the porewater. This was attributed to a biological nitrate reservoir stored within the bacteria to oxidize sulfide during 'dissimilatory nitrate reduction to ammonium' (DNRA). The extremely high rates of DNRA on the shelf (15.6 mmol m-2 d-1 of N), determined using an empirical steady-state model, could easily supply all the ammonium requirements for anammox in the water column. The model further showed that denitrification by foraminifera may account for 90% of N2 production at the lower edge of the OMZ. At the time of sampling, dissolved oxygen was below detection limit down to 400 m and the water body overlying the shelf had stagnated, resulting in complete depletion of nitrate and nitrite. A decrease in the biological nitrate pool was observed on the shelf during fieldwork concomitant with a rise in porewater sulfide levels in surface sediments to 2 mM. Using a non-steady state model to simulate this natural anoxia experiment, these observations were shown to be consistent with Thioploca surviving on a dwindling intracellular nitrate reservoir to survive the stagnation period. The model shows that sediments hosting Thioploca are able to maintain high ammonium fluxes for many weeks following stagnation, potentially sustaining pelagic N loss by anammox. In contrast, sulfide emissions remain low, reducing the economic risk to the Peruvian fishery by toxic sulfide plume development.

  13. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  14. Numerical study of homogeneous–heterogeneous reactions in Sisko fluid flow past a stretching cylinder

    Directory of Open Access Journals (Sweden)

    Rabia Malik

    2018-03-01

    Full Text Available The motivation behind the present study is to focus on the effects of stagnation-point flow and heat transfer to the Sisko fluid past an impermeable stretching cylinder involving convective boundary conditions with homogeneous–heterogeneous reactions. Diffusion coefficients of species A and B are assumed to be of the same size. Also, it is assumed that heat released during chemical reaction is negligible. A system of governing ordinary differential equations is obtained by using suitable transformations which are then solved numerically by means of the shooting method combined with Runge-Kutta method. The obtained numerical results are then presented in graphical and tabular form and are discussed at length. The results obtained reveal that the concentration profile decreases with increasing homogeneous and heterogeneous reactions parameters. Keywords: Homogeneous–heterogeneous reactions, Non-linearly stretching cylinder, Stagnation-point flow, Convective boundary conditions, Sisko fluid

  15. Numerical simulation for aspects of homogeneous and heterogeneous reactions in forced convection flow of nanofluid

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    2018-03-01

    Full Text Available Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order expressions are changed into first ordinary differential equations and then solved by built-in-Shooting method in mathematica. The results of velocity, temperature, concentration, skin friction and local Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium dioxide when compared with copper and aluminium oxide. Keywords: Mixed convection, Stagnation point flow, Homogeneous-heterogeneous reactions, Nanofluids

  16. Two-phase flow models in unbounded two-phase critical flows

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; Farello, G.E.

    1985-01-01

    With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions

  17. Simulasi Numeris Karakteristik Pembakaran CH4/CO2/Udara dan CH4/CO2/O2 pada Counterflow Premixed Burner

    Directory of Open Access Journals (Sweden)

    Hangga Wicaksono

    2017-08-01

    Full Text Available The high amount of CO2 produced in a conventional biogas reactor needs to be considered. A further analysis is needed in order to investigate the effect of CO2 addition especially in thermal and chemical kinetics aspect. This numerical study has been held to analyze the effect of CO2 in CH4/CO2/O­2 and CH4/CO2/Air premixed combustion. In this study one dimensional analisys in a counterflow burner has been performed. The volume fraction of CO2 used in this study was 0%-40% from CH4’s volume fraction, according to the amount of CO2 in general phenomenon. Based on the flammability limits data, the volume fraction of CH4 used was 5-61% in O2 environment and 5-15% in air environment. The results showed a decreasing temperature along with the increasing percentage of CO2 in each mixtures, but the effect was quite smaller especially in stoichiometric and lean mixture. CO2 could affects thermally (by absorbing heat due to its high Cp and also made the production of unburnt fuel species such as CO relatively higher.

  18. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    International Nuclear Information System (INIS)

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G.

    2011-01-01

    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  19. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    Science.gov (United States)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  20. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Pham Nhu Viet Ha; Min Jae Lee; Sunghwan Yun; Sang Ji Kim

    2015-01-01

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)