WorldWideScience

Sample records for staggered-grid lagrange formulation

  1. New 2D adaptive mesh refinement algorithm based on conservative finite-differences with staggered grid

    Science.gov (United States)

    Gerya, T.; Duretz, T.; May, D. A.

    2012-04-01

    We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same

  2. A staggered-grid convolutional differentiator for elastic wave modelling

    Science.gov (United States)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  3. Energy stable and high-order-accurate finite difference methods on staggered grids

    Science.gov (United States)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  4. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng

    2017-05-10

    Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.

  5. Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations

    Science.gov (United States)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2015-01-01

    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).

  6. A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Pechstein, Astrid, E-mail: astrid.pechstein@jku.at [Johannes Kepler University Linz, Institute of Technical Mechanics (Austria); Gerstmayr, Johannes, E-mail: johannes.gerstmayr@accm.co.at [Austrian Center of Competence in Mechatronics (Austria)

    2013-10-15

    In the scope of this paper, a finite-element formulation for an axially moving beam is presented. The beam element is based on the absolute nodal coordinate formulation, where position and slope vectors are used as degrees of freedom instead of rotational parameters. The equations of motion for an axially moving beam are derived from generalized Lagrange equations in a Lagrange-Eulerian sense. This procedure yields equations which can be implemented as a straightforward augmentation to the standard equations of motion for a Bernoulli-Euler beam. Moreover, a contact model for frictional contact between an axially moving strip and rotating rolls is presented. To show the efficiency of the method, simulations of a belt drive are presented.

  7. Calculation of cell face velocity of non-staggered grid system

    KAUST Repository

    Li, Wang; Yu, Bo; Wang, Xinran; Sun, Shuyu

    2012-01-01

    In this paper, the cell face velocities in the discretization of the continuity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear

  8. Modeling seismic wave propagation using staggered-grid mimetic finite differences

    Directory of Open Access Journals (Sweden)

    Freysimar Solano-Feo

    2017-04-01

    Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.

  9. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    Science.gov (United States)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  10. Lagrange-Flux Schemes: Reformulating Second-Order Accurate Lagrange-Remap Schemes for Better Node-Based HPC Performance

    Directory of Open Access Journals (Sweden)

    De Vuyst Florian

    2016-11-01

    Full Text Available In a recent paper [Poncet R., Peybernes M., Gasc T., De Vuyst F. (2016 Performance modeling of a compressible hydrodynamics solver on multicore CPUs, in “Parallel Computing: on the road to Exascale”], we have achieved the performance analysis of staggered Lagrange-remap schemes, a class of solvers widely used for hydrodynamics applications. This paper is devoted to the rethinking and redesign of the Lagrange-remap process for achieving better performance using today’s computing architectures. As an unintended outcome, the analysis has lead us to the discovery of a new family of solvers – the so-called Lagrange-flux schemes – that appear to be promising for the CFD community.

  11. Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids

    Science.gov (United States)

    Dakin, Gautier; Després, Bruno; Jaouen, Stéphane

    2018-01-01

    We propose a new high-order accurate numerical boundary treatment for solving hyperbolic systems of conservation laws and Euler equations using a Lagrange-remap approach on Cartesian grids in cases of physical boundaries not aligned with the mesh. The method is an adaptation of the Inverse Lax-Wendroff procedure [34-38] to the Lagrange-remap approach, which considerably alleviates the algebra. High-order accurate ghost values of conservative variables are imposed using Taylor expansions whose coefficients are found by inverting a (linear or non-linear) system which is well posed in all our examples. For 2D problems, a least-square procedure is added to prevent extrapolation instabilities. The Lagrange-remap formalism also provides a simpler fluid-structure coupling which is also described. Numerical examples are given for the linear case and Euler equations in 1D and 2D.

  12. Projection of the rotation form Navier-Stokes equation onto the half-staggered grid

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ji Ryong [Inje University, Kimhae (Korea, Republic of)

    2016-07-15

    A projection method for computing incompressible fluid flow is proposed. For the method, the rotation form Navier-Stokes equation (NSE), for which the velocity and the total pressure are employed, is discretized on the half-staggered, finite difference spatial grid. The total pressure couples the static pressure gradient and the convection of momentum in the continuous NSE while the half-staggered grid provides weak pressure-velocity coupling in discrete space. These two features interact synergistically for the discretized NSE to produce smooth pressure fields without additional numerical artifacts such as the momentum interpolation. The method preserves the kinetic energy at the inviscid limit condition. Numerical solutions of the decaying Taylor vortex, the inviscid Taylor vortex, the sudden expansion channel and the square-prism wake are presented.

  13. Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids

    KAUST Repository

    Chen, Huangxin

    2017-09-01

    In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.

  14. Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods of any Order for the Compressible Navier--Stokes Equations

    KAUST Repository

    Parsani, Matteo

    2016-10-04

    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for the compressible Euler and Navier--Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel, SIAM J. Sci. Comput., 36 (2014), pp. B835--B867, M. Parsani, M. H. Carpenter, and E. J. Nielsen, J. Comput. Phys., 292 (2015), pp. 88--113], extends the applicable set of points from tensor product, Legendre--Gauss--Lobatto (LGL), to a combination of tensor product Legendre--Gauss (LG) and LGL points. The new semidiscrete operators discretely conserve mass, momentum, energy, and satisfy a mathematical entropy inequality for the compressible Navier--Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly from a theoretical point of view. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinear stability proof for the compressible Navier--Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).

  15. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng

    2017-06-09

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated by piecewise constant functions or Q1 functions, while the velocity and pressure are discretized by the lowest-order Raviart-Thomas element and the piecewise constant functions, respectively. Using quadrature rules, we demonstrate that this scheme can be reduced into a finite volume method on staggered grid, which is extensively used in computational fluid mechanics and engineering.

  16. A boundary-fitted staggered difference method for incompressible flow using Riemann geometry

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi; Kondo, Shunsuke; Oka, Yoshiaki.

    1990-01-01

    A boundary-fitted staggered difference method (BFSDM) is investigated for incompressible flow in nuclear plants. BFSDM employs control cells for scalars, staggered location of velocity components, and integrated formulation of div=0. Governing equations are written as coordinate-free forms using Riemann geometry. Flow velocity is represented with contravariant physical components in the present method. Connection terms emerge as source terms in the coordinate-free governing equations. These terms are studied from the viewpoints of physical meaning, numerical stability, and conservative property. Some flows on a round or slant boundary are solved using boundary-fitted curvilinear (BFC) grids and rectangular grids to compare the present method and the rectangular-type (R-type) staggered difference method (SDM). Supercomputing of the present method, including vector processing, is also discussed compared with the R-type method. (author)

  17. SBP-SAT finite difference discretization of acoustic wave equations on staggered block-wise uniform grids

    KAUST Repository

    Gao, Longfei

    2018-02-16

    We consider the numerical simulation of the acoustic wave equations arising from seismic applications, for which staggered grid finite difference methods are popular choices due to their simplicity and efficiency. We relax the uniform grid restriction on finite difference methods and allow the grids to be block-wise uniform with nonconforming interfaces. In doing so, variations in the wave speeds of the subterranean media can be accounted for more efficiently. Staggered grid finite difference operators satisfying the summation-by-parts (SBP) property are devised to approximate the spatial derivatives appearing in the acoustic wave equation. These operators are applied within each block independently. The coupling between blocks is achieved through simultaneous approximation terms (SATs), which impose the interface condition weakly, i.e., by penalty. Ratio of the grid spacing of neighboring blocks is allowed to be rational number, for which specially designed interpolation formulas are presented. These interpolation formulas constitute key pieces of the simultaneous approximation terms. The overall discretization is shown to be energy-conserving and examined on test cases of both theoretical and practical interests, delivering accurate and stable simulation results.

  18. A superlinearly convergent finite volume method for the incompressible Navier-Stokes equations on staggered unstructured grids

    International Nuclear Information System (INIS)

    Vidovic, D.; Segal, A.; Wesseling, P.

    2004-01-01

    A method for linear reconstruction of staggered vector fields with special treatment of the divergence is presented. An upwind-biased finite volume scheme for solving the unsteady incompressible Navier-Stokes equations on staggered unstructured triangular grids that uses this reconstruction is described. The scheme is applied to three benchmark problems and is found to be superlinearly convergent in space

  19. A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid

    International Nuclear Information System (INIS)

    Kirkpatrick, M.P.; Armfield, S.W.; Kent, J.H.

    2003-01-01

    A method is presented for representing curved boundaries for the solution of the Navier-Stokes equations on a non-uniform, staggered, three-dimensional Cartesian grid. The approach involves truncating the Cartesian cells at the boundary surface to create new cells which conform to the shape of the surface. We discuss in some detail the problems unique to the development of a cut cell method on a staggered grid. Methods for calculating the fluxes through the boundary cell faces, for representing pressure forces and for calculating the wall shear stress are derived and it is verified that the new scheme retains second-order accuracy in space. In addition, a novel 'cell-linking' method is developed which overcomes problems associated with the creation of small cells while avoiding the complexities involved with other cell-merging approaches. Techniques are presented for generating the geometric information required for the scheme based on the representation of the boundaries as quadric surfaces. The new method is tested for flow through a channel placed oblique to the grid and flow past a cylinder at Re=40 and is shown to give significant improvement over a staircase boundary formulation. Finally, it is used to calculate unsteady flow past a hemispheric protuberance on a plate at a Reynolds number of 800. Good agreement is obtained with experimental results for this flow

  20. A range of formulations to couple mass and momentum equations

    International Nuclear Information System (INIS)

    Darbandi, M.; Schneider, G.E.

    2002-01-01

    Since the innovation of control-volume-based methods, the issue of pressure-velocity decoupling has prompted the researcher to develop and employ staggered grid arrangement. The difficulties and disadvantages of staggered-grid-based schemes have encouraged the workers to investigate more in alternative scheme, i.e., the collocated-grid-based scheme. The primitive idea in collocated scheme is to couple the mass and momentum equations with the help of two types of velocity definitions instead of two types of grid arrangements. Following the work of preceding workers, we introduce a general strategy which enables the workers to develop a wide range of velocity definitions which can be properly used in collocated formulations. The developed formulations are then tested in a domain with source and sink. The results of the extended formulations are eventually discussed. (author)

  1. Calculation of cell face velocity of non-staggered grid system

    KAUST Repository

    Li, Wang

    2012-07-28

    In this paper, the cell face velocities in the discretization of the continuity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear interpolation are adopted to evaluate the coefficients in the discretized momentum and scalar equations. Their performances are compared. When the linear interpolation is used to calculate the coefficients, the mass residual term in the coefficients must be dropped to maintain the accuracy and convergence rate of the solution. © Shanghai University and Springer-Verlag Berlin Heidelberg 2012.

  2. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng; Cheng, Jiubing

    2017-01-01

    -difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using

  3. Multigrid for Staggered Lattice Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.

    2018-01-23

    Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

  4. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  5. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  6. The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties

    Science.gov (United States)

    Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, Å.

    2013-09-01

    Aims: We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted ⟨3D⟩ models). Methods: All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~ 220 grid models range in effective temperature, Teff, from 4000 to 7000 K in steps of 500 K, in surface gravity, log g, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from - 4.0 to + 0.5 in steps of 0.5 and 1.0 dex. Results: We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the ⟨3D⟩ models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad

  7. Fluid-structure coupling in Lagrange-Lagrange and Euler-Lagrange descriptions

    International Nuclear Information System (INIS)

    Jones, A.V.

    1981-01-01

    Fluid-structure interaction problems are very common in the reactor safety field, examples being containment loading in LMFBR systems and the downcomer problem in LWRs. This article reviews the principal finite difference methodes employed for their solution. After a survey of the chief representations of the equations of motion of the fluid and structure and of their coupling, the Lagrange-Lagrange and Euler-Lagrange representations are examined in detail. The practical necessity of treating the structure in Lagrangian coordinates and the respective merits of the Lagrangian and Eulerian representations for the fluid are explained, both for coupling between continua and for coupling between a fluid and a thin shell. Detailed analyses of the stability and numerical dissipation of the Lagrange-Lagrange and Euler-Lagrange coupling techniques in a very simple one-dimensional problem are provided to supply indicators as to stability and dissipation in more complex multidimensional situations and to bring out the theoretical complexity of seemingly simple coupling algorithms. The article then presents some practical examples of coupled problems in which calculations can be compared with experiment, and concludes with a section on future trends in the field of fluid-structure coupling

  8. Lagrange multipliers and gravitational theory

    International Nuclear Information System (INIS)

    Elston, F.D.

    1977-01-01

    The Lagrange multiplier variational method is extended to nonlinear Lagrangians in a Riemann space, where it is shown explicitly for the quadratic Lagrangians that, as expected, this approach is equivalent to the Hilbert variational method. It is not, in general, equivalent to the Palatini variational method. The nonvanishing Lagrange multipliers for the quadratic Lagrangians are explicitly obtained in covariant form. A similiar analysis is then carried out in a Riemann--Cartan torsional metric space for the specific Lagrangians g/sup 1/2/R tilde and g/sup 1/2/R/sub uv/tilde R/sup uv/tilde. The possible relevance of the R/sub uv/R/sup u anti v/ invariant to an action-principle formulation of the Rainich--Misner--Wheeler (RMW) already-unified theory is also discussed. It is then pointed out how a different use of the Lagrange multiplier technique in the language of the 3 + 1 canonical formalism developed by Arnowitt, Deser, and Misner (ADM) permits the recasting of the equations of motion for quadratic and general higher-order invariants into the ADM canonical formalism. In general, without this Lagrange multiplier approach, the higher-order ADM problem could not be solved. This is done explicitly for the simplest quadratic Langrangian g/sup 1/2/R 2 as an example

  9. Comparison of multiphase mixing simulations performed on a staggered and a collocated grid

    International Nuclear Information System (INIS)

    Leskovar, M.

    2000-01-01

    During a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water a steam explosion may occur. The premixing phase of a steam explosion covers the interaction of the melt jet or droplets with the water prior to any steam explosion occurrence. To get a better insight of the hydrodynamic processes during the premixing phase beside hot premixing experiments, where the water evaporation is significant, also cold isothermal premixing experiments are performed. To analyze the cold premixing experiments the computer code ESE has been developed. The specialty of ESE is that it uses a combined single-multiphase flow model. Because of problems with the convergence of the momentum equation written in conservative form on a staggered grid, the development of a collocated grid version of ESE was planed. But since we obtained the commercial code CFX-4.3, which uses a collocated variable arrangement, we decided first to test the capabilities of CFX-4.3. With ESE and CFX-4.3 the cold premixing experiment Q08 has been simulated. In the paper the simulation results performed with both codes are presented and commented in comparison to experimental data. (author)

  10. Canonical form of Euler-Lagrange equations and gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, B [Naturwissenschaftlich-Theoretisches Zentrum und Institut fuer Theoretische Physik, Universitaet Leipzig, Leipzig (Germany); Gitman, D M [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2003-06-13

    The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local theories all the gauge generators are local in time operators.

  11. An implicit non-staggered Cartesian grid method for incompressible ...

    Indian Academy of Sciences (India)

    Immersed boundary; non-staggered; implicit; viscous flow. 1. ... functions for elastic boundaries (Saiki & Biringen 1996; Lai & Peskin 2000; Zhu & Peskin ... the effects of pressure and thereby explicitly achieving a strong coupling between them.

  12. Euler-Lagrange modeling of the hydrodynamics of dense multiphase flows

    NARCIS (Netherlands)

    Padding, J.T.; Deen, N.G.; Peters, E. A. J. F.; Kuipers, J. A. M.

    2015-01-01

    The large-scale hydrodynamic behavior of relatively dense dispersed multiphase flows, such as encountered in fluidized beds, bubbly flows, and liquid sprays, can be predicted efficiently by use of Euler-Lagrange models. In these models, grid-averaged equations for the continuous-phase flow field are

  13. The StaggerGrid project

    DEFF Research Database (Denmark)

    Collet, Remo; Magic, Zazralt; Asplund, Martin

    2011-01-01

    In this contribution, we present the STAGGERGRID, a collaborative project for the construction of a comprehensive grid of time-dependent, three-dimensional (3-D), hydrodynamic model atmospheres of solar- and late-type stars with different effective temperatures, surface gravities, and chemical...

  14. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  15. Calculation of reactivity without Lagrange interpolation; Calculo de la reactividad sin interpolacion de Lagrange

    Energy Technology Data Exchange (ETDEWEB)

    Suescun D, D.; Figueroa J, J. H. [Pontificia Universidad Javeriana Cali, Departamento de Ciencias Naturales y Matematicas, Calle 18 No. 118-250, Cali, Valle del Cauca (Colombia); Rodriguez R, K. C.; Villada P, J. P., E-mail: dsuescun@javerianacali.edu.co [Universidad del Valle, Departamento de Fisica, Calle 13 No. 100-00, Cali, Valle del Cauca (Colombia)

    2015-09-15

    A new method to solve numerically the inverse equation of punctual kinetics without using Lagrange interpolating polynomial is formulated; this method uses a polynomial approximation with N points based on a process of recurrence for simulating different forms of nuclear power. The results show a reliable accuracy. Furthermore, the method proposed here is suitable for real-time measurements of reactivity, with step sizes of calculations greater that Δt = 0.3 s; due to its precision can be used to implement a digital meter of reactivity in real time. (Author)

  16. Generalized variational formulations for extended exponentially fractional integral

    Directory of Open Access Journals (Sweden)

    Zuo-Jun Wang

    2016-01-01

    Full Text Available Recently, the fractional variational principles as well as their applications yield a special attention. For a fractional variational problem based on different types of fractional integral and derivatives operators, corresponding fractional Lagrangian and Hamiltonian formulation and relevant Euler–Lagrange type equations are already presented by scholars. The formulations of fractional variational principles still can be developed more. We make an attempt to generalize the formulations for fractional variational principles. As a result we obtain generalized and complementary fractional variational formulations for extended exponentially fractional integral for example and corresponding Euler–Lagrange equations. Two illustrative examples are presented. It is observed that the formulations are in exact agreement with the Euler–Lagrange equations.

  17. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    Science.gov (United States)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  18. Noncommutative Lagrange Mechanics

    Directory of Open Access Journals (Sweden)

    Denis Kochan

    2008-02-01

    Full Text Available It is proposed how to impose a general type of ''noncommutativity'' within classical mechanics from first principles. Formulation is performed in completely alternative way, i.e. without any resort to fuzzy and/or star product philosophy, which are extensively applied within noncommutative quantum theories. Newton-Lagrange noncommutative equations of motion are formulated and their properties are analyzed from the pure geometrical point of view. It is argued that the dynamical quintessence of the system consists in its kinetic energy (Riemannian metric specifying Riemann-Levi-Civita connection and thus the inertia geodesics of the free motion. Throughout the paper, ''noncommutativity'' is considered as an internal geometric structure of the configuration space, which can not be ''observed'' per se. Manifestation of the noncommutative phenomena is mediated by the interaction of the system with noncommutative background under the consideration. The simplest model of the interaction (minimal coupling is proposed and it is shown that guiding affine connection is modified by the quadratic analog of the Lorentz electromagnetic force (contortion term.

  19. Characterization of initiation and detonation by Lagrange gage techniques. Final report

    International Nuclear Information System (INIS)

    Cowperthwaite, M.

    1983-08-01

    The work on reactive flow Lagrange analysis (RFLA) was concerned with Lagrange particle velocity histories that exhibit double maxima similar to those recorded in RX26 and PBX9404. Conditions for particle velocity histories to exhibit extrema were formulated in terms of envelopes formed by Lagrange pressure histories. Lagrange analysis of the flow produced by the expansion of a detonation wave at a free surface was proposed to extend the determination of the release adiabat of detonation products from the Chapman-Jouguet (CJ) state to zero pressure. Solutions were constructed for steady-state nonideal detonation waves propagating in polytropic explosive with two reacting components. Overdriven detonation was treated both as a reactive discontinuity and as a Zeldovich-von Neumann-Doering (ZND) wave. The Rankine-Hugoniot (RH) jump conditions were used to calculate the first and second derivatives on the detonation velocity versus particle velocity Hugoniot at the CJ point. Methods of differential geometry were used to determine the conditions that allow the flow equations and RH boundary conditions to admit similarity solutions for overdriven detonation waves

  20. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  1. Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2014-11-01

    Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.

  2. Calculation of reactivity without Lagrange interpolation

    International Nuclear Information System (INIS)

    Suescun D, D.; Figueroa J, J. H.; Rodriguez R, K. C.; Villada P, J. P.

    2015-09-01

    A new method to solve numerically the inverse equation of punctual kinetics without using Lagrange interpolating polynomial is formulated; this method uses a polynomial approximation with N points based on a process of recurrence for simulating different forms of nuclear power. The results show a reliable accuracy. Furthermore, the method proposed here is suitable for real-time measurements of reactivity, with step sizes of calculations greater that Δt = 0.3 s; due to its precision can be used to implement a digital meter of reactivity in real time. (Author)

  3. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  4. On fictitious domain formulations for Maxwell's equations

    DEFF Research Database (Denmark)

    Dahmen, W.; Jensen, Torben Klint; Urban, K.

    2003-01-01

    We consider fictitious domain-Lagrange multiplier formulations for variational problems in the space H(curl: Omega) derived from Maxwell's equations. Boundary conditions and the divergence constraint are imposed weakly by using Lagrange multipliers. Both the time dependent and time harmonic formu...

  5. High‐order rotated staggered finite difference modeling of 3D elastic wave propagation in general anisotropic media

    KAUST Repository

    Chu, Chunlei

    2009-01-01

    We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.

  6. A subzone reconstruction algorithm for efficient staggered compatible remapping

    Energy Technology Data Exchange (ETDEWEB)

    Starinshak, D.P., E-mail: starinshak1@llnl.gov; Owen, J.M., E-mail: mikeowen@llnl.gov

    2015-09-01

    Staggered-grid Lagrangian hydrodynamics algorithms frequently make use of subzonal discretization of state variables for the purposes of improved numerical accuracy, generality to unstructured meshes, and exact conservation of mass, momentum, and energy. For Arbitrary Lagrangian–Eulerian (ALE) methods using a geometric overlay, it is difficult to remap subzonal variables in an accurate and efficient manner due to the number of subzone–subzone intersections that must be computed. This becomes prohibitive in the case of 3D, unstructured, polyhedral meshes. A new procedure is outlined in this paper to avoid direct subzonal remapping. The new algorithm reconstructs the spatial profile of a subzonal variable using remapped zonal and nodal representations of the data. The reconstruction procedure is cast as an under-constrained optimization problem. Enforcing conservation at each zone and node on the remapped mesh provides the set of equality constraints; the objective function corresponds to a quadratic variation per subzone between the values to be reconstructed and a set of target reference values. Numerical results for various pure-remapping and hydrodynamics tests are provided. Ideas for extending the algorithm to staggered-grid radiation-hydrodynamics are discussed as well as ideas for generalizing the algorithm to include inequality constraints.

  7. Schnek: A C++ library for the development of parallel simulation codes on regular grids

    Science.gov (United States)

    Schmitz, Holger

    2018-05-01

    A large number of algorithms across the field of computational physics are formulated on grids with a regular topology. We present Schnek, a library that enables fast development of parallel simulations on regular grids. Schnek contains a number of easy-to-use modules that greatly reduce the amount of administrative code for large-scale simulation codes. The library provides an interface for reading simulation setup files with a hierarchical structure. The structure of the setup file is translated into a hierarchy of simulation modules that the developer can specify. The reader parses and evaluates mathematical expressions and initialises variables or grid data. This enables developers to write modular and flexible simulation codes with minimal effort. Regular grids of arbitrary dimension are defined as well as mechanisms for defining physical domain sizes, grid staggering, and ghost cells on these grids. Ghost cells can be exchanged between neighbouring processes using MPI with a simple interface. The grid data can easily be written into HDF5 files using serial or parallel I/O.

  8. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows

    Science.gov (United States)

    Stelling, G. S.; Duinmeijer, S. P. A.

    2003-12-01

    This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.

  9. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    International Nuclear Information System (INIS)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook; Kim, Woo Youn

    2015-01-01

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal to 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems

  10. Compact lattice QED with staggered fermions and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Hoferichter, A.; Mitrjushkin, V.K.; Mueller-Preussker, M.

    1994-07-01

    Different formulations of the 4d compact lattice QED with staggered fermions (standard Wilson and modified by suppression of lattice artifacts) are investigated by Monte Carlo simulations within the quenched approximation. We show that after suppressing lattice artifacts the system undergoes a phase transition from the Coulomb phase into a presumably weakly chirally broken phase only at (unphysical) negative β-values. (orig.)

  11. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants; Rappel du formalisme de Lagrange-Hamilton et sur les invariants de l'optique corpusculaire

    Energy Technology Data Exchange (ETDEWEB)

    Griess, F.

    1958-03-14

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [French] Formalisme Hamiltonien. Transformations canoniques. Invariants de Liouville, Helmholtz-Lagrange, Busch, Stoermer et Lagrange, Hamiltonien pour le synchrotron, Amortissement des oscillations betatrons (auteur)

  12. Integrals of Lagrange functions and sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Baye, Daniel, E-mail: dbaye@ulb.ac.be [Physique Quantique, CP 165/82, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium); Physique Nucleaire Theorique et Physique Mathematique, CP 229, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium)

    2011-09-30

    Exact values are derived for some matrix elements of Lagrange functions, i.e. orthonormal cardinal functions, constructed from orthogonal polynomials. They are obtained with exact Gauss quadratures supplemented by corrections. In the particular case of Lagrange-Laguerre and shifted Lagrange-Jacobi functions, sum rules provide exact values for matrix elements of 1/x and 1/x{sup 2} as well as for the kinetic energy. From these expressions, new sum rules involving Laguerre and shifted Jacobi zeros and weights are derived. (paper)

  13. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. CDCC calculations with the Lagrange-mesh technique

    International Nuclear Information System (INIS)

    Druet, T.; Baye, D.; Descouvemont, P.; Sparenberg, J.-M.

    2010-01-01

    We apply the Lagrange-mesh technique to the Continuum Discretized Coupled Channel (CDCC) theory. The CDCC equations are solved with the R-matrix method, using Lagrange functions as variational basis. The choice of Lagrange functions is shown to be efficient and accurate for elastic scattering as well as for breakup reactions. We describe the general formalism for two-body projectiles, and apply it to the d+ 58 Ni collision at E d =80 MeV. Various numerical and physical aspects are discussed. Benchmark calculations on elastic scattering and breakup are presented.

  15. Taylor-Lagrange regularization scheme and light-front dynamics

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.-F.; Mutet, B.; Werner, E.

    2010-01-01

    The recently proposed renormalization scheme based on the definition of field operators as operator valued distributions acting on specific test functions is shown to be very convenient in explicit calculations of physical observables within the framework of light-front dynamics. We first recall the main properties of this procedure based on identities relating the test functions to their Taylor remainder of any order expressed in terms of Lagrange's formulae, hence the name given to this scheme. We thus show how it naturally applies to the calculation of state vectors of physical systems in the covariant formulation of light-front dynamics. As an example, we consider the case of the Yukawa model in the simple two-body Fock state truncation.

  16. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    Osborn, James C.

    2011-01-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  17. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  18. A Quasi-Feed-In-Tariff policy formulation in micro-grids: A bi-level multi-period approach

    International Nuclear Information System (INIS)

    Taha, Ahmad F.; Hachem, Nadim A.; Panchal, Jitesh H.

    2014-01-01

    A Quasi-Feed-In-Tariff (QFIT) policy formulation is presented for micro-grids that integrates renewable energy generation considering Policy Makers' and Generation Companies' (GENCOs) objectives assuming a bi-level multi-period formulation that integrates physical characteristics of the power-grid. The upper-level problem corresponds to the PM, whereas the lower-level decisions are made by GENCOs. We consider that some GENCOs are green energy producers, while others are black energy producers. Policy makers incentivize green energy producers to generate energy through the payment of optimal time-varying subsidy price. The policy maker's main objective is to maximize an overall social welfare that includes factors such as demand surplus, energy cost, renewable energy subsidy price, and environmental standards. The lower-level problem corresponding to the GENCOs is based on maximizing the players' profits. The proposed QFIT policy differs from the FIT policy in the sense that the subsidy price-based contracts offered to green energy producers dynamically change over time, depending on the physical properties of the grid, demand, and energy price fluctuations. The integrated problem solves for time-varying subsidy price and equilibrium energy quantities that optimize the system welfare under different grid and system conditions. - Highlights: • We present a bi-level optimization problem formulation for Quasi-Feed-In-Tariff (QFIT) policy. • QFIT dictates that subsidy prices dynamically vary over time depending on conditions. • Power grid's physical characteristics affect optimal subsidy prices and energy generation. • To maximize welfare, policy makers ought to increase subsidy prices during the peak-load

  19. Content Adaptive Lagrange Multiplier Selection for Rate-Distortion Optimization in 3-D Wavelet-Based Scalable Video Coding

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2018-03-01

    Full Text Available Rate-distortion optimization (RDO plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC. Among all the possible coding modes, it aims to select the one which has the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned through the choice of the Lagrange multiplier. Despite the prevalence of conventional method for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not available, with on consideration of the content features of input signal. In this paper, an efficient content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for 3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we introduce a novel weighting method, which takes account of the mutual information, gradient per pixel, and texture homogeneity to measure the temporal subband characteristics after applying the motion-compensated temporal filtering (MCTF technique. Second, based on the proposed subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results demonstrate that the proposed algorithm enables more satisfactory video quality with negligible additional computational complexity.

  20. Variational problems with fractional derivatives: Euler-Lagrange equations

    International Nuclear Information System (INIS)

    Atanackovic, T M; Konjik, S; Pilipovic, S

    2008-01-01

    We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense

  1. Lagrange-Noether method for solving second-order differential equations

    Institute of Scientific and Technical Information of China (English)

    Wu Hui-Bin; Wu Run-Heng

    2009-01-01

    The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is,firstly,to write the second-order differential equations completely or partially in the form of Lagrange equations,and secondly,to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.

  2. Extension of meshless Galerkin/Petrov-Galerkin approach without using Lagrange multipliers

    International Nuclear Information System (INIS)

    Kamitani, Atsushi; Takayama, Teruou; Itoh, Taku; Nakamura, Hiroaki

    2011-01-01

    By directly discretizing the weak form used in the finite element method, meshless methods have been derived. Neither the Lagrange multiplier method nor the penalty method is employed in the derivation of the methods. The resulting methods are divided into two groups, depending on whether the discretization is based on the Galerkin or the Petrov-Galerkin approach. Each group is further subdivided into two groups, according to the method for imposing the essential boundary condition. Hence, four types of the meshless methods have been formulated. The accuracy of these methods is illustrated for two-dimensional Poisson problems. (author)

  3. Lagrange and Classical Mechanics

    Indian Academy of Sciences (India)

    over the 17th century by Galileo followed by Newton - the principle of inertia, the ... The importance of Lagrange's method can be appreciated in the following manner. Suppose one starts ... Indian Institute of Science, Bangalore 560 012, India.

  4. Extension Of Lagrange Interpolation

    Directory of Open Access Journals (Sweden)

    Mousa Makey Krady

    2015-01-01

    Full Text Available Abstract In this paper is to present generalization of Lagrange interpolation polynomials in higher dimensions by using Gramers formula .The aim of this paper is to construct a polynomials in space with error tends to zero.

  5. Lagrange formalism for a system of several fluids interacting electromagnetically

    International Nuclear Information System (INIS)

    Vuillemin, M.

    1964-01-01

    After giving the Lagrange expression for a conducting fluid in an external electromagnetic field, the author shows that a Lagrange expression exists for describing the evolution of a system of interacting fluids obtained by adding the Lagrange expression of each fluid.to that of the electromagnetic field. By variation are obtained the fluid movement equation coupled to the Maxwell equations. It is shown that the study of small movements around a stationary state can be deduced from the Lagrange equation expanded to the second power order of the perturbation. It is then possible to deduce the normal mode equations and the study the stability by examining the modes which are marginally stable. (author) [fr

  6. Numerical simulation using vorticity-vector potential formulation

    Science.gov (United States)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the

  7. Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks

    International Nuclear Information System (INIS)

    Bazavov, A.; Toussaint, D.; Bernard, C.; Laiho, J.; DeTar, C.; Levkova, L.; Oktay, M. B.; Gottlieb, Steven; Heller, U. M.; Hetrick, J. E.; Mackenzie, P. B.; Sugar, R.; Van de Water, R. S.

    2010-01-01

    Dramatic progress has been made over the last decade in the numerical study of quantum chromodynamics (QCD) through the use of improved formulations of QCD on the lattice (improved actions), the development of new algorithms, and the rapid increase in computing power available to lattice gauge theorists. In this article simulations of full QCD are described using the improved staggered quark formalism, ''asqtad'' fermions. These simulations were carried out with two degenerate flavors of light quarks (up and down) and with one heavier flavor, the strange quark. Several light quark masses, down to about three times the physical light quark mass, and six lattice spacings have been used. These enable controlled continuum and chiral extrapolations of many low energy QCD observables. The improved staggered formalism is reviewed, emphasizing both advantages and drawbacks. In particular, the procedure for removing unwanted staggered species in the continuum limit is reviewed. Then the asqtad lattice ensembles created by the MILC Collaboration are described. All MILC lattice ensembles are publicly available, and they have been used extensively by a number of lattice gauge theory groups. The physics results obtained with them are reviewed, and the impact of these results on phenomenology is discussed. Topics include the heavy quark potential, spectrum of light hadrons, quark masses, decay constants of light and heavy-light pseudoscalar mesons, semileptonic form factors, nucleon structure, scattering lengths, and more.

  8. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1978-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

  9. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1980-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

  10. Lattice Boltzmann simulation of flow across a staggered tube bundle array

    Energy Technology Data Exchange (ETDEWEB)

    Tiftikçi, A.; Kocar, C., E-mail: ckocar@hacettepe.edu.tr

    2016-04-15

    Highlights: • Large eddy simulation of the cross-flow in a staggered tube bundle array in 3D was made. • LBM and FVM are used separately as numerical solvers and the results of each method compared with experimental data. • Effect of lattice model is studied for tube bundle flow. • Filter size effects, mesh size effects are studied for VLES turbulence model. - Abstract: The decision on the magnitude of the grid size is a crucial problem in large eddy simulations. Finer mesh requires excessive memory and causes long simulation time. Large eddy simulation model becomes inefficient when the extent of the flow geometry to be simulated with the lattice-Boltzmann method is large. Thus, in this study, it is proposed to investigate the capabilities of three turbulence models, namely, very large eddy simulation, Van Driest and Smagorinsky–Lilly. As a test case, a staggered tube bundle flow experiment is used for the validation and comparison purposes. Sensitivity analyses (including mesh and filter size) have been made. Furthermore, the effect of lattice model is investigated and it is showed that the D3Q27 and D3Q19 models do not differ significantly in lattice-Boltzmann method for this type of flow. The results of turbulence model comparisons for staggered tube bundle flow showed that very large eddy simulation is superior at low resolution. This paper might be considered as a good validation of the lattice-Boltzmann method. In turbulent flow conditions, the code successfully captures the velocity and stress profiles even if the flow is quite complicated.

  11. Improvement of prediction accuracy of large eddy simulation on colocated grids; Colocation koshi wo mochiita LES no keisan seido kaizen ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, M.; Abe, K. [Toyota Central Research and Development Labs., Inc., Aichi (Japan)

    1998-07-25

    With the recent advances in computers, large eddy simulation (LES) has become applicable to engineering prediction. However, most cases of the engineering applications need to use the nonorthgonal curvilimear coordinate systems. The staggered grids, usually used in LES in the orthgonal coordinates, don`t keep conservative properties in the nonorthgonal curvilinear coordinates. On the other hand, the colocated grids can be applied in the nonorthgonal curvilinear coordinates without losing its conservative properties, although its prediction accuracy isn`t so high as the staggered grid`s in the orthgonal coordinates especially with the coarse grids. In this research, the discretization method of the colocated grids is modified to improve its prediction accuracy. Plane channel flows are simulated on four grids of different resolution using the modified colocated grids and the original colocated grids. The results show that the modified colocated grids have higher accuracy than the original colocated grids. 17 refs., 13 figs., 1 tab.

  12. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  13. Laser Gravitational-wave Antenna in Geodetic Orbit: LAGRANGE and LAGRANGE 2020

    International Nuclear Information System (INIS)

    Buchman, S.; Balakrishnan, K.; Byer, R.L.; Cutler, G.D.; Debra, D.B.; Hultgren, E.; Lantz, B.; Lipa, J.A.; Saraf, S.; Zoellner, A.; Conklin, J.W.; Aguero, V.; Williams, S.D.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Al Saud, T.; Bower, K.; Costello, B.; Hooper, K.; Klavins, A.; Palmer, A.; Plante, B.; Schaechter, D.; Shu, K.L.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Faied, D.M.; Foster, C.; Genova, A.L.; Sanchez, H.S.; Worden, S.P.; Hanson, J.

    2014-01-01

    We describe a Laser Gravitational-wave Antenna in Geodic Orbit design called LAGRANGE that maintains all important LISA science at about half the cost of the original LISA mission and with reduced technical risk. It consists of 3 drag-free spacecraft (SC) in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per SC, operating in 'true' drag-free mode (no test mass forcing). Other advantages are: a single caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extreme technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per SC. Two 20 cm diameter telescope per SC, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the SC based on a multi-flight proven bus structure. Additional technological advancements include include updated propulsion technology, improved thermal control, and a UV-LED charge management system. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013. We further propose a relaxed performance version of LAGRANGE to be flown before 2020 at one quarter the cost of LISA. The requirements on the drag-free sensors and interferometers are relaxed by factors of 10-100 while the core science, super massive black hole (MBH) mergers, is maintained

  14. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants

    International Nuclear Information System (INIS)

    Griess, F.

    1958-01-01

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [fr

  15. Perturbative improvement of staggered fermions using fat links

    International Nuclear Information System (INIS)

    Lee, Weonjong

    2002-01-01

    We study the possibility of improving staggered fermions using various fat links in order to reduce perturbative corrections to the gauge-invariant staggered fermion operators. We prove five theorems on SU(3) projection, triviality in renormalization, multiple SU(3) projections, uniqueness, and equivalence. As a result of these theorems, we show that, at the one-loop level, the renormalization of staggered fermion operators is identical between SU(3) projected Fat7 links and hypercubic links, as long as the action and operators are constructed by imposing the same perturbative improvement condition. In addition, we propose a new view of SU(3) projection as a tool of tadpole improvement for the staggered fermion doublers. As a conclusion, we present alternative choices of constructing fat links to improve the staggered fermion action and operators, which deserve further investigation

  16. A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers

    Science.gov (United States)

    Tavelli, Maurizio; Dumbser, Michael

    2017-07-01

    We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In

  17. The STAGGER-grid: A grid of 3D stellar atmosphere models. V. Synthetic stellar spectra and broad-band photometry

    Science.gov (United States)

    Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thévenin, F.; Asplund, M.

    2018-03-01

    Context. The surface structures and dynamics of cool stars are characterised by the presence of convective motions and turbulent flows which shape the emergent spectrum. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical simulations from the STAGGER-grid to calculate synthetic spectra with the radiative transfer code OPTIM3D for stars with different stellar parameters to predict photometric colours and convective velocity shifts. Methods: We calculated spectra from 1000 to 200 000 Å with a constant resolving power of λ/Δλ = 20 000 and from 8470 and 8710 Å (Gaia Radial Velocity Spectrometer - RVS - spectral range) with a constant resolving power of λ/Δλ = 300 000. Results: We used synthetic spectra to compute theoretical colours in the Johnson-Cousins UBV (RI)C, SDSS, 2MASS, Gaia, SkyMapper, Strömgren systems, and HST-WFC3. Our synthetic magnitudes are compared with those obtained using 1D hydrostatic models. We showed that 1D versus 3D differences are limited to a small percent except for the narrow filters that span the optical and UV region of the spectrum. In addition, we derived the effect of the convective velocity fields on selected Fe I lines. We found the overall convective shift for 3D simulations with respect to the reference 1D hydrostatic models, revealing line shifts of between -0.235 and +0.361 km s-1. We showed a net correlation of the convective shifts with the effective temperature: lower effective temperatures denote redshifts and higher effective temperatures denote blueshifts. We conclude that the extraction of accurate radial velocities from RVS spectra need an appropriate wavelength correction from convection shifts. Conclusions: The use of realistic 3D hydrodynamical stellar atmosphere simulations has a small but significant impact on the predicted photometry compared with classical 1D hydrostatic models for late-type stars. We make all the spectra publicly available for the community through the POLLUX database

  18. Accelerating staggered-fermion dynamics with the rational hybrid Monte Carlo algorithm

    International Nuclear Information System (INIS)

    Clark, M. A.; Kennedy, A. D.

    2007-01-01

    Improved staggered-fermion formulations are a popular choice for lattice QCD calculations. Historically, the algorithm used for such calculations has been the inexact R algorithm, which has systematic errors that only vanish as the square of the integration step size. We describe how the exact rational hybrid Monte Carlo (RHMC) algorithm may be used in this context, and show that for parameters corresponding to current state-of-the-art computations it leads to a factor of approximately seven decrease in cost as well as having no step-size errors

  19. Dark energy from modified gravity with Lagrange multipliers

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Matsumoto, Jiro; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2010-01-01

    We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F 2 (R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.

  20. Hamiltonian formulation of theory with higher order derivatives

    International Nuclear Information System (INIS)

    Gitman, D.M.; Lyakhovich, S.L.; Tyutin, I.V.

    1983-01-01

    A method of ''hamiltonization'' of a special theory with higher order derivatives is described. In a nonspecial case the result coincides with the known Ostrogradsky formulation. It is shown that in the nonspecial theory the lagrange equations of motion are reduced to the normal form

  1. On staggered indecomposable Virasoro modules

    International Nuclear Information System (INIS)

    Kytoelae, Kalle; Ridout, David

    2009-01-01

    In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L 0 is assumed to be nondiagonalizable, possessing Jordan blocks of rank 2. Moreover, the module is further assumed to have a highest weight submodule, the 'left module', and that the quotient by this submodule yields another highest weight module, the 'right module'. Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centers on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension 0, 1, or 2, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulas as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit.

  2. On staggered indecomposable Virasoro modules

    Energy Technology Data Exchange (ETDEWEB)

    Kytoelae, Kalle [Geneve Univ. (Switzerland); Ridout, David [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-06-15

    In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be non-diagonalisable, possessing Jordan blocks of rank two. Moreover, the module is further assumed to have a highest weight submodule, the ''left module'', and that the quotient by this submodule yields another highest weight module, the ''right module''. Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centres on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension zero, one or two, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulae as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit. (orig.)

  3. On staggered indecomposable Virasoro modules

    International Nuclear Information System (INIS)

    Kytoelae, Kalle; Ridout, David

    2009-06-01

    In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be non-diagonalisable, possessing Jordan blocks of rank two. Moreover, the module is further assumed to have a highest weight submodule, the ''left module'', and that the quotient by this submodule yields another highest weight module, the ''right module''. Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centres on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension zero, one or two, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulae as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit. (orig.)

  4. On staggered indecomposable Virasoro modules

    Science.gov (United States)

    Kytölä, Kalle; Ridout, David

    2009-12-01

    In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be nondiagonalizable, possessing Jordan blocks of rank 2. Moreover, the module is further assumed to have a highest weight submodule, the "left module," and that the quotient by this submodule yields another highest weight module, the "right module." Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centers on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension 0, 1, or 2, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulas as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit.

  5. Euler-Lagrange Equations of Networks with Higher-Order Elements

    Directory of Open Access Journals (Sweden)

    Z. Biolek

    2017-06-01

    Full Text Available The paper suggests a generalization of the classic Euler-Lagrange equation for circuits compounded of arbitrary elements from Chua’s periodic table. Newly defined potential functions for general (α, β elements are used for the construction of generalized Lagrangians and generalized dissipative functions. Also procedures of drawing the Euler-Lagrange equations are demonstrated.

  6. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  7. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    International Nuclear Information System (INIS)

    Mathiazhagan, S.; Anup, S.

    2016-01-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  8. Transactive-Market-Based Operation of Distributed Electrical Energy Storage with Grid Constraints

    Directory of Open Access Journals (Sweden)

    M. Nazif Faqiry

    2017-11-01

    Full Text Available In a transactive energy market, distributed energy resources (DERs such as dispatchable distributed generators (DGs, electrical energy storages (EESs, distribution-scale load aggregators (LAs, and renewable energy sources (RESs have to earn their share of supply or demand through a bidding process. In such a market, the distribution system operator (DSO may optimally schedule these resources, first in a forward market, i.e., day-ahead, and in a real-time market later on, while maintaining a reliable and economic distribution grid. In this paper, an efficient day-ahead scheduling of these resources, in the presence of interaction with wholesale market at the locational marginal price (LMP, is studied. Due to inclusion of EES units with integer constraints, a detailed mixed integer linear programming (MILP formulation that incorporates simplified DistFlow equations to account for grid constraints is proposed. Convex quadratic line and transformer apparent power flow constraints have been linearized using an outer approximation. The proposed model schedules DERs based on distribution locational marginal price (DLMP, which is obtained as the Lagrange multiplier of the real power balance constraint at each distribution bus while maintaining physical grid constraints such as line limits, transformer limits, and bus voltage magnitudes. Case studies are performed on a modified IEEE 13-bus system with high DER penetration. Simulation results show the validity and efficiency of the proposed model.

  9. Lagrange polynomial interpolation method applied in the calculation of the J({xi},{beta}) function

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Vinicius Munhoz; Palma, Daniel Artur Pinheiro [Centro Federal de Educacao Tecnologica de Quimica de Nilopolis, RJ (Brazil)]. E-mails: munhoz.vf@gmail.com; dpalma@cefeteq.br; Martinez, Aquilino Senra [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE) (COPPE). Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2008-07-01

    The explicit dependence of the Doppler broadening function creates difficulties in the obtaining an analytical expression for J function . The objective of this paper is to present a method for the quick and accurate calculation of J function based on the recent advances in the calculation of the Doppler broadening function and on a systematic analysis of its integrand. The methodology proposed, of a semi-analytical nature, uses the Lagrange polynomial interpolation method and the Frobenius formulation in the calculation of Doppler broadening function . The results have proven satisfactory from the standpoint of accuracy and processing time. (author)

  10. Lagrange polynomial interpolation method applied in the calculation of the J(ξ,β) function

    International Nuclear Information System (INIS)

    Fraga, Vinicius Munhoz; Palma, Daniel Artur Pinheiro; Martinez, Aquilino Senra

    2008-01-01

    The explicit dependence of the Doppler broadening function creates difficulties in the obtaining an analytical expression for J function . The objective of this paper is to present a method for the quick and accurate calculation of J function based on the recent advances in the calculation of the Doppler broadening function and on a systematic analysis of its integrand. The methodology proposed, of a semi-analytical nature, uses the Lagrange polynomial interpolation method and the Frobenius formulation in the calculation of Doppler broadening function . The results have proven satisfactory from the standpoint of accuracy and processing time. (author)

  11. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  12. Estimation of Parameters of CCF with Staggered Testing

    International Nuclear Information System (INIS)

    Kim, Myung-Ki; Hong, Sung-Yull

    2006-01-01

    Common cause failures are extremely important in reliability analysis and would be dominant to risk contributor in a high reliable system such as a nuclear power plant. Of particular concern is common cause failure (CCF) that degrades redundancy or diversity implemented to improve a reliability of systems. Most of analyses of parameters of CCF models such as beta factor model, alpha factor model, and MGL(Multiple Greek Letters) model deal a system with a nonstaggered testing strategy. Non-staggered testing is that all components are tested at the same time (or at least the same shift) and staggered testing is that if there is a failure in the first component, all the other components are tested immediately, and if it succeeds, no more is done until the next scheduled testing time. Both of them are applied in the nuclear power plants. The strategy, however, is not explicitly described in the technical specifications, but implicitly in the periodic test procedure. For example, some redundant components particularly important to safety are being tested with staggered testing strategy. Others are being performed with non-staggered testing strategy. This paper presents the parameter estimator of CCF model such as beta factor model, MGL model, and alpha factor model with staggered testing strategy. In addition, a new CCF model, rho factor model, is proposed and its parameter is presented with staggered testing strategy

  13. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur

    2007-01-01

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases

  14. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  15. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  16. Joseph Louis Lagrange (1736 - 1813)

    Indian Academy of Sciences (India)

    to diverse areas of mathematics, is best remembered for his work on number theory, ... father was in the service of the King of Sardinia, the family was not wealthy, as the ... of Prussia arranged for Lagrange to be offered a position in 1765 there. ... taught courses on elementary mathematics for training school teachers.

  17. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    International Nuclear Information System (INIS)

    Park, Jong Woon; Choi, Hyun Gyung

    2014-01-01

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  18. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon; Choi, Hyun Gyung [Dongguk Univ., Gyeongju (Korea, Republic of). Nuclear and Energy Engineering Dept.

    2014-02-15

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  19. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    Science.gov (United States)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  20. Staggering towards a calculation of weak amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, S.R.

    1988-09-01

    An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.

  1. A numerical formulation using unstructured grids for modeling two-phase flows in porous media considering heterogeneities and capillarity effects

    International Nuclear Information System (INIS)

    Hurtado, F.S.V.; Maliska, C.R.

    2005-01-01

    This paper briefly describes a two-dimensional numerical formulation using unstructured grids, developed for simulating two-phase immiscible displacements in porous media. The Element-based Finite Volume Method (EbFVM) is used for discretizing the model differential equations. (authors)

  2. A numerical formulation using unstructured grids for modeling two-phase flows in porous media considering heterogeneities and capillarity effects

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, F.S.V.; Maliska, C.R. [Santa Catarina Federal Univ., Computational Fluid Dynamics Lab., Mechanical Engineering Dept., Florianopolis, SC (Brazil)

    2005-07-01

    This paper briefly describes a two-dimensional numerical formulation using unstructured grids, developed for simulating two-phase immiscible displacements in porous media. The Element-based Finite Volume Method (EbFVM) is used for discretizing the model differential equations. (authors)

  3. Invariant Lagrangians, mechanical connections and the Lagrange-Poincare equations

    International Nuclear Information System (INIS)

    Mestdag, T; Crampin, M

    2008-01-01

    We deal with Lagrangian systems that are invariant under the action of a symmetry group. The mechanical connection is a principal connection that is associated with Lagrangians which have a kinetic energy function that is defined by a Riemannian metric. In this paper, we extend this notion to arbitrary Lagrangians. We then derive the reduced Lagrange-Poincare equations in a new fashion and we show how solutions of the Euler-Lagrange equations can be reconstructed with the help of the mechanical connection. Illustrative examples confirm the theory

  4. Heavy-light semileptonic decays in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, C.; Bernard, C.

    2007-07-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.

  5. Optimal variable-grid finite-difference modeling for porous media

    International Nuclear Information System (INIS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-01-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)

  6. 交错网格下MHD相容守恒格式的发展%Development of a consistent and conservative scheme on a staggered grid for liquid metal MHD flows

    Institute of Scientific and Technical Information of China (English)

    李俊峰; 倪明玖

    2011-01-01

    在低磁场雷诺数条件下,基于电势泊松方程,发展了交错网格下可以精确计算电流和洛伦兹力(电磁力)的相容守恒格式.采用压力为变量的原始变量法求解不可压缩Navier-Stokes方程,所计算的电流满足电荷守恒定律,所计算的电磁力满足动量守恒定律.对金属流体在Hartmann数50~5000范围内验证了格式的精确性.交错网格下相容守恒格式的发展为后续MHD稳定性分析、湍流的大涡模拟及直接数值模拟提供很好的选择.%A consistent and conservative scheme has been extended and developed on a staggered grid system for liquid metal MHD flow at a low magnetic Reynolds number by solving electrical potential Poisson equation based on the Ohm's law and the charge conservation law. The consistent scheme is used to ensure the calculated current density conserves the charge, and the divergence formula of the Lorentz force is used to ensure the momentum conservation. Simulation of liquid metal flows in a three-dimensional straight channel is conducted and compared with the analytical solutions from Shercliff's and Hunt's. The numerical results are in good agreement with analytical solutions for the Hartmann numbers from 50 to 5000. A fully conservative scheme on a staggered grid, which can conserve mass, momentum and kinetic energy and charge, is then developed with the central-symmetrical scheme for the convective term and the pressure term and with the consistent and conservative scheme for the calculation of the current density and the Lorentz force. A fully conservative scheme can be a good tool for numerical analysis of MHD flow instability, large eddy simulation (LES) and direct-numerical simulation (DNS) of MHD turbulence.

  7. Direct numerical simulation of turbulent mixing in grid-generated turbulence

    International Nuclear Information System (INIS)

    Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi; Hayase, Toshiyuki

    2008-01-01

    Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.

  8. Direct numerical simulation of turbulent mixing in grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Hayase, Toshiyuki [Institute of Fluid Science, Tohoku University, Sendai 980-8577 (Japan)], E-mail: nagata@nagoya-u.jp, E-mail: hsuzuki@nagoya-u.jp, E-mail: ysakai@mech.nagoya-u.ac.jp, E-mail: t-kubo@nagoya-u.jp, E-mail: hayase@ifs.tohoku.ac.jp

    2008-12-15

    Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.

  9. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2017-02-15

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the

  10. A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2016-01-01

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the

  11. Teleparallel Lagrange geometry and a unified field theory

    Energy Technology Data Exchange (ETDEWEB)

    Wanas, M I [Department of Astronomy, Faculty of Science, Cairo University, CTP of the British University in Egypt (BUE) (Egypt); Youssef, Nabil L; Sid-Ahmed, A M, E-mail: wanas@frcu.eun.eg, E-mail: nyoussef@frcu.eun.e, E-mail: nlyoussef2003@yahoo.f, E-mail: amrs@mailer.eun.e, E-mail: amrsidahmed@gmail.co [Department of Mathematics, Faculty of Science, Cairo University (Egypt)

    2010-02-21

    In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geometry. The constructed field theory is a generalization of the generalized field theory (GFT) formulated by Mikhail and Wanas. The theory obtained is purely geometric. The horizontal (resp. vertical) field equations are derived by applying the Euler-Lagrange equations to an appropriate horizontal (resp. vertical) scalar Lagrangian. The symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Einstein's field equations in which the horizontal (resp. vertical) energy-momentum tensor is purely geometric. The skew-symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Maxwell equations in which the electromagnetic field is purely geometric. Some interesting special cases, which reveal the role of the nonlinear connection in the obtained field equations, are examined. Finally, the condition under which our constructed field equations reduce to the GFT is explicitly established.

  12. Synthetic staggered architecture composites

    International Nuclear Information System (INIS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun

    2013-01-01

    Highlights: ► Composite design inspired by nature. ► Tuning microstructure via changing ceramic content and aspect ratio. ► Experimental display of structure–property correlationship in synthetic composites. - Abstract: Structural biocomposites (for example, nacre in seashells, bone, etc.) are designed according to the functional role they are delegated for. For instance, bone is primarily designed for withstanding time-dependent loading (for example, withstanding stresses while running, jumping, accidental fall) and hence the microstructure is designed primarily from enhanced toughness and moderate stiffness point of view. On the contrary, seashells (which lie in the abyss of oceans) apart from providing defense to the organism (it is hosting) against predatory attacks, are subjected to static loading (for example, enormous hydrostatic pressure). Hence, emphasis on the shell structure evolution is directed primarily towards providing enhanced stiffness. In order to conform between stiffness and toughness, nature precisely employs a staggered arrangement of inorganic bricks in a biopolymer matrix (at its most elementary level of architecture). Aspect ratio and content of ceramic bricks are meticulously used by nature to synthesize composites having varying degrees of stiffness, strength and toughness. Such an amazing capability of structure–property correlationship has rarely been demonstrated in synthetic composites. Therefore, in order to better understand the mechanical behavior of synthetic staggered composites, the problem becomes two-pronged: (a) synthesize composites with varying brick size and contents and (b) experimental investigation of the material response. In this article, an attempt has been made to synthesize and characterize staggered ceramic–polymer composites having varying aspect ratio and ceramic content using freeze-casting technique. This will in-turn help us in custom-design manufacture of hybrid bio-inspired composite materials

  13. Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.

    2011-01-01

    In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...

  14. kantorovich-euler lagrange-galerkin's method for bending analysis

    African Journals Online (AJOL)

    user

    OF CIVIL ENGINEERING, ENUGU STATE UNIVERSITY OF SCIENCE & TECHNOLOGY, ... In this work, the Kantorovich method is applied to solve the bending problem of thin ... Lagrange differential equation is determined for this functional.

  15. Tariff formulation and equalization

    International Nuclear Information System (INIS)

    Svartsund, Trond

    2003-01-01

    The primary goal of the transmission tariff is to provide for socioeconomic use of the transmission grid. The present tariff structure is basically right. The responsibility for the formulation of the tariff resides with the local grid owner. This must take place in agreement with the current regulations which are passed by the authorities. The formulation must be adaptable to the local requirements. EBL (Norwegian Electricity Industry Association) is content with the current regulations

  16. Wake-Model Effects on Induced Drag Prediction of Staggered Boxwings

    Directory of Open Access Journals (Sweden)

    Julian Schirra

    2018-01-01

    Full Text Available For staggered boxwings the predictions of induced drag that rely on common potential-flow methods can be of limited accuracy. For example, linear, freestream-fixed wake models cannot resolve effects related to wake deflection and roll-up, which can have significant affects on the induced drag projection of these systems. The present work investigates the principle impact of wake modelling on the accuracy of induced drag prediction of boxwings with stagger. The study compares induced drag predictions of a higher-order potential-flow method that uses fixed and relaxed-wake models, and of an Euler-flow method. Positive-staggered systems at positive angles of attack are found to be particularly prone to higher-order wake effects due to vertical contraction of wakes trajectories, which results in smaller effective height-to-span ratios than compared with negative stagger and thus closer interactions between trailing wakes and lifting surfaces. Therefore, when trying to predict induced drag of positive staggered boxwings, only a potential-flow method with a fully relaxed-wake model will provide the high-degree of accuracy that rivals that of an Euler method while being computationally significantly more efficient.

  17. XFEM Modelling of Multi-holes Plate with Single-row and Staggered Holes Configurations

    Directory of Open Access Journals (Sweden)

    Supar Khairi

    2017-01-01

    Full Text Available Joint efficiency is the key to composite structures assembly design, good structures response is dependent upon multi-holes behavior as subjected to remote loading. Current benchmarking work were following experimental testing series taken from literature on multi-holes problem. Eleven multi-hole configurations were investigated with various pitch and gage distance of staggered holes and non-staggered holes (single-row holes. Various failure modes were exhibited, most staggered holes demonstrates staggered crack path but non-staggered holes series displayed crack path along net-section plane. Stress distribution were carried out and good agreement were exhibited in experimental observation as reported in the respective literature. Consequently, strength prediction work were carried out under quasi-static loading, most showed discrepancy between 8% -31%, better prediction were exhibited in thicker and non-staggered holes plate combinations.

  18. Development of Non-staggered, semi-implicit ICE numerical scheme for a two-fluid, three-field model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Yoon, H. Y.; Bae, S. W

    2007-11-15

    A pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. In this code, the semi-implicit ICE numerical scheme has been adapted to a 'non-staggered' grid. Using several conceptual problems, the numerical scheme has been verified. The results of the verifications are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, two-phase mixture flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. The non-staggered, semi-implicit ICE numerical scheme, which has been developed in this study, will be a starting point of a new code development that adopts an unstructured finite volume method.

  19. Thermodynamic Bethe Ansatz for the Spin-1/2 Staggered XXZ- Model

    OpenAIRE

    Mkhitaryan, V. V.; Sedrakyan, A. G.

    2003-01-01

    We develop the technique of Thermodynamic Bethe Ansatz to investigate the ground state and the spectrum in the thermodynamic limit of the staggered $XXZ$ models proposed recently as an example of integrable ladder model. This model appeared due to staggered inhomogeneity of the anisotropy parameter $\\Delta$ and the staggered shift of the spectral parameter. We give the structure of ground states and lowest lying excitations in two different phases which occur at zero temperature.

  20. A meshless scheme for incompressible fluid flow using a velocity-pressure correction method

    KAUST Repository

    Bourantas, Georgios

    2013-12-01

    A meshless point collocation method is proposed for the numerical solution of the steady state, incompressible Navier-Stokes (NS) equations in their primitive u-v-p formulation. The flow equations are solved in their strong form using either a collocated or a semi-staggered "grid" configuration. The developed numerical scheme approximates the unknown field functions using the Moving Least Squares approximation. A velocity, along with a pressure correction scheme is applied in the context of the meshless point collocation method. The proposed meshless point collocation (MPC) scheme has the following characteristics: (i) it is a truly meshless method, (ii) there is no need for pressure boundary conditions since no pressure constitutive equation is solved, (iii) it incorporates simplicity and accuracy, (iv) results can be obtained using collocated or semi-staggered "grids", (v) there is no need for the usage of a curvilinear system of coordinates and (vi) it can solve steady and unsteady flows. The lid-driven cavity flow problem, for Reynolds numbers up to 5000, has been considered, by using both staggered and collocated grid configurations. Following, the Backward-Facing Step (BFS) flow problem was considered for Reynolds numbers up to 800 using a staggered grid. As a final example, the case of a laminar flow in a two-dimensional tube with an obstacle was examined. © 2013 Elsevier Ltd.

  1. Generalization of two-phase model with topology microstructure of mixture to Lagrange-Euler methodology

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Alexei A Leonov

    2005-01-01

    Full text of publication follows: One of the mathematical models (hyperbolic type) for describing evolution of compressible two-phase mixtures was offered in [1] to deal with the following applications: interfaces between compressible materials; shock waves in multiphase mixtures; evolution of homogeneous two-phase flows; cavitation in liquids. The basic difficulties of this model was connected to discretization of the non-conservative equation terms. As result, the class of problems concerned with passage of shock waves through fields with a discontinuing profile of a volume fraction was not described by means of this model. A class of schemes that are able to converge to the correct solution of such problems was received in [2] due to a deeper analysis of two-phase model. The technique offered in [2] was implemented on a Eulerian grid via the Godunov scheme. In present paper the additional analysis of two-phase model in view of microstructure of an mixture topology is carried out in Lagrange mass coordinates. As result, the equations averaged over the set of all possible realizations for two-phase mixture are received. The numerical solution is carried out with use of PPM method [3] in two steps: at first - the equations averaged over mass variable are solved; on the second - the solution, found on the previous step, is re-mapped to a fixed Eulerian grid. Such approach allows to expand the proposed technique on two-dimensional (three-dimensional) case, as in the Lagrange variables the Euler equations system is split on two (three) identical subsystems, each of which describes evolution of considered medium in the given direction. The accuracy and robustness of the described procedure are demonstrated on a sequence of the numerical problems. References: (1). R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multi-fluid and multiphase flows, J. Comput. Phys. 150 (1999) 425-467; (2). R. Saurel, R. Abgrall, Discrete equations for physical and

  2. Schwartz distributions in the Lagrange variational problem

    International Nuclear Information System (INIS)

    Anton, H.; Bahar, L.Y.

    1978-01-01

    Schwartz distributions are used to eliminate the necessity of imposing a priori conditions on the class of admissible functions in the Lagrange fixed end-point variational problem. This makes it possible to defer the imposition of conditions on the extremals until such conditions become apparent from physical considerations

  3. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    Science.gov (United States)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  4. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integration methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.

  5. Weyl-Euler-Lagrange Equations of Motion on Flat Manifold

    Directory of Open Access Journals (Sweden)

    Zeki Kasap

    2015-01-01

    Full Text Available This paper deals with Weyl-Euler-Lagrange equations of motion on flat manifold. It is well known that a Riemannian manifold is said to be flat if its curvature is everywhere zero. Furthermore, a flat manifold is one Euclidean space in terms of distances. Weyl introduced a metric with a conformal transformation for unified theory in 1918. Classical mechanics is one of the major subfields of mechanics. Also, one way of solving problems in classical mechanics occurs with the help of the Euler-Lagrange equations. In this study, partial differential equations have been obtained for movement of objects in space and solutions of these equations have been generated by using the symbolic Algebra software. Additionally, the improvements, obtained in this study, will be presented.

  6. Mechanics, analysis and geometry 200 years after Lagrange

    CERN Document Server

    1991-01-01

    Providing a logically balanced and authoritative account of the different branches and problems of mathematical physics that Lagrange studied and developed, this volume presents up-to-date developments in differential goemetry, dynamical systems, the calculus of variations, and celestial and analytical mechanics.

  7. Lagrange-multiplier tests for weak exogeneity: a synthesis.

    NARCIS (Netherlands)

    Boswijk, H.P.; Urbain, J.P.

    1997-01-01

    This paper unifies two seemingly separate approaches to test weak exogeneity in dynamic regression models with Lagrange-multiplier statistics. The first class of tests focuses on the orthogonality between innovations and conditioning variables, and thus is related to the Durbin-Wu-Hausman

  8. Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm

    International Nuclear Information System (INIS)

    He Suxiang; Meng Hongchao; Wang Hui; Zhao Yanli

    2011-01-01

    The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.

  9. Staggering but not knocked out

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-11-01

    Italy's PV market is staggering like a boxer almost knocked out. It has been hit hard by the country's deep economic recession. Conto Energia V has been yet another blow with cuts of up to 40 % in the solar feed-in tariffs. But the situation is not hopeless.

  10. Conservative numerical schemes for Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, L. [Universidad Complutense, Madrid (Spain). Dept. de Matematica Aplicada; Jimenez, S. [Universidad Alfonso X El Sabio, Madrid (Spain). Dept. de Matematica Aplicada

    1999-05-01

    As a preliminary step to study magnetic field lines, the authors seek numerical schemes that reproduce at discrete level the significant feature of the continuous model, based on an underling Lagrangian structure. The resulting scheme give discrete counterparts of the variation law for the energy as well of as the Euler-Lagrange equations and their symmetries.

  11. Solution of second order linear fuzzy difference equation by Lagrange's multiplier method

    Directory of Open Access Journals (Sweden)

    Sankar Prasad Mondal

    2016-06-01

    Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.

  12. Distributed-Lagrange-Multiplier-based computational method for particulate flow with collisions

    Science.gov (United States)

    Ardekani, Arezoo; Rangel, Roger

    2006-11-01

    A Distributed-Lagrange-Multiplier-based computational method is developed for colliding particles in a solid-fluid system. A numerical simulation is conducted in two dimensions using the finite volume method. The entire domain is treated as a fluid but the fluid in the particle domains satisfies a rigidity constraint. We present an efficient method for predicting the collision between particles. In earlier methods, a repulsive force was applied to the particles when their distance was less than a critical value. In this method, an impulsive force is computed. During the frictionless collision process between two particles, linear momentum is conserved while the tangential forces are zero. Thus, instead of satisfying a condition of rigid body motion for each particle separately, as done when particles are not in contact, both particles are rigidified together along their line of centers. Particles separate from each other when the impulsive force is less than zero and after this time, a rigidity constraint is satisfied for each particle separately. Grid independency is implemented to ensure the accuracy of the numerical simulation. A comparison between this method and previous collision strategies is presented and discussed.

  13. Revisiting the even-odd staggering in fission-fragment yields

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Schmidt, K. H.

    2010-01-01

    The even-odd staggering observed in the experimental fission-fragment nuclear-charge yields is investigated over a wide systematics of fission fragments measured at Lohengrin in direct kinematics and at GSI in inverse kinematics. The general increase of the even-odd staggering in the fission-fragment charge yields towards asymmetric charge splits is explained by the absorption of the unpaired nucleons by the heavy fragment. As a consequence, the well established trend of even-odd staggering in the fission fragment charge yields to decrease with the fissility is attributed in part to the asymmetry evolution of the charge distribution. This interpretation is strongly supported by the data measured at GSI, which cover the complete charge distribution and include precise yields at symmetry. They reveal that the even-odd effect around symmetry remains constant over a large range of fissility. (authors)

  14. Fan Stagger Angle for Dirt Rejection

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  15. Enhancing the Frequency Adaptability of Periodic Current Controllers with a Fixed Sampling Rate for Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Grid-connected power converters should employ advanced current controllers, e.g., Proportional Resonant (PR) and Repetitive Controllers (RC), in order to produce high-quality feed-in currents that are required to be synchronized with the grid. The synchronization is actually to detect...... of the resonant controllers and by approximating the fractional delay using a Lagrange interpolating polynomial for the RC, respectively, the frequency-variation-immunity of these periodic current controllers with a fixed sampling rate is improved. Experiments on a single-phase grid-connected system are presented...... the instantaneous grid information (e.g., frequency and phase of the grid voltage) for the current control, which is commonly performed by a Phase-Locked-Loop (PLL) system. Hence, harmonics and deviations in the estimated frequency by the PLL could lead to current tracking performance degradation, especially...

  16. Integración automatizada de las ecuaciones de Lagrange en el movimiento orbital.

    Science.gov (United States)

    Abad, A.; San Juan, J. F.

    The new techniques of algebraic manipulation, especially the Poisson Series Processor, permit the analytical integration of the more and more complex problems of celestial mechanics. The authors are developing a new Poisson Series Processor, PSPC, and they use it to solve the Lagrange equation of the orbital motion. They integrate the Lagrange equation by using the stroboscopic method, and apply it to the main problem of the artificial satellite theory.

  17. Decentralized and Real-Time Power Dispatch Control for an Islanded Microgrid Supported by Distributed Power Sources

    Directory of Open Access Journals (Sweden)

    Changsun Ahn

    2013-12-01

    Full Text Available Microgrids can deploy traditional and/or renewable power sources to support remote sites. Utilizing renewable power sources requires more complicated control strategies to achieve acceptable power quality and maintain grid stability. In this research, we assume that the grid stability problem is already solved. As a next step, we focus on how the power can be dispatched from multiple power sources for improved grid efficiency. Isolated microgrids frequently require reconfigurations because of the grid expansion or component failures. Therefore, the control strategies ideally should be implemented in a plug-and-play fashion. Moreover, these strategies ideally require no pre-knowledge of the grid structure, and as little communication with neighboring power sources as possible. The control objective is to minimize a cost function that can be adjusted to reflect the desire to minimize energy cost and/or losses. An algorithm is designed to satisfy a derived necessary condition of function optimality. Such conditions are obtained by formulating Lagrange functions. An equivalent grid model approximates the grid structure which was later confirmed to represent the grid behavior adequately. For decentralized operations, we execute the distributed control sequentially using a simple token communication protocol. The performance of the combined system identification-Lagrange function minimization algorithm is demonstrated through simulations.

  18. Immersed boundary method combined with a high order compact scheme on half-staggered meshes

    International Nuclear Information System (INIS)

    Księżyk, M; Tyliszczak, A

    2014-01-01

    This paper presents the results of computations of incompressible flows performed with a high-order compact scheme and the immersed boundary method. The solution algorithm is based on the projection method implemented using the half-staggered grid arrangement in which the velocity components are stored in the same locations while the pressure nodes are shifted half a cell size. The time discretization is performed using the predictor-corrector method in which the forcing terms used in the immersed boundary method acts in both steps. The solution algorithm is verified based on 2D flow problems (flow in a lid-driven skewed cavity, flow over a backward facing step) and turns out to be very accurate on computational meshes comparable with ones used in the classical approaches, i.e. not based on the immersed boundary method.

  19. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2010-01-01

    This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...

  20. On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira

    Directory of Open Access Journals (Sweden)

    L. M. B. C. Campos

    1990-01-01

    Full Text Available The classical theorems of Taylor, Lagrange, Laurent and Teixeira, are extended from the representation of a complex function F(z, to its derivative F(ν(z of complex order ν, understood as either a ‘Liouville’ (1832 or a ‘Rieman (1847’ differintegration (Campos 1984, 1985; these results are distinct from, and alternative to, other extensions of Taylor's series using differintegrations (Osler 1972, Lavoie & Osler & Tremblay 1976. We consider a complex function F(z, which is analytic (has an isolated singularity at ζ, and expand its derivative of complex order F(ν(z, in an ascending (ascending-descending series of powers of an auxiliary function f(z, yielding the generalized Teixeira (Lagrange series, which includes, for f(z=z−ζ, the generalized Taylor (Laurent series. The generalized series involve non-integral powers and/or coefficients evaluated by fractional derivatives or integrals, except in the case ν=0, when the classical theorems of Taylor (1715, Lagrange (1770, Laurent (1843 and Teixeira (1900 are regained. As an application, these generalized series can be used to generate special functions with complex parameters (Campos 1986, e.g., the Hermite and Bessel types.

  1. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased controll......Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  2. How to use the Sun-Earth Lagrange points for fundamental physics and navigation

    Science.gov (United States)

    Tartaglia, A.; Lorenzini, E. C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.

    2018-01-01

    We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun-Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

  3. Numerical properties of staggered quarks with a taste-dependent mass term

    CERN Document Server

    de Forcrand, Philippe; Panero, Marco

    2012-01-01

    The numerical properties of staggered Dirac operators with a taste-dependent mass term proposed by Adams [1,2] and by Hoelbling [3] are compared with those of ordinary staggered and Wilson Dirac operators. In the free limit and on (quenched) interacting configurations, we consider their topological properties, their spectrum, and the resulting pion mass. Although we also consider the spectral structure, topological properties, locality, and computational cost of an overlap operator with a staggered kernel, we call attention to the possibility of using the Adams and Hoelbling operators without the overlap construction. In particular, the Hoelbling operator could be used to simulate two degenerate flavors without additive mass renormalization, and thus without fine-tuning in the chiral limit.

  4. Smooth bifurcation for variational inequalities based on Lagrange multipliers

    Czech Academy of Sciences Publication Activity Database

    Eisner, Jan; Kučera, Milan; Recke, L.

    2006-01-01

    Roč. 19, č. 9 (2006), s. 981-1000 ISSN 0893-4983 R&D Projects: GA AV ČR(CZ) IAA100190506 Institutional research plan: CEZ:AV0Z10190503 Keywords : abstract variational inequality * bifurcation * Lagrange multipliers Subject RIV: BA - General Mathematics

  5. Thierry Lagrange: A transparent, service-oriented approach to finance

    CERN Multimedia

    2009-01-01

    The motto for the new Finance and Purchasing Department Head, Thierry Lagrange, is "strengthening services for users". With a head-count of around sixty, the Finance and Purchasing Department is small compared to the large technical departments. But its work is crucial and supports all the Laboratory’s activities. The FP Department manages the Organization’s financial resources and commitments, checking that resources match expenses, that sufficient cash is available, that contracts are concluded on the best possible terms - in short, that monies are available and properly managed. In these lean times, this delicate balancing act requires the skills of an insider, someone who knows the Organization like the back of his hand. Thierry Lagrange, recently appointed Head of Finance and Purchasing, has spent most of his career at CERN, and the past five years as Deputy Head of the Finance Department. Nobody knows the subtleties and p...

  6. The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited

    Science.gov (United States)

    Charles, Alexandre; Ballard, Patrick

    2016-08-01

    The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this

  7. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.A.; Brown, T.B.; Archer, D.E. [Florida State Univ., Tallahassee, FL (United States)] [and others

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  8. A DIDACTIC SURVEY OVER MAIN CHARACTERISTICS OF LAGRANGE'S THEOREM IN MATHEMATICS AND IN ECONOMICS

    OpenAIRE

    Xhonneux, Sebastian; Henry, Valérie

    2011-01-01

    Because of its many uses, the constrained optimization problem is presented in most calculus courses for mathematicians but also for economists. Looking at Lagrange's Theorem we are interested in studying the teaching of this theorem in both branches of study, mathematics and economics. This paper faces a twofold objective: first, we show the methodology of our research project concerning the didactic transposition of Lagrange's Theorem in university mathematics courses. Sec...

  9. Staggered and short-period solutions of the saturable discrete nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K.O.; Samuelsen, Mogens Rugholm

    2009-01-01

    We point out that the nonlinear Schrodinger lattice with a saturable nonlinearity also admits staggered periodic aswell as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered as ...

  10. New Lagrange Multipliers for the Blind Adaptive Deconvolution Problem Applicable for the Noisy Case

    Directory of Open Access Journals (Sweden)

    Monika Pinchas

    2016-02-01

    Full Text Available Recently, a new blind adaptive deconvolution algorithm was proposed based on a new closed-form approximated expression for the conditional expectation (the expectation of the source input given the equalized or deconvolutional output where the output and input probability density function (pdf of the deconvolutional process were approximated with the maximum entropy density approximation technique. The Lagrange multipliers for the output pdf were set to those used for the input pdf. Although this new blind adaptive deconvolution method has been shown to have improved equalization performance compared to the maximum entropy blind adaptive deconvolution algorithm recently proposed by the same author, it is not applicable for the very noisy case. In this paper, we derive new Lagrange multipliers for the output and input pdfs, where the Lagrange multipliers related to the output pdf are a function of the channel noise power. Simulation results indicate that the newly obtained blind adaptive deconvolution algorithm using these new Lagrange multipliers is robust to signal-to-noise ratios (SNR, unlike the previously proposed method, and is applicable for the whole range of SNR down to 7 dB. In addition, we also obtain new closed-form approximated expressions for the conditional expectation and mean square error (MSE.

  11. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Science.gov (United States)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  12. Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets

    Science.gov (United States)

    Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.

    2016-01-01

    The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.

  13. MILC staggered conjugate gradient performance on Intel KNL

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruiz [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Detar, Carleton [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Physics and Astronomy; Doerfler, Douglas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Gottlieb, Steven [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Jha, Asish [Intel Corp., Hillsboro, OR (United States). Sofware and Services Group; Kalamkar, Dhiraj [Intel Labs., Bangalore (India). Parallel Computing Lab.; Toussaint, Doug [Univ. of Arizona, Tucson, AZ (United States). Physics Dept.

    2016-11-03

    We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the MILC code for use with the Intel Knights Landing (KNL) architecture. KNL is the second gener- ation Intel Xeon Phi processor. It is capable of massive thread parallelism, data parallelism, and high on-board memory bandwidth and is being adopted in supercomputing centers for scientific research. The CG solver consumes the majority of time in production running, so we have spent most of our effort on it. We compare performance of an MPI+OpenMP baseline version of the MILC code with a version incorporating the QPhiX staggered CG solver, for both one-node and multi-node runs.

  14. Kaon decay amplitudes using staggered fermions

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1986-12-01

    A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model

  15. The symplectic structure of Euler-Lagrange superequations and Batalin-Vilkoviski formalism

    CERN Document Server

    Monterde, J

    2003-01-01

    We study the graded Euler-Lagrange equations from the viewpoint of graded Poincare-Cartan forms. An application to a certain class of solutions of the Batalin-Vilkoviski master equation is also given.

  16. Generalized force in classical field theory. [Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-02-01

    The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.

  17. Real-time dispersion calculation using the Lagrange model LASAT

    International Nuclear Information System (INIS)

    Janicke, L.

    1987-01-01

    The LASAT (Lagrange Simulation of Aerosol Transport) dispersion model demonstrates pollutant transport in the atmosphere by simulating the paths of representative random samples of pollutant particles on the computer as natural as possible. The author demonstrates the generated particle paths and refers to literature for details of the model algorithm. (DG) [de

  18. Detection of differential item functioning using Lagrange multiplier tests

    NARCIS (Netherlands)

    Glas, Cornelis A.W.

    1998-01-01

    Abstract: In the present paper it is shown that differential item functioning can be evaluated using the Lagrange multiplier test or Rao’s efficient score test. The test is presented in the framework of a number of IRT models such as the Rasch model, the OPLM, the 2-parameter logistic model, the

  19. Detection of differential item functioning using Lagrange multiplier tests

    NARCIS (Netherlands)

    Glas, Cornelis A.W.

    1996-01-01

    In this paper it is shown that differential item functioning can be evaluated using the Lagrange multiplier test or C. R. Rao's efficient score test. The test is presented in the framework of a number of item response theory (IRT) models such as the Rasch model, the one-parameter logistic model, the

  20. The Work of Lagrange in Number Theory and Algebra

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. The Work of Lagrange in Number Theory and Algebra. D P Patil, C R Pranesachar and Renuka RafJindran. (left) D P Patil got his Ph.D from the School of Math- ematics, TIFR and joined. IISc in 1992. His interests are commutative algebra, algebraic geometry and algebraic number theory. (right) C R ...

  1. Integral staggered point-matching method for millimeter-wave reflective diffraction gratings on electron cyclotron heating systems

    International Nuclear Information System (INIS)

    Xia, Donghui; Huang, Mei; Wang, Zhijiang; Zhang, Feng; Zhuang, Ge

    2016-01-01

    Highlights: • The integral staggered point-matching method for design of polarizers on the ECH systems is presented. • The availability of the integral staggered point-matching method is checked by numerical calculations. • Two polarizers are designed with the integral staggered point-matching method and the experimental results are given. - Abstract: The reflective diffraction gratings are widely used in the high power electron cyclotron heating systems for polarization strategy. This paper presents a method which we call “the integral staggered point-matching method” for design of reflective diffraction gratings. This method is based on the integral point-matching method. However, it effectively removes the convergence problems and tedious calculations of the integral point-matching method, making it easier to be used for a beginner. A code is developed based on this method. The calculation results of the integral staggered point-matching method are compared with the integral point-matching method, the coordinate transformation method and the low power measurement results. It indicates that the integral staggered point-matching method can be used as an optional method for the design of reflective diffraction gratings in electron cyclotron heating systems.

  2. Integral staggered point-matching method for millimeter-wave reflective diffraction gratings on electron cyclotron heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Donghui [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Huang, Mei [Southwestern Institute of Physics, 610041 Chengdu (China); Wang, Zhijiang, E-mail: wangzj@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Zhang, Feng [Southwestern Institute of Physics, 610041 Chengdu (China); Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)

    2016-10-15

    Highlights: • The integral staggered point-matching method for design of polarizers on the ECH systems is presented. • The availability of the integral staggered point-matching method is checked by numerical calculations. • Two polarizers are designed with the integral staggered point-matching method and the experimental results are given. - Abstract: The reflective diffraction gratings are widely used in the high power electron cyclotron heating systems for polarization strategy. This paper presents a method which we call “the integral staggered point-matching method” for design of reflective diffraction gratings. This method is based on the integral point-matching method. However, it effectively removes the convergence problems and tedious calculations of the integral point-matching method, making it easier to be used for a beginner. A code is developed based on this method. The calculation results of the integral staggered point-matching method are compared with the integral point-matching method, the coordinate transformation method and the low power measurement results. It indicates that the integral staggered point-matching method can be used as an optional method for the design of reflective diffraction gratings in electron cyclotron heating systems.

  3. Lattice Boltzmann scheme for diffusion on triangular grids

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2003-01-01

    In this paper we present a Lattice Boltzmann scheme for diffusion on it unstructured triangular grids. In this formulation of a LB for irregular grids there is no need for interpolation, which is required in other LB schemes on irregular grids. At the end of the propagation step the lattice gas

  4. MAXWELL EQUATIONS FOR A GENERALISED LAGRANGIAN FUNCTIONAL ECUACIONES DE MAXWELL PARA UNA FUNCIONAL DE LAGRANGE GENERALIZADA

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available This work deals with the problem of the construction of the Lagrange functional for an electromagnetic field. The generalised Maxwell equations for an electromagnetic field in free space are introduced. The main idea relies on the change of Lagrange function under the integral action. Usually, the Lagrange functional which describes the electromagnetic field is built with the quadrate of the electromagnetic field tensor . Such a quadrate term is the reason, from a mathematical point of view, for the linear form of the Maxwell equations in free space. The author does not make this assumption and nonlinear Maxwell equations are obtained. New material parameters of free space are established. The equations obtained are quite similar to the well-known Maxwell equations. The energy tensor of the electromagnetic field from a chiral approach to the Born Infeld Lagrangian is discussed in connection with the cosmological constant.Se aborda el problema de la construcción de la funcional de Lagrange de un campo electromagnético. Se introducen las ecuaciones generalizadas de Maxwell de un campo electromagnético en el espacio libre. La idea principal se basa en el cambio de función de Lagrange en virtud de la acción integral. Por lo general, la funcional de lagrange, que describe el campo electromagnético, se construye con el cuadrado del tensor de campo electromagnético. Ese término cuadrático es la razón, desde un punto de vista matemático, de la forma lineal de las ecuaciones de Maxwell en el espacio libre. Se obtienen las ecuaciones no lineales de Maxwell sin considerar esta suposición. Las ecuaciones de Maxwell obtenidas son bastante similares a las conocidas ecuaciones de Maxwell. Se analiza el tensor de energía del campo electromagnético en un enfoque quiral de la Lagrangiana de Born Infeld en relación con la constante cosmológica.

  5. Viscous-inviscid interaction using the parabolized Navier-Stokes equations

    DEFF Research Database (Denmark)

    Filippone, Antonino; Sørensen, Jens Nørkær

    1997-01-01

    adaptive grid is used.The interaction is achieved by iterative updatingof the boundary conditions, through the wall transpiration concept. The Navier-Stokes equationsare discretized on a semi-staggered grid.Space-marching integration is performed starting from the stagnation streamline ontwo independent......A numerical model for the calculation of incompressible viscous flows past airfoils andwings has been developed. The approach is based on a strong viscous-inviscid coupling of aboundary element method with the Navier-Stokesequations in vorticity-streamfunction formulation.A semi-adaptive or fully...

  6. Ergovaline does not alter the severity of ryegrass staggers induced by lolitrem B.

    Science.gov (United States)

    Finch, S C; Vlaming, J B; Sutherland, B L; van Koten, C; Mace, W J; Fletcher, L R

    2018-03-01

    To investigate a possible interaction between lolitrem B and ergovaline by comparing the incidence and severity of ryegrass staggers in sheep grazing ryegrass (Lolium perenne) containing lolitrem B or ryegrass containing both lolitrem B and ergovaline. Ninety lambs, aged approximately 6 months, were grazed on plots of perennial ryegrass infected with either AR98 endophyte (containing lolitrem B), standard endophyte (containing lolitrem B and ergovaline) or no endophyte, for up to 42 days from 2 February 2010. Ten lambs were grazed on three replicate plots per cultivar. Herbage samples were collected for alkaloid analysis and lambs were scored for ryegrass staggers (scores from 0-5) weekly during the study. Any animal which was scored ≥4 was removed from the study. Concentrations of lolitrem B did not differ between AR98 and standard endophyte-infected pastures during the study period (p=0.26), and ergovaline was present only in standard endophyte pastures. Ryegrass staggers was observed in sheep grazing both the AR98 and standard endophyte plots, with median scores increasing in the third week of the study. Prior to the end of the 42-day grazing period, 22 and 17 animals were removed from the standard endophyte and AR98 plots, respectively, because their staggers scores were ≥4. The cumulative probability of lambs having scores ≥4 did not differ between animals grazing the two pasture types (p=0.41). There was no evidence for ergovaline increasing the severity of ryegrass staggers induced by lolitrem B. In situations where the severity of ryegrass staggers appears to be greater than that predicted on the basis of concentrations of lolitrem B, the presence of other tremorgenic alkaloids should be investigated.

  7. Gap states and edge properties of rectangular graphene quantum dot in staggered potential

    Science.gov (United States)

    Jeong, Y. H.; Eric Yang, S.-R.

    2017-09-01

    We investigate edge properties of a gapful rectangular graphene quantum dot in a staggered potential. In such a system gap states with discrete and closely spaced energy levels exist that are spatially located on the left or right zigzag edge. We find that, although the bulk states outside the energy gap are nearly unaffected, spin degeneracy of each gap state is lifted by the staggered potential. We have computed the occupation numbers of spin-up and -down gap states at various values of the strength of the staggered potential. The electronic and magnetic properties of the zigzag edges depend sensitively on these numbers. We discuss the possibility of applying this system as a single electron spintronic device.

  8. Reaction mechanisms and staggering in S+Ni collisions

    International Nuclear Information System (INIS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V.L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad.R.

    2011-01-01

    The reactions 32 S+ 58 Ni and 32 S+ 64 Ni are studied at 14.5 A MeV. After a selection of the collision mechanism, we show that important even-odd effects are present in the isotopic fragment distributions when the excitation energy is small. Close to the multifragmentation threshold this staggering appears hidden by the rapid variation of the production yields with the fragment size. Once this effect is accounted for, the staggering appears to be a universal feature of fragment production, slightly enhanced when the emission source is neutron poor. A closer look at the behavior of the production yields as a function of the neutron excess N-Z, reveals that odd-even effects cannot be explained by pairing effects in the nuclear masses alone, but depend in a more complex way on the de-excitation chain.

  9. Sufficient conditions for Lagrange, Mayer, and Bolza optimization problems

    Directory of Open Access Journals (Sweden)

    Boltyanski V.

    2001-01-01

    Full Text Available The Maximum Principle [2,13] is a well known necessary condition for optimality. This condition, generally, is not sufficient. In [3], the author proved that if there exists regular synthesis of trajectories, the Maximum Principle also is a sufficient condition for time-optimality. In this article, we generalize this result for Lagrange, Mayer, and Bolza optimization problems.

  10. The Hamiltonian formulation of regular rth-order Lagrangian field theories

    International Nuclear Information System (INIS)

    Shadwick, W.F.

    1982-01-01

    A Hamiltonian formulation of regular rth-order Lagrangian field theories over an m-dimensional manifold is presented in terms of the Hamilton-Cartan formalism. It is demonstrated that a uniquely determined Cartan m-form may be associated to an rth-order Lagrangian by imposing conditions of congruence modulo a suitably defined system of contact m-forms. A geometric regularity condition is given and it is shown that, for a regular Lagrangian, the momenta defined by the Hamilton-Cartan formalism, together with the coordinates on the (r-1)st-order jet bundle, are a minimal set of local coordinates needed to express the Euler-Lagrange equations. When r is greater than one, the number of variables required is strictly less than the dimension of the (2r-1)st order jet bundle. It is shown that, in these coordinates, the Euler-Lagrange equations take the first-order Hamiltonian form given by de Donder. It is also shown that the geometrically natural generalization of the Hamilton-Jacobi procedure for finding extremals is equivalent to de Donder's Hamilton-Jacobi equation. (orig.)

  11. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  12. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (8) numerical simulation using SOROBAN-grid CIP method

    International Nuclear Information System (INIS)

    Yasutaka Sakurai; Takashi Yabe; Tomomasa Ohkubo; Yoichi Ogata; Michitsugu Mori

    2005-01-01

    Generally, there are two coordinate systems in computation of fluid dynamics: curvilinear coordinate or Cartesian coordinate. The former is suitable for describing complex figure, but it cannot get high accuracy. On the other hand, the latter can easily increase the accuracy, but it needs a large number of grids to describe complex figure. In this paper, we propose a new grid generating method, the Soroban grid, which has large capability for treating complex figure and does not lose the accuracy. Coupling this grid generating method and the CIP method, we can get flexibility to describe complex figure without loosing (3rd order) accuracy. Since the Soroban grid is unstructured grid, we can not use the staggered grid and had better use the co-location grid. Although the fluid computation in the co-location grid is usually unstable, we succeeded in calculating the multi-phase flow that has large density difference applying the C-CUP method to this grid system. In this paper, we shall introduce this grid generating method and apply these methods to simulate the steam injector of power plant. (authors)

  13. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    Science.gov (United States)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  14. Stagger angle dependence of inertial and elastic coupling in bladed disks

    Science.gov (United States)

    Crawley, E. F.; Mokadam, D. R.

    1984-01-01

    Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.

  15. Staggering the dose of sugammadex lowers risks for severe emergence cough: a randomized control trial.

    Science.gov (United States)

    P S, Loh; Miskan, M M; Y Z, Chin; Zaki, R A

    2017-10-11

    Cough on emergence has been reported as a common adverse reaction with sugammadex reversal. We investigated if staggering the dose of sugammadex will reduce emergence cough in a single-center, randomized, double-blinded study. A hundred and twenty ASA 1-3 adults were randomly reversed with 1 mg/kg sugammadex prior to extubation followed by another 1 mg/kg immediately after extubation (staggered group), single dose of 2 mg/kg sugammadex (single bolus group) or neostigmine 0.02 mg/kg with glycopyrrolate (neostigmine group). We found 70% of patients (n = 28) reversed with single boluses of sugammadex had Grade 3 emergence cough compared to 12.5% (n = 5) in the staggered sugammadex group and 17.5% (n = 7) in the neostigmine group (p sugammadex group (n = 14, 35%, p = 0.005). On the other hand, staggering sugammadex lowered risks of developing severe cough (RR 0.2, p sugammadex group and control given neostigmine. In terms of timing, there was no delay in time taken from discontinuing anesthetic agents to reversal and extubation if sugammadex was staggered (emergence time 6.0 ± 3.2 s, p = 0.625 and reversal time 6.5 ± 3.5, p = 0.809). Staggering the dose of sugammadex for reversal will effectively decrease common emergence and early postoperative complications. ANZCTR Number ACTRN12616000116426 . Retrospectively registered on 2nd February 2016.

  16. Numerical properties of staggered overlap fermions

    CERN Document Server

    de Forcrand, Philippe; Panero, Marco

    2010-01-01

    We report the results of a numerical study of staggered overlap fermions, following the construction of Adams which reduces the number of tastes from 4 to 2 without fine-tuning. We study the sensitivity of the operator to the topology of the gauge field, its locality and its robustness to fluctuations of the gauge field. We make a first estimate of the computing cost of a quark propagator calculation, and compare with Neuberger's overlap.

  17. Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field

    International Nuclear Information System (INIS)

    Sato, Masahiro; Oshikawa, Masaki

    2002-01-01

    We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)

  18. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.G.; English, B.C. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-party custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.

  19. LES investigation of infinite staggered wind-turbine arrays

    International Nuclear Information System (INIS)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2014-01-01

    The layouts of turbines affect the turbine wake interactions and thus the wind farm performance. The wake interactions in infinite staggered wind-turbine arrays are investigated and compared with infinite aligned turbine arrays in this paper. From the numerical results we identify three types of wake behaviours, which are significantly different from wakes in aligned wind-turbine arrays. For the first type, each turbine wake interferes with the pair of staggered downstream turbine wakes and the aligned downstream turbine. For the second type, each turbine wake interacts with the first two downstream turbine wakes but does not show significant interference with the second aligned downstream turbine. For the third type, each turbine wake recovers immediately after passing through the gap of the first two downstream turbines and has little interaction with the second downstream turbine wakes The extracted power density and power efficiency are also studied and compared with aligned wind-turbine arrays

  20. How (not) to use the Palatini formulation of scalar-tensor gravity

    International Nuclear Information System (INIS)

    Iglesias, Alberto; Kaloper, Nemanja; Park, Minjoon; Padilla, Antonio

    2007-01-01

    We revisit the problem of defining nonminimal gravity in the first order formalism. Specializing to scalar-tensor theories, which may be disguised as ''higher-derivative'' models with the gravitational Lagrangians that depend only on the Ricci scalar, we show how to recast these theories as Palatini-like gravities. The correct formulation utilizes the Lagrange multiplier method, which preserves the canonical structure of the theory, and yields the conventional metric scalar-tensor gravity. We explain the discrepancies between the naieve Palatini and the Lagrange multiplier approach, showing that the naieve Palatini approach really swaps the theory for another. The differences disappear only in the limit of ordinary general relativity, where an accidental redundancy ensures that the naieve Palatini approach works there. We outline the correct decoupling limits and the strong coupling regimes. As a corollary we find that the so-called ''modified source gravity'' models suffer from strong coupling problems at very low scales, and hence cannot be a realistic approximation of our universe. We also comment on a method to decouple the extra scalar using the chameleon mechanism

  1. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...... a solution based on Green-Lagrange strain measure. The approach is especially useful in design optimization, because analytical sensitivity analysis then can be performed. The case of a three node triangular ring element for axisymmetric analysis involves small modifications and extension to four node...

  2. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  3. Formulation of an ocean model for global climate simulations

    Directory of Open Access Journals (Sweden)

    S. M. Griffies

    2005-01-01

    Full Text Available This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL climate model used for the 4th IPCC Assessment (AR4 of global climate change. In particular, it reviews the numerical schemes and physical parameterizations that make up an ocean climate model and how these schemes are pieced together for use in a state-of-the-art climate model. Features of the model described here include the following: (1 tripolar grid to resolve the Arctic Ocean without polar filtering, (2 partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3 more accurate equation of state, (4 three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5 incorporation of regional climatological variability in shortwave penetration, (6 neutral physics parameterization for representation of the pathways of tracer transport, (7 staggered time stepping for tracer conservation and numerical efficiency, (8 anisotropic horizontal viscosities for representation of equatorial currents, (9 parameterization of exchange with marginal seas, (10 incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11 transport of water across the ocean free surface to eliminate unphysical ``virtual tracer flux' methods, (12 parameterization of tidal mixing on continental shelves. We also present preliminary analyses of two particularly important sensitivities isolated during the development process, namely the details of how parameterized subgridscale eddies transport momentum and tracers.

  4. Design of quadrature mirror filter bank using Lagrange multiplier method based on fractional derivative constraints

    Directory of Open Access Journals (Sweden)

    B. Kuldeep

    2015-06-01

    Full Text Available Fractional calculus has recently been identified as a very important mathematical tool in the field of signal processing. Digital filters designed by fractional derivatives give more accurate frequency response in the prescribed frequency region. Digital filters are most important part of multi-rate filter bank systems. In this paper, an improved method based on fractional derivative constraints is presented for the design of two-channel quadrature mirror filter (QMF bank. The design problem is formulated as minimization of L2 error of filter bank transfer function in passband, stopband interval and at quadrature frequency, and then Lagrange multiplier method with fractional derivative constraints is applied to solve it. The proposed method is then successfully applied for the design of two-channel QMF bank with higher order filter taps. Performance of the QMF bank design is then examined through study of various parameters such as passband error, stopband error, transition band error, peak reconstruction error (PRE, stopband attenuation (As. It is found that, the good design can be obtained with the change of number and value of fractional derivative constraint coefficients.

  5. Constraint propagation of C2-adjusted formulation: Another recipe for robust ADM evolution system

    International Nuclear Information System (INIS)

    Tsuchiya, Takuya; Yoneda, Gen; Shinkai, Hisa-aki

    2011-01-01

    With a purpose of constructing a robust evolution system against numerical instability for integrating the Einstein equations, we propose a new formulation by adjusting the ADM evolution equations with constraints. We apply an adjusting method proposed by Fiske (2004) which uses the norm of the constraints, C 2 . One of the advantages of this method is that the effective signature of adjusted terms (Lagrange multipliers) for constraint-damping evolution is predetermined. We demonstrate this fact by showing the eigenvalues of constraint propagation equations. We also perform numerical tests of this adjusted evolution system using polarized Gowdy-wave propagation, which show robust evolutions against the violation of the constraints than that of the standard ADM formulation.

  6. Lagrange and Noether analysis of polarization laws of conservation for electromagnetic field

    International Nuclear Information System (INIS)

    Krivskij, I.Yu.; Simulik, V.M.

    1988-01-01

    Both well-known Bessel-Hagen conservation laws and conservation laws of polarized character are derived for electromagnetic field in the Lagrange approach to electrodynamics in terms of intensities (without using the A μ potentials as variation variables). The laws mentioned are derived according to Noether theorem because symmetry to which such concervation laws correspond is lost during the transition from intensities to potentials. Based on Noether theorem (and its generalization for Naeik's symmetries) and Lagrange function scalar in relation to complete Poincare group in terms of intensity tensor, a convenient formula for calculating and values conserved for electromagnetic field is derived which sets up a physically adequate symmetry operator -conservation law correlation and thus links the presence of conservation laws of polarized character with symmetry properties of Maxwell equations. Adiabaticity of conservation laws of polarized character under the presence of interaction with currents and charges is indicated

  7. Diffusion on unstructured triangular grids using Lattice Boltzmann

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2004-01-01

    In this paper, we present a Lattice Boltzmann scheme for diffusion on unstructured triangular grids. In this formulation there is no need for interpolation, as is required in other LB schemes on irregular grids. At the end of the propagation step, the lattice gas particles arrive exactly at

  8. Dynamical computation of constrained flexible systems using a modal Udwadia-Kalaba formulation: Application to musical instruments.

    Science.gov (United States)

    Antunes, J; Debut, V

    2017-02-01

    Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instruments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3-18 (2016)] on guitar modeling using penalty methods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency.

  9. Heisenberg spin-one chain in staggered magnetic field: A density matrix renormalization group study

    International Nuclear Information System (INIS)

    Jizhong Lou; Xi Dai; Shaojin Qin; Zhaobin Su; Lu Yu

    1999-04-01

    Using the density matrix renormalization group technique, we calculate numerically the low energy excitation spectrum and magnetization curve of the spin-1 antiferromagnetic chain in a staggered magnetic field, which is expected to describe the physics of R 2 BaNiO 5 (R ≠ Y) family below the Neel temperature of the magnetic rare-earth (R) sublattice. These results are valid in the entire range of the staggered field, and agree with those given by the non-linear σ model study for small fields, but differ from the latter for large fields. They are consistent with the available experimental data. The correlation functions for this model are also calculated. The transverse correlations display the anticipated exponential decay with shorter correlation length, while the longitudinal correlations show explicitly the induced staggered magnetization. (author)

  10. Mapping PetaSHA Applications to TeraGrid Architectures

    Science.gov (United States)

    Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.

    2007-12-01

    The Southern California Earthquake Center (SCEC) has a science program in developing an integrated cyberfacility - PetaSHA - for executing physics-based seismic hazard analysis (SHA) computations. The NSF has awarded PetaSHA 15 million allocation service units this year on the fastest supercomputers available within the NSF TeraGrid. However, one size does not fit all, a range of systems are needed to support this effort at different stages of the simulations. Enabling PetaSHA simulations on those TeraGrid architectures to solve both dynamic rupture and seismic wave propagation have been a challenge from both hardware and software levels. This is an adaptation procedure to meet specific requirements of each architecture. It is important to determine how fundamental system attributes affect application performance. We present an adaptive approach in our PetaSHA application that enables the simultaneous optimization of both computation and communication at run-time using flexible settings. These techniques optimize initialization, source/media partition and MPI-IO output in different ways to achieve optimal performance on the target machines. The resulting code is a factor of four faster than the orignial version. New MPI-I/O capabilities have been added for the accurate Staggered-Grid Split-Node (SGSN) method for dynamic rupture propagation in the velocity-stress staggered-grid finite difference scheme (Dalguer and Day, JGR, 2007), We use execution workflow across TeraGrid sites for managing the resulting data volumes. Our lessons learned indicate that minimizing time to solution is most critical, in particular when scheduling large scale simulations across supercomputer sites. The TeraShake platform has been ported to multiple architectures including TACC Dell lonestar and Abe, Cray XT3 Bigben and Blue Gene/L. Parallel efficiency of 96% with the PetaSHA application Olsen-AWM has been demonstrated on 40,960 Blue Gene/L processors at IBM TJ Watson Center. Notable

  11. The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version

    Directory of Open Access Journals (Sweden)

    H. Wan

    2013-06-01

    Full Text Available As part of a broader effort to develop next-generation models for numerical weather prediction and climate applications, a hydrostatic atmospheric dynamical core is developed as an intermediate step to evaluate a finite-difference discretization of the primitive equations on spherical icosahedral grids. Based on the need for mass-conserving discretizations for multi-resolution modelling as well as scalability and efficiency on massively parallel computing architectures, the dynamical core is built on triangular C-grids using relatively small discretization stencils. This paper presents the formulation and performance of the baseline version of the new dynamical core, focusing on properties of the numerical solutions in the setting of globally uniform resolution. Theoretical analysis reveals that the discrete divergence operator defined on a single triangular cell using the Gauss theorem is only first-order accurate, and introduces grid-scale noise to the discrete model. The noise can be suppressed by fourth-order hyper-diffusion of the horizontal wind field using a time-step and grid-size-dependent diffusion coefficient, at the expense of stronger damping than in the reference spectral model. A series of idealized tests of different complexity are performed. In the deterministic baroclinic wave test, solutions from the new dynamical core show the expected sensitivity to horizontal resolution, and converge to the reference solution at R2B6 (35 km grid spacing. In a dry climate test, the dynamical core correctly reproduces key features of the meridional heat and momentum transport by baroclinic eddies. In the aqua-planet simulations at 140 km resolution, the new model is able to reproduce the same equatorial wave propagation characteristics as in the reference spectral model, including the sensitivity of such characteristics to the meridional sea surface temperature profile. These results suggest that the triangular-C discretization provides a

  12. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    Science.gov (United States)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  13. Almost Kaehler Ricci Flows and Einstein and Lagrange-Finsler Structures on Lie Algebroids

    CERN Document Server

    Vacaru, Sergiu I

    2015-01-01

    In this work we investigate Ricci flows of almost Kaehler structures on Lie algebroids when the fundamental geometric objects are completely determined by (semi) Riemannian metrics, or effective) regular generating Lagrange/ Finsler, functions. There are constructed canonical almost symplectic connections for which the geometric flows can be represented as gradient ones and characterized by nonholonomic deformations of Grigory Perelman's functionals. The first goal of this paper is to define such thermodynamical type values and derive almost K\\"ahler - Ricci geometric evolution equations. The second goal is to study how fixed Lie algebroid, i.e. Ricci soliton, configurations can be constructed for Riemannian manifolds and/or (co) tangent bundles endowed with nonholonomic distributions modelling (generalized) Einstein or Finsler - Cartan spaces. Finally, there are provided some examples of generic off-diagonal solutions for Lie algebroid type Ricci solitons and (effective) Einstein and Lagrange-Finsler algebro...

  14. Inverse mass matrix via the method of localized lagrange multipliers

    Czech Academy of Sciences Publication Activity Database

    González, José A.; Kolman, Radek; Cho, S.S.; Felippa, C.A.; Park, K.C.

    2018-01-01

    Roč. 113, č. 2 (2018), s. 277-295 ISSN 0029-5981 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA ČR GA17-22615S Institutional support: RVO:61388998 Keywords : explicit time integration * inverse mass matrix * localized Lagrange multipliers * partitioned analysis Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 2.162, year: 2016 https://onlinelibrary.wiley.com/doi/10.1002/nme.5613

  15. PENENTUAN KEUNTUNGAN MAKSIMUM PADA PENJUALAN OLAHAN TAPE DENGAN MENGGUNAKAN METODE LAGRANGE (Studi Kasus: UD. Sari Madu

    Directory of Open Access Journals (Sweden)

    FEMY AYU ASTITI

    2013-01-01

    Full Text Available Optimization problems can be solved by various methods, such as Lagrange Method.   This  method can be used to find the solution. Using Lagrange method, the extreme value can be obtained, so that the optimal solution can be found. In this research, the maximum revenue of UD. Sari Madu is a limited by several constraints. After the objective function and constraint function being model, than maximum revenue is found. From first until fourth quarterly, the maximum revenue is found Rp. 9.701.333, Rp. 10.064.148, 9.793.272 and Rp. 9.397.730 respectively.

  16. LLCL-Filtered Grid Converter with Improved Stability and Robustness

    DEFF Research Database (Denmark)

    Min, Huang; Wang, Xiongfei; Loh, Poh Chiang

    2016-01-01

    impedance variations, making its design more challenging. To address these concerns, a new parameter design method for LLCL-filter has been formulated in the paper, which when enforced, guarantees robust and stable grid current control regardless of how the grid conditions change. It is thus an enhanced...

  17. Values and potentials of grid-connected solar photovoltaic applications in Malaysia

    International Nuclear Information System (INIS)

    Ahmad Hadri Haris; Iszuan Shah Syed Ismail

    2006-01-01

    Since early 1998, TNB Research Sdn Bhd has been conducting a pilot project to evaluate the performance and economics of grid-connected solar photovoltaic (PV) applications in Malaysia. The project is co-funded by Tenaga Nasional Berhad (TNB) and Malaysia Electricity Supply Industry Trust Account (MESITA). Currently, research project is being concluded with many valuable findings that would be able to provide the direction for the next solar PV development in Malaysia. In total, six pilot grid-connected solar PV systems were installed, where five are located within Klang Valley area and one in Port Dickson. The systems installation and commissioning were staggered between August 1998 to November 2001. A variety of building type was also selected for the system installation. In addition, various PV systems technologies and configurations were applied with average PV power capacity of 3 kW. These variances provide a good opportunity to assess the actual performances and economics of the solar PV applications under the Malaysian environment. This paper would discuss some of the findings, but with a focus on the values and potentials of the grid-connected solar PV applications in Malaysia

  18. On Lagrange Multipliers in Work with Quality and Reliability Assurance

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Becker, P.

    1986-01-01

    In optimizing some property of a system, reliability say, a designer usually has to accept certain constraints regarding cost, completion time, volume, weight, etc. The solution of optimization problems with boundary constraints can be helped substantially by the use of Lagrange multipliers...... in the areas of sales promotion and teaching. These maps illuminate the logic structure of solution sequences. One such map is shown, illustrating the application of LMT in one of the examples....

  19. Constitutive Modelling in Thermomechanical Processes, Using The Control Volume Method on Staggered Grid

    DEFF Research Database (Denmark)

    Thorborg, Jesper

    , however, is constituted by the implementation of the $J_2$ flow theory in the control volume method. To apply the control volume formulation on the process of hardening concrete viscoelastic stress-strain models has been examined in terms of various rheological models. The generalized 3D models are based...... on two different suggestions in the literature, that is compressible or incompressible behaviour of the viscos response in the dashpot element. Numerical implementation of the models has shown very good agreement with corresponding analytical solutions. The viscoelastic solid mechanical model is used...

  20. Blockspin and multigrid for staggered fermions in non-abelian gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.; Mack, G.; Speh, M.

    1991-07-01

    We discuss blockspins for staggered fermions, i.e. averaging and interpolation procedures which are needed in a real space renormalization group approach to gauge theories with staggered fermions and in a multigrid approach to the computation of gauge covariant propagators. The discussion starts from the requirement that the symmetries of the free action should be preserved by the blocking procedure in the limit of a pure gauge. A definition of an averaging kernel as a solution of a gauge covariant eigenvalue equation is proposed, and the properties of a corresponding interpolation kernel are examined in the light of general criteria for good choices of blockspins. Some results of multigrid computation of bosonic propagation in an SU(2) gauge field in 4 dimensions are also presented. (orig.)

  1. Skew information in the XY model with staggered Dzyaloshinskii-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liang, E-mail: lqiu@cumt.edu.cn [School of Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Quan, Dongxiao [State Key Laboratory of Integrated Services Networks, Xidian University, Xi' an, Shaanxi 710071 (China); Pan, Fei; Liu, Zhi [School of Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2017-06-01

    We study the performance of the lower bound of skew information in the vicinity of transition point for the anisotropic spin-1/2 XY chain with staggered Dzyaloshinskii-Moriya interaction by use of quantum renormalization-group method. For a fixed value of the Dzyaloshinskii-Moriya interaction, there are two saturated values for the lower bound of skew information corresponding to the spin-fluid and Néel phases, respectively. The scaling exponent of the lower bound of skew information closely relates to the correlation length of the model and the Dzyaloshinskii-Moriya interaction shifts the factorization point. Our results show that the lower bound of skew information can be a good candidate to detect the critical point of XY spin chain with staggered Dzyaloshinskii-Moriya interaction.

  2. LA INTERPOLACIÓN DE LAGRANGE EN EL ESPACIO m

    Directory of Open Access Journals (Sweden)

    Gabriel Poveda Ramos

    Full Text Available En este artículo se deduce de manera original una fórmula de interpolación en el espacio real de m dimensiones (m, inspirada en la conocida fórmula de Lagrange para funciones reales (F(x de una variable, es decir en la recta real . Los resultados que aquí se obtienen no parecen ser muy conocidos, al menos, en los medios universitarios de Colombia. El autor los ha buscado durante mucho tiempo, sin hallarlos. Finalmente tuvo que deducirlos por sí solo.

  3. Staggered Dslash Performance on Intel Xeon Phi Architecture

    OpenAIRE

    Li, Ruizi; Gottlieb, Steven

    2014-01-01

    The conjugate gradient (CG) algorithm is among the most essential and time consuming parts of lattice calculations with staggered quarks. We test the performance of CG and dslash, the key step in the CG algorithm, on the Intel Xeon Phi, also known as the Many Integrated Core (MIC) architecture. We try different parallelization strategies using MPI, OpenMP, and the vector processing units (VPUs).

  4. A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2017-12-01

    We discuss the development and assessment of a robust numerical algorithm for simulating multiphase flows with complex interfaces and high density ratios on arbitrary polygonal meshes. The algorithm combines the volume-of-fluid method with an incremental projection approach for incompressible multiphase flows in a novel hybrid staggered/non-staggered framework. The key principles that characterise the algorithm are the consistent treatment of discrete mass and momentum transport and the similar discretisation of force terms appearing in the momentum equation. The former is achieved by invoking identical schemes for convective transport of volume fraction and momentum in the respective discrete equations while the latter is realised by representing the gravity and surface tension terms as gradients of suitable scalars which are then discretised in identical fashion resulting in a balanced formulation. The hybrid staggered/non-staggered framework employed herein solves for the scalar normal momentum at the cell faces, while the volume fraction is computed at the cell centroids. This is shown to naturally lead to similar terms for pressure and its correction in the momentum and pressure correction equations respectively, which are again treated discretely in a similar manner. We show that spurious currents that corrupt the solution may arise both from an unbalanced formulation where forces (gravity and surface tension) are discretised in dissimilar manner and from an inconsistent approach where different schemes are used to convect the mass and momentum, with the latter prominent in flows which are convection-dominant with high density ratios. Interestingly, the inconsistent approach is shown to perform as well as the consistent approach even for high density ratio flows in some cases while it exhibits anomalous behaviour for other scenarios, even at low density ratios. Using a plethora of test problems of increasing complexity, we conclusively demonstrate that the

  5. LES analysis of the flow in a simplified PWR assembly with mixing grid

    Science.gov (United States)

    Bieder, Ulrich; Falk, Francois

    2014-06-01

    The flow in fuel assemblies of PWRs with mixing grids has been analyzed with CFD calculations by numerous authors. The comparisons between calculation and experiment are focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 10 to 20 hydraulic diameters (dh) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5x5 tube bundle) and TrioU calculations is done for the whole distance between two successive mixing grids that is up to 0.6m downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below: Linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid, Further downstream, when the cross flow velocity is reduced and isotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models will fail, The mixing grid affects the cross flow velocity up to the successive grid at a distance of about 50dh. The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 nodes of the HPC machine CURIE of the CCRT was necessary to calculate the statistics of the turbulent flow, in particular the mean velocity and the RMS of the turbulent fluctuations.

  6. LES analysis of the flow in a simplified PWR assembly with mixing grid

    International Nuclear Information System (INIS)

    Bieder, Ulrich; Fauchet, Gauthier; Falk, Francois

    2014-01-01

    The flow in fuel assemblies of Pressurized Water Reactors (PWR) with mixing grids has been analysed with Computational Fluid Dynamics (CFD) by numerous authors. The comparisons between calculation and experiment are mostly focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 5 to 10 hydraulic diameters (dh) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5 * 5 tube bundle) and Trio-U calculations is done for the whole distance between two successive mixing grids that is up to about 50 d h downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below: Linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid, Further downstream, when the cross flow velocity is reduced and anisotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models can fail, The mixing grid affects the cross flow velocity up to the successive grid. The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 cores of the High Performance Computer (HPC) cluster CURIE of the Centre de Calcul, Recherche et Technologie (CCRT) were necessary to converge the statistics of the turbulent fluctuations, completely converge the mean velocity and incompletely converge the RMS of the turbulent fluctuations. (authors)

  7. LES analysis of the flow in a simplified PWR assembly with mixing grid

    International Nuclear Information System (INIS)

    Bieder, U.; Falk, F.

    2013-01-01

    The flow in fuel assemblies of PWRs with mixing grids has been analyzed with CFD calculations by numerous authors. The comparisons between calculation and experiment are focused on the flow in the near wake of the mixing grid, i.e. on the flow in the first 10 to 20 hydraulic diameters (d h ) downstream of the grid. In the study presented here, the comparison between the measurements in the AGATE facility (5*5 tube bundle) and Trio U calculations is done for the whole distance between two successive mixing grids that is up to 0.6 m downstream of the grid. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The conclusions of the comparison are summarized below. First, the linear turbulent viscosity models seem to work rather well as long as the cross flow velocity in the rod gaps is advection controlled, that is directly downstream of the mixing grid. Secondly, further downstream, when the cross flow velocity is reduced and isotropic turbulence becomes a more and more important mixing phenomena, linear viscosity models will fail. Thirdly, the mixing grid affects the cross flow velocity up to the successive grid at a distance of about 50 d h . The flow in fuel assemblies is never similar to that in undisturbed rod bundles. The test section of the AGATE facility has been discretized on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 nodes of the HPC machine CURIE of the CCRT (Computer Center for Research and Technology - France) was necessary to calculate the statistics of the turbulent flow, in particular the mean velocity and the RMS of the turbulent fluctuations. (authors)

  8. The shallow water equations on the sphere and their Lagrange- Galerkin-solution

    CERN Document Server

    Heinze, T

    2002-01-01

    The shallow water equations are formulated on the sphere in a three- dimensional coordinate system with the aid of tangential velocity components and differential operators. We introduce a modified semi- Lagrangian scheme for the discretization in time. The discretization in space is solved by linear finite elements. The grids we use are regular refinements of a macro triangulation which itself is derived from a highly symmetric polyeder also known as a bucky or soccer ball. The good numerical results show that this combination is a promising approach. The numerical algorithm is stable and its strength is the conservation of mass and energy. (16 refs).

  9. Reactive Power Control for Improving Wind Turbine System Behavior Under Grid Faults

    DEFF Research Database (Denmark)

    Rodriguez, P.; Timbus, A.; Teodorescu, Remus

    2009-01-01

    This letter aims to present a generalized vector-based formulation for calculating the grid-side current reference to control reactive power delivered to the grid. Strategies for current reference generation were implemented on the abc stationary reference frame, and their effectivenesswas...... demonstrated experimentally, perhaps validating the theoretical analysis even under grid fault conditions....

  10. A scenario of vehicle-to-grid implementation and its double-layer optimal charging strategy for minimizing load variance within regional smart grids

    International Nuclear Information System (INIS)

    Jian, Linni; Zhu, Xinyu; Shao, Ziyun; Niu, Shuangxia; Chan, C.C.

    2014-01-01

    Highlights: • A scenario of vehicle-to-grid implementation within regional smart grid is discussed and mathematically formulated. • A double-layer optimal charging strategy for plug-in electric vehicles is proposed. • The proposed double-layer optimal charging algorithm aims to minimize power grid’s load variance. • The performance of proposed double-layer optimal charging algorithm is evaluated through comparative study. - Abstract: As an emerging new electrical load, plug-in electric vehicles (PEVs)’ impact on the power grid has drawn increasing attention worldwide. An optimal scenario is that by digging the potential of PEVs as a moveable energy storage device, they may not harm the power grid by, for example, triggering extreme surges in demand at rush hours, conversely, the large-scale penetration of PEVs could benefit the grid through flattening the power load curve, hence, increase the stability, security and operating economy of the grid. This has become a hot issue which is known as vehicle-to-grid (V2G) technology within the framework of smart grid. In this paper, a scenario of V2G implementation within regional smart grids is discussed. Then, the problem is mathematically formulated. It is essentially an optimization problem, and the objective is to minimize the overall load variance. With the increase of the scale of PEVs and charging posts involved, the computational complexity will become tremendously high. Therefore, a double-layer optimal charging (DLOC) strategy is proposed to solve this problem. The comparative study demonstrates that the proposed DLOC algorithm can effectively solve the problem of tremendously high computational complexity arising from the large-scaled PEVs and charging posts involved

  11. The sequential organ failure assessment (SOFA) score is an effective triage marker following staggered paracetamol (acetaminophen) overdose.

    Science.gov (United States)

    Craig, D G; Zafar, S; Reid, T W D J; Martin, K G; Davidson, J S; Hayes, P C; Simpson, K J

    2012-06-01

    The sequential organ failure assessment (SOFA) score is an effective triage marker following single time point paracetamol (acetaminophen) overdose, but has not been evaluated following staggered (multiple supratherapeutic doses over >8 h, resulting in cumulative dose of >4 g/day) overdoses. To evaluate the prognostic accuracy of the SOFA score following staggered paracetamol overdose. Time-course analysis of 50 staggered paracetamol overdoses admitted to a tertiary liver centre. Individual timed laboratory samples were correlated with corresponding clinical parameters and the daily SOFA scores were calculated. A total of 39/50 (78%) patients developed hepatic encephalopathy. The area under the SOFA receiver operator characteristic for death/liver transplantation was 87.4 (95% CI 73.2-95.7), 94.3 (95% CI 82.5-99.1), and 98.4 (95% CI 84.3-100.0) at 0, 24 and 48 h, respectively, postadmission. A SOFA score of paracetamol overdose, is associated with a good prognosis. Both the SOFA and APACHE II scores could improve triage of high-risk staggered paracetamol overdose patients. © 2012 Blackwell Publishing Ltd.

  12. Difference Discrete Variational Principle,EULER-Lagrange Cohomology and Symplectic, Multisymplectic Structures

    OpenAIRE

    Guo, H. Y.; Li, Y. Q.; Wu, K.; Wang, S. K.

    2001-01-01

    We study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncomutative differential geometry. By virtue of this variational principle, we get the difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory. We also explore the difference discrete versions for the Euler...

  13. Estimation of effective elastic constants for grid plate

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Okumura, Yoshikazu

    1980-07-01

    This article contains a method of estimation for the effective elastic constants of a grid plate, which is a flat perforated plate with pipes for cooling. The elastic constants of the grid plate are formulated for two symmetric axes. In the case of using OFCu(E 0 = 12500 kg/mm 2 , ν 0 = 0.34) as the material of the grid, the results are given as follows. E sub(L) = 3180 kg/mm 2 , E sub(T) = 3860 kg/mm 2 upsilon sub(LT) = 0.12, upsilon sub(TL) = 0.15 (author)

  14. On Long-Time Instabilities in Staggered Finite Difference Simulations of the Seismic Acoustic Wave Equations on Discontinuous Grids

    KAUST Repository

    Gao, Longfei; Ketcheson, David I.; Keyes, David E.

    2017-01-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application

  15. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  16. Jet Riemann-Lagrange Geometry Applied to Evolution DEs Systems from Economy

    OpenAIRE

    Neagu, Mircea

    2007-01-01

    The aim of this paper is to construct a natural Riemann-Lagrange differential geometry on 1-jet spaces, in the sense of nonlinear connections, generalized Cartan connections, d-torsions, d-curvatures, jet electromagnetic fields and jet Yang-Mills energies, starting from some given non-linear evolution DEs systems modelling economic phenomena, like the Kaldor model of the bussines cycle or the Tobin-Benhabib-Miyao model regarding the role of money on economic growth.

  17. A mixed nonoverlapping covolume method on quadrilateral grids for elliptic problems

    NARCIS (Netherlands)

    Zhao, X.; Chen, Y.; Lv, J.

    2016-01-01

    A covolume method is proposed for the mixed formulation of second-order elliptic problems. The solution domain is divided by a quadrilateral grid, corresponding to which a nonoverlapping dual grid is constructed. The velocity and pressure are approximated by the lowest-order Raviart–Thomas space on

  18. For smart electric grids

    International Nuclear Information System (INIS)

    Tran Thiet, Jean-Paul; Leger, Sebastien; Bressand, Florian; Perez, Yannick; Bacha, Seddik; Laurent, Daniel; Perrin, Marion

    2012-01-01

    The authors identify and discuss the main challenges faced by the French electric grid: the management of electricity demand and the needed improvement of energy efficiency, the evolution of consumer's state of mind, and the integration of new production capacities. They notably outline that France have been living until recently with an electricity abundance, but now faces the highest consumption peaks in Europe, and is therefore facing higher risks of power cuts. They also notice that the French energy mix is slowly evolving, and outline the problems raised by the fact that renewable energies which are to be developed, are decentralised and intermittent. They propose an overview of present developments of smart grids, and outline their innovative characteristics, challenges raised by their development and compare international examples. They show that smart grids enable a better adapted supply and decentralisation. A set of proposals is formulated about how to finance and to organise the reconfiguration of electric grids, how to increase consumer's responsibility for peak management and demand management, how to create the conditions of emergence of a European market of smart grids, and how to support self-consumption and the building-up of an energy storage sector

  19. B→D*lν and B→Dlν form factors in staggered chiral perturbation theory

    International Nuclear Information System (INIS)

    Laiho, Jack; Water, Ruth S. van de

    2006-01-01

    We calculate the B→D and B→D* form factors at zero recoil in staggered chiral perturbation theory. We consider heavy-light mesons in which only the light (u, d, or s) quark is staggered; current lattice simulations generally use a highly improved action such as the Fermilab or nonrelativistic QCD action for the heavy (b or c) quark. We work to lowest nontrivial order in the heavy-quark expansion and to one-loop order in the chiral expansion. We present results for a partially quenched theory with three sea quarks in which there are no mass degeneracies (the ''1+1+1'' theory) and for a partially quenched theory in which the u and d sea quark masses are equal (the ''2+1'' theory). We also present results for full (2+1) QCD, along with a numerical estimate of the size of staggered discretization errors. Finally, we calculate the finite volume corrections to the form factors and estimate their numerical size in current lattice simulations

  20. Tool kit for staggered fermions

    International Nuclear Information System (INIS)

    Kilcup, G.W.; Sharpe, S.R.

    1986-01-01

    The symmetries of staggered fermions are analyzed both discrete and continuous. Tools are presented that allow a simple decomposition of representations of the continuum symmetries into representations of the discrete lattice symmetries, both at zero and non-zero spatial momenta. These tools are used to find the lattice transcriptions of the operators that appear in the weak interaction Hamiltonian. The lattice Ward Identities are derived that follow from the single partially conserved axial symmetry. Using these identities, the lattice equivalents of the continuum PCAC relations are found. Combining all these tools, Ward Identities are obtained, for the matrix elements of the weak interaction Hamiltonian, from which the behavior of the matrix elements as the pion and kaon masses vanish are derived. The same behavior as in the continuum is found

  1. Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points

    Science.gov (United States)

    John, K. K.; Graham, L. D.; Abell, P. A.

    2015-01-01

    Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.

  2. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    Science.gov (United States)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  3. De la representación de sistemas Euler - Lagrange a la Hamiltoniana generalizada

    Directory of Open Access Journals (Sweden)

    L. H. Rodríguez - Alfaro

    2015-01-01

    Full Text Available La representación Hamiltoniana generalizada de sistemas brinda una estructura que puede ser utilizada con ventaja en muchas áreas, entre las cuales se puede mencionar el diseño de observadores y el diagnóstico de fallas basado en modelos. Muchos de los trabajos en estos te mas tienen como punto de partida al sistema en forma Hamiltoniana generalizada y, en general, se omite la explicación de cómo llegar a esta representación, por ejemplo, a partir de un modelo no lineal basado en las ecuaciones de Euler - Lagrange. En este tra bajo se presenta un análisis detallado de cómo es que se obtiene la representación Hamiltoniana generalizada de un sistema a partir de las n ecuaciones diferenciales de segundo orden obtenidas con el formalismo Euler - Lagrange. Con la finalidad de mostrar e n lo particular, después del caso general, cómo se obtiene la representación Hamiltoniana generalizada, se presentan algunos casos de estudio.

  4. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  5. Re: Penetration Behavior of Opposed Rows of Staggered Secondary Air Jets Depending on Jet Penetration Coefficient and Momentum Flux Ratio

    Science.gov (United States)

    Holdeman, James D.

    2016-01-01

    The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.

  6. Pairing correlations. II. Microscopic analysis of odd-even mass staggering in nuclei

    International Nuclear Information System (INIS)

    Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.

    2002-01-01

    The odd-even mass staggering in nuclei is analyzed in the context of self-consistent mean-field calculations, for spherical as well as for deformed nuclei. For these nuclei, the respective merits of the energy differences Δ (3) and Δ (5) to extract both the pairing gap and the time-reversal symmetry breaking effect at the same time are extensively discussed. The usual mass formula Δ (3) is shown to contain additional mean-field contributions when realistic pairing is used in the calculation. A simple tool is proposed in order to remove the time-reversal symmetry breaking effects from Δ (5) . Extended comparisons with the odd-even mass staggering obtained in the zero-pairing limit (schematic model and self-consistent calculations) show the nonperturbative contribution of pairing correlations on this observable

  7. Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction

    International Nuclear Information System (INIS)

    Hintermüller, Michael; Rautenberg, Carlos N; Hahn, Jooyoung

    2014-01-01

    Variable splitting schemes for the function space version of the image reconstruction problem with total variation regularization (TV-problem) in its primal and pre-dual formulations are considered. For the primal splitting formulation, while existence of a solution cannot be guaranteed, it is shown that quasi-minimizers of the penalized problem are asymptotically related to the solution of the original TV-problem. On the other hand, for the pre-dual formulation, a family of parametrized problems is introduced and a parameter dependent contraction of an associated fixed point iteration is established. Moreover, the theory is validated by numerical tests. Additionally, the augmented Lagrangian approach is studied, details on an implementation on a staggered grid are provided and numerical tests are shown. (paper)

  8. Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

    Science.gov (United States)

    Panagopoulos, Haralambos; Spanoudes, Gregoris

    2018-03-01

    In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].

  9. GENIE - Generation of computational geometry-grids for internal-external flow configurations

    Science.gov (United States)

    Soni, B. K.

    1988-01-01

    Progress realized in the development of a master geometry-grid generation code GENIE is presented. The grid refinement process is enhanced by developing strategies to utilize bezier curves/surfaces and splines along with weighted transfinite interpolation technique and by formulating new forcing function for the elliptic solver based on the minimization of a non-orthogonality functional. A two step grid adaptation procedure is developed by optimally blending adaptive weightings with weighted transfinite interpolation technique. Examples of 2D-3D grids are provided to illustrate the success of these methods.

  10. On a Desert Island with Unit Sticks, Continued Fractions and Lagrange

    Directory of Open Access Journals (Sweden)

    Victor J. Ricchezza

    2016-07-01

    Full Text Available GLY 4866, Computational Geology, provides an opportunity, welcomed by our faculty, to teach quantitative literacy to geology majors at USF. The course continues to evolve although the second author has been teaching it for some 20 years. This paper describes our experiences with a new lab activity that we are developing on the core issue of measurement and units. The activity is inspired by a passage in the 2008 publication of lectures that Joseph Louis Lagrange delivered at the Ecole Normale in 1795. The activity envisions that young scientists are faced with the need to determine the dimensions of a rectangle with no measuring device other than an unruled stick of unknown length – to hundredths of a stick length. Following Lagrange, the students use the stick to measure the lengths with continued fractions, and then they reduce the continued fractions and convert them to decimal form. In the process, these student veterans of calculus instruction learn that as a group they are not very good at the arithmetic of fractions, which they thought they learned in the fifth grade. The group score on a continued fraction item improved from 44% on the pre-course test to 84% on the post-course test in the first semester in which the new lab was included (Fall 2015.

  11. On Long-Time Instabilities in Staggered Finite Difference Simulations of the Seismic Acoustic Wave Equations on Discontinuous Grids

    KAUST Repository

    Gao, Longfei

    2017-10-26

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.

  12. On long-time instabilities in staggered finite difference simulations of the seismic acoustic wave equations on discontinuous grids

    Science.gov (United States)

    Gao, Longfei; Ketcheson, David; Keyes, David

    2018-02-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.

  13. MILC staggered conjugate gradient performance on Intel KNL

    OpenAIRE

    DeTar, Carleton; Doerfler, Douglas; Gottlieb, Steven; Jha, Ashish; Kalamkar, Dhiraj; Li, Ruizi; Toussaint, Doug

    2016-01-01

    We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the MILC code for use with the Intel Knights Landing (KNL) architecture. KNL is the second gener- ation Intel Xeon Phi processor. It is capable of massive thread parallelism, data parallelism, and high on-board memory bandwidth and is being adopted in supercomputing centers for scientific research. The CG solver consumes the majority of time in production running, so we have spent most of our effort on it. ...

  14. A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains

    Science.gov (United States)

    Zhu, Yongning; Wang, Yuting; Hellrung, Jeffrey; Cantarero, Alejandro; Sifakis, Eftychios; Teran, Joseph M.

    2012-08-01

    We present a cut cell method in R2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompressible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at cell centers. These discretization choices provide the necessary stability in the incompressible limit and the necessary accuracy in cut cells. Numerical experiments suggest second order accuracy in L∞. We target high-resolution problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and pressures that achieves nearly optimal convergence rates independent of grid resolution.

  15. Evaluation of Reliability Parameters in Micro-grid

    Directory of Open Access Journals (Sweden)

    H. Hasanzadeh Fard

    2015-06-01

    Full Text Available Evaluation of the reliability parameters in micro-grids based on renewable energy sources is one of the main problems that are investigated in this paper. Renewable energy sources such as solar and wind energy, battery as an energy storage system and fuel cell as a backup system are used to provide power to the electrical loads of the micro-grid. Loads in the micro-grid consist of interruptible and uninterruptible loads. In addition to the reliability parameters, Forced Outage Rate of each component and also uncertainty of wind power, PV power and demand are considered for micro-grid. In this paper, the problem is formulated as a nonlinear integer minimization problem which minimizes the sum of the total capital, operational, maintenance and replacement cost of DERs. This paper proposes PSO for solving this minimization problem.

  16. Continuum symmetry restoration in lattice models with staggered fermions

    International Nuclear Information System (INIS)

    Morel, A.

    1986-09-01

    This talk is a report on results obtained by T. Jolicoeur, R. Lacaze, B. Petersson and the author: staggered fermions can be consistently interpreted as flavoured quarks in the continuum limit of asymptotically free theories on the lattice. This statement is supported by analytical results for the Gross-Neveu model at large N and for a QCD two point function, and by a numerical simulation of SU(2) quenched QCD

  17. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity

    Science.gov (United States)

    Craig, Darren G N; Bates, Caroline M; Davidson, Janice S; Martin, Kirsty G; Hayes, Peter C; Simpson, Kenneth J

    2012-01-01

    AIMS Paracetamol (acetaminophen) poisoning remains the major cause of severe acute hepatotoxicity in the UK. In this large single centre cohort study we examined the clinical impact of staggered overdoses and delayed presentation following paracetamol overdose. RESULTS Between 1992 and 2008, 663 patients were admitted with paracetamol-induced severe liver injury, of whom 161 (24.3%) had taken a staggered overdose. Staggered overdose patients were significantly older and more likely to abuse alcohol than single time point overdose patients. Relief of pain (58.2%) was the commonest rationale for repeated supratherapeutic ingestion. Despite lower total ingested paracetamol doses and lower admission serum alanine aminotransferase concentrations, staggered overdose patients were more likely to be encephalopathic on admission, require renal replacement therapy or mechanical ventilation and had higher mortality rates compared with single time point overdoses (37.3% vs. 27.8%, P = 0.025), although this overdose pattern did not independently predict death. The King's College poor prognostic criteria had reduced sensitivity (77.6, 95% CI 70.8, 81.5) for this pattern of overdose. Of the 396/450 (88.0%) single time point overdoses in whom accurate timings could be obtained, 178 (44.9%) presented to medical services >24 h following overdose. Delayed presentation beyond 24 h post overdose was independently associated with death/liver transplantation (OR 2.25, 95% CI 1.23, 4.12, P = 0.009). CONCLUSIONS Both delayed presentation and staggered overdose pattern are associated with adverse outcomes following paracetamol overdose. These patients are at increased risk of developing multi-organ failure and should be considered for early transfer to specialist liver centres. PMID:22106945

  18. Lagrange formalism for a system of several fluids interacting electromagnetically; Formalisme lagrangien pour un systeme de plusieurs fluides en interaction electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemin, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    After giving the Lagrange expression for a conducting fluid in an external electromagnetic field, the author shows that a Lagrange expression exists for describing the evolution of a system of interacting fluids obtained by adding the Lagrange expression of each fluid.to that of the electromagnetic field. By variation are obtained the fluid movement equation coupled to the Maxwell equations. It is shown that the study of small movements around a stationary state can be deduced from the Lagrange equation expanded to the second power order of the perturbation. It is then possible to deduce the normal mode equations and the study the stability by examining the modes which are marginally stable. (author) [French] Apres avoir rappele l'expression, du Lagrangien pour un fluide conducteur dans un champ electromagnetique exterieur, on montre qu'il existe un Lagrangien pour decrire l'evolution d'un systeme de fluides en.interaction que l'on obtient par la superposition du Lagrangien de chaque fluide et du Lagrangien du champ electromagnetique. On obtient par variation, les equations du mouvement des fluides, couplees aux equations de Maxwell. On montre que l'etude des petits mouvements autour d'un etat stationnaire se deduit du Lagrangien developpe au second1 ordre en puissance de la perturbation. On peut alors retrouver les equations des modes normaux et etudier la stabilite en recherchant les modes marginalement stables. (auteur)

  19. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  20. Assessing Organizational Capabilities: Reviewing and Guiding the Development of Maturity Grids

    DEFF Research Database (Denmark)

    Maier, Anja; Moultrie, James; Clarkson, P John

    2012-01-01

    Managing and improving organizational capabilities is a significant and complex issue for many companies. To support management and enable improvement, performance assessments are commonly used. One way of assessing organizational capabilities is by means of maturity grids. Whilst maturity grids...... than twenty maturity grids places particular emphasis on embedded assumptions about organizational change in the formulation of the maturity ratings. The suggested roadmap encompasses four phases: planning, development, evaluation and maintenance. Each phase discusses a number of decision points...

  1. Passivity Enhancement of Grid-Tied Converters by Series LC-Filtered Active Damper

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    in the literature. Its effect with parasitic capacitance present in the grid has also usually been ignored, even though it may bring new challenges to the active damper. To address these issues, passivity is applied to study the grid converter stability before the understanding gained is used for formulating...

  2. Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, A.; Meza, J.; Donde, V.; Lesieutre, B.

    2007-11-13

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (MINLP) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  3. Three-body continuum states on a Lagrange mesh

    International Nuclear Information System (INIS)

    Descouvemont, P.; Tursunov, E.; Baye, D.

    2006-01-01

    Three-body continuum states are investigated with the hyperspherical method on a Lagrange mesh. The R-matrix theory is used to treat the asymptotic behaviour of scattering wave functions. The formalism is developed for neutral as well as for charged systems. We point out some specificities of continuum states in the hyperspherical method. The collision matrix can be determined with a good accuracy by using propagation techniques. The method is applied to the 6 He (=α+n+n) and 6 Be (=α+p+p) systems, as well as to 14 Be (=Be12+n+n). For 6 He, we essentially recover results of the literature. Application to 14 Be suggests the existence of an excited 2 + state below threshold. The calculated B(E2) value should make this state observable with Coulomb excitation experiments

  4. Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations

    Science.gov (United States)

    Toosi, Siavash; Larsson, Johan

    2015-11-01

    Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.

  5. Kinetics of full scrum and staggered scrum engagement in under 19 ...

    African Journals Online (AJOL)

    Two hundred and eight male Rugby Union players from 13 high schools, whose ages ranged from 16 to 19 years, were used to examine the kinetics of the full scrum versus staggered scrum engagement techniques. Telemetric pressure transducers were used to measure the engagement and sustained forces acting on the ...

  6. Lagrange α-exponential stability and α-exponential convergence for fractional-order complex-valued neural networks.

    Science.gov (United States)

    Jian, Jigui; Wan, Peng

    2017-07-01

    This paper deals with the problem on Lagrange α-exponential stability and α-exponential convergence for a class of fractional-order complex-valued neural networks. To this end, some new fractional-order differential inequalities are established, which improve and generalize previously known criteria. By using the new inequalities and coupling with the Lyapunov method, some effective criteria are derived to guarantee Lagrange α-exponential stability and α-exponential convergence of the addressed network. Moreover, the framework of the α-exponential convergence ball is also given, where the convergence rate is related to the parameters and the order of differential of the system. These results here, which the existence and uniqueness of the equilibrium points need not to be considered, generalize and improve the earlier publications and can be applied to monostable and multistable fractional-order complex-valued neural networks. Finally, one example with numerical simulations is given to show the effectiveness of the obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations

    International Nuclear Information System (INIS)

    Hof, Bas van’t; Veldman, Arthur E.P.

    2012-01-01

    The paper explains a method by which discretizations of the continuity and momentum equations can be designed, such that they can be combined with an equation of state into a discrete energy equation. The resulting ‘MaMEC’ discretizations conserve mass, momentum as well as energy, although no explicit conservation law for the total energy is present. Essential ingredients are (i) discrete convection that leaves the discrete energy invariant, and (ii) discrete consistency between the thermodynamic terms. Of particular relevance is the way in which finite volume fluxes are related to nodal values. The method is an extension of existing methods based on skew-symmetry of discrete operators, because it allows arbitrary equations of state and a larger class of grids than earlier methods. The method is first illustrated with a one-dimensional example on a highly stretched staggered grid, in which the MaMEC method calculates qualitatively correct results and a non-skew-symmetric finite volume method becomes unstable. A further example is a two-dimensional shallow water calculation on a rectilinear grid as well as on an unstructured grid. The conservation of mass, momentum and energy is checked, and losses are found negligible up to machine accuracy.

  8. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization

    DEFF Research Database (Denmark)

    Pappalardo, F.; Halling-Brown, M. D.; Rapin, Nicolas

    2009-01-01

    conceptual models of the immune system, models of antigen processing and presentation, system-level models of the immune system, Grid computing, and database technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGrid modules share common conceptual models and ontologies......Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and optimization. We have developed a framework that combines computational tools for the study of immune function and vaccine development. This framework, named ImmunoGrid combines...

  9. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    International Nuclear Information System (INIS)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-01-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.

  10. Scale effect and value criterion of the permeability of the interlayer staggered zones in the basalt of Jinsha River basin, China

    Science.gov (United States)

    Zhou, Zhifang; Lin, Mu; Guo, Qiaona; Chen, Meng

    2018-05-01

    The hydrogeological characteristics of structural planes are different to those of the associated bedrock. The permeability, and therefore hydraulic conductivity (K), of a structural plane can be significantly different at different scales. The interlayer staggered zones in the Emeishan Basalt of early Late Permian were studied; this formation is located in the Baihetan hydropower project area in Jinsha River Basin, China. The seepage flow distribution of a solid model and two generalized models (A and B) were computed using COMSOL. The K values of the interlayer staggered zones for all three models were calculated by both simulation and analytical methods. The results show that the calculated K results of the generalized models can reflect the variation trend of permeability in each section of the solid model, and the approximate analytical calculation of K can be taken into account in the calculation of K in the generalized models instead of that found by simulation. Further studies are needed to investigate permeability variation in the interlayer staggered zones under the condition of different scales, considering the scaling variation in each section of an interlayer staggered zone. The permeability of each section of an interlayer staggered zone presents a certain degree of dispersivity at small scales; however, the permeability values tends to converge to a similar value as the scale of each section increases. The regularity of each section of the interlayer staggered zones under the condition of different scales can provide a scientific basis for reasonable selection of different engineering options.

  11. How Does a Staggered Board Provision Affect Corporate Strategic Change?—Evidence from China’s Listed Companies

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2018-05-01

    Full Text Available As China’s capital market has become more and more developed, listed companies have begun to establish some anti-takeover provisions to protect their controlling right. Existing studies have examined the consequences of the establishment of such provisions. However, few studies have explored how these provisions affect corporate strategic change. Based on agency theory and prospect theory, this paper proposes two channels through which one of the anti-takeover provisions, staggered board provision, impacts strategic change. Using the data of China’s listed companies which issue A-shares in Shenzhen and Shanghai stock exchanges from 2007 to 2014, these two channels are tested. We find that the existence of a staggered board provision negatively affects the extent of strategic change. In addition, if governance mechanisms restrict directors’ power, the relationship between staggered board provision and strategic change will be weakened, which supports the agency theory. If the listed company is faced with a more dynamic external environment, the relationship between staggered board provision and strategic change will be stronger, which supports the prospect theory. These results are robust after we use a different method to measure strategic change. Our conclusions not only enrich literature about strategic change and anti-takeover provisions, but also are helpful for improving corporate governance in China and other developing countries.

  12. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling.

    Science.gov (United States)

    Kamensky, David; Evans, John A; Hsu, Ming-Chen; Bazilevs, Yuri

    2017-11-01

    This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.

  13. Algebraic equations an introduction to the theories of Lagrange and Galois

    CERN Document Server

    Dehn, Edgar

    2004-01-01

    Meticulous and complete, this presentation of Galois' theory of algebraic equations is geared toward upper-level undergraduate and graduate students. The theories of both Lagrange and Galois are developed in logical rather than historical form. And they are given a more thorough exposition than is customary. For this reason, and also because the author concentrates on concrete applications of algebraic theory, Algebraic Equations is an excellent supplementary text, offering students a concrete introduction to the abstract principles of Galois theory. Of further value are the many numerical ex

  14. Gamma band odd-even staggering in some deformed nuclei

    International Nuclear Information System (INIS)

    Khairy, M.K.; Talaat, SH.M.; Morsy, M.

    2005-01-01

    A complete investigation was carried out in studying the odd-even staggering (OES) of gamma bands energy levels in some deformed nuclei up to angular momentum L=13 . With the help of Minkov treatment in the framework of a collective Vector Boson Model (VBM) with broken SU (3) symmetry. The OES behavior of deformed isotopes 162 E r, 164 E r, 166 E r, 156 G d, 170 Y b and 232 T h was studied and discussed

  15. Formation of Virtual Organizations in Grids: A Game-Theoretic Approach

    Science.gov (United States)

    Carroll, Thomas E.; Grosu, Daniel

    The execution of large scale grid applications requires the use of several computational resources owned by various Grid Service Providers (GSPs). GSPs must form Virtual Organizations (VOs) to be able to provide the composite resource to these applications. We consider grids as self-organizing systems composed of autonomous, self-interested GSPs that will organize themselves into VOs with every GSP having the objective of maximizing its profit. We formulate the resource composition among GSPs as a coalition formation problem and propose a game-theoretic framework based on cooperation structures to model it. Using this framework, we design a resource management system that supports the VO formation among GSPs in a grid computing system.

  16. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    Science.gov (United States)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  17. Analysis of the influence of the interlayer staggered zone in the basalt of Jinsha River Basin on the main buildings

    Science.gov (United States)

    Guo, Qiaona; Huang, Jiangwei

    2018-02-01

    In this paper, the finite element software FEFLOW is used to simulate the seepage field of the interlayer staggered zone C2 in the basalt of Jinsha River Basin. The influence of the interlayer staggered zone C2 on the building is analyzed. Combined with the waterproof effect of current design scheme of anti-seepage curtain, the seepage field in the interlayer staggered zone C2 is discussed under different design schemes. The optimal design scheme of anti-seepage curtain is put forward. The results showed that the case four can effectively reduce the head and hydraulic gradient of underground powerhouse area, and improve the groundwater seepage field in the plant area.

  18. ΔI = 2 Nuclear Staggering in Superdeformed Rotational Bands

    Directory of Open Access Journals (Sweden)

    Okasha M. D.

    2014-01-01

    Full Text Available A four parameters model including collective rotational en ergies to fourth order is ap- plied to reproduce the ∆ I = 2 staggering in transition energies in four selected super deformed rotational bands, namely, 148 Gd (SD6, 194 Hg (SD1, SD2, SD3. The model parameters and the spin of the bandhead have been extracted a ssuming various val- ues to the lowest spin of the bandhead at nearest integer, in o rder to obtain a minimum root mean square deviation between calculated and the exper imental transition energies. This allows us to suggest the spin values for the energy level s which are experimentally unknown. For each band a staggering parameter represent the deviation of the transition energies from a smooth reference has been determined by calc ulating the fourth order derivative of the transition energies at a given spin. The st aggering parameter contains five consecutive transition energies which is denoted here a s the five-point formula. In order to get information about the dynamical moment of ine rtia, the two point for- mula which contains only two consecutive transition energi es has been also considered. The dynamical moment of inertia decreasing with increasing rotational frequency for A ∼ 150, while increasing for A ∼ 190 mass regions.

  19. A Lagrange multiplier-type test for idiosyncratic unit roots in the exact factor model under misspecification

    NARCIS (Netherlands)

    Zhou, X.; Solberger, M.

    2013-01-01

    We consider an exact factor model and derive a Lagrange multiplier-type test for unit roots in the idiosyncratic components. The asymptotic distribution of the statistic is derived under the misspecification that the differenced factors are white noise. We prove that the asymptotic distribution is

  20. Improving the quark number susceptibilities for staggered fermions

    International Nuclear Information System (INIS)

    Gavai, Rajiv V.

    2003-01-01

    Quark number susceptibilities approach their ideal gas limit at sufficiently high temperatures. As in the case of other thermodynamic quantities, this limit itself is altered substantially on lattices with small temporal extent, N t = 4-8, making it thus difficult to check the validity of perturbation theory. Unlike other observables, improving susceptibilities or number densities is subject to constraints of current conservation and absence of chemical potential (μ) dependent divergences. We construct such an improved number density and susceptibility for staggered fermions and show that they approximate the continuum ideal gas limit better on small temporal lattices

  1. The extended RBAC model based on grid computing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan

    2006-01-01

    This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.

  2. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  3. Domain decomposition method for nonconforming finite element approximations of anisotropic elliptic problems on nonmatching grids

    Energy Technology Data Exchange (ETDEWEB)

    Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)

    1996-12-31

    An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.

  4. Pengaruh Penempatan Sirip Berbentuk Segitiga Yang Dipasang Secara Aligned Dan Staggered Terhadap Performansi Kolektor Surya Pelat Datar

    Directory of Open Access Journals (Sweden)

    Ketut Astawa

    2016-07-01

    Full Text Available Abstrak: Energi surya adalah jenis energi terbarukan yang umum digunakan karena ketersediaannya yang sangat besar. Teknologi pengolah energi surya, salah satunya adalah kolektor surya. Kolektor surya pada umumnya, menggunakan laju aliran massa udara yang secara parallel melewati pelat penyerap. Udara yang masuk inlet akan melewati pelat penyerap dan langsung keluar melalui outlet. Penelitian ini dilakukan untuk membandingkan pengaruh penempatan sirip berbentuk segitiga yang dipasang secara alignedyang mengarah ke atas pada bagian atas pelat penyerap dan staggeredyang mengarah ke bawah pada bagian bawah dari pelat penyerap sehingga akan terjadi aliran udara secara turbulen di dalam kolektor dan dengan penambahan sirip segitiga ini juga dapat memperluas daerah penyerapan panas pada pelat penyerap kolektor surya yang secara langsung memperluas permukaan perpindahan panas dari pelat penyerap ke fluida kerja yang nantinya diharapkan mampu menghasilkan temperatur keluar kolektor yang lebih tinggi dan meningkatkan performansi kolektor surya pelat datar.Penelitian ini dilakukan secara eksperimen, sebagai variable bebas dalam penelitian ini adalah intensitas radiasi matahari dan variabel terikatnya adalah energi berguna dan efisiensi kolektor surya pelat datar.Dari hasil pembahasan penempatan sirip berbentuk segitiga pada kolektor surya pelat datar yang dipasang secara staggered menghasilkan energi berguna dan efisiensi yang lebih besar dibandingkan dengan kolektor surya yang dipasang secara aligned. Dilihat dari rata-rata hariannya energi berguna untuk kolektor bersirip aligned adalah 153.01 Watt dan untuk kolektor bersirip staggered sebesar 157.42 Watt, sedangkan untuk efesiensinya pada kolektor surya bersirip aligned adalah 37.94% dan untuk kolektor bersirip staggered42.12 %.Kata kunci : Performansi kolektor surya pelat datar, sirip segitiga aligned, sirip segitiga staggered Abstract: Solar energy is a type of renewable energy that is commonly used

  5. Role of deformation in odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes

    Science.gov (United States)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2017-12-01

    We discuss the role of pairing antihalo effect in the observed odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes by taking into account the ground-state deformation of these nuclei. To this end, we construct the ground-state density for the Ne,3130 and Mg,3736 nuclei based on a deformed Woods-Saxon potential, while for the 32Ne and 38Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing antihalo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.

  6. A Study of a Powder Coating Gun near Field: A Case of Staggered Concentric Jet Flow

    Directory of Open Access Journals (Sweden)

    Edward Grandmaison

    2013-11-01

    Full Text Available This paper examines, experimentally and numerically, an isothermal coaxial air jet, created by an innovative nozzle design for an air propane torch, used for the thermal deposition of polymers. This design includes staggering the origins of the central and annular jets and creating an annular air jet with an inward radial velocity component. The experimental work used a Pitot tube to measure axial velocity on the jet centerline and in the fully developed flow. The static gauge pressure in the near field was also measured and found to be positive, an unexpected result. The numerical work used Gambit and Fluent. An extensive grid sensitivity study was conducted and it was found that results from a relatively coarse mesh were substantially the same as results from a mesh with almost 11 times the number of control volumes. A thorough evaluation of all of the RANS models in Fluent 6.3.26 found that the flow fields they calculated showed at most partial agreement with the experimental results. The greatest difference between numerical and experimental results was the incorrect prediction by all RANS models of a recirculation zone in the near field on the jet axis. Experimental work showed it did not exist.

  7. Traffic design and signal timing of staggered intersections based on a sorting strategy

    Directory of Open Access Journals (Sweden)

    Zhengyi Cai

    2016-04-01

    Full Text Available A staggered intersection is a special type of intersection in a road network. Its geographical characteristics consist of two T-legged intersections that cause the lost time per cycle to become longer than at cross intersections under conventional signal control, thus leading to low intersection efficiency. This article shows that the problem can be eliminated at the left–right type of staggered intersection by channelization and signal phasing, based on a sorting strategy and pre-signal, which reduce the amount of lost time during the signal cycle using the split distance as the sorting area. VISSIM was used to model and analyze the proposed method as well as the conventional method for comparison purposes. The simulation revealed that the proposed method reduced the average delays and maximum queue lengths in each movement and for the entire intersection, both in the peak hours and in the off-peak hour.

  8. Diagrammatic Monte Carlo simulations of staggered fermions at finite coupling

    CERN Document Server

    Vairinhos, Helvio

    2016-01-01

    Diagrammatic Monte Carlo has been a very fruitful tool for taming, and in some cases even solving, the sign problem in several lattice models. We have recently proposed a diagrammatic model for simulating lattice gauge theories with staggered fermions at arbitrary coupling, which extends earlier successful efforts to simulate lattice QCD at finite baryon density in the strong-coupling regime. Here we present the first numerical simulations of our model, using worm algorithms.

  9. Jacobi equations as Lagrange equations of the deformed Lagrangian

    International Nuclear Information System (INIS)

    Casciaro, B.

    1995-03-01

    We study higher-order variational derivatives of a generic Lagrangian L 0 = L 0 (t,q,q). We introduce two new Lagrangians, L 1 and L 2 , associated to the first and second-order deformations of the original Lagrangian L 0 . In terms of these Lagrangians, we are able to establish simple relations between the variational derivatives of different orders of a Lagrangian. As a consequence of these relations the Euler-Lagrange and the Jacobi equations are obtained from a single variational principle based on L 1 . We can furthermore introduce an associated Hamiltonian H 1 = H 1 (t,q,q radical,η,η radical) with η equivalent to δq. If L 0 is independent of time then H 1 is a conserved quantity. (author). 15 refs

  10. A Mediated Definite Delegation Model allowing for Certified Grid Job Submission

    CERN Document Server

    Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten

    2012-01-01

    Grid computing infrastructures need to provide traceability and accounting of their users" activity and protection against misuse and privilege escalation. A central aspect of multi-user Grid job environments is the necessary delegation of privileges in the course of a job submission. With respect to these generic requirements this document describes an improved handling of multi-user Grid jobs in the ALICE ("A Large Ion Collider Experiment") Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of delegated assignments. These limitations are discussed and formulated, both in general and with respect to an adoption in line with multi-user Grid jobs. Based on the architecture of the ALICE...

  11. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model

    Science.gov (United States)

    Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu

    2018-05-01

    A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.

  12. Experimental study of induced staggered magnetic fields in dysprosium gallium garnet (DGG)

    International Nuclear Information System (INIS)

    Steiner, M.; Corliss, L.M.; Hastings, J.M.; Blume, M.; Giordano, N.; Wolf, W.P.

    1979-01-01

    Neutron diffraction techniques have been used to study induced staggered magnetic field effects in DGG. The application of a uniform magnetic field at temperatures much greater than the Neel temperature induces a significant amount of antiferromagnetic order. The temperature and field dependences of this effect are in good agreement with recent theoretical predicions

  13. Parametric modeling and stagger angle optimization of an axial flow fan

    International Nuclear Information System (INIS)

    Li, M X; Zhang, C H; Liu, Y; Zheng, S Y

    2013-01-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%

  14. GAIA: A 2-D Curvilinear moving grid hydrodynamic code

    International Nuclear Information System (INIS)

    Jourdren, H.

    1987-02-01

    The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension

  15. Stable grid refinement and singular source discretization for seismic wave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N A; Sjogreen, B

    2009-10-30

    An energy conserving discretization of the elastic wave equation in second order formulation is developed for a composite grid, consisting of a set of structured rectangular component grids with hanging nodes on the grid refinement interface. Previously developed summation-by-parts properties are generalized to devise a stable second order accurate coupling of the solution across mesh refinement interfaces. The discretization of singular source terms of point force and point moment tensor type are also studied. Based on enforcing discrete moment conditions that mimic properties of the Dirac distribution and its gradient, previous single grid formulas are generalized to work in the vicinity of grid refinement interfaces. These source discretization formulas are shown to give second order accuracy in the solution, with the error being essentially independent of the distance between the source and the grid refinement boundary. Several numerical examples are given to illustrate the properties of the proposed method.

  16. Diffraction of love waves by two staggered perfectly weak half-planes

    International Nuclear Information System (INIS)

    Asghar, S.; Zaman, F.D.; Sajida Asghar

    1989-01-01

    Love wave travelling in a layer of uniform thickness overlying a half-space is assumed to be incident on two parallel but staggered perfectly weak half-planes lying in the upper layer. The diffracted fields is calculated using the modified Wiener-Hopf technique and contour integration method. The diffracted waves satisfy the dispersion relations appropriate to different regions formed by the perfectly weak half-planes

  17. Propagator of the lattice domain wall fermion and the staggered fermion

    International Nuclear Information System (INIS)

    Furui, S.

    2009-01-01

    We calculate the propagator of the domain wall fermion (DWF) of the RBC/UKQCD collaboration with 2 + 1 dynamical flavors of 16 3 x 32 x 16 lattice in Coulomb gauge, by applying the conjugate gradient method. We find that the fluctuation of the propagator is small when the momenta are taken along the diagonal of the 4-dimensional lattice. Restricting momenta in this momentum region, which is called the cylinder cut, we compare the mass function and the running coupling of the quark-gluon coupling a s,g1 (q) with those of the staggered fermion of the MILC collaboration in Landau gauge. In the case of DWF, the ambiguity of the phase of the wave function is adjusted such that the overlap of the solution of the conjugate gradient method and the plane wave at the source becomes real. The quark-gluon coupling a s,g1 (q) of the DWF in the region q > 1.3 GeV agrees with ghost-gluon coupling a s (q) that we measured by using the configuration of the MILC collaboration, i.e., enhancement by a factor (1 + c/q 2 ) with c ∼ 2.8 GeV 2 on the pQCD result. In the case of staggered fermion, in contrast to the ghost-gluon coupling a s (q) in Landau gauge which showed infrared suppression, the quark-gluon coupling a s,g1 (q) in the infrared region increases monotonically as q → 0. Above 2 GeV, the quark-gluon coupling a s,g1 (q) of staggered fermion calculated by naive crossing becomes smaller than that of DWF, probably due to the complex phase of the propagator which is not connected with the low energy physics of the fermion taste. An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-009-0053-4. (author)

  18. Parallel grid generation algorithm for distributed memory computers

    Science.gov (United States)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  19. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    Science.gov (United States)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  20. Error estimates of Lagrange interpolation and orthonormal expansions for Freud weights

    Science.gov (United States)

    Kwon, K. H.; Lee, D. W.

    2001-08-01

    Let Sn[f] be the nth partial sum of the orthonormal polynomials expansion with respect to a Freud weight. Then we obtain sufficient conditions for the boundedness of Sn[f] and discuss the speed of the convergence of Sn[f] in weighted Lp space. We also find sufficient conditions for the boundedness of the Lagrange interpolation polynomial Ln[f], whose nodal points are the zeros of orthonormal polynomials with respect to a Freud weight. In particular, if W(x)=e-(1/2)x2 is the Hermite weight function, then we obtain sufficient conditions for the inequalities to hold:andwhere and k=0,1,2...,r.

  1. A Framework of Secured Embedding Scheme Using Vector Discrete Wavelet Transformation and Lagrange Interpolation

    Directory of Open Access Journals (Sweden)

    Maheswari Subramanian

    2018-01-01

    Full Text Available Information hiding techniques have a significant role in recent application areas. Steganography is the embedding of information within an innocent cover work in a way which cannot be detected by any person without accessing the steganographic key. The proposed work uses a steganographic scheme for useful information with the help of human skin tone regions as cover image. The proposed algorithm has undergone Lagrange interpolation encryption for enhancement of the security of the hidden information. First, the skin tone regions are identified by using YCbCr color space which can be used as a cover image. Image pixels which belong to the skin regions are used to carry more secret bits, and the secret information is hidden in both horizontal and vertical sequences of the skin areas of the cover image. The secret information will hide behind the human skin regions rather than other objects in the same image because the skin pixels have high intensity value. The performance of embedding is done and is quite invisible by the vector discrete wavelet transformation (VDWT technique. A new Lagrange interpolation-based encryption method is introduced to achieve high security of the hidden information with higher payload and better visual quality.

  2. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated

  3. Mediated definite delegation - Certified Grid jobs in ALICE and beyond

    Science.gov (United States)

    Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten; Betev, Latchezar; Buchmann, Johannes

    2012-12-01

    Grid computing infrastructures need to provide traceability and accounting of their users’ activity and protection against misuse and privilege escalation, where the delegation of privileges in the course of a job submission is a key concern. This work describes an improved handling of Multi-user Grid Jobs in the ALICE Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of jobs and data. These limitations are discussed and formulated, both in general and with respect to an adoption in line with Multi-user Grid Jobs. A new general model of mediated definite delegation is developed, allowing a broker to dynamically process and assign Grid jobs to agents while providing strong accountability and long-term traceability. A prototype implementation allowing for fully certified Grid jobs is presented as well as a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, including a discussion of non-repudiation in the face of malicious Grid jobs.

  4. Mediated definite delegation - Certified Grid jobs in ALICE and beyond

    International Nuclear Information System (INIS)

    Schreiner, Steffen; Buchmann, Johannes; Grigoras, Costin; Litmaath, Maarten; Betev, Latchezar

    2012-01-01

    Grid computing infrastructures need to provide traceability and accounting of their users’ activity and protection against misuse and privilege escalation, where the delegation of privileges in the course of a job submission is a key concern. This work describes an improved handling of Multi-user Grid Jobs in the ALICE Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of jobs and data. These limitations are discussed and formulated, both in general and with respect to an adoption in line with Multi-user Grid Jobs. A new general model of mediated definite delegation is developed, allowing a broker to dynamically process and assign Grid jobs to agents while providing strong accountability and long-term traceability. A prototype implementation allowing for fully certified Grid jobs is presented as well as a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, including a discussion of non-repudiation in the face of malicious Grid jobs.

  5. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  6. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  7. 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity

    International Nuclear Information System (INIS)

    Loubere, Raphael; Maire, Pierre-Henri; Vachal, Pavel

    2013-01-01

    The aim of the present work is the 3D extension of a general formalism to derive a staggered discretization for Lagrangian hydrodynamics on unstructured grids. The classical compatible discretization is used; namely, momentum equation is discretized using the fundamental concept of subcell forces. Specific internal energy equation is obtained using total energy conservation. The subcell force is derived by invoking the Galilean invariance and thermodynamic consistency. A general form of the subcell force is provided so that a cell entropy inequality is satisfied. The subcell force consists of a classical pressure term plus a tensorial viscous contribution proportional to the difference between the node velocity and the cell-centered velocity. This cell-centered velocity is an extra degree of freedom solved with a cell-centered approximate Riemann solver. The second law of thermodynamics is satisfied by construction of the local positive definite subcell tensor involved in the viscous term. A particular expression of this tensor is proposed. A more accurate extension of this discretization both in time and space is also provided using a piecewise linear reconstruction of the velocity field and a predictor-corrector time discretization. Numerical tests are presented in order to assess the efficiency of this approach in 3D. Sanity checks show that the 3D extension of the 2D approach reproduces 1D and 2D results. Finally, 3D problems such as Sedov, Noh, and Saltzman are simulated. (authors)

  8. Double-grid finite-difference frequency-domain (DG-FDFD) method for scattering from chiral objects

    CERN Document Server

    Alkan, Erdogan; Elsherbeni, Atef

    2013-01-01

    This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid

  9. Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid

    International Nuclear Information System (INIS)

    Jian, Linni; Zheng, Yanchong; Xiao, Xinping; Chan, C.C.

    2015-01-01

    Highlights: • A novel event-triggered scheduling scheme for vehicle-to-grid (V2G) operation is proposed. • New scheme can handle the uncertainty arising from stochastic connection of electric vehicles. • New scheme aims at minimizing the overall load variance of power grid by V2G operation. • Method to evaluate the performance of proposed scheme is elaborated and demonstrated. - Abstract: Vehicle-to-grid (V2G) operation of plug-in electric vehicles (PEVs) is attracting increasing attention since it can assist to improve the efficiency and reliability of power grid, as well as reduce the operating cost and greenhouse gas emission of electric vehicles. Within the scheme of V2G operation, PEVs are expected to serve as a novel distributed energy storage system (ESS) to help achieve the balance between supply and demand of power grid. One of the key difficulties concerning its practical implementation lies in that the availability of PEVs as ESS for grid remains highly uncertain due to their mobility as transportation tools. To address this issue, a novel event-triggered scheduling scheme for V2G operation based on the scenario of stochastic PEV connection to smart grid is proposed in this paper. Firstly, the mathematical model is formulated. Secondly, the preparation of input data for systematic evaluation is introduced and the case study is conducted. Finally, statistic analysis results demonstrate that our proposed V2G scheduling scheme can dramatically smooth out the fluctuation in power load profiles

  10. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  11. Modelado, Simulación y Control de Satélites en los Puntos de Lagrange del Sistema Tierra - Luna

    Directory of Open Access Journals (Sweden)

    F. Alonso Zotes

    2011-07-01

    Full Text Available Resumen: El objetivo de este artículo es modelar, analizar y controlar una constelación de cinco satélites, situados en los puntos de Lagrange del sistema Tierra – Luna. El modelo se ha desarrollado incluyendo efectos complejos no considerados habitualmente, como el viento solar, la no esfericidad de los planetas y la deriva de la órbita lunar, para hacerlo más realista. Sobre los satélites se ejerce una propulsión continua, calculada por medio de controladores tipo PD, tanto convencionales como borrosos, y cuya finalidad es situar y mantener a cada satélite en su punto de Lagrange frente a las inestabilidades y derivas inherentes al sistema. El sistema completo se ha implementado en el lenguaje de modelado Modelica, para el que se han creado una serie de elementos aeroespaciales, y las simulaciones se han desarrollado con el software Dymola. Tanto con los controladores clásicos como con los borrosos se han obtenido muy buenos resultados. Palabras clave: modelado, simulación, control borroso, satélites, puntos de Lagrange, sistema Tierra-Luna

  12. The validity of PPP: evidence from Lagrange multiplier unit root tests for ASEAN countries

    OpenAIRE

    Alper ASLAN

    2010-01-01

    The univariate and panel Lagrange Multiplier (LM) unit root tests with one and two structural breaks proposed by Lee and Strazicich (2003, 2004) which are considerably more powerful than traditional tests are employed to investigate whether the purchasing power parity (PPP) theory holds true for ASEAN countries by using both black market and official exchange rates. We find strong evidence in favour of long-run PPP for six ASEAN countries namely, Indonesia, Malaysia, Myanmar, Philippines, Sin...

  13. Integration of Large-scale Consumers in Smart Grid

    DEFF Research Database (Denmark)

    Rahnama, Samira

    A prominent feature of the smart grid is to involve the consumer side in balancing effort, rather than placing the entire burden of maintaining this balance on the producers. This thesis investigates the utilization of flexible consumers in the future smart grid. The focus of this work is on indu......A prominent feature of the smart grid is to involve the consumer side in balancing effort, rather than placing the entire burden of maintaining this balance on the producers. This thesis investigates the utilization of flexible consumers in the future smart grid. The focus of this work...... the demand that these consumers represent. The exact responsibility of the aggregator, however, can vary depending on several factors such as control strategies, demand types, provided services etc. This thesis addresses the aggregator design for a specific class of consumers. The work involves selecting...... an appropriate control scenario, formulating the optimal objective function at the aggregator, modeling the flexibility of our specific case studies and determining the required information flow. This thesis also investigates different types of aggregation, when we have different types of consumers...

  14. Task oriented design of robot kinematics using grid method and its application to nuclear power plant

    International Nuclear Information System (INIS)

    Chang, Pyung-Hun; Park, Joon-Young

    2002-01-01

    This paper presents a Task Oriented Design method for robot kinematics based on grid method, widely used in finite difference method and heat transfer/fluid flow analyses. This approach drastically reduces complexities and computational burden due to previous approaches. More specifically, the grid method with a new formulation simplifies the design to a problem of three-design-variable unit grid, which does not require to solve inverse/forward kinematics. The effectiveness of the grid method has been confirmed through a kinematics design of a robot for nuclear power plants. (author)

  15. Mass-flux subgrid-scale parameterization in analogy with multi-component flows: a formulation towards scale independence

    Directory of Open Access Journals (Sweden)

    J.-I. Yano

    2012-11-01

    Full Text Available A generalized mass-flux formulation is presented, which no longer takes a limit of vanishing fractional areas for subgrid-scale components. The presented formulation is applicable to a~situation in which the scale separation is still satisfied, but fractional areas occupied by individual subgrid-scale components are no longer small. A self-consistent formulation is presented by generalizing the mass-flux formulation under the segmentally-constant approximation (SCA to the grid–scale variabilities. The present formulation is expected to alleviate problems arising from increasing resolutions of operational forecast models without invoking more extensive overhaul of parameterizations.

    The present formulation leads to an analogy of the large-scale atmospheric flow with multi-component flows. This analogy allows a generality of including any subgrid-scale variability into the mass-flux parameterization under SCA. Those include stratiform clouds as well as cold pools in the boundary layer.

    An important finding under the present formulation is that the subgrid-scale quantities are advected by the large-scale velocities characteristic of given subgrid-scale components (large-scale subcomponent flows, rather than by the total large-scale flows as simply defined by grid-box average. In this manner, each subgrid-scale component behaves as if like a component of multi-component flows. This formulation, as a result, ensures the lateral interaction of subgrid-scale variability crossing the grid boxes, which are missing in the current parameterizations based on vertical one-dimensional models, and leading to a reduction of the grid-size dependencies in its performance. It is shown that the large-scale subcomponent flows are driven by large-scale subcomponent pressure gradients. The formulation, as a result, furthermore includes a self-contained description of subgrid-scale momentum transport.

    The main purpose of the present paper

  16. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    Science.gov (United States)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  17. Lattice QCD with mixed action - Borici-Creutz valence quark on staggered sea

    Science.gov (United States)

    Basak, Subhasish; Goswami, Jishnu; Chakrabarti, Dipankar

    2018-03-01

    Mixed action lattice QCD with Borici-Creutz valence quarks on staggered sea is investigated. The counter terms in Borici-Creutz action are fixed nonperturbatively to restore the broken symmetries. On symmetry restoration, the usual signatures of partial quenching / unitarity violation like negative scalar correlator are observed. The size of unitarity violation due to different discretization of valence and sea quark is determined by measuring Δmix.

  18. On the spectrum of the staggered Dirac operator at finite chemical potential

    International Nuclear Information System (INIS)

    Vink, J.C.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1988-12-01

    The spectrum of the staggered Dirac operator in two-dimensional QEDF is investigated at finite chemical potential. In the quenced model, it is shown that lattice artefacts cause a spurious scattering of eigenvalues. This scattering disappears when lattice distance is taken to zero. In the unquenced model, a new approach is used to show that similar effects are absent. (author). 17 refs.; 6 figs

  19. Staggering of angular momentum distribution in fission

    Science.gov (United States)

    Tamagno, Pierre; Litaize, Olivier

    2018-03-01

    We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  20. Postprandial effects of consuming a staggered meal on gut peptide and glycemic responses in obese women and men.

    Science.gov (United States)

    Griffith, Lisa; Haddad, Ella H; Tonstad, Serena

    2016-01-01

    Eating slowly by staggering a meal may reduce energy intake. Our aim was to examine the effect of eating a portion of beans 15min before the rest of the meal, on gastrointestinal (GI) peptides, glucose and insulin concentrations and subsequent energy intake in obese adults. This was a randomised crossover design study with 28 obese subjects. Participants consumed a standardised breakfast on test days followed by test meals: (1) control meal containing 86g (0.5 cup) of beans, and (2) staggered meal in which 86g (0.5 cup) of beans were consumed 15min before the rest of the meal. Blood obtained prior to and at 30, 60, and 120min following the meals was analysed for acylated ghrelin, unacylated ghrelin, glucagon-like peptide-1 (GLP-1), peptide YY, oxyntomodulin, glucose and insulin. Feelings of hunger and satiety were assessed using analog visual scales. Energy intake following the test meal was obtained by computer assisted dietary recalls. Mixed model statistical analysis of data showed time effects for unacylated ghrelin, GLP-1, glucose, insulin, hunger and fullness, however, meal effects were not shown for any of the parameters. GLP-1 area under the curve from baseline to 120min (AUC0-120) decreased by 19% (P=0.024) and that of glucose increased by 7% (P=0.046) following the staggered compared to the control bean meal. Energy intake subsequent to the test meals did not differ between treatments. In conclusion, lengthening meal times by staggering eating did not benefit hormonal, metabolic or appetite control in obese individuals. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  1. A second order anti-diffusive Lagrange-remap scheme for two-component flows

    Directory of Open Access Journals (Sweden)

    Lagoutière Frédéric

    2011-11-01

    Full Text Available We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.

  2. A Root-Locus Design Methodology Derived from the Impedance/Admittance Stability Formulation and Its Application for LCL Grid-Connected Converters in Wind Turbines

    DEFF Research Database (Denmark)

    Freijedo Fernandez, Francisco Daniel; Diaz, Enrique Rodriguez; Golsorkhi, Mohammad

    2017-01-01

    This paper presents a systematic methodology for design and tuning of the current controller in LCL gridconnected converters for wind turbine applications. The design target is formulated as a minimization of the current loop dominant time constant, which is in accordance with standard design......, it has been also proved to be very suitable for system level studies in applications with a high penetration of renewable energy resources. The tuning methodology is as follows: firstly, the physical system is modelled in terms of the converter admittance and its equivalent grid impedance; then......, a sensitivity transfer function is derived, from which the closed-loop eigenvalues can be calculated; finally, the set of control gains that minimize the dominant time constant are obtained by direct search optimization. A case study that models the target system in a low power scale is provided...

  3. Grid interoperability: joining grid information systems

    International Nuclear Information System (INIS)

    Flechl, M; Field, L

    2008-01-01

    A grid is defined as being 'coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations'. Over recent years a number of grid projects, many of which have a strong regional presence, have emerged to help coordinate institutions and enable grids. Today, we face a situation where a number of grid projects exist, most of which are using slightly different middleware. Grid interoperation is trying to bridge these differences and enable Virtual Organizations to access resources at the institutions independent of their grid project affiliation. Grid interoperation is usually a bilateral activity between two grid infrastructures. Recently within the Open Grid Forum, the Grid Interoperability Now (GIN) Community Group is trying to build upon these bilateral activities. The GIN group is a focal point where all the infrastructures can come together to share ideas and experiences on grid interoperation. It is hoped that each bilateral activity will bring us one step closer to the overall goal of a uniform grid landscape. A fundamental aspect of a grid is the information system, which is used to find available grid services. As different grids use different information systems, interoperation between these systems is crucial for grid interoperability. This paper describes the work carried out to overcome these differences between a number of grid projects and the experiences gained. It focuses on the different techniques used and highlights the important areas for future standardization

  4. Development of a Cartesian grid based CFD solver (CARBS)

    International Nuclear Information System (INIS)

    Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2013-12-01

    Formulation for 3D transient incompressible CFD solver is developed. The solution of variable property, laminar/turbulent, steady/unsteady, single/multi specie, incompressible with heat transfer in complex geometry will be obtained. The formulation can handle a flow system in which any number of arbitrarily shaped solid and fluid regions are present. The solver is based on the use of Cartesian grids. A method is proposed to handle complex shaped objects and boundaries on Cartesian grids. Implementation of multi-material, different types of boundary conditions, thermo physical properties is also considered. The proposed method is validated by solving two test cases. 1 st test case is that of lid driven flow in inclined cavity. 2 nd test case is the flow over cylinder. The 1 st test case involved steady internal flow subjected to WALL boundaries. The 2 nd test case involved unsteady external flow subjected to INLET, OUTLET and FREE-SLIP boundary types. In both the test cases, non-orthogonal geometry was involved. It was found that, under such a wide conditions, the Cartesian grid based code was found to give results which were matching well with benchmark data. Convergence characteristics are excellent. In all cases, the mass residue was converged to 1E-8. Based on this, development of 3D general purpose code based on the proposed approach can be taken up. (author)

  5. Fractional variational calculus in terms of Riesz fractional derivatives

    International Nuclear Information System (INIS)

    Agrawal, O P

    2007-01-01

    This paper presents extensions of traditional calculus of variations for systems containing Riesz fractional derivatives (RFDs). Specifically, we present generalized Euler-Lagrange equations and the transversality conditions for fractional variational problems (FVPs) defined in terms of RFDs. We consider two problems, a simple FVP and an FVP of Lagrange. Results of the first problem are extended to problems containing multiple fractional derivatives, functions and parameters, and to unspecified boundary conditions. For the second problem, we present Lagrange-type multiplier rules. For both problems, we develop the Euler-Lagrange-type necessary conditions which must be satisfied for the given functional to be extremum. Problems are considered to demonstrate applications of the formulations. Explicitly, we introduce fractional momenta, fractional Hamiltonian, fractional Hamilton equations of motion, fractional field theory and fractional optimal control. The formulations presented and the resulting equations are similar to the formulations for FVPs given in Agrawal (2002 J. Math. Anal. Appl. 272 368, 2006 J. Phys. A: Math. Gen. 39 10375) and to those that appear in the field of classical calculus of variations. These formulations are simple and can be extended to other problems in the field of fractional calculus of variations

  6. Staggered multi-field inflation

    International Nuclear Information System (INIS)

    Battefeld, Diana; Battefeld, Thorsten; Davis, Anne-Christine

    2008-01-01

    We investigate multi-field inflationary scenarios with fields that drop out of the model in a staggered fashion. This feature is natural in certain multi-field inflationary setups within string theory; for instance, it can manifest itself when fields are related to tachyons that condense, or inter-brane distances that become meaningless when branes annihilate. Considering a separable potential, and promoting the number of fields to a smooth time dependent function, we derive the formalism to deal with these models at the background and perturbed level, providing general expressions for the scalar spectral index and the running. We recover known results of e.g. a dynamically relaxing cosmological constant in the appropriate limits. We further show that isocurvature perturbations are suppressed during inflation, and so perturbations are adiabatic and nearly Gaussian. The resulting setup might be interpreted as a novel type of warm inflation, readily implemented within string theory and without many of the shortcomings associated with warm inflation. To exemplify the applicability of the formalism we consider three concrete models: assisted inflation with exponential potentials as a simple toy model (a graceful exit becomes possible), inflation from multiple tachyons (a constant decay rate of the number of fields and negligible slow roll contributions turns out to be in good agreement with observations) and inflation from multiple M5-branes within M-theory (a narrow stacking of branes yields a consistent scenario)

  7. Power module assemblies with staggered coolant channels

    Science.gov (United States)

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  8. Staggering of angular momentum distribution in fission

    Directory of Open Access Journals (Sweden)

    Tamagno Pierre

    2018-01-01

    Full Text Available We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  9. The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics

    Science.gov (United States)

    Nark, Douglas M.

    1995-01-01

    Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.

  10. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    Science.gov (United States)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  11. Robust Multi-Objective PQ Scheduling for Electric Vehicles in Flexible Unbalanced Distribution Grids

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Soroudi, Alireza; Marinelli, Mattia

    2017-01-01

    With increased penetration of distributed energy resources and electric vehicles (EVs), different EV management strategies can be used for mitigating adverse effects and supporting the distribution grid. This paper proposes a robust multi-objective methodology for determining the optimal day...... demand response programs. The method is tested on a real Danish unbalanced distribution grid with 35% EV penetration to demonstrate the effectiveness of the proposed approach. It is shown that the proposed formulation guarantees an optimal EV cost as long as the price uncertainties are lower than....... The robust formulation effectively considers the errors in the electricity price forecast and its influence on the EV schedule. Moreover, the impact of EV reactive power support on objective values and technical parameters is analysed both when EVs are the only flexible resources and when linked with other...

  12. Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect

    Science.gov (United States)

    Tóth, Balázs

    2018-03-01

    Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.

  13. CFD analysis of the flow in the near wake of a generic PWR mixing grid

    International Nuclear Information System (INIS)

    Bieder, Ulrich; Falk, François; Fauchet, Gauthier

    2015-01-01

    Highlights: • The flow in a 5 × 5 rod bundle with mixing grid is analyzed experimentally and with CFD. • LES and RANS (k–ε) calculations are performed. • The parallelism of the Trio-U code was tested with a strong scaling method. • Close downstream of the grid, k–ε and LES give similar results and fit well the experiment. - Abstract: The flow in fuel assemblies of PWRs with mixing grids has been analyzed with CFD calculations by numerous authors. The comparison between calculation and experiment has often shown an insensitivity of the calculated cross flow velocity on the turbulence modeling. The study presented here was carried out to confirm this result. The comparison between measurements in the AGATE facility (5 × 5 tube bundle) and Trio-U calculations with a linear eddy viscosity turbulence model (k–ε) and Large Eddy Simulations (LES) is presented. The AGATE experiments have originally not been designed for CFD validation but to characterize different types of mixing grids. Nevertheless, the quality of the experimental data allows the quantitative comparison between measurement and calculation. The test section of the AGATE facility has been discretized for the LES calculation on 300 million control volumes by using a staggered grid approach on tetrahedral meshes. 20 days of CPU on 4600 cores of the HPC machine CURIE of the TGCC was necessary to calculate the statistics of the turbulent flow, in particular the mean velocity and the RMS of the turbulent fluctuations. The parallelism of Trio-U was tested up to 10,000 processor cores using strong scaling and has shown a good efficiency up to about 6000 cores, i.e., 40,000 control volumes per core. For various distances from the mixing grid, calculated horizontal profiles of the cross flow velocity and of the axial velocity are compared to measurements. It seems that the flow patterns directly downstream of the grid are insensitive to the used turbulence model. Inertia forces related to the

  14. Generalized Euler-Lagrange Equations for Fuzzy Fractional Variational Problems under gH-Atangana-Baleanu Differentiability

    Directory of Open Access Journals (Sweden)

    Jianke Zhang

    2018-01-01

    Full Text Available We study in this paper the Atangana-Baleanu fractional derivative of fuzzy functions based on the generalized Hukuhara difference. Under the condition of gH-Atangana-Baleanu fractional differentiability, we prove the generalized necessary and sufficient optimality conditions for problems of the fuzzy fractional calculus of variations with a Lagrange function. The new kernel of gH-Atangana-Baleanu fractional derivative has no singularity and no locality, which was not precisely illustrated in the previous definitions.

  15. Towards an understanding of staggering effects in dissipative binary collisions

    International Nuclear Information System (INIS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V.L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad.R.

    2012-01-01

    The reactions 32 S+ 58,64 Ni are studied at 14.5 A MeV. Evidence is found for important odd–even effects in isotopic observables of selected peripheral collisions corresponding to the decay of a projectile-like source. The influence of secondary decays on the staggering is studied with a correlation function technique. It is shown that this method is a powerful tool to get experimental information on the evaporation chain, in order to constrain model calculations. Specifically, we show that odd–even effects are due to interplay between pairing effects in the nuclear masses and in the level densities.

  16. Theoretical investigation of GaAsBi/GaAsN tunneling field-effect transistors with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Yibo; Liu, Yan; Han, Genquan; Wang, Hongjuan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-06-01

    We investigate GaAsBi/GaAsN system for the design of type-II staggered hetero tunneling field-effect transistor (hetero-TFET). Strain-symmetrized GaAsBi/GaAsN with effective lattice match to GaAs exhibits a type-II band lineup, and the effective bandgap EG,eff at interface is significantly reduced with the incorporation of Bi and N elements. The band-to-band tunneling (BTBT) rate and drive current of GaAsBi/GaAsN hetero-TFETs are boosted due to the utilizing of the type-II staggered tunneling junction with the reduced EG,eff. Numerical simulation shows that the drive current and subthreshold swing (SS) characteristics of GaAsBi/GaAsN hetero-TFETs are remarkably improved by increasing Bi and N compositions. The dilute content GaAs0.85Bi0.15/GaAs0.92N0.08 staggered hetero-nTFET achieves 7.8 and 550 times higher ION compared to InAs and In0.53Ga0.47As homo-TFETs, respectively, at the supply voltage of 0.3 V. GaAsBi/GaAsN heterostructure is a potential candidate for high performance TFET.

  17. The Powerful Antitakeover Force of Staggered Boards: Theory, Evidence and Policy

    OpenAIRE

    Lucian Arye Bebchuk; John C. Coates IV; Guhan Subramanian

    2002-01-01

    Staggered boards, which a majority of public companies now have, provide a powerful antitakeover defense, stronger than is commonly recognized. They provide antitakeover protection both by (i) forcing any hostile bidder, no matter when it emerges, to wait at least one year to gain control of the board and (ii) requiring such a bidder to win two elections far apart in time rather than a one-time referendum on its offer. Using a new data set of hostile bids in the five-year period 1996-2000, we...

  18. AMPS: An Augmented Matrix Formulation for Principal Submatrix Updates with Application to Power Grids

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh; Huang, Zhenyu

    2017-10-09

    We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to perform $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $1.6 \\times 10^{-2}$ seconds on an Intel Xeon processor.

  19. Formulation of Low Peclet Number Based Grid Expansion Factor for the Solution of the Convection Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Abdullah

    2018-04-01

    Full Text Available Convection-diffusion problems, due to its fundamental nature, are found in various science and engineering applications. In this research, the importance of the relationship between grid structure and flow parameters in such problems is emphasized. In particular, we propose a systematic technique in the selection of the grid expansion factor based on its logarithmic relationship with low Peclet number. Such linear mathematical connection between the two non-dimensional parameters serves as a guideline for more structured decision-making and improves the heuristic process in the determination of the computational domain grid for the numerical solution of convection-diffusion equations especially in the prediction of the concentration of the scalar. Results confirm the effectiveness of the new approach.

  20. Power quality and integration of wind farms in weak grids in India

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.; Hauge Madsen, P. [Risoe National Lab., Roskilde (Denmark). Wind Energy and Atmospheric Physics Dept.; Vikkelsoe, A.; Koelbaek Jensen, K. [Danske Elvaerkers Forening Udredningsafdelingen (DEFU), Lyngby (Denmark); Fathima, K.A.; Unnikrishnan, A.K.

    2000-04-01

    This is the final report of a joint Danish and Indian project' Power Quality and Integration of Wind Farms in Weak Grids'. The power quality issues have been studied and analysed with the Indian conditions as a case. On the basis of meetings with Danish wind turbine industry, Indian electricity boards, nodal agencies, wind turbine industry and authorities, the critical power quality as-pects in India have been identified. Measurements on selected wind farms and wind turbines have quantified the power quality, and analyses of power quality issues, especially reactive power compensation, have been performed. Based on measurements and analyses, preliminary recommendations for grid integration of wind turbines in weak grids have been formulated. (au)

  1. Unsteady aerodynamic response of mistuned cascade to incoming wakes. 1st Report. ; Mistuning of stagger angle. Fukin prime itsu yokuretsu no hiteijo oto kaiseki. 1. ; Stagger kaku wo fukin prime itsuka shita baai

    Energy Technology Data Exchange (ETDEWEB)

    Funazaki, K [Iwate University, Iwate (Japan). Faculty of Engineering

    1991-09-25

    Interference between fan blades in a turbo-fan engine and struts also being a structural member may induce fan blade oscillation and noise, thereby presenting itself as an obstacle in development efforts. Therefore, this paper proposes a method to analyze unsteady aerodynamic responses of mistuned cascade with varied stagger angles, as well as elucidates the effects of the mistuned stagger angles by means of numerical calculations. The non-steady pressure distribution on the blades is affected by the mistuning, but its extent varies with phase difference in the incoming viscid wake. As its result, the non-steady lift acting on the blades varies with the mistuning. In this case, it is possible to reduce the size of the non-steady lift depending on the conditions of blade arrangement and incoming phase difference. The size of the non-steady lift under the same phase incoming condition has a close correlation with the steady lift. It was shown that the quasi-steady analysis is effective in the case of the same phase condition. 8 refs., 14 figs., 1 tab.

  2. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  3. New Boundary Constraints for Elliptic Systems used in Grid Generation Problems

    Science.gov (United States)

    Kaul, Upender K.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.

  4. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron S. [Fermilab; Hill, Richard J. [Perimeter Inst. Theor. Phys.; Kronfeld, Andreas S. [Fermilab; Li, Ruizi [Indiana U.; Simone, James N. [Fermilab

    2016-10-14

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.

  5. Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids

    International Nuclear Information System (INIS)

    El-Sharafy, M. Zaki; Farag, Hany E.Z.

    2017-01-01

    Highlights: •Introducing three types of energy transfer between neighboring microgrids. •Incorporating droop-based power flow model of islanded microgrids in restoration. •Optimizing droop settings of DGs in islanded mode to maximize restored load. •Decomposing restoration into two distributed constraint optimization problems. •Using OPTAPO to solve the formulated problems in a multiagent environment. -- Abstract: In this paper, an optimization problem is formulated for the automatic back-feed service restoration in smart distribution grids. The formulated problem relies on the structure of smart distribution grids, clustered into multi-microgrids, capable of operating in both grid-connected and islanded modes of operation. To that end, three types of power transfer between the neighboring microgrids, during the restoration processes are introduced: load transfer, distributed generation (DG) transfer, and combined load–DG transfer. The formulated optimization problem takes into account the ability of forming new, not predefined islanded microgrids, in the post-restoration configuration, to maximize service restoration. To obviate the need for a central unit, the optimization problem is reformulated, in this work, as a distributed constraint optimization problem, in which the variables and constraints are distributed among automated agents. To reduce the problem complexity, the restoration problem is decomposed into two sequential and interdependent distributed sub-problems: supply adequacy, and optimal reconfiguration. The proposed algorithm adopts the Optimal Asynchronous Partial Overlay (OPTAPO) technique, which is based on the distributed constraint agent search to solve distributed sub-problems in a multi-agent environment. Several case studies have been carried out to evaluate the effectiveness and robustness of the proposed algorithm.

  6. Near-Body Grid Adaption for Overset Grids

    Science.gov (United States)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  7. Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements.

    Science.gov (United States)

    Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George

    2017-08-15

    A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.

  8. A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach

    Directory of Open Access Journals (Sweden)

    Antonio J. Torregrosa

    2017-05-01

    Full Text Available Duct junctions play a major role in the operation and design of most piping systems. The objective of this paper is to establish the potential of a staggered mesh finite volume model as a way to improve the description of the effect of simple duct junctions on an otherwise one-dimensional flow system, such as the intake or exhaust of an internal combustion engine. Specific experiments have been performed in which different junctions have been characterized as a multi-port, and that have provided precise and reliable results on the propagation of pressure pulses across junctions. The results obtained have been compared to simulations performed with a staggered mesh finite volume method with different flux limiters and different meshes and, as a reference, have also been compared with the results of a more conventional pressure loss-based model. The results indicate that the staggered mesh finite volume model provides a closer description of wave dynamics, even if further work is needed to establish the optimal calculation settings.

  9. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  10. The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories

    Directory of Open Access Journals (Sweden)

    Musilová Jana

    2016-12-01

    Full Text Available As widely accepted, justified by the historical developments of physics, the background for standard formulation of postulates of physical theories leading to equations of motion, or even the form of equations of motion themselves, come from empirical experience. Equations of motion are then a starting point for obtaining specific conservation laws, as, for example, the well-known conservation laws of momenta and mechanical energy in mechanics. On the other hand, there are numerous examples of physical laws or equations of motion which can be obtained from a certain variational principle as Euler-Lagrange equations and their solutions, meaning that the \\true trajectories" of the physical systems represent stationary points of the corresponding functionals.

  11. The Application of Euler-Lagrange Method of Optimization for Electromechanical Motion Control

    Directory of Open Access Journals (Sweden)

    Cristian VASILACHE

    2000-12-01

    Full Text Available Industrial and non-industrial processes such as production plans, robots, pumps, compressors, home applications, transportation of people and goods etc., require some kinds of motion control. The main functions of electromechanical drives are to adjust these processes by controlling the torque, speed or position. The objective of this paper is to perform the control of motion while minimizing power losses, that is ∫Ri2dt, in process conversion of electrical energy to mechanical energy. The optimal control laws for our problem is find using the Euler - Lagrange principle. We consider three types of controlled drives: torque, speed and position. Each of them has different control laws. By implementation of these controls with Borland C++ and Matlab environment, substantial energy savings are obtained.

  12. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements

    International Nuclear Information System (INIS)

    Yang, Naixing; Zhang, Xiongwen; Li, Guojun; Hua, Dong

    2015-01-01

    An appropriate cell arrangement plays significant role to design a highly efficient cooling system for the lithium-ion battery pack. This paper performs a comparative analysis of thermal performances on different arrangements of cylindrical cells for a LiFePO 4 battery pack. A thermal model for the battery pack is developed and is solved in couple with the governing equations of fluid flow in the numerical simulations. The experiments for model validation are conducted on a single cell of the battery pack with forced-air cooling system. The effects of longitudinal and transverse spacing on the cooling performances are analyzed for the battery pack with the aligned and the staggered arrays. Under a specified flow rate of cooling air, the maximum temperature rise is proportional to the longitudinal interval for the staggered arrays, while it is in inverse for the aligned arrangement. Increasing the transverse interval leads to the increase of the battery temperature rise for both aligned and staggered arrangements. By trade-off the design requirements (maximum temperature rise, temperature uniformity, power requirement and cooling index), an appropriate solution in term of the optimal combination of the longitudinal interval, transverse interval, and air inlet width is obtained for the aligned arrangement. - Highlights: • Forced air-cooling performance for cylindrical lithium-ion battery is evaluated. • Thermal performances for aligned and staggered cell arrangements are compared. • Geometric optimization is investigated for the battery air-cooling system

  13. An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions

    International Nuclear Information System (INIS)

    Berlin, J.; Heller, U.M.

    1991-01-01

    We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)

  14. A numerical calculation method for flow discretisation in complex geometry with body-fitted grids

    International Nuclear Information System (INIS)

    Jin, X.

    2001-04-01

    A numerical calculation method basing on body fitted grids is developed in this work for computational fluid dynamics in complex geometry. The method solves the conservation equations in a general nonorthogonal coordinate system which matches the curvilinear boundary. The nonorthogonal, patched grid is generated by a grid generator which solves algebraic equations. By means of an interface its geometrical data can be used by this method. The conservation equations are transformed from the Cartesian system to a general curvilinear system keeping the physical Cartesian velocity components as dependent variables. Using a staggered arrangement of variables, the three Cartesian velocity components are defined on every cell surface. Thus the coupling between pressure and velocity is ensured, and numerical oscillations are avoided. The contravariant velocity for calculating mass flux on one cell surface is resulting from dependent Cartesian velocity components. After the discretisation and linear interpolation, a three dimensional 19-point pressure equation is found. Using the explicit treatment for cross-derivative terms, it reduces to the usual 7-point equation. Under the same data and process structure, this method is compatible with the code FLUTAN using Cartesian coordinates. In order to verify this method, several laminar flows are simulated in orthogonal grids at tilted space directions and in nonorthogonal grids with variations of cell angles. The simulated flow types are considered like various duct flows, transient heat conduction, natural convection in a chimney and natural convection in cavities. Their results achieve very good agreement with analytical solutions or empirical data. Convergence for highly nonorthogonal grids is obtained. After the successful validation of this method, it is applied for a reactor safety case. A transient natural convection flow for an optional sump cooling concept SUCO is simulated. The numerical result is comparable with the

  15. Two observable features of the staggered-flux phase at nonzero doping

    International Nuclear Information System (INIS)

    Hsu, T.C.; Marston, J.B.; Affleck, I.

    1991-01-01

    We investigate whether the staggered-flux phase (SFP) is realized in slightly doped phases of the Cu-O high-T c superconductors. Using a mean-field solution of the t-J model, we calculate the size of circulating currents in the CuO 2 planes. For realistic parameters we find nonzero currents when the doping δ 2-x Sr x CuO 4 samples but additional structure along the (Q x ,0) and (0,Q y ) directions has not been seen. The absence of magnetic fields when δ>0.12 is consistent with the limits set by the muon experiments on superconducting samples

  16. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    International Nuclear Information System (INIS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18 F or 11 C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38 K or 60 Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections

  17. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    Energy Technology Data Exchange (ETDEWEB)

    Andreyev, Andriy, E-mail: andriy.andreyev-1@philips.com [Philips Healthcare, Highland Heights, Ohio 44143 (United States); Sitek, Arkadiusz [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1M9 (Canada)

    2014-02-15

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and

  18. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    International Nuclear Information System (INIS)

    Li Juan; Wang Yifei; Gong Changde

    2011-01-01

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength φ, and a staggered-flux part with strength Δφ. Various properties of the Hall conductances and Hofstadter butterflies are studied. When φ is fixed, variation of Δφ leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero Δφs have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of Δφ = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by Δφ.

  19. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  20. Implementation of grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper presents the transfer of a microgrid converter from/to on-grid to/from off-grid when the converter is working in two different modes. In the first transfer presented method, the converter operates as a Current Source Inverter (CSI) when on-grid and as a Voltage Source Inverter (VSI) when off-grid. In the second transfer method, the converter is operated as a VSI both, when operated on-grid and off-grid. The two methods are implemented successfully in a real pla...

  1. Partially quenched gauge theories and an application to staggered fermions

    International Nuclear Information System (INIS)

    Bernard, C.W.; Golterman, M.F.L.

    1994-01-01

    We extend our Lagrangian technique for chiral perturbation theory for quenched QCD to include theories in which only some of the quarks are quenched. We discuss the relationship between the partially quenched theory and a theory in which only the unquenched quarks are present. We also investigate the peculiar infrared divergences associated with the η' in the quenched approximation, and find the conditions under which such divergences can appear in a partially quenched theory. We then apply our results to staggered fermion QCD in which the square root of the fermion determinant is taken, using the observation that this should correspond to a theory with four quarks, two of which are quenched

  2. The geometry of higher-order Lagrange spaces applications to mechanics and physics

    CERN Document Server

    Miron, Radu

    1997-01-01

    This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1 A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with Applications to higher-order analytical mechanics and theoretical physics are included as well Audience This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology

  3. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  4. GridCom, Grid Commander: graphical interface for Grid jobs and data management

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    2011-01-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  5. Icing modelling in NSMB with chimera overset grids

    Energy Technology Data Exchange (ETDEWEB)

    Pena, D. [Ècole Polytechnique de Montréal (Canada); ICUBE, Strasbourg University (France); Deloze, T.; Laurendeau, E. [Ècole Polytechnique de Montréal (Canada); Hoarau, Y. [ICUBE, Strasbourg University (France)

    2015-03-10

    In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

  6. Thermodynamics of spin ice in staggered and direct (along the [111] axis) fields in the cluster approximation

    Energy Technology Data Exchange (ETDEWEB)

    Zinenko, V. I., E-mail: zvi@iph.krasn.ru; Pavlovskii, M. S. [Russian Academy of Sciences, Kirensky Institute of Physics, Siberian Branch (Russian Federation)

    2017-02-15

    We have analyzed the low-temperature thermodynamic properties of spin ice in the staggered and direct (acting along the [111] axis) fields for rare-earth oxides with the chalcolamprite structure and general formula Re{sub 2}{sup 3+}Me{sub 2}{sup 4+}O{sub 7}{sup 2-}. Calculations have been performed in the cluster approximation. The results have been compared with experimental temperature dependences of heat capacity and entropy for Dy{sub 2}Ti{sub 2}O{sub 7} compound for different values of the external field in the [111] direction. The experimental data and calculated results have also been compared for the Pr{sub 2}Ru{sub 2}O{sub 7} compound with the antiferromagnetic ordering of magnetic moments of ruthenium ions, which gives rise to the staggered field acting on the system of rare-earth ions. The calculated temperature dependences of heat capacity and entropy are in good agreement with experimental data.

  7. Accurate Locally Conservative Discretizations for Modeling Multiphase Flow in Porous Media on General Hexahedra Grids

    KAUST Repository

    Wheeler, M.F.; Xue, G.

    2010-01-01

    For many years there have been formulations considered for modeling single phase ow on general hexahedra grids. These include the extended mixed nite element method, and families of mimetic nite di erence methods. In most of these schemes either

  8. Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement

    International Nuclear Information System (INIS)

    Bayat, Hamidreza; Lavasani, Arash Mirabdolah; Maarefdoost, Taher

    2014-01-01

    Highlights: • Thermal–hydraulic performance of a non-circular tube bundle has been investigated experimentally. • Tubes were mounted in staggered arrangement with two longitudinal pitch ratios 1.5 and 2. • Drag coefficient and Nusselt number of tubes in second row was measured. • Friction factor of this tube bundle is lower than circular tube bundle. • Thermal–hydraulic performance of this tube bundle is greater than circular tube bundle. - Abstract: Flow and heat transfer from cam-shaped tube bank in staggered arrangement is studied experimentally. Tubes were located in test section of an open loop wind tunnel with two longitudinal pitch ratios 1.5 and 2. Reynolds number varies in range of 27,000 ⩽ Re D ⩽ 42,500 and tubes surface temperature is between 78 and 85 °C. Results show that both drag coefficient and Nusselt number depends on position of tube in tube bank and Reynolds number. Tubes in the first column have maximum value of drag coefficient, while its Nusselt number is minimum compared to other tubes in tube bank. Moreover, pressure drop from this tube bank is about 92–93% lower than circular tube bank and as a result thermal–hydraulic performance of this tube bank is about 6 times greater than circular tube bank

  9. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  10. Enabling Campus Grids with Open Science Grid Technology

    International Nuclear Information System (INIS)

    Weitzel, Derek; Fraser, Dan; Pordes, Ruth; Bockelman, Brian; Swanson, David

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  11. Analysis and Optimization of a Novel 2-D Magnet Array with Gaps and Staggers for a Moving-Magnet Planar Motor

    Science.gov (United States)

    Chen, Xuedong; Zeng, Lizhan

    2018-01-01

    This paper presents a novel 2-D magnet array with gaps and staggers, which is especially suitable for magnetically levitated planar motor with moving magnets. The magnetic flux density distribution is derived by Fourier analysis and superposition. The influences of gaps and staggers on high-order harmonics and flux density were analyzed, and the optimized design is presented. Compared with the other improved structures based on traditional Halbach magnet arrays, the proposed design has the lowest high-order harmonics percentage, and the characteristics of flux density meet the demand of high acceleration in horizontal directions. It is also lightweight and easy to manufacture. The proposed magnet array was built, and the calculation results have been verified with experiment. PMID:29300323

  12. Assessment of grid optimisation measures for the German transmission grid using open source grid data

    Science.gov (United States)

    Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.

    2018-02-01

    The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.

  13. Augmented lagrange hopfield network for economic dispatch with multiple fuel options

    International Nuclear Information System (INIS)

    Dieu, Vo Ngoc; Ongsakul, Weerakorn; Polprasert, Jirawadee

    2011-01-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem with multiple fuel options. The proposed ALHN method is a continuous Hopfield neural network with its energy function based on augmented Lagrangian function. The advantages of ALHN over the conventional Hopfield neural network are easier use, more general applications, faster convergence, better optimal solution, and larger scale of problem implementation. The method solves the problem by directly searching the most suitable fuel among the available fuels of each unit and finding the optimal solution for the problem based on minimization of the energy function of the continuous Hopfield neural network. The proposed method is tested on systems up to 100 units and the obtained results are compared to those from other methods in the literature. The results have shown that the proposed method is efficient for solving the ED problem with multiple fuel options and favorable for implementation in large scale problems.

  14. Enabling campus grids with open science grid technology

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Derek [Nebraska U.; Bockelman, Brian [Nebraska U.; Swanson, David [Nebraska U.; Fraser, Dan [Argonne; Pordes, Ruth [Fermilab

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  15. Adapting the Euler-Lagrange equation to study one-dimensional motions under the action of a constant force

    OpenAIRE

    Dias, Clenilda F; Carvalho-Santos, Vagson L

    2012-01-01

    The Euler-Lagrange equations (EL) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of EL to study one-dimensional motions under the action of a constant force. From using the definition of partial derivative, we have proposed two operators, here called \\textit{mean delta operators}, which may be used to solve the EL in a simplest way. We have applied this simplification to solve three simple mechanical problems under th...

  16. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling

    DEFF Research Database (Denmark)

    Soares, Joao; Vale, Zita; Canizes, Bruno

    2013-01-01

    This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle-To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming...... to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow...

  17. A composite experimental dynamic substructuring method based on partitioned algorithms and localized Lagrange multipliers

    Science.gov (United States)

    Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca

    2018-02-01

    Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.

  18. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  19. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  20. Estimating North American N2O emissions and the N fertilizer yield fraction using the Carbon Tracker-Lagrange regional inversion framework

    Science.gov (United States)

    Nevison, C. D.; Andrews, A. E.; Thoning, K. W.; Dlugokencky, E. J.; Sweeney, C.; Saikawa, E.; Miller, S. M.; Benmergui, J. S.; Fischer, M. L.

    2017-12-01

    North American nitrous oxide (N2O) emissions of 1.5 ± 0.2 Tg N/yr over 2008-2013 are estimated using the Carbon Tracker-Lagrange (CT-L) regional inversion framework. The estimated N2O emissions are largely consistent with the EDGAR global inventory and with the results of global atmospheric inversions, but offer more spatial and temporal detail and improved uncertainty quantification over North America. Emissions are strongest from the Midwestern corn/soybean belt, which accounts for about one fourth of the total North American N2O source. The emissions are maximum in spring/early summer, consistent with a nitrogen fertilizer-driven source, but also show a late winter spike suggestive of freeze-thaw effects. Interannual variability in emissions across the primary months of fertilizer application is positively correlated to mean soil moisture and precipitation. The inversion results, in combination with gridded N fertilizer datasets, are used to estimate the fraction of synthetic N fertilizer that is released as N2O. The estimated N2O flux from the Midwestern corn/soybean belt and the more northerly U.S./Canadian wheat belt corresponds to 3.6-4.5% and 1.4-3.5%, respectively, of total synthetic + organic N fertilizer applied to those regions. Consideration of additional N inputs from soybean N2 fixation reduces the N2O yield from the Midwestern corn/soybean belt to 2-2.6% of total N inputs. Figure 1. Posterior N2O flux integrated over the central Midwestern Corn/Soybean belt (38° to 43°N, 102° to 80°W, in grids where 5% or more of land area was planted in corn and/or soybean). Cases 1 (red) and 2 (blue) are defined based on different covariance matrix parameters, representing alternative scenarios of tighter prior/looser model-data mismatch and looser prior/tighter model-data mismatch. Both cases use a standard prior derived from a coarser resolution global inversion. Triangles show the approximate day when soil temperature climbs above 0°C and drops below 10

  1. GridCom, Grid Commander: graphical interface for Grid jobs and data management; GridCom, Grid Commander: graficheskij interfejs dlya raboty s zadachami i dannymi v gride

    Energy Technology Data Exchange (ETDEWEB)

    Galaktionov, V V

    2011-07-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  2. Progress in Grid Generation: From Chimera to DRAGON Grids

    Science.gov (United States)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  3. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications

    Directory of Open Access Journals (Sweden)

    Lingyi Han

    2016-09-01

    Full Text Available The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC and estimation of signal parameters via rotation invariant technique (ESPRIT cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS method called improved turbo compressed channel sensing (ITCCS. It iteratively updates the soft information between the linear minimum mean square error (LMMSE estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle

  4. A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations

    KAUST Repository

    Guermond, Jean-Luc; Nazarov, Murtazo; Popov, Bojan; Yang, Yong

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics. This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems.

  5. Edge-melting: nanoscale key-mechanism to explain nanoparticle formation from heated TEM grids

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, Maura, E-mail: maura.cesaria@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy); Taurino, Antonietta; Catalano, Massimo [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, 73100 Lecce (Italy); Caricato, Anna Paola; Martino, Maurizio [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy)

    2016-03-01

    Graphical abstract: - Highlights: • Nanoparticle formation from metal grids explained by edge melting as key mechanism. • The inconsistency of bulk phenomenology invoking the vapor pressure is discussed. • Surface-melting and size-dependent evaporation are questioned as unsatisfactory. • Edge-melting: edges, corners, facets invoked as highly thermally unstable surfaces. • The polycrystalline nature of the really occurring metal grids is accounted for. - Abstract: In this study, we examine at both experimental and fundamental levels, the experimental evidence of nanoparticle formation in transmission electron microscopy (TEM) metal grids annealed at temperatures lower than the melting point of the corresponding metal bulk material. Our experimental investigation considers the most thermally unstable TEM grids (i.e. Cu-grids) and inspects the possible sources and mechanisms of contamination of thin films, conventionally deposited on carbon-coated Cu-grids. The investigations are supported by morphological–compositional analyses performed in different regions of the TEM sample. Then, a general model is formulated and discussed in order to explain the grid thermal instability, based on the critical role of edge-melting (i.e. melting initiated at edges and corners of the grid bars), the enhanced rate of evaporation from a liquid surface and the polycristallinity of the grid bars. Hence, we totally disregard conventional arguments such as bulk evaporation and metal vapor pressure and, in order to emphasize and clarify the alternative point of view of our model, we also overview the nano-scale melting phenomenology relevant to our discussion and survey the discrepancies reported in the literature.

  6. Spontaneous emission spectra from a staggered-array undulator

    International Nuclear Information System (INIS)

    Shimada, Shigeki; Okada, Kouji; Masuda, Kai; Sobajima, Masaaki; Yoshikawa, Kiyoshi; Ohnishi, Masami; Yamamoto, Yasushi; Toku, Hisayuki

    1997-01-01

    A staggered-array undulator set inside the superconducting solenoid coils is shown to be able to provide high undulator fields larger than the longitudinal magnetic fields, a small undulator period, easy tunability through the solenoid coil current, and compact and easy fabrication. The overall performance characteristics of this undulator were studied mainly with respect to iron and aluminum disk widths, and spontaneous emission spectra through the numerical calculations. The maximum undulator field is found to be obtained for the ratio of the aluminum disk width to the undulator period of 0.45. The line widths (FWHM) of the spontaneous emission spectra, however, do not show N w -1 dependence on the number of the undulator period N w for practical beams with a Gaussian distribution, compared with for a single electron. The energy spread among various parameters is seen to play an important role in reducing the FWHM with increase of N w . The large tunability of the wavelength is proved to cover 6-10 mm by changing the solenoid magnetic field from 0.4 T to 1.6 T. (author)

  7. X-ray imaging bilinear staggered GaAs detectors

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A.; Dvoryankin, V.F. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A

    2004-09-21

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 {mu}A min/(Gy cm{sup 2}). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received.

  8. X-ray imaging bilinear staggered GaAs detectors

    International Nuclear Information System (INIS)

    Achmadullin, R.A.; Dvoryankin, V.F.; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A.

    2004-01-01

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 μA min/(Gy cm 2 ). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received

  9. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  10. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  11. An anti-diffusive Lagrange-Remap scheme for multi-material compressible flows with an arbitrary number of components

    Directory of Open Access Journals (Sweden)

    Kokh Samuel

    2012-04-01

    Full Text Available We propose a method dedicated to the simulation of interface flows involving an arbitrary number m of compressible components. Our task is two-fold: we first introduce a m-component flow model that generalizes the two-material five-equation model of [2,3]. Then, we present a discretization strategy by means of a Lagrange-Remap [8,10] approach following the lines of [5,7,12]. The projection step involves an anti-dissipative mechanism derived from [11,12]. This feature allows to prevent the numerical diffusion of the material interfaces. We present two-dimensional simulation results of three-material flow. Nous proposons une méthode de simulation pour des écoulements comportant un nombre arbitraire m de composants compressibles séparés par des interfaces. Nous procdons en deux tapes : tout d’abord nous introduisons un modèle d’écoulementm composants qui généralise le modèle à cinq équations de [2,3]. Ensuite nous présentons une stratégie de discrétisation de type Lagrange-Projection [8,10] inspirée de [5,7,12]. La phase de projection met en œuvre une technique de transport anti-diffusive [11,12] qui permet de limiter la diffusion numérique des interfaces matérielles. Nous présentons des résultats de calcul bidimensionnel d’écoulement à trois composants.

  12. Generalized Stabilities of Euler-Lagrange-Jensen (a,b-Sextic Functional Equations in Quasi-β-Normed Spaces

    Directory of Open Access Journals (Sweden)

    John Michael Rassias

    2017-07-01

    Full Text Available The aim of this paper is to investigate generalized Ulam-Hyers stabilities of the following Euler-Lagrange-Jensen-$(a,b$-sextic functional equation $$ f(ax+by+f(bx+ay+(a-b^6\\left[f\\left(\\frac{ax-by}{a-b}\\right+f\\left(\\frac{bx-ay}{b-a}\\right\\right]\\\\ = 64(ab^2\\left(a^2+b^2\\right\\left[f\\left(\\frac{x+y}{2}\\right+f\\left(\\frac{x-y}{2}\\right\\right]\\\\ +2\\left(a^2-b^2\\right\\left(a^4-b^4\\right[f(x+f(y] $$ where $a\

  13. Difference Discrete Variational Principles, Euler-Lagrange Cohomology and Symplectic, Multisymplectic Structures I: Difference Discrete Variational Principle

    Institute of Scientific and Technical Information of China (English)

    GUO Han-Ying,; LI Yu-Qi; WU Ke1; WANG Shi-Kun

    2002-01-01

    In this first paper of a series, we study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncommutative differential geometry. Regarding the difference as an entire geometric object, the difference discrete version of Legendre transformation can be introduced. By virtue of this variational principle, we can discretely deal with the variation problems in both the Lagrangian and Hamiltonian formalisms to get difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory.

  14. Grid3: An Application Grid Laboratory for Science

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    level services required by the participating experiments. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. The Grid3 infrastructure was deployed from grid level services provided by groups and applications within the collaboration. The services were organized into four distinct "grid level services" including: Grid3 Packaging, Monitoring and Information systems, User Authentication and the iGOC Grid Operatio...

  15. Grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper compares two methods for controlling the on-line transference from connected to stand-alone mode and vice versa in converters for micro-grids. The first proposes a method where the converter changes from CSI (Current Source Inverter) in grid-connected mode to VSI (Voltage Source Inverter) in off-grid. In the second method, the inverter always works as a non-ideal voltage source, acting as VSI, using AC droop control strategy.

  16. The GridSite Web/Grid security system

    International Nuclear Information System (INIS)

    McNab, Andrew; Li Yibiao

    2010-01-01

    We present an overview of the current status of the GridSite toolkit, describing the security model for interactive and programmatic uses introduced in the last year. We discuss our experiences of implementing these internal changes and how they and previous rounds of improvements have been prompted by requirements from users and wider security trends in Grids (such as CSRF). Finally, we explain how these have improved the user experience of GridSite-based websites, and wider implications for portals and similar web/grid sites.

  17. Current Grid operation and future role of the Grid

    Science.gov (United States)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  18. Current Grid operation and future role of the Grid

    International Nuclear Information System (INIS)

    Smirnova, O

    2012-01-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  19. Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited

    OpenAIRE

    Takayama, Yuki

    2014-01-01

    Since the seminal work of Henderson (1981), a number of studies examined the effect of staggered work hours by analyzing models of work start time choice that consider the trade-off between negative congestion externalities and positive production externalities. However, these studies described traffic congestion using flow congestion models. This study develops a model of work start time choice with bottleneck congestion and discloses the intrinsic properties of the model. To this end, this ...

  20. Damage mapping in structural health monitoring using a multi-grid architecture

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, V. John [Dept. of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-03-31

    This paper presents a multi-grid architecture for tomography-based damage mapping of composite aerospace structures. The system employs an array of piezo-electric transducers bonded on the structure. Each transducer may be used as an actuator as well as a sensor. The structure is excited sequentially using the actuators and the guided waves arriving at the sensors in response to the excitations are recorded for further analysis. The sensor signals are compared to their baseline counterparts and a damage index is computed for each actuator-sensor pair. These damage indices are then used as inputs to the tomographic reconstruction system. Preliminary damage maps are reconstructed on multiple coordinate grids defined on the structure. These grids are shifted versions of each other where the shift is a fraction of the spatial sampling interval associated with each grid. These preliminary damage maps are then combined to provide a reconstruction that is more robust to measurement noise in the sensor signals and the ill-conditioned problem formulation for single-grid algorithms. Experimental results on a composite structure with complexity that is representative of aerospace structures included in the paper demonstrate that for sufficiently high sensor densities, the algorithm of this paper is capable of providing damage detection and characterization with accuracy comparable to traditional C-scan and A-scan-based ultrasound non-destructive inspection systems quickly and without human supervision.

  1. Variational formulation for dissipative continua and an incremental J-integral

    Science.gov (United States)

    Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.

    2018-01-01

    Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.

  2. Excitation spectrum and staggering transformations in lattice quantum models.

    Science.gov (United States)

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  3. OGC and Grid Interoperability in enviroGRIDS Project

    Science.gov (United States)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  4. caGrid 1.0: a Grid enterprise architecture for cancer research.

    Science.gov (United States)

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  5. Uncertainties of Predictions from Parton Distribution Functions 1, the Lagrange Multiplier Method

    CERN Document Server

    Stump, D R; Brock, R; Casey, D; Huston, J; Kalk, J; Lai, H L; Tung, W K

    2002-01-01

    We apply the Lagrange Multiplier method to study the uncertainties of physical predictions due to the uncertainties of parton distribution functions (PDFs), using the cross section for W production at a hadron collider as an archetypal example. An effective chi-squared function based on the CTEQ global QCD analysis is used to generate a series of PDFs, each of which represents the best fit to the global data for some specified value of the cross section. By analyzing the likelihood of these "alterative hypotheses", using available information on errors from the individual experiments, we estimate that the fractional uncertainty of the cross section due to current experimental input to the PDF analysis is approximately 4% at the Tevatron, and 10% at the LHC. We give sets of PDFs corresponding to these up and down variations of the cross section. We also present similar results on Z production at the colliders. Our method can be applied to any combination of physical variables in precision QCD phenomenology, an...

  6. Android Used in The Learning Innovation Atwood Machines on Lagrange Mechanics Methods

    Directory of Open Access Journals (Sweden)

    Shabrina Shabrina

    2017-12-01

    Full Text Available Android is one of the smartphone operating system platforms that is now widely developed in learning media. Android allows the learning process to be more flexible and not oriented to be teacher center, but it allows to be student center. The Atwood machines is an experimental tool that is often used to observe mechanical laws in constantly accelerated motion which can also be described by the Lagrange mechanics methods. As an innovative and alternative learning activity, Atwood Android-based learning apps are running for two experimental variations, which are variations in load in cart and load masses that are hung. The experiment of load-carrier mass variation found that the larger load mass in the cart, the smaller the acceleration experienced by the system. Meanwhile, the experiment on the variation of the loaded mass found that the larger the loaded mass, the greater the acceleration experienced by the system.

  7. Nonlinear Conservation Laws and Finite Volume Methods

    Science.gov (United States)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  8. Variational treatment of electron-polyatomic-molecule scattering calculations using adaptive overset grids

    Science.gov (United States)

    Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William

    2017-11-01

    The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.

  9. Adaptive solution of the multigroup diffusion equation on irregular structured grids using a conforming finite element method formulation

    International Nuclear Information System (INIS)

    Ragusa, J. C.

    2004-01-01

    In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)

  10. Stability Concerns for Indirect Consumer Control in Smart Grids

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Andersen, Palle; Wisniewski, Rafal

    2013-01-01

    by an external third party, and indirect consumer control through incentives and price signals. In this work we present a simple formulation of indirect control, where the behavior of each consumer, is governed by local optimization of energy consumption. The local optimization accounts for both cost of energy...... and distribution losses, as well as any discomfort incurred by consumers from any shift in energy consumption. Our work will illustrate that in the simplest formulation of indirect control, the stability is greatly affected of both the behavior of consumers, and the number of consumers to include. We will show how......Demand side management will be an important tool for maintaining a balanced electrical grid in the future, when the penetration of volatile resources, such as wind and solar energy increases. Recent research focuses on two different management approaches, namely direct consumer control...

  11. Direct-current vector control of three-phase grid-connected rectifier-inverter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Hong, Yang-Ki; Xu, Ling [Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35475 (United States)

    2011-02-15

    The three-phase grid-connected converter is widely used in renewable and electric power system applications. Traditionally, control of the three-phase grid-connected converter is based on the standard decoupled d-q vector control mechanism. Nevertheless, the study of this paper shows that there is a limitation in the conventional standard vector control method. Some of the limitations have also been found recently by other researchers. To overcome the shortage of the conventional vector control technique, this paper proposes a new direct-current d-q vector control mechanism in a nested-loop control structure, based on which an optimal control strategy is developed in a nonlinear programming formulation. The behaviors of both the conventional and proposed control methods are compared and evaluated in simulation and laboratory hardware experiment environments, both of which demonstrates that the proposed approach is effective for grid-connected power converter control in a wide system conditions while the conventional standard vector control approach may behave improperly especially when the converter operates beyond its PWM saturation limit. (author)

  12. Gridded Species Distribution, Version 1: Global Amphibians Presence Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Amphibians Presence Grids of the Gridded Species Distribution, Version 1 is a reclassified version of the original grids of amphibian species distribution...

  13. Risk-based decision making for staggered bioterrorist attacks : resource allocation and risk reduction in "reload" scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Lemaster, Michelle Nicole; Gay, David M. (Sandia National Laboratories, Albuquerque, NM); Ehlen, Mark Andrew (Sandia National Laboratories, Albuquerque, NM); Boggs, Paul T.; Ray, Jaideep

    2009-10-01

    Staggered bioterrorist attacks with aerosolized pathogens on population centers present a formidable challenge to resource allocation and response planning. The response and planning will commence immediately after the detection of the first attack and with no or little information of the second attack. In this report, we outline a method by which resource allocation may be performed. It involves probabilistic reconstruction of the bioterrorist attack from partial observations of the outbreak, followed by an optimization-under-uncertainty approach to perform resource allocations. We consider both single-site and time-staggered multi-site attacks (i.e., a reload scenario) under conditions when resources (personnel and equipment which are difficult to gather and transport) are insufficient. Both communicable (plague) and non-communicable diseases (anthrax) are addressed, and we also consider cases when the data, the time-series of people reporting with symptoms, are confounded with a reporting delay. We demonstrate how our approach develops allocations profiles that have the potential to reduce the probability of an extremely adverse outcome in exchange for a more certain, but less adverse outcome. We explore the effect of placing limits on daily allocations. Further, since our method is data-driven, the resource allocation progressively improves as more data becomes available.

  14. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  15. Grid: From EGEE to EGI and from INFN-Grid to IGI

    International Nuclear Information System (INIS)

    Giselli, A.; Mazzuccato, M.

    2009-01-01

    In the last fifteen years the approach of the computational Grid has changed the way to use computing resources. Grid computing has raised interest worldwide in academia, industry, and government with fast development cycles. Great efforts, huge funding and resources have been made available through national, regional and international initiatives aiming at providing Grid infrastructures, Grid core technologies, Grid middle ware and Grid applications. The Grid software layers reflect the architecture of the services developed so far by the most important European and international projects. In this paper Grid e-Infrastructure story is given, detailing European, Italian and international projects such as EGEE, INFN-Grid and NAREGI. In addition the sustainability issue in the long-term perspective is described providing plans by European and Italian communities with EGI and IGI.

  16. From the grid to the smart grid, topologically

    Science.gov (United States)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  17. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    Science.gov (United States)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  18. The Grid

    CERN Document Server

    Klotz, Wolf-Dieter

    2005-01-01

    Grid technology is widely emerging. Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple, robust yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. This talk will give a short history how, out of lessons learned from the Internet, the vision of Grids was born. Then the extensible anatomy of a Grid architecture will be discussed. The talk will end by presenting a selection of major Grid projects in Europe and US and if time permits a short on-line demonstration.

  19. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  20. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part one: Single Rigid Bodies

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of a mechanical system. The equations are presented so that they can easily be implemented in a simulation software or controller environment and are also well suited for system and controller analysis. The dynamics of a general mechanical system consisting of one or more rigid bodies can be derived from the Lagrangian. We can then use several well known properties of Lie groups to guarantee that these equations are well defined. This will, however, often lead to rather abstract formulation of the dynamic equations that cannot be implemented in a simulation software directly. In this paper we close this gap and show what the explicit dynamic equations look like. These equations can then be implemented directly in a simulation software and no background knowledge on Lie theory and differential geometry on the practitioner's side is required. This is the first of two papers on this topic. In this paper we derive the dynamics for single rigid bodies, while in the second part we study multibody systems. In addition to making the equations more accessible to practitioners, a motivation behind the papers is to correct a few errors commonly found in literature. For the first time, we show the detailed derivations and how to arrive at the correct set of equations. We also show through some simple examples that these correspond with the classical formulations found from Lagrange's equations. The dynamics is derived from the Boltzmann--Hamel equations of motion in terms of local position and velocity variables and the mapping to the corresponding quasi-velocities. Finally we present a new theorem which states that the Boltzmann--Hamel formulation of the dynamics is valid for all transformations with a Lie group topology. This has previously only been indicated through examples, but here we also present the formal proof. The main motivation of these papers is to allow practitioners not familiar with

  1. The MicroGrid: A Scientific Tool for Modeling Computational Grids

    Directory of Open Access Journals (Sweden)

    H.J. Song

    2000-01-01

    Full Text Available The complexity and dynamic nature of the Internet (and the emerging Computational Grid demand that middleware and applications adapt to the changes in configuration and availability of resources. However, to the best of our knowledge there are no simulation tools which support systematic exploration of dynamic Grid software (or Grid resource behavior. We describe our vision and initial efforts to build tools to meet these needs. Our MicroGrid simulation tools enable Globus applications to be run in arbitrary virtual grid resource environments, enabling broad experimentation. We describe the design of these tools, and their validation on micro-benchmarks, the NAS parallel benchmarks, and an entire Grid application. These validation experiments show that the MicroGrid can match actual experiments within a few percent (2% to 4%.

  2. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    Science.gov (United States)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation

  3. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  4. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Science.gov (United States)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNPcell) appeared to be magnetic field- and concentration-dependent. In H-field, MNPcell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNPcell, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNPcell in the L-field may reach as high as 80% of that in H-field during 1-6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNPcell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo.

  5. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  6. He{sup 3+}{sub 2} and HeH{sup 2+} molecular ions in a strong magnetic field: The Lagrange-mesh approach

    Energy Technology Data Exchange (ETDEWEB)

    Olivares Pilón, Horacio, E-mail: holivare@ulb.ac.be [Physique Quantique, CP 165/82, Université Libre de Bruxelles, B 1050 Brussels (Belgium)

    2012-04-09

    Accurate calculations for the ground state of the molecular ions He{sup 3+}{sub 2} and HeH{sup 2+} placed in a strong magnetic field B≳10{sup 2} a.u. (≈2.35×10{sup 11} G) using the Lagrange-mesh method are presented. The Born–Oppenheimer approximation of zero order (infinitely massive centers) and the parallel configuration (molecular axis parallel to the magnetic field) are considered. Total energies are found with 9–10 s.d. The obtained results show that the molecular ions He{sup 3+}{sub 2} and HeH{sup 2+} exist at B>100 a.u. and B>1000 a.u., respectively, as predicted in Turbiner and López Vieyra (2007) while a saddle point in the potential curve appears for the first time at B∼80 a.u. and B∼740 a.u., respectively. -- Highlights: ► Application of the Lagrange-mesh method to two exotic molecular systems. ► He{sup 3+}{sub 2} and HeH{sup 2+} exist at B>100 a.u. and B>1000 a.u., respectively. ► Accurate results for the total energy. ► A saddle point in the potential appears at B∼80 a.u. and B∼740 a.u., respectively.

  7. Smart grid technologies in local electric grids

    Science.gov (United States)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  8. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  9. The phase diagram of high temperature QCD with three flavors of improved staggered quarks

    International Nuclear Information System (INIS)

    Bernard, C.; Burch, T.; DeTar, C.E.; Gottlieb, Steven; Gregory, E.B.; Heller, U.M.; Hetrick, J.E.; Sugar, R.L.; Toussaint, D.

    2004-01-01

    We report on progress in our study of high temperature QCD with three flavors of improved staggered quarks. Simulations are being carried out with three degenerate quarks with masses less than or equal to the strange quark mass, m s , and with degenerate up and down quarks with masses in the range 0.1 m s ≤ m u,d ≤ 0.6 m s , and the strange quark mass fixed near its physical value. For the quark masses studied to date we find rapid crossovers, which sharpen as the quark mass is reduced, rather than bona fide phase transitions

  10. On fully multidimensional and high order non oscillatory finite volume methods, I

    International Nuclear Information System (INIS)

    Lafon, F.

    1992-11-01

    A fully multidimensional flux formulation for solving nonlinear conservation laws of hyperbolic type is introduced to perform calculations on unstructured grids made of triangular or quadrangular cells. Fluxes are computed across dual median cells with a multidimensional 2D Riemann Solver (R2D Solver) whose intermediate states depend on either a three (on triangle R2DT solver) of four (on quadrangle, R2DQ solver) state solutions prescribed on the three or four sides of a gravity cell. Approximate Riemann solutions are computed via a linearization process of Roe's type involving multidimensional effects. Moreover, a monotonous scheme using stencil and central Lax-Friedrichs corrections on sonic curves are built in. Finally, high order accurate ENO-like (Essentially Non Oscillatory) reconstructions using plane and higher degree polynomial limitations are defined in the set up of finite element Lagrange spaces P k and Q k for k≥0, on triangles and quadrangles, respectively. Numerical experiments involving both linear and nonlinear conservation laws to be solved on unstructured grids indicate the ability of our techniques when dealing with strong multidimensional effects. An application to Euler's equations for the Mach three step problem illustrates the robustness and usefulness of our techniques using triangular and quadrangular grids. (Author). 33 refs., 13 figs

  11. Hybrid PN-SN Calculations with SAAF for the Multiscale Transport Capability in Rattlesnake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi; Schunert, Sebastian; DeHart, Mark; Martineau, Richard

    2016-05-01

    Two interface conditions, the Lagrange multiplier method and the upwinding method, for hybrid \\pn-\\sn calculations is proposed for the self-adjoint angular flux (SAAF) formulation of the transport equation using the continuous finite element method (FEM) for spatial discretization. These interface conditions are implemented in Rattlesnake, the radiation transport application built on MOOSE, for the on-going multiscale transport simulation effort at INL. For smoothing the solution at the interface for the Lagrange multiplier method, a method based on \\sn Lagrange interpolation on the sphere is proposed. Numerical results indicate that the interface conditions give the expected convergence.

  12. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  13. Micro grids toward the smart grid

    International Nuclear Information System (INIS)

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  14. Voltage Control of Distribution Grids with Multi-Microgrids Using Reactive Power Management

    Directory of Open Access Journals (Sweden)

    WLODARCZYK, P.

    2015-02-01

    Full Text Available Low-voltage Microgrids can be valuable sources of ancillary services for the Distribution System Operators (DSOs. The aim of this paper was to study if and how multi-microgrids can contribute to Voltage Control (VC in medium-voltage distribution grids by means of reactive power generation and/or absorption. The hierarchical control strategy was proposed with the main focus on the tertiary control which was defined as optimal power flow problem. The interior-point algorithm was applied to optimise experimental benchmark grid with the presence of Distributed Energy Resources (DERs. Moreover, two primary objectives were formulated: active power losses and amount of reactive power used to reach the voltage profile. As a result the active power losses were minimised to the high extent achieving the savings around 22% during entire day.

  15. Competitive energy consumption under transmission constraints in a multi-supplier power grid system

    Science.gov (United States)

    Popov, Ivan; Krylatov, Alexander; Zakharov, Victor; Ivanov, Dmitry

    2017-04-01

    Power grid architectures need to be revised in order to manage the increasing number of producers and, more generally, the decentralisation of energy production and distribution. In this work, we describe a multi-supplier multi-consumer congestion model of a power grid, where the costs of consumers depend on the congestion in nodes and arcs of the power supply network. The consumer goal is both to meet their energy demand and to minimise the costs. We show that the methods of non-atomic routing can be applied in this model in order to describe current distribution in the network. We formulate a consumer cost minimisation game for this setting, and discuss the challenges arising in equilibrium search for this game.

  16. A Root-Locus Design Methodology Derived from the Impedance Stability Criterion and Its Application for LCL Grid-Connected Converters

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Freijedo Fernandez, Francisco Daniel; Golsorkhi, Mohammad

    2016-01-01

    This paper presents a systematic methodology for design and tuning of the controller of LCL grid-connected converters. The proposed approach is derived from the impedance/admittance stability formulation , which eases the controller modelling of LCL grid-connected systems. After system modelling......, a modified sensitivity function is defined to analyze the closed loop dynamics. For practical development, the control objectives are linked to main requirements in wind turbine applications: 1) the current control time constant should be minimized and 2) active damping actions should effectively mitigate...

  17. Thermomechanical constraints and constitutive formulations in thermoelasticity

    Directory of Open Access Journals (Sweden)

    Baek S.

    2003-01-01

    Full Text Available We investigate three classes of constraints in a thermoelastic body: (i a deformation-temperature constraint, (ii a deformation-entropy constraint, and (iii a deformation-energy constraint. These constraints are obtained as limits of unconstrained thermoelastic materials and we show that constraints (ii and (iii are equivalent. By using a limiting procedure, we show that for the constraint (i, the entropy plays the role of a Lagrange multiplier while for (ii and (iii, the absolute temperature plays the role of Lagrange multiplier. We further demonstrate that the governing equations for materials subject to constraint (i are identical to those of an unconstrained material whose internal energy is an affine function of the entropy, while those for materials subject to constraints (ii and (iii are identical to those of an unstrained material whose Helmholtz potential is affine in the absolute temperature. Finally, we model the thermoelastic response of a peroxide-cured vulcanizate of natural rubber and show that imposing the constraint in which the volume change depends only on the internal energy leads to very good predictions (compared to experimental results of the stress and temperature response under isothermal and isentropic conditions.

  18. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    Science.gov (United States)

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Compressible cavitation with stochastic field method

    Science.gov (United States)

    Class, Andreas; Dumond, Julien

    2012-11-01

    Non-linear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrange particles or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic field method solving pdf transport based on Euler fields has been proposed which eliminates the necessity to mix Euler and Lagrange techniques or prescribed pdf assumptions. In the present work, part of the PhD Design and analysis of a Passive Outflow Reducer relying on cavitation, a first application of the stochastic field method to multi-phase flow and in particular to cavitating flow is presented. The application considered is a nozzle subjected to high velocity flow so that sheet cavitation is observed near the nozzle surface in the divergent section. It is demonstrated that the stochastic field formulation captures the wide range of pdf shapes present at different locations. The method is compatible with finite-volume codes where all existing physical models available for Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic field formulation.

  20. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  1. The Grid2003 Production Grid Principles and Practice

    CERN Document Server

    Foster, I; Gose, S; Maltsev, N; May, E; Rodríguez, A; Sulakhe, D; Vaniachine, A; Shank, J; Youssef, S; Adams, D; Baker, R; Deng, W; Smith, J; Yu, D; Legrand, I; Singh, S; Steenberg, C; Xia, Y; Afaq, A; Berman, E; Annis, J; Bauerdick, L A T; Ernst, M; Fisk, I; Giacchetti, L; Graham, G; Heavey, A; Kaiser, J; Kuropatkin, N; Pordes, R; Sekhri, V; Weigand, J; Wu, Y; Baker, K; Sorrillo, L; Huth, J; Allen, M; Grundhoefer, L; Hicks, J; Luehring, F C; Peck, S; Quick, R; Simms, S; Fekete, G; Van den Berg, J; Cho, K; Kwon, K; Son, D; Park, H; Canon, S; Jackson, K; Konerding, D E; Lee, J; Olson, D; Sakrejda, I; Tierney, B; Green, M; Miller, R; Letts, J; Martin, T; Bury, D; Dumitrescu, C; Engh, D; Gardner, R; Mambelli, M; Smirnov, Y; Voeckler, J; Wilde, M; Zhao, Y; Zhao, X; Avery, P; Cavanaugh, R J; Kim, B; Prescott, C; Rodríguez, J; Zahn, A; McKee, S; Jordan, C; Prewett, J; Thomas, T; Severini, H; Clifford, B; Deelman, E; Flon, L; Kesselman, C; Mehta, G; Olomu, N; Vahi, K; De, K; McGuigan, P; Sosebee, M; Bradley, D; Couvares, P; De Smet, A; Kireyev, C; Paulson, E; Roy, A; Koranda, S; Moe, B; Brown, B; Sheldon, P

    2004-01-01

    The Grid2003 Project has deployed a multi-virtual organization, application-driven grid laboratory ("GridS") that has sustained for several months the production-level services required by physics experiments of the Large Hadron Collider at CERN (ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave search experiment LIGO, the BTeV experiment at Fermilab, as well as applications in molecular structure analysis and genome analysis, and computer science research projects in such areas as job and data scheduling. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. We describe the principles that have guided the development of this unique infrastructure and the practical experiences that have resulted from its creation and use. We discuss application requirements for grid services deployment and configur...

  2. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project ''Grid fault and designbasis for wind turbine'' supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  3. Reducing CO2 emissions on the electric grid through a carbon disincentive policy

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2013-01-01

    This paper studies the operation of an electric grid with renewable wind generation and plug-in electric vehicles (PEVs). In particular, PEVs will be the controllable demand that can mitigate the intermittency in wind generation and improve the capacity factors of the non-renewable generation assets on the grid. Optimization problems are formulated to minimize the costs of electricity generation, and two approaches are proposed to address the grid CO 2 emission in the optimization. The first approach directly penalizes CO 2 in the objective function, and the second approach adopts a carbon disincentive policy to alter the dispatch order of power plants, so that expensive low-CO 2 plants can replace cheap high-CO 2 plants. These two approaches result in very different outcomes: the first approach affects only the PEV charging demand on the grid and does not result in significant CO 2 reduction, whereas the second approach controls both the generation and load, and CO 2 can be reduced substantially. In addition, the carbon disincentive policy, unlike a carbon tax, does not collect any revenue; therefore, the increase in electricity cost is minimal. The effect of the proposed algorithms on the grid electricity cost and carbon emission is analyzed in details and reported. - Highlights: • We study the tradeoff between CO 2 emissions and generation cost on an electric grid. • The tradeoff was shown by Pareto fronts obtained from optimizations. • Pareto fronts shows that a carbon disincentive is effective in reducing emissions. • Controlling both supply and demand on the grid is necessary to reduce CO 2 and costs

  4. System modelling and online optimal management of MicroGrid using Mesh Adaptive Direct Search

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Faisal A. [Department of Electrical Engineering, Omar Al-Mukhtar University, P.O. Box 919, El-Bieda (Libya); Koivo, Heikki N. [Department of Automation and Systems Technology, Helsinki University of Technology, P.O. Box 5500, FIN-02015 HUT (Finland)

    2010-06-15

    This paper presents a generalized formulation to determine the optimal operating strategy and cost optimization scheme for a MicroGrid. Prior to the optimization of the MicroGrid itself, models for the system components are determined using real data. The proposed cost function takes into consideration the costs of the emissions, NO{sub x}, SO{sub 2}, and CO{sub 2}, start-up costs, as well as the operation and maintenance costs. A daily income and outgo from sold or purchased power is also added. The MicroGrid considered in this paper consists of a wind turbine, a micro turbine, a diesel generator, a photovoltaic array, a fuel cell, and a battery storage. In this work, the Mesh Adaptive Direct Search (MADS) algorithm is used to minimize the cost function of the system while constraining it to meet the customer demand and safety of the system. In comparison with previously proposed techniques, a significant reduction is obtained. (author)

  5. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions

    DEFF Research Database (Denmark)

    Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R. S.

    2012-01-01

    synchronization method for three-phase three-wire networks, namely dual second-order generalized integrator (SOGI) frequency-locked loop. The method is based on two adaptive filters, implemented by using a SOGI on the stationary αβ reference frame, and it is able to perform an excellent estimation......Grid synchronization algorithms are of great importance in the control of grid-connected power converters, as fast and accurate detection of the grid voltage parameters is crucial in order to implement stable control strategies under generic grid conditions. This paper presents a new grid...

  6. A new variational formulation of kinetic plasma theory and the application of moving finite elements

    International Nuclear Information System (INIS)

    Glasser, A.H.

    1991-01-01

    A new variational formulation has been developed for the system of equations governing kinetic plasmas and electromagnetic fields. It is used to apply the method of Moving Finite Elements to the electromagnetic fields. The fields are expanded in a basis of linear finite elements on a movable, unstructured grid of triangles in 2D or tetrahedra in 3D, while the plasma distribution function is expanded in a basis of super particles. Minimization of the variational with respect to the time derivatives of the field quantities yields a coupled system of equations for simultaneously advancing the amplitudes and node positions, resulting in adaptive grid motion. The adaptivity of the grid may save a large factor in the size of the grid and the number of particles required in many problems. Minimization of the variational with respect to the time derivatives of the particle positions and velocities gives the equations of motion, providing consistent prescriptions for assigning particles to the grid and fields to the particles. Orthogonality conditions on the particles are derived as conditions for keeping their equations of motion independent. Collisions can be included in a natural way. The relationship between PIC methods and alternative methods of discretizing phase space is clarified

  7. GridICE: monitoring the user/application activities on the grid

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A; Fantinel, S

    2008-01-01

    The monitoring of the grid user activity and application performance is extremely useful to plan resource usage strategies particularly in cases of complex applications. Large VOs, such as the LHC VOs, do their monitoring by means of dashboards. Other VOs or communities, like for example the BioinfoGRID one, are characterized by a greater diversification of the application types: so the effort to provide a dashboard like monitor is particularly heavy. The main theme of this paper is to show the improvements introduced in GridICE, a web tool built to provides an almost complete grid monitoring. These recent improvements allows GridICE to provide new reports on the resources usage with details of the VOMS groups, roles and users. By accessing the GridICE web pages, the grid user can get all information that is relevant to keep track of his activity on the grid. In the same way, the activity of a VOMS group can be distinguished from the activity of the entire VO. In this paper we briefly talk about the features and advantages of this approach and, after discussing the requirements, we describe the software solutions, middleware and prerequisite to manage and retrieve the user's credentials

  8. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A.D.; Sørensen, P.

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project "Grid fault and design basis for wind turbine" supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  9. Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement

    International Nuclear Information System (INIS)

    Salmonson, Jay D; Anninos, Peter; Fragile, P Chris; Camarda, Karen

    2007-01-01

    A code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. It provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threaded oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. Some recent studies will be summarized

  10. A unified grid current control for grid-interactive DG inverters in microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittan...... locus analyses in the discrete z-domain are performed for elaborating the controller design. Simulations and experimental results demonstrate the performances of the proposed approach.......This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittance...... in the outer loop. It, therefore, provides several superior features over traditional control schemes: 1) high-quality grid current in the grid-connected mode, 2) inherent derivative-less virtual output impedance control, and 3) the unified active damping for both grid-connected and islanded operations. Root...

  11. Multi-state time-varying reliability evaluation of smart grid with flexible demand resources utilizing Lz transform

    Science.gov (United States)

    Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao

    2017-01-01

    With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.

  12. Grid-Voltage-Feedforward Active Damping for Grid-Connected Inverter with LCL Filter

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    For the grid-connected voltage source inverters, the feedforward scheme of grid voltage is commonly adopted to mitigate the current distortion caused by grid background voltages harmonics. This paper investigates the grid-voltage-feedforward active damping for grid connected inverter with LCL...... filter. It reveals that proportional feedforward control can not only fulfill the mitigation of grid disturbance, but also offer damping effects on the LCL filter resonance. Digital delays are intrinsic to digital controlled inverters; with these delays, the feedforward control can be equivalent...

  13. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  14. Achieving privacy-preserving big data aggregation with fault tolerance in smart grid

    OpenAIRE

    Zhitao Guan; Guanlin Si

    2017-01-01

    In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching strategy. However, these big energy data in terms of volume, velocity and variety raise concern over consumers’ privacy. For instance, in order to optimize energy utilization and support demand response, numerous smart meters are installed at a consumer's home to collect energy consu...

  15. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  16. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid

    International Nuclear Information System (INIS)

    Taylor, M A; Edwards, J; Thomas, S; Nair, R

    2007-01-01

    We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case

  17. On the donor states in double InxGa1−xN/InyGa1−yN/GaN staggered quantum wells

    International Nuclear Information System (INIS)

    Yıldırım, Hasan; Aslan, Bulent

    2013-01-01

    We have calculated the binding energies of the donor states, 1s and 2p ± , with respect to the lowest sub-band energy in a double quantum well composed of wurtzite InGaN staggered quantum wells with GaN barriers. All the energies and the wavefunctions were calculated by applying the variational methods. We have found that the binding energies of donors placed in the right quantum well are larger and independent of the middle barrier width of up to 40 Å. This is because of the strong built-in electric field which brings more confinement to the donor wavefunctions in the right staggered quantum well. The binding energies are found to be strong functions of the donor position in the double quantum well system which is the consequence of the large asymmetry introduced by the built-in electric field. (paper)

  18. Main formulations of the finite element method for the problems of structural mechanics. Part 2

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    Full Text Available The author offers a classification of Finite Element formulations, which allows orienting in a great number of the published and continuing to be published works on the problem of raising the efficiency of this widespread numerical method. The second part of the article offers examination of straight formulations of FEM in the form of displacement approach, area method and classical mixed-mode method. The question of solution convergence according to FEM in the form of classical mixed-mode method is considered on the example of single-input single-output system of a beam in case of finite element grid refinement. The author draws a conclusion, that extinction of algebraic equations system of FEM in case of passage to the limit is not a peculiar feature of this method in general, but manifests itself only in some particular cases. At the same time the obtained results prove that FEM in mixed-mode form provides obtaining more stable results in case of finite element grid refinement in comparison with FEM in the form of displacement approach. It is quite obvious that the same qualities will appear also in two-dimensional systems.

  19. Urban micro-grids

    International Nuclear Information System (INIS)

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  20. Hebbian plasticity realigns grid cell activity with external sensory cues in continuous attractor models

    Directory of Open Access Journals (Sweden)

    Marcello eMulas

    2016-02-01

    Full Text Available After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN, is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors overtime due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments.

  1. Grid Architecture 2

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  2. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  3. Virological failure of staggered and simultaneous treatment interruption in HIV patients who began Efavirenz-based regimens after allergic reactions to nevirapine

    Directory of Open Access Journals (Sweden)

    Siripassorn Krittaecho

    2013-01-01

    Full Text Available Abstract Objective The objective of this work was to study the virological outcomes associated with two different types of treatment interruption strategies in patients with allergic reactions to nevirapine (NVP. We compared the virological outcomes of (1 HIV-1-infected patients who discontinued an initial NVP-based regimen because of cutaneous allergic reactions to NVP; different types of interruption strategies were used, and second-line regimen was based on efavirenz (EFV; and (2 HIV-1-infected patients who began an EFV-based regimen as a first-line therapy (controls. Methods This retrospective cohort included patients who began an EFV-based regimen, between January 2002 and December 2008, as either an initial regimen or as a subsequent regimen after resolving a cutaneous allergic reaction against an initial NVP-based regimen. The study ended in March 2010. The primary outcome was virological failure, which was defined as either (a two consecutive plasma HIV-1 RNA levels >400 copies/mL or (b a plasma HIV-1 RNA level >1,000 copies/mL plus any genotypic resistance mutation. Results A total of 559 patients were stratified into three groups: (a Simultaneous Interruption, in which the subjects simultaneously discontinued all the drugs in an NVP-based regimen following an allergic reaction (n=161; (b Staggered Interruption, in which the subjects discontinued NVP treatment while continuing nucleoside reverse transcriptase inhibitor (NRTI backbone therapy for a median of 7 days (n=82; and (c Control, in which the subjects were naïve to antiretroviral therapy (n=316. The overall median follow-up time was 43 months. Incidence of virological failure in Simultaneous Interruption was 12.9 cases per 1,000 person-years, which trended toward being higher than the incidences in Staggered Interruption (5.4 and Control (6.6. However, differences were not statistically significant. Conclusions Among the patients who had an acute allergic reaction to first

  4. Smart Grid: Network simulator for smart grid test-bed

    International Nuclear Information System (INIS)

    Lai, L C; Ong, H S; Che, Y X; Do, N Q; Ong, X J

    2013-01-01

    Smart Grid become more popular, a smaller scale of smart grid test-bed is set up at UNITEN to investigate the performance and to find out future enhancement of smart grid in Malaysia. The fundamental requirement in this project is design a network with low delay, no packet drop and with high data rate. Different type of traffic has its own characteristic and is suitable for different type of network and requirement. However no one understands the natural of traffic in smart grid. This paper presents the comparison between different types of traffic to find out the most suitable traffic for the optimal network performance.

  5. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    Science.gov (United States)

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  6. Grid Voltage Modulated Control of Grid-Connected Voltage Source Inverters under Unbalanced Grid Conditions

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an improved grid voltage modulated control (GVM) with power compensation is proposed for grid-connected voltage inverters when the grid voltage is unbalanced. The objective of the proposed control is to remove the power ripple and to improve current quality. Three power compensation...... objectives are selected to eliminate the negative sequence components of currents. The modified GVM method is designed to obtain two separate second-order systems for not only the fast convergence rate of the instantaneous active and reactive powers but also the robust performance. In addition, this method...

  7. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets

    Directory of Open Access Journals (Sweden)

    Matthew H. Savoie

    2012-03-01

    Full Text Available Defined in the early 1990s for use with gridded satellite passive microwave data, the Equal-Area Scalable Earth Grid (EASE-Grid was quickly adopted and used for distribution of a variety of satellite and in situ data sets. Conceptually easy to understand, EASE-Grid suffers from limitations that make it impossible to format in the widely popular GeoTIFF convention without reprojection. Importing EASE-Grid data into standard mapping software packages is nontrivial and error-prone. This article defines a standard for an improved EASE-Grid 2.0 definition, addressing how the changes rectify issues with the original grid definition. Data distributed using the EASE-Grid 2.0 standard will be easier for users to import into standard software packages and will minimize common reprojection errors that users had encountered with the original EASE-Grid definition.

  8. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    International Nuclear Information System (INIS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-01-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252 Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235 U(n th , f).

  9. A new subgrid characteristic length for turbulence simulations on anisotropic grids

    Science.gov (United States)

    Trias, F. X.; Gorobets, A.; Silvis, M. H.; Verstappen, R. W. C. P.; Oliva, A.

    2017-11-01

    Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most popular example thereof. This type of models requires the calculation of a subgrid characteristic length which is usually associated with the local grid size. For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids, such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers, a consensus on defining the subgrid characteristic length has not been reached yet despite the fact that it can strongly affect the performance of LES models. In this context, a new definition of the subgrid characteristic length is presented in this work. This flow-dependent length scale is based on the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh anisotropies on simulation results. The performance of the proposed subgrid characteristic length is successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length scales show that the proposed definition is much more robust with respect to mesh anisotropies and has a great potential to be used in complex geometries where highly skewed (unstructured) meshes are present.

  10. 3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia

    Science.gov (United States)

    Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.

    2012-12-01

    solver is implemented within the framework of the modular system for EM inversion (ModEM by G. Egbert, A. Kelbert, N. Meqbel), using the ModEM 3D finite difference staggered grid forward solver (second order PDE in the electric field, with divergence correction) as a starting point for our development. The first 3D inversion model for the crust and upper mantle shows the highly conducting bodies in the crust which can be interpreted as alum shales. The eastern and central parts are presented by resistive Precambrian rocks of the Svecofennian and Archaean domains. The upper mantle is resistive and relates to the Baltica basement. We also compare 3D inversion model with the results of 2D inversion along several profiles. We are able to explain some of the features in the data (out of quadrant phase) with 3D model, thus providing more reliable results compared to routine 2D approach.

  11. Optimal Operation and Management of Smart Grid System with LPC and BESS in Fault Conditions

    Directory of Open Access Journals (Sweden)

    Ryuto Shigenobu

    2016-12-01

    Full Text Available Distributed generators (DG using renewable energy sources (RESs have been attracting special attention within distribution systems. However, a large amount of DG penetration causes voltage deviation and reverse power flow in the smart grid. Therefore, the smart grid needs a solution for voltage control, power flow control and power outage prevention. This paper proposes a decision technique of optimal reference scheduling for a battery energy storage system (BESS, inverters interfacing with a DG and voltage control devices for optimal operation. Moreover, the reconfiguration of the distribution system is made possible by the installation of a loop power flow controller (LPC. Two separate simulations are provided to maintain the reliability in the stable power supply and economical aspects. First, the effectiveness of the smart grid with installed BESS or LPC devices is demonstrated in fault situations. Second, the active smart grid using LCPs is proposed. Real-time techniques of the dual scheduling algorithm are applied to the system. The aforementioned control objective is formulated and solved using the particle swarm optimization (PSO algorithm with an adaptive inertia weight (AIW function. The effectiveness of the optimal operation in ordinal and fault situations is verified by numerical simulations.

  12. Hyperspherical Harmonics Expansion on Lagrange Meshes for Bosonic Systems in One Dimension

    International Nuclear Information System (INIS)

    Timofeyuk, N. K.; Baye, D.

    2017-01-01

    A one-dimensional system of bosons interacting with contact and single-Gaussian forces is studied with an expansion in hyperspherical harmonics. The hyper radial potentials are calculated using the link between the hyperspherical harmonics and the single-particle harmonic-oscillator basis while the coupled hyper radial equations are solved with the Lagrange-mesh method. Extensions of this method are proposed to achieve good convergence with small numbers of mesh points for any truncation of hyper momentum. The convergence with hyper momentum strongly depends on the range of the two-body forces: it is very good for large ranges but deteriorates as the range decreases, being the worst for the contact interaction. In all cases, the lowest-order energy is within 4.5% of the exact solution and shows the correct cubic asymptotic behaviour at large boson numbers. Details of the convergence studies are presented for 3, 5, 20 and 100 bosons. A special treatment for three bosons was found to be necessary. For single-Gaussian interactions, the convergence rate improves with increasing boson number, similar to what happens in the case of three-dimensional systems of bosons. (author)

  13. Uncertainties of predictions from parton distribution functions. I. The Lagrange multiplier method

    International Nuclear Information System (INIS)

    Stump, D.; Pumplin, J.; Brock, R.; Casey, D.; Huston, J.; Kalk, J.; Lai, H. L.; Tung, W. K.

    2002-01-01

    We apply the Lagrange multiplier method to study the uncertainties of physical predictions due to the uncertainties of parton distribution functions (PDF's), using the cross section σ W for W production at a hadron collider as an archetypal example. An effective χ 2 function based on the CTEQ global QCD analysis is used to generate a series of PDF's, each of which represents the best fit to the global data for some specified value of σ W . By analyzing the likelihood of these 'alterative hypotheses', using available information on errors from the individual experiments, we estimate that the fractional uncertainty of σ W due to current experimental input to the PDF analysis is approximately ±4% at the Fermilab Tevatron, and ±8-10% at the CERN Large Hadron Collider. We give sets of PDF's corresponding to these up and down variations of σ W . We also present similar results on Z production at the colliders. Our method can be applied to any combination of physical variables in precision QCD phenomenology, and it can be used to generate benchmarks for testing the accuracy of approximate methods based on the error matrix

  14. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    Science.gov (United States)

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  15. Smart grids and power systems efficiency: regulatory tools and demand-side management impacts

    International Nuclear Information System (INIS)

    Bergaentzle, Claire

    2015-01-01

    The physical architecture of electricity grids and the organizational structure of power systems implemented after the reforms have traditionally be achieved according to the characteristics of the transmission infrastructures and power mixes. However, the new challenges related to energy transition favor a greater participation of decentralized generation and final consumers to system exploitation and competitive markets. This latter participation is made possible thanks to recent innovations in the fields of communication and remote control technologies. Significant evolutions are expected in power industries that share common characteristics. First, these evolutions suppose massive capital investments to modernize and adapt current power distribution grids. Second, it is expected the activation of distribution grids and final consumers will unleash substantial unexploited economic efficiency gains as well as impose new constraints. Taking these simple facts as a starting point, the objective of the thesis is twofold. In the first place, we provide a theoretical analysis of the regulatory instruments that monitor the system operators' expenses. Relying on the literature, we aim at characterizing what regulatory tools and incitation are suitable for investing in smart grids technologies. Since it is necessary to compare theoretical formulation to facts, we use an empirical approach that allows us to designate key benefits pursued by the development of smart grids and to compare our theoretical results with practical regulatory applications. Our findings eventually allow us to formulate recommendations. In the second place, the thesis focuses on the impacts of demand-side management during peak periods. We structure our approach around two general observations. Large benefits should be generated in lowering substantially peak demand. However, such situation also creates losses of profit for generators. We provide an estimation of efficiency gains and revenue losses

  16. High temperature QCD with three flavors of improved staggered quarks

    International Nuclear Information System (INIS)

    Bernard, C.; Burch, T.; Tar, C.E. de; Gottlieb, Steven; Gregory, Eric; Heller, U.M.; Osborn, J.; Sugar, R.L.; Toussaint, D.

    2003-01-01

    We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with N t = 4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, m s and on lattices with N t = 6 and 8 for degenerate up and down quarks with masses in the range 0.2m s ≤ m u,d ≤ 0.6m s and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD

  17. Volumetric formulation for a class of kinetic models with energy conservation.

    Science.gov (United States)

    Sbragaglia, M; Sugiyama, K

    2010-10-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum, and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.

  18. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels

    Science.gov (United States)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1995-01-01

    A smeared stiffener theory for stiffened panels is presented that includes skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener combination is developed analytically using the minimum potential energy principle and statics conditions. The skin-stiffener interaction is accounted for by computing the stiffness due to the stiffener and the skin in the skin-stiffener region about the neutral axis at the stiffener. Buckling load results for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using the smeared stiffness combined with a Rayleigh-Ritz method and are compared with results from detailed finite element analyses.

  19. Verification of the three-dimensional tetrahedral grid SN code THOR

    International Nuclear Information System (INIS)

    Schunert, S.; Ferrer, R.; Azmy, Y.

    2013-01-01

    In this work current capabilities implemented in the novel, arbitrary-order, tetrahedral-grid short characteristics S N radiation transport code THOR are verified based on four benchmark problems: (1) A one-group Method of Manufactured Solution (MMS) problem on a cuboidal domain, (2) an infinite medium eigenvalue problem with up-scattering, (3) a homogeneous torus and (4) a bare cube eigenvalue problem with anisotropic scattering up to order three. The first benchmark problem exercises the various spatial discretization options available in THOR: The short characteristics method in conjunction with polynomial expansions of the source and face fluxes either using the complete or Lagrange family of arbitrary orders. Using the numerical solution's order of convergence test in the framework of a mesh refinement study, correct implementation of a selection of spatial expansion orders is demonstrated for two meshes with tetrahedral aspect ratios close to unity and 50. The second benchmark problem exercises the implementation of angular fluxes on reflective boundary faces that are implicit within a mesh sweep, and up-scattering. The third benchmark problem comprises cyclic dependencies within the mesh sweep thus exercising the algorithm devised for 'breaking' the cyclic dependencies. Finally, the fourth benchmark problem, a simple bare cube, is used to test correct implementation of the anisotropic scattering capability. For all test problems THOR obtains solutions that converge to the reference/exact solution with the expected rate thereby contributing to our confidence in the correctness of its tested features in the present implementation. (authors)

  20. Grid Databases for Shared Image Analysis in the MammoGrid Project

    CERN Document Server

    Amendolia, S R; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Reading, T; Rogulin, D; Schottlander, D; Solomonides, T

    2004-01-01

    The MammoGrid project aims to prove that Grid infrastructures can be used for collaborative clinical analysis of database-resident but geographically distributed medical images. This requires: a) the provision of a clinician-facing front-end workstation and b) the ability to service real-world clinician queries across a distributed and federated database. The MammoGrid project will prove the viability of the Grid by harnessing its power to enable radiologists from geographically dispersed hospitals to share standardized mammograms, to compare diagnoses (with and without computer aided detection of tumours) and to perform sophisticated epidemiological studies across national boundaries. This paper outlines the approach taken in MammoGrid to seamlessly connect radiologist workstations across a Grid using an "information infrastructure" and a DICOM-compliant object model residing in multiple distributed data stores in Italy and the UK

  1. Multigrid on unstructured grids using an auxiliary set of structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.C.; Malhotra, S.; Schultz, M.H. [Yale Univ., New Haven, CT (United States)

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  2. Asymmetrical Grid Fault Ride-Through Strategy of Three-phase Grid-connected Inverter Considering Network Impedance Impact in Low Voltage Grid

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Zhang, Xue; Wang, Baocheng

    2014-01-01

    This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... of the proposed solution for the flexible voltage support in a low-voltage grid, where thenetwork impedance is mainly resistive.......This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... inductive, the proposed control strategy is more flexible and effective by considering the network impedance impact, which is of great importance for the high penetration of grid-connected renewable energy systems into low-voltage grids. The experimental tests are carried out to validate the effectiveness...

  3. Effects of Front-Loading and Stagger Angle on Endwall Losses of High Lift Low Pressure Turbine Vanes

    Science.gov (United States)

    2012-09-01

    length scale at z/H = 0.20 ………….… 131 Fig. E.1 Traverse arrangement to enable 3D movement inside the wind tunnel …..… 132 Fig. E.2 Diagram of in...2 ] USAF = United States Air Force 2D = two-dimensional 3D = three-dimensional 1 EFFECTS OF FRONT-LOADING AND STAGGER ANGLE ON ENDWALL...within the wakes. I used Druck LPM 5481 pressure transducers, calibrated using a Ruska 7250LP laboratory standard (the reported accuracy is within

  4. The GRID seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The Grid infrastructure is a key part of the computing environment for the simulation, processing and analysis of the data of the LHC experiments. These experiments depend on the availability of a worldwide Grid infrastructure in several aspects of their computing model. The Grid middleware will hide much of the complexity of this environment to the user, organizing all the resources in a coherent virtual computer center. The general description of the elements of the Grid, their interconnections and their use by the experiments will be exposed in this talk. The computational and storage capability of the Grid is attracting other research communities beyond the high energy physics. Examples of these applications will be also exposed during the presentation.

  5. Problems of vector Lagrangians in field theories

    International Nuclear Information System (INIS)

    Krivsky, I.Yu.; Simulik, V.M.

    1997-01-01

    A vector Lagrange approach to the Dirac spinor field and the relationship between the vector Lagrangians for the spinor and electromagnetic fields are considered. A vector Lagrange approach for the system of interacting electromagnetic B=(B μ υ)=(E-bar,H-bar) and spinor Ψ fields is constructed. New Lagrangians (scalar and vector) for electromagnetic field in terms of field strengths are found. The foundations of two new QED models are formulated

  6. Importance of Grid Center Arrangement

    Science.gov (United States)

    Pasaogullari, O.; Usul, N.

    2012-12-01

    In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs

  7. Initial results of local grid control using wind farms with grid support

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.

    2005-09-01

    This report describes initial results with simulation of local grid control using wind farms with grid support. The focus is on simulation of the behaviour of the wind farms when they are isolated from the main grid and establish a local grid together with a few other grid components. The isolated subsystems used in the work presented in this report do not intend to simulate a specific subsystem, but they are extremely simplified single bus bar systems using only a few more components than the wind farm. This approach has been applied to make it easier to understand the dynamics of the subsystem. The main observation is that the fast dynamics of the wind turbines seem to be able to contribute significantly to the grid control, which can be useful where the wind farm is isolated with a subsystem from the main grid with surplus of generation. Thus, the fast down regulation of the wind farm using automatic frequency control can keep the subsystem in operation and thereby improve the reliability of the grid. (LN)

  8. How should grid operators govern smart grid innovation projects? An embedded case study approach

    International Nuclear Information System (INIS)

    Reuver, Mark de; Lei, Telli van der; Lukszo, Zofia

    2016-01-01

    Grid operators increasingly have to collaborate with other actors in order to realize smart grid innovations. For routine maintenance, grid operators typically acquire technologies in one-off transactions, but the innovative nature of smart grid projects may require more collaborate relationships. This paper studies how a transactional versus relational approach to governing smart grid innovation projects affects incentives for other actors to collaborate. We analyse 34 cases of smart grid innovation projects based on extensive archival data as well as interviews. We find that projects relying on relational governance are more likely to provide incentives for collaboration. Especially non-financial incentives such as reputational benefits and shared intellectual property rights are more likely to be found in projects relying on relational governance. Policy makers that wish to stimulate smart grid innovation projects should consider stimulating long-term relationships between grid operators and third parties, because such relationships are more likely to produce incentives for collaboration. - Highlights: • Smart grids require collaboration between grid operators and other actors. • We contrast transactional and relational governance of smart grid projects. • Long-term relations produce more incentives for smart grid collaboration. • Non-financial incentives are more important in long-term relations. • Policy makers should stimulate long-term relations to stimulate smart grids.

  9. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2003-01-01

    these software packages is discussed in Sections 3 and 6.1.1. The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of HGUs, (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid, with finer resolution at the proposed repository horizon and within the Paintbrush nonwelded (PTn) and ch1 (Uppermost Calico Hills Formation (Table 11)) hydrogeologic units, and (6) formulating the dual-permeability mesh. The products of grid development include a set of one-dimensional (1-D) vertical columns of gridblocks for hydrogeologic-property-set inversions, a 2-D UZ Model vertical cross-sectional grid for fault hydrogeologic-property calibrations, and a 3-D UZ Model grid for additional model calibrations and generating flow fields for Performance Assessment (PA)

  10. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    Science.gov (United States)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  11. 29 CFR Appendix H to Subpart R of... - Double Connections: Illustration of a Clipped End Connection and a Staggered Connection: Non...

    Science.gov (United States)

    2010-07-01

    ... Connection and a Staggered Connection: Non-Mandatory Guidelines for Complying With § 1926.756(c)(1) H Appendix H to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY... CONSTRUCTION Steel Erection Pt. 1926, Subpt. R, App. H Appendix H to Subpart R of Part 1926—Double Connections...

  12. Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...

  13. Grid connectivity issues and the importance of GCC. [GCC - Grid Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Schwartz, M.-K. [GL Renewable Certification, Malleswaram, Bangalore (India)

    2012-07-01

    In India, the wind energy is concentrated in rural areas with a very high penetration. In these cases, the wind power has an increasing influence on the power quality on the grids. Another aspect is the influence of weak grids on the operation of wind turbines. Hence it becomes very much essential to introduce such a strong grid code which is particularly applicable to wind sector and suitable for Indian environmental grid conditions. This paper focuses on different international grid codes and their requirement with regard to the connection of wind farms to the electric power systems to mitigate the grid connectivity issues. The requirements include the ways to achieve voltage and frequency stability in the grid-tied wind power system. In this paper, comparative overview and analysis of the main grid connecting requirements will be conducted, comprising several national and regional codes from many countries where high wind penetration levels have been achieved or are expected in the future. The objective of these requirements is to provide wind farms with the control and regulation capabilities encountered in conventional power plants and are necessary for the safe, reliable and economic operation of the power system. This paper also provides a brief idea on the Grid Code Compliance (GCC) certification procedure implemented by the leading accredited certifying body like Germanischer Lloyd Renewables Certification (GL RC), who checks the conformity of the wind turbines as per region specific grid codes. (Author)

  14. The GridShare solution: a smart grid approach to improve service provision on a renewable energy mini-grid in Bhutan

    International Nuclear Information System (INIS)

    Quetchenbach, T G; Harper, M J; Jacobson, A E; Robinson IV, J; Hervin, K K; Chase, N A; Dorji, C

    2013-01-01

    This letter reports on the design and pilot installation of GridShares, devices intended to alleviate brownouts caused by peak power use on isolated, village-scale mini-grids. A team consisting of the authors and partner organizations designed, built and field-tested GridShares in the village of Rukubji, Bhutan. The GridShare takes an innovative approach to reducing brownouts by using a low cost device that communicates the state of the grid to its users and regulates usage before severe brownouts occur. This demand-side solution encourages users to distribute the use of large appliances more evenly throughout the day, allowing power-limited systems to provide reliable, long-term renewable electricity to these communities. In the summer of 2011, GridShares were installed in every household and business connected to the Rukubji micro-hydro mini-grid, which serves approximately 90 households with a 40 kW nominal capacity micro-hydro system. The installation was accompanied by an extensive education program. Following the installation of the GridShares, the occurrence and average length of severe brownouts, which had been caused primarily by the use of electric cooking appliances during meal preparation, decreased by over 92%. Additionally, the majority of residents surveyed stated that now they are more certain that their rice will cook well and that they would recommend installing GridShares in other villages facing similar problems. (letter)

  15. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  16. Price-based Energy Control for V2G Networks in the Industrial Smart Grid

    Directory of Open Access Journals (Sweden)

    Rong Yu

    2015-08-01

    Full Text Available The energy crisis and global warming call for a new industrial revolution in production and distribution of renewable energy. Distributed power generation will be well developed in the new smart electricity distribution grid, in which robust power distribution will be the key technology. In this paper, we present a new vehicle-to-grid (V2G network for energy transfer, in which distributed renewable energy helps the power grid balance demand and supply. Plug-in hybrid electric vehicles (PHEVs will act as transporters of electricity for distributed renewable energy dispatching. We formulate and analyze the V2G network within the theoretical framework of complex network. We also employ the generalized synchronization method to study the dynamic behavior of V2G networks. Furthermore, we develop a new price-based energy control method to stimulate the PHEV's behavior of charging and discharging. Simulation results indicate that the V2G network can achieve synchronization and each region is able to balance energy supply and demand through price-based control.

  17. The LHCb Grid Simulation

    CERN Multimedia

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  18. Smart grid in Denmark 2.0. Implementing three key recommendations from the Smart Grid Network. [DanGrid]; Smart Grid i Danmark 2.0. Implementering af tre centrale anbefalinger fra Smart Grid netvaerket

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    In 2011 the Smart Grid Network, established by the Danish Climate and Energy minister in 2010, published a report which identifies 35 recommendations for implementing smart grid in Denmark. The present report was prepared by the Danish Energy Association and Energinet.dk and elaborates three of these recommendations: Concept for controlling the power system; Information model for the dissemination of data; Roadmap for deployment of smart grid. Concept of Smart Grid: The concept mobilizes and enables electric power demand response and production from smaller customers. This is done by customers or devices connected to the power system modify their behavior to meet the needs of the power system. The concept basically distinguishes between two different mechanisms to enable flexibility. One is the use of price signals (variable network tariffs and electricity prices), which gives customers a financial incentive to move their electricity consumption and production to times when it is of less inconvenience to the power system. The second is flexibility products, where a pre-arranged and well-specified performance - for example, a load reduction in a defined network area - can be activated as required by grid operators and / or Energinet.dk at an agreed price. Information Model for Disseminating Data: The future power system is complex with a large number of physical units, companies and individuals are actively involved in the power system. Similarly, the amount of information needed to be collected, communicated and processed grows explosively, and it is therefore essential to ensure a well-functioning IT infrastructure. A crucial element is a standardized information model in the Danish power system. The concept therefore indicates to use international standards to define an information model. Roadmap Focusing on Grid Companies' Role: There is a need to remove two key barriers. The first barrier is that the existing regulation does not support the grid using

  19. An optimized metal grid design to improve the solar cell performance under solar concentration using multiobjective computation

    International Nuclear Information System (INIS)

    Djeffal, F.; Bendib, T.; Arar, D.; Dibi, Z.

    2013-01-01

    Highlights: ► A new MOGA-based approach to design the solar cell metal grid is proposed. ► The cell parameters have been ascertained including the high illumination effects. ► An improved electrical behavior of the solar cell is found. ► The proposed optimized metal grid design is suitable for photovoltaic applications. -- Abstract: In this paper, a new multiobjective genetic algorithm (MOGA)-based approach is proposed to optimize the metal grid design in order to improve the electrical performance and the conversion efficiency behavior of the solar cells under high intensities of illumination. The proposed approach is applied to investigate the effect of two different metal grid patterns (one with 2 busbars outside the active area (linear grid) and another one with a circular busbar surrounding the active area (circular grid)) on the electrical performance of high efficiency c-Si solar cells under concentrated light (up to 150 suns). The dimensional and electrical parameters of the solar cell have been ascertained, and analytical expressions of the power losses and conversion efficiency, including high illumination effects, have been presented. The presented analytical models are used to formulate different objective functions, which are the prerequisite of the multiobjective optimization. The optimized design can also be incorporated into photovoltaic circuit simulator to study the impact of our approach on the photovoltaic circuit design

  20. On the Performance Optimization of Two-Level Three-Phase Grid-Feeding Voltage-Source Inverters

    Directory of Open Access Journals (Sweden)

    Issam A. Smadi

    2018-02-01

    Full Text Available The performance optimization of the two-level, three-phase, grid-feeding, voltage-source inverter (VSI is studied in this paper, which adopts an online adaptive switching frequency algorithm (OASF. A new degree of freedom has been added to the employed OASF algorithm for optimal selection of the weighting factor and overall system optimization design. Toward that end, a full mathematical formulation, including the impact of the coupling inductor and the controller response time, is presented. At first, the weighting factor is selected to favor the switching losses, and the controller gains are optimized by minimizing the integral time-weighted absolute error (ITAE of the output active and reactive power. Different loading and ambient temperature conditions are considered to validate the optimized controller and its fast response through online field programmable gate array (FPGA-in-the-loop. Then, the weighting factor is optimally selected to reduce the cost of the L-filter and the heat-sink. An optimization problem to minimize the cost design at the worst case of loading condition for grid-feeding VSI is formulated. The results from this optimization problem are the filter inductance, the thermal resistance of the heat-sink, and the optimal switching frequency with the optimal weighting factor. The VSI test-bed using the optimized parameters is used to verify the proposed work experimentally. Adopting the OASF algorithm that employs the optimal weighting factor for grid-feeding VSI, the percentages of the reductions in the slope of the steady state junction temperature profile compared to fixed frequencies of 10 kHz, 14.434 kHz, and 20 kHz are about 6%, 30%, and 18%, respectively.

  1. Synchronization method for grid integrated battery storage systems during asymmetrical grid faults

    Directory of Open Access Journals (Sweden)

    Popadić Bane

    2017-01-01

    Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  2. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  3. Adapting the Euler-Lagrange equation to study one-dimensional motions under the action of a constant force

    Science.gov (United States)

    Dias, Clenilda F.; Araújo, Maria A. S.; Carvalho-Santos, Vagson L.

    2018-01-01

    The Euler-Lagrange equations (ELE) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of ELE to study one-dimensional motions under the action of a constant force. From the use of the definition of partial derivative, we have proposed two operators, here called mean delta operators, which may be used to solve the ELE in a simplest way. We have applied this simplification to solve three simple mechanical problems in which the particle is under the action of the gravitational field: a free fall body, the Atwood’s machine and the inclined plan. The proposed simplification can be used to introduce the lagrangian formalism in teaching classical mechanics in introductory physics courses.

  4. Flexible operation of parallel grid-connecting converters under unbalanced grid voltage

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    -link voltage ripple, and overloading. Moreover, under grid voltage unbalance, the active power delivery ability is decreased due to the converter's current rating limitation. In this paper, a thorough study on the current limitation of the grid-connecting converter under grid voltage unbalance is conducted....... In addition, based on the principle that total output active power should be oscillation free, a coordinated control strategy is proposed for the parallel grid-connecting converters. The case study has been conducted to demonstrate the effectiveness of this proposed control strategy....

  5. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....... phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...

  6. Smart grid security innovative solutions for a modernized grid

    CERN Document Server

    Skopik, Florian

    2015-01-01

    The Smart Grid security ecosystem is complex and multi-disciplinary, and relatively under-researched compared to the traditional information and network security disciplines. While the Smart Grid has provided increased efficiencies in monitoring power usage, directing power supplies to serve peak power needs and improving efficiency of power delivery, the Smart Grid has also opened the way for information security breaches and other types of security breaches. Potential threats range from meter manipulation to directed, high-impact attacks on critical infrastructure that could bring down regi

  7. Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea

    International Nuclear Information System (INIS)

    R.G. Edwards; G. Fleming; Ph. Hagler; J.W. Negele; K. Orginos; A.V. Pochinsky; D.B. Renner; D.G. Richards; W. Schroers

    2006-01-01

    Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed

  8. Investigation of heat transfer of tube line of staggered tube bank in two-phase flow

    Science.gov (United States)

    Jakubcionis, Mindaugas

    2015-06-01

    This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.

  9. Grid Integration Research | Wind | NREL

    Science.gov (United States)

    Grid Integration Research Grid Integration Research Researchers study grid integration of wind three wind turbines with transmission lines in the background. Capabilities NREL's grid integration electric power system operators to more efficiently manage wind grid system integration. A photo of

  10. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets

    OpenAIRE

    Brodzik, Mary J.; Billingsley, Brendan; Haran, Terry; Raup, Bruce; Savoie, Matthew H.

    2012-01-01

    Defined in the early 1990s for use with gridded satellite passive microwave data, the Equal-Area Scalable Earth Grid (EASE-Grid) was quickly adopted and used for distribution of a variety of satellite and in situ data sets. Conceptually easy to understand, EASE-Grid suffers from limitations that make it impossible to format in the widely popular GeoTIFF convention without reprojection. Importing EASE-Grid data into standard mapping software packages is nontrivial and error-prone. This article...

  11. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    Science.gov (United States)

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  12. SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?

    International Nuclear Information System (INIS)

    Blarke, Morten B.; Jenkins, Bryan M.

    2013-01-01

    This paper defines and compares two strategies for integrating intermittent renewables: SuperGrid and SmartGrid. While conventional energy policy suggests that these strategies may be implemented alongside each other, the paper identifies significant technological and socio-economic conflicts of interest between the two. The article identifies differences between a domestic strategy for the integration of intermittent renewables, vis-à-vis the SmartGrid, and a cross-system strategy, vis-à-vis the SuperGrid. Policy makers and transmission system operators must understand the need for both strategies to evolve in parallel, but in different territories, or with strategic integration, avoiding for one strategy to undermine the feasibility of the other. A strategic zoning strategy is introduced from which attentive societies as well as the global community stand to benefit. The analysis includes a paradigmatic case study from West Denmark which supports the hypothesis that these strategies are mutually exclusive. The case study shows that increasing cross-system transmission capacity jeopardizes the feasibility of SmartGrid technology investments. A political effort is required for establishing dedicated SmartGrid innovation zones, while also redefining infrastructure to avoid the narrow focus on grids and cables. SmartGrid Investment Trusts could be supported from reallocation of planned transmission grid investments to provide for the equitable development of SmartGrid strategies. - Highlights: • Compares SuperGrid and SmartGrid strategies for integrating intermittent renewables. • Identifies technological and socio-economic conflicts of interest between the two. • Proposes a strategic zoning strategy allowing for both strategies to evolve. • Presents a paradigmatic case study showing that strategies are mutually exclusive. • Proposes dedicated SmartGrid innovation zones and SmartGrid investment trusts

  13. Mapping of grid faults and grid codes[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F. [Aalborg Univ., Inst. of Energy Technology (Denmark); Hansen, Anca D.; Soerensen, Poul; Cutululis, N.A. [Risoe National Lab. - DTU, Wind Enegy Dept., Roskilde (Denmark)

    2007-06-15

    The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need for such investigations. The grid connection requirements for wind turbines have increased significantly during the last 5-10 years. Especially the requirements for wind turbines to stay connected to the grid during and after voltage sags, imply potential challenges in the design of wind turbines. These requirements pose challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. The goal of this report is to present a mapping of different grid fault types and their frequency in different countries. The report provides also a detailed overview of the Low Voltage Ride-Through Capabilities for wind turbines in different relevant countries. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. (au)

  14. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  15. The Impact of Structural Break(s on the Validity of Purchasing Power Parity in Turkey: Evidence from Zivot-Andrews and Lagrange Multiplier Unit Root Tests

    Directory of Open Access Journals (Sweden)

    Hakan Kum

    2012-01-01

    Full Text Available This study examines the validity of the purchasing power parity (PPP in Turkey for annual data from 1953 to 2009. While results from both the ADF unit root and the DF-GLS unit root test indicate mixed results, PPP holds for Turkey with the presence of structural breaks which are obtained by Zivot and Andrews and Lagrange Multiplier unit root tests.

  16. Profitability of smart grid solutions applied in power grid

    Directory of Open Access Journals (Sweden)

    Katić Nenad A.

    2016-01-01

    Full Text Available The idea of a Smart Grid solution has been developing for years, as complete solution for a power utility, consisting of different advanced technologies aimed at improving of the efficiency of operation. The trend of implementing various smart systems continues, e.g. Energy Management Systems, Grid Automation Systems, Advanced Metering Infrastructure, Smart power equipment, Distributed Energy Resources, Demand Response systems, etc. Futhermore, emerging technologies, such as energy storages, electrical vehicles or distributed generators, become integrated in distribution networks and systems. Nowadays, the idea of a Smart Grid solution becomes more realistic by full integration of all advanced operation technologies (OT within IT environment, providing the complete digitalization of an Utility (IT/OT integration. The overview of smart grid solutions, estimation of investments, operation costs and possible benefits are presented in this article, with discusison about profitability of such systems.

  17. Application of synchronous grid-connected controller in the wind-solar-storage micro grid

    OpenAIRE

    Li, Hua; Ren, Yongfeng; Li, Le; Luo, Zhenpeng

    2016-01-01

    Recently, there has been an increasing interest in using distributed generators (DG) not only to inject power into the grid, but also to enhance the power quality. In this study, a space voltage pulse width modulation (SVPWM) control method is proposed for a synchronous grid-connected controller in a wind-solar-storage micro grid. This method is based on the appropriate topology of the synchronous controller. The wind-solar-storage micro grid is controlled to reconnect to the grid synchronous...

  18. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    Science.gov (United States)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  19. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  20. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2017-01-01

    This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.