WorldWideScience

Sample records for stage turbine airfoil

  1. Second Stage Turbine Bucket Airfoil.

    Science.gov (United States)

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  2. Second-stage turbine bucket airfoil

    Science.gov (United States)

    Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie

    2002-01-01

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.

  3. Third-stage turbine bucket airfoil

    Science.gov (United States)

    Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart

    2002-01-01

    The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  4. First-stage high pressure turbine bucket airfoil

    Science.gov (United States)

    Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar

    2004-05-25

    The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  5. Airfoils for wind turbine

    Science.gov (United States)

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  6. Multiple piece turbine airfoil

    Science.gov (United States)

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  7. Turbine airfoil to shround attachment

    Science.gov (United States)

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  8. Wind turbine airfoil catalogue

    OpenAIRE

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe; Fuglsang, P.

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so...

  9. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...... method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so. Theairfoils are classified according to the agreement between the numerical results and experimental...... data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible forthe poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads...

  10. Wind turbine airfoil catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N.; Johansen, J.; Fuglsang, P.

    2001-08-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solver EllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which air-foils it does not perform well compared to the experiments, as well as why, when it does so. The airfoils are classified according to the agreement between the numerical results and experimental data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible for the poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads to these discrepancies is identified. Some advices are given for elaborating future airfoil design processes that would involve the numerical code EllipSys2D in particular, and transition modelling in general. (au)

  11. Airfoil selection methodology for Small Wind Turbines

    DEFF Research Database (Denmark)

    Salgado Fuentes, Valentin; Troya, Cesar; Moreno, Gustavo

    2016-01-01

    On wind turbine technology, the aerodynamic performance is fundamental to increase efficiency. Nowadays there are several databases with airfoils designed and simulated for different applications; that is why it is necessary to select those suitable for a specific application. This work presents...... a new methodology for airfoil selection used in feasibility and optimization of small wind turbines with low cut-in speed. On the first stage, airfoils data is tested on XFOIL software to check its compatibility with the simulator; then, arithmetic mean criteria is recursively used to discard...... underperformed airfoils; the best airfoil data was exported to Matlab for a deeper analysis. In the second part, data points were interpolated using "splines" to calculate glide ratio and stability across multiple angles of attack, those who present a bigger steadiness were conserved. As a result, 3 airfoils...

  12. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  13. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotorwith LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall...... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...

  14. Airfoil characteristics for wind turbines

    OpenAIRE

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.; Aagaard Madsen, Helge; Shen, W.Z.; Sørensen, Jens Nørkær

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scal...

  15. Airfoil shape for a turbine bucket

    Science.gov (United States)

    Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy

    2005-06-28

    Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.

  16. Airfoil characteristics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C; Fuglsang, P; Soerensen, N N; Aagaard Madsen, H [Risoe National Lab., Roskilde (Denmark); Shen, Wen Zhong; Noerkaer Soerensen, J [Technical Univ. of Denmark, Lyngby (Denmark)

    1999-03-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are based on four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotor with LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall at the tip is low and that it is high at the root compared to 2D airfoil characteristics. The use of these characteristics in aeroelastic calculations shows a good agreement in power and flap moments with measurements. Furthermore, a fatigue analysis shows a reduction in the loads of up to 15 % compared to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFD computations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived that can be used to calculate mean values of power and loads. The lift in stall at the tip is low and at the root it is high compared to 2D airfoil characteristics. In particular the power curves were well calculated by use of the optimised airfoil characteristics. In the quasi-3D CFD computations, the airfoil characteristics are derived directly. This Navier-Stokes model takes into account rotational and 3D effects. The model enables the study of the rotational effect of a rotor blade at computing costs similar to what is typical for 2D airfoil calculations. The depicted results show that the model is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil

  17. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  18. Genetic Algorithms in Wind Turbine Airfoil Design

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands); Bizzarrini, N.; Coiro, D.P. [Department of Aerospace Engineering, University of Napoli ' Federico II' , Napoli (Italy)

    2011-03-15

    One key element in the aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture to the loading and thereby to reduce cost of energy. This work is focused on the design of a wind turbine airfoil by using numerical optimization. Firstly, the optimization approach is presented; a genetic algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; in order to formalize in the most complete and effective way the design requirements, the effects of activating specific constraints are discussed. A numerical example regarding the design of a high efficiency airfoil for the outer part of a blade by using genetic algorithms is illustrated and the results are compared with existing wind turbine airfoils. Finally a new hybrid design strategy is illustrated and discussed, in which the genetic algorithms are used at the beginning of the design process to explore a wide domain. Then, the gradient based algorithms are used in order to improve the first stage optimum.

  19. Root region airfoil for wind turbine

    Science.gov (United States)

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  20. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  1. OUT Success Stories: Advanced Airfoils for Wind Turbines

    Science.gov (United States)

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  2. OUT Success Stories: Advanced Airfoils for Wind Turbines

    International Nuclear Information System (INIS)

    Jones, J.; Green, B.

    2000-01-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs

  3. Darrieus wind-turbine airfoil configurations

    Science.gov (United States)

    Migliore, P. G.; Fritschen, J. R.

    1982-06-01

    The purpose was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63 sub 2-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63 sub 2-015 airfoil to an appropriate shape.

  4. Design and optimization of tidal turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2012-03-15

    To increase the ratio of energy capture to the loading and, thereby, to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient-based algorithm is used, coupled with the RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints .A section of the present work is dedicated to address this point; particular importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high-efficiency hydrofoil is illustrated, and the results are compared with existing turbine airfoils, considering also the effect on turbine performance due to different airfoils.

  5. Design and optimization of tidal turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2011-07-15

    In order to increase the ratio of energy capture to the loading and thereby to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; in order to formalize in the most complete and effective way the design requirements, the effects of activating specific constraints are discussed. Particularly importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high efficiency, tidal turbine airfoil is illustrated and the results are compared with existing turbine airfoils.

  6. Airfoil for a gas turbine

    Science.gov (United States)

    Liang, George [Palm City, FL

    2011-01-18

    An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.

  7. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  8. Hybrid Optimization for Wind Turbine Thick Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2012-06-15

    One important element in aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture and reduce cost of energy. This work is focused on the design of thick airfoils for wind turbines by using numerical optimization. A hybrid scheme is proposed in which genetic and gradient based algorithms are combined together to improve the accuracy and the reliability of the design. Firstly, the requirements and the constraints for this class of airfoils are described; then, the hybrid approach is presented. The final part of this work is dedicated to illustrate a numerical example regarding the design of a new thick airfoil. The results are discussed and compared to existing airfoils.

  9. Airfoil shape for a turbine nozzle

    Science.gov (United States)

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  10. New airfoil sections for straight bladed turbine

    Science.gov (United States)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  11. New airfoil sections for straight bladed turbine

    International Nuclear Information System (INIS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine

  12. Turbine airfoil to shroud attachment method

    Science.gov (United States)

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W; Wessell, Brian J; Gear, Paul J

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.

  13. Turbine airfoil fabricated from tapered extrusions

    Science.gov (United States)

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  14. Near-wall serpentine cooled turbine airfoil

    Science.gov (United States)

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  15. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  16. Turbine airfoil having outboard and inboard sections

    Science.gov (United States)

    Mazzola, Stefan; Marra, John J

    2015-03-17

    A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.

  17. Turbine airfoil with controlled area cooling arrangement

    Science.gov (United States)

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  18. Two stage turbine for rockets

    Science.gov (United States)

    Veres, Joseph P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  19. Turbine engine airfoil and platform assembly

    Science.gov (United States)

    Campbell, Christian X [Oviedo, FL; James, Allister W [Chuluota, FL; Morrison, Jay A [Oviedo, FL

    2012-07-31

    A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.

  20. Airfoil for a turbine of a gas turbine engine

    Science.gov (United States)

    Liang, George

    2010-12-21

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  1. Turbine stage model

    International Nuclear Information System (INIS)

    Kazantsev, A.A.

    2009-01-01

    A model of turbine stage for calculations of NPP turbine department dynamics in real time was developed. The simulation results were compared with manufacturer calculations for NPP low-speed and fast turbines. The comparison results have shown that the model is valid for real time simulation of all modes of turbines operation. The model allows calculating turbine stage parameters with 1% accuracy. It was shown that the developed turbine stage model meets the accuracy requirements if the data of turbine blades setting angles for all turbine stages are available [ru

  2. New airfoils for small horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, P.; Selig, M.S. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  3. Quiet airfoils for small and large wind turbines

    Science.gov (United States)

    Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  4. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  5. Turbine airfoil with a compliant outer wall

    Science.gov (United States)

    Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  6. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2013-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...

  7. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...... of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million...

  8. Multiple piece turbine engine airfoil with a structural spar

    Science.gov (United States)

    Vance, Steven J [Orlando, FL

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  9. Airfoil for a gas turbine engine

    Science.gov (United States)

    Liang, George [Palm City, FL

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  10. Turbine airfoil having near-wall cooling insert

    Science.gov (United States)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    2017-09-12

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity toward the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.

  11. Usage of Numerical Optimization in Wind Turbine Airfoil Design

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2011-01-15

    One important key element in the aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture to the loading and thereby to reduce the cost of energy. This work is focused on the design of a wind turbine airfoil by using numerical optimization. First, the requirements for this class of airfoils are illustrated and discussed in order to have an exhaustive outline of the complexity of the problem. Then the optimization approach is presented; a gradient-based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; to formalize the design requirements in the most complete and effective way, the effects of activating specific constraints are discussed. Finally, a numerical example regarding the design of a high-efficiency airfoil for the outer part of a blade is illustrated, and the results are compared with existing wind turbine airfoils.

  12. Sealing apparatus for airfoils of gas turbine engines

    Science.gov (United States)

    Jones, R.B.

    1998-05-19

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed. 17 figs.

  13. Airfoil family design for large offshore wind turbine blades

    International Nuclear Information System (INIS)

    Méndez, B; Munduate, X; Miguel, U San

    2014-01-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  14. Airfoil family design for large offshore wind turbine blades

    Science.gov (United States)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  15. Cooled airfoil in a turbine engine

    Science.gov (United States)

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  16. Effects of finite aspect ratio on wind turbine airfoil measurements

    DEFF Research Database (Denmark)

    Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus

    2016-01-01

    Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios...... and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two...

  17. Optimization design of airfoil profiles based on the noise of wind turbines

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2012-01-01

    Based on design theory of airfoil profiles and airfoil self-noise prediction model, a new method with the target of the airfoil average efficiency-noise ratio of design ranges for angle of attack had been developed for designing wind turbine airfoils. The airfoil design method was optimized for a...

  18. Airfoil optimization for noise emission problem on small scale turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gocmen, Tuhfe; Ozerdem, Baris [Mechanical Engineering Department, Yzmir Institute of Technology (Turkey)

    2011-07-01

    Wind power is a preferred natural resource and has had benefits for the energy industry and for the environment all over the world. However, noise emission from wind turbines is becoming a major concern today. This study paid close attention to small scale wind turbines close to urban areas and proposes an optimum number of six airfoils to address noise emission concerns and performance criteria. The optimization process aimed to decrease the noise emission levels and enhance the aerodynamic performance of a small scale wind turbine. This study determined the sources and the operating conditions of broadband noise emissions. A new design is presented which enhances aerodynamic performance and at the same time reduces airfoil self noise. It used popular aerodynamic functions and codes based on aero-acoustic empirical models. Through numerical computations and analyses, it is possible to derive useful improvements that can be made to commercial airfoils for small scale wind turbines.

  19. Boundary layer development on turbine airfoil suction surfaces

    Science.gov (United States)

    Sharma, O. P.; Wells, R. A.; Schlinker, R. H.; Bailey, D. A.

    1981-01-01

    The results of a study supported by NASA under the Energy Efficient Engine Program, conducted to investigate the development of boundary layers under the influence of velocity distributions that simulate the suction sides of two state-of-the-art turbine airfoils, are presented. One velocity distribution represented a forward loaded airfoil ('squared-off' design), while the other represented an aft loaded airfoil ('aft loaded' design). These velocity distributions were simulated in a low-speed, high-aspect-ratio wind tunnel specifically designed for boundary layer investigations. It is intended that the detailed data presented in this paper be used to develop improved turbulence model suitable for application to turbine airfoil design.

  20. Load alleviation on wind turbine blades using variable airfoil geometry

    Energy Technology Data Exchange (ETDEWEB)

    Basualdo, S.

    2005-03-01

    A two-dimensional theoretical study of the aeroelastic behaviour of an airfoil has been performed, whose geometry can be altered using a rear-mounted flap. This device is governed by a controller, whose objective is to reduce the airfoil displacements and, therefore, the stresses present in a real blade. The aerodynamic problem was solved numerically by a panel method using the potential theory, suitable for modelling attached flows. It is therefore mostly applicable for Pitch Regulated Variable Speed (PRVS) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction in loads in real wind turbines. (author)

  1. Design of advanced airfoil for stall-regulated wind turbines

    Directory of Open Access Journals (Sweden)

    F. Grasso

    2017-07-01

    Full Text Available Nowadays, all the modern megawatt-class wind turbines make use of pitch control to optimise the rotor performance and control the turbine. However, for kilowatt-range machines, stall-regulated solutions are still attractive and largely used for their simplicity and robustness. In the design phase, the aerodynamics plays a crucial role, especially concerning the selection/design of the necessary airfoils. This is because the airfoil performance is supposed to guarantee high wind turbine performance but also the necessary machine control capabilities. In the present work, the design of a new airfoil dedicated to stall machines is discussed. The design strategy makes use of a numerical optimisation scheme, where a gradient-based algorithm is coupled with the RFOIL code and an original Bezier-curves-based parameterisation to describe the airfoil shape. The performances of the new airfoil are compared in free- and fixed-transition conditions. In addition, the performance of the rotor is analysed, comparing the impact of the new geometry with alternative candidates. The results show that the new airfoil offers better performance and control than existing candidates do.

  2. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  3. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  4. Numerical investigation of airfoils for small wind turbine applications

    Directory of Open Access Journals (Sweden)

    Natarajan Karthikeyan

    2016-01-01

    Full Text Available A detailed numerical investigation of the aerodynamic performance on the five airfoils namely Mid321a, Mid321b, Mid321c, Mid321d, and Mid321e were carried out at Reynolds numbers ranging from 0.5×105 to 2.5×105. The airfoils used for small wind turbines are designed for Reynolds number ranges between 3×105 and 5×105 and the blades are tend to work on off-design conditions. The blade element moment method was applied to predict the aerodynamic loads, power coefficient, and blade parameters for the airfoils. Based on the evaluate data, it was found that Mid321c airfoil has better lift to drag ratio over the range of Reynolds numbers and attained maximum power coefficient of 0.4487 at Re = 2×105.

  5. Wind turbine airfoil design method with low noise and experimental analysis

    DEFF Research Database (Denmark)

    Wang, Quan; Chen, Jin; Cheng, Jiangtao

    2015-01-01

    In order to study the noise characteristic of wind turbine airfoils, the airfoil optimal design mathematic model was built based on airfoil functional integrated theory and noise calculated model. The new optimized objective function of maximizing lift/drag to noise was developed on the design......, though there is a certain difference between the theory results and experiment data. Compared with NACA-64-618 airfoil, the CQU-DTU-B18 airfoil exhibits lower noise, which validates the feasibility of this design method. It is a guide to design wind turbine airfoil with lower noise and to reduce airfoil...

  6. Turbine blade having a constant thickness airfoil skin

    Science.gov (United States)

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  7. Design of wind turbine airfoils based on maximum power coefficient

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2010-01-01

    Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...

  8. Design and verification of the Risø-B1 airfoil family for wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, C.; Gaunaa, M.

    2004-01-01

    This paper presents the design and experimental verification of the Risø-B1 airfoil family for MW-size wind turbines with variable speed and pitch control. Seven airfoils were designed with thickness-to-chord ratios between 15% and 53% to cover the entire span of a wind turbine blade. The airfoils...

  9. Virtual incidence effect on rotating airfoils in Darrieus wind turbines

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • Novel methods to reduce CFD results into 1D aerodynamic parameters. • Assessment of the virtual incidence (VI) effect on Darrieus VAWT blades. • It is shown that blades experience a virtual AoA variation with respect to theoretical expectations. • Real AoAs are calculated for different airfoils in motion and compared to BEM predictions. - Abstract: Small Darrieus wind turbines are one of the most interesting emerging technologies in the renewable energies scenario, even if they still are characterized by lower efficiencies than those of conventional horizontal-axis wind turbines due to the more complex aerodynamics involved in their functioning. In case of small rotors, in which the chord-to-radius ratios are generally high not to limit the blade Reynolds number, the performance of turbine blades has been suggested to be moreover influenced by the so-called “flow curvature effects”. Recent works have indeed shown that the curved flowpath encountered by the blades makes them work like virtually cambered airfoils in a rectilinear flow. In the present study, focus is instead given to a further effect that is generated in reason of the curved streamline incoming on the blades, i.e. an extra-incidence seen by the airfoil, generally referred to as “virtual incidence”. In detail, a novel computational method to define the incidence angle has been applied to unsteady CFD simulations of three airfoils in a Darrieus-like motion and their effective angles of attack have been compared to theoretical expectations. The analysis confirmed the presence of an additional virtual incidence on the airfoils and quantified it for different airfoils, chord-to-radius ratios and tip-speed ratios. A comparative discussion on BEM prediction capabilities is finally reported in the study.

  10. Trailing edge noise model applied to wind turbine airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2008-01-15

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model is tested and validated by comparing with other results from the literature. Finally, this model is used in the optimization process of two reference airfoils in order to reduce their noise signature: the RISOE-B1-18 and the S809 airfoils. (au)

  11. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    Science.gov (United States)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  12. Turbine Airfoil Optimization Using Quasi-3D Analysis Codes

    Directory of Open Access Journals (Sweden)

    Sanjay Goel

    2009-01-01

    Full Text Available A new approach to optimize the geometry of a turbine airfoil by simultaneously designing multiple 2D sections of the airfoil is presented in this paper. The complexity of 3D geometry modeling is circumvented by generating multiple 2D airfoil sections and constraining their geometry in the radial direction using first- and second-order polynomials that ensure smoothness in the radial direction. The flow fields of candidate geometries obtained during optimization are evaluated using a quasi-3D, inviscid, CFD analysis code. An inviscid flow solver is used to reduce the execution time of the analysis. Multiple evaluation criteria based on the Mach number profile obtained from the analysis of each airfoil cross-section are used for computing a quality metric. A key contribution of the paper is the development of metrics that emulate the perception of the human designer in visually evaluating the Mach Number distribution. A mathematical representation of the evaluation criteria coupled with a parametric geometry generator enables the use of formal optimization techniques in the design. The proposed approach is implemented in the optimal design of a low-pressure turbine nozzle.

  13. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong

    2013-01-01

    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  14. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  15. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Xu, Haoran

    2014-01-01

    Blade element momentum (BEM) theory with airfoil data is a widely used technique for prediction of wind turbine aerodynamic performance, but the reliability of the airfoil data is an important factor for the prediction accuracy of aerodynamic loads and power. The airfoil characteristics used in BEM...

  16. Design of the new Risoe-A1 airfoil family for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P; Dahl, K S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    A new airfoil family for wind turbines was developed by use of a design method using numerical optimization and the flow solver, XFOIL. The results were evaluated with the Navier-Stokes solver EllipSys2D. The airfoil family constitutes 6 airfoils ranging in thickness from 15% to 30%. The airfoils were designed to have a maximum lift coefficient around 1.5 in natural conditions and high lift-drag ratios below maximum lift. Insensitivity to leading edge roughness was obtained by securing that transition from laminar to turbulent flow on the suction side occurred close to the leading edge just before stall. The airfoil family was designed for a 600 kW wind turbine and provides a basis for further enhancing the characteristics of airfoils for wind turbines and to tailor airfoils for specific rotor sizes and power regulation principles. (au) EFP-95; EFP-98. 16 refs.

  17. Steady and Unsteady Analysis of NACA 0018 Airfoil in Vertical-Axis Wind Turbine

    DEFF Research Database (Denmark)

    Rogowski, Krzysztof; Hansen, Martin Otto Laver; Maronski, Ryszard

    2018-01-01

    Numerical results are presented for aerodynamic unsteady and steady airfoil characteristtcs of the NACA 0018 airfoil of a two-dimensional vertical-axis wind turbine. A geometrical model of the Darrieus-type wind turbine and the rotor operating parameters used for nurnerieal simulation are taken...

  18. Numerical simulation of a wind turbine airfoil : part 1

    Energy Technology Data Exchange (ETDEWEB)

    Ramdenee, D.; Minea, I.S.; Tardiff d' Hamonville, T.; Illinca, A. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire de Recherche en Energie Eolienne

    2010-07-01

    This 2-part study used computational fluid dynamics (CFD) to identify and model the aerodynamic and aeroelastic phenomena around wind turbine blades. The aim of the study was to better understand the mechanisms surrounding unsteady flow-structure interactions. Aerodynamic and elastic models were coupled using an ANSYS multi-domain program to simulate the aeroelastic divergence of a typical section airfoil with a single rotational structural degree of freedom. Solvers were used to realize a sequence of multi-domain time steps and coupling iterations between time steps. Each element of the airfoil was divided into interpolation faces which were then transformed into 2-D polygons. An intersection process was used to create a large number of control surfaces that were used to study interactions between the structural and fluid domains. The calculations were used to determine the divergence speed and Eigen modes of vibration. A literature review was also included. 19 refs., 7 figs.

  19. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  20. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  1. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  2. Experimental study of wind-turbine airfoil aerodynamics in high turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Devinant, Ph.; Laverne, T.; Hureau, J. [Laboratoire de Mecanique et d' Energetique Ecole Superieure de l' Energie et des Materiaux Universite d' Orleans, rue Leonard de Vinci F-45072 , Cedex 2 Orleans (France)

    2002-06-01

    Wind turbines very often have to operate in high turbulence related, for example, with lower layers atmospheric turbulence or wakes of other wind turbines. Most available data on airfoil aerodynamics concerns mainly aeronautical applications, which are characterized by a low level of turbulence (generally less than 1%) and low angles of attack. This paper presents wind tunnel test data for the aerodynamic properties-lift, drag, pitching moment, pressure distributions-of an airfoil used on a wind turbine when subjected to incident flow turbulence levels of 0.5-16% and placed at angles of attack up to 90. The results show that the aerodynamic behavior of the airfoil can be strongly affected by the turbulence level both qualitatively and quantitatively. This effect is especially evidenced in the angle of attack range corresponding to airfoil stall, as the boundary layer separation point advances along the leeward surface of the airfoil.

  3. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...... that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved....

  4. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines

    Science.gov (United States)

    Migliore, P. G.

    1983-08-01

    The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7-21 percent and operating at a Reynolds number of 3 x 10 to the 6th. Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18 percent, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yield peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63(2)-015 airfoil showed an annual energy output increase of 17-27 percent, depending on rotor solidity, compared to an NACA 0015 airfoil.

  5. Experimental verification of the new RISOe-A1 airfoil family for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, K S; Fuglsang, P; Antoniou, I [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper concerns the experimental verification of a new airfoil family for wind turbines. The family consist of airfoils in the relative thickness range from 15% to 30%. Three airfoils, Risoe-A1-18, Risoe-A1-21, and Risoe-A1-24 were tested in a wind tunnel. The verification consisted of both static and dynamic measurements. Here, the static results are presented for a Reynolds number of 1.6x10{sup 6} for the following airfoil configurations: smooth surface (all three airfoils) and Risoe-A1-24 mounted with leading edge roughness, vortex generators, and Gurney-flaps, respectively. All three airfoils have constant lift curve slope and almost constant drag coefficient until the maximum lift coefficient of about 1.4 is reached. The experimental results are compared with corresponding computational from the general purpose flow solver, EllipSys2D, showing good agreement. (au)

  6. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl’s Airfoil

    Directory of Open Access Journals (Sweden)

    Weijun Tian

    2017-01-01

    Full Text Available The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl’s wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl’s wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44% compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  7. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.

    Science.gov (United States)

    Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  8. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  9. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren R K

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved

  10. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  11. Recent developments in high temperature coatings for gas turbine airfoils

    Science.gov (United States)

    Goward, G. W.

    1983-01-01

    The importance of coatings for hot section airfoils has increased with the drive for more cost-effective use of fuel in a wide variety of gas turbine engines. Minor additions of silicon have been found to appreciably increase the oxidation resistance of plasma-sprayed NiCoCrAlY coatings on a single crystal nickel-base superalloy. Increasing the chromium content of MCrAlY coatings substantially increases the resistance to acidic (Na2SO4-SO3) hot corrosion at temperatures of about 1300 F (704 C) but gives no significant improvement beyond contemporary coatings in the range of 1600 F (871 C). Surface enrichment of MCrAlY coatings with silicon also gives large increases in resistance to acidic hot corrosion in the 1300 F region. The resistance to the thermal stress-induced spalling of zirconia-based thermal barrier coatings has been improved by lowering coating stresses with segmented structures and by controlling the substrate temperature during coating fabrication.

  12. Modular turbine airfoil and platform assembly with independent root teeth

    Science.gov (United States)

    Campbell, Christian X; Davies, Daniel O; Eng, Darryl

    2013-07-30

    A turbine airfoil (22E-H) extends from a shank (23E-H). A platform (30E-H) brackets or surrounds a first portion of the shank (23E-H). Opposed teeth (33, 35) extend laterally from the platform (30E-H) to engage respective slots (50) in a disk. Opposed teeth (25, 27) extend laterally from a second portion of the shank (29) that extends below the platform (30E-H) to engage other slots (52) in the disk. Thus the platform (30E-H) and the shank (23E-H) independently support their own centrifugal loads via their respective teeth. The platform may be formed in two portions (32E-H, 34E-H), that are bonded to each other at matching end-walls (37) and/or via pins (36G) passing through the shank (23E-H). Coolant channels (41, 43) may pass through the shank beside the pins (36G).

  13. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  14. Design of low noise airfoil with high aerodynamic performance for use on small wind turbines

    Institute of Scientific and Technical Information of China (English)

    Taehyung; KIM; Seungmin; LEE; Hogeon; KIM; Soogab; LEE

    2010-01-01

    Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.

  15. On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors

    International Nuclear Information System (INIS)

    Winstroth, J; Seume, J R

    2016-01-01

    The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge. (paper)

  16. Design of a 3 kW wind turbine generator with thin airfoil blades

    Energy Technology Data Exchange (ETDEWEB)

    Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

    2008-09-15

    Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

  17. Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine

    Science.gov (United States)

    Mu≁oz, A.; Méndez, B.; Munduate, X.

    2016-09-01

    The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.

  18. Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine

    International Nuclear Information System (INIS)

    Muñoz, A; Méndez, B; Munduate, X

    2016-01-01

    The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations. (paper)

  19. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  20. Airfoil, platform, and cooling passage measurements on a rotating transonic high-pressure turbine

    Science.gov (United States)

    Nickol, Jeremy B.

    An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other

  1. Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine

    Science.gov (United States)

    Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah

    2015-12-01

    In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.

  2. Design of a new urban wind turbine airfoil using a pressure-load inverse method

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, J.C.C.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Marques da Silva, F. [LNEC - Laboratorio Nacional de Engenharia Civil, Av. Brasil, 101, 1700-066 Lisboa (Portugal); Estanqueiro, A.I. [INETI - Instituto Nacional de Engenharia, Tecnologia e Inovacao Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-12-15

    This paper presents the design methodology of a new wind turbine airfoil that achieves high performance in urban environment by increasing the maximum lift. For this purpose, an inverse method was applied to obtain a new wind turbine blade section with constant pressure-load along the chord, at the design inlet angle. In comparison with conventional blade section designs, the new airfoil has increased maximum lift, reduced leading edge suction peak and controlled soft-stall behaviour, due to a reduction of the adverse pressure gradient on the suction side. Wind tunnel experimental results confirmed the computational results. (author)

  3. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    Science.gov (United States)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free

  4. Performance assessment of Darrieus wind turbine with symmetric and cambered airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, H.; Trifu, O.; Paraschivoiu, I. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2007-07-01

    This paper outlined the wind turbine and design software used to predict the flow conditions and performance of a straight-bladed Darrieus wind turbine. Three different blade sections were considered, notably the NACA 0018; the SNLA NLF 18/50 symmetrical airfoil; and the FX63-137 cambered airfoil. The numerical predictions of the flow conditions during the operation of the rotors were also presented. Torque yield for each blade section under a variety of operating conditions was presented. The numerical software program used in the study was based on a double-multiple streamtube model which considered a partition of the rotor in streamtubes and considered each of the 2 blade elements as an actuator disk. The actuator disk theory was based on a theory of momentum conservation. Wind velocities were determined in order to calculate forces acting on the actuator disks. A second set of equations was used to determine the forces acting on the upwind and downwind blade elements. Equations were also derived for the downwind interference factor. The following 3 main sets of data were used: (1) a geometry definition of the wind turbine; (2) operational conditions; and (3) main control parameters. Results of the study showed that the cambered airfoil blade section produced 10 times more torque in turbine starting conditions than the NACA 0018. Laminar airfoil lift to drag ratio at low angles of attack, and the use of appropriate Reynolds numbers resulted in higher efficiency. The large static stall angle of the cambered airfoil allowed higher power outputs than symmetrical airfoils. It was concluded that the starting torque of a Darrieus turbine can be increased by using a cambered blade section. 13 refs., 19 figs.

  5. Design of a family of new advanced airfoils for low wind class turbines

    International Nuclear Information System (INIS)

    Grasso, Francesco

    2014-01-01

    In order to maximize the ratio of energy capture and reduce the cost of energy, the selection of the airfoils to be used along the blade plays a crucial role. Despite the general usage of existing airfoils, more and more, families of airfoils specially tailored for specific applications are developed. The present research is focused on the design of a new family of airfoils to be used for the blade of one megawatt wind turbine working in low wind conditions. A hybrid optimization scheme has been implemented, combining together genetic and gradient based algorithms. Large part of the work is dedicated to present and discuss the requirements that needed to be satisfied in order to have a consistent family of geometries with high efficiency, high lift and good structural characteristics. For each airfoil, these characteristics are presented and compared to the ones of existing airfoils. Finally, the aerodynamic design of a new blade for low wind class turbine is illustrated and compared to a reference shape developed by using existing geometries. Due to higher lift performance, the results show a sensitive saving in chords, wetted area and so in loads in idling position

  6. Usage of advanced thick airfoils for the outer part of very large offshore turbines

    International Nuclear Information System (INIS)

    Grasso, F; Ceyhan, O

    2014-01-01

    Nowadays one of the big challenges in wind energy is connected to the development of very large wind turbines with 100 m blades and 8-10MW power production. The European project INNWIND.EU plays an important role in this challenge because it is focused on exploring and exploiting technical innovations to make these machines not only feasible but also cost effective. In this context, the present work investigates the benefits of adopting thick airfoils also at the outer part of the blade. In fact, if these airfoils are comparable to the existing thinner ones in terms of aerodynamics, the extra thickness would lead to a save in weight. Lightweight blades would visibly contribute to reduce the cost of energy of the turbines and make them cost effective. The reference turbine defined in INNWIND.EU project has been adjusted to use the new airfoils. The results show that the rotor performance is not sacrificed when the 24% airfoils are replaced by the ECN 30% thick airfoils, while 24% extra thickness can be obtained

  7. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun

    2014-01-01

    characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase......The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...

  8. Experimental study of the effect of a slat angle on double-element airfoil and application in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Rosendahl, Lasse; Nielsen, Søren R.K.

    2015-01-01

    A design of double-element airfoil is proposed for its use in the vertical axis wind turbine. The double-element airfoil system consists of a main airfoil and a slat airfoil. The design parameters of the double-element airfoil system are given by the position and orientation of the trailing edge......-element airfoil system designed in this paper. Further, the performance of new design of a vertical axis wind turbine shows considerable increase in the power coefficient and the total power output as compared to the reference wind turbine...

  9. Predicting the Extreme Loads on a Wind Turbine Considering Uncertainty in Airfoil Data

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard

    2014-01-01

    The sources contributing to uncertainty in a wind turbine blade static airfoil data include wind tunnel testing, CFD calculations, 3D rotational corrections based on CFD or emprircal models, surface roughness corrections, Reynolds number corrections, expansion to the full 360-degree angle of attack...... range, validation by full scale measurements, and geometric distortions of the blade during manufacturing and under loading. In this paper a stochastic model of the static airfoil data is proposed to supplement the prediction of extreme loads effects for large wind turbines. It is shown...... that the uncertainty in airfoil data can have e significant impact on the prediction of extreme loads effects depending on the component, and the correlation along the span of the blade....

  10. Numerical simulation of the divergence of a wind turbine airfoil : part 2

    Energy Technology Data Exchange (ETDEWEB)

    Ramdenee, D.; Minea, I.S.; Tardiff d' Hamonville, T.; Illinca, A. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire de Recherche en Energie Eolienne

    2010-07-01

    The development of larger, more flexible wind turbine blades is creating the need for an improved understanding of the mechanisms surrounding unsteady flow-structure interactions. This 2-part study used computational fluid dynamics (CFD) to identify and model the aerodynamic and aeroelastic phenomena around wind turbine blades. Aeroelastic divergence was modelled using coupled aerodynamic and elastic models with an ANSYS software program. The fluid-structure interactions of an NACA0012 airfoil were simulated in order to determine the divergence phenomenon created by aerodynamic loads and transient fluid flow. The airfoil profile was fixed and exempted from all rotational degrees of liberty while being subjected to a constant flow of velocity. The fixing was then removed and the constant flow was compared with a shock wave on the airfoil profile. The profile then oscillated with damped amplitude due to the aerodynamic damping imposed. Results of the analysis will be compared with results obtained in future studies. 7 refs., 2 tabs., 6 figs.

  11. High Humidity Aerodynamic Effects Study on Offshore Wind Turbine Airfoil/Blade Performance through CFD Analysis

    Directory of Open Access Journals (Sweden)

    Weipeng Yue

    2017-01-01

    Full Text Available Damp air with high humidity combined with foggy, rainy weather, and icing in winter weather often is found to cause turbine performance degradation, and it is more concerned with offshore wind farm development. To address and understand the high humidity effects on wind turbine performance, our study has been conducted with spread sheet analysis on damp air properties investigation for air density and viscosity; then CFD modeling study using Fluent was carried out on airfoil and blade aerodynamic performance effects due to water vapor partial pressure of mixing flow and water condensation around leading edge and trailing edge of airfoil. It is found that the high humidity effects with water vapor mixing flow and water condensation thin film around airfoil may have insignificant effect directly on airfoil/blade performance; however, the indirect effects such as blade contamination and icing due to the water condensation may have significant effects on turbine performance degradation. Also it is that found the foggy weather with microwater droplet (including rainy weather may cause higher drag that lead to turbine performance degradation. It is found that, at high temperature, the high humidity effect on air density cannot be ignored for annual energy production calculation. The blade contamination and icing phenomenon need to be further investigated in the next study.

  12. Aerodynamic analysis of S series wind turbine airfoils by using X foil technique

    International Nuclear Information System (INIS)

    Zaheer, M.A.; Munir, M.A.; Zahid, I.; Rizwan, M.

    2015-01-01

    In order to attain supreme energy from wind turbine economically, blade profile enactment must be acquired. For extracting extreme power from wind, it is necessary to develop rotor models of wind turbine which have high rotation rates and power coefficients. Maximum power can also be haul out by using suitable airfoils at root and tip sections of wind turbine blades. In this research four different S-series airfoils have been selected to study their behavior for maximum power extraction from wind. The wind conditions during the research were scertained from the wind speeds over Kallar Kahar Pakistan. In order to study the wind turbine operation, the extremely important parameters are lift and drag forces. Therefore an endeavor to study lift force and drag force at various sections of wind turbine blade is shown in current research. In order to acquire the utmost power from wind turbine, highest value of sliding ratio is prerequisite. At various wind speeds, performance of several blade profiles was analyzed and for every wind speed, the appropriate blade profile is ascertained grounded on the utmost sliding ratio. For every airfoil, prime angle of attack is resolute at numerous wind speeds. (author)

  13. Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications

    International Nuclear Information System (INIS)

    Nilsson, Karl; Breton, Simon-Philippe; Ivanell, Stefan; Sørensen, Jens N

    2014-01-01

    To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine how the mean characteristics of wake flow, mean power production and thrust depend on the choice of airfoil data and blade geometry. In order to simulate realistic conditions, pre-generated turbulence and wind shear are imposed in the computational domain. Using three different turbulence intensities and varying the spacing between the turbines, the flow around 4-8 aligned turbines is simulated. The analysis is based on normalized mean streamwise velocity, turbulence intensity, relative mean power production and thrust. From the computations it can be concluded that the actual airfoil characteristics and blade geometry only are of importance at very low inflow turbulence. At realistic turbulence conditions for an atmospheric boundary layer the specific blade characteristics play an minor role on power performance and the resulting wake characteristics. The results therefore give a hint that the choice of airfoil data in ACD simulations is not crucial if the intention of the simulations is to compute mean wake characteristics using a turbulent inflow

  14. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    International Nuclear Information System (INIS)

    Xu, Haoran; Yang, Hua; Liu, Chao; Shen, Wenzhong; Zhu, Weijun

    2014-01-01

    The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL methods at a chord Reynolds number of 3 × 10 6 . The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase. The transient calculations over-predict the lift at large angles of attack and drag at all angles of attack than the steady calculations which is likely to be caused by the artificial restriction of the flow in two dimensions

  15. Numerical simulation of transitional flow on a wind turbine airfoil with RANS-based transition model

    Science.gov (United States)

    Zhang, Ye; Sun, Zhengzhong; van Zuijlen, Alexander; van Bussel, Gerard

    2017-09-01

    This paper presents a numerical investigation of transitional flow on the wind turbine airfoil DU91-W2-250 with chord-based Reynolds number Rec = 1.0 × 106. The Reynolds-averaged Navier-Stokes based transition model using laminar kinetic energy concept, namely the k - kL - ω model, is employed to resolve the boundary layer transition. Some ambiguities for this model are discussed and it is further implemented into OpenFOAM-2.1.1. The k - kL - ω model is first validated through the chosen wind turbine airfoil at the angle of attack (AoA) of 6.24° against wind tunnel measurement, where lift and drag coefficients, surface pressure distribution and transition location are compared. In order to reveal the transitional flow on the airfoil, the mean boundary layer profiles in three zones, namely the laminar, transitional and fully turbulent regimes, are investigated. Observation of flow at the transition location identifies the laminar separation bubble. The AoA effect on boundary layer transition over wind turbine airfoil is also studied. Increasing the AoA from -3° to 10°, the laminar separation bubble moves upstream and reduces in size, which is in close agreement with wind tunnel measurement.

  16. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    Science.gov (United States)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  17. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  18. Shape Optimization of NREL S809 Airfoil for Wind Turbine Blades Using a Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yilei He

    2014-01-01

    Full Text Available The goal of this paper is to employ a multiobjective genetic algorithm (MOGA to optimize the shape of a well-known wind turbine airfoil S809 to improve its lift and drag characteristics, in particular to achieve two objectives, that is, to increase its lift and its lift to drag ratio. The commercially available software FLUENT is employed to calculate the flow field on an adaptive structured mesh using the Reynolds-Averaged Navier-Stokes (RANS equations in conjunction with a two-equation k-ω SST turbulence model. The results show significant improvement in both lift coefficient and lift to drag ratio of the optimized airfoil compared to the original S809 airfoil. In addition, MOGA results are in close agreement with those obtained by the adjoint-based optimization technique.

  19. Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, L.; Velazquez, A.; Matesanz, A. [Thermal Engineering Area, Carlos III University of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)

    2002-06-01

    A Viscous-inviscid interaction method is presented that allows for the simulation of unsteady airfoil flow in the context of wind turbine applications. The method couples a 2-D external unsteady potential flow to a 2-D unsteady turbulent boundary layer. The separation point on the airfoil leeward side is determined in a self-consistent way from the boundary-layer equations, and the separated flow region is modelled independently. Wake shape and motion are also determined in a self-consistent way, while an unsteady Kutta condition is implemented. The method is able to deal with attached flow and light stall situations characterised by unsteady turbulent boundary-layer separation size up to 50% of the airfoil chord length. The results of the validation campaign show that the method could be used for industrial design purposes because of its numerical robustness, reasonable accuracy, and limited computational time demands.

  20. Study on optimal design of wind turbine blade airfoil and its application

    International Nuclear Information System (INIS)

    Sun, Min Young; Kim, Dong Yong; Lim, Jae Kyoo

    2012-01-01

    This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of the folding blade. In general, in large sized (MW) wind turbines, damage is prevented in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production

  1. Study on optimal design of wind turbine blade airfoil and its application

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Min Young; Kim, Dong Yong; Lim, Jae Kyoo [Chonbuk Nat' l Univ., Jeonju (Korea, Republic of)

    2012-05-15

    This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of the folding blade. In general, in large sized (MW) wind turbines, damage is prevented in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.

  2. Propagation of Shock on NREL Phase VI Wind Turbine Airfoil under Compressible Flow

    Directory of Open Access Journals (Sweden)

    Mohammad A. Hossain

    2013-01-01

    Full Text Available The work is focused on numeric analysis of compressible flow around National Renewable Energy Laboratory (NREL phase VI wind turbine blade airfoil S809. Although wind turbine airfoils are low Reynolds number airfoils, a reasonable investigation of compressible flow under extreme condition might be helpful. A subsonic flow (mach no. M=0.8 has been considered for this analysis and the impacts of this flow under seven different angles of attack have been determined. The results show that shock takes place just after the mid span at the top surface and just before the mid span at the bottom surface at zero angle of attack. Slowly the shock waves translate their positions as angle of attack increases. A relative translation of the shock waves in upper and lower face of the airfoil are presented. Variation of Turbulent viscosity ratio and surface Y+ have also been determined. A k-ω SST turbulent model is considered and the commercial CFD code ANSYS FLUENT is used to find the pressure coefficient (Cp as well as the lift (CL and drag coefficients (CD. A graphical comparison of shock propagation has been shown with different angle of attack. Flow separation and stream function are also determined.

  3. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    Science.gov (United States)

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  4. Comparison of measured and predicted airfoil self-noise with application to wind turbine noise reduction

    International Nuclear Information System (INIS)

    Dassen, T.; Parchen, R.; Guidati, G.; Wagner, S.; Kang, S.; Khodak, A.E.

    1998-01-01

    In the ongoing JOULE-III project 'Development of Design Tools for Reduced Aerodynamic Noise Wind Turbines (DRAW)', prediction codes for inflow-turbulence (IT) noise and turbulent boundary layer trailing-edge (TE) noise, are developed and validated. It is shown that the differences in IT noise radiation between airfoils having a different shape, are correctly predicted. The first, preliminary comparison made between predicted and measured TE noise spectra yields satisfactory results. 17 refs

  5. Experimental demonstration of wind turbine noise reduction through optimized airfoil shape and trailing-edge serrations

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S. [National Aerospace Laboratory NLR, Emmeloord (Netherlands); Schepers, J.G. [Unit Wind Energy, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Guidati, G.; Wagner, S. [Institut fuer Aerodynamik und Gasdynamik IAG, Universitaet Stuttgart (Germany)

    2001-07-15

    The objective of the European project DATA (Design and Testing of Acoustically Optimized Airfoils for Wind Turbines) is a reduction of trailing-edge (TE) noise by modifying the airfoil shape and/or the application of trailing-edge serrations. This paper describes validation measurements that were performed in the DNW-LLF wind tunnel, on a model scale wind turbine with a two-bladed 4.5 m diameter rotor which was designed in the project. Measurements were done for one reference- and two acoustically optimized rotors, for varying flow conditions. The aerodynamic performance of the rotors was measured using a torque meter in the hub, and further aerodynamic information was obtained from flow visualization on the blades. The acoustic measurements were done with a 136 microphone out-of-flow acoustic array. Besides the location of the noise sources in the (stationary) rotor plane, a new acoustic processing method enabled identification of dominant noise source regions on the rotating blades. The results show dominant noise sources at the trailing-edge of the blade, close to the tip. The optimized airfoil shapes result in a significant reduction of TE noise levels with respect to the reference rotor, without loss in power production. A further reduction can be achieved by the application of trailing-edge serrations. The aerodynamic measurements are generally in good agreement with the aerodynamic predictions made during the design of the model turbine.

  6. Composite airfoil assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  7. Airfoil computations using the gamma-Retheta model; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Niels N.

    2009-05-15

    The present work addresses the validation of the implementation of the Menter, Langtry et al. gamma-theta correlation based transition model [1, 2, 3] in the EllipSys2D code. Firstly the 2. order of accuracy of the code is verified using a grid refinement study for laminar, turbulent and transitional computations. Based on this, an estimate of the error in the computations is determined to be approximately one percent in the attached region. Following the verification of the implemented model, the model is applied to four airfoils, NACA64-018, NACA64-218, NACA64-418 and NACA64-618 and the results are compared to measurements [4] and computations using the Xfoil code by Drela et al. [5]. In the linear pre stall region good agreement is observed both for lift and drag, while differences to both measurements and Xfoil computations are observed in stalled conditions. (au)

  8. Vortex-Induced Vibration of an Airfoil Used in Vertical-Axis Wind Turbines

    Science.gov (United States)

    Benner, Bridget; Carlson, Daniel; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2017-11-01

    In Vertical-axis wind turbines (VAWTs), when the blades are placed at high angles of attack with respect to the incoming flow, they could experience flow-induced oscillations. A series of experiments in a re-circulating water tunnel was conducted to study the possible Vortex-Induced Vibration (VIV) of a fully-submerged, flexibly-mounted NACA 0021 airfoil, which is used in some designs of VAWTs. The airfoil was free to oscillate in the crossflow direction, and the tests were conducted in a Reynolds number range of 600airfoil were measured at various angles of attack, α, in the range of 0< α<90. The airfoil was observed to oscillate in the range of 60< α<90, where α = 90 exhibited the widest lock-in range (1.67< U * <11.74) and the largest peak amplitude (A * = 1.93 at U * = 5.7). For all cases where oscillations were observed, the oscillation frequency remained close to the structure's natural frequency, defining a lock-in range. Flow visualization tests were also conducted to study the changes in the vortex shedding patterns. This research is supported in part by the National Science Foundation under NSF Award Numbers 1460461 and CBET-1437988.

  9. Airfoil

    Science.gov (United States)

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  10. An overview of NACA 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades

    NARCIS (Netherlands)

    Timmer, W.A.

    2009-01-01

    This paper investigates the NACA 63 and 64 6-digit series of airfoils tested in the NACA LTPT in view to verify the RFOIL calculated airfoil characteristics for high Reynolds numbers. Some anomalies in the zero-lift angles of 15% and 18% thick airfoils from these series are identified, both in the

  11. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    International Nuclear Information System (INIS)

    Wei, Y; Li, C

    2013-01-01

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT

  12. Integrated axial and tangential serpentine cooling circuit in a turbine airfoil

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J; Dalton, John P

    2015-05-05

    A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall and not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.

  13. A shape adaptive airfoil for a wind turbine blade

    Science.gov (United States)

    Daynes, Stephen; Weaver, Paul M.

    2011-04-01

    The loads on wind turbine components are primarily from the blades. It is important to control these blade loads in order to avoid damaging the wind turbine. Rotor control technology is currently limited to controlling the rotor speed and the pitch of the blades. As blades increase in length it becomes less desirable to pitch the entire blade as a single rigid body, but instead there is a requirement to control loads more precisely along the length of the blade. This can be achieved with aerodynamic control devices such as flaps. Morphing technologies are good candidates for wind turbine flaps because they have the potential to create structures that have the conflicting abilities of being load carrying, light-weight and shape adaptive. A morphing flap design with a highly anisotropic cellular structure is presented which is able to undergo large deflections and high strains without a large actuation penalty. An aeroelastic analysis couples the work done by aerodynamic loads on the flap, the flap strain energy and the required actuation work to change shape. The morphing flap is experimentally validated with a manufactured demonstrator and shown to have reduced actuation requirements compared to a conventional hinged flap.

  14. Assessment of the performance of various airfoil sections on power generation from a wind turbine using the blade element momentum theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    It is well established that the power generated by a Horizontal-Axis Wind Turbine (HAWT) is a function of the number of blades, the tip speed ratio (blade tip speed/wind free stream velocity) and the lift to drag ratio (CL /CD) of the airfoil sections of the blade. The airfoil sections used in HAWT are generally thick airfoils such as the S, DU, FX, Flat-back and NACA 6-series of airfoils. These airfoils vary in (CL /CD) for a given blade and ratio and therefore the power generated by HAWT for different blade airfoil sections will vary. The goal of this paper is to evaluate the effect of different airfoil sections on HAWT performance using the Blade Element Momentum (BEM) theory. In this study, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given blade and ratio and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter.

  15. Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, Peter; Sangill, O.; Hansen, P.

    2002-01-01

    This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades....... The new blade was designed to replace the LM 21.0P blade. A measurement campaign was carried out simultaneously on two identical adjacent wind turbines where onehad the new blades and the other had LM 21.0P blades. Power and loads including blade section moments for the new blades were measured to assess...

  16. BOUNDARY LAYER AND AMPLIFIED GRID EFFECTS ON AERODYNAMIC PERFORMANCES OF S809 AIRFOIL FOR HORIZONTAL AXIS WIND TURBINE (HAWT

    Directory of Open Access Journals (Sweden)

    YOUNES EL KHCHINE

    2017-11-01

    Full Text Available The design of rotor blades has a great effect on the aerodynamics performances of horizontal axis wind turbine and its efficiency. This work presents the effects of mesh refinement and boundary layer on aerodynamic performances of wind turbine S809 rotor. Furthermore, the simulation of fluid flow is taken for S809 airfoil wind turbine blade using ANSYS/FLUENT software. The problem is solved by the conservation of mass and momentum equations for unsteady and incompressible flow using advanced SST k-ω turbulence model, in order to predict the effects of mesh refinement and boundary layer on aerodynamics performances. Lift and drag coefficients are the most important parameters in studying the wind turbine performance, these coefficients are calculated for four meshes refinement and different angles of attacks with Reynolds number is 106. The study is applied to S809 airfoil which has 21% thickness, specially designed by NREL for horizontal axis wind turbines.

  17. Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils

    DEFF Research Database (Denmark)

    Frére, A.; Sørensen, Niels N.; Hillewaert, K.

    2016-01-01

    This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy...... sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible...... at low and high Reynolds numbers and compares the results to state-of-the-art models used in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 × 104), involving laminar boundary layer separation and transition...

  18. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    Science.gov (United States)

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  19. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdaoperate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying

  20. Aerodynamic characteristics of an oscillating airfoil. [For Vertical Axis Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Wickens, R H

    1986-03-01

    Results are reported from wind tunnel tests to study the effects of dynamic aerodynamics on the efficiency of a NACA 0018 airfoil used on a Darreius vertical axis wind turbine (VAWT). The topic is of interest because of uncontrolled pitching which occurs during operation and which produces stall, turbulence and separation effects that reduce efficiency. Present stream-tube theory and axial momentum models are not applicable in the unstable regimes. The wind tunnel tests were conducted with a 45 m/sec flow with an Re of 1.5 million. The situation mimicked typical wind turbine operational conditions. The airfoil was mounted on a hydraulic actuator to allow it to rotate about its quarter-chord location and to control the extent and frequency of oscillations. Data were also gathered on the performance in a steady flow for comparative purposes. Summary data are provided on the static and total pressures over a complete cycle of oscillation, and related to the angles of attack, time of onset of stall, and the lift and drag coefficients. The limitations of the study with regard to the absence of consideration of the flow acceleration experienced by an advancing blade are noted. 13 references.

  1. Influence of transition on steady and unsteady wind-turbine airfoil aerodynamics

    Science.gov (United States)

    Paterson, Eric; Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James

    2011-11-01

    Laminar-flow airfoils for large stall-regulated horizontal-axis wind turbines are designed to achieve a restrained maximum lift coefficient and a broad laminar low- drag bucket under steady flow conditions and at specific Reynolds numbers. Blind- comparisons of the 2000 NREL Unsteady Aerodynamics Experiment showed large discrepancies and illustrated the need for improved physics modeling. We have studied the S809 airfoil under static and dynamic (ramp-up, ramp-down, and oscillatory) conditions, using the four-equation transition model of Langtry and Menter (2009), which has been implemented as a library accessible by an OpenFOAM RANS solver. Model validation is performed using surface-pressure and lift/drag data from U. Glasgow (2009) and OSU (1995) wind tunnel experiments. Performance of the transition model is assessed by analyzing integrated performance metrics, as well as detailed surface pressure and pressure gradient, wall-shear stress, and boundary-layer profiles and separation points. Demonstration of model performance in the light- and deep-stall regimes of dynamic stall is an important step in reducing uncertainties in full 3D simulations of turbines operating in the atmospheric boundary layer. Supported by NSF Grant 0933647.

  2. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    Science.gov (United States)

    Wolff, T.; Ernst, B.; Seume, J. R.

    2014-06-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.

  3. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    International Nuclear Information System (INIS)

    Wolff, T; Ernst, B; Seume, J R

    2014-01-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated

  4. Effects of Hot Streak Shape on Rotor Heating in a High-Subsonic Single-Stage Turbine

    Science.gov (United States)

    Dorney, Daniel J.; Gundy-Burlet, Karen L.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.

  5. Artificial intelligence metamodel comparison and application to wind turbine airfoil uncertainty analysis

    Directory of Open Access Journals (Sweden)

    Yaping Ju

    2016-05-01

    Full Text Available The Monte Carlo simulation method for turbomachinery uncertainty analysis often requires performing a huge number of simulations, the computational cost of which can be greatly alleviated with the help of metamodeling techniques. An intensive comparative study was performed on the approximation performance of three prospective artificial intelligence metamodels, that is, artificial neural network, radial basis function, and support vector regression. The genetic algorithm was used to optimize the predetermined parameters of each metamodel for the sake of a fair comparison. Through testing on 10 nonlinear functions with different problem scales and sample sizes, the genetic algorithm–support vector regression metamodel was found more accurate and robust than the other two counterparts. Accordingly, the genetic algorithm–support vector regression metamodel was selected and combined with the Monte Carlo simulation method for the uncertainty analysis of a wind turbine airfoil under two types of surface roughness uncertainties. The results show that the genetic algorithm–support vector regression metamodel can capture well the uncertainty propagation from the surface roughness to the airfoil aerodynamic performance. This work is useful to the application of metamodeling techniques in the robust design optimization of turbomachinery.

  6. Design of a 4 1/2 stage turbine with a stage loading factor of 4.66 and high specific work output

    Science.gov (United States)

    Webster, P. F.

    1976-01-01

    The aerodynamic design of a highly loaded multistage fan drive turbine is discussed. Turbine flowpath and airfoil sections are presented along with respective pressure and velocity distributions. Vibrational modes are identified in the expected turbine operating range.

  7. Aerodynamic characteristics of wind turbine blade airfoils at high angles-of-attack

    NARCIS (Netherlands)

    Timmer, W.A.

    2010-01-01

    Airfoil characteristics at deep stall angles were investigated. It appeared that the maximum drag coefficient as a function of the airfoil upwind y/c ordinate at x/c=0.0125 can be approximated by a straight line. The lift-drag ratios in deep stall of a number of airfoils with moderate lower surface

  8. Airfoils and method for designing airfoils

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to airfoils and design and design optimization of airfoils, in particular airfoils of rotor blades for wind turbines. One aspect of the invention relates to an airfoil with an external shape provided by an airfoil profile defined by a limited number of parameters......, such as a set of parameters. Another aspect of the invention relates to a method for designing an airfoil by means of an analytical airfoil profile, said method comprising the step of applying a conformal mapping to a near circle in a near circle plane, wherein the near circle is at least partly expressed...... by means of an analytical function, said conformal mapping transforming the near circle in the near circle plane to the airfoil profile in an airfoil plane. L...

  9. Features of vertical axis wind turbine and development of airfoils sections; Chokusen yokugata suichoku jiku fusha no tokucho to yokugata ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Yasui, T [Tokai University, Tokyo (Japan); Nakayama, H [Oriental Kiden Company, Osaka (Japan)

    1996-10-27

    Features of a straight wing type vertical axis wind turbine (VAW) and its airfoil sections were studied. The wind turbine in which various aerodynamic work components are mounted on the rotation axis normal to the ground surface is named VAW. Like the airfoil section of aircraft, in lift type VAW, wind turbines were driven by lift 70-90 times as large as drag in some cases. Features of the VAW airfoil section which is a straight wing in plan and a fixed pitch wing (with a fixed angle to a blade support arm) in cross section, and those of wind turbines were studied. Some factors affecting the features, work principle and performance of VAW were clarified. On airfoil sections, products of each weight function and each corresponding aerodynamic factor (lift, drag and pitching moment factors) were plotted on an attack angle ({alpha}) axis. From the conditions for increasing the total sum of areas drawn by the products on the {alpha} axis, various characteristics required for airfoil sections were clarified. Such characteristics nearly agreed between an airfoil section for favorable starting characteristics and that for high efficiency. 3 refs., 7 figs.

  10. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  11. Aerodynamic Optimization of Airfoil Profiles for Small Horizontal Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Ali Cemal Benim

    2018-04-01

    Full Text Available The purpose of this study is the development of an automated two-dimensional airfoil shape optimization procedure for small horizontal axis wind turbines (HAWT, with an emphasis on high thrust and aerodynamically stable performance. The procedure combines the Computational Fluid Dynamics (CFD analysis with the Response Surface Methodology (RSM, the Biobjective Mesh Adaptive Direct Search (BiMADS optimization algorithm and an automatic geometry and mesh generation tool. In CFD analysis, a Reynolds Averaged Numerical Simulation (RANS is applied in combination with a two-equation turbulence model. For describing the system behaviour under alternating wind conditions, a number of CFD 2D-RANS-Simulations with varying Reynolds numbers and wind angles are performed. The number of cases is reduced by the use of RSM. In the analysis, an emphasis is placed upon the role of the blade-to-blade interaction. The average and the standard deviation of the thrust are optimized by a derivative-free optimization algorithm to define a Pareto optimal set, using the BiMADS algorithm. The results show that improvements in the performance can be achieved by modifications of the blade shape and the present procedure can be used as an effective tool for blade shape optimization.

  12. Predicting the aerodynamic characteristics of 2D airfoil and the performance of 3D wind turbine using a CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bum Suk; Kim, Mann Eung [Korean Register of Shipping, Daejeon (Korea, Republic of); Lee, Young Ho [Korea Maritime Univ., Busan (Korea, Republic of)

    2008-07-15

    Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- {epsilon}) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  13. Predicting the aerodynamic characteristics of 2D airfoil and the performance of 3D wind turbine using a CFD code

    International Nuclear Information System (INIS)

    Kim, Bum Suk; Kim, Mann Eung; Lee, Young Ho

    2008-01-01

    Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- ε) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model

  14. On the influence of virtual camber effect on airfoil polars for use in simulations of Darrieus wind turbines

    International Nuclear Information System (INIS)

    Rainbird, John M.; Bianchini, Alessandro; Balduzzi, Francesco; Peiró, Joaquim; Graham, J. Michael R.; Ferrara, Giovanni; Ferrari, Lorenzo

    2015-01-01

    Highlights: • Darrieus wind turbine blades are affected by virtual camber. • A NACA 0018 and two transforms of it shaped after virtual camber theory are tested. • A blockage tolerant wind tunnel test section is used for experiments. • Turbine numerical simulations for the same airfoils are compared to experiments. • Virtual camber corrections for low order simulation models are recommended. - Abstract: Darrieus vertical-axis wind turbines are experiencing renewed interest from researchers and manufacturers, though their efficiencies still lag those of horizontal-axis wind turbines. A better understanding of their aerodynamics is required to improve on designs, for example through the development of more accurate low-order (e.g. blade element momentum) models. Many of these models neglect the impact of the curved paths that are followed by blades on their performance. It has been theorized that the curved streamlines of the flow impart a virtual camber and incidence on them, giving a performance analogous to a cambered blade in a rectilinear flow. To test the extent of this effect, wind tunnel experiments have been conducted in a rectilinear flow to obtain lift and drag for three airfoils: a NACA 0018 and two conformal transforms of the profile. The transformed airfoils exhibit the virtual camber that the theory predicts is imparted to a NACA 0018 when used in a Darrieus turbine with blade chord-to-turbine radius ratios, c/R, of 0.114 and 0.25. A parallel computational fluid dynamics campaign has been conducted to study the aerodynamic behavior of the same blades in curvilinear flow in Darrieus-like motion with c/R = 0.114 and 0.25, at tip–speed ratios of 2.1 and 3.1, using novel techniques to obtain blade effective angles of attack. The analysis confirms that the theory holds, with the wind tunnel results for the NACA 0018 being analogous to numerical results for the relevant cambered airfoils. In addition, turbine performance is calculated using

  15. Numerical calculation of aerodynamics wind turbine blade S809 airfoil and comparison of theoretical calculations with experimental measurements and confirming with NREL data

    Science.gov (United States)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.

  16. Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results

    Science.gov (United States)

    Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.

    1999-01-01

    A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.

  17. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    Science.gov (United States)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early

  18. Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet

    Science.gov (United States)

    Putra Adnan, F.; Hartono, Firman

    2018-04-01

    In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.

  19. Design and Experimental Validation of Thick Airfoils for Large Wind Turbines

    DEFF Research Database (Denmark)

    Hrgovan, Iva; Shen, Wen Zhong; Zhu, Wei Jun

    2015-01-01

    In this chapter, two new airfoils with thickness to chord ratios of 30 and 36 % are presented, which were designed with an objective of good aerodynamic and structural features. Airfoil design is based on a direct method using shape perturbation function. The optimization algorithm is coupled wit...

  20. Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications

    DEFF Research Database (Denmark)

    Nilsson, Karl; Breton, Simon-Philippe; Sørensen, Jens Nørkær

    2014-01-01

    To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine ...

  1. Multi-stage internal gear/turbine fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  2. A study on the aerodynamic characteristics of airfoil in the flapping adjustment stage during forward flight

    Science.gov (United States)

    Luo, Pan; Zhang, Xingwei; Huang, Panpan; Xie, Lingwang

    2017-10-01

    The aim of this study is to investigate the aerodynamic characteristics of a flapping airfoil in the adjustment stage between two specific flight patterns during the forward flight. Four flapping movement models in adjustment stage are firstly established by using the multi-objective optimization algorithm. Then, a numerical experiment is carried out by using finite volume method to solve the two-dimensional time-dependent incompressible Navier-Stokes equations. The attack angles are selected from -5° to 7.5° with an increase of 2.5°. The results are systematically analyzed and special attention is paid to the corresponding changes of aerodynamic forces, vortex shedding mechanism in the wake structure and thrust efficiency. Present results show that output aerodynamic performance of flapping airfoil can be improved by the increasement of amplitude and frequency in the flapping adjustment stage, which further validates and complements previous studies. Moreover, it is also show that the manner using multi-objective optimization algorithm to generate a movement model in adjustment stage, to connect other two specific plunging motions, is a feasible and effective method. Current study is dedicated to providing some helpful references for the design and control of artificial flapping wing air vehicles.

  3. Design and preliminary testing of a MEMS microphone phased array for aeroacoustic testing of a small-scale wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Bale, A.; Orlando, S.; Johnson, D. [Waterloo Univ., ON (Canada). Wind Energy Group

    2010-07-01

    One of the barriers preventing the widespread utilization of wind turbines is the audible sound that they produce. Developing quieter wind turbines will increase the amount of available land onto which wind farms can be built. Noise emissions from wind turbines can be attributed to the aerodynamic effects between the turbine blades and the air surrounding them. A dominant source of these aeroacoustic emissions from wind turbines is known to originate at the trailing edges of the airfoils. This study investigated the flow physics of noise generation in an effort to reduce noise from small-scale wind turbine airfoils. The trailing edge noise was studied on scale-models in wind tunnels and applied to full scale conditions. Microphone phased arrays are popular research tools in wind tunnel aeroacoustic studies because they can measure and locate noise sources. However, large arrays of microphones can be prohibitively expensive. This paper presented preliminary testing of micro-electrical mechanical system (MEMS) microphones in phased arrays for aeroacoustic testing on a small wind turbine airfoil. Preliminary results showed that MEMS microphones are an acceptable low-cost alternative to costly condenser microphones. 19 refs., 1 tab., 11 figs.

  4. Design and aerodynamic performance evaluation of a high-work mixed flow turbine stage

    Science.gov (United States)

    Neri, Remo N.; Elliott, Thomas J.; Marsh, David N.; Civinskas, Kestutis C.

    1994-01-01

    As axial and radial turbine designs have been pushed to their aerothermodynamic and mechanical limits, the mixed-flow turbine (MFT) concept has been projected to offer performance and durability improvements, especially when ceramic materials are considered. The objective of this NASA/U.S. Army sponsored mixed-flow turbine (AMFT) program was to determine the level of performance attainable with MFT technology within the mechanical constraints of 1997 projected ceramic material properties. The MFT geometry is similar to a radial turbine, exhibiting a large radius change from inlet to exit, but differing in that the inlet flowpath is not purely radial, nor axial, but mixed; it is the inlet geometry that gives rise to the name 'mixed-flow'. The 'mixed' orientation of the turbine inlet offers several advantages over radial designs by allowing a nonzero inlet blade angle yet maintaining radial-element blades. The oblique inlet not only improves the particle-impact survivability of the design, but improves the aerodynamic performance by reducing the incidence at the blade inlet. The difficulty, however, of using mixed-flow geometry lies in the scarcity of detailed data and documented design experience. This paper reports the design of a MFT stage designed with the intent to maximize aerodynamic performance by optimizing design parameters such as stage reaction, rotor incidence, flowpath shape, blade shape, vane geometry, and airfoil counts using 2-D, 3-D inviscid, and 3-D viscous computational fluid dynamics code. The aerodynamic optimization was accomplished while maintaining mechanical integrity with respect to vibration and stress levels in the rotor. A full-scale cold-flow rig test was performed with metallic hardware fabricated to the specifications of the hot ceramic geometry to evaluate the stage performance.

  5. Staged combustion with piston engine and turbine engine supercharger

    Science.gov (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  6. Liquid-phase problems in steam turbine LP stages

    International Nuclear Information System (INIS)

    Blanc-Feraud, P.

    1978-01-01

    Wet steam formation owing to incipient condensation in final steam turbine pressure stages results in a loss of efficiency and possible rotor blading erosion. The effects of erosion are now clearly understood and quite easily counteracted, but loss of thermodynamics, mechanical and aerodynamic efficiency is still a problem. Only the final LP stages of conventional power station plant operate with wet steam, whereas nuclear plant turbines use it to produce most of their total output [fr

  7. On the performance simulation of inter-stage turbine reheat

    International Nuclear Information System (INIS)

    Pellegrini, Alvise; Nikolaidis, Theoklis; Pachidis, Vassilios; Köhler, Stephan

    2017-01-01

    Highlights: • An innovative gas turbine performance simulation methodology is proposed. • It allows to perform DP and OD performance calculations for complex engines layouts. • It is essential for inter-turbine reheat (ITR) engine performance calculation. • A detailed description is provided for fast and flexible implementation. • The methodology is successfully verified against a commercial closed-source software. - Abstract: Several authors have suggested the implementation of reheat in high By-Pass Ratio (BPR) aero engines, to improve engine performance. In contrast to military afterburning, civil aero engines would aim at reducing Specific Fuel Consumption (SFC) by introducing ‘Inter-stage Turbine Reheat’ (ITR). To maximise benefits, the second combustor should be placed at an early stage of the expansion process, e.g. between the first and second High-Pressure Turbine (HPT) stages. The aforementioned cycle design requires the accurate simulation of two or more turbine stages on the same shaft. The Design Point (DP) performance can be easily evaluated by defining a Turbine Work Split (TWS) ratio between the turbine stages. However, the performance simulation of Off-Design (OD) operating points requires the calculation of the TWS parameter for every OD step, by taking into account the thermodynamic behaviour of each turbine stage, represented by their respective maps. No analytical solution of the aforementioned problem is currently available in the public domain. This paper presents an analytical methodology by which ITR can be simulated at DP and OD. Results show excellent agreement with a commercial, closed-source performance code; discrepancies range from 0% to 3.48%, and are ascribed to the different gas models implemented in the codes.

  8. Development of 52 inch last stage blade for steam turbine

    International Nuclear Information System (INIS)

    Kadoya, Yoshiki; Harada, Masakatsu; Watanabe, Eiichiro

    1985-01-01

    Mitsubishi Heavy Industries, Ltd. has developed the last stage blades with 1320 mm length for a 1800 rpm LP turbine, and the verification by rotating vibration test using actual blades was finished, thus the blades were completed. In a nuclear power plant with an A-PWR of 3800 MW thermal output, the 1350 MW steam turbine has one HP turbine and three LP turbines coupled in tandem, and the optimum last stage blades for the LP turbines became the 1320 mm blades. The completion of these blades largely contributes to the improvement of thermal efficiency and the increase of generator output in large nuclear power plants, and has the possibility to decrease three LP turbines to two in 900 MW plants, which reduces the construction cost. The velocity energy of steam coming out of last stage blades is abandoned as exhaust loss in a condenser, which is the largest loss in a turbine. The increase of exhaust area using long blades reduces this loss. The economy of the 1320 mm blades, the features of the 1320 mm blades, the aerodynamic design and its verification, the prevention of the erosion of the 1320 mm blades due to wet steam, the strength design, the anti-vibration design and its verification, and the CAD/CAM system are reported. (Kako, I.)

  9. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  10. Effects of hydroelectric turbine passage on fish early life stages

    International Nuclear Information System (INIS)

    Cada, G.F.

    1991-01-01

    Turbine-passage mortality has been studied extensively for juveniles and adults of migratory fish species, but few studies have directly quantified orality of fish eggs and larvae. This paper provides an analysis of literature relating to component stresses of turbine passage (i.e., pressure changes, blade contact, and shear) which indicates that mortality of early life stages of fish would be relatively low at low-head, bulb turbine installations. The shear forces and pressure regimes normally experienced are insufficient to cause high mortality rates. The probability of contact with turbine blades is related to the size of the fish; less than 5% of entrained ichthyoplankton would be killed by the blades in a bulb turbine. Other sources of mortality (e.g., cavitation and entrainment of fish acclimated to deep water) are controlled by operation of the facility and thus are mitigable. Because turbine-passage mortality among fish early life stages can be very difficult to estimate directly, it may be more fruitful to base the need for mitigation at any given site on detailed knowledge of turbine characteristics and the susceptibility of the fish community to entrainment

  11. Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet

    Directory of Open Access Journals (Sweden)

    He-Yong Xu

    2016-06-01

    Full Text Available Dynamic stall control of a S809 airfoil is numerically investigated by implementing a co-flow jet (CFJ. The numerical methods of the solver are validated by comparing results with the baseline experiment as well as a NACA 6415-based CFJ experiment, showing good agreement in both static and dynamic characteristics. The CFJ airfoil with inactive jet is simulated to study the impact that the jet channel imposes upon the dynamic characteristics. It is shown that the presence of a long jet channel could cause a negative effect of decreasing lift and increasing drag, leading to fluctuating extreme loads in terms of drag and moment. The main focus of the present research is the investigation of the dynamic characteristics of the CFJ airfoil with three different jet momentum coefficients, which are compared with the baseline, giving encouraging results. Dynamic stall can be greatly suppressed, showing a very good control performance of significantly increased lift and reduced drag and moment. Analysis of the amplitude of variation in the aerodynamic coefficients indicates that the fluctuating extreme aerodynamic loads are significantly alleviated, which is conducive to structural reliability and improved life cycle. The energy consumption analysis shows that the CFJ concept is applicable and economical in controlling dynamic stall.

  12. Optimization of Wind Turbine Airfoil Using Nondominated Sorting Genetic Algorithm and Pareto Optimal Front

    Directory of Open Access Journals (Sweden)

    Ziaul Huque

    2012-01-01

    Full Text Available A Computational Fluid Dynamics (CFD and response surface-based multiobjective design optimization were performed for six different 2D airfoil profiles, and the Pareto optimal front of each airfoil is presented. FLUENT, which is a commercial CFD simulation code, was used to determine the relevant aerodynamic loads. The Lift Coefficient (CL and Drag Coefficient (CD data at a range of 0° to 12° angles of attack (α and at three different Reynolds numbers (Re=68,459, 479, 210, and 958, 422 for all the six airfoils were obtained. Realizable k-ε turbulence model with a second-order upwind solution method was used in the simulations. The standard least square method was used to generate response surface by the statistical code JMP. Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II was used to determine the Pareto optimal set based on the response surfaces. Each Pareto optimal solution represents a different compromise between design objectives. This gives the designer a choice to select a design compromise that best suits the requirements from a set of optimal solutions. The Pareto solution set is presented in the form of a Pareto optimal front.

  13. Development of 52 inches last stage blade for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shinichiro; Ogata, Hisao

    1986-01-01

    The last stage blades of steam turbines are the important component controlling the power output and performance of plants. In order to realize a unit of large capacity and high efficiency, the proper exhaust area and the last stage blades having good performance are indispensable. Toshiba Corp. has completed the development of the 52 inch last stage blades for 1500 and 1800 rpm steam turbines. The 52 inch last stage blades are the longest in the world, which have the annular exhaust area nearly 1.5 times as much as that of 41 inch blades used for 1100 MW, 1500 rpm turbines in nuclear power stations. By adopting these 52 inch blades, the large capacity nuclear power plants up to 1800 MW can be economically constructed, the rate of heat consumption of 1350 MW plants is improved by 3 ∼ 4 % as compared with 41 inch blades, and in the plants up to 1100 MW, LP turbines can be reduced from three sets to two. The features of 52 inch blades, the flow pattern and blade form design, the structural strength analysis and the erosion withstanding property, and the verification by the rotation test of the actual blades, the performance test using a test turbine, the vibration analysis of the actually loaded blades and the analysis of wet steam behavior are reported. (Kako, I.)

  14. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  15. Numerical modeling of a pitch oscillating S809 airfoil dynamic stall in 2D with application to a horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Gharali, K.; Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering, Wind Energy Group

    2010-07-01

    Natural wind can sometimes have a strong wind shear that causes the Dynamic Stall (DS) phenomena which may result in dynamic loads and varying lift coefficients. The DS phenomena cannot be prevented in horizontal axis wind turbines (HAWTs). Therefore, it is necessary to study the unsteady aerodynamics in order to modify common wind turbine rotor designs. This paper reported on a study that investigated the dynamic flow fields around an oscillating 2D S809 airfoil, representing the aerodynamic characteristics of HAWT airfoils for dynamic stall conditions. A computational fluid dynamic (CFD) flow solver package with Fluent was used with different turbulence models, notably the Spalart-Allmaras and Detached Eddy Simulation (DES) methods. A sliding mesh is commonly used in numerical methods for simulating an oscillating foil, but sliding meshes suffer from mesh generation complexity and increased computational time. In this study, instead of a sinusoidally pitching airfoil, the direction of the far-field flow was changed according to a user-defined function in the software to simulate a proper angle of attack for the boundary conditions in each time step. This strategy helped to decrease processing time. The simulation results were in good agreement with experimental data and the Beddoes-Leishman model results. The DES method for unsteady 2D flow was not recommended. It was concluded that the Fluent package is time efficient, reliable and economic for the wind turbine industry. 17 refs., 3 figs.

  16. The effect of annealing and desulfurization on oxide spallation of turbine airfoil material

    International Nuclear Information System (INIS)

    Briant, C.L.; Murphy, W.H.; Schaeffer, J.C.

    1995-01-01

    In this paper the authors report a study that addresses the sulfur-induced spallation theory. Previous work has shown that a high temperature anneal in hydrogen desulfurizes nickel-base alloys and greatly improves their resistance to oxide spallation. The authors will show that such an anneal can be applied successfully to a Ni-base airfoil material. Both Auger segregation experiments and chemical analyses show that this anneal desulfurizes the material, at least in the absence of yttrium. However, the results suggest that factors other than desulfurization may be contributing to the improvement in spallation resistance produced by the anneal

  17. 基于海鸥翼型的小型风力机叶片仿生设计与试验%Bionic design and test of small-sized wind turbine blade based on seagull airfoil

    Institute of Scientific and Technical Information of China (English)

    王骥月; 丛茜; 梁宁; 毛士佳; 关欢欢; 刘林鹏; 陈创发

    2015-01-01

    针对现有小型风力发电机效率远低于理论值问题,对100 W水平轴风力机叶片进行仿生改进。采用Spalart-Allmaras模型分析不同攻角下海鸥翼型与标准翼型的气动特性;以标准100 W水平轴风力机叶片为原型,结合海鸥翼型、标准弦长和计算得出的安装角,设计得到仿海鸥翼型叶片;利用SST k-ω模型进行仿海鸥翼型叶片与标准叶片气动特性数值模拟;搭建室内风力机效率测试平台,进行仿海鸥翼型风力机与标准风力机效率对比试验。结果表明:海鸥翼型气动性能优良,最大升力系数是标准翼型的2.19倍,最大升阻比是标准翼型的1.34倍;仿海鸥翼型叶片与标准叶片相比,输出功率提高25.77%。该研究可为小型风力发电机的改进设计提供参考。%Power of the existing small-sized wind turbine blades is much less than the theoretical value. This study improved 100 W wind turbine blades to increase the power of wind turbine. First of all, Spalart-Allmaras model which was suitable for airfoil stalling characteristics research was used to analyze the aerodynamic characteristics of seagull airfoil and standard airfoil with different angles of attack (AOA). Seagull airfoil and standard airfoil were got from seagull wing and standard blade by portable three-dimension scanner, Imageware software and Geomagic Studio software through standard blade scan, seagull wing scan, point cloud processing, reverse engineering modeling and cross section capture. Lift coefficients and lift-drag ratios of seagull airfoil and standard airfoil were calculated by Fluent software. Secondly, bionic blade was designed based on standard 100 W blades and Glauert theory. Thirdly, numerical simulations of bionic blade and standard blade were performed by using SST(shear stress transport) k-ω model which was suitable for blade performance research to analyze the aerodynamic characteristics of bionic blade and standard

  18. The 52-inch last-stage blades for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shin-ichiro; Ogata, Hisao

    1986-01-01

    The last-stage blades (LSB) of steam turbines are one of the most important components determining the plant's maximum capacity and efficiency. The development of LSBs necessitates high-technology including advanced methods of analyses and verifications as well as ample accumulation of technical data. The 52-inch LSB recently developed by Toshiba has raised nuclear power plant's capacity up to 1,300 ∼ 1,800 MW, has effected compact design of turbine units, and has improved thermal efficiency, keeping high reliability. (author)

  19. Wind turbine blade vibration at standstill conditions — the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac

    2015-01-01

    The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering-type...... computational model for the aeroelastic response of an elastically mounted airfoil was used to investigate the influence of temporal lag in the aerodynamic response on the aeroelastic stability in deep stall. The study indicated that even a relatively low lag significantly increases the damping of the model....... A comparison between the results from a model with lag imposed on all force components with the results from a model with lag imposed exclusively on the lift showed only marginal difference between the damping in the two cases. A parameter study involving positions of the elastic hinge point and the center...

  20. Experimental investigation of gas turbine airfoil aerodynamic performance without and with film cooling in an annular sector cascade

    Energy Technology Data Exchange (ETDEWEB)

    Wiers, S.H.

    2002-02-01

    The steady growing of industrialization, the densification of the anthroposphere, the increasing concern over the effects of gas turbine cruise emissions on the atmosphere threaten the growth of air transportation, and the perception about the possible climatic impact of CO{sub 2} emissions causes a public distinctive sense of responsibility. The conventional energy production techniques, which are based on fossil fuel, will keep its central importance within the global energy production. Forecasts about the increasing air transportation give duplication in the next 10-15 years. The optimization of the specific fuel consumption is necessary to decrease the running costs and the pollution emissions in the atmosphere, which makes an increased process efficiency of stationary turbines as well as of jet engines essential. This leads to the necessity of an increased thermodynamic efficiency of the overall process and the optimization of the aerodynamic components. Due to the necessity of more detailed three-dimensional data on the behavior of film cooled blades an annular sector cascade turbine test facility has gone into service. The annular sector cascade facility is a relative cost efficient solution compared to a full annular facility to investigate three-dimensional effects on a non cooled and cooled turbine blade. The aerodynamic investigations on the annular sector cascade facility are part of a broad perspective where experimental data from a hot annular sector cascade facility and the cold annular sector facility are used to verify, calibrate and understand the physics for both internal and external calculation methods for flow and heat transfer prediction. The objective of the present study is the design and validation of a cold flow annular sector cascade facility, which meets the flow conditions in a modem turbine as close as possible, with emphasis on achieving periodic flow conditions. The first part of this study gives the necessary background on this

  1. Flow and heat transfer experiments in the turbine airfoil/endwall region

    Science.gov (United States)

    Chung, Jin Taek

    An experimental investigation of the three-dimensional flow and heat transfer near the junction between the endwall and suction wall of a gas turbine was performed. A large-scale, two-half-blade facility which simulates a turbine cascade was introduced. The simulator consists of two large half-blade sections, one wall simulating the pressure surface and the other wall simulating the suction surface. The advantage of this configuration is that the features of the secondary flow are large, because of the relatively large test section, and the flow is easily accessible with probes. Qualification of this simulator was by comparison to a multi-blade cascade flow. Various flow visualization techniques--oil and lampblack, ink and oil of wintergeeen, a single tuft probe, and a tuft grid--were employed to confirm that the important features of the cascade flow were replicated in this simulator. The triangular region on the suction surface, which was affected by the passage vortex, and the endwall secondary crossflow were observed by shear stress visualization and the liquid crystal measurement techniques. In order to investigate the effects of the turbulence level on the secondary flow in a turbine passage, a turbulence generator, designed to reproduce the characteristics of a combustor exit flow, was built. The generator was designed not only to generate a high turbulence level but to produce three main features of a combustor exit flow. The generator produced a turbulence intensity level of about 10 percent and an integral length scale of 5 centimeters. It was observed that the endwall secondary flow, including the passage vortex, is not significantly influenced by freestream turbulence levels up to 10 percent. A flow management technique using a boundary layer fence designed to reduce some harmful effects of secondary flow in the endwall region of a turbine passage was introduced. The boundary layer fence is effective in changing the passage of the vortex and reducing

  2. Development of SMA Actuated Morphing Airfoil for Wind Turbine Load Alleviation

    Science.gov (United States)

    Karakalas, A.; Machairas, T.; Solomou, A.; Riziotis, V.; Saravanos, D.

    Wind turbine rotor upscaling has entered a range of rotor diameters where the blade structure cannot sustain the increased aerodynamic loads without novel load alleviation concepts. Research on load alleviation using morphing blade sections is presented. Antagonistic shape memory alloy (SMA) actuators are implemented to deflect the section trailing edge (TE) to target shapes and target time-series relating TE movement with changes in lift coefficient. Challenges encountered by the complex thermomechanical response of morphing section and the enhancement of SMA transient response to achieve frequencies meaningful for aerodynamic load alleviation are addressed. Using a recently developed finite element for SMA actuators [1], actuator configurations are considered for fast cooling and heating cycles. Numerical results quantify the attained ranges of TE angle movement, the moving time period and the developed stresses. Estimations of the attained variations of lift coefficient vs. time are also presented to assess the performance of the morphing section.

  3. Investigation of a Novel Turbulence Model and Using Leading-Edge Slots for Improving the Aerodynamic Performance of Airfoils and Wind Turbines

    Science.gov (United States)

    Beyhaghi, Saman

    as compared to the baseline DES. In the second part of this study, the focus is on improving the aerodynamic performance of airfoils and wind turbines in terms of lift and drag coefficients and power generation. One special type of add-on feature for wind turbines and airfoils, i.e., leading-edge slots are investigated through numerical simulation and laboratory experiments. Although similar slots are designed and employed for aircrafts, a special slot with a reversed flow direction is drilled in the leading edge of a sample wind turbine airfoil to study its influence on the aerodynamic performance. The objective is to vary the five main geometrical parameters of slot and characterize the performance improvement of the new design under different operating conditions. A number of Design of Experiment and optimization studies are conducted to determine the most suitable slot configuration to maximize the lift or lift-over-drag ratio. Results indicate that proper sizing and placement of slot can improve the lift coefficient, while it has negligible negative impact on the drag. Some recommendations for future investigation on slot are proposed at the end. The performance of a horizontal axis wind turbine blade equipped with leading-edge slot is also studied, and it is concluded that slotted blades can generate about 10% more power than solid blades, for the two operating conditions investigated. The good agreement between the CFD predictions and experimental data confirms the validity of the model and results.

  4. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  5. Investigation of the flow through an axial turbine stage

    Energy Technology Data Exchange (ETDEWEB)

    Svensdotter, S.; Wei Ning [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1995-12-31

    In this licentiate thesis the classical turbine theory and experimental results from the test turbine at KTH have been studied. The theory for the data evaluation program has also been studied and the loss models by Traupel and Denton have been investigated and applied to the measured results. The work has been performed to prepare for a theory concerning aerodynamic design of so called compound leaned blades and for future experiments on this non-conventional blade design with a new measurement system. A literature survey shows that the compound lean can be an effective three-dimensional technique in turbine designs, with significantly improved flow conditions, especially near the end-wall regions. A new measurement system, PSI, has been installed and the first preliminary tests shows good agreement with the existing system. The speed of the global measurements has been improved from about 10 minutes to about 12 seconds. The system reliability and documentation is also improved with the PSI system. The accuracy of the PSI-system is significantly better on the pressure measurement side, while the analogue side has somewhat less accuracy for the moment. From the analysis of the measurement results on the 25 mm stage, the tendencies of parameter variation versus pressure and velocity ratios were gained by the authors. The results show high secondary flow loss cores near the end-walls downstream the stator. The result is similar with those from the literature survey. The radial positions of the secondary flow cores change when simulating stator leakage flow. 140 refs, 54 figs, 14 tabs, 14 appendices

  6. Airfoil structure

    Science.gov (United States)

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  7. Airfoils in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse

    of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence......Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...

  8. Improving a two-equation eddy-viscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils

    Science.gov (United States)

    Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus

    2018-03-01

    Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.

  9. Compressor airfoil tip clearance optimization system

    Science.gov (United States)

    Little, David A.; Pu, Zhengxiang

    2015-08-18

    A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.

  10. Lean-rich axial stage combustion in a can-annular gas turbine engine

    Science.gov (United States)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.

  11. Design and cold-air test of single-stage uncooled turbine with high work output

    Science.gov (United States)

    Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.

    1980-01-01

    A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.

  12. Study of two-stage turbine characteristic and its influence on turbo-compound engine performance

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yang, Mingyang; Martinez-Botas, Ricardo; Yin, Yong

    2015-01-01

    Highlights: • An analytical model was built to study the interactions between two turbines in series. • The impacts of HP VGT and LP VGT on turbo-compound engine performance were investigated. • The fuel reductions obtained by HP VGT at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively. • The optimum value of AR ranged from 2.0 to 2.5 as the turbo-compound engine speed decreases. - Abstract: Turbo-compounding is an effective way to recover waste heat from engine exhaust and reduce fuel consumption for internal combustion engine (ICE). The characteristics of two-stage turbine, including turbocharger turbine and power turbine, have significant effects on the overall performance of turbo-compound engine. This paper investigates the interaction between two turbines in a turbo-compound engine and its impact on the engine performance. Firstly an analytical model is built to investigate the effects of turbine equivalent flow area on the two-stage turbine characteristics, including swallowing capacity and load split. Next both simulation and experimental method are carried out to study the effects of high pressure variable geometry turbine (HP VGT), low pressure variable geometry turbine (LP VGT) and combined VGT on the engine overall performance. The results show that the engine performance is more sensitive to HP VGT compared with LP VGT at all the operation conditions, which is caused by the larger influences of HP VGT on the total expansion ratio and engine air–fuel ratio. Using the HP VGT method, the fuel reductions of the turbo-compound engine at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively, in comparison with the baseline engine. The corresponding optimum values of AR are 2.0 and 2.5

  13. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  14. CFD Simulations for the Effect of Unsteady Wakes on the Boundary Layer of a Highly Loaded Low-Pressure Turbine Airfoil (L1A)

    Science.gov (United States)

    Vinci, Samuel, J.

    2012-01-01

    This report is the third part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part was published as NASA/CR-2012-217415. The second part was published as NASA/CR-2012-217416. The study of the very high lift low-pressure turbine airfoil L1A in the presence of unsteady wakes was performed computationally and compared against experimental results. The experiments were conducted in a low speed wind tunnel under high (4.9%) and then low (0.6%) freestream turbulence intensity for Reynolds number equal to 25,000 and 50,000. The experimental and computational data have shown that in cases without wakes, the boundary layer separated without reattachment. The CFD was done with LES and URANS utilizing the finite-volume code ANSYS Fluent (ANSYS, Inc.) under the same freestream turbulence and Reynolds number conditions as the experiment but only at a rod to blade spacing of 1. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. This was validated in the 3D CFD efforts by comparing the experimental results for the pressure coefficients and velocity profiles, which were reasonable for all cases examined. The 2D CFD efforts failed to capture the three dimensionality effects of the wake and thus were less consistent with the experimental data. The effect of the freestream turbulence intensity levels also showed a little more consistency with the experimental data at higher intensities when compared with the low intensity cases. Additional cases with higher wake passing frequencies which were not run experimentally were simulated. The results showed that an initial 25% increase from the experimental wake passing greatly reduced the size of the separation bubble, nearly completely suppressing it.

  15. Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake

    Directory of Open Access Journals (Sweden)

    P. Chatelain

    2017-06-01

    Full Text Available A vortex particle-mesh (VPM method with immersed lifting lines has been developed and validated. Based on the vorticity–velocity formulation of the Navier–Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES of vertical axis wind turbine (VAWT flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters. The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  16. Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages

    Science.gov (United States)

    Calvo Hernández, A.; Roco, J. M. M.; Medina, A.

    1996-06-01

    Using an improved Brayton cycle as a model, a general analysis accounting for the efficiency and net power output of a gas-turbine power plant with multiple reheating and intercooling stages is presented. This analysis provides a general theoretical tool for the selection of the optimal operating conditions of the heat engine in terms of the compressor and turbine isentropic efficiencies and of the heat exchanger efficiency. Explicit results for the efficiency, net power output, optimized pressure ratios, maximum efficiency, maximum power, efficiency at maximum power, and power at maximum efficiency are given. Among others, the familiar results of the Brayton cycle (one compressor and one turbine) and of the corresponding Ericsson cycle (infinite compressors and infinite turbines) are obtained as particular cases.

  17. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  18. Profile catalogue for airfoil sections based on 3D computations

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2006-01-01

    This report is a continuation of the Wind Turbine Airfoil Catalogue [1] which objective was, firstly to provide a database of aerodynamic characteristics for a wide range of airfoil profiles aimed at wind turbine applications, and secondly to test thetwo-dimensional Navier-Stokes solver EllipSys2D...... and the actual fluid flow, and thereby the incorrect prediction of airfoil characteristics. In addition, other features of the flow solver, such astransition and turbulence modelling, and their influence onto the numerical results are investigated. Conclusions are drawn regarding the evaluation of airfoil...

  19. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part I: from the airfoil performance to the very far wake

    Science.gov (United States)

    Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire

    2017-11-01

    A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  20. A theoretical analysis of flow through the nucleating stage in a low pressure steam turbine

    International Nuclear Information System (INIS)

    Skillings, S.A.; Walters, P.T.; Jackson, R.

    1989-01-01

    In order to improve steam turbine efficiency and reliability, the phenomena associated with the formation and growth of water droplets must be understood. This report describes a theoretical investigation into flow behaviour in the nucleating stage, where the predictions of a one-dimensional theory are compared with measured turbine data. Results indicate that droplet sizes predicted by homogeneous condensation theory cannot be reconciled with measurements unless fluctuating shock waves arise. Heterogeneous effects and flow turbulence are also discussed along with their implications for the condensation process. (author)

  1. Inviscid double wake model for stalled airfoils

    International Nuclear Information System (INIS)

    Marion, L; Ramos-García, N; Sørensen, J N

    2014-01-01

    An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge and at the separation point. A calibration of the code through comparison with experiments has been performed using one set of airfoils. A second set of airfoils has been used for the validation of the calibrated model. Predicted aerodynamic forces for a wide range of angles of attack (0 to 90 deg) are in overall good agreement with wind tunnel measurements

  2. Computational Study on the Effect of Shroud Shape on the Efficiency of the Gas Turbine Stage

    Science.gov (United States)

    Afanas'ev, I. V.; Granovskii, A. V.

    2018-03-01

    The last stages of powerful power gas turbines play an important role in the development of power and efficiency of the whole unit as well as in the distribution of the flow parameters behind the last stage, which determines the efficient operation of the exhaust diffusers. Therefore, much attention is paid to improving the efficiency of the last stages of gas turbines as well as the distribution of flow parameters. Since the long blades of the last stages of multistage high-power gas turbines could fall into the resonance frequency range in the course of operation, which results in the destruction of the blades, damping wires or damping bolts are used for turning out of resonance frequencies. However, these damping elements cause additional energy losses leading to a reduction in the efficiency of the stage. To minimize these losses, dampening shrouds are used instead of wires and bolts at the periphery of the working blades. However, because of the strength problems, designers have to use, instead of the most efficient full shrouds, partial shrouds that do not provide for significantly reducing the losses in the tip clearance between the blade and the turbine housing. In this paper, a computational study is performed concerning an effect that the design of the shroud of the turbine-working blade exerted on the flow structure in the vicinity of the shroud and on the efficiency of the stage as a whole. The analysis of the flow structure has shown that a significant part of the losses under using the shrouds is associated with the formation of vortex zones in the cavities on the turbine housing before the shrouds, between the ribs of the shrouds, and in the cavities at the outlet behind the shrouds. All the investigated variants of a partial shrouding are inferior in efficiency to the stages with shrouds that completely cover the tip section of the working blade. The stage with a unshrouded working blade was most efficient at the values of the relative tip clearance

  3. A Two-Stage Diagnosis Framework for Wind Turbine Gearbox Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Janet M. Twomey

    2013-01-01

    Full Text Available Advances in high performance sensing technologies enable the development of wind turbine condition monitoring system to diagnose and predict the system-wide effects of failure events. This paper presents a vibration-based two stage fault detection framework for failure diagnosis of rotating components in wind turbines. The proposed framework integrates an analytical defect detection method and a graphical verification method together to ensure the diagnosis efficiency and accuracy. The efficacy of the proposed methodology is demonstrated with a case study with the gearbox condition monitoring Round Robin study dataset provided by the National Renewable Energy Laboratory (NREL. The developed methodology successfully picked five faults out of seven in total with accurate severity levels without producing any false alarm in the blind analysis. The case study results indicated that the developed fault detection framework is effective for analyzing gear and bearing faults in wind turbine drive train system based upon system vibration characteristics.

  4. Kinetic Energy Losses and Efficiency of an Axial Turbine Stage in Numerical Modeling of Unsteady Flows

    Directory of Open Access Journals (Sweden)

    A. S. Laskin

    2015-01-01

    Full Text Available The article presents the results of numerical investigation of kinetic energy (KE loss and blading efficiency of the single-stage axial turbine under different operating conditions, characterized by the ratio u/C0. The calculations are performed by stationary (Stage method and nonstationary (Transient method methods using ANSYS CFX. The novelty of this work lies in the fact that the numerical simulation of steady and unsteady flows in a turbine stage is conducted, and the results are obtained to determine the loss of KE, both separately by the elements of the flow range and their total values, in the stage efficiency as well. The results obtained are compared with the calculated efficiency according to one-dimensional theory.To solve these problems was selected model of axial turbine stage with D/l = 13, blade profiles of rotor and stator of constant cross-section, similar to tested ones in inverted turbine when = 0.3. The degree of reactivity ρ = 0.27, the rotor speed was varied within the range 1000 ÷ 1800 rev/min.Results obtained allow us to draw the following conclusions:1. The level of averaged coefficients of total KE losses in the range of from 0.48 to 0.75 is from 18% to 21% when calculating by the Stage method and from 21% to 25% by the Transient one.2. The level of averaged coefficients of KE losses with the output speed of in the specified range is from 9% to 13%, and almost the same when in calculating by Stage and Transient methods.3. Levels of averaged coefficients of KE loss in blade tips (relative to the differential enthalpies per stage are changed in the range: from 4% to 3% (Stage and are stored to be equal to 5% (Transient; from 5% to 6% (Stage and from 6% to 8% (Transient.4. Coefficients of KE losses in blade tips GV and RB are higher in calculations of the model stage using the Transient method than the Stage one, respectively, by = 1.5 ÷ 2.5% and = 4 ÷ 5% of the absolute values. These are values to characterize the KE

  5. Heat transfer and pressure measurements and comparison with prediction for the SSME two-stage turbine

    Science.gov (United States)

    Dunn, M. G.; Kim, J.

    1992-01-01

    Time averaged Stanton number and surface pressure distributions are reported for the first stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine (SSME) two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform, blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin film heat flux gages were used to obtain the heat flux measurements, while miniature silicon diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  6. Specific features of the flow structure in a reactive type turbine stage

    Science.gov (United States)

    Chernikov, V. A.; Semakina, E. Yu.

    2017-04-01

    The results of experimental studies of the gas dynamics for a reactive type turbine stage are presented. The objective of the studies is the measurement of the 3D flow fields in reference cross sections, experimental determination of the stage characteristics, and analysis of the flow structure for detecting the sources of kinetic energy losses. The integral characteristics of the studied stage are obtained by averaging the results of traversing the 3D flow over the area of the reference cross sections before and behind the stage. The averaging is performed using the conservation equations for mass, total energy flux, angular momentum with respect to the axis z of the turbine, entropy flow, and the radial projection of the momentum flux equation. The flow parameter distributions along the channel height behind the stage are obtained in the same way. More thorough analysis of the flow structure is performed after interpolation of the experimentally measured point parameter values and 3D flow velocities behind the stage. The obtained continuous velocity distributions in the absolute and relative coordinate systems are presented in the form of vector fields. The coordinates of the centers and the vectors of secondary vortices are determined using the results of point measurements of velocity vectors in the cross section behind the turbine stage and their subsequent interpolation. The approach to analysis of experimental data on aerodynamics of the turbine stage applied in this study allows one to find the detailed space structure of the working medium flow, including secondary coherent vortices at the root and peripheral regions of the air-gas part of the stage. The measured 3D flow parameter fields and their interpolation, on the one hand, point to possible sources of increased power losses, and, on the other hand, may serve as the basis for detailed testing of CFD models of the flow using both integral and local characteristics. The comparison of the numerical and

  7. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  8. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....

  9. Design of the LRP airfoil series using 2D CFD

    International Nuclear Information System (INIS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N; Vronsky, Tomas; Gaudern, Nicholas

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils

  10. Computational study of the effects of shroud geometric variation on turbine performance in a 1.5-stage high-loaded turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2013-10-01

    Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in turbomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution significantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into consideration during the routine of turbine design due to insufficient understanding of its impact on end wall flows and turbine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computational investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following geometry parameters were varied respectively: Inlet cavity length and exit cavity length

  11. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  12. Wind turbines and transmission systems for offshore wind projects in planning stage

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, Ander; Martin, Jose Luis; Martinez de Alegria, Inigo; Zamora, Inmaculada [University of the Basque Country (UPV/EHU), Bilbao (Spain). Engineering Faculty; Ceballos, Salvador [Parque Tecnologico de Bizkaia, Derio (Spain). Tecnalia Research and Innovation

    2012-07-01

    This paper reviews the current situation of the offshore wind turbines (OWTs) and the transmission systems (TSs) for offshore wind projects in the planning stage. Bearing in mind that offshore wind projects can last between seven and ten years from the first environmental studies to the commissioning, research engineers from companies and academia consider the solutions already available, but also to the new proposals expected to be ready in time for the project under consideration. Regarding the wind energy conversion systems (WECSs) installed in the OWTs, their main characteristics are reviewed considering turbines in the 4.1 to 10.0 MW range. Regarding the TSs, the current situation of point-to-point HVAC and HVDC links is presented, as well as some ideas related to future DC grids currently under study. (orig.)

  13. Investigation of flow in axial turbine stage without shroud-seal

    Directory of Open Access Journals (Sweden)

    Straka Petr

    2015-01-01

    Full Text Available This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the ”mixing plane” interface and the unsteady flow using the ”sliding mesh” interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a positive and b negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.

  14. Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor

    Science.gov (United States)

    Fan, L.; Yang, S. L.; Kundu, K. P.

    1996-01-01

    NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

  15. Research on design methods and aerodynamics performance of CQUDTU-B21 airfoil

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Wen, Zhong Shen

    2012-01-01

    This paper presents the design methods of CQU-DTU-B21 airfoil for wind turbine. Compared with the traditional method of inverse design, the new method is described directly by a compound objective function to balance several conflicting requirements for design wind turbine airfoils, which based...... on design theory of airfoil profiles, blade element momentum (BEM) theory and airfoil Self-Noise prediction model. And then an optimization model with the target of maximum power performance on a 2D airfoil and low noise emission of design ranges for angle of attack has been developed for designing CQU......-DTU-B21 airfoil. To validate the optimization results, the comparison of the aerodynamics performance by XFOIL and wind tunnels test respectively at Re=3×106 is made between the CQU-DTU-B21 and DU93-W-210 which is widely used in wind turbines. © (2012) Trans Tech Publications, Switzerland....

  16. Simulation of a 3D unsteady flow in an axial turbine stage

    Directory of Open Access Journals (Sweden)

    Straka Petr

    2012-04-01

    Full Text Available The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.

  17. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  18. Staged fuel and air injection in combustion systems of gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John; Berry, Jonathan Dwight

    2018-04-10

    A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section corresponding to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.

  19. Staged fuel and air injection in combustion systems of gas turbines

    Science.gov (United States)

    Hughes, Michael John; Berry, Jonathan Dwight

    2018-04-17

    A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: direct air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in a forward direction to the forward injector.

  20. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  1. Aerodynamic and Performance Behavior of a Three-Stage High Efficiency Turbine at Design and Off-Design Operating Points

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2004-01-01

    Full Text Available This article deals with the aerodynamic and performance behavior of a three-stage high pressure research turbine with 3-D curved blades at its design and off-design operating points. The research turbine configuration incorporates six rows beginning with a stator row. Interstage aerodynamic measurements were performed at three stations, namely downstream of the first rotor row, the second stator row, and the second rotor row. Interstage radial and circumferential traversing presented a detailed flow picture of the middle stage. Performance measurements were carried out within a rotational speed range of 75% to 116% of the design speed. The experimental investigations have been carried out on the recently established multi-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory, TPFL, of Texas A&M University.

  2. Airfoil design and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, T. [Stuttgart Univ. (Germany). Inst. fuer Aerodynamik und Gasdynamik

    2001-07-01

    The aerodynamic efficiency of mildly swept wings is mainly influenced by the characteristics of the airfoil sections. The specific design of airfoils is therefore one of the classical tasks of aerodynamics. Since the airfoil characteristics are directly dependent on the inviscid pressure distribution the application of inverse calculation methods is obvious. The direct numerical airfoil optimization offers an alternative to the manual design and attracts increasing interest. (orig.)

  3. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  4. Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.; He, L. [University of Durham (United Kingdom). School of Engineering; Bell, D. [ALSTOM Power Ltd., Rugby (United Kingdom)

    2006-07-01

    Conventional blade flutter prediction is normally based on an isolated blade row model, however, little is known about the influence of adjacent blade rows. In this article, an investigation is presented into the influence of the upstream stator row on the aero-elastic stability of rotor blades in the last stage of a low pressure (LP) steam turbine. The influence of the upstream blade row is computed directly by a time-marching, unsteady, Navier-Stokes flow solver in a stator-rotor coupled computational domain. The three-dimensional flutter solution is obtained, with adequate mesh resolution, in a single passage domain through application of the Fourier-Transform based Shape-Correction method. The capability of this single-passage method is examined through comparison with predictions obtained from a complete annulus model, and the results demonstrate a good level of accuracy, while achieving a speed up factor of 25. The present work shows that the upstream stator blade row can significantly change the aero-elastic behaviour of an LP steam turbine rotor. Caution is, therefore, advised when using an isolated blade row model for blade flutter prediction. The results presented also indicated that the intra-row interaction is of a strong three-dimensional nature. (author)

  5. Profile catalogue for airfoil sections based on 3D

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, Niels N.; Johansen, Jeppe

    2006-12-15

    This report is a continuation of the Wind Turbine Airfoil Catalogue which objective was, firstly to provide a database of aerodynamic characteristics for a wide range of airfoil profiles aimed at wind turbine applications, and secondly to test the two-dimensional Navier-Stokes solver EllipSys2D by comparing its results with experimental data. In the present work, the original two-dimensional results are compared with three-dimensional calculations as it was surmised that the two-dimensional assumption might be in some cases responsible for discrepancies between the numerical flow solution and the actual fluid flow, and thereby the incorrect prediction of airfoil characteristics. In addition, other features of the flow solver, such as transition and turbulence modelling, and their influence onto the numerical results are investigated. Conclusions are drawn regarding the evaluation of airfoil aerodynamic characteristics, as well as the use of the Navier-Stokes solver for fluid flow calculations in general. (au)

  6. Prediction and Analysis of the Nonsteady Transition and Separation Processes on an Oscillating Wind Turbine Airfoil using the \\gamma-Re_\\theta Transition Model.

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh

    2016-01-04

    This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.

  7. S833, S834, and S835 Airfoils: November 2001--November 2002

    Energy Technology Data Exchange (ETDEWEB)

    Somers, D. M.

    2005-08-01

    A family of quiet, thick, natural-laminar-flow airfoils, the S833, S834, and S835, for 1 - 3-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.

  8. S830, S831, and S832 Airfoils: November 2001-November 2002

    Energy Technology Data Exchange (ETDEWEB)

    Somers, D. M.

    2005-08-01

    A family of quiet, thick, natural-laminar-flow airfoils, the S830, S831, and S832, for 40 - 50-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.

  9. Separated Flow over Wind Turbines

    Science.gov (United States)

    Brown, David; Lewalle, Jacques

    2015-11-01

    The motion of the separation point on an airfoil under unsteady flow can affect its performance and longevity. Of interest is to understand and control the performance decrease in wind turbines subject to turbulent flow. We examine flow separation on an airfoil at a 19 degree angle of attack under unsteady flow conditions. We are using a DU-96-W180 airfoil of chord length 242 mm. The unsteadiness is generated by a cylinder with diameter 203 mm located 7 diameters upstream of the airfoil's leading edge. The data comes from twenty surface pressure sensors located on the top and bottom of the airfoil as well as on the upstream cylinder. Methods of analysis include Mexican hat transforms, Morlet wavelet transforms, power spectra, and various cross correlations. With this study I will explore how the differences of signals on the pressure and suction sides of an airfoil are related to the motion of the separation point.

  10. Comprehensive Structural Dynamic Analysis of the SSME/AT Fuel Pump First-Stage Turbine Blade

    Science.gov (United States)

    Brown, A. M.

    1998-01-01

    A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage Blade Outer Gas Seals (BOGS), fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.

  11. Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.

  12. Prediction of the aerodynamic performance of the Mexico rotor by using airfoil data extracted from CFD

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Xu, Haoran

    2013-01-01

    Blade Element Momentum (BEM) theory is a widely used technique for prediction of wind turbine aerodynamics performance, but the reliability of airfoil data is an important factor to improve the prediction accuracy of aerodynamic loads and power using a BEM code. The airfoil characteristics used...

  13. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    DEFF Research Database (Denmark)

    Baldacchino, D.; Manolesos, M.; Ferreira, Célia Maria Dias

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30...

  14. The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils

    Science.gov (United States)

    Miller, M.; Slew, K. Lee; Matida, E.

    2016-09-01

    With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.

  15. A CFD Analysis of Steam Flow in the Two-Stage Experimental Impulse Turbine with the Drum Rotor Arrangement

    Directory of Open Access Journals (Sweden)

    Yun Kukchol

    2016-01-01

    Full Text Available The aim of the paper is to present the CFD analysis of the steam flow in the two-stage turbine with a drum rotor and balancing slots. The balancing slot is a part of every rotor blade and it can be used in the same way as balancing holes on the classical rotor disc. The main attention is focused on the explanation of the experimental knowledge about the impact of the slot covering and uncovering on the efficiency of the individual stages and the entire turbine. The pressure and temperature fields and the mass steam flows through the shaft seals, slots and blade cascades are calculated. The impact of the balancing slots covering or uncovering on the reaction and velocity conditions in the stages is evaluated according to the pressure and temperature fields. We have also concentrated on the analysis of the seal steam flow through the balancing slots. The optimized design of the balancing slots has been suggested.

  16. Studies on water turbine runner which fish can pass through: In case of single stage axial runner

    International Nuclear Information System (INIS)

    Shimizu, Yukimari; Maeda, Takao; Nagoshi, Osamu; Ieda, Kazuma; Shinma, Hisako; Hagimoto, Michiko

    1994-01-01

    The relationship between water turbine runner design and operation and the safe passage of fish through the turbine is studied. The kinds of fish used in the tests are a dace, a sweet fish and a small salmon. A single stage axial runner is used. The velocity and pressure distributions were measured inside the turbine casing and along the casing wall. Many pictures showing fish passing through the rotating runner were taken and analyzed. The swimming speed of the fish was examined from video recordings. Fish pass through the runner more rapidly when they can determine and choose the easier path. Injury and mortality of fish are affected by the runner speed and the location of impact of the runner on the fish body

  17. Experimental study of a staged combustion system for stationary gas turbine applications

    Science.gov (United States)

    Lamont, Warren G.

    Two optically accessible experimental test rigs were designed and constructed to investigate a staged or distributed combustion system for stationary gas turbine applications. The test rigs were fuelled with natural gas and featured two combustion zones: the main combustion zone (MCZ) and the secondary combustion zone (SCZ). The MCZ is a swirl stabilized dump combustor and the SCZ, which is axially downstream from the MCZ, is formed by a transverse jet injecting a premixed fuel/air mixture into the vitiated stream. After installing and commissioning the test rig, an emission survey was conducted to investigate the SCZ conditions, equivalence ratio and momentum ratio, that produce low NOx emissions and give a higher temperature rise before a simulated high pressure turbine than firing only the MCZ. The emission survey found several operating conditions that show the benefit of combustion staging. These beneficial conditions had an SCZ equivalence ratio between 0.41 and 1.12. The data from the emission survey was then used to create an artificial neural network (ANN). The ANN used a multi-layer feed-forward network architecture and was trained with experimental data using the backpropagation training algorithm. The ANN was then used to create performance maps and optimum operational regions were sought. Lastly, optical diagnostics were used to obtain information on the nature of the SCZ reactive jet. The diagnostics included high speed CH* chemiluminescence, OH planar laser induced fluorescence (PLIF) and dual-pump coherent anti-Stokes Raman scattering (CARS). The chemiluminescence and PLIF were used to qualitatively determine the size and shape of the transverse jet reaction zone. Dual-pump CARS was used to quantitatively determine the temperature and H2/N2 concentration ratio profile at the mid-plane of the transverse jet. Dual-pump CARS data was collected for four operating conditions but only one is presented in this dissertation. For the condition presented, the

  18. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  19. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  20. Design and validation of the high performance and low noise CQU-DTU-LN1 airfoils

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Zhu, Wei Jun; Fischer, Andreas

    2014-01-01

    with the blade element momentum theory, the viscous-inviscid XFOIL code and an airfoil self-noise prediction model, an optimization algorithm has been developed for designing the high performance and low noise CQU-DTU-LN1 series of airfoils with targets of maximum power coefficient and low noise emission...... emission between the CQU-DTU-LN118 airfoil and the National Advisory Committee for Aeronautics (NACA) 64618 airfoil, which is used in modern wind turbine blades, are carried out. Copyright © 2013 John Wiley & Sons, Ltd....

  1. Prediction of unsteady airfoil flows at large angles of incidence

    Science.gov (United States)

    Cebeci, Tuncer; Jang, H. M.; Chen, H. H.

    1992-01-01

    The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.

  2. Airfoil System for Cruising Flight

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)

    2014-01-01

    An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.

  3. INFLUENCE OF AXIAL COMPRESSOR STAGE SPATIAL OPTIMIZATION ON THRUST-ECONOMICAL CHARACTERISTICS OF CARGO AIRCRAFT GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    L.G. Volyanskaya

    2005-02-01

    Full Text Available  The article considers the research results of D-27 gas turbine engine thrust-economical characteristics change due to of axial compressor flow path optimization. The applied procedure of optimization takes into account a difference in the shapes of axial compressor stage blades at rest and design mode, redistribution of kinetic energy losses along the blade height. The estimation of parameters of a gas flow in the stage flow path is made by the solution of Navier-Stokes equation complete set.

  4. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Process for resuperheating steam coming from the high-pressure stage of a turbine and device to bring into use this process

    International Nuclear Information System (INIS)

    Pacault, P.H.

    1977-01-01

    A process is described for resuperheating steam coming from the high pressure stage of a turbine fed by a steam generator, itself heated from a base thermal source. The resuperheating is done by desuperheating at least a part of the steam coming from the generator, taken from the inflow of the turbine high pressure stage, the desuperheated steam being condensed, partially at least, in a condensation exchanger forming a preliminary resuperheater [fr

  6. Unsteady Double Wake Model for the Simulation of Stalled Airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær

    2015-01-01

    In the present work, the recent developed Unsteady Double Wake Model, USDWM, is used to simulate separated flows past a wind turbine airfoil at high angles of attack. The solver is basically an unsteady two-dimensional panel method which uses the unsteady double wake technique to model flow separ...

  7. Large eddy simulations of an airfoil in turbulent inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse; Sørensen, Niels N.

    2008-01-01

    Wind turbines operate in the turbulent boundary layer of the atmosphere and due to the rotational sampling effect the blades experience a high level of turbulence [1]. In this project the effect of turbulence is investigated by large eddy simulations of the turbulent flow past a NACA 0015 airfoil...

  8. Desirable airfoil features for smaller-capacity straight-bladed VAWT

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Mazharul; Ting, D.S.-K.; Fartaj, Amir

    2007-05-15

    In the small scale wind turbine market, the simple straight-bladed Darrieus type vertical axis wind turbine (SB-VAWT) is very attractive for its simple blade design. A detailed aerodynamic performance analysis was conducted on a smaller capacity fixed-pitch SB-VAWT. Brief analyses of the main aerodynamic challenges of this type of wind turbine were first discussed and subsequently the authors conducted further literature survey and computational analysis to shortlist aerodynamic characteristics of a desirable airfoil for a self-starting and better performing SB-VAWT. The required geometric features of the desirable airfoil to achieve the short listed characteristics were also discussed. It has been found out that conventionally used NACA symmetric airfoils are not suitable for smaller capacity SB-VAWT. Rather, it is advantageous to utilize a high-lift and low-drag asymmetric thick airfoil suitable for low speed operation typically encountered by SB-VAWT. (author)

  9. The Role of Free-Stream Turbulence on High Pressure Turbine Aero-Thermal Stage Interaction

    Science.gov (United States)

    Kopriva, James Earl

    Turbulence plays an important role on the aero-thermal performance of modern aircraft engine High Pressure Turbines (HPT). The role of the vane wake and passage turbulence on the downstream blade flow field is an important consideration for both performance and durability. Obtaining measurements to fully characterize the flow field can be challenging and costly in an experimental facility. Advances in computational Fluid Dynamic (CFD) modeling and High Performance Computing (HPC) are providing opportunity to close these measurement gaps. In order for CFD to be adopted, methods need to be both accurate and efficient. Meshing approaches must also be able to resolve complex HPT geometry while maintaining quality adequate for scale-resolved simulations. Therefore, the accuracy of executing scale-resolved simulations with a second-order code on a mesh of prisms and tetrahedrals in Fluent is considered. Before execution of the HPT computational study, a building block approach is taken to gain quantified predictive performance in the modeling approach as well as understanding limitations in lower computational cost modeling approaches. The predictive capability for Reynolds Averaged Navier Stokes (RANS), Hybrid Large Eddy Simulation (LES), and wall-resolved LES turbulence modeling approaches are first assessed for a cylinder in cross-flow at a Reynolds number of 2580. The flow condition and simple geometry facilitate a quick turn-around for modeling assessment before moving the HPT vane study at high Reynolds and Mach number conditions. Modeling approaches are then assessed relative to the experimental measurements of Arts and Rouvroit (1992) on a pitch-line HPT uncooled vane at high Mach and Reynolds numbers conditions with low (0-6%) free-stream turbulence. The current unstructured second-order LES approach agrees with experimental data and is found to be within the equivalent experimental uncertainty when compared to the structured high-ordered solver FDL3DI. The

  10. System for damping vibrations in a turbine

    Science.gov (United States)

    Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis

    2015-11-24

    A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.

  11. Supercritical Airfoil Coordinates

    Data.gov (United States)

    National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...

  12. Calculations of the nozzle coefficient of discharge of wet steam turbine stages

    International Nuclear Information System (INIS)

    Jinling, Z.; Yinian, C.

    1989-01-01

    A method is presented for calculating the coefficient of discharge of wet steam turbine nozzles. The theoretical formulation of the problem is rigorously in accordance with the theory of two-phase wet steam expansion flow through steam turbine nozzles. The computational values are plotted as sets of curves in accordance with orthogonality test principles. They agree satisfactorily both with historical empirical data and the most recent experimental data obtained in the wet steam two-phase flow laboratory of Xian Jiaotong University. (author)

  13. Prediction of the Effect of Vortex Generators on Airfoil Performance

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Bak, Christian

    2014-01-01

    Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two...... different airfoils at a Reynolds number of 3 million, the FFA- W3-301 and FFA-W3-360, respectively. The computations are compared with wind tunnel measurements from the Stuttgart Laminar Wind Tunnel with respect to lift and drag variation as function of angle of attack. Even though the method does...

  14. Development of Laser Velocimetry for the Measurements of Turbulence Intensity and Flow Velocity Ahead of a NGV Row in a Full-Stage Rotating Turbine

    Science.gov (United States)

    1993-09-01

    INTRODUCTION This document represents a letter final report for the Caispan UB Research Center ( CUBRC ) contract no. F33615-85-C-2566. There have been many...was that CUBRC would design, construct, and calibrate heat-flux gage inserts for the Advanced High Work Turbine (AHWT) vane which is the next...Row in a Full-Stage Rotating Turbine (Unsolicited Proposal No. 102)" is herein incorporated by reference. The CUBRC proposal to which SECTION C refers

  15. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  16. Turbulence model comparisons for a low pressure 1.5 stage test turbine

    CSIR Research Space (South Africa)

    Dunn, Dwain I

    2009-09-01

    Full Text Available as originally tested. Thus the blade profile at the hub is the same as in the Durham cascade, but the profile at the tip differs to account for rotation. More about the Durham cascade setup and geometry can be found in Harvey et al. [25], Hartland et al... Harada. Suppression of secondary flows in turbine nozzle with controlled stacking shape and exit circulation by 3D inverse design method. ASME 99-GT-72, 1999. [18] AT Lethander, KA Thole, GA Zess, and J Wagner. Optimizing the vane-endwall junction...

  17. Cross-Validation of Numerical and Experimental Studies of Transitional Airfoil Performance

    DEFF Research Database (Denmark)

    Frere, Ariane; Hillewaert, Koen; Sarlak, Hamid

    2015-01-01

    The aerodynamic performance characteristic of airfoils are the main input for estimating wind turbine blade loading as well as annual energy production of wind farms. For transitional flow regimes these data are difficult to obtain, both experimentally as well as numerically, due to the very high...... sensitivity of the flow to perturbations, large scale separation and performance hysteresis. The objective of this work is to improve the understanding of the transitional airfoil flow performance by studying the S826 NREL airfoil at low Reynolds numbers (Re = 4:104 and 1:105) with two inherently different...

  18. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  19. Reduction of airfoil trailing edge noise by trailing edge blowing

    International Nuclear Information System (INIS)

    Gerhard, T; Carolus, T; Erbslöh, S

    2014-01-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  20. OPTIMASI AIRFOIL MENGGUNAKAN PARTICLE SWARM DENGAN PARAMETERISASI CST (CLASS SHAPE TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Eva Hertnacahyani Herraprastanti

    2017-11-01

    Full Text Available Airfoil merupakan profil penampang yang diaplikasikan pada sarana transportasi maupun pembangkit energi sebagai penampang sudu turbin. Airfoil yang dirancang diharapkan menghasilkan gaya angkat (lift maksimal namun gaya hambat (drag seminimal mungkin. Tujuan penelitian 1 Validasi aerodinamika metode panel dengan Interaksi Viskos-Tak Viskos; 2 Analisis aerodinamika airfoil untuk menentukan koefisien lift dan drag; 3 Menerapkan metode optimasi Particle Swarm Optimization untuk mendapatkan geometri airfoil dengan rasio koefisien lift dan drag maksimum (CL/CD maks. Tahap pertama menentukan profil airfoil Class Shape Transformation (CST. Airfoil akan dianalisis menggunakan metoda panel selanjutnya diterapkan model aliran singularitas source dan doublet. Solusi yang diperoleh dari metode panel merupakan kondisi aliran yang dianggap tak viskos. Apabila sudut serang cukup tinggi solusi yang diperoleh dengan pendekatan tersebut sudah tidak akurat lagi. Untuk memperbaiki hasil maka diterapkan metode interaksi viskos-tak viskos kuasi simultan. Proses ini diulang sampai konvergensi dan diperoleh koefisien lift, dan drag. Dengan menggunakan optimasi Particle Swarm Optimization (PSO akan didapat profil airfoil dengan  koefisien lift dan drag maksimum. Namun apabila prosedur optimasi belum optimal, akan dilakukan update geometri, sampai didapat konvergensi. Kesimpulan penelitian :1 Metode panel dengan interaksi viskos tak viskos memberikan hasil yang cukup baik dan akurat, dengan rata-rata kesalahan dibawah 9.5%;  2 Semakin besar bilangan Reynold maka nilai CL/CD maksimum akan semakin tinggi; 3 Ketebalan (thickness dan camber maksimum cenderung meningkat dengan peningkatan bilangan Reynold; 4 Untuk airfoil CST optimasi dengan PSO memberikan hasil yang lebih baik.

  1. Some practical issues in the computational design of airfoils for the helicopter main rotor blades

    Directory of Open Access Journals (Sweden)

    Kostić Ivan

    2004-01-01

    Full Text Available Very important requirement for the helicopter rotor airfoils is zero, or nearly zero moment coefficient about the aerodynamic center. Unlike the old technologies used for metal blades, modern production involving application of plastic composites has imposed the necessity of adding a flat tab extension to the blade trailing edge, thus changing the original airfoil shape. Using computer program TRANPRO, the author has developed and verified an algorithm for numerical analysis in this design stage, applied it on asymmetrical reflex camber airfoils, determined the influence of angular tab positioning on the moment coefficient value and redesigned some existing airfoils to include properly positioned tabs that satisfy very low moment coefficient requirement. .

  2. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    Science.gov (United States)

    Garcia-Crespo, Andres

    2014-06-03

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  3. Gas turbine bucket with impingement cooled platform

    Science.gov (United States)

    Jones, Raphael Durand

    2002-01-01

    In a turbine bucket having an airfoil portion and a root portion, with a substantially planar platform at an interface between the airfoil portion and root portion, a platform cooling arrangement including at least one bore in the root portion and at least one impingement cooling tube seated in the bore, the tube extending beyond the bore with an outlet in close proximity to a targeted area on an underside of the platform.

  4. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    Science.gov (United States)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  5. Determination of blade-to-coolant heat-transfer coefficients on a forced-convection, water-cooled, single-stage turbine

    Science.gov (United States)

    Freche, John C; Schum, Eugene F

    1951-01-01

    Blade-to-coolant convective heat-transfer coefficients were obtained on a forced-convection water-cooled single-stage turbine over a large laminar flow range and over a portion of the transition range between laminar and turbulent flow. The convective coefficients were correlated by the general relation for forced-convection heat transfer with laminar flow. Natural-convection heat transfer was negligible for this turbine over the Grashof number range investigated. Comparison of turbine data with stationary tube data for the laminar flow of heated liquids showed good agreement. Calculated average midspan blade temperatures using theoretical gas-to-blade coefficients and blade-to-coolant coefficients from stationary-tube data resulted in close agreement with experimental data.

  6. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bons, Jeffrey [The Ohio State Univ., Columbus, OH (United States); Ameri, Ali [The Ohio State Univ., Columbus, OH (United States)

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. These studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling

  7. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    Science.gov (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  8. Self-induced vibrations of a DU96-W-180 airfoil in stall

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.

    2014-01-01

    This work presents an analysis of two-dimensional (2D) and three-dimensional (3D) non-moving, prescribed motion and elastically mounted airfoil computational fluid dynamics (CFD) computations. The elastically mounted airfoil computations were performed by means of a 2D structural model with two...... degrees of freedom. The computations aimed at investigating the mechanisms of both vortex-induced and stall-induced vibrations related to a wind turbine blade at standstill conditions. In this work, a DU96-W-180 airfoil was used in the angle-of-attack region potentially corresponding to stallinduced...... vibrations. The analysis showed significant differences between the aerodynamic stability limits predicted by 2D and 3D CFD computations. A general agreement was reached between the prescribed motion and elastically mounted airfoil computations. 3D computations indicated that vortex-induced vibrations...

  9. Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac; Heinz, Joachim Christian

    2013-01-01

    The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs...... from the flat plate one. The indicial lift response of finite‐thickness airfoils is simulated with a panel code, and an empirical relation is outlined connecting the airfoil indicial response to its geometric characteristics. The effects of different indicial approximations are evaluated on a 2D...... of equivalent fatigue loads, ultimate loads, and stability limits. The agreement with CFD computations of a 2D profile in harmonic motion is improved by the indicial function accounting for the finite‐thickness of the airfoil. Concerning the full wind turbine aeroelastic behavior, the differences between...

  10. An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers

    Science.gov (United States)

    Uzodinma, Jaylon; Macphee, David

    2017-11-01

    This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.

  11. Causes and means of prevention of erosion of exit edges of drive vanes in final stages of K-300-240 turbine

    Science.gov (United States)

    Orlik, V. G.; Reznik, L. B.

    1984-02-01

    A method, instruments and devices were developed and model and field studies were performed of the flow of steam and moisture downstream from the last stage of a K-300-240 turbine in the vicinity of the vertical separating rib. The quantity of moisture flowing toward the drive wheel of the last stage over the inner cone of the exhaust tube was measured, and found to decrease with increasing temperature, disappearing at 140 C. When the turbine is loaded, moisture appears on the cone at approximately 60 MW, reaching 60 kg/hr at nominal mode and increasing with decreasing steam superheating temperature, to 80 kg/hr at 60 MW and 365 C. The steam receiving section of the condenser was found to be overloaded since the cross section of its drains was not designed to receive steam with excess moisture content. Excessive twisting of the steam flow beyond the last stage in the direction of rotation was experimentally determined. The quantity of erosion-dangerous moisture downstream from the last stage depends on the temperature difference between turbine exhaust and the machine room in which it is located.

  12. Three-Dimensional Unsteady Simulation of Aerodynamics and Heat Transfer in a Modern High Pressure Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali

    2009-01-01

    Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  13. Experimental Investigation of a Passively Deforming Airfoil Under Dynamic Flow Conditions

    OpenAIRE

    Cordes, Ulrike

    2016-01-01

    A rigid and a passively deforming airfoil, designed to alleviate fatigue causing load fluctuations that appear during normal operation of wind turbines, is investigated under unsteady conditions in two dimensional wind tunnel experiments. In a first series of experiments, a vertical gust encounter is generated by means of an active grid. This approximates the wind turbine blade’s passage through the atmospheric boundary layer and corresponds to the theoretical formulation of the Sears problem...

  14. Numerical study of unsteady viscous flow past oscillating airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yan; Yuan Xin [Tsinghua Univ., Dept. of Thermal Engineering, Beijing (China)

    2001-07-01

    Accurate simulation of the dynamic stall of an oscillating airfoil is of major importance to wing and wind turbine blade design. However, dynamic stall is complicated and influenced by many factors, such as geometry shape of the airfoil, reduced frequency, etc. The difficulties of simulation are both mathematical (numerical method) and physical (turbulence model). The present paper has introduced a new numerical method (new LU-type scheme and fourth-order higher resolution MUSCL TVD scheme) and q-{omega} turbulence modelling to calculate the unsteady flowfields of an oscillating NACA0015 airfoil. The test targets include attached flow, light-stall and deep-stall of the airfoil. The calculated results for attached flow and light-stall are in good agreement with those of experiments. The calculated results for deep-stall also show improvement, especially during the downstroke of the oscillation. However, there is still a significant difference between the results of calculation and experiment in the hysteresis curves of the drag coefficient. One reason is that the q-{omega} turbulence model still has limitations. Another is that the drag coefficient is difficult to measure and the experiments are not reliable. (Author)

  15. Numerical Investigation on the Influence of Hot Streak Temperature Ratio in a High-Pressure Stage of Vaneless Counter-Rotating Turbine

    Directory of Open Access Journals (Sweden)

    Zhao Qingjun

    2007-01-01

    Full Text Available The results of recent studies have shown that combustor exit temperature distortion can cause excessive heat load of high-pressure turbine (HPT rotor blades. The heating of HPT rotor blades can lead to thermal fatigue and degrade turbine performance. In order to explore the influence of hot streak temperature ratio on the temperature distributions of HPT airfoil surface, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed in a vaneless counter-rotating turbine (VCRT. The hot streak temperature ratios from 1.0 (without hot streak to 2.4 were used in these numerical simulations, including 1.0, 1.2, 1.6, 2.0, and 2.4 temperature ratios. The hot streak is circular in shape with a diameter equal to 25% of the span. The center of the hot streak is located at 50% of span and 0% of pitch (the leading edge of the HPT stator vane. The predicted results show that the hot streak is relatively unaffected as it migrates through the HPT stator. The hot streak mixes with the vane wake and convects towards the pressure surface (PS of the HPT rotor when it moves over the vane surface of the HPT stator. The heat load of the HPT rotor increases with the increase of the hot streak temperature ratio. The existence of the inlet temperature distortion induces a thin layer of cooler air in the HPT rotor, which separates the PS of the HPT rotor from the hotter fluid. The numerical results also indicating the migration characteristics of the hot streak in the HPT rotor are predominated by the combined effects of secondary flow and buoyancy. The combined effects that induce the high-temperature fluid migrate towards the hub on the HPT rotor. The effect of the secondary flow on the hotter fluid increases as the hot streak temperature ratio is increased. The influence of buoyancy is directly proportional to the hot streak temperature ratio. The predicted results show that the increase of the hot streak temperature ratio trends to increase

  16. Analysis of improved and original designs of a 16 inch long penultimate stage turbine blade

    International Nuclear Information System (INIS)

    Carnero, A.; Kubiak, J.A.; Mendez, R.

    1994-01-01

    A finite element analysis of 16 inch long penultimate stage (L-1) blade was carried out to evaluate the improved and the original designs. The original design of the blade involved the ''blade-tenon-shroud'' system to make blade groups (6 blades per group). The improved design applied the concept of Integral Shroud Blade (ISB). Thus all the blades made a 360 degree group. The paper presents an application of the finite element analysis method to compute the natural frequencies, steady-state and alternating stresses, deformation due to forces acting on the blades and modal shapes of the blade group. In the case of the improved design it was also necessary to carry out computation of the dynamic response of a 360 degree blade-disk arc. This was to include the effect of the flexible disk fastening where blade and disk interaction were important to identify certain resonant conditions. It was concluded from the finite element results, that the steady-state stresses in the improved blade were lower, and the tangential mode shapes were eliminated. This was a great advantage since in the original design the first tangential mode shape and the higher steady-state stresses in the tenon contributed to the frequent failure of the ''blade-tenon-shroud'' system

  17. Experimental parameter study for passive vortex generators on a 30% thick airfoil

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; De Tavernier, D.A.M.; Timmer, W.A.; van Bussel, G.J.W.

    2018-01-01

    Passive vane-type vortex generators (VGs) are commonly used on wind turbine blades to mitigate the effects of flow separation. However, significant uncertainty surrounds VG design guidelines. Understanding the influence of VG parameters on airfoil performance requires a systematic approach

  18. Numerical Analysis of the Three-Dimensional Nonstationary Flow of Ideal Gas in the Last Stage of Turbine Machine Taking into Consideration the Nonaxisymmetric Exhaust Pipe Branch

    OpenAIRE

    Kolodyazhnaya, Lyubov Vladimirovna; Rzadkowski, Romuald; Gnesin, Vitaly Isaevich

    2016-01-01

    A problem related to the forecast of the aeroelastic behavior and aeroelastic instability of blades (in particular self-oscillations, flutter, and resonance vibrations) becomes of great importance for the development of high-loaded compressor and vent rows and the last turbine stages whose long and flexible blades can be exposed to such phenomena. The solution of this problem requires the development of new models for the nonstationary three-dimensional flow, the use of contemporary numeric m...

  19. Energy efficient engine high pressure turbine test hardware detailed design report

    Science.gov (United States)

    Halila, E. E.; Lenahan, D. T.; Thomas, T. T.

    1982-01-01

    The high pressure turbine configuration for the Energy Efficient Engine is built around a two-stage design system. Moderate aerodynamic loading for both stages is used to achieve the high level of turbine efficiency. Flowpath components are designed for 18,000 hours of life, while the static and rotating structures are designed for 36,000 hours of engine operation. Both stages of turbine blades and vanes are air-cooled incorporating advanced state of the art in cooling technology. Direct solidification (DS) alloys are used for blades and one stage of vanes, and an oxide dispersion system (ODS) alloy is used for the Stage 1 nozzle airfoils. Ceramic shrouds are used as the material composition for the Stage 1 shroud. An active clearance control (ACC) system is used to control the blade tip to shroud clearances for both stages. Fan air is used to impinge on the shroud casing support rings, thereby controlling the growth rate of the shroud. This procedure allows close clearance control while minimizing blade tip to shroud rubs.

  20. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  1. Influences of surface temperature on a low camber airfoil aerodynamic performances

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2016-03-01

    Full Text Available The current note refers to the comparison between a NACA 2510 airfoil with adiabatic walls and the same airfoil with heated patches. Both suction and pressure sides were divided into two regions covering the leading edge (L.E. and trailing edge (T.E.. A RANS method sensitivity test has been performed in the preliminary stage while for the extended 3D cases a DES-SST approach was used. Results indicate that surface temperature distribution influences the aerodynamics of the airfoil, in particular the viscous drag component but also the lift of the airfoil. Moreover, the influence depends not only on the surface temperature but also on the positioning of the heated surfaces, particularly in the case of pressure lift and drag. Further work will be needed to optimize the temperature distribution for airfoil with higher camber.

  2. A strong viscous–inviscid interaction model for rotating airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2014-01-01

    Two-dimensional (2D) and quasi-three dimensional (3D), steady and unsteady, viscous–inviscid interactive codes capable of predicting the aerodynamic behavior of wind turbine airfoils are presented. The model is based on a viscous–inviscid interaction technique using strong coupling between...... a boundary-layer trip or computed using an en envelope transition method. Validation of the incompressible 2D version of the code is carried out against measurements and other numerical codes for different airfoil geometries at various Reynolds numbers, ranging from 0.9 ⋅ 106 to 8.2 ⋅ 106. In the quasi-3D...... version, a parametric study on rotational effects induced by the Coriolis and centrifugal forces in the boundary-layer equations shows that the effects of rotation are to decrease the growth of the boundary-layer and delay the onset of separation, hence increasing the lift coefficient slightly while...

  3. Prediction of the Effect of Vortex Generators on Airfoil Performance

    International Nuclear Information System (INIS)

    Sørensen, Niels N; Zahle, F; Bak, C; Vronsky, T

    2014-01-01

    Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two different airfoils at a Reynolds number of 3 million, the FFA- W3-301 and FFA-W3-360, respectively. The computations are compared with wind tunnel measurements from the Stuttgart Laminar Wind Tunnel with respect to lift and drag variation as function of angle of attack. Even though the method does not exactly capture the measured performance, it can be used to compare different VG setups qualitatively with respect to chord- wise position, inter and intra-spacing and inclination of the VGs already in the design phase

  4. Integration of Airfoil Design during the design of new blades

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, L.; Bottasso, L.; Croce, A. [Politecnico di Milano, Milan (Italy); Grasso, F. [ECN Wind Power, Petten (Netherlands)

    2013-09-15

    Despite the fact that the design of a new blade is a multidisciplinary task, often the different disciplines are combined together at later stage. Looking at the aerodynamic design, it is common practice design/select the airfoils first and then design the blade in terms of chord and twist based on the initial selection of the airfoils. Although this approach is quite diffused, it limits the potentialities of obtaining optimal performance. The present work is focused on investigating the benefits of designing the external shape of the blade including the airfoil shapes together with chord and twist. To accomplish this, a design approach has been developed, where an advanced gradient based optimization algorithm is able to control the shape of the blade. The airfoils described in the work are the NACA 4 digits, while the chord distribution and the twist distribution are described through Bezier curves. In this way, the complexity of the problem is limited while a versatile geometrical description is kept. After the details of the optimization scheme are illustrated, several numerical examples are shown, demonstrating the advantages in terms of performance and development time of integrating the design of the airfoils during the optimization of the blade.

  5. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  6. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  7. Pitching Airfoil Boundary Layer Investigations

    OpenAIRE

    Raffel, Markus; Richard, Hugues; Richter, Kai; Bosbach, Johannes; Geißler, Wolfgang

    2006-01-01

    The present paper describes an experiment performed in a transonic wind tunnel facility where a new test section has been developed especially for the investigation of the unsteady flow above oscillating airfoils under dynamic stall conditions. Dynamic stall is characterized by the development, movement and shedding of one or more concentrated vortices on the airfoils upper surface. The hysteresis loops of lift-, drag- and pitching moment are highly influenced by these vortices. To understand...

  8. Aerodynamics of S809 Airfoil at Low and Transitional Reynolds Numbers

    Science.gov (United States)

    Carreras, Jaime J.; Laal-Dehghani, Nader; Gorumlu, Serdar; Mehdi, Faraz; Castillo, Luciano; Aksak, Burak; Sheng, Jian

    2013-11-01

    The S809 is a thick airfoil extensively used in wind turbine design applications and model studies in wind tunnel. With increased interests in reducing energy production cost and understanding turbulence and turbine interactions, scaled down models (Re ~103) are often used as an alternative to full scale field experimentation (Re >106). This Reynolds number discrepancy raises the issue of scaling for the airfoil performance from laboratory studies to field scale applications. To the best of our knowledge, there are no studies existing in literature to characterize the lift- and drag-coefficients of S809 airfoil at Re less than 3 ×105 . This study is to fill the deficit in the current state of knowledge by performing high resolution force measurements. The lift and drag measurements are carried out in Texas Tech Wind Tunnel Facility using an in-house developed dual-cell force balance. The configuration eliminates the large torque and torsion often accompanied by conventional mounts. This unique design allows us to reach a measurement accuracy of 0.02N (0.1%). Comparative studies are performed on a two-dimensional airfoil with a smooth- as well as a well-engineered surface covered by micro-pillar array to simulate the surface conditions of a real life airfoil.

  9. VISUALISASI DISTRIBUSI TEKANAN PADA AIRFOIL JOUKOWSKY

    Directory of Open Access Journals (Sweden)

    Eddy Maryonoto

    2009-02-01

    Full Text Available The goal of this research is to develop a computer based system that can beused to visualize pressure distribution on the Joukowsky's airfoil and streamlinespattern around the airfoil. The pressure on the airfoil is calculdted usingformulasderived from potensial theory. Visualization of pressure distribution implementedby using color gradation technique and coded b.v using Borland Delphi 6programming language. The result of the test shotus lhat lhe system has performedperfectly. Pressure dislribution on some kinds of JoukowslE's airfoil shapes andstresmlines pattern around the airfoils can be presenled and seen clearly byusing this visualization system, where the paltern of the pressure distribution onthe airfoil marked by color gradation.

  10. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  11. Fluidic load control for wind turbines blades

    NARCIS (Netherlands)

    Boeije, C.S.; Vries, de H.; Cleine, I.; Emden, van E.; Zwart, G.G.M.; Stobbe, H.; Hirschberg, A.; Hoeijmakers, H.W.M.; Maureen Hand, xx

    2009-01-01

    This paper describes the initial steps into the investigation of the possibility of reducing fatigue loads on wind turbine blades by the application of fluidic jets. This investigation involves static pressure measurements as well as numerical simulations for a non-rotating NACA-0018 airfoil. The

  12. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...

  13. Defining the Field of Existence of Shrouded Blades in High-Speed Gas Turbines

    Science.gov (United States)

    Belousov, Anatoliy I.; Nazdrachev, Sergeiy V.

    2018-01-01

    This work provides a method for determining the region of existence of banded blades of gas turbines for aircraft engines based on the analytical evaluation of tensile stresses in specific characteristic sections of the blade. This region is determined by the set of values of the parameter, which forms the law of distribution of the cross-sectional area of the cross-sections along the height of the airfoil. When seven independent parameters (gas-dynamic, structural and strength) are changed, the choice of the best option is proposed at the early design stage. As an example, the influence of the dimension of a turbine on the domain of the existence of banded blades is shown.

  14. Numerical simulation of the unsteady and turbulent flow in a high-pressure turbine stage; Simulation numerique de l'ecoulement instationnaire et turbulent dans un etage de turbine haute pression

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, G.

    2004-09-15

    The aim of this study concerns the use of numerical methods for the resolution of the Reynolds Averaged Navier Stokes equations adapted to the simulation of the cooling of the trailing edge of a stator in a high pressure turbine. These methods, based on the elsA solver developed at ONERA, use a four steps Runge Kutta time discretization scheme and a Jameson centered space discretization scheme. The scheme is applied through a finite volume approach on control volume centered on the cells of a multi-block structured mesh. Turbulence is simulated either through the algebraic Michel model, or through the one-transport-equation Spalart-Allmaras model, or through the two-transport-equations k 1, k {omega} and k {epsilon} models, and through ASM model. A simulation of the flow in a bidimensional stator, without cooling, is carried out. The cooling, which is realized with trailing edge slots, is then simulated on a bidimensional stator. Because the slot is represented by meshes overlapping the mesh of the smooth blade, the Chimera method is chosen. This method makes it possible computations with overlapping meshes. The comparison with the experimental data, on these two first computations has validated this strategy to represent such slots. The tridimensional simulation of a single stator with taking account of the cooling is then realized. It showed the complex and tridimensional aspects of the main flow with focus on the influence of the cooling system. Finally two steady computations, without and with cooling, and an unsteady computation without cooling are carried out on a high pressure turbine stage. The comparison with the experimental data obtained in the frame of the European Brite-Euram program is made. These results make it possible to determine the effect of the cooling on the flow in a turbine stage. (authors)

  15. Investigation of flow past a translatoric oscillating airfoil using detached eddy simulation

    DEFF Research Database (Denmark)

    Reck, Mads; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2003-01-01

    Wind turbine rotor blades in operation have been observed to undergo stall-induced lead-lag instabilities resulting in dramatic reduction of blade life, due to structural fatigue. Previous attempts to numerically simulate the flow past a translatoric oscillating airfoil have been few and feeble...... at the high angle of attacks often experienced by the individual rotor blade. The present paper covers simulation of a translatoric oscillating NACA 0015 airfoil at a Reynolds number of 555,000, corresponding to avialable experimental data, using the newly adopted Detached Eddy Simulation (DES) approach...

  16. Numerical study of the static and pitching RISØ-B1-18 airfoil

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2004-01-01

    The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISØ-B1-18 airfoil which was equippedand measured in an open jet wind tunnel...... that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the maincharacteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can...

  17. Gap flow in axial turbines. Effects on the flow patterns in the final turbine stage and inside the diffusor. Final report

    International Nuclear Information System (INIS)

    Krueckels, J.

    1996-01-01

    A 3D Navier-Stokes method was modified for discretisation of the gap between the tip of the rotor blade and the casing wall by an additional grid block. Flow calculations were carried out using a zoned approach in which the Navier-Stokes equations are solved only in the gap flow region inside the rotor while the Eulerian equations are solved in the other regions, thus reducing the calculation time. The results are compared with experimental data. The interdependence between turbine and diffusor is taken into account so that the pressure distribution at the rotor outlet will be modelled correctly. The distribution of static pressure at the diffusor outlet must be available as an input variable in this method [de

  18. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc....

  19. Characterization of Oscillatory Lift in MFC Airfoils

    OpenAIRE

    Lang Jr, Joseph Reagle

    2014-01-01

    The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component du...

  20. Characterisation of a refurbished 1½ stage turbine test rig for flowfield mapping behind blading with non-axisymmetric contoured endwalls

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2007-09-01

    Full Text Available such that they should provide for a 5° rotor blade incidence change either side of the design point at the hub. Figures 11 to 13 give the results of this first series of tests. Once again the power output is below the design point by some 24% and the stage... are captured in figures 14 to 16. Once again the results indicate similar disparities between design and actual results as well as between annular and contoured turbine designs as the first technique. Finally all the results are collated into two...

  1. Airfoil optimization for morphing aircraft

    Science.gov (United States)

    Namgoong, Howoong

    Continuous variation of the aircraft wing shape to improve aerodynamic performance over a wide range of flight conditions is one of the objectives of morphing aircraft design efforts. This is being pursued because of the development of new materials and actuation systems that might allow this shape change. The main purpose of this research is to establish appropriate problem formulations and optimization strategies to design an airfoil for morphing aircraft that include the energy required for shape change. A morphing aircraft can deform its wing shape, so the aircraft wing has different optimum shapes as the flight condition changes. The actuation energy needed for moving the airfoil surface is modeled and used as another design objective. Several multi-objective approaches are applied to a low-speed, incompressible flow problem and to a problem involving low-speed and transonic flow. The resulting solutions provide the best tradeoff between low drag, high energy and higher drag, low energy sets of airfoil shapes. From this range of solutions, design decisions can be made about how much energy is needed to achieve a desired aerodynamic performance. Additionally, an approach to model aerodynamic work, which would be more realistic and may allow using pressure on the airfoil to assist a morphing shape change, was formulated and used as part of the energy objective. These results suggest that it may be possible to design a morphing airfoil that exploits the airflow to reduce actuator energy.

  2. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Heating Technology Research and Development Center, Beijing District Heating Group, Beijing 100028 (China); Zhang, Lishen, E-mail: lishenzhang@sina.com [Heating Technology Research and Development Center, Beijing District Heating Group, Beijing 100028 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jufeng, E-mail: lijufeng.net@163.com [Nuclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082 (China); Zhang, Hang, E-mail: zhanghang@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhigang, E-mail: zgliu9322@163.com [Energy Research Institute of Shandong Academy of Sciences, Jinan, Shandong 250014 (China)

    2017-04-15

    Highlights: • Pressure drop of NACA 0020 airfoil fin PCHE reduces strikingly in comparison with the zigzag PCHE. • Pressure drop of NACA 00XX airfoil fin PCHE decreases as airfoil thickness increases. • Heat transfer performance of NACA 00XX airfoil fin PCHE increases as airfoil thickness rises. • Comprehensive performance of NACA 00XX airfoil fin PCHE degrades as airfoil thickness increases. - Abstract: Printed circuit heat exchanger (PCHE) can be used in supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle. The present study compares NACA 0020 airfoil fin PCHE with conventional zigzag PCHE by numerical analysis. Pressure drop of the former has a striking reduction while maintaining excellent heat transfer performance. Comparison on four NACA 00XX series airfoil fin PCHEs is performed to investigate the influence of airfoil profile on flow and heat transfer performance. With a fixed vertical pitch, heat transfer performance of NACA series airfoil fin PCHE increases as airfoil thickness increases. However, comprehensive performance, in which both flow and heat transfer are taken into account, degrades with increasing airfoil thickness. Among four NACA airfoil fin PCHEs presented in this paper, NACA 0010 airfoil fin PCHE demonstrates the best comprehensive performance.

  3. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil

    International Nuclear Information System (INIS)

    Chen, Fei; Zhang, Lishen; Huai, Xiulan; Li, Jufeng; Zhang, Hang; Liu, Zhigang

    2017-01-01

    Highlights: • Pressure drop of NACA 0020 airfoil fin PCHE reduces strikingly in comparison with the zigzag PCHE. • Pressure drop of NACA 00XX airfoil fin PCHE decreases as airfoil thickness increases. • Heat transfer performance of NACA 00XX airfoil fin PCHE increases as airfoil thickness rises. • Comprehensive performance of NACA 00XX airfoil fin PCHE degrades as airfoil thickness increases. - Abstract: Printed circuit heat exchanger (PCHE) can be used in supercritical carbon dioxide (S-CO_2) Brayton cycle. The present study compares NACA 0020 airfoil fin PCHE with conventional zigzag PCHE by numerical analysis. Pressure drop of the former has a striking reduction while maintaining excellent heat transfer performance. Comparison on four NACA 00XX series airfoil fin PCHEs is performed to investigate the influence of airfoil profile on flow and heat transfer performance. With a fixed vertical pitch, heat transfer performance of NACA series airfoil fin PCHE increases as airfoil thickness increases. However, comprehensive performance, in which both flow and heat transfer are taken into account, degrades with increasing airfoil thickness. Among four NACA airfoil fin PCHEs presented in this paper, NACA 0010 airfoil fin PCHE demonstrates the best comprehensive performance.

  4. Multi-life-stage monitoring system based on fibre bragg grating sensors for more reliable wind turbine rotor blades: Experimental and numerical analysis of deformation and failure in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira

    , design and optimisation of offshore wind turbines. The MareWint main scientific objective is to optimise the design of offshore wind turbines, maximise reliability, and minimise maintenance costs. Integrated within the innovative rotor blades work-package, this PhD project is focused on damage analysis...... are used to improve the design process, and the implemented sensor are used to control the manufacturing and operation stage of a wind turbine rotor blade. The FBG sensors measurement principle is analysed from a multi-life-stage (design, material testing, manufacturing, and operation) perspective......, and supported/validated by numerical models, software tools, signal post-processing, and experimental validation. The damage in the wind turbine rotor blade is analysed from a material perspective (fibre reinforced polymers) and used as a design property, meaning that damage is accepted in an operational wind...

  5. Summary of the Blind Test Campaign to predict the High Reynolds number performance of DU00-W-210 airfoil

    DEFF Research Database (Denmark)

    Yilmaz, Özlem Ceyhan; Pires, Oscar; Munduate, Xabier

    2017-01-01

    This paper summarizes the results of a blind test campaign organized in the AVATAR project to predict the high Reynolds number performance of a wind turbine airfoil for wind turbine applications. The DU00-W-210 airfoil was tested in the DNW-HDG pressurized wind tunnel in order to investigate...... the flow at high Reynolds number range from 3 to 15 million which is the operating condition of the future large 10MW+ offshore wind turbine rotors. The results of the experiment was used in a blind test campaign to test the prediction capability of the CFD tools used in the wind turbine rotor simulations....... As a result of the blind test campaign it was found that although the codes are in general capable of predicting increased max lift and decreased minimum drag with Re number, the Re trend predictions in particular the glide ratio (lift over drag) need further improvement. In addition to that, the significant...

  6. Advanced Airfoils Boost Helicopter Performance

    Science.gov (United States)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  7. 2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers

    International Nuclear Information System (INIS)

    Cakmakcioglu, S C; Sert, I O; Tugluk, O; Sezer-Uzol, N

    2014-01-01

    In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Re θ ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost

  8. Airfoil design: Finding the balance between design lift and structural stiffness

    DEFF Research Database (Denmark)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup......, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared...... to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were...

  9. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    International Nuclear Information System (INIS)

    Baldacchino, D; Ferreira, C; Florentie, L; Timmer, N; Van Zuijlen, A; Manolesos, M; Chaviaropoulos, T; Diakakis, K; Papadakis, G; Voutsinas, S; González Salcedo, Á; Aparicio, M; García, N R.; Sørensen, N N.; Troldborg, N

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30% thick DU97W300 and an 18% thick NTUA T18 have been used for benchmarking several simulation tools. These tools span low-to-high complexity, ranging from engineering-level integral boundary layer tools to fully-resolved computational fluid dynamics codes. Results indicate that with appropriate calibration, engineering-type tools can capture the effects of vortex generators and outperform more complex tools. Fully resolved CFD comes at a much higher computational cost and does not necessarily capture the increased lift due to the VGs. However, in lieu of the limited experimental data available for calibration, high fidelity tools are still required for assessing the effect of vortex generators on airfoil performance. (paper)

  10. Gas turbine

    International Nuclear Information System (INIS)

    Yang, Ok Ryong

    2004-01-01

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  11. 2D CFD Airfoil Analysis

    Science.gov (United States)

    Babb, Grace

    2017-11-01

    This work aims to produce a higher fidelity model of the blades for NASA's X-57 all electric propeller driven experimental aircraft. This model will, in turn, allow for more accurate calculations of the thrust each propeller can generate. This work uses computational fluid dynamics (CFD) to first analyze the propeller blades as a series of 11 differently shaped airfoils and calculate, among other things, the coefficients for lift and drag associated with each airfoil at different angles of attack. OpenFOAM-a C + + library that can be used to create series of applications for pre-processing, solving, and post-processing-is one of the primary tools utilized in these calculations. By comparing the data OpenFOAM generates about the NACA 23012 airfoil with existing experimental data about the NACA 23012 airfoil, the reliability of our model is measured and verified. A trustworthy model can then be used to generate more data and sent to NASA to aid in the design of the actual aircraft.

  12. Inverse airfoil design method for low-speed straight-bladed Darrieus-type VAWT applications

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, F. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Paraschivoiu, I.; Trifu, O. [Ecole Polytechnique, Montreal, PQ (Canada); Hess, M.; Gabrys, C. [Mariah Power Inc., Reno, NV (United States)

    2008-07-01

    Inverse airfoil design of a low-speed straight-bladed Darrieus-type vertical axis wind turbine (VAWT) can help improve aerodynamic performance and power output by eliminating undesirable flow field characteristics at very low Reynolds number. This study used an interactive inverse airfoil design method (PROFOIL) that allows specification of velocity and boundary-layer characteristics over different segments of the airfoil subject to constraints on the geometry (closure) and the flow field (far field boundary). Additional constraints were also considered to address pitching moment coefficient, thickness and the power output for a given tip-speed ratio. Performance analyses of the airfoil and the VAWT were carried out using state-of-the-art analyses codes XFOIL and CARDAAV, respectively. XFOIL is a panel method with a coupled boundary-layer scheme and is used to obtain the aerodynamic characteristics of resulting airfoil shapes. The final airfoil geometry is obtained through a multi-dimensional Newton iteration. The study showed that the strength of the method lies in the inverse design methodology whereas its weaknesses is in reliably predicting aerodynamic characteristics of airfoils at low Reynolds numbers and high angles of attack. A 10-15 per cent increase in the relative performance of the VAWT was achieved with this method. Although the results of the study showed that the method has great application potential for VAWTs in general, there is much room for improvement in flow analysis capabilities for low Re flows in reliably predicting post-stall aerodynamic characteristics. In the absence of such analysis capabilities, the authors suggested that the results should be viewed qualitatively and not quantitatively. 36 refs., 1 tab., 4 figs.

  13. Airfoil design: Finding the balance between design lift and structural stiffness

    International Nuclear Information System (INIS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown

  14. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  15. Thermal barrier coatings issues in advanced land-based gas turbines

    Science.gov (United States)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  16. Theory and Low-Order Modeling of Unsteady Airfoil Flows

    Science.gov (United States)

    Ramesh, Kiran

    Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It

  17. Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines

    International Nuclear Information System (INIS)

    Kim, Joung Seok; Lee, Wu Sang; Ryu, Je Wook

    2013-01-01

    This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Docosan Heavy Industries. The design procedure mainly consists of three parts: namely, flow path design, airfoil design, and 3a performance calculation. To design the optimized flow path, through flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and had angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2a airfoil planar sections are designed carefully, followed by 2a B2 NS calculations. The designed planar sections are stacked along the span wise direction, leading to a 3a surfaced airfoil shape. To consider the 3a effect on turbine performance, 3a multistage Euler calculation, single row, and multistage NS calculations are performed

  18. Unsteady Aerodynamics of Deformable Thin Airfoils

    OpenAIRE

    Walker, William Paul

    2009-01-01

    Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...

  19. VISUALISASI DISTRIBUSI TEKANAN PADA AIRFOIL JOUKOWSKY

    OpenAIRE

    Eddy Maryonoto

    2009-01-01

    The goal of this research is to develop a computer based system that can beused to visualize pressure distribution on the Joukowsky's airfoil and streamlinespattern around the airfoil. The pressure on the airfoil is calculdted usingformulasderived from potensial theory. Visualization of pressure distribution implementedby using color gradation technique and coded b.v using Borland Delphi 6programming language. The result of the test shotus lhat lhe system has performedperfectly. Pressure disl...

  20. Acoustics of a Mixed Porosity Felt Airfoil

    Science.gov (United States)

    2016-06-06

    NUWC-NPT Technical Report 12,212 6 June 2016 Acoustics of a Mixed Porosity Felt Airfoil Aren M. Hellum Undersea Warfare Weapons...Felt Airfoil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Aren M. Hellum 5.d PROJECT NUMBER 5e...existing literature. Geyer et al. [5] measured a sound reduction of 5 to 15 dB for airfoils made entirely of porous material. A 1973 patent

  1. Aerodynamic Performance of a NREL S809 Airfoil in an Air-Sand Particle Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Dimitra C. Douvi

    2017-02-01

    Full Text Available This paper opens up a new perspective on the aerodynamic performance of a wind turbine airfoil. More specifically, the paper deals with a steady, incompressible two-phase flow, consisting of air and two different concentrations of sand particles, over an airfoil from the National Renewable Energy Laboratory, NREL S809. The numerical simulations were performed on turbulence models for aerodynamic operations using commercial computational fluid dynamics (CFD code. The computational results obtained for the aerodynamic performance of an S809 airfoil at various angles of attack operating at Reynolds numbers of Re = 1 × 106 and Re = 2 × 106 in a dry, dusty environment were compared with existing experimental data on air flow over an S809 airfoil from reliable sources. Notably, a structured mesh consisting of 80,000 cells had already been identified as the most appropriate for numerical simulations. Finally, it was concluded that sand concentration significantly affected the aerodynamic performance of the airfoil; there was an increase in the values of the predicted drag coefficients, as well as a decrease in the values of the predicted lift coefficients caused by increasing concentrations of sand particles. The region around the airfoil was studied by using contours of static pressure and discrete phase model (DPM concentration.

  2. Ice Roughness and Thickness Evolution on a Swept NACA 0012 Airfoil

    Science.gov (United States)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2017-01-01

    Several recent studies have been performed in the Icing Research Tunnel (IRT) at NASA Glenn Research Center focusing on the evolution, spatial variations, and proper scaling of ice roughness on airfoils without sweep exposed to icing conditions employed in classical roughness studies. For this study, experiments were performed in the IRT to investigate the ice roughness and thickness evolution on a 91.44-cm (36-in.) chord NACA 0012 airfoil, swept at 30-deg with 0deg angle of attack, and exposed to both Appendix C and Appendix O (SLD) icing conditions. The ice accretion event times used in the study were less than the time required to form substantially three-dimensional structures, such as scallops, on the airfoil surface. Following each ice accretion event, the iced airfoils were scanned using a ROMER Absolute Arm laser-scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger to determine the spatial roughness variations along the surfaces of the iced airfoils. The resulting measurements demonstrate linearly increasing roughness and thickness parameters with ice accretion time. Further, when compared to dimensionless or scaled results from unswept airfoil investigations, the results of this investigation indicate that the mechanisms for early stage roughness and thickness formation on swept wings are similar to those for unswept wings.

  3. Computation of airfoil buffet boundaries

    Science.gov (United States)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  4. CFD modelling of laminar-turbulent transition for airfoils and rotors using the gamma-(Re)over-tilde (theta) model

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2009-01-01

    When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer...... to flow over a flat plate, flow over the S809 and the NACA63-415 airfoils, flow over a prolate spheroid at zero and thirty degrees angle of attack, and finally to the NREL Phase VI wind turbine rotor for the zero yaw upwind cases from the NREL/NASA Ames wind tunnel test. Copyright © 2009 John Wiley & Sons...

  5. Reliability Prediction for Combustors and Turbines. Volume I.

    Science.gov (United States)

    1977-06-01

    comprised of many sophisticated components utilizing the latest in high-strength materials and technology. This is especially true in the turbine component...JT9D engine. This inspection technique makes use of a horoscope probe to look into the en- gine hot section while the engine remains installed in the...engine can now be removed based on results observed with the horoscope . This type of failure can be caused by any of the three primary turbine airfoil

  6. Studies of two stage gas turbine combustor for biomass powder. Part 1, Atmospheric cyclone gasification experiments with wood powder. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Degerman, Bengt; Hedin, Johan; Fredriksson, Christian; Kjellstroem, Bjoern; Salman, Hassan [Luleaa Univ. of Technology (Sweden). Dept. of Mechanical Engineering

    2000-10-01

    This report summarises the research and development work regarding development of a two stage gas turbine combustor for wood powder carried out at the Luleaa University of Technology from July 1993 to December 1996. The process being studied is based on cyclone gasification of the wood powder and combustion of the product gas in a suitably adapted gas turbine combustion chamber, without other gas cleaning than that obtained by the cyclone. A critical issue to be studied in the project is if the burned gases from such a cyclone gasifier lead to acceptably low deposition rates for K- and Na-compounds in a gas turbine with 850 deg C inlet temperature. The project strategy has been to study wood powder feeding and cyclone gasification first at atmospheric pressure, then run separate pressurised cyclone gasification tests for studies of the possibilities to achieve stable operation when the air flow is supplied by a separate compressor and finally to run integrated gasifier/gas turbine tests for studies of the deposition problem in practical operation. During the period covered by this report the atmospheric test facility has been designed, built and commissioned. It has been used mainly for studies of injector feeding of wood powder into a cyclone gasifier and for gasification experiments where in particular the fate of ash elements introduced with the wood powder has been studied. The results of these experiments have shown that steam injection of wood powder is possible with a steam consumption of about 0.3 kg steam/kg wood. The effects of injector geometry on the performance has also been studied. The gasification experiments show clearly that ash elements, including K and Na remain in the ash until very late in the thermal conversion process, also at gas temperatures exceeding 900 deg C. The separation of K with the cyclone bottom char has been 50 - 60% and the separation of Na about 80% with the cyclone geometry and the wood powder tested. The resulting load of K

  7. Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils

    Science.gov (United States)

    McLennan, Anthony William

    Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.

  8. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... first kind of design before experimental analysis. Therefore a study is carried out to determine the natural frequency to avoid unstable state of the system due to rotational frequency of rotor. The present paper outlines a conceptual design of vertical axis wind turbine and a modal analysis by using...

  9. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  10. Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade

    Science.gov (United States)

    2008-05-01

    Performance of Turbine Airfoils. Journal of Turbomachinery 1998, 120, 522– 529. Arnone, A.; Liou, M.-S.; Povinelli , L. A. Multigrid Calculation of... Povinelli , L. A. Development of an Explicit Multiblock/Multigrid Flow Solver for Viscous Flows in Complex Geometries; AIAA-93-2380; 1993. Wilcox, D. C

  11. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    International Nuclear Information System (INIS)

    Manela, A.

    2016-01-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  12. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    Energy Technology Data Exchange (ETDEWEB)

    Manela, A. [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2016-07-15

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  13. Aeroacoustic Computations for Turbulent Airfoil Flows

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2009-01-01

    a NACA 0015 airfoil at a Mach number of 0.2 and a Reynolds number of 1.6 x 10(5) for different angles of attack. The flow solutions are validated by comparing lift and drag characteristics with experimental data. The comparisons show good agreements between the computed and measured airfoil lift...

  14. Measuring Lift with the Wright Airfoils

    Science.gov (United States)

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  15. Airfoil shape for flight at subsonic speeds

    Science.gov (United States)

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  16. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  17. Computational study of the Risø-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2005-01-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risø-B1.18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should...... on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating...... frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice....

  18. Airfoil Shape Optimization in Transonic Flow

    International Nuclear Information System (INIS)

    Islam, Z.

    2004-01-01

    A computationally efficient and adaptable design tool is constructed by coupling a flow analysis code based on Euler equations, with the well established numerical optimization algorithms. Optimization technique involving two analysis methods of Simplex and Rosenbrock have been used. The optimization study involves the minimization of wave drag for two different airfoils with geometric constraints on the airfoil maximum thickness or the cross sectional area along with aerodynamic constraint on lift coefficient. The method is applied to these airfoils transonic flow design points, and the results are compared with the original values. This study shows that the conventional low speed airfoils can be optimized to become supercritical for transonic flight speeds, while existing supercritical airfoils can still be improved further at particular design condition. (author)

  19. Multiple piece turbine rotor blade

    Science.gov (United States)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  20. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  1. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    Science.gov (United States)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  2. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    International Nuclear Information System (INIS)

    González, A; Gomez-Iradi, S; Munduate, X

    2014-01-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling

  3. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  4. The aerodynamic design of an advanced rotor airfoil

    Science.gov (United States)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  5. Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil

    Science.gov (United States)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2011-11-01

    Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.

  6. Performance Evaluation of the Multi-stage Tower-type Vertical-axis Wind Turbine%多层塔式H型立轴风机的性能分析

    Institute of Scientific and Technical Information of China (English)

    高振勋; 蒋崇文; 唐金龙; 王德宝

    2011-01-01

    The main ideal of the multi-stage tower type vertical-axis wind turbine is to utilize the superposition of multi group H-type vertical-axis wind turbines to generate power, and fully use the wind energy in different altitude, which is beneficial for the large-scale development of modern wind turbine. The performance compari sons between the multi-stage tower-type vertical-axis wind turbine and traditional wind turbine were performed on many aspects. It was pointed out that the multi-stage tower-type vertical-axis wind turbine can have many advantages, such as easy-machining blades, high power efficiency, avoidance of the yawing system, reasonable structure loading, and low manufacture/maintenance cost. However, some disadvantages exist, such as the aerodynamic drag brought in by the blade supporting structure, complicated tower construction, and incremental requirement for gearbox and shaft joint. Overall considering, the multi stage tower-type vertical-axis wind turbine has extensive prospect of market applications.%多层塔式立轴风机的核心思想是将多组H型立轴风机分层叠加组合发电,结构简单性能优异,非常适合大容量的风电机组,符合现代风机向大型化发展的方向。对多层塔式立轴风机与传统风机的多方面性能进行了对比,指出多层塔式立轴风机具有风能利用率高、叶片制造简单、无需偏航系统、结构载荷合理、制造维护成本低等诸多优点,但也存在一些缺点,如叶片支撑结构会引入气动阻力、塔架设计较复杂、需要多组齿轮箱及联轴器等。总体分析表明,多层塔式立轴风机的方案在技术上和经济上是可行的。

  7. Nonlinear aeroelastic behavior of compliant airfoils

    International Nuclear Information System (INIS)

    Thwapiah, G; Campanile, L F

    2010-01-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea

  8. Nonlinear aeroelastic behavior of compliant airfoils

    Science.gov (United States)

    Thwapiah, G.; Campanile, L. F.

    2010-03-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea.

  9. Three-Dimensional Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping

    2010-01-01

    Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  10. Combined cycle simulator with gas turbine and steam turbine with one vaporization stage; Simulador de ciclo combinado con turbina de gas y de vapor con un nivel de vaporizacion

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle Cardenas, B.; Lugo Leyte, R. [Universidad Autonoma Metropolitana, Depto de Ingenieria de Procesos e Hidraulica, Mexico, D. F. (Mexico); Toledo Velazquez, Miguel; Tolentino Eslava, G. [Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, ESIME-IPN-COFFA, Mexico, D. F. (Mexico)

    1998-12-31

    This paper shows the thermal analysis of a combined cycle with gas and steam turbines with one vaporization stage. The analysis is performed through a computer program, which allows the simulation of cycles with different operational conditions, obtaining this way a series of results that permits to know the way these cycles behave in effecting temperature and pressure changes; besides of being an excellent tool in thermodynamics for the user. The simulators were performed in Borland C++ and Builder C++ Versions 4.5 and 2.0 respectively, creating in this way a friendly ambient for the user. This tool offers the opportunity to all its users the ability to simulate combined cycles in a fast and easy way in order to obtain a wider understanding of its thermodynamic behavior. [Espanol] En el presente trabajo se muestra el analisis termico de un ciclo combinado con turbinas de gas y de vapor con un nivel de vaporizacion. El analisis se realiza a traves de un programa de computo, el cual permite simular los ciclos con diferentes condiciones de operacion, obteniendo con esto una serie de resultados que permiten conocer la forma en que trabajan estos ciclos al realizar cambios en temperaturas y presiones; ademas de que es una excelente herramienta para el usuario en termodinamica. Los simuladores fueron realizados en Borland C++ y Builder C++ Versiones 4.5 y 2.0 respectivamente, creandose asi un ambiente amigable para el usuario. Esta herramienta brinda la oportunidad a todos los usuarios de poder simular ciclos combinados de una manera rapida y sencilla con el fin de obtener una comprension mas amplia de su comportamiento termodinamico.

  11. Combined cycle simulator with gas turbine and steam turbine with one vaporization stage; Simulador de ciclo combinado con turbina de gas y de vapor con un nivel de vaporizacion

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle Cardenas, B; Lugo Leyte, R [Universidad Autonoma Metropolitana, Depto de Ingenieria de Procesos e Hidraulica, Mexico, D. F. (Mexico); Toledo Velazquez, Miguel; Tolentino Eslava, G [Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, ESIME-IPN-COFFA, Mexico, D. F. (Mexico)

    1999-12-31

    This paper shows the thermal analysis of a combined cycle with gas and steam turbines with one vaporization stage. The analysis is performed through a computer program, which allows the simulation of cycles with different operational conditions, obtaining this way a series of results that permits to know the way these cycles behave in effecting temperature and pressure changes; besides of being an excellent tool in thermodynamics for the user. The simulators were performed in Borland C++ and Builder C++ Versions 4.5 and 2.0 respectively, creating in this way a friendly ambient for the user. This tool offers the opportunity to all its users the ability to simulate combined cycles in a fast and easy way in order to obtain a wider understanding of its thermodynamic behavior. [Espanol] En el presente trabajo se muestra el analisis termico de un ciclo combinado con turbinas de gas y de vapor con un nivel de vaporizacion. El analisis se realiza a traves de un programa de computo, el cual permite simular los ciclos con diferentes condiciones de operacion, obteniendo con esto una serie de resultados que permiten conocer la forma en que trabajan estos ciclos al realizar cambios en temperaturas y presiones; ademas de que es una excelente herramienta para el usuario en termodinamica. Los simuladores fueron realizados en Borland C++ y Builder C++ Versiones 4.5 y 2.0 respectivamente, creandose asi un ambiente amigable para el usuario. Esta herramienta brinda la oportunidad a todos los usuarios de poder simular ciclos combinados de una manera rapida y sencilla con el fin de obtener una comprension mas amplia de su comportamiento termodinamico.

  12. CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter

    Directory of Open Access Journals (Sweden)

    M.H. Mohamed

    2015-03-01

    Full Text Available Vertical axis wind turbines like the Darrieus turbine appear to be promising for the conditions of low wind speed, but suffer from a low efficiency compared to horizontal axis turbines. A fully detailed numerical analysis is introduced in this work to improve the global performance of this wind turbine. A comparison between ANSYS Workbench and Gambit meshing tools for the numerical modeling is performed to summarize a final numerical sequence for the Darrieus rotor performance. Then, this model sequence is applied for different blade airfoils to obtain the best performance. Unsteady simulations performed for different speed ratios and based on URANS turbulent calculations using sliding mesh approach. Results show that the accuracy of ANSYS Workbench meshing is improved by using SST K-omega model but it is not recommended for other turbulence models. Moreover, this CFD procedure is used in this paper to assess the turbine performance with different airfoil shapes (25 airfoils. The results introduced new shapes for this turbine with higher efficiency than the regular airfoils by 10%. In addition, blade pitch angle has been studied and the results indicated that the zero pitch angle gives best performance.

  13. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Francis A. Di Bella

    2010-06-01

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  14. Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils

    Science.gov (United States)

    2015-06-30

    vapor phase NiA ! aluminide and NiAI(Cr.Zr) coated Rene N5 samples cycled at 1093°C with Ae, = 0.35%. PtAI VPA NiAI(Cr,Zr) EQ Y-Y’ 10000.0... 505 (2001). 2. T.M. Pollock and S. Tin, AIAA J. Propulsion and Power, 22, 2, (2006), pp. 361 - 374. 3. A.G. Evans, D.R. Clarke and C.G. Lev

  15. Gazing at clouds to understand turbulence on wind turbine airfoils

    NARCIS (Netherlands)

    De Oliveira Andrade, G.L.; Balbino Dos Santos Pereira, R.; Timmer, W.A.; Ragni, D.; Lau, F.; van Bussel, G.J.W.

    2016-01-01

    There are many ways to learn from data. Our first experiment consisted in reproducing the way aerodynamicists work [2] with a genetic optimizer. The data pool was too narrow and asymptotic tendencies were unreliable. Our 2nd Experiment, a simple version of [4], had a virtually unlimited data pool

  16. Icing losses on wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, T.; Fotsing, I.; Pearson, S. [Garrad Hassan Canada Inc., Ottawa, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed some of the energy losses that can occur as a result of icing on wind turbines. Airfoil deterioration can occur in the presence of rime and glaze ice. Anemometers are also impacted by ice, and shut-downs can occur as a result of icing events. Availability deficits that occur during the winter months can lead to annual energy losses of 0.5 percent. The impact of icing events on total wind power energy production in Quebec is estimated at between 1.3 percent to 2.7 percent. Ice loss estimates are considered during the pre-construction phases of wind power projects. However, ice loss prediction methods are often inaccurate. Studies have demonstrated that preconstruction masts show a reasonable correlation with wind turbine icing, and that icing losses are site-specific. tabs., figs.

  17. Gas turbine vane platform element

    Science.gov (United States)

    Campbell, Christian X [Oviedo, FL; Schiavo, Anthony L [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-08-28

    A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

  18. Numerical optimization of circulation control airfoils

    Science.gov (United States)

    Tai, T. C.; Kidwell, G. H., Jr.; Vanderplaats, G. N.

    1981-01-01

    A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.

  19. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  20. Conference on Low Reynolds Number Airfoil Aerodynamics, Notre Dame, IN, June 16-18, 1985, Proceedings

    Science.gov (United States)

    Mueller, T. J. (Editor)

    1985-01-01

    Topics of interest in the design, flow modeling and visualization, and turbulence and flow separation effects for low Reynolds number (Re) airfoils are discussed. Design methods are presented for Re from 50,000-500,000, including a viscous-inviscid coupling method and by using a constrained pitching moment. The effects of pressure gradients, unsteady viscous aerodynamics and separation bubbles are investigated, with particular note made of factors which most influence the size and location of separation bubbles and control their effects. Attention is also given to experimentation with low Re airfoils and to numerical models of symmetry breaking and lift hysteresis from separation. Both steady and unsteady flow experiments are reviewed, with the trials having been held in wind tunnels and the free atmosphere. The topics discussed are of interest to designers of RPVs, high altitude aircraft, sailplanes, ultralights and wind turbines.

  1. Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil...... section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap...... is applied. Stability is investigated for the uncontrolled flap, and for three different control algorithms. The three controls are tuned for fatigue load alleviation and they are based on, respectively, measurement of the heave displacement and velocity, measurement of the local angle of attack, measurement...

  2. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    Science.gov (United States)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  3. Static and dynamic modelling of gas turbines in advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jan-Olof

    1998-12-01

    Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual

  4. Modeling and Grid Generation of Iced Airfoils

    Science.gov (United States)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  5. A new method for measuring lift forces acting on an airfoil under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    Wind turbines operate in a turbulent atmospheric boundary layer and are exposed to strong wind fluctuations in time and space. This can induce the dynamic stall, a phenomenon that causes extra loads. Dynamic stall occurs under fast changes in the angle of attack (AoA) and was determined in detail in helicopter research. But in contrast to helicopter aerodynamics, the changes in the AoA of wind turbine airfoils are in general non-sinusoidal, and thus it seems to be difficult to use these measurements and models. Our goal is to acquire lift data under conditions more comparable to real wind turbines, including non-periodic changes in the AoA. For this purpose a closed test section for our wind tunnel was built. An airfoil with a chord length of 0.2m will be rotated by a stepping motor with angular velocities of up to 300 {sup circle} /s. With a maximum wind velocity of 50m/s, Reynolds numbers of Re=700 000 can be realized. The lift force is determined by the counter forces acting on the wind tunnel walls. These are measured by two lines of 40 pressure sensors with sampling rates up to 2kHz. The results show distinct dynamic stall characteristics. Further experiments with different parameters and foils will give a better insight in dynamic stall and a verification and improvement of existing models.

  6. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In

  7. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper.Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0.It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain

  8. Pressure distribution over an NACA 23012 airfoil with an NACA 23012 external-airfoil flap

    Science.gov (United States)

    Wenzinger, Carl J

    1938-01-01

    Report presents the results of pressure-distribution tests of an NACA 23012 airfoil with an NACA 23012 external airfoil flap made in the 7 by 10-foot wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section on both the main airfoil and on the flap for several different flap deflections and at several angles of attack. A test installation was used in which the airfoil was mounted horizontally in the wind tunnel between vertical end planes so that two-dimensional flow was approximated. The data are presented in the form of pressure-distribution diagrams and as graphs of calculated coefficients for the airfoil-and-flap combination and for the flap alone.

  9. Laminar-Turbulent transition on Wind Turbines

    DEFF Research Database (Denmark)

    Martinez Hernandez, Gabriel Gerardo

    The present thesis deals with the study of the rotational effects on the laminar-turbulent transition on wind turbine blades. Linear stability theory is used to formulate the stability equations that include the effect of rotation. The mean flow required as an input to stability computations...... parametrized and adapted to an wind turbine rotor geometry. The blade is resolved in radial sections along which calculations are performed. The obtained mean flow is classified according to the parameters used on the rotating configuration, geometry and operational conditions. The stability diagrams have been...... to define the resultant wave magnitude and direction. The propagation of disturbances in the boundary layers in three dimensional flows is relatively a complicated phenomena. The report discusses the available methods and techniques used to predict the transition location. Some common wind turbine airfoils...

  10. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  11. Dynamic stall - The case of the vertical axis wind turbine

    Science.gov (United States)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  12. Study on Trailing Edge Ramp of Supercritical Airfoil

    Science.gov (United States)

    2016-03-30

    China Abstract Trailing edge flow control method could improve the performance of supercritical airfoil with a small modification on the original...stall behaviour . As a result, the non-separation ramp could increase the thickness of airfoil, which benefits wing structure and aerodynamic...direction based on the original RAE2822 airfoil, which will thicken the airfoil. The interpolation is implemented as shown in Eqn. 1. This modification could

  13. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  14. Progress in Protective Coatings for Aircraft Gas Turbines: A Review of NASA Sponsored Research

    Science.gov (United States)

    Merutka, J. P.

    1981-01-01

    Problems associated with protective coatings for advanced aircraft gas turbines are reviewed. Metallic coatings for preventing titanium fires in compressors are identified. Coatings for turbine section are also considered, Ductile aluminide coatings for protecting internal turbine-blade cooling passage surface are also identified. Composite modified external overlay MCrAlY coatings deposited by low-pressure plasma spraying are found to be better in surface protection capability than vapor deposited MCrAlY coatings. Thermal barrier coating (TBC), studies are presented. The design of a turbine airfoil is integrated with a TBC, and computer-aided manufacturing technology is applied.

  15. An Integrated Method for Airfoil Optimization

    Science.gov (United States)

    Okrent, Joshua B.

    Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal

  16. Detection of aeroacoustic sound sources on aircraft and wind turbines

    International Nuclear Information System (INIS)

    Oerlemans, S.

    2009-01-01

    This thesis deals with the detection of aeroacoustic sound sources on aircraft and wind turbines using phased microphone arrays. First, the reliability of the array technique is assessed using airframe noise measurements in open and closed wind tunnels. It is demonstrated that quantitative acoustic measurements are possible in both wind tunnels. Then, the array technique is applied to characterize the noise sources on two modern large wind turbines. It is shown that practically all noise emitted to the ground is produced by the outer part of the blades during their downward movement. This asymmetric source pattern, which causes the typical swishing noise during the passage of the blades, can be explained by trailing edge noise directivity and convective amplification. Next, a semi-empirical prediction method is developed for the noise from large wind turbines. The prediction code is successfully validated against the experimental results, not only with regard to sound levels, spectra, and directivity, but also with regard to the noise source distribution in the rotor plane and the temporal variation in sound level (swish). The validated prediction method is then applied to calculate wind turbine noise footprints, which show that large swish amplitudes can occur even at large distance. The influence of airfoil shape on blade noise is investigated through acoustic wind tunnel tests on a series of wind turbine airfoils. Measurements are carried out at various wind speeds and angles of attack, with and without upstream turbulence and boundary layer tripping. The speed dependence, directivity, and tonal behaviour are determined for both trailing edge noise and inflow turbulence noise. Finally, two noise reduction concepts are tested on a large wind turbine: acoustically optimized airfoils and trailing edge serrations. Both blade modifications yield a significant trailing edge noise reduction at low frequencies, but also cause increased tip noise at high frequencies

  17. Wake Survey of a Marine Current Turbine Under Steady Conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  18. A study on double flap of Wells turbine for wave power conversion

    International Nuclear Information System (INIS)

    Kim, J. H.; Kim, B. S.; Lee, Y. H.; Yoon, S. H.; Lee, Y. W.

    2001-01-01

    A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 0021 wells turbine. The five double flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-D numerical grid is based upon that of an experimental test rig. This paper tries to analyze the optimum double flap of Wells turbine with the numerical analysis

  19. Calculation of gas turbine characteristic

    Science.gov (United States)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  20. Research of performance prediction to energy on hydraulic turbine

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Li, Q F; Han, W; Su, Q M

    2012-01-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  1. European wind turbine catalogue

    International Nuclear Information System (INIS)

    1994-01-01

    The THERMIE European Community programme is designed to promote the greater use of European technology and this catalogue contributes to the fulfillment of this aim by dissemination of information on 50 wind turbines from 30 manufacturers. These turbines are produced in Europe and are commercially available. The manufacturers presented produce and sell grid-connected turbines which have been officially approved in countries where this approval is acquired, however some of the wind turbines included in the catalogue have not been regarded as fully commercially available at the time of going to print. The entries, which are illustrated by colour photographs, give company profiles, concept descriptions, measured power curves, prices, and information on design and dimension, safety systems, stage of development, special characteristics, annual energy production, and noise pollution. Lists are given of wind turbine manufacturers and agents and of consultants and developers in the wind energy sector. Exchange rates used in the conversion of the prices of wind turbines are also given. Information can be found on the OPET network (organizations recognised by the European Commission as an Organization for the Promotion of Energy Technologies (OPET)). An article describes the development of the wind power industry during the last 10-15 years and another article on certification aims to give an overview of the most well-known and acknowledged type approvals currently issued in Europe. (AB)

  2. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    Science.gov (United States)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  3. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  4. Roughness Sensitivity Comparisons of Wind Turbine Blade Sections

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Benjamin J. [Texas A & M Univ., College Station, TX (United States). Dept. of Aerospace Engineering; White, Edward B. [Texas A & M Univ., College Station, TX (United States). Dept. of Aerospace Engineering; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2017-10-01

    One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either un- representative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness on an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1.6 x 106 and 4.0 x 106. Results are compared to previous tests of a NACA 633 -418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 63 3 -418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 633 -418 turbine and an NREL S814 turbine, respectively, operating with 200 μm roughness. These compare well to historical field measurements.

  5. Machine learning paradigms in design optimization: Applications in turbine aerodynamic design

    Science.gov (United States)

    Goel, Sanjay

    Mechanisms of incorporating machine learning paradigms in design optimization have been investigated in the current research. The primary focus of the work is on machine learning algorithms which use computational models that are analogous to the hypothesized principles of natural or biological learning. Examples from structural and aerodynamic optimization have been used to demonstrate the potential of the proposed schemes. The first strategy examined in the current work seeks to improve the convergence of optimization problems by pruning the search space of weak variables. Such variables are identified by learning from a database of existing designs using neural networks. By using clustering techniques, different sets of weak variables are identified in different regions of the design space. Parameter sensitivity information obtained in the process of identifying weak variables provides accurate heuristics for formulating design rules. The impact of this methodology on obtaining converged designs has been investigated for a turbine design problem. Optimization results from a three-stage power turbine and an aircraft engine turbine are presented in this thesis. The second scheme is an evolutionary design optimization technique which gets progressively 'smarter' during the optimization process by learning from computed domain knowledge. This technique employs adaptive learning mechanisms (classifiers) which recognize the influence of the design variables on the problem solution and then generalize them to dynamically create or change design rules during optimization. This technique, when applied to a constrained optimization problem, shows progressive improvement in convergence of search, as successive generations of rules evolve by learning from the environment. To investigate this methodology, a truss optimization problem is solved with an objective of minimizing the truss weight subject to stress constraints in the truss members. A distinct convergent trend is

  6. EUDP Project: Low Noise Airfoil - Final Report

    DEFF Research Database (Denmark)

    This document summarizes the scientific results achieved during the EUDP-funded project `Low-Noise Airfoil'. The goals of this project are, on one side to develop a measurement technique that permits the evaluation of trailing edge noise in a classical aerodynamic wind tunnel, and on the other side...... to develop and implement a design procedure to manufacture airfoil profiles with low noise emission. The project involved two experimental campaigns: one in the LM Wind Power wind tunnel, a classical aerodynamic wind tunnel, in Lunderskov (DK), the second one in the Virginia Tech Stability Wind Tunnel....... In particular, the so-called TNO trailing edge noise model could be significantly improved by introducing turbulence anisotropy in its formulation, as well as the influence of the boundary layer mean pressure gradient. This two characteristics are inherent to airfoil flows but were neglected in the original...

  7. A computational procedure to define the incidence angle on airfoils rotating around an axis orthogonal to flow direction

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • New method to calculate the incidence angle from a computed CFD flow field. • Applicable to each airfoil rotating around an axis orthogonal to flow direction. • Composed by four, easily automatable steps explained in details. • Robustness of the model assessed on two Darrieus turbine study cases. - Abstract: Numerical simulations provided in the last few years a significant contribution for a better understanding of many phenomena connected to the flow past rotating blades. In case of airfoils rotating around an axis orthogonal to flow direction, one of the most critical issues is represented by the definition of the incidence angle on the airfoil from the computed flow field. Incidence indeed changes continuously as a function of the azimuthal position of the blade and a distribution of peripheral speed is experienced along the airfoil’s thickness due to radius variation. The possibility of reducing the flow to lumped parameters (relative speed modulus and direction), however, would be of capital relevance to transpose accurate CFD numerical results into effective inputs to low-order models that are often exploited for preliminary design analyses. If several techniques are available for this scope in the case of blades rotating around an axis parallel to flow direction (e.g., horizontal-axis wind turbines), the definition of a robust procedure in case the revolution axis is orthogonal to the flow is still missing. In the study, a novel technique has been developed using data from Darrieus-like rotating airfoils. The method makes use of the virtual camber theory to define a virtual airfoil whose pressure coefficient distributions in straight flow are used to match those of the real airfoil in curved flow. Even if developed originally for vertical-axis wind turbines, the method is of general validity and is thought to represent in the near future a valuable tool for researchers to get a new insight on many complex phenomena connected to flow

  8. Airfoil flow instabilities induced by background flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Selerowicz, W.C.; Szumowski, A.P. [Technical Univ. Warsaw (Poland)

    2002-04-01

    The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, {alpha}=4 and {alpha}=8.5 , which correspond to the attached and separated steady airfoil flows, respectively. (orig.)

  9. Aerodynamic Optimization of a Wind Turbine Blade Designed for Egypt's Saharan Environment Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Khaled Yassin

    2015-08-01

    Full Text Available This work aims to optimize the aerodynamic parameters (airfoil chord lengths and twist angles smoothed using Bezier curves of the NREL 5MW wind turbine and a wind turbine designed for site-specific wind conditions to increase the wind turbine's annual energy production (AEP under this site conditions. This optimization process is carried out using a Genetic Algorithm (GA developed in MATLAB and coupled with NREL's FAST Modularization Framework. The results shows that after optimizing the NREL 5MW wind turbine design, the AEP was improved by 5.9% of the baseline design AEP while a site-specific designed wind turbine using Schmitz equations shows 1.2% improvement in AEP. These results shows that optimization of wind turbine blade aerodynamic parameters for site-specific wind conditions leads to improvement in AEP and hence decreasing cost of energy generated by wind turbines.

  10. Computational study of the Risoe-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    Energy Technology Data Exchange (ETDEWEB)

    Troldborg, N.

    2005-03-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risoe-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 - 10{sup 6}. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice. (author)

  11. Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bak, Christian; Gaunaa, Mac; Andersen, Peter Bjørn

    2010-01-01

    A wind tunnel test of the wind turbine airfoil Risø-B1-18 equipped with an Active Trailing Edge Flap (ATEF) was carried out. The ATEF was 9% of the total chord, made of piezo electric actuators attached to the trailing edge of a non-deformable airfoil and actuated using an (electric) amplifier....... The airfoil was tested at Re = 1.66 × 106. Steady state and dynamic tests were carried out with prescribed deflections of the ATEF. The steady state tests showed that deflecting the ATEF towards the pressure side (positive ) translated the lift curve to higher lift values and deflecting the ATEF towards...... the suction side (negative ) translated the lift curve to lower lift values. Testing the airfoil for a step change of the ATEF from = -3.0 to +1.8 showed that the obtainable cl was 0.10 to 0.13 in the linear part of the lift curve. Modeling the step response with an indicial function formulation showed...

  12. Performance of a generic non-axisymmetric end wall in a single stage, rotating turbine at on and off-design conditions

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2010-06-01

    Full Text Available ) “Low Pressure Turbine Design for Rolls-Royce TRENT 900 Turbofan”, ASME Turbo Expo, GT2006-90997. [5] Denton J. D., (1993) “Loss Mechanisms in Turbomachines,” Transactions of the ASME Journal of Turbomachinery, Vol. 115, pp. 621-650. [6] Langston...

  13. Optimisation of non-axisymmetric end wall contours for the rotor of a low speed, 1 1/2 stage research turbine with unshrouded blades

    CSIR Research Space (South Africa)

    Bergh, J

    2012-06-01

    Full Text Available 2-dimensional, linear cascades, and therefore do not include a number of features which are present in the flow field of a real turbine. Recent work by Snedden et al involved the introduction of “generic”, non-axisymmetric end wall contours...

  14. Wake structure and similar behavior of wake profiles downstream of a plunging airfoil

    Directory of Open Access Journals (Sweden)

    Ali R. DAVARI

    2017-08-01

    Full Text Available Very limited attention has already been paid to the velocity behavior in the wake region in unsteady aerodynamic problems. A series of tests has been performed on a flapping airfoil in a subsonic wind tunnel to study the wake structure for different sets of mean angle of attack, plunging amplitude and reduced frequency. In this study, the velocity profiles in the wake for various oscillation parameters have been measured using a wide shoulder rake, especially designed for the present experiments. The airfoil under consideration was a critical section of a 660 kW wind turbine. The results show that for a flapping airfoil the wake structure can be of drag producing type, thrust producing or neutral, depending on the mean angle of attack, oscillation amplitude and reduced frequency. In a thrust producing wake, a high-momentum high-velocity jet flow is formed in the core region of the wake instead of the conventional low-momentum flow. As a result, the drag force normally experienced by the body due to the momentum deficit would be replaced by a thrust force. According to the results, the momentum loss in the wake decreases as the reduced frequency increases. The thrust producing wake pattern for the flapping airfoil has been observed for sufficiently low angles of attack in the absence of the viscous effects. This phenomenon has also been observed for either high oscillation amplitudes or high reduced frequencies. According to the results, for different reduced frequencies and plunging amplitudes, such that the product of them be a constant, the velocity profiles exhibit similar behavior and coalesce on each other. This similarity parameter works excellently at small angles of attack. However, at near stall boundaries, the similarity is not as evident as before.

  15. Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  16. Development of design tools for reduced aerodynamic noise wind turbines (draw)

    NARCIS (Netherlands)

    Wagner, S.; Guidati, G.; Ostertag, J.; Bareiss, R.; Wittum, G.; Huurdeman, B.; Braun, K.; Hirsch, C.; Kang, S.; Khodak, A.; Overmeire, M. van; Bladt, G.; Nienhaus, A.; Dassen, A.G.M.; Parchen, R.R.; Looijmans, K.

    1997-01-01

    The major aim of the present project was the development of new predictïon models for the aerodynamic noise generation at wind turbine blades. These models should be transferred to computer codes and should be sensitive enough to consider even small changes in the airfoil geometry. This accuracy is

  17. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  18. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  19. Examples of using CFD for wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.O.L.; Soerensen, J.N. [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark); Soerensen, N.N. [Risoe National Lab., Test Station for Wind Turbines (Denmark)

    1997-12-31

    Overall it is concluded that in order to improve the results from CFD (Computational Fluid Dynamics) for wind turbine aerodynamics characterized by: high angles of attack; thick airfoils; 3-D effects; instationary effects. Extreme care must be put on turbulence and transition models, and fine grids are necessary especially at the suction peak. If these precautions are taken CFD can be used as a tool for obtaining lift and drag coefficients for the BEM (Blade Element Momentum) model. (au)

  20. Optimal design of marine steam turbine

    International Nuclear Information System (INIS)

    Liu Chengyang; Yan Changqi; Wang Jianjun

    2012-01-01

    The marine steam turbine is one of the key equipment in marine power plant, and it tends to using high power steam turbine, which makes the steam turbine to be heavier and larger, it causes difficulties to the design and arrangement of the steam turbine, and the marine maneuverability is seriously influenced. Therefore, it is necessary to apply optimization techniques to the design of the steam turbine in order to achieve the minimum weight or volume by means of finding the optimum combination of design parameters. The math model of the marine steam turbine design calculation was established. The sensitivities of condenser pressure, power ratio of HP turbine with LP turbine, and the ratio of diameter with height at the end stage of LP turbine, which influence the weight of the marine steam turbine, were analyzed. The optimal design of the marine steam turbine, aiming at the weight minimization while satisfying the structure and performance constraints, was carried out with the hybrid particle swarm optimization algorithm. The results show that, steam turbine weight is reduced by 3.13% with the optimization scheme. Finally, the optimization results were analyzed, and the steam turbine optimization design direction was indicated. (authors)

  1. Aeroelastic Optimization of MW Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Zahle, Frederik

    This report contains the results from the Energy Development and Demonstration Project “Aeroelastic Optimization of MW wind turbine” (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beamelement forHAWC2 2. Closed-loop eigenvalue analysis...... of controlled wind turbines 3. Resonant wave excitation of lateral tower bending modes 4. Development of next generation aerodynamic design tools 5. Advanced design and verification of airfoils The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given...

  2. Sensitivity of Key Parameters in Aerodynamic Wind Turbine Rotor Design on Power and Energy Performance

    International Nuclear Information System (INIS)

    Bak, Christian

    2007-01-01

    In this paper the influence of different key parameters in aerodynamic wind turbine rotor design on the power efficiency, C p , and energy production has been investigated. The work was divided into an analysis of 2D airfoils/blade sections and of entire rotors. In the analysis of the 2D airfoils it was seen that there was a maximum of the local C p for airfoils with finite maximum C l /C d values. The local speed ratio should be between 2.4 and 3.8 for airfoils with maximum c l /c d between 50 and 200, respectively, to obtain maximum local C p . Also, the investigation showed that Re had a significant impact on CP and especially for Re p for rotors was made with three blades and showed that with the assumption of constant maximum c l /c d along the entire blade, the design tip speed ratio changed from X=6 to X=12 for c l /cd=50 and c l /c d =200, respectively, with corresponding values of maximum c p of 0.46 and 0.525. An analysis of existing rotors re-designed with new airfoils but maintaining the absolute thickness distribution to maintain the stiffness showed that big rotors are more aerodynamic efficient than small rotors caused by higher Re. It also showed that the design tip speed ratio was very dependent on the rotor size and on the assumptions of the airfoil flow being fully turbulent (contaminated airfoil) or free transitional (clean airfoil). The investigations showed that rotors with diameter D=1.75m, should be designed for X around 5.5, whereas rotors with diameter D=126m, should be designed for Xbetween 6.5 and 8.5, depending on the airfoil performance

  3. LES tests on airfoil trailing edge serration

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform...

  4. ANALYSIS OF TRANSONIC FLOW PAST CUSPED AIRFOILS

    Directory of Open Access Journals (Sweden)

    Jiří Stodůlka

    2015-06-01

    Full Text Available Transonic flow past two cusped airfoils is numerically solved and achieved results are analyzed by means of flow behavior and oblique shocks formation.Regions around sharp trailing edges are studied in detail and parameters of shock waves are solved and compared using classical shock polar approach and verified by reduction parameters for symmetric configurations.

  5. Optimization Criteria and Sailplane Airfoil Design

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, Milan

    2007-01-01

    Roč. 30, č. 3 (2007), s. 74-78 ISSN 0744-8996 R&D Projects: GA AV ČR IAA2076403; GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : aerodynamic optimization * airfoil Subject RIV: BK - Fluid Dynamics

  6. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  7. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  8. Wind or water turbine power augmentation using the system of guiding surfaces

    International Nuclear Information System (INIS)

    Bashurin, V P; Ktitorov, L V; Lazareva, A S; Pletenev, F A; Budnikov, I N; Hatunkin, V Yu; Klevtsov, V A; Meshkov, E E; Novikova, I A; Yanbaev, G M

    2016-01-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines. (paper)

  9. 2D Numerical Investigation of the Laminar and Turbulent Flow Over Different Airfoils Using OpenFOAM

    International Nuclear Information System (INIS)

    Rahimi, H; Stoevesandt, B; Peinke, J; Medjroubi, W

    2014-01-01

    The aim of this work is to assess the prediction capabilities of the turbulence models and the transition model kkl-ω available in OpenFOAM and to achieve a database of airfoil aerodynamical characteristics. The airfoils chosen for the simulations are FX 79-W- 15A and NACA 63-430, which are widely used in wind turbines. The numerically obtained lift and drag coefficients are compared with available experimental results. A quantitative and qualitative study is conducted to determine the influence of meshing strategies, computational time step together with interpolation and temporal schemes. Two Reynolds Averaged Navier- Stokes models (RANS models) are used, which are the k-ω SST model by Menter and the kkl-ω model (which involves transition modeling) by Walters and Davor

  10. Controlled Aerodynamic Loads on an Airfoil in Coupled Pitch/Plunge by Transitory Regulation of Trapped Vorticity

    Science.gov (United States)

    Tan, Yuehan; Crittenden, Thomas; Glezer, Ari

    2017-11-01

    The aerodynamic loads on an airfoil moving in coupled, time-periodic pitch-plunge beyond the static stall margin are controlled using transitory regulation of trapped vorticity concentrations. Actuation is effected by a spanwise array of integrated miniature chemical (combustion based) impulse actuators that are triggered intermittently during the airfoil's motion and have a characteristic time scale that is an order of magnitude shorter than the airfoil's convective time scale. Each actuation pulse effects momentary interruption and suspension of the vorticity flux with sufficient control authority to alter the airfoil's global aerodynamic characteristics throughout its motion cycle. The effects of the actuation are assessed using time-dependent measurements of the lift and pitching moment coupled with time-resolved particle image velocimetry over the airfoil and in its near wake that is acquired phased-locked to its motion. It is shown that while the presence of the pitch-coupled plunge delays lift and moment stall during upstroke, it also delays flow reattachment during the downstroke and results in significant degradation of the pitch stability. These aerodynamic shortcomings are mitigated using superposition of a limited number of pulses that are staged during the pitch/plunge cycle and lead to enhancement of cycle lift and pitch stability, and reduces the cycle hysteresis and peak pitching moment.

  11. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  12. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  13. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  14. Aerodynamic shape optimization of Airfoils in 2-D incompressible flow

    Science.gov (United States)

    Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth

    2010-11-01

    An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.

  15. Aeroelastic optimization of MW wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Zahle, F.

    2011-12-15

    This report contains the results from the Energy Development and Demonstration Project ''Aeroelastic Optimization of MW wind turbine'' (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beam element for HAWC2. 2. Closed-loop eigenvalue analysis of controlled wind turbines. 3. Resonant wave excitation of lateral tower bending modes. 4. Development of next generation aerodynamic design tools. 5. Advanced design and verification of airfoils. The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given in Section 2. Thereafter, the results from each Work Package are described in eight subsequent chapters. (Author)

  16. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  17. Wind Turbine design and fabrication to power street lights

    Directory of Open Access Journals (Sweden)

    Khan Mohammad

    2017-01-01

    Full Text Available The objective of this work was to design and build a wind turbine which can be used to power small street lights. Considering the typical wind speeds in Abu Dhabi, UAE and ease of construction, the design of the wind turbine was chosen to be Sea Hawk design from vertical axis wind turbine category. A three phase AC generator was used for its availability over the DC motors within the region. A 12V battery was used for storage and a charge controller was used for controlling the charge flow into the battery and for controlling the turbine rotation when the battery is fully charged. The blades used in the turbine were made of foam board according to the NACA 0018 airfoil shape with a chord length of 15cm. The connecting shaft was made of stainless steel. Structural analysis and CFD analysis were performed along with other calculations. Testing was executed to calculate the voltage output from the turbine at different wind speeds. The maximum voltage the turbine produced at 6.4 m/s wind speed was 2.4Vand the rotational speed of the turbine was 60.3 rpm.

  18. Design and development of nautilus whorl-wind turbine

    Science.gov (United States)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  19. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    In this paper, an energy and exergy analysis is performed on four different wind power systems, including both horizontal and vertical axis wind turbines. Significant variability in turbine designs and operating parameters are encompassed through the selection of systems. In particular, two airfoils (NACA 63(2)-215 and FX 63-137) commonly used in horizontal axis wind turbines are compared with two vertical axis wind turbines (VAWTs). A Savonius design and Zephyr VAWT benefit from operational attributes in wind conditions that are unsuitable for airfoil type designs. This paper analyzes each system with respect to both the first and second laws of thermodynamics. The aerodynamic performance of each system is numerically analyzed by computational fluid dynamics software, FLUENT. A difference in first and second law efficiencies of between 50 and 53% is predicted for the airfoil systems, whereas 44-55% differences are predicted for the VAWT systems. Key design variables are analyzed and the predicted results are discussed. The exergetic efficiency of each wind turbine is studied for different geometries, design parameters and operating conditions. It is shown that the second law provides unique insight beyond a first law analysis, thereby providing a useful design tool for wind power development. (author)

  20. Influences of some parameters on the performance of a small vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Dumitrache Alexandru

    2016-01-01

    Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.

  1. Aerodynamic and aeroacoustic performance of airfoils with morphing structures

    OpenAIRE

    Ai, Qing; Azarpeyvand, Mahdi; Lachenal, Xavier; Weaver, Paul M.

    2016-01-01

    Aerodynamic and aeroacoustic performance of airfoils fitted with morphing trailing edges are investigated using a coupled structure/fluid/noise model. The control of the flow over the surface of an airfoil using shape optimization techniques can significantly improve the load distribution along the chord and span lengths whilst minimising noise generation. In this study, a NACA 63-418 airfoil is fitted with a morphing flap and various morphing profiles are considered with two features that di...

  2. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  3. Development and testing of airfoils for high-altitude aircraft

    Science.gov (United States)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  4. Damping element for reducing the vibration of an airfoil

    Science.gov (United States)

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  5. Inverse Design of Single- and Multi-Rotor Horizontal Axis Wind Turbine Blades using Computational Fluid Dynamics

    OpenAIRE

    Moghadassian, Behnam; Sharma, Anupam

    2017-01-01

    A method for inverse design of horizontal axis wind turbines (HAWTs) is presented in this paper. The direct solver for aerodynamic analysis solves the Reynolds Averaged Navier Stokes (RANS) equations, where the effect of the turbine rotor is modeled as momentum sources using the actuator disk model (ADM); this approach is referred to as RANS/ADM. The inverse problem is posed as follows: for a given selection of airfoils, the objective is to find the blade geometry (described as blade twist an...

  6. Transonic airfoil and axial flow rotary machine

    Science.gov (United States)

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  7. Simple Parametric Model for Airfoil Shape Description

    Science.gov (United States)

    Ziemkiewicz, David

    2017-12-01

    We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.

  8. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  9. Airfoil shape for flight at subsonic speeds. [design analysis and aerodynamic characteristics of the GAW-1 airfoil

    Science.gov (United States)

    Whitcomb, R. T. (Inventor)

    1976-01-01

    An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.

  10. Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Kavari, Ghazale; Masdari, Mehran

    2017-01-01

    This study is aimed to aerodynamically design a 1 mega-Watt horizontal axis wind turbine in order to obtain the maximum power coefficient by linearizing the chord and twist distributions. A new linearization method has been used for chord and twist distributions by crossing tangent line through...... the geometry of the blades determines the power generated by rotor, designing the blade is a very important issue. Herein, calculations are done for different types of airfoil families namely Risø-A1-21, Risø-A1-18, S809, S814 and Du 93-W-210. Hence, the effect of selecting different airfoil families is also...

  11. LES tests on airfoil trailing edge serration

    International Nuclear Information System (INIS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x10 6 . In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device. (paper)

  12. Airfoil stall interpreted through linear stability analysis

    Science.gov (United States)

    Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis

    2017-11-01

    Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.

  13. Active Subspaces of Airfoil Shape Parameterizations

    Science.gov (United States)

    Grey, Zachary J.; Constantine, Paul G.

    2018-05-01

    Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.

  14. Knowledge-based system for detailed blade design of turbines

    Science.gov (United States)

    Goel, Sanjay; Lamson, Scott

    1994-03-01

    A design optimization methodology that couples optimization techniques to CFD analysis for design of airfoils is presented. This technique optimizes 2D airfoil sections of a blade by minimizing the deviation of the actual Mach number distribution on the blade surface from a smooth fit of the distribution. The airfoil is not reverse engineered by specification of a precise distribution of the desired Mach number plot, only general desired characteristics of the distribution are specified for the design. Since the Mach number distribution is very complex, and cannot be conveniently represented by a single polynomial, it is partitioned into segments, each of which is characterized by a different order polynomial. The sum of the deviation of all the segments is minimized during optimization. To make intelligent changes to the airfoil geometry, it needs to be associated with features observed in the Mach number distribution. Associating the geometry parameters with independent features of the distribution is a fairly complex task. Also, for different optimization techniques to work efficiently the airfoil geometry needs to be parameterized into independent parameters, with enough degrees of freedom for adequate geometry manipulation. A high-pressure, low reaction steam turbine blade section was optimized using this methodology. The Mach number distribution was partitioned into pressure and suction surfaces and the suction surface distribution was further subdivided into leading edge, mid section and trailing edge sections. Two different airfoil representation schemes were used for defining the design variables of the optimization problem. The optimization was performed by using a combination of heuristic search and numerical optimization. The optimization results for the two schemes are discussed in the paper. The results are also compared to a manual design improvement study conducted independently by an experienced airfoil designer. The turbine blade optimization

  15. Preliminary Investigation of Several Root Designs for Cermet Turbine Blades in Turbojet Engine III : Curved-root Design

    Science.gov (United States)

    Pinkel, Benjamin; Deutsch, George C; Morgan, William C

    1955-01-01

    Stresses om tje root fastenings of turbine blades were appreciably reduced by redesign of the root. The redesign consisted in curving the root to approximately conform to the camber of the airfoil and elimination of the blade platform. Full-scale jet-engine tests at rated speed using cermet blades of the design confirmed the improvement.

  16. A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mohammadi

    2016-02-01

    Full Text Available Iran has a great potential for wind energy. This paper introduces optimization of 7 wind turbine blades for small and medium scales in a determined wind condition of Zabol site, Iran, where the average wind speed is considered 7 m /s. Considered wind turbines are 3 bladed and radius of 7 case study turbine blades are 4.5 m, 6.5 m, 8 m, 9 m, 10 m, 15.5 m and 20 m. As the first step, an initial design is performed using one airfoil (NACA 63-215 across the blade. In the next step, every blade is divided into three sections, while the 20 % of first part of the blade is considered as root, the 5% of last the part is considered as tip and the rest of the blade as mid part. Providing necessary input data, suitable airfoils for wind turbines including 43 airfoils are extracted and their experimental data are entered in optimization process. Three variables in this optimization problem would be airfoil type, attack angle and chord, where the objective function is maximum output torque. A MATLAB code was written for design and optimization of the blade, which was validated with a previous experimental work. In addition, a comparison was made to show the effect of optimization with two variables (airfoil type and attack angle versus optimization with three variables (airfoil type, attack angle and chord on output torque increase. Results of this research shows a dramatic increase in comparison to initial designed blade with one airfoil where two variable optimization causes 7.7% to 22.27 % enhancement and three variable optimization causes 17.91% up to 24.48% rise in output torque .Article History: Received Oct 15, 2015; Received in revised form January 2, 2016; Accepted January 14, 2016; Available online How to Cite This Article: Mohammadi, M., Mohammadi, A. and Farahat, S. (2016 A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization. Int. Journal of Renewable Energy Development, 5(1,1-8. http://dx.doi.org/10.14710/ijred.5.1.1-8

  17. Estimation of gas turbine blades cooling efficiency

    NARCIS (Netherlands)

    Moskalenko, A.B.; Kozhevnikov, A.

    2016-01-01

    This paper outlines the results of the evaluation of the most thermally stressed gas turbine elements, first stage power turbine blades, cooling efficiency. The calculations were implemented using a numerical simulation based on the Finite Element Method. The volume average temperature of the blade

  18. Problems of steam turbine diagnostics and the 'Simens' diagnosis system

    International Nuclear Information System (INIS)

    Tserner, V.; Andrea, K.

    1993-01-01

    Diagnostics system, allowing one to detect changes in the state on single turbine elements at an early stage is described. Besides this system allows one to utilize the turbine plant optimally and efficiency from the viewpoint of the equipment durability. Specially oriented monitoring of the turbine plant and equipment element state saves resources necessary to keep up the working order of the equipment

  19. Development and optimization design of pit turbine with super low-head

    International Nuclear Information System (INIS)

    Yang, C X; Li, X X; Huang, F J; Zheng, Y; QZhou, D

    2012-01-01

    Tubular turbines have many advantages such as large flow, high-speed, high efficiency, wide and high efficiency area, compact structure, simple layout, etc. With those advantages, tubular turbine is becoming one of the most economic and suitable types of turbines to develop low head hydraulic resources. According to the general situation of the hydropower station in the north of Jiangsu, a super low head pit turbine which head is set as about 2m is developed by the research to utilize the low head hydraulic resource.The CFD technology was used to calculate the flow field. The computing zone was meshed with unstructured gird. The whole flow passage of shaft type tubular turbine was calculated by 3-d steady turbulent numerical simulation. The detail of flowthrough the whole flowpassage was attained and the influence to the turbine's performance was analyzed by the low head runner blade's various diameters, airfoils and setting angles. The best turbine runner was obtained by considering all the methods. Meeting the station's requirements, the results show that the runner exhibits the highest performance in the efficiency, hydraulic loss and static pressure sides with 1.75m diameter, optimized airfoil and 23 degree setting angle. The developed super low head pit turbine shows highest efficiency under the design condition of 2.1m water head and 10m 3 /s flow rate. GD-WS-35 turbine model test was carried out tostudy the performance of the turbine. On the basis ofmodel transformation principle,the numerical simulationresultof GD-WS-175turbine was compared with the model results. It's showed that the model test result is basically consistent with numerical simulationresult. The producing error in the numerical computation is not easy to control. The efficiency's error range is ±3%.

  20. Numerical flow simulation over clean and iced wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Villalpando, F.; Reggio, M. [Ecole Polytechnique, Montreal, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada). Wind Energy Group

    2009-07-01

    The impact of ice accretion on the drag and lift coefficients of a wind turbine blade was studied. Computerized simulations were conducted for both clean and ice-accreted 2-D airfoils at various angles of attack. The finite volume-based commercial computational fluid dynamics (CFD) program FLUENT was used to simulate the 2-D geometries of turbulent, unsteady and incompressible flow around the airfoils. Pressure coefficients and the contribution of pressure and friction forces to the lift and drag coefficients were analyzed. The study showed that traditional calculations over-predict the lift and drag of ice-accreted airfoil profiles. Ice accreted over the profile's pressure side provoked a bigger lift reduction and drag increase than that caused by ice accreted on the suction side. The poor performance of the aerodynamic coefficients was attributed to the contribution of pressure forces. Further experimentation is required to determine if de-icing systems for turbine blades should be developed to prevent or melt ice over the profile pressure side. 11 refs., 7 tabs., 15 figs.

  1. Aeroservoelastic stability of a 2D airfoil section equipped with a trailing edge flap

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, Leonardo

    2008-11-15

    Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap is applied. Stability is investigated for the uncontrolled flap, and for three different control algorithms. The three controls are tuned for fatigue load alleviation and they are based on, respectively, measurement of the heave displacement and velocity, measurement of the local angle of attack, measurement of the pressure difference between the two sides of the airfoil. The stability of the aeroservoelastic system in a defined equilibrium state, and for a given flow speed, is then determined by solving an eigenvalue problem. Results show that the trailing edge control system modifies significantly the stability limits of the section. In the investigated case, increased flutter limits are reported when the elastic flap is left without control, whereas, by applying any of the control algorithms, the flutter velocity is reduced. Nevertheless, only in the heave control case the flutter limit becomes critically close to normal operation flow speeds. Furthermore, a marked dependence of the stability limits on the control gain is also observed and, by tuning the gain parameters, flutter and divergence can be suppressed for flow speed even above the flutter velocity encountered with uncontrolled flap. (author)

  2. Effects of grit roughness and pitch oscillations on the S814 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, J.M.; Ramsay, R.R.; Hoffmann, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    Horizontal-axis wind turbine rotors experience unsteady aerodynamics when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the design of new rotor airfoils. The rotors also experience performance degradation due to surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and/or the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can also be used to validate analytical computer codes. An S814 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3 X 5 subsonic wind tunnel (3 X 5) under steady flow with both stationary model conditions and pitch oscillations. To study the extent of performance loss due to surface roughness, a leading edge grit roughness pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25 and 1.5 million, while the angle of attack ranged from -20{degrees} to +40{degrees}. While the model underwent pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.5 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions {+-}5.5{degrees} and {+-}10{degrees}, were used; at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions means the model was in pitch oscillation.

  3. Effects of grit roughness and pitch oscillations on the S801 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    Horizontal axis wind turbine rotors experience unsteady aerodynamics due to wind shear when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the calculation of rotor performance and loads. The rotors also experience performance degradation due to surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can be used to validate analytical computer codes. A S801 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3x5 subsonic wind tunnel (3x5) under steady flow and stationary model conditions, as well as with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers used for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from -20{degrees} to +40{degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used, {plus_minus} 5.5 {degrees}and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees} 14{degrees} and 20{degrees} For purposes herein, any reference to unsteady conditions means that the airfoil model was in pitch oscillation about the quarter chord.

  4. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei; Cheng, Wan; Gao, Wei; Qamar, Adnan; Samtaney, Ravi

    2015-01-01

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10

  5. Airfoil boundary layer separation and control at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yarusevych, S.; Sullivan, P.E. [University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada); Kawall, J.G. [Ryerson University, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada)

    2005-04-01

    The boundary layer separation on a NACA 0025 airfoil was studied experimentally via hot-wire anemometry and surface pressure measurements. The results provide added insight into periodic boundary layer control, suggesting that matching the excitation frequency with the most amplified disturbance in the separated shear layer is optimal for improving airfoil performance. (orig.)

  6. Airfoil noise prediction from 2D3C PIV data

    NARCIS (Netherlands)

    De Santana, Leandro Dantas; Schram, C.; Desmet, W.

    2015-01-01

    The noise emitted by incoming turbulence interacting with an airfoil has many technological applications, and has accordingly received much attention in the literature. While numerous developments are focused on the determination of the airfoil response to a given incoming gust, the characterization

  7. Thermally accurate LES of the stability-emission performance of staged gas-turbine combustion; Simulation aux grandes echelles de la combustion etagee dans les turbines a gaz et son interaction stabilite-polluants-thermique

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, P.

    2005-06-15

    Modern gas turbines use turbulent lean partially premixed combustion in order to minimise nitrous oxide (NO{sub X}) emissions while ensuring flashback safety. The Large-Eddy Simulation (LES) of such a device is the goal of this work. Focus is laid on correctly predicting the NO{sub X} emissions, which are influenced by four factors: heat transfer, mixing quality, combustion modelling and thermo-acoustic stability. As NO{sub X} reaction rates are strongly influenced by temperature, heat transfer by radiation and convection is included. Radiation is predicted by a model, which assumes that the gases are optically thin. Convective heat transfer is included via a newly developed and validated wall-function approach based on the logarithmic law of the wall for temperature. An optimised 2-step reduced chemical reaction scheme for lean methane combustion is presented. This scheme is used for the LES in conjunction with an additional third reaction, fitted to produce the same NO{sub X} reaction rates as in the complete reaction mechanism. Turbulence is accounted for with the thickened flame model in a form, which is optimised for changing equivalence ratios and mesh-resolutions. Mixing is essential not only for predicting flame stabilisation, but also for pollutant emissions as NO{sub X} reaction rates depend exponentially on equivalence ratio. Therefore the full burner geometry, including 16 fuel injections is resolved in LES. Additionally, effusion cooling and film cooling is accounted for in a simplified manner. The non-reacting flow is extensively validated with experimental results. As mixture-fraction fluctuations do not only arise from turbulence, but also from thermo-acoustic instabilities, care was taken to provide acoustic boundary conditions that come close to reality. The resulting LES shows a strong thermo-acoustic instability, comparing well with experimental observations. By making the boundaries completely anechoic it is shown that when the instability

  8. Dynamic stall study of a multi-element airfoil

    Science.gov (United States)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1992-01-01

    Unsteady flow behavior and load characteristics of a VR-7 airfoil with and without a slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 degrees at a Reynolds number of 200,000 to obtain the unsteady lift, drag and pitching moment data. A fluorescing dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flow field and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  9. Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    The present work considers incompressible flow over a 2D airfoil with a deformable trailing edge. The aerodynamic characteristics of an airfoil with a trailing edge flap is numerically investigated using computational fluid dynamics. A novel hybrid immersed boundary (IB) technique is applied...... to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...... results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing edge flap and flow control using trailing edge flap is an efficient way to regulate the aerodynamic loading on airfoils....

  10. Separation control of NACA0015 airfoil using plasma actuators

    Science.gov (United States)

    Harada, Daisuke; Sakakibara, Jun

    2017-11-01

    Separation control of NACA0015 airfoil by means of plasma actuators was investigated. Plasma actuators in spanwise intermittent layout on the suction surface of the airfoil were activated with spanwise phase difference φ = 0 or φ = π in the case of dimensionless burst frequencyF+ = 6 and F+ = 0.5 at Re = 6.3 ×104 . The lift and drag of the airfoil were measured using a two component force balance. The flow around the airfoil was measured by PIV analysis. In the condition of F+ = 6 and φ = π at around stall angle, which is 10 degrees, the lift-to-drag ratio was higher than that ofF+ = 6 and φ = 0 . Therefore, it was confirmed that aerodynamic characteristics of the airfoil improved by disturbances with temporal and spatial phase difference.

  11. Numerical study of the static and pitching RISOe-B1-18 airfoil[STALL

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2004-01-01

    The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISOe-B1-18 airfoil which was equipped and measured in an open jet wind tunnel is studied. Two and three dimensional Navier-Stokes calculations using the k-w SST and Detached Eddy Simulation turbulence models are conducted. An engineering semi-empirical dynamic stall model is also used for performing calculations. Computational results are compared to the experimental results that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the main characteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can then be used to improve the performance of the engineering model. (au)

  12. Comparison of performances of full-speed turbine and half-speed turbine for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hu; Zhang Weihong; Zhang Qiang; Li Shaohua

    2010-01-01

    The steam turbines of nuclear power plants can be divided into the full-speed turbine and half-speed turbine. Different speed leads to differences in many aspects. Therefore, the rational speed is the key point in the selection of steam turbines. This paper contrasts the economy between the half-speed turbine and full-speed turbine, by calculating the relative internal efficiency of half-speed and full-speed steam turbines with the typical level of 1000 megawatt. At the same time, this paper also calculate the relative speed of high speed water drops in the last stage blade of half-speed turbine and full-speed turbine, to contrast the water erosion between the half-speed turbine and full-speed turbine. The results show that the relative internal efficiency of half-speed turbine is higher than that of the full-speed turbine, and that the security especially the ability of preventing water erosion of half-speed turbine is better than that of the full-speed turbine. (authors)

  13. Reversible airfoils for stopped rotors in high speed flight

    International Nuclear Information System (INIS)

    Niemiec, Robert; Jacobellis, George; Gandhi, Farhan

    2014-01-01

    This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier–Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4–5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation. (paper)

  14. Progress in wind tunnel experimental techniques for wind turbine?

    Institute of Scientific and Technical Information of China (English)

    Jingping XIAO; Li CHEN; Qiang WANG; Qiao WANG

    2016-01-01

    Based on the unsteady aerodynamics experiment (UAE) phase VI and the model experiment in controlled conditions (MEXICO) projects and the related research carried out in China Aerodynamic Research and Development Center (CARDC), the recent progress in the wind tunnel experimental techniques for the wind turbine is sum-marized. Measurement techniques commonly used for di?erent types of wind tunnel ex-periments for wind turbine are reviewed. Important research achievements are discussed, such as the wind tunnel disturbance, the equivalence of the airfoil in?ow condition, the three-dimensional (3D) e?ect, the dynamic in?ow in?uence, the ?ow ?eld structure, and the vortex induction. The corresponding research at CARDC and some ideas on the large wind turbine are also introduced.

  15. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  16. Analysis of VAWT Efficiency of NACA00 Series Airfoil%NACA00系列翼型的VAWT效能影响因素分析

    Institute of Scientific and Technical Information of China (English)

    曹阳; 时玉娟; 吴国庆; 李巧梅

    2017-01-01

    采用滑移网格技术对不同参数下的小型垂直轴叶轮瞬态流场进行了数值计算,着重研究了不同安装角、翼型、叶片弦长、叶片数对叶轮功率的影响,得出不同转速下使叶轮获得最大功率的最佳翼型、叶片安装角、弦长和叶片数,并通过吹风实验验证了最佳叶片数和最佳弦长时的垂直轴风力机具有较优的气动性能.%Numerical simulation on unsteady rotated flow of vertical axis wind turbine with different parameters is done based on moving meshes,and it's mainly studied that power of vertical axis wind turbine is affected by different installation angles,airfoils,chord lengths,number of blades.It is proved that when the blade installation Angle,the chord length,the number of blade,and airfoil are best,vertical axis wind turbine can obtain maximum power.At last,the optimal number of blades and chord lengths are testified in the further blowing experiments,and now the optimal aerodynamic performance of vertical axis wind turbine is gotten.

  17. System design and optimization study of axial flow turbine applied in ...

    Indian Academy of Sciences (India)

    between parameters of the turbine and flows, three different types of turbines with ... and the water are run through a multi-stage hydro-turbine for producing electricity. ... to optimize the runner blade shape of a tubular turbine. ..... Ranade V V, Perrard M, Le Sauze N, Xuereb C and Bertrand J 2001 Trailing vortices of Rushton ...

  18. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  19. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  20. High-efficiency airfoil rudders applied to submarines

    Directory of Open Access Journals (Sweden)

    ZHOU Yimei

    2017-03-01

    Full Text Available Modern submarine design puts forward higher and higher requirements for control surfaces, and this creates a requirement for designers to constantly innovate new types of rudder so as to improve the efficiency of control surfaces. Adopting the high-efficiency airfoil rudder is one of the most effective measures for improving the efficiency of control surfaces. In this paper, we put forward an optimization method for a high-efficiency airfoil rudder on the basis of a comparative analysis of the various strengths and weaknesses of the airfoil, and the numerical calculation method is adopted to analyze the influence rule of the hydrodynamic characteristics and wake field by using the high-efficiency airfoil rudder and the conventional NACA rudder comparatively; at the same time, a model load test in a towing tank was carried out, and the test results and simulation calculation obtained good consistency:the error between them was less than 10%. The experimental results show that the steerage of a high-efficiency airfoil rudder is increased by more than 40% when compared with the conventional rudder, but the total resistance is close:the error is no more than 4%. Adopting a high-efficiency airfoil rudder brings much greater lifting efficiency than the total resistance of the boat. The results show that high-efficiency airfoil rudder has obvious advantages for improving the efficiency of control, giving it good application prospects.

  1. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software

    International Nuclear Information System (INIS)

    Villalpando, Fernando; Reggio, Marcelo; Ilinca, Adrian

    2016-01-01

    An approach to numerically simulate ice accretion on 2D sections of a wind turbine blade is presented. The method uses standard commercial ANSYS-Fluent and Matlab tools. The Euler-Euler formulation is used to calculate the water impingement on the airfoil, and a UDF (Used Defined Function) has been devised to turn the airfoil's solid wall into a permeable boundary. Mayer's thermodynamic model is implemented in Matlab for computing ice thickness and for updating the airfoil contour. A journal file is executed to systematize the procedure: meshing, droplet trajectory calculation, thermodynamic model application for computing ice accretion, and the updating of airfoil contours. The proposed ice prediction strategy has been validated using iced airfoil contours obtained experimentally in the AMIL refrigerated wind tunnel (Anti-icing Materials International Laboratory). Finally, a numerical prediction method has been generated for anti-icing assessment, and its results compared with data obtained in this laboratory. - Highlights: • A methodology for ice accretion prediction using commercial software is proposed. • Euler model gives better prediction of airfoil water collection with detached flow. • A source term is used to change from a solid wall to a permeable wall in Fluent. • Energy needed for ice-accretion mitigation system is predicted.

  2. Linearized propulsion theory of flapping airfoils revisited

    Science.gov (United States)

    Fernandez-Feria, Ramon

    2016-11-01

    A vortical impulse theory is used to compute the thrust of a plunging and pitching airfoil in forward flight within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick that considered the leading-edge suction and the projection in the flight direction of the pressure force. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains a new term that generalizes the leading-edge suction term and depends on Theodorsen function C (k) and on a new complex function C1 (k) of the reduced frequency k. The main qualitative difference with Garrick's theory is that the propulsive efficiency tends to zero as the reduced frequency increases to infinity (as 1 / k), in contrast to Garrick's efficiency that tends to a constant (1 / 2). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k -> ∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining non-dimensional parameters. The present analytical results are in good agreement with experimental data and numerical results for small amplitude oscillations. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  3. Transonic airfoil design for helicopter rotor applications

    Science.gov (United States)

    Hassan, Ahmed A.; Jackson, B.

    1989-01-01

    Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

  4. Airfoil Shape Optimization based on Surrogate Model

    Science.gov (United States)

    Mukesh, R.; Lingadurai, K.; Selvakumar, U.

    2018-02-01

    Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.

  5. FLEET Velocimetry Measurements on a Transonic Airfoil

    Science.gov (United States)

    Burns, Ross A.; Danehy, Paul M.

    2017-01-01

    Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.

  6. Parametric dependence of a morphing wind turbine blade on material elasticity

    International Nuclear Information System (INIS)

    Puterbaugh, Martin; Beyene, Asfaw

    2011-01-01

    A few recent works have suggested a morphing blade for wind turbine energy conversion. The concept is derived from fin and wing motions that better adapt to varying load conditions. Previous research has provided the fluid mechanic justification of this new concept. This paper establishes a parametric relationship between an asymmetric wind turbine blade and constituent material modulus to predict the geometric response of the morphing blade for a given material characteristic. The airfoil's trailing edge deflection is associated to a prescribed fluid exit angle via the Moment Area (MA) method. Subsequently, a mathematical model is derived to predict material deformation with respect to imparted aerodynamic forces. Results show that an airfoil, much like a tapered beam, can be modeled as a non-prismatic cantilevered beam using this well established method. -- Research highlights: →A mathematical model relating morphing airfoil thickness and elastic modulus was established. →For non-prismatic beam under a uniform distributive load, the slope and deflection of the airfoil's trailing edge were related to the fluid exit angle. →The main driver of blade deformation was the angular drag force. The Moment Area method was used, verified by Finite Element method. →Displacement to the exit angle is predicated upon the elastic modulus value given that other parameters are constant. →Optimum power output is obtained in part load conditions when the blade deforms to the applicable exit angle.

  7. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  8. Prediction of unsteady separated flows on oscillating airfoils

    Science.gov (United States)

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  9. Numerical simulation of the RISOe1-airfoil dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)

  10. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei

    2015-04-25

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u\\'u\\'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement

  11. A condenser for very high power steam turbines

    International Nuclear Information System (INIS)

    Gardey, Robert.

    1973-01-01

    The invention relates to a condenser for very high power steam turbines under the masonry-block supporting the low-pressure stages of the turbine, that condenser comprises two horizontal aligned water-tube bundles passing through the steam-exhaust sleeves of the low-pressure stages, on both sides of a common inlet water box. The invention can be applied in particular to the 1000-2000 MW turbines of light water nuclear power stations [fr

  12. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  13. Unsteady load on an oscillating Kaplan turbine runner

    Science.gov (United States)

    Puolakka, O.; Keto-Tokoi, J.; Matusiak, J.

    2013-02-01

    A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.

  14. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  15. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  16. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D

    2012-01-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  17. Thermal stresses investigation of a gas turbine blade

    Science.gov (United States)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  18. Pitot-tube turbine as wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Naake, L

    1978-10-19

    The use of the Pitot tube turbine as a wind power station is an application of the well known Pitot tube with the turbines built into jet engines. The novelty of this invention lies in the combined nozzle and turbine unit, where the wind is caught in the funnel opening, is accelerated in the narrow flow zone and then acts on the turbine blades. Due to the acceleration, a greater torque is exerted on the turbine than in free air flow. The Pitot tube turbine consists of a casing with a turbine inside, which is fixed by guide vane supports to the casing and which contains one or two stage turbine blades and electrical generators. The whole structure with the rotor is set on a sub-frame and rotation is contained by control surfaces. The subframe can be used as a building.

  19. Failure analysis of turbine blades

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1989-01-01

    Two 20 MW gas turbines suffered damage in blades belonging to the 2nd. stage of the turbine after 24,000 hours of duty. From research it arises that the fuel used is not quite adequate to guarantee the blade's operating life due to the excess of SO 3 , C and Na existing in combustion gases which cause pitting to the former. Later, the corrosion phenomenon is presented under tension produced by working stress enhanced by pitting where Pb is its main agent. A change of fuel is recommended thus considering the blades will reach the operational life they were designed for. (Author) [es

  20. Improving Turbine Performance with Ceramic Matrix Composites

    Science.gov (United States)

    DiCarlo, James A.

    2007-01-01

    Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.

  1. Active Control of Flow Separation Over an Airfoil

    Science.gov (United States)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  2. Extraction of airfoil data using PIV and pressure measurements

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    of the rotor. The extraction technique is verified by employing the derived airfoil characteristics as input to computations using the BEM technique and comparing the calculated axial and tangential forces to the measured data. The comparison also demonstrates that the used technique of determining the AOA...... airfoil data are compared to 2D data from wind tunnel experiments and XFOIL computations. The comparison suggests that the rotor is subject to severe 3D effects originating from the geometry of the rotor, and explains why the Blade Element Momentum technique with 2D airfoil data over‐predicts the loading......A newly developed technique for determining the angle of attack (AOA) on a rotating blade is used to extract AOAs and airfoil data from measurements obtained during the MEXICO (Model rotor EXperiments in COntrolled conditions) rotor experiment. Detailed surface pressure and Particle Image...

  3. Numerical simulation of airfoil trailing edge serration noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...... field are obtained using Large Eddy Simulation. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FW-H approach. The extended length of the serration is about 16.7% of the airfoil chord and the geometric angle of the serration...... is 28 degrees. The chord based Reynolds number is around 1.5x106. Simulations are compared with existing wind tunnel experiments at various angles of attack. Even though the airfoil under investigation is already optimized for low noise emission, numerical simulations and wind tunnel experiments show...

  4. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  5. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shamshirband

    Full Text Available Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  6. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  7. Advanced multi-megawatt wind turbine design for utility application

    Science.gov (United States)

    Pijawka, W. C.

    1984-08-01

    A NASA/DOE program to develop a utility class multimegawatt wind turbine, the MOD-5A, is described. The MOD-5A features a 400 foot diameter rotor which is teetered and positioned upwind of the tower; a 7.3 megawatt power rating with a variable speed electric generating system; and a redundant rotor support and torque transmission structure. The rotor blades were fabricated from an epoxy-bonded wood laminate material which was a successful outgrowth of the MOD-OA airfoil design. Preliminary data from operational tests carried out at the NASA Plumbrook test facility are presented.

  8. Advanced multi-megawatt wind turbine design for utility application

    Science.gov (United States)

    Pijawka, W. C.

    1984-01-01

    A NASA/DOE program to develop a utility class multimegawatt wind turbine, the MOD-5A, is described. The MOD-5A features a 400 foot diameter rotor which is teetered and positioned upwind of the tower; a 7.3 megawatt power rating with a variable speed electric generating system; and a redundant rotor support and torque transmission structure. The rotor blades were fabricated from an epoxy-bonded wood laminate material which was a successful outgrowth of the MOD-OA airfoil design. Preliminary data from operational tests carried out at the NASA Plumbrook test facility are presented.

  9. Analysis of conjugated heat transfer, in transient state of the first stage of a gas turbine; Analisis de transferencia de calor conjugada, en estado transitorio, de la primera etapa de una turbina de gas

    Energy Technology Data Exchange (ETDEWEB)

    Campos Amezcua, Alfonso; Mazur C, Zdzislaw [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Gallegos Munoz, Armando [Facultad de Ingenieria Mecanica, Electrica y Electronica (FIMEE), Universidad de Guanajuato, Guanajuato (Mexico)

    2007-11-15

    This article presents an analysis of conjugated heat transfer in the first stage of movable blades during the starting of a gas turbine, covering a period of 1,012 seconds. The developed computer model is in 3D and uses as initial and border conditions typical starting curves for stack gases, the cooling air and the angular velocity of the blades. As a result of the numerical predictions, the temperature distributions in stack gases, the trowel of the blade and the cooling air are included, doing emphasis in the results obtained in the solid (body of the blade), since these are used for thermo-mechanical stress analysis and later estimation of the blade residual life. [Spanish] Este articulo presenta un analisis de transferencia de calor conjugada en la primera etapa de alabes moviles, durante el arranque de una turbina de gas, cubriendo un periodo de 1.012 segundos. El modelo computacional desarrollado es en tres dimensiones y utiliza como condiciones iniciales y de frontera curvas de arranque tipicas para los gases de combustion, el aire de enfriamiento y la velocidad angular de los alabes. Como resultado de las predicciones numericas, se incluyen las distribuciones de temperatura en los gases de combustion, la paleta del alabe y el aire de enfriamiento, haciendo enfasis en los resultados obtenidos en el solido (cuerpo del alabe), ya que estos se utilizan para analisis de esfuerzos termomecanicos y posterior estimacion de vida residual del alabe.

  10. Techniques for enhancing durability and equivalence ratio control in a rich-lean, three-stage ground power gas turbine combustor

    Science.gov (United States)

    Schultz, D. F.

    1982-01-01

    Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.

  11. AirborneWind Energy: Airfoil-Airmass Interaction

    OpenAIRE

    Zanon , Mario; Gros , Sebastien; Meyers , Johan; Diehl , Moritz

    2014-01-01

    The Airborne Wind Energy paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. While Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. A study proposed in Zanon et al. (2013) confirms this claim by showing that, in the ...

  12. Aerodynamic sound of flow past an airfoil

    Science.gov (United States)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  13. Unsteady boundary layer development on a wind turbine blade: an experimental study of a surrogate problem

    Science.gov (United States)

    Cadel, Daniel R.; Zhang, Di; Lowe, K. Todd; Paterson, Eric G.

    2018-04-01

    Wind turbines with thick blade profiles experience turbulent, periodic approach flow, leading to unsteady blade loading and large torque fluctuations on the turbine drive shaft. Presented here is an experimental study of a surrogate problem representing some key aspects of the wind turbine unsteady fluid mechanics. This experiment has been designed through joint consideration by experiment and computation, with the ultimate goal of numerical model development for aerodynamics in unsteady and turbulent flows. A cylinder at diameter Reynolds number of 65,000 and Strouhal number of 0.184 is placed 10.67 diameters upstream of a NACA 63215b airfoil with chord Reynolds number of 170,000 and chord-reduced frequency of k=2π fc/2/V=1.5. Extensive flow field measurements using particle image velocimetry provide a number of insights about this flow, as well as data for model validation and development. Velocity contours on the airfoil suction side in the presence of the upstream cylinder indicate a redistribution of turbulent normal stresses from transverse to streamwise, consistent with rapid distortion theory predictions. A study of the boundary layer over the suction side of the airfoil reveals very low Reynolds number turbulent mean streamwise velocity profiles. The dominance of the high amplitude large eddy passages results in a phase lag in streamwise velocity as a function of distance from the wall. The results and accompanying description provide a new test case incorporating moderate-reduced frequency inflow for computational model validation and development.

  14. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  15. Aerodynamic loading on a cylinder behind an airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.J.; Huang, L.; Zhou, Y. [Hong Kong Polytechnic University, Department of Mechanical Engineering, Kowloon (Hong Kong)

    2005-05-01

    The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Re{sub d}=2,100-20,000, and the airfoil chord-length-based Reynolds numbers of Re{sub c}=14,700-140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as Tincreases. For Re{sub c}<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Re{sub c}>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding. (orig.)

  16. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications

    National Research Council Canada - National Science Library

    Fielder, Robert S; Palmer, Matthew E

    2003-01-01

    ..., and redesign compressor and turbine stages based on actual measurements. There currently exists no sensor technology capable of making pressure measurements in the critical hot regions of gas turbine engines...

  17. 尾缘加厚翼型的三维旋转特性研究%Study on 3D rotation characteristics of trailing edge enlarged airfoils

    Institute of Scientific and Technical Information of China (English)

    徐浩然; 杨华; 马桂超

    2016-01-01

    In this paper,Computational Fluid Dynamics (CFD) method was employed to predict the lift and drag coefficients of airfoils at different radii of MEXICO (Model EXperiments In Controlled cOnditions) experimental wind turbine,the computational results were compared with experimental results to validate the prediction accuracy of CFD,the results show that CFD can predict the lift and drag coefficients of airfoils under rotating conditions accurately.Then,CFD method was used to predict the aerodynamic characteristics of a rotor which is newly designed with trailing edge enlarged airfoil and the same chord length along the radial direction,so the characteristics of trailing edge enlarged airfoil under rotating conditions can be obtained which show that the lift coefficients of trailing edge enlarged airfoil is 10 percent larger than that of respectively original airfoil below an angle of attack of 15 degrees.What's more,the roughness sensitivity of trailing edge enlarged airfoil is better than that of respectively original airfoil under rotating conditions.At last,with the increase of radius,the lift coefficients of trailing edge enlarged and original airfoils both increase but stall occurs ahead,the increment of lift coefficients of trailing edge enlarged airfoil is larger than that of respectively original airfoil under rotating conditions.%采用计算流体动力学(CFD)方法对MEXICO试验风力机叶片不同部位翼型在旋转状态下的升阻力系数进行计算,并与试验数据进行比较分析,验证了CFD方法能够准确预测翼型在旋转状态下的升阻力系数.通过采用尾缘对称加厚到5%翼型弦长的DU 97-W-300-05翼型和对应的尾缘未加厚的DU 97-W-300翼型设计,得到沿叶片径向具有相同弦长的风力机叶片,并采用CFD方法对该叶片在旋转状态下的气动特性进行计算.结果表明:在旋转状态下,当攻角小于15.时,尾缘加厚翼型的升力系数比相对应的尾缘未加厚翼型大10

  18. The effects of NACA 0012 airfoil modification on aerodynamic performance improvement and obtaining high lift coefficient and post-stall airfoil

    Science.gov (United States)

    Sogukpinar, Haci

    2018-02-01

    In this study, aerodynamic performances of NACA 0012 airfoils with distinct modification are numerically investigated to obtain high lift coefficient and post-stall airfoils. NACA 0012 airfoil is divided into two part thought chord line then suction sides kept fixed and by changing the thickness of the pressure side new types of airfoil are created. Numerical experiments are then conducted by varying thickness of NACA 0012 from lower surface and different relative thicknesses asymmetrical airfoils are modified and NACA 0012-10, 0012-08, 0012-07, 0012-06, 0012-04, 0012-03, 0012-02, 0012-01 are created and simulated by using COMSOL software.

  19. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  20. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    International Nuclear Information System (INIS)

    Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R

    2014-01-01

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made