WorldWideScience

Sample records for stage reaction step

  1. Multiple stage miniature stepping motor

    International Nuclear Information System (INIS)

    Niven, W.A.; Shikany, S.D.; Shira, M.L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed

  2. Statistical theory of multi-step compound and direct reactions

    International Nuclear Information System (INIS)

    Feshbach, H.; Kerman, A.; Koonin, S.

    1980-01-01

    The theory of nuclear reactions is extended so as to include a statistical treatment of multi-step processes. Two types are distinguished, the multi-step compound and the multi-step direct. The wave functions for the system are grouped according to their complexity. The multi-step direct process involves explicitly those states which are open, while the multi-step compound involves those which are bound. In addition to the random phase assumption which is applied differently to the multi-step direct and to the multi-step compound cross-sections, it is assumed that the residual interaction will have non-vanishing matrix elements between states whose complexities differ by at most one unit. This is referred to as the chaining hypothesis. Explicit expressions for the double differential cross-section giving the angular distribution and energy spectrum are obtained for both reaction types. The statistical multi-step compound cross-sections are symmetric about 90 0 . The classical statistical theory of nuclear reactions is a special limiting case. The cross-section for the statistical multi-step direct reaction consists of a set of convolutions of single-step direct cross-sections. For the many step case it is possible to derive a diffusion equation in momentum space. Application is made to the reaction 181 Ta(p,n) 181 W using the statistical multi-step compound formalism

  3. Two-Step Macrocycle Synthesis by Classical Ugi Reaction

    NARCIS (Netherlands)

    Abdelraheem, Eman M M; Khaksar, Samad; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Shaabani, Shabnam; Dömling, Alexander

    2018-01-01

    The direct nonpeptidic macrocycle synthesis of α-isocyano-ω-amines via the classical Ugi four-component reaction (U-4CR) is introduced. Herein an efficient and flexible two-step procedure to complex macrocycles is reported. In the first step, the reaction between unprotected diamines and

  4. Randomness in multi-step direct reactions

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1991-01-01

    The authors propose a quantum-statistical framework that provides an integrated perspective on the differences and similarities between the many current models for multi-step direct reactions in the continuum. It is argued that to obtain a statistical theory two physically different approaches are conceivable to postulate randomness, respectively called leading-particle statistics and residual-system statistics. They present a new leading-particle statistics theory for multi-step direct reactions. It is shown that the model of Feshbach et al. can be derived as a simplification of this theory and thus can be founded solely upon leading-particle statistics. The models developed by Tamura et al. and Nishioka et al. are based upon residual-system statistics and hence fall into a physically different class of multi-step direct theories, although the resulting cross-section formulae for the important first step are shown to be the same. The widely used semi-classical models such as the generalized exciton model can be interpreted as further phenomenological simplification of the leading-particle statistics theory

  5. Analysis of reaction schemes using maximum rates of constituent steps

    Science.gov (United States)

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  6. The statistics of multi-step direct reactions

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1991-01-01

    We propose a quantum-statistical framework that provides an integrated perspective on the differences and similarities between the many current models for multi-step direct reactions in the continuum. It is argued that to obtain a statistical theory two physically different approaches are conceivable to postulate randomness, respectively called leading-particle statistics and residual-system statistics. We present a new leading-particle statistics theory for multi-step direct reactions. It is shown that the model of Feshbach et al. can be derived as a simplification of this theory and thus can be founded solely upon leading-particle statistics. The models developed by Tamura et al. and Nishioka et al. are based upon residual-system statistics and hence fall into a physically different class of multi-step direct theories, although the resulting cross-section formulae for the important first step are shown to be the same. The widely used semi-classical models such as the generalized exciton model can be interpreted as further phenomenological simplifications of the leading-particle statistics theory. A more comprehensive exposition will appear before long. (author). 32 refs, 4 figs

  7. Multi-step direct reactions at low energies

    International Nuclear Information System (INIS)

    Marcinkowski, A.; Marianski, B.

    2001-01-01

    Full text: The theory of the multistep direct (MSD) reactions of Feshbach, Kerman and Koonin has for quite some time become a subject of controversy due to the bi orthogonal distorted waves involved in the transition amplitudes describing the MSD cross sections. The bi orthogonal wave functions result in non-normal DWBA matrix elements, that can be expressed in terms of normal DWBA matrix elements multiplied by the inverse elastic scattering S-matrix. It has been argued that the enhancing inverse S-factors are washed out by averaging over energy in the continuum. As a result normal DWBA matrix elements are commonly used in practical calculations. Almost all analyses of inelastic scattering and charge-exchange reactions using the DWBA matrix elements have concluded that nucleon emission at low energies can be described as one-step reaction mainly. On the other hand, it has been shown that the limits imposed by the energy weighted sum rules (EWSR's) on transition of given angular momentum transfer lead to a significant reduction of the one step cross section that can be compensated by the enhanced MSD cross sections obtained with the use of the non-normal DWBA matrix elements. Very recently the MSD theory of FKK was modified to include collective excitations and the non-normal DWBA matrix elements and the prescription for calculations of the cross sections for the MSD reactions was given. In the present paper we present the results of the modified theory used for describing the 93 Nb (n,xn) 93 Nb reaction at incident energy of 20 MeV and the 65 Cu (p,xn) 65 Zn reaction at 27 MeV. The results show enhanced contributions from two-, three- and four step reactions. We investigate the importance of the multi-phonon, multi particle hole and the mixed particle hole-phonon excitations in neutron scattering to the continuum. We also show the importance of the different sequences of collisions of the leading continuum nucleon that contribute to the MSD (p,n) reaction. When all

  8. Validity of the Stages of Change in Steps instrument (SoC-Step) for achieving the physical activity goal of 10,000 steps per day.

    Science.gov (United States)

    Rosenkranz, Richard R; Duncan, Mitch J; Caperchione, Cristina M; Kolt, Gregory S; Vandelanotte, Corneel; Maeder, Anthony J; Savage, Trevor N; Mummery, W Kerry

    2015-11-30

    Physical activity (PA) offers numerous benefits to health and well-being, but most adults are not sufficiently physically active to afford such benefits. The 10,000 steps campaign has been a popular and effective approach to promote PA. The Transtheoretical Model posits that individuals have varying levels of readiness for health behavior change, known as Stages of Change (Precontemplation, Contemplation, Preparation, Action, and Maintenance). Few validated assessment instruments are available for determining Stages of Change in relation to the PA goal of 10,000 steps per day. The purpose of this study was to assess the criterion-related validity of the SoC-Step, a brief 10,000 steps per day Stages of Change instrument. Participants were 504 Australian adults (176 males, 328 females, mean age = 50.8 ± 13.0 years) from the baseline sample of the Walk 2.0 randomized controlled trial. Measures included 7-day accelerometry (Actigraph GT3X), height, weight, and self-reported intention, self-efficacy, and SoC-Step: Stages of Change relative to achieving 10,000 steps per day. Kruskal-Wallis H tests with pairwise comparisons were used to determine whether participants differed by stage, according to steps per day, general health, body mass index, intention, and self-efficacy to achieve 10,000 steps per day. Binary logistic regression was used to test the hypothesis that participants in Maintenance or Action stages would have greater likelihood of meeting the 10,000 steps goal, in comparison to participants in the other three stages. Consistent with study hypotheses, participants in Precontemplation had significantly lower intention scores than those in Contemplation (p = 0.003) or Preparation (p per day (OR = 3.11; 95 % CI = 1.66,5.83) compared to those in Precontemplation, Contemplation, or Preparation. Intention (p per day. Australian New Zealand Clinical Trials Registry reference: ACTRN12611000157976 World Health Organization Universal Trial

  9. Two-step two-stage fission gas release model

    International Nuclear Information System (INIS)

    Kim, Yong-soo; Lee, Chan-bock

    2006-01-01

    Based on the recent theoretical model, two-step two-stage model is developed which incorporates two stage diffusion processes, grain lattice and grain boundary diffusion, coupled with the two step burn-up factor in the low and high burn-up regime. FRAPCON-3 code and its in-pile data sets have been used for the benchmarking and validation of this model. Results reveals that its prediction is in better agreement with the experimental measurements than that by any model contained in the FRAPCON-3 code such as ANS 5.4, modified ANS5.4, and Forsberg-Massih model over whole burn-up range up to 70,000 MWd/MTU. (author)

  10. Performance monitoring and response conflict resolution associated with choice stepping reaction tasks.

    Science.gov (United States)

    Watanabe, Tatsunori; Tsutou, Kotaro; Saito, Kotaro; Ishida, Kazuto; Tanabe, Shigeo; Nojima, Ippei

    2016-11-01

    Choice reaction requires response conflict resolution, and the resolution processes that occur during a choice stepping reaction task undertaken in a standing position, which requires maintenance of balance, may be different to those processes occurring during a choice reaction task performed in a seated position. The study purpose was to investigate the resolution processes during a choice stepping reaction task at the cortical level using electroencephalography and compare the results with a control task involving ankle dorsiflexion responses. Twelve young adults either stepped forward or dorsiflexed the ankle in response to a visual imperative stimulus presented on a computer screen. We used the Simon task and examined the error-related negativity (ERN) that follows an incorrect response and the correct-response negativity (CRN) that follows a correct response. Error was defined as an incorrect initial weight transfer for the stepping task and as an incorrect initial tibialis anterior activation for the control task. Results revealed that ERN and CRN amplitudes were similar in size for the stepping task, whereas the amplitude of ERN was larger than that of CRN for the control task. The ERN amplitude was also larger in the stepping task than the control task. These observations suggest that a choice stepping reaction task involves a strategy emphasizing post-response conflict and general performance monitoring of actual and required responses and also requires greater cognitive load than a choice dorsiflexion reaction. The response conflict resolution processes appear to be different for stepping tasks and reaction tasks performed in a seated position.

  11. Evaluation of high step-up power electronics stages in thermoelectric generator systems

    DEFF Research Database (Denmark)

    Sun, Kai; Ni, Longxian; Chen, Min

    2013-01-01

    To develop practical thermoelectric generator (TEG) systems, especially radioisotope thermoelectric power supplies for deep-space exploration, a power conditioning stage with high step-up gain is indispensable. This stage is used to step up the low output voltage of thermoelectric generators...... to the required high level. Furthermore, maximum power point tracking control for TEG modules needs to be implemented into the power electronics stages. In this paper, the temperature-dependent electrical characteristics of a thermoelectric generator are analyzed in depth. Three typical high step-up power...... converters suitable for TEG applications are discussed: an interleaved boost converter, a boost converter with a coupled inductor and an interleaved boost converter with an auxiliary transformer. A general comparison of the three high step-up converters is conducted to study the step-up gain, conversion...

  12. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  13. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    Science.gov (United States)

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  14. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    Science.gov (United States)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  15. Application of multi-step direct reaction theory to 14 MeV neutron reaction, 3 (n,. cap alpha. )

    Energy Technology Data Exchange (ETDEWEB)

    Kumabe, I.; Matoba, M.; Fukuda, K. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Multi-step direct-reaction theory proposed by Tamura et al. has been applied to continuous spectra of the 14 MeV (n, ..cap alpha..) reaction with some modifications. Calculated results reproduce well the experimental energy and angular distributions of the 14 MeV (n, ..cap alpha..) reactions.

  16. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    International Nuclear Information System (INIS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-01-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction. (paper)

  17. Multi-step direct reactions

    International Nuclear Information System (INIS)

    Koning, A.J.

    1992-07-01

    In recent years a variety of statistical theories has been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton models'; these are basically MSD-type extensions on top of compound-like concepts. In this report the relation between their underlying statistical MSD-postulates are highlighted. A command framework is sketched that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high energy-tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imagined that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expression for MSD emission cross sections. This picture suggests that mentioned MSD models can be interpreted as a variant of essentially one and the same theory. 113 refs.; 25 figs.; 9 tabs

  18. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    Science.gov (United States)

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  19. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    Science.gov (United States)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  20. Densities of accessible final states for multi-step compound reactions

    International Nuclear Information System (INIS)

    Maoming De; Guo Hua

    1993-01-01

    The densities of accessible final states for calculations of multi-step compound reactions are derived. The Pauli exclusion principle is taken into account in the calculations. The results are compared with a previous author's results and the effect of the Pauli exclusion principle is investigated. (Author)

  1. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2015-01-01

    High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...

  2. Molecular dynamics simulation of the first electron transfer step in the oxygen reduction reaction

    NARCIS (Netherlands)

    Hartnig, C.B.; Koper, M.T.M.

    2002-01-01

    We present a molecular dynamics simulation of solvent reorganization in the first electron transfer step in the oxygen reduction reaction, i.e. O2+e-¿O2-, modeled as taking place in the outer Helmholtz plane. The first electron transfer step is usually considered the rate-determining step from many

  3. Fast-ion energy resolution by one-step reaction gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2016-01-01

    The spectral broadening of γ-rays from fusion plasmas can be measured in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that determine the observable velocity space and quantify the velocity-space sensitivity of one-step reaction high-resolution GRS measurements in magne...

  4. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    Science.gov (United States)

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of Reaction

  5. One-step versus two-step mechanism of Diels-Alder reaction of 1-chloro-1-nitroethene with cyclopentadiene and furan.

    Science.gov (United States)

    Jasiński, Radomir

    2017-08-01

    DFT computational study shows that Diels-Alder (DA) reactions of 1-chloro-1-nitroethene with cyclopentadiene and furan have polar nature. However, their mechanism is substantially different. In particular, 1-chloro-1-nitroethene react with cyclopentadiene according to one-step mechanism. In the same time, more favourable channel associated with the P-DA reaction between furan and 1-chloro-1-nitroethene is a domino process, that comprises an initial hetero-Diels-Alder reaction yielding a [2+4] cycloadduct, which experiences a subsequent [3,3] sigmatropic shift to yield the expected formal [4+2] cycloadduct. This is a consequence of more polar nature of reaction, due to higher nucleophilicity of furan in comparison to cyclopentadiene. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A cascade reaction network mimicking the basic functional steps of acquired immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-01-01

    Biological systems use complex ‘information processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS which we call Adaptive Immune Response Simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system which responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner which is superficially similar to the most basic responses of the vertebrate acquired immune system, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. PMID:26391084

  7. A cascade reaction network mimicking the basic functional steps of adaptive immune response.

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex 'information-processing cores' composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  8. Investigation to biodiesel production by the two-step homogeneous base-catalyzed transesterification.

    Science.gov (United States)

    Ye, Jianchu; Tu, Song; Sha, Yong

    2010-10-01

    For the two-step transesterification biodiesel production made from the sunflower oil, based on the kinetics model of the homogeneous base-catalyzed transesterification and the liquid-liquid phase equilibrium of the transesterification product, the total methanol/oil mole ratio, the total reaction time, and the split ratios of methanol and reaction time between the two reactors in the stage of the two-step reaction are determined quantitatively. In consideration of the transesterification intermediate product, both the traditional distillation separation process and the improved separation process of the two-step reaction product are investigated in detail by means of the rigorous process simulation. In comparison with the traditional distillation process, the improved separation process of the two-step reaction product has distinct advantage in the energy duty and equipment requirement due to replacement of the costly methanol-biodiesel distillation column. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Evidence for vacancy migration in stage III for copper

    International Nuclear Information System (INIS)

    Antesberger, G.; Sonnenberg, K.; Wienhold, P.; Coltman, R.R.; Klabunde, C.E.; Williams, J.M.

    1975-01-01

    Specimens doped with interstitial clusters and single vacancies have been annealed isochronally through the temperature range of stage III. Combining this annealing with a test irradiation after each annealing step reactions of mobile single test interstitials with the doping defects were studied. These reactions provide information about the variation of the doping defect structure during annealing. The experimental results suggest that vacancy clusters are formed in stage III

  10. Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy.

    Science.gov (United States)

    Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F

    2017-06-15

    High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl - - and Ca 2+ -imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. KAPSIES: A program for the calculation of multi-step direct reaction cross sections

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1994-09-01

    We present a program for the calculation of continuum cross sections, sepctra, angular distributions and analyzing powers according to various quantum-mechanical theories for statistical multi-step direct nuclear reactions. (orig.)

  12. Field theoretical approach to proton-nucleus reactions. I - One step inelastic scattering

    International Nuclear Information System (INIS)

    Eiras, A.; Kodama, T.; Nemes, M.C.

    1988-01-01

    In this work we obtain a closed form expression to the double differential cross section for one step proton-nucleus reaction within a field theoretical framework. Energy and momentum conservation as well as nuclear structure effects are consistently taken into account within the field theoretical eikonal approximation. In our formulation the kinematics of such reaction is not dominated by the free nucleon-nucleon cross section but a new factor which we call relativistic differential cross section in a Born Approximation. (author) [pt

  13. Particle-hole state densities for statistical multi-step compound reactions

    International Nuclear Information System (INIS)

    Oblozinsky, P.

    1986-01-01

    An analytical relation is derived for the density of particle-hole bound states applying the equidistant-spacing approximation and the Darwin-Fowler statistical method. The Pauli exclusion principle as well as the finite depth of the potential well are taken into account. The set of densities needed for calculations of multi-step compound reactions is completed by deriving the densities of accessible final states for escape and damping. (orig.)

  14. Estimating reaction rate constants from a two-step reaction: a comparison between two-way and three-way methods

    NARCIS (Netherlands)

    Bijlsma, S.; Smilde, A. K.

    2000-01-01

    In this paper, two different spectral datasets are used in order to estimate reaction rate constants using different algorithms. Dataset 1 consists of short-wavelength near-infrared (SW NIR) spectra taken in time of the two-step epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone using tert-butyl

  15. Proton transfers in the Strecker reaction revealed by DFT calculations

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-08-01

    Full Text Available The Strecker reaction of acetaldehyde, NH3, and HCN to afford alanine was studied by DFT calculations for the first time, which involves two reaction stages. In the first reaction stage, the aminonitrile was formed. The rate-determining step is the deprotonation of the NH3+ group in MeCH(OH-NH3+ to form 1-aminoethanol, which occurs with an activation energy barrier (ΔE≠ of 9.6 kcal/mol. The stereochemistry (R or S of the aminonitrile product is determined at the NH3 addition step to the carbonyl carbon of the aldehyde. While the addition of CN− to the carbon atom of the protonated imine 7 appears to scramble the stereochemistry, the water cluster above the imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2-C(=O-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N(amino-protonated aminonitrile which occurs with an ΔE≠ value of 34.7 kcal/mol. In the Strecker reaction, the proton transfer along the hydrogen bonds plays a crucial role.

  16. Leprosy reactions in postelimination stage: the Bangladesh experience.

    Science.gov (United States)

    Mowla, M R; Ara, S; Mizanur Rahman, A F M; Tripura, S P; Paul, S

    2017-04-01

    Leprosy reactions are immunologically mediated conditions and a major cause of disability before, during and after multidrug therapy (MDT). Little data have been published on the epidemiology of leprosy reactions in Bangladesh. To describe the pattern and prevalence of leprosy reactions in the postelimination stage. A descriptive retrospective cross-sectional study was carried out in Chittagong Medical College Hospital using the registered records of patients in the period between 2004 and 2013. Of the 670 patients with leprosy, 488 (73.38%) were males and 182 (27.37%) were females. The prevalence of reaction was in 300 (44.78%) patients with a male:female ratio of 3.55 : 1. The age-specific cumulative reaction cases at >40 years were 115 (38.33%) among all age groups. The prevalence of reaction was found to be in 166 (55.33%) patients for the reversal reaction, 49 (16.57%) for the erythema nodosum leprosum (ENL) and 85 (28.33%) for the neuritis. Borderline tuberculoid was most common (106, 35.33%)in the reversal reaction group, while lepromatous leprosy was most common (37, 12.33%) in ENL group. More than half of the patients (169, 56.33%) had reactions at the time of presentations, while 85 (28.33%) and 46 (15.33%) patients developed reaction during and after MDT, respectively. The reversal reaction group presented with ≥six skin lesions in 96 (57.83%) patients and ≥two nerve function impairments (NFIs) in 107 (64.46%) patients. The ENL was present chiefly as papulo-nodular lesions in 45 (91.84%) patients followed by pustule-necrotic lesions in four (8.16%), neuritis in 33 (67.35%), fever in 24 (48.98%), lymphadenitis in six (12.24%), arthritis in five (10.20%) and iritis in two (4.08%). Bacterial index ≥3 had been demonstrated in 34 (60.71%) patients in ENL group. The incidence of leprosy reaction seemed to be more than three times common in borderline tuberculoid (52.33%) group than in lepromatous leprosy (14%) group. Reactions with NFI and disability

  17. Creating large out-of-plane displacement electrothermal motion stage by incorporating beams with step features

    International Nuclear Information System (INIS)

    Kim, Yong-Sik; Dagalakis, Nicholas G; Gupta, Satyandra K

    2013-01-01

    Realizing out-of-plane actuation in micro-electro-mechanical systems (MEMS) is still a challenging task. In this paper, the design, fabrication methods and experimental results for a MEMS-based out-of-plane motion stage are presented based on bulk micromachining technologies. This stage is electrothermally actuated for out-of-plane motion by incorporating beams with step features. The fabricated motion stage has demonstrated displacements of 85 µm with 0.4 µm (mA) −1 rates and generated up to 11.8 mN forces with stiffness of 138.8 N m −1 . These properties obtained from the presented stage are comparable to those for in-plane motion stages, therefore making this out-of-plane stage useful when used in combination with in-plane motion stages. (paper)

  18. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  19. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization

    Directory of Open Access Journals (Sweden)

    Julio A. Alonso

    2013-02-01

    Full Text Available Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored.

  20. Theoretical intercomparison of multi-step direct reaction models and computational intercomparison of multi-step direct reaction models

    International Nuclear Information System (INIS)

    Koning, A.J.

    1992-08-01

    In recent years several statistical theories have been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton models'. These are basically MSD-type extensions on top of compound-like concepts. In this report the relationship between their underlying statistical MSD-postulates is highlighted. A command framework is outlined that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high energy-tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imagined that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expression for MSD emission cross sections. This picture suggests that mentioned MSD models can be interpreted as a variant of essentially one and the same theory. However, this appears not to be the case. To show this usual MSD distinction within the composite reacting nucleus between the fast continuum particle and the residual interactions, the nucleons of the residual core are to be distinguished from those of the leading particle with the residual system. This distinction will turn out to be crucial to present analysis. 27 refs.; 5 figs.; 1 tab

  1. Site selectivity of specific reaction steps important for catalysis

    DEFF Research Database (Denmark)

    Nielsen, Kenneth

    ) overlayer system. In the STM study of the structure sensitivity of the CO dissociation reaction on the Ru(0 1 54) sample, it was determined that after cooling the sample from 700K to 400K in 10-8Torr of CO or in the CO that was left after a TPD, the sample displayed periodic decorations on every other...... site, is the most stable conguration after dissociation. Preliminary results where the sample was exposed to high doses of CO, at a CO pressure of 10-5 Torr and a temperature of 550K (dissociation conditions) indicated that especially every other step had a very rough appearance after 7 min exposure...

  2. Mass transfer with complex chemical reactions in gas–liquid systems : two-step reversible reactions with unit stoichiometric and kinetic orders

    NARCIS (Netherlands)

    Vas Bhat, R.D.; Kuipers, J.A.M.; Versteeg, G.F.

    2000-01-01

    An absorption model to study gas–liquid mass transfer accompanied by reversible two-step reactions in the liquid phase has been presented. This model has been used to determine mass transfer rates, enhancement factors and concentration profiles over a wide range of process conditions. Although

  3. Evaluating the fall risk among elderly population by choice step reaction test

    Directory of Open Access Journals (Sweden)

    Wang D

    2016-08-01

    Full Text Available Donghai Wang,1 Jian Zhang,1 Yuliang Sun,2 Wenfei Zhu,2 Shiliu Tian,1 Yu Liu1 1Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, People’s Republic of China; 2School of Physical Education, Shaanxi Normal University, Xian, People’s Republic of China Abstract: Falls during daily activities are often associated with injuries and physical disabilities, thereby affecting quality of life among elder adults. Balance control, which is crucial in avoiding falls, is composed of two elements: muscle strength and central nervous system (CNS control. A number of studies have reported that reduced muscle strength raises the risk of falling. However, to date there has been only limited research focused on the relationship between fall risk and the CNS. This study aimed to investigate the relationship between CNS and risk of falling among the elderly. A total of 140 elderly people (92 females and 48 males were divided into faller and nonfaller groups based on questionnaire responses concerning falls in their daily life. Participants undertook a choice step reaction test in which they were required to respond to random visual stimuli using foot movements as fast as possible in the left or right directions. Response time was quantified as premotor time (PMT and motor time (MT. In addition, the participants’ electromyography data were recorded during the choice step reaction test. A maximal isokinetic torque test was also performed. PMT was greater in the fallers than in the nonfallers group. There was a significant difference between fall status and direction on PMT. PMT of the left limb in nonfallers was faster than the right, but in fallers there was no difference between left and right limbs. A similar phenomenon was also observed for MT. There were significant differences between fallers and nonfallers in maximum isokinetic torque at knee and ankle joints. The correct rate of PMT was

  4. INTERMEDIATE STAGES OF REACTIONS FORMING CARBIDES OF TITANIUM, ZIRCONIUM, VANADIUM, NIOBIUM, AND TANTALIUM

    Science.gov (United States)

    intermediate and final products, and also during the calculation of approximate heat values of their formation, the passage of the reaction is confirmed...for obtaining TiC, and ZrC through the stage of intermediate oxides Ti2O3, Ti3O5, TiO and Zr2O3, ZrO, respectively and also for the reaction of...forming carbides of V (from V2O3 + 5C), of Nb and Ta (from Nb2O5 + 7C and Ta205 + 7C) through the stage of intermediate oxides VO, V4O and TaO2, Ta4O. The

  5. Mass transfer with complex chemical reactions in gas-liquid systems: two-step reversible reactions with unit stoichiometric and kinetic orders

    NARCIS (Netherlands)

    Vas bhat, R.D.; Kuipers, J.A.M.; Versteeg, Geert

    2000-01-01

    An absorption model to study gas¿liquid mass transfer accompanied by reversible two-step reactions in the liquid phase has been presented. This model has been used to determine mass transfer rates, enhancement factors and concentration profiles over a wide range of process conditions. Although

  6. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    Science.gov (United States)

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  7. The reaction rate for dissociative adsorption of N-2 on stepped Ru(0001): Six-dimensional quantum calculations

    DEFF Research Database (Denmark)

    van Harrevelt, Rob; Honkala, Johanna Karoliina; Nørskov, Jens Kehlet

    2005-01-01

    Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N-2 on stepped Ru(0001) are presented. Converged six-dimensional quantum calculations for this heavy-atom reaction have been performed using the multiconfiguration time-dependent Hartree method. A potential...

  8. Learning to Predict Chemical Reactions

    Science.gov (United States)

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  9. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamá s; Varga, Á gnes Tí mea; Ballai, Gergő; Haspel, Henrik; Kukovecz, Á kos; Kó nya, Z.

    2018-01-01

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close

  10. Elderly fallers enhance dynamic stability through anticipatory postural adjustments during a choice stepping reaction time

    Directory of Open Access Journals (Sweden)

    Romain Tisserand

    2016-11-01

    Full Text Available In the case of disequilibrium, the capacity to step quickly is critical to avoid falling for elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT, where elderly fallers (F take longer to step than elderly non-fallers (NF. However, reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA that elderly F develop in a stepping context and their consequences on the dynamic stability. 44 community-dwelling elderly subjects (20 F and 22 NF performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP; in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall.

  11. Final stage of high energy hadron-nucleus nuclear collision reactions

    International Nuclear Information System (INIS)

    Strugal'ski, Z.; Jedrzejec, H.; Strugalska-Gola, E.; Mulas, E.

    1996-01-01

    The final or 'slow' stage of the hadron-nucleus collision reactions at high energy is considered on the basis of the collision mechanism prompted experimentally. The transmutation process of the damaged target nucleus into nucleons and stable nuclear fragments is discussed. Relations between intensities or multiplicities n p of the emitted fast protons and the mean intensities or multiplicities b > of the evaporated nucleons and nuclear fragments are presented. 14 refs

  12. Learning to predict chemical reactions.

    Science.gov (United States)

    Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre

    2011-09-26

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  13. Quantitative expression of regulatory and differentiation-related genes in the key steps of human hematopoiesis: The LeukoStage Database.

    Science.gov (United States)

    Polgárová, K; Vášková, M; Froňková, E; Slámová, L; Kalina, T; Mejstříková, E; Dobiášová, A; Fišer, K; Hrušák, O

    2016-01-01

    Differentiation during hematopoiesis leads to the generation of many cell types with specific functions. At various stages of maturation, the cells may change pathologically, leading to diseases including acute leukemias (ALs). Expression levels of regulatory molecules (such as the IKZF, GATA, HOX, FOX, NOTCH and CEBP families, as well as SPI-1/PU1 and PAX5) and lineage-specific molecules (including CD2, CD14, CD79A, and BLNK) may be compared between pathological and physiological cells. Although the key steps of differentiation are known, the available databases focus mainly on fully differentiated cells as a reference. Precursor cells may be a more appropriate reference point for diseases that evolve at immature stages. Therefore, we developed a quantitative real-time polymerase chain reaction (qPCR) array to investigate 90 genes that are characteristic of the lymphoid or myeloid lineages and/or are thought to be involved in their regulation. Using this array, sorted cells of granulocytic, monocytic, T and B lineages were analyzed. For each of these lineages, 3-5 differentiation stages were selected (17 stages total), and cells were sorted from 3 different donors per stage. The qPCR results were compared to similarly processed AL cells of lymphoblastic (n=18) or myeloid (n=6) origins and biphenotypic AL cells of B cell origin with myeloid involvement (n=5). Molecules characteristic of each lineage were found. In addition, cells of a newly discovered switching lymphoblastic AL (swALL) were sorted at various phases during the supposed transdifferentiation from an immature B cell to a monocytic phenotype. As demonstrated previously, gene expression changed along with the immunophenotype. The qPCR data are publicly available in the LeukoStage Database in which gene expression in malignant and non-malignant cells of different lineages can be explored graphically and differentially expressed genes can be identified. In addition, the LeukoStage Database can aid the

  14. Benzoylformate analogues exhibit differential rate-determining steps in the benzoylformate decarboxylase reaction

    International Nuclear Information System (INIS)

    Garcia, G.A.; Weiss, P.M.; Cook, P.F.; Kenyon, G.L.; Cleland, W.W.

    1987-01-01

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP)-dependent enzyme which converts benzoylformate to benzaldehyde and CO 2 . The rate-determining step(s) in the benzoylformate decarboxylase reaction for a series of substituted benzoylformates (p-CH 3 O, p-CH 3 , p-Cl, and m-F) were studied using solvent deuterium and 13 C kinetic isotope effects. The normal substrate was found to have two partially rate-determining steps; initial tetrahedral adduct formation (D 2 O-sensitive) and decarboxylation ( 13 C-sensitive). D 2 O and 13 C isotope effects indicate that electron-withdrawing substituents (p-Cl and m-F) remove the rate dependence upon decarboxylation such that only a D 2 O effect on (V/K) is observed. Conversely, electron-donating substituents increase the rate-dependence upon decarboxylation such that a larger 13 (V/K) is seen while the D 2 O effects on (V) and (V/K) are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate formed upon decarboxylation

  15. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk.

    Science.gov (United States)

    Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C

    2018-02-01

    Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Structural integration of separation and reaction systems: I. Integration of stage-wise processes

    Directory of Open Access Journals (Sweden)

    Mitrović Milan

    2002-01-01

    Full Text Available The structural integration of separation processes, using multifunctional equipment, has been studied on four stage-wise liquid-liquid separations extraction, absorption, distillation, adsorption and on some combinations of these processes. It was shown for stage - wise processes that the ultimate aim of equipment integration is 3-way integration (by components by steps and by stages and that membrane multiphase contactors present concerning the equipment optimal solutions in many cases. First, by using partially integrated equipment and, later by developing fully integrated systems it was experimentally confirmed that structural 3-way integration produces much higher degrees of component separations and component enrichments in compact and safe equipment.

  17. Analytical total reaction cross-section calculations via Fermi-type functions. I. Fermi-step nuclear densities

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Talib aly al Hinai, M.

    2000-01-01

    In the framework of Glauber's multiple scattering theory we propose a closed form expression for the total nucleus-nucleus reaction cross-section. We adopt the Gaussian and the two-parameter Fermi step radial shapes to describe the nuclear density distributions of the projectile and the target, respectively. The present formula is used to study different systems over a wide energy range including low energy reactions, where the role of the Coulomb repulsion is taken into account. The present predictions reasonably reproduce experiment

  18. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.

    Science.gov (United States)

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2010-04-01

    Compensatory stepping and grasping reactions are prevalent responses to sudden loss of balance and play a critical role in preventing falls. The ability to execute these reactions effectively is impaired in older adults. The purpose of this study was to evaluate a perturbation-based balance training program designed to target specific age-related impairments in compensatory stepping and grasping balance recovery reactions. This was a double-blind randomized controlled trial. The study was conducted at research laboratories in a large urban hospital. Thirty community-dwelling older adults (aged 64-80 years) with a recent history of falls or self-reported instability participated in the study. Participants were randomly assigned to receive either a 6-week perturbation-based (motion platform) balance training program or a 6-week control program involving flexibility and relaxation training. Features of balance reactions targeted by the perturbation-based program were: (1) multi-step reactions, (2) extra lateral steps following anteroposterior perturbations, (3) foot collisions following lateral perturbations, and (4) time to complete grasping reactions. The reactions were evoked during testing by highly unpredictable surface translation and cable pull perturbations, both of which differed from the perturbations used during training. /b> Compared with the control program, the perturbation-based training led to greater reductions in frequency of multi-step reactions and foot collisions that were statistically significant for surface translations but not cable pulls. The perturbation group also showed significantly greater reduction in handrail contact time compared with the control group for cable pulls and a possible trend in this direction for surface translations. Further work is needed to determine whether a maintenance program is needed to retain the training benefits and to assess whether these benefits reduce fall risk in daily life. Perturbation-based training

  19. Biomimicry Promotes the Efficiency of a 10-Step Sequential Enzymatic Reaction on Nanoparticles, Converting Glucose to Lactate.

    Science.gov (United States)

    Mukai, Chinatsu; Gao, Lizeng; Nelson, Jacquelyn L; Lata, James P; Cohen, Roy; Wu, Lauren; Hinchman, Meleana M; Bergkvist, Magnus; Sherwood, Robert W; Zhang, Sheng; Travis, Alexander J

    2017-01-02

    For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cintichem modified process - {sup 99}Mo precipitation step: application of statistical analysis tools over the reaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Teodoro, Rodrigo; Dias, Carla R.B.R.; Osso Junior, Joao A., E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandez Nunez, Eutimio Gustavo [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Quimica

    2011-07-01

    Precipitation of {sup 99}Mo by {alpha}-benzoin oxime ({alpha}-Bz) is a standard precipitation method for molybdenum due the high selectivity of this agent. Nowadays, statistical analysis tools have been employed in analytical systems to prove its efficiency and feasibility. IPEN has a project aiming the production of {sup 99}Mo by the fission of {sup 235}U route. The processing uses as the first step the precipitation of {sup 99}Mo with {alpha}-Bz. This precipitation step involves many key reaction parameters. The aim of this work is based on the development of the already known acidic route to produce {sup 99}Mo as well as the optimization of the reactional parameters applying statistical tools. In order to simulate {sup 99}Mo precipitation, the study was conducted in acidic media using HNO{sub 3}, {alpha}Bz as precipitant agent and NaOH /1%H{sub 2}O{sub 2} as dissolver solution. Then, a Mo carrier, KMnO{sub 4} solutions and {sup 99}Mo tracer were added to the reaction flask. The reactional parameters ({alpha}-Bz/Mo ratio, Mo carrier, reaction time and temperature, and cooling reaction time before filtration) were evaluated under a fractional factorial design of resolution V. The best values of each reactional parameter were determined by a response surface statistical planning. The precipitation and recovery yields of {sup 99}Mo were measured using HPGe detector. Statistical analysis from experimental data suggested that the reactional parameters {alpha}-Bz/Mo ratio, reaction time and temperature have a significant impact on {sup 99}Mo precipitation. Optimization statistical planning showed that higher {alpha}Bz/Mo ratios, room temperature, and lower reaction time lead to higher {sup 99}Mo yields. (author)

  1. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ermanoski, I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. In this paper, the material and energy requirements in two-step solar-thermochemical cycles are considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  2. Use of the challenge point framework to guide motor learning of stepping reactions for improved balance control in people with stroke: a case series.

    Science.gov (United States)

    Pollock, Courtney L; Boyd, Lara A; Hunt, Michael A; Garland, S Jayne

    2014-04-01

    Stepping reactions are important for walking balance and community-level mobility. Stepping reactions of people with stroke are characterized by slow reaction times, poor coordination of motor responses, and low amplitude of movements, which may contribute to their decreased ability to recover their balance when challenged. An important aspect of rehabilitation of mobility after stroke is optimizing the motor learning associated with retraining effective stepping reactions. The Challenge Point Framework (CPF) is a model that can be used to promote motor learning through manipulation of conditions of practice to modify task difficulty, that is, the interaction of the skill of the learner and the difficulty of the task to be learned. This case series illustrates how the retraining of multidirectional stepping reactions may be informed by the CPF to improve balance function in people with stroke. Four people (53-68 years of age) with chronic stroke (>1 year) and mild to moderate motor recovery received 4 weeks of multidirectional stepping reaction retraining. Important tenets of motor learning were optimized for each person during retraining in accordance with the CPF. Participants demonstrated improved community-level walking balance, as determined with the Community Balance and Mobility Scale. These improvements were evident 1 year later. Aspects of balance-related self-efficacy and movement kinematics also showed improvements during the course of the intervention. The application of CPF motor learning principles in the retraining of stepping reactions to improve community-level walking balance in people with chronic stroke appears to be promising. The CPF provides a plausible theoretical framework for the progression of functional task training in neurorehabilitation.

  3. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  4. The association between choice stepping reaction time and falls in older adults--a path analysis model

    NARCIS (Netherlands)

    Pijnappels, M.A.G.M.; Delbaere, K.; Sturnieks, D.L.; Lord, S.R.

    2010-01-01

    Background: choice stepping reaction time (CSRT) is a functional measure that has been shown to significantly discriminate older fallers from non-fallers. Objective: to investigate how physiological and cognitive factors mediate the association between CSRT performance and multiple falls by use of

  5. Bilateral ground reaction forces and joint moments for lateral sidestepping and crossover stepping tasks

    Science.gov (United States)

    Kuntze, Gregor; Sellers, William I.; Mansfield, Neil

    2009-01-01

    Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS) and crossover stepping (XS) movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work. Key pointsGround reaction forces and joint moments during lateral stepping are smaller in magnitude than those experienced during moderate running.Force exposure in SS and XS gaits in normal play does not appear to contribute to the development of

  6. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment.

    Science.gov (United States)

    Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim

    2017-06-01

    Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. One-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles via a multicomponent [4 + 1] cycloaddition reaction.

    Science.gov (United States)

    Hsiao, Ya-Shan; Narhe, Bharat D; Chang, Ying-Sheng; Sun, Chung-Ming

    2013-10-14

    A one-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles has been achieved by a three-component reaction of 2-aminobenzimidazoles with an aromatic aldehyde and an isocyanide. The reaction involving condensation of 2-aminobenzimidazole with an aldehyde is run under microwave activation to generate an imine intermediate under basic conditions which then undergoes [4 + 1] cycloaddition with an isocyanide.

  8. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  9. Step sites in syngas catalysis

    DEFF Research Database (Denmark)

    Rostrup-Nielsen, J.; Nørskov, Jens Kehlet

    2006-01-01

    Step sites play an important role in many catalytic reactions. This paper reviews recent results on metal catalysts for syngas reactions with emphasis on steam reforming. Modern characterization techniques (STEM, HREM...) and theoretical calculations (DFT) has allowed a more quantitative explanat......Step sites play an important role in many catalytic reactions. This paper reviews recent results on metal catalysts for syngas reactions with emphasis on steam reforming. Modern characterization techniques (STEM, HREM...) and theoretical calculations (DFT) has allowed a more quantitative...... explanation of the impact of step sites on catalyst activity and side reactions such as carbon formation. This leads to a discussion of principles for catalyst promotion....

  10. Alternative statistics in multi-step direct reaction theory

    International Nuclear Information System (INIS)

    Koning, A.J.

    1990-06-01

    In recent years a variety of statistical theories have been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton model': these are basically MSD-type extensions on top of compound-like concepts. In this report the relationship between their underlying statistical MSD-postulates are highlighted. A common framework is sketched that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high-energy tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imaged that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expressions for the MSD emission cross sections. This picture suggests that the mentioned MSD models can be interpreted as variants of essentially one and the same theory. However, this appears not to be the case. To show this the usual MSD distinction within the composite reacting nucleus between the fast continuum particle and the residual system is introduced. One implication is that the mutual residual interactions of the nucleons of the residual core are to be distinguished from those of the leading particle with the residual system. This distinction will turn out to be central to the present analysis. (author). 14 refs.; 4

  11. One step gold (bio)functionalisation based on CS{sub 2}-amine reaction

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ines [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal); Cascalheira, Antonio C. [Lumisense, Lda, Campus Faculdade de Ciencias da Universidade de Lisboa, Ed. ICAT, Campo Grande, 1749-016 Lisboa (Portugal); Viana, Ana S., E-mail: anaviana@fc.ul.p [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal)

    2010-12-01

    Dithiocarbamates have been regarded as alternative anchor groups to thiols on gold surfaces, and claimed to be formed in situ through the reaction between secondary amines and carbon disulphide. In this paper, we further exploit this methodology for a convenient one step biomolecule immobilisation onto gold surfaces. First, the reactivity between CS{sub 2} and electroactive compounds containing amines, primary (dopamine), secondary (epinephrine), and an amino acid (tryptophan) has been investigated by electrochemical methods. Cyclic voltammetric characterisation of the modified electrodes confirmed the immobilisation of all the target compounds, allowing the estimation of their surface concentration. The best result was obtained with epinephrine, a secondary amine, for which a typical quasi-reversible behaviour of surface confined electroactive species could be clearly depicted. Electrochemical reductive desorption studies enabled to infer on the extent of the reaction and on the relative stability of the generated monolayers. Bio-functionalisation studies have been accomplished through the reaction of CS{sub 2} with glucose oxidase in aqueous medium, and the catalytic activity of the immobilised enzyme was evaluated towards glucose, by electrochemical methods in the presence of a redox mediator. Scanning tunnelling microscopy (STM) and Atomic force microscopy (AFM) were used respectively, to characterize the gold electrodes and Glucose Oxidase coverage and distribution on the modified surfaces.

  12. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A↔C↔B + B

    Energy Technology Data Exchange (ETDEWEB)

    Kipriyanov, Alexey A.; Kipriyanov, Alexander A.; Doktorov, Alexander B. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-04-14

    Specific two-stage reversible reaction A + A↔C↔B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  13. [Study of ATP-independent stages of reaction catalyzed by phage T4 RNA-ligase].

    Science.gov (United States)

    Zagrebel'nyĭ, S N; Zernov, Iu P

    1986-01-01

    The isotope exchange between [5'-32P]pAP and A(5')ppAp catalyzed by enzyme was shown not to take place in the absence of the acceptor; i. e. the necessity of the acceptor presence during the second step of the process was demonstrated. The isotope exchange reaction between [5'32P]pAp and (pA)5p was studied. It was demonstrated that acceptor (pA)4, slightly whereas the acceptor (pU)4 completely inhibits the isotope reaction. The isotope reaction exchange between [5'-32P]pAp and (pU)4pAp does not take place. The question of existence of adenylated donor elimination mechanism in the presence of "poor" acceptors is considered on the basis of the data obtained.

  14. Age differences in outcomes among patients in the "Stimulant Abuser Groups to Engage in 12-Step" (STAGE-12) intervention.

    Science.gov (United States)

    Garrett, Sharon B; Doyle, Suzanne R; Peavy, K Michelle; Wells, Elizabeth A; Owens, Mandy D; Shores-Wilson, Kathy; DiCenzo, Jessica; Donovan, Dennis M

    2018-01-01

    Emerging adults (roughly 18-29years) with substance use disorders can benefit from participation in twelve-step mutual-help organizations (TSMHO), however their attendance and participation in such groups is relatively low. Twelve-step facilitation therapies, such as the Stimulant Abuser Groups to Engage in 12-Step (STAGE-12), may increase attendance and involvement, and lead to decreased substance use. Analyses examined whether age moderated the STAGE-12 effects on substance use and TSMHO meeting attendance and participation. We utilized data from a multisite randomized controlled trial, with assessments at baseline, mid-treatment (week 4), end-of-treatment (week 8), and 3- and 6- months post-randomization. Participants were adults with DSM-IV diagnosed stimulant abuse or dependence (N=450) enrolling in 10 intensive outpatient substance use treatment programs across the U.S. A zero-inflated negative binomial random-effects regression model was utilized to examine age-by-treatment interactions on substance use and meeting attendance and involvement. Younger age was associated with larger treatment effects for stimulant use. Specifically, younger age was associated with greater odds of remaining abstinent from stimulants in STAGE-12 versus Treatment-as-Usual; however, among those who were not abstinent during treatment, younger age was related to greater rates of stimulant use at follow-up for those in STAGE-12 compared to TAU. There was no main effect of age on stimulant use. Younger age was also related to somewhat greater active involvement in different types of TSMHO activities among those in STAGE-12 versus TAU. There were no age-by-treatment interactions for other types of substance use or for treatment attendance, however, in contrast to stimulant use; younger age was associated with lower odds of abstinence from non-stimulant drugs at follow-up, regardless of treatment condition. These results suggest that STAGE-12 can be beneficial for some emerging adults

  15. Waterhammer modeling for the Ares I Upper Stage Reaction Control System cold flow development test article

    Science.gov (United States)

    Williams, Jonathan Hunter

    The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  16. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    Science.gov (United States)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  17. Assessment of PDF Micromixing Models Using DNS Data for a Two-Step Reaction

    Science.gov (United States)

    Tsai, Kuochen; Chakrabarti, Mitali; Fox, Rodney O.; Hill, James C.

    1996-11-01

    Although the probability density function (PDF) method is known to treat the chemical reaction terms exactly, its application to turbulent reacting flows have been overshadowed by the ability to model the molecular mixing terms satisfactorily. In this study, two PDF molecular mixing models, the linear-mean-square-estimation (LMSE or IEM) model and the generalized interaction-by-exchange-with-the-mean (GIEM) model, are compared with the DNS data in decaying turbulence with a two-step parallel-consecutive reaction and two segregated initial conditions: ``slabs" and ``blobs". Since the molecular mixing model is expected to have a strong effect on the mean values of chemical species under such initial conditions, the model evaluation is intended to answer the following questions: Can the PDF models predict the mean values of chemical species correctly with completely segregated initial conditions? (2) Is a single molecular mixing timescale sufficient for the PDF models to predict the mean values with different initial conditions? (3) Will the chemical reactions change the molecular mixing timescales of the reacting species enough to affect the accuracy of the model's prediction for the mean values of chemical species?

  18. Micellar induced regioselectivity in the two-step consecutive reaction of SO3(2-) with Br-(CH2CH2)n-Br (n=2-5).

    Science.gov (United States)

    Currie, Fredrik; Jarvoll, Patrik; Holmberg, Krister; Romsted, Laurence S; Gunaseelan, Krishnan

    2007-08-15

    High field (800 MHz) (1)H NMR was used to monitor the two-step consecutive reaction of excess SO(3)(2-) with symmetrical bifunctional alpha,omega-dibromoalkanes with butane (DBB), hexane (DBH), octane (DBO), and decane (DBD) chains in CTAB micelles at 25 degrees C. The first-order rate constant for the first substitution step for DBB and DBH is about 5 times faster than for the second, but the kinetics for DBO and DBD were not cleanly first-order. After 40 min, the solution contained about 80% of the intermediate bromoalkanesulfonate from DBB and DBH and the remainder is alkanedisulfonate and unreacted starting material. The same reactions were carried out in homogeneous MeOH/D(2)O solutions at 50 degrees C. The rate constants for all four alpha,omega-dibromoalkanes were first-order throughout the time course of the reaction and the same within +/-10%. However, because micellar solutions are organized on the nanoscale and bring together lipophilic and hydrophilic reactants into a small reaction volume at the micellar interface, they speed this substitution reaction considerably compared to reaction in MeOH/D(2)O. The CTAB micelles also induce a significant regioselectivity in product formation by speeding the first step of the consecutive reaction more than the second. The results are consistent with the bromoalkanesulfonate intermediates having a radial orientation within the micelles with the -CH(2)SO(3)(-) group in the interfacial region and the -CH(2)Br group directed into the micellar core such that the concentration of -CH(2)Br groups in the reactive zone, i.e., the micellar interface, is significantly reduced. These results provide the first example of self-assembled surfactant system altering the relative rates of the reaction steps of a consecutive reaction and, in doing so, enhancing monosubstitution of a symmetrically disubstituted species.

  19. Diffusion-controlled reactions modeling in Geant4-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Karamitros, M., E-mail: matkara@gmail.com [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Luan, S. [University of New Mexico, Department of Computer Science, Albuquerque, NM (United States); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Allison, J. [Geant4 Associates International Ltd (United Kingdom); Baldacchino, G. [CEA Saclay, IRAMIS, LIDYL, Radiation Physical Chemistry Group, F-91191 Gif sur Yvette Cedex (France); CNRS, UMR3299, SIS2M, F-91191 Gif sur Yvette Cedex (France); Davidkova, M. [Nuclear Physics Institute of the ASCR, Prague (Czech Republic); Francis, Z. [Saint Joseph University, Faculty of Sciences, Department of Physics, Mkalles, Beirut (Lebanon); Friedland, W. [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg (Germany); Ivantchenko, V. [Ecoanalytica, 119899 Moscow (Russian Federation); Geant4 Associates International Ltd (United Kingdom); Ivantchenko, A. [Geant4 Associates International Ltd (United Kingdom); Mantero, A. [SwHaRD s.r.l., via Buccari 9, 16153 Genova (Italy); Nieminem, P.; Santin, G. [ESA-ESTEC, 2200 AG Noordwijk (Netherlands); Tran, H.N. [Division of Nuclear Physics and Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Stepan, V. [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Nuclear Physics Institute of the ASCR, Prague (Czech Republic); Incerti, S., E-mail: incerti@cenbg.in2p3.fr [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2014-10-01

    Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The

  20. Highly Convergent Total Synthesis of (+)-Lithospermic Acid via a Late-Stage Intermolecular C–H Olefination

    Science.gov (United States)

    Wang, Dong-Hui; Yu, Jin-Quan

    2011-01-01

    The total synthesis of (+)-lithospermic acid is reported, which exploits two successive C–H activation reactions as the key steps. Rh-catalyzed carbene C–H insertion reaction using Davies’ catalyst built the dihydrobenzofuran core, and a late-stage intermolecular C–H olefination coupled the olefin unit with the dihydrobenzofuran core to construct the molecule in a highly convergent manner. PMID:21443224

  1. Effect of potential steps on porous silicon formation

    International Nuclear Information System (INIS)

    Cheng Xuan; Feng Zude; Luo Guangfeng

    2003-01-01

    Porous silicon microstructures were fabricated by applying potential steps through which both anodic and cathodic potentials were periodically applied to silicon wafers. The electrochemical behaviors of porous silicon layers were examined by performing polarization measurements, followed by analyzing the open-circuit potential (E ocp ) and the reaction rate in terms of corrosion current density (j corr ). The surface morphologies and surface products of porous silicon were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It was found that the values of E ocp and j corr varied more significantly and irregularly during different polarization stages when the potentials were continuously applied to the wafer surface, while virtually unchanged after 2 min of periodic potential application. In addition, slower reaction rates were observed with applying potential steps, as indicated by smaller values of j corr . The enhancement on refreshment of silicon surfaces by periodic potential polarization significantly accelerated the growth of porous silicon. The microstructures became more uniformed and better defined due to the improved passivating nature of wafer surfaces

  2. Double-step processes in the 12C(p,d)11C reaction at 45 MeV

    International Nuclear Information System (INIS)

    Couvert, Pierre.

    1974-01-01

    12 C(p,d) 11 C pick-up reaction was performed with a 45 MeV proton beam. A 130keV energy resolution was obtained and angular distributions of nine of the ten first levels of 11 C have been extracted within a large angular range. Assuming only neutron direct transfert, the strong relative excitation of high spin levels cannot be reproduced by a DWBA analysis. The double-step process assumption seems to be verified by a systematical analysis of the (p,d) reaction mechanisms. This analysis is done in the coupled-channel formalism for the five first negative parity states of 11 C. The 3/2 - ground state is essentially populated by the direct transfer of a Psub(3/2) neutron. The contribution of a double-step process, via the 2 + inelastic excitation of 12 C, is important for the four other states. A mechanism which assumes a deuteron inelastic scattering on the 11 C final nucleus after the neutron transfer cannot be neglected and improves the fits when it is taken into account [fr

  3. Roles of multi-step transfer in fusion process induced by heavy-ion reactions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1993-06-01

    In nucleus-nucleus collisions of the systems, 12 C+ 13 C and 13 C+ 16 O- 12 C+ 17 O, the effects of the multi-step transfers and inelastic excitations on the fusion cross sections are investigated in the framework of the coupled-reaction-channel (CRC) method. Strong CRC effects of the multi-step processes are observed. Namely, the valence neutron in 13 C or 17 O plays an important role in the enhancement of the fusion. The potential barrier is effectively lowered with the formation of the covalent molecule of the configuration, 12 C+n+ 12 C or 12 C+n+ 16 O. In the analyses of the system 12 C+ 13 C, however, it is still required to introduce core-core optical potential of lower barrier height in the state of the positive total parity. This could be due to the neck formation with the nucleons contained in two core nuclei. (author)

  4. Effect of One-Step and Multi-Steps Polishing System on Enamel Roughness

    Directory of Open Access Journals (Sweden)

    Cynthia Sumali

    2013-07-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The final procedures of orthodontic treatment are bracket debonding and cleaning the remaining adhesive. Multi-step polishing system is the most common method used. The disadvantage of that system is long working time, because of the stages that should be done. Therefore, dental material manufacturer make an improvement to the system, to reduce several stages into one stage only. This new system is known as one-step polishing system. Objective: To compare the effect of one-step and multi-step polishing system on enamel roughness after orthodontic bracket debonding. Methods: Randomized control trial was conducted included twenty-eight maxillary premolar randomized into two polishing system; one-step OptraPol (Ivoclar, Vivadent and multi-step AstroPol (Ivoclar, Vivadent. After bracket debonding, the remaining adhesive on each group was cleaned by subjective polishing system for ninety seconds using low speed handpiece. The enamel roughness was subjected to profilometer, registering two roughness parameters (Ra, Rz. Independent t-test was used to analyze the mean score of enamel roughness in each group. Results: There was no significant difference of enamel roughness between one-step and multi-step polishing system (p>0.005. Conclusion: One-step polishing system can produce a similar enamel roughness to multi-step polishing system after bracket debonding and adhesive cleaning.DOI: 10.14693/jdi.v19i3.136

  5. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis.

    Science.gov (United States)

    Okubo, Yoshiro; Schoene, Daniel; Lord, Stephen R

    2017-04-01

    To examine the effects of stepping interventions on fall risk factors and fall incidence in older people. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, CENTRAL) and reference lists of included articles from inception to March 2015. Randomised (RCT) or clinical controlled trials (CCT) of volitional and reactive stepping interventions that included older (minimum age 60) people providing data on falls or fall risk factors. Meta-analyses of seven RCTs (n=660) showed that the stepping interventions significantly reduced the rate of falls (rate ratio=0.48, 95% CI 0.36 to 0.65, prisk ratio=0.51, 95% CI 0.38 to 0.68, pfalls and proportion of fallers. A meta-analysis of two RCTs (n=62) showed that stepping interventions significantly reduced laboratory-induced falls, and meta-analysis findings of up to five RCTs and CCTs (n=36-416) revealed that stepping interventions significantly improved simple and choice stepping reaction time, single leg stance, timed up and go performance (pfalls among older adults by approximately 50%. This clinically significant reduction may be due to improvements in reaction time, gait, balance and balance recovery but not in strength. Further high-quality studies aimed at maximising the effectiveness and feasibility of stepping interventions are required. CRD42015017357. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    Science.gov (United States)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  7. A Convergent Enantioselective Total Synthesis of (-)-Perhydrohistrionicotoxin with an Intramolecular Imino Ene-type Reaction as a Key Step

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars

    1998-01-01

    A convergent enantioselective total synthesis of the neurotoxic spirocyclic alkaloid (-)-perhydrohistrionicotoxin (2) is described. A Lewis acid-mediated intramolecular imine ene-type reaction was used for the key spirocyclisation step (14 to 3, with 3 being obtained as a single diastereoisomer...

  8. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging

    Science.gov (United States)

    Huang, Hongye; Liu, Meiying; Tuo, Xun; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    Over the past years, fluorescent carbon nanoparticles have got growing interest for biological imaging. Fluorescent nanodiamonds (FNDs) are novel fluorescent carbon nanoparticles with multitudinous useful properties, including remarkable fluorescence properties, extremely low toxicity and high refractive index. However, facile preparation of FNDs with designable properties and functions from non-fluorescent detonation nanodiamonds (DNDs) has demonstrated to be challengeable. In this work, we reported for the first time that preparation of Polyethylene glycol (PEG) functionalized FNDs through a one-step thiol-ene click reaction using thiol containing PEG (PEG-SH) as the coating agent. Based on the characterization results, we demonstrated that PEG-SH could be efficiently introduced on DNDs to obtain FNDs through the thiol-ene click chemistry. The resultant FND-PEG composites showed high water dispersibility, strong fluorescence and low cytotoxicity. Moreover, FND-PEG composites could be internalized by cells and displayed good cell dyeing performance. All of these features implied that FND-PEG composites are of great potential for biological imaging. Taken together, a facile one-step strategy based on the one-step thiol-ene click reaction has been developed for efficient preparation of FND-PEG composites from non-fluorescent DNDs. The strategy should be also useful for fabrication of many other functional FNDs via using different thiol containing compounds for the universality of thiol-ene click reaction.

  9. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction.

    Science.gov (United States)

    Saed, Mohand O; Torbati, Amir H; Nair, Devatha P; Yakacki, Christopher M

    2016-01-19

    This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addition reaction. Strain-to-failure and glass transition behavior were investigated as a function of crosslinking monomer, pentaerythritol tetrakis(3-mercaptopropionate) (PETMP). An example non-stoichiometric system of 15 mol% PETMP thiol groups and an excess of 15 mol% acrylate groups was used to demonstrate the robust nature of the material. The LCE formed an aligned and transparent monodomain when stretched, with a maximum failure strain over 600%. Stretched LCE samples were able to demonstrate both stress-driven thermal actuation when held under a constant bias stress or the shape-memory effect when stretched and unloaded. A permanently programmed monodomain was achieved via a second-stage photopolymerization reaction of the excess acrylate groups when the sample was in the stretched state. LCE samples were photo-cured and programmed at 100%, 200%, 300%, and 400% strain, with all samples demonstrating over 90% shape fixity when unloaded. The magnitude of total stress-free actuation increased from 35% to 115% with increased programming strain. Overall, the two-stage TAMAP methodology is presented as a powerful tool to prepare main-chain LCE systems and explore structure-property-performance relationships in these fascinating stimuli-sensitive materials.

  10. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A ↔ C ↔ B + B.

    Science.gov (United States)

    Kipriyanov, Alexey A; Kipriyanov, Alexander A; Doktorov, Alexander B

    2016-04-14

    Specific two-stage reversible reaction A + A ↔ C ↔ B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  11. Study of initial stage in coal liquefaction. Increase in oil yield with suppression of retrogressive reaction during initial stage; Ekika hanno no shoki katei ni kansuru kenkyu. 1.

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, K.; Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For the coal liquefaction, improvement of liquefaction conditions and increase of liquefied oil yield are expected by suppressing the recombination through rapid stabilization of pyrolytic radicals which are formed at the initial stage of liquefaction. Two-stage liquefaction combining prethermal treatment and liquefaction was performed under various conditions, to investigate the effects of reaction conditions on the yields and properties of products as well as to increase liquefied oil yield. Consequently, it was found that the catalyst contributes greatly to the hydrogen transfer to coal at the prethermal treatment. High yield of n-hexane soluble fraction with products having low condensation degree could be obtained by combining the prethermal treatment in the presence of hydrogen and catalyst with the concentration of slurry after the treatment. This was considered to be caused by the synergetic effect between the improvement of liquefaction by suppressing polymerization/condensation at the initial stage of reaction through the prethermal treatment and the effective hydrogen transfer accompanied with the improvement of contact efficiency of coal/catalyst by the concentration of slurry at the stage of liquefaction. 4 refs., 8 figs.

  12. Importance of sequential two-step transfer process in a ΔS = 1 and ΔT = 1 inelastic transition of 14N(p, p')14N reaction

    International Nuclear Information System (INIS)

    Aoki, Y.; Kunori, S.; Nagano, K.; Toba, Y.; Yagi, K.

    1981-01-01

    Differential cross sections and vector analyzing powers for 14 N(p, p') and 14 N(p, d) reactions have been measured at E sub(p) = 21.0 MeV to elucidate the reaction mechanism and the effective interaction for the ΔS = ΔT = 1 transition in 14 N(p, p') 14 N(2.31 MeV) reaction. The data are analyzed in terms of finite-range distorted wave Borm approximation (DWBA) which include direct, knock-on exchange and (p, d)(d, p') two-step processes. Shell model wave functions of Cohen and Kurath are used. The data for the first excited state is reasonably well explained by introducing two-step process. The two-step process explains half of the experimental intensity. Moreover vector analyzing power can hardly be explained without introducing this two-step process. Vector analyzing power of protons leading to the second excited state in 14 N is better explained by introducing macroscopic calculation. The data for 14 N(p, d) 13 N(gs) reaction are well explained by a suitable choice of deuteron optical potential. Knock-on exchange contribution is relatively small. Importance of this two-step process for ΔS = ΔT = 1 transition is discussed up to 40 MeV. (author)

  13. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.

    Science.gov (United States)

    Furuya, Toshiki; Miura, Misa; Kuroiwa, Mari; Kino, Kuniki

    2015-05-25

    Vanillin is one of the world's most important flavor and fragrance compounds in foods and cosmetics. Recently, we demonstrated that vanillin could be produced from ferulic acid via 4-vinylguaiacol in a coenzyme-independent manner using the decarboxylase Fdc and the oxygenase Cso2. In this study, we investigated a new two-pot bioprocess for vanillin production using the whole-cell catalyst of Escherichia coli expressing Fdc in the first stage and that of E. coli expressing Cso2 in the second stage. We first optimized the second-step Cso2 reaction from 4-vinylguaiacol to vanillin, a rate-determining step for the production of vanillin. Addition of FeCl2 to the cultivation medium enhanced the activity of the resulting E. coli cells expressing Cso2, an iron protein belonging to the carotenoid cleavage oxygenase family. Furthermore, a butyl acetate-water biphasic system was effective in improving the production of vanillin. Under the optimized conditions, we attempted to produce vanillin from ferulic acid by a two-pot bioprocess on a flask scale. In the first stage, E. coli cells expressing Fdc rapidly decarboxylated ferulic acid and completely converted 75 mM of this substrate to 4-vinylguaiacol within 2 h at pH 9.0. After the first-stage reaction, cells were removed from the reaction mixture by centrifugation, and the pH of the resulting supernatant was adjusted to 10.5, the optimal pH for Cso2. This solution was subjected to the second-stage reaction. In the second stage, E. coli cells expressing Cso2 efficiently oxidized 4-vinylguaiacol to vanillin. The concentration of vanillin reached 52 mM (7.8 g L(-1)) in 24 h, which is the highest level attained to date for the biotechnological production of vanillin using recombinant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. RKC time-stepping for advection-diffusion-reaction problems

    International Nuclear Information System (INIS)

    Verwer, J.G.; Sommeijer, B.P.; Hundsdorfer, W.

    2004-01-01

    The original explicit Runge-Kutta-Chebyshev (RKC) method is a stabilized second-order integration method for pure diffusion problems. Recently, it has been extended in an implicit-explicit manner to also incorporate highly stiff reaction terms. This implicit-explicit RKC method thus treats diffusion terms explicitly and the highly stiff reaction terms implicitly. The current paper deals with the incorporation of advection terms for the explicit method, thus aiming at the implicit-explicit RKC integration of advection-diffusion-reaction equations in a manner that advection and diffusion terms are treated simultaneously and explicitly and the highly stiff reaction terms implicitly

  15. On correctness of some processing operations for two-step cascade intensities data from the (nth, 2γ) reaction

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.; Chol, Li

    2004-01-01

    An influence of some incorrectness of analysis on the level densities and radiative strength functions derived from the experimental γ spectra is considered. It was shown that the obtaining of reliable data from the reaction (n, 2γ) requires deriving dependence of the two-step cascade intensities on their primary transition energy. The influence of some conditions of an analysis of the experimental γ-spectra from the reaction ( 3 He, α) on the expected value of both level density and radiative strength functions was estimated. The ways to decrease these uncertainties are suggested

  16. C—C bond formation in the intramolecular Diels-Alder reaction of triene amides

    Directory of Open Access Journals (Sweden)

    Abdelilah Benallou

    2018-02-01

    Full Text Available The mechanism nature of the intramolecular Diels–Alder reaction has been performed; and thus, the changes of C—C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C—C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2—C3 σ bond while the second stage aims for C1—C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  17. C-C bond formation in the intramolecular Diels-Alder reaction of triene amides.

    Science.gov (United States)

    Benallou, Abdelilah; El Alaoui El Abdallaoui, Habib; Garmes, Hocine

    2018-02-01

    The mechanism nature of the intramolecular Diels-Alder reaction has been performed; and thus, the changes of C-C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C-C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2-C3 σ bond while the second stage aims for C1-C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  18. A 11-Steps Total Synthesis of Magellanine through a Gold(I)-Catalyzed Dehydro Diels-Alder Reaction.

    Science.gov (United States)

    McGee, Philippe; Bétournay, Geneviève; Barabé, Francis; Barriault, Louis

    2017-05-22

    We have developed an innovative strategy for the formation of angular carbocycles via a gold(I)-catalyzed dehydro Diels-Alder reaction. This transformation provides rapid access to a variety of complex angular cores in excellent diastereoselectivities and high yields. The usefulness of this Au I -catalyzed cycloaddition was further demonstrated by accomplishing a 11-steps total synthesis of (±)-magellanine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable

    Directory of Open Access Journals (Sweden)

    M.A. Rahman

    2017-04-01

    Full Text Available Biodiesel from green energy source is gaining tremendous attention for ecofriendly and economically aspect. In this investigation, a two-step process was developed for the production of biodiesel from microalgae Spirulina maxima and determined best operating conditions for the steps. In the first stage, acid esterification was conducted to lessen acid value (AV from 10.66 to 0.51 mgKOH/g of the feedstock and optimal conditions for maximum esterified oil yielding were found at molar ratio 12:1, temperature 60°C, 1% (wt% H2SO4, and mixing intensity 400 rpm for a reaction time of 90 min. The second stage alkali transesterification was carried out for maximum biodiesel yielding (86.1% and optimal conditions were found at molar ratio 9:1, temperature 65°C, mixing intensity 600 rpm, catalyst concentration 0.75% (wt% KOH for a reaction time of 20 min. Biodiesel were analyzed according to ASTM standards and results were within standards limit. Results will helpful to produce third generation algal biodiesel from microalgae Spirulina maxima in an efficient manner.

  20. Outpatient rapid 4-step desensitization for gynecologic oncology patients with mild to low-risk, moderate hypersensitivity reactions to carboplatin/cisplatin.

    Science.gov (United States)

    Li, Quan; Cohn, David; Waller, Allyson; Backes, Floor; Copeland, Larry; Fowler, Jeffrey; Salani, Ritu; O'Malley, David

    2014-10-01

    The primary objective of this study is to assess the efficacy and safety of an outpatient, 4-step, one-solution desensitization protocol in gynecologic oncology patients with history of mild to low-risk, moderate hypersensitivity reactions (HSRs) to platinums (carboplatin and cisplatin). This was a single institutional retrospective review. Gynecologic oncology patients with a documented history of mild or low-risk, moderate immediate HSRs to carboplatin/cisplatin and continued treatment with 4-step, one-solution desensitization protocols in the outpatient infusion center were included. Patients with delayed HSRs or immediate high-risk, moderate or severe HSRs were excluded. The primary end point was the rate of successful administrations of each course of platinums. From January 2011 to June 2013, eighteen eligible patients were evaluated for outpatient 4-step, one-solution desensitization. Thirteen patients had a history of HSRs to carboplatin and 5 with HSRs to cisplatin. All of 18 patients successfully completed 94 (98.9%) of 95 desensitization courses in the outpatient infusion center. Eight of 8 (100%) patients with initial mild HSRs completed 29/29 (100%) desensitization courses, and 9 of 10 (90%) of patients with initial moderate HSRs completed 65/66 (94%) desensitization courses. In total, 65/95 (68%) desensitizations resulted in no breakthrough reactions, and mild, moderate and severe breakthrough reactions were seen in 19%, 12% and 1% desensitizations, respectively. No patients were hospitalized during desensitization. The outpatient rapid, 4-step, one-solution desensitization protocol was effective and appeared safe among gynecologic oncology patients who experienced mild to low-risk, moderate HSRs to carboplatin/cisplatin. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A simple synthetic strategy to C2-symmetric bis-spiro-pyrano cage compound 7 involving ring-closing metathesis is reported. The hexacyclic dione 10 was prepared from simple and readily available starting materials such as 1,4-naphthoquinone and cyclopentadiene. The synthesis of an unprecedented octacyclic cage compound through intramolecular Diels–Alder (DA reaction as a key step is described. The structures of three new cage compounds 7, 12 and 18 were confirmed by single crystal X-ray diffraction studies.

  2. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction.

    Science.gov (United States)

    Lee, Seon-Hwa; Hong, Seung-Hye; Kim, Kyoung-Rok; Oh, Deok-Kun

    2017-08-01

    To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. Fructose at 1 M (180 g l -1 ) was converted to 0.8 M (144 g l -1 ) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l -1 h -1 . No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.

  3. Stability analysis of a high-step-Up DC grid-connected two-stage boost DC-DC converter

    Directory of Open Access Journals (Sweden)

    El Aroudi A.

    2014-01-01

    Full Text Available High conversion ratio switching converters are used whenever there is a need to step-up dc source voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. However these criteria may not be applicable for the complete cascaded system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subharmonic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two-different stages.

  4. Aldimine Formation Reaction, the First Step of the Maillard Early-phase Reaction, Might be Enhanced in Variant Hemoglobin, Hb Himeji.

    Science.gov (United States)

    Koga, Masafumi; Inada, Shinya; Shimizu, Sayoko; Hatazaki, Masahiro; Umayahara, Yutaka; Nishihara, Eijun

    2015-01-01

    Hb Himeji (β140Ala→Asp) is known as a variant hemoglobin in which glycation is enhanced and HbA1c measured by immunoassay shows a high value. The phenomenon of enhanced glycation in Hb Himeji is based on the fact that the glycation product of variant hemoglobin (HbX1c) shows a higher value than HbA1c. In this study, we investigated whether aldimine formation reaction, the first step of the Maillard early-phase reaction, is enhanced in Hb Himeji in vitro. Three non-diabetic subjects with Hb Himeji and four non-diabetic subjects without variant hemoglobin were enrolled. In order to examine aldimine formation reaction, whole blood cells were incubated with 500 mg/dl of glucose at 37°C for 1 hour and were analyzed by high-performance liquid chromatography. Both HbA1c and HbX1c were not increased in this condition. After incubation with glucose, labile HbA1c (LA1c) fraction increased in the controls (1.1±0.3%). In subjects with Hb Himeji increases in the labile HbX1c (LX1c) fraction as well as the LA1c fraction were observed, and the degree of increase in the LX1c fraction was significantly higher than that of the LA1c fraction (1.8±0.1% vs. 0.5±0.2%, Preaction might be enhanced in Hb Himeji in vitro. The 140th amino acid in β chain of hemoglobin is suggested to be involved in aldimine formation reaction. © 2015 by the Association of Clinical Scientists, Inc.

  5. Kinetics and selectivity of the oxidation of methylbenzenes in Co(III)-CH3COOH-CF3COOH solutions. Comparison with nitration and hydroxylation reactions

    International Nuclear Information System (INIS)

    Rudakov, E.S.; Lobachev, V.L.

    1989-01-01

    Data have been obtained concerning the kinetics, substrate selectivity, and kinetic isotope effect for the first stage in the oxidation of a series of arenes, from benzene to hexamethylbenzene, by Co(III) acetate in CH 3 COOH-CF 3 COOH (1.9 M) solutions at 25 degree C. A similarity was noted between substrate selectivity for reactions of alkylbenzenes with Co(III) and electrophilic nitration reactions, which occur via an electron transfer step. It was also found that substrate selectivity for these reactions differs significantly from that found for electrophilic hydroxylation reactions, which occur via an intermediate slow step involving σ-complex formation

  6. BILATERAL GROUND REACTION FORCES AND JOINT MOMENTS FOR LATERAL SIDESTEPPING AND CROSSOVER STEPPING TASKS

    Directory of Open Access Journals (Sweden)

    William I. Sellers

    2009-03-01

    Full Text Available Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS and crossover stepping (XS movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work

  7. One-step Conversion of Levulinic Acid to Succinic Acid Using I2/t-BuOK System: The Iodoform Reaction Revisited.

    Science.gov (United States)

    Kawasumi, Ryosuke; Narita, Shodai; Miyamoto, Kazunori; Tominaga, Ken-Ichi; Takita, Ryo; Uchiyama, Masanobu

    2017-12-21

    The iodoform reaction has long been used as a qualitative test for acetyl and/or ethanol units in organic molecules. However, its synthetic applications are quite limited. Here, we describe a tuned iodoform reaction for oxidative demethylation reaction with I 2 and t-BuOK in t-BuOH, in which in situ-generated t-BuOI serves as the chemoselective iodinating agent. This system enables one-step conversion of levulinic acid to succinic acid, a major four-carbon chemical feedstock. This oxidative demethylation is also applicable to other compounds containing an acetyl group/ethanol unit, affording the corresponding carboxylic acids in a selective manner.

  8. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  9. A simple test of choice stepping reaction time for assessing fall risk in people with multiple sclerosis.

    Science.gov (United States)

    Tijsma, Mylou; Vister, Eva; Hoang, Phu; Lord, Stephen R

    2017-03-01

    Purpose To determine (a) the discriminant validity for established fall risk factors and (b) the predictive validity for falls of a simple test of choice stepping reaction time (CSRT) in people with multiple sclerosis (MS). Method People with MS (n = 210, 21-74y) performed the CSRT, sensorimotor, balance and neuropsychological tests in a single session. They were then followed up for falls using monthly fall diaries for 6 months. Results The CSRT test had excellent discriminant validity with respect to established fall risk factors. Frequent fallers (≥3 falls) performed significantly worse in the CSRT test than non-frequent fallers (0-2 falls). With the odds of suffering frequent falls increasing 69% with each SD increase in CSRT (OR = 1.69, 95% CI: 1.27-2.26, p = falls in people with MS. This test may prove useful in documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions. Implications for rehabilitation Good choice stepping reaction time (CSRT) is required for maintaining balance. A simple low-tech CSRT test has excellent discriminative and predictive validity in relation to falls in people with MS. This test may prove useful documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions.

  10. Design and synthesis of polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Gunta, Rama

    2015-01-01

    Here, we describe a new and simple synthetic strategy to various polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis (RRM) as the key steps. This approach delivers tri- and tetracyclic sulfones with six (n = 1), seven (n = 2) or eight-membered (n = 3) fused-ring systems containing trans-ring junctions unlike the conventional all cis-ring junctions generally obtained during the RRM sequence. Interestingly the starting materials used are simple and commercially available.

  11. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.

    Science.gov (United States)

    Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X

    2013-02-01

    In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low

  12. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction

    OpenAIRE

    Saed, Mohand O.; Torbati, Amir H.; Nair, Devatha P.; Yakacki, Christopher M.

    2016-01-01

    This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addi...

  13. It just doesn't speak to me: mid-aged men's reactions to '10,000 Steps a Day'.

    Science.gov (United States)

    Burton, Nicola W; Walsh, Anthony; Brown, Wendy J

    2008-04-01

    The evaluation of an earlier 10,000 Steps community-based intervention program indicated that men were less likely than women to have used a pedometer or increased their physical activity (PA). This study aimed to explore men's reactions to the 10,000 Steps a Day message, the use of pedometers, and other strategies for increasing PA. Five focus groups were conducted with 39 men aged 45-65 years. Although many were familiar with the 10,000 Steps message, the majority of men did not like it. Pedometers were seen as useful for assessing PA in the short term, but not for ongoing use. Participants were generally aware of PA recommendations. Walking was considered a good option for this age group, but there was varying interest in this type of activity. Weight and stress management were commonly identified benefits of PA. Common barriers to PA were lack of time and motivation, health and weight restrictions, cost, and disinterest. Suggestions of how to promote PA to mid-aged men included workplace initiatives, making PA "fun", and creating opportunities for men to do PA with their family or same-aged peers. PA promotion using the 10,000 Steps message, walking, and pedometers may not appeal to mid-aged men.

  14. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAO, Ya-Li(曹亚丽); JIA, Dian-Zeng(贾殿赠); LIU, Lang(刘浪); LUO, Jian-Min(骆建敏)

    2004-01-01

    A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation.

  15. Physiological and cognitive mediators for the association between self-reported depressed mood and impaired choice stepping reaction time in older people.

    NARCIS (Netherlands)

    Kvelde, T.; Pijnappels, M.A.G.M.; Delbaere, K.; Close, J.C.; Lord, S.R.

    2010-01-01

    Background. The aim of the study was to use path analysis to test a theoretical model proposing that the relationship between self-reported depressed mood and choice stepping reaction time (CSRT) is mediated by psychoactive medication use, physiological performance, and cognitive ability.A total of

  16. Production of ethyl ester from crude palm oil by two-step reaction using continuous microwave system

    Directory of Open Access Journals (Sweden)

    Sukritthira Ratanawilai

    2011-02-01

    Full Text Available The esterification of free fatty acids (FFA in vegetable oils with alcohol using an acid catalyst is a promising methodto convert FFA into valuable ester and obtain a FFA-free oil that can be further transesterified using alkali bases. In thiswork, the direct esterification reaction of FFA in crude palm oil to ethyl ester by continuous microwave was studied and theeffects of the main variables involved in the process, amount of catalyst, reaction time and the molar ratio oil/ alcohol, wereanalyzed. The optimum condition for the continuous esterification process was carried out with a molar ratio of oil to ethanol1:6, using 1.25%wt of H2SO4/oil as a catalyst, microwave power of 78 W and a reaction time 90 min. This esterification processshows that the amount of FFA was reduced from 7.5%wt to values around 1.4 %wt. Similar results were obtained followingconventional heating at 70°C, but only after a reaction time of 240 min. The esterified crude palm oil is suitable to perform thetransesterification process. Transesterification of the esterified palm oil has been accomplished with a molar ratio of oil toethanol of 1:8.5, 2.5%wt of KOH as a catalyst, a microwave power of 78 W, and a reaction time of 7 min. In addition, theproblem of glycerin separation was solved by mixing 10%wt of pure glycerin into the ethyl ester to induce the glycerin fromthe reaction to separated. This two-step esterification and transesterification process provided a yield of 78%wt with anester content of 97.4%wt. The final ethyl ester product met with the specifications stipulated by ASTM D6751-02.

  17. One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction

    KAUST Repository

    Varga, Tamás

    2018-03-14

    Chlorine-free Platinum/nitrogen-doped graphene oxygen reduction reaction catalysts were synthesized by a one step method of annealing a mixture of platinum acetylacetonate and graphene oxide under ammonia atmosphere. Nanoparticles with close to the ideal particle size for oxygen reduction reaction (ORR) were formed, i.e., with diameter of 3–4 nm (500 and 600 °C) and 6 nm (700 °C). X-ray photoelectron spectroscopy confirmed the successful introduction of both pyridinic and pyrrolic type nitrogen moieties into the graphene layers, which indicates a strong interaction between the nanoparticles and the graphene layers. The electrocatalytic activity of glassy carbon electrodes (GCE) modified with the synthesized Pt/NG samples for oxygen reduction was compared to that of a platinum/carbon black catalyst modified electrode in acidic and alkaline media. Based on the measured limiting current densities and calculated electron transfer number, the highest activity was measured in acidic and alkaline media on the samples annealed at 600 and 700 °C, respectively.

  18. Stage design

    International Nuclear Information System (INIS)

    Shacter, J.

    1975-01-01

    A method is described of cycling gases through a plurality of diffusion stages comprising the steps of admitting the diffused gases from a first diffusion stage into an axial compressor, simultaneously admitting the undiffused gases from a second diffusion stage into an intermediate pressure zone of said compressor corresponding in pressure to the pressure of said undiffused gases, and then admitting the resulting compressed mixture of diffused and undiffused gases into a third diffusion stage

  19. One-step reduced kinetics for lean hydrogen-air deflagration

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Galisteo, D.; Sanchez, A.L. [Area de Mecanica de Fluidos, Univ. Carlos III de Madrid, Leganes 28911 (Spain); Linan, A. [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, F.A. [Dept. of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2009-05-15

    A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen-air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen-air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H{sub 2} + O{sub 2} {yields} 2H{sub 2}O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen-air flames, decreasing required computation times. (author)

  20. A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step.

    Science.gov (United States)

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2017-12-01

    The aim of this study is to compare and analyze the components of ground reaction force (GRF) relative to the foothold heights during downward step of 16-t truck. Adult males (n= 10) jumped downward from each 1st, 2nd, 3rd foothold step and driver's seat orderly using hand rail. Sampling rate of force components of 3 axis (medial-lateral [ML] GRF, anterior-posterior [AP] GRF, peak vertical force [PVF]), variables (COPx, COPy, COP area) of center of pressure (COP), loading rate, and stability index (ML, AP, vertical, and dynamic postural stability index [DPSI]) processed from GRF system was cut off at 1,000 Hz. and variables was processed with repeated one-way analysis of variance. AP GRF, PVF and loading rate showed higher value in case of not used hand rail than that used hand rail in all 1st, 2nd, and 3rd of foothold step. DPSI showed more lowered stability in order of 2nd, 3rd step than 1st foothold step used with hand rail, of which showed lowest stability from driver's seat. COPx, COPy, and COP area showed higher value in case of 2nd and 3rd than that of 1st of foothold step, and showed lowest stability from driver's seat. It is more desirable for cargo truck driver to utilize an available hand rail in order of 3rd, 2nd, and 1st of foothold step than downward stepping directly, thus by which may results in decrease of falling injuries and minimization of impulsive force transferring to muscular-skeletal system.

  1. Failure of the first step of two-stage revision due to polymicrobial prosthetic joint infection of the hip.

    Science.gov (United States)

    Bozhkova, Svetlana; Tikhilov, Rashid; Labutin, Dmitry; Denisov, Alexey; Shubnyakov, Igor; Razorenov, Vadim; Artyukh, Vasilii; Rukina, Anna

    2016-12-01

    The unsuccessful treatment of prosthetic joint infection (PJI) with two-stage revision leads to infection recurrence. The objectives of the study were to assess the clinical and demographic characteristics of patients with polymicrobial PJI, and to evaluate the role of the microbial profile involved in PJI in the risk of infection recurrence after the first step of two-stage revision surgery. A retrospective analysis of 189 cases of culture-positive PJI following total hip replacement over a 5-year period was performed. The demographic characteristics of patients, clinical symptoms, microbiology cultures of intraoperative biopsies, laboratory values of C-reactive protein (CRP), white blood cell count and erythrocyte sedimentation rate were analyzed. Patients were divided into two groups-135 with monomicrobial and 54 with polymicrobial infection. Of all patients, 68.9 % in the monomicrobial and 83.3 % in the polymicrobial group had a body mass index >25 kg/m 2 (p = 0.05). The median CRP values were 5.7 mg/L (IQR 4.0-10.0 mg/L) in the monomicrobial compared to 8.8 mg/L (IQR 5.0-27 mg/L) in the polymicrobial group (p = 0.01). The percentage of successful outcomes was 27.8 % in patients with microbial associations (p infection recurrence (OR 4.4; 95 % CI 1.18-16.37; p = 0.03). Overweight and obese patients or those with elevated CRP had a greater risk of polymicrobial PJI. They were predisposed to recurrence of infection after the first step of two-stage revision. An unsuccessful outcome was more likely in cases with polymicrobial infection compared to those with monomicrobial infection. In addition, the presence of multidrug-resistant strains of Gram-negative bacteria substantially increased the risk of PJI treatment being unsuccessful. Level III, therapeutic study.

  2. The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template

    KAUST Repository

    Trinh, Thuat T.

    2012-01-01

    The initial step for silicate and aluminosilicate condensation is studied in water in the presence of a realistic tetrapropylammonium template under basic conditions. The model corresponds to the synthesis conditions of ZSM5. The free energy profile for the dimer formation ((OH) 3Si-O-Si-(OH) 2O - or [(OH) 3Al-O-Si-(OH) 3] -) is calculated with ab initio molecular dynamics and thermodynamic integration. The Si-O-Si dimer formation occurs in a two-step manner with an overall free energy barrier of 75 kJ mol -1. The first step is associated with the Si-O bond formation and results in an intermediate with a five-coordinated Si, and the second one concerns the removal of the water molecule. The template is displaced away from the Si centres upon dimer formation, and a shell of water molecules is inserted between the silicate and the template. The main effect of the template is to slow down the backward hydrolysis reaction with respect to the condensation one. The Al-O-Si dimer formation first requires the formation of a metastable precursor state by proton transfer from Si(OH) 4 to Al(OH) 4 - mediated by a solvent molecule. It then proceeds through a single step with an overall barrier of 70 kJ mol -1. The model with water molecules explicitly included is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction. © the Owner Societies 2012.

  3. Batch and Flow Photochemical Benzannulations Based on the Reaction of Ynamides and Diazo Ketones. Application to the Synthesis of Polycyclic Aromatic and Heteroaromatic Compounds

    Science.gov (United States)

    Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.

    2013-01-01

    Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731

  4. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    International Nuclear Information System (INIS)

    Xu Rui; Chaplain, M.A.J.; Davidson, F.A.

    2006-01-01

    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model

  5. Bio-inspired step-climbing in a hexapod robot

    International Nuclear Information System (INIS)

    Chou, Ya-Cheng; Yu, Wei-Shun; Huang, Ke-Jung; Lin, Pei-Chun

    2012-01-01

    Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the ‘rearing stage,’ inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the ‘rising stage,’ maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed. (paper)

  6. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  7. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  8. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    Science.gov (United States)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  9. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.

    Science.gov (United States)

    Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R

    2015-03-01

    The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  11. Underground structure pattern and multi AO reaction with step feed concept for upgrading an large wastewater treatment plant

    Science.gov (United States)

    Peng, Yi; Zhang, Jie; Li, Dong

    2018-03-01

    A large wastewater treatment plant (WWTP) could not meet the new demand of urban environment and the need of reclaimed water in China, using a US treatment technology. Thus a multi AO reaction process (Anaerobic/oxic/anoxic/oxic/anoxic/oxic) WWTP with underground structure was proposed to carry out the upgrade project. Four main new technologies were applied: (1) multi AO reaction with step feed technology; (2) deodorization; (3) new energy-saving technology such as water resource heat pump and optical fiber lighting system; (4) dependable old WWTP’s water quality support measurement during new WWTP’s construction. After construction, upgrading WWTP had saved two thirds land occupation, increased 80% treatment capacity and improved effluent standard by more than two times. Moreover, it had become a benchmark of an ecological negative capital changing to a positive capital.

  12. Study of two-step mechanisms in the 12C(p,d)11C reaction at 45 MeV

    International Nuclear Information System (INIS)

    Couvert, Pierre.

    1974-01-01

    An attempt was made to find the nuclear reaction mechanisms explaining the intensity and behavior of the cross sections in the 12 C(p,d) 11 C reaction at 45 MeV. First, the conventional interpretation of the experimental data leads to two closely related conclusions. The behavior of the cross-sections measured cannot be explained without including the intermediate stage of collective 2 + 12 C excitation or accounting for its possible interference with the direct capture of a neutron. The relative intensity of the different mechanisms is directly bound up with the value of the nuclear structure parameters of the wave function adopted. As a result this study is found to be an excellent wave function test and the results obtained seem to prove that the wave function calculated by Clegg for 11 B is also suitable for 11 C. Next a two-stage process was introduced, using inelastic deuteron scattering on 11 C as the intermediate stage. The problem which then arises is to determine the deformation parameters of the final nucleus in its different excitation states. The model adopted is in fact very crude and only gives quantitative information on the physical reality of such a process. Some improvement is shown to be obtained by finite range and non-local potential corrections. It is observed that track-transitions, which correspond in fact to new processes interfering with those already introduced play an important part. The most realistic way to treat the problem is thus to make an exact calculation within the coupled equation system, keeping strictly to physically justified hypotheses [fr

  13. Effect of one step KOH activation and CaO modified carbon in transesterification reaction

    Science.gov (United States)

    Yacob, Abd Rahim; Zaki, Muhammad Azam Muhammad

    2017-11-01

    In this work, one step activation was introduced using potassium hydroxide (KOH) and calcium oxide (CaO) modified palm kernel shells. Various concentration of calcium oxide was used as catalyst while maintaining the same concentration of potassium hydroxide to activate and impregnate the palm kernel shell before calcined at 500°C for 5 hours. All the prepared samples were characterized using Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM). FTIR analysis of raw palm kernel shell showed the presence of various functional groups. However, after activation, most of the functional groups were eliminated. The basic strength of the prepared samples were determined using back titration method. The samples were then used as base heterogeneous catalyst for the transesterification reaction of rice bran oil with methanol. Analysis of the products were performed using Gas Chromatography Flame Ionization Detector (GC-FID) to calculate the percentage conversion of the biodiesel products. This study shows, as the percentage of one step activation potassium and calcium oxide doped carbon increases thus, the basic strength also increases followed by the increase in biodiesel production. Optimization study shows that the optimum biodiesel production was at 8 wt% catalyst loading, 9:1 methanol: oil molar ratio at 65°C and 6 hours which gives a conversion up to 95%.

  14. Reaction mechanisms in zeolite catalysis

    NARCIS (Netherlands)

    Rozanska, X.; Santen, van R.A.; Auerbach, S.C.; Carrado, K.A.; Dutta, P.D.

    2003-01-01

    A review; described are the most basic mechanistic reaction steps that are induced by zeolite catalysts. Details on the zeolitic properties that are relevant to mol. reactivity are also provided. The theor. methods and models at hand to allow the investigation of these reaction steps and that have

  15. End-stage kidney disease

    Science.gov (United States)

    ... stage; Kidney failure - end stage; ESRD; ESKD Images Kidney anatomy References Fogarty DG, Taal MW. A stepped care approach to the management of chronic kidney disease. In: Skorecki K, Chertow GM, Marsden PA, ...

  16. Diagnosis and staging of testicular cancer; Diagnostik und Staging von malignen Hodentumoren

    Energy Technology Data Exchange (ETDEWEB)

    Eiers, Michael; Bender, Karen; Hallscheidt, Peter J. [Universitaetsklinikum Heidelberg (Germany). Abt. Diagnostische und Interventionelle Radiologie

    2010-03-15

    With an incidence of just 2 % of all maligne tumour diseases testicular cancer is a relative rare tumour disease. In comparison to other tumours, orchiectomy is performed as a first step therapy straight after primary staging which is performed by palpation, ultrasonography and evaluation of the tumour markers. In a second diagnostic step initial staging will be done by re-evaluation of the tumour markers, X-ray of the thorax in some cases also by CT, CT of the abdomen/pelvis or MRI of the abdomen, in progressive disease additional MRI of the head. Follow-up after curative therapy will be performed according to the histological type (seminoma - non-seminoma) and tumour staging. (orig.)

  17. The effect of pushing-off of an impurity by the step at the initial stage of its capture in crystallization from a molecular beam

    International Nuclear Information System (INIS)

    Ruzaikin, M.P.; Ervie, Yu.Yu.

    1996-01-01

    A model of impurity capture by a train of growth steps at the initial (nonstationary) stage of doping in molecular-beam epitaxy is suggested. The model takes into account the processes of adsorption, desorption, and surface diffusion of impurity atoms and also their jump over the steps and blocking at the kinks of the matrix material. The exact expression of the thickness, dt of the transition region is obtained. It is shown that at low crystallization temperatures, pushing-off of impurity atoms by a step can give rise to a nonmonotonic (with a maximum) temperature dependence of dt and a decrease of dt with an increase of the growth rate observed experimentally

  18. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    Science.gov (United States)

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  19. Two Step Wittig/Dihydroxylation Synthetic Route to Higher Sugars

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Madsen, Robert

    1999-01-01

    Higher carbon sugars are obtained by a two carbon, two step chain elongation of aldoses involving first a Wittig reaction and then an osmium tetroxide catalyzed dihydroxylation......Higher carbon sugars are obtained by a two carbon, two step chain elongation of aldoses involving first a Wittig reaction and then an osmium tetroxide catalyzed dihydroxylation...

  20. Reaction Coordinate, Free Energy, and Rate of Intramolecular Proton Transfer in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Paul, Sanjib; Paul, Tanmoy Kumar; Taraphder, Srabani

    2018-03-22

    The role of structure and dynamics of an enzyme has been investigated at three different stages of its function including the chemical event it catalyzes. A one-pot computational method has been designed for each of these stages on the basis of classical and/or quantum mechanical-molecular mechanical molecular dynamics and transition path sampling simulations. For a pair of initial and final states A and B separated by a high free-energy barrier, using a two-stage selection process, several collective variables (CVs) are identified that can delineate A and B. However, these CVs are found to exhibit strong cross-coupling over the transition paths. A set of mutually orthogonal order parameters is then derived from these CVs and an optimal reaction coordinate, r, determined applying half-trajectory likelihood maximization along with a Bayesian information criterion. The transition paths are also used to project the multidimensional free energy surface and barrier crossing dynamics along r. The proposed scheme has been applied to the rate-determining intramolecular proton transfer reaction of the well-known enzyme human carbonic anhydrase II. The potential of mean force, F( r), in the absence of the chemical step is found to reproduce earlier results on the equilibrium population of two side-chain orientations of key residue His-64. Estimation of rate constants, k, from mean first passage times for the three different stages of catalysis shows that the rate-determining step of intramolecular proton transfer occurs with k ≃ 1.0 × 10 6 s -1 , in close agreement with known experimental results.

  1. Calcium hydroxide silylation reaction with trimethylchlorosilane

    Directory of Open Access Journals (Sweden)

    Novoselnov Anatoliy A.

    2016-01-01

    Full Text Available The silylation reaction of a calcium hydroxide with a trimethylchlorosilane is studied as a silylation model by the gas-liquid chromatography. The silylation process is divided into three stages. A material balance of these stages is calculated. The schemes of the reactions at each stage of the process are proposed. The modified calcium hydroxide obtained at three repetitive stages of the silylation reaction has been investigated by the x-ray phase analysis, IR spectroscopy, thermal analysis, electron microscopy in a combination with the elemental analysis. It has been determined that at the first stage of the interaction the processes of the trimethylchlorosilane hydrolysis and of the hydrolysis products condensation dominate, and at the same time an adsorption process of the trimethylchlorosilane and its derivatives starts. Further, the hydrolysis of the trimethylchlorosilane by the «new» portions of a water formed in the reaction of a calcium hydroxide with a hydrogen chloride takes place, simultaneously the secondary reactions of the Si-O-Ca – ties’ formation and cleavage occur including as a silylation-desilylation dynamic equilibrium process.

  2. Synthesis of monoclinic Celsian from Coal Fly Ash by using a one-step solid-state reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Long-Gonzalez, D.; Lopez-Cuevas, J.; Gutierrez-Chavarria, C.A.; Pena, P.; Baudin, C.; Turrillas, X. [CINVESTAV, Coahuila (Mexico)

    2010-03-15

    Monoclinic (Celsian) and hexagonal (Hexacelsian) Ba1-xSrxAl{sub 2}Si2O8 solid solutions, where x=0, 0.25, 0.375, 0.5, 0.75 or 1, were synthesized by using Coal Fly Ash (CFA) as main raw material, employing a simple one-step solid-state reaction process involving thermal treatment for 5 h at 850-1300{sup o}C. Fully monoclinic Celsian was obtained at 1200{sup o} C/5 h, for SrO contents of 0.25 {<=} x {<=} 0.75. However, an optimum SrO level of 0.25 {<=} x {<=} 0.375 was recommended for the stabilization of Celsian. These synthesis conditions represent a significant improvement over the higher temperatures, longer times and/or multi-step processes needed to obtain fully monoclinic Celsian, when other raw materials are used for this purpose, according to previous literature. These results were attributed to the role of the chemical and phase constitution of CFA as well as to a likely mineralizing effect of CaO and TiO{sub 2} present in it, which enhanced the Hexacelsian to Celsian conversion.

  3. Is impaired control of reactive stepping related to falls during inpatient stroke rehabilitation?

    Science.gov (United States)

    Mansfield, Avril; Inness, Elizabeth L; Wong, Jennifer S; Fraser, Julia E; McIlroy, William E

    2013-01-01

    Individuals with stroke fall more often than age-matched controls. Although many focus on the multifactorial nature of falls, the fundamental problem is likely the ability for an individual to generate reactions to recover from a loss of balance. Stepping reactions to recover balance are particularly important to balance recovery, and individuals with stroke have difficulty executing these responses to prevent a fall following a loss of balance. The purpose of this study is to determine if characteristics of balance recovery steps are related to falls during inpatient stroke rehabilitation. We conducted a retrospective review of individuals with stroke attending inpatient rehabilitation (n = 136). Details of falls experienced during inpatient rehabilitation were obtained from incident reports, nursing notes, and patient interviews. Stepping reactions were evoked using a "release-from-lean" postural perturbation. Poisson regression was used to determine characteristics of stepping reactions that were related to increased fall frequency relative to length of stay. In all, 20 individuals experienced 29 falls during inpatient rehabilitation. The characteristics of stepping reactions significantly related to increased fall rates were increased frequency of external assistance to prevent a fall to the floor, increased frequency of no-step responses, increased frequency of step responses with inadequate foot clearance, and delayed time to initiate stepping responses. Impaired control of balance recovery steps is related to increased fall rates during inpatient stroke rehabilitation. This study informs the specific features of stepping reactions that can be targeted with physiotherapy intervention during inpatient rehabilitation to improve dynamic stability control and potentially prevent falls.

  4. Modelling of the spallation reaction: analysis and testing of nuclear models

    International Nuclear Information System (INIS)

    Toccoli, C.

    2000-01-01

    The spallation reaction is considered as a 2-step process. First a very quick stage (10 -22 , 10 -29 s) which corresponds to the individual interaction between the incident projectile and nucleons, this interaction is followed by a series of nucleon-nucleon collisions (intranuclear cascade) during which fast particles are emitted, the nucleus is left in a strongly excited level. Secondly a slower stage (10 -18 , 10 -19 s) during which the nucleus is expected to de-excite completely. This de-excitation is performed by evaporation of light particles (n, p, d, t, 3 He, 4 He) or/and fission or/and fragmentation. The HETC code has been designed to simulate spallation reactions, this simulation is based on the 2-steps process and on several models of intranuclear cascades (Bertini model, Cugnon model, Helder Duarte model), the evaporation model relies on the statistical theory of Weiskopf-Ewing. The purpose of this work is to evaluate the ability of the HETC code to predict experimental results. A methodology about the comparison of relevant experimental data with results of calculation is presented and a preliminary estimation of the systematic error of the HETC code is proposed. The main problem of cascade models originates in the difficulty of simulating inelastic nucleon-nucleon collisions, the emission of pions is over-estimated and corresponding differential spectra are badly reproduced. The inaccuracy of cascade models has a great impact to determine the excited level of the nucleus at the end of the first step and indirectly on the distribution of final residual nuclei. The test of the evaporation model has shown that the emission of high energy light particles is under-estimated. (A.C.)

  5. One-stage treatment of delayed 'jersey finger' by Z-step lengthening of the flexor digitorum profundus tendon at the wrist.

    Science.gov (United States)

    Sawaya, Elias T; Choughri, Hussein; Pelissier, Philippe

    2012-02-01

    The authors report the case of a 19-year-old female with delayed presentation of a type II 'jersey finger' of the fourth dominant digit. A surgical approach was performed, revealing a retracted flexor digitorum profundus tendon within a still patent sheath. The resulting loss of tendon length overruled any possibility of direct reinsertion of the tendon. A lengthening "Z-step" tendinoplasty was then performed on the tendon at the wrist, thus enabling reinsertion at the base of the distal phalanx. The patient then underwent conventional splinting and physiotherapy. Total Active Motion was measured at 220° with a 6-month follow-up. Even though there is no clear consensus concerning management of such cases, different techniques have been described, such as one- or two-stage grafting, or tenotomy at the musculotendinous junction. Lengthening tendinoplasties have been applied by certain authors but only to the flexor pollicis longus tendon. To our knowledge, this is the only reported case of lengthening Z-step applied to a long digit for the repair of type II 'jersey finger' lesions. The satisfactory functional and cosmetic outcome encourages us to consider this one-stage technique in other select cases, in order to gather more formal evidence. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information

    Directory of Open Access Journals (Sweden)

    Emmanouil Papadakis

    2017-10-01

    Full Text Available This article describes the development of a reaction database with the objective to collect data for multiphase reactions involved in small molecule pharmaceutical processes with a search engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role of organic solvents in reaction performance improvement. The focus of this reaction database is to provide a data rich environment with process information available to assist during the early stage synthesis of pharmaceutical products. The database is structured in terms of reaction classification of reaction types; compounds participating in the reaction; use of organic solvents and their function; information for single step and multistep reactions; target products; reaction conditions and reaction data. Information for reactor scale-up together with information for the separation and other relevant information for each reaction and reference are also available in the database. Additionally, the retrieved information obtained from the database can be evaluated in terms of sustainability using well-known “green” metrics published in the scientific literature. The application of the database is illustrated through the synthesis of ibuprofen, for which data on different reaction pathways have been retrieved from the database and compared using “green” chemistry metrics.

  7. Adsorption and diffusion of H and NH{sub x} as key steps of the NH{sub x} dehydrogenation reaction at the V{sub 2}O{sub 5} (010) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Mathis; Hermann, Klaus [Fritz-Haber-Institut der MPG, und Sfb 546, Berlin (Germany)

    2009-07-01

    Various selective oxidation reactions as the selective catalytic reduction (SCR) of NO{sub x} or the ammoxidation of propane/propene to acrylonitrile are processed on vanadium based metal-oxide catalysts in the presence of ammonia. In the reactions the intermediates NH{sub 2}, NH{sub 3}, and NH{sub 4} are involved indicating that the adsorption and dehydrogenation of NH{sub x}, x < 4, are important steps. We have performed theoretical studies of corresponding reaction steps where the catalyst is simulated by a finite section of the V{sub 2}O{sub 5} (010) surface. The calculations apply density-functional theory combined with clusters modeling the adsorbate system. The substrate lowers corresponding dehydrogenation energies considerably compared with values for the gas phase reaction. However, the lowering is too small to make dehydrogenation of NH{sub 3} likely to happen. Our results on the role of oxygen vacancies for the dehydrogenation indicate that such surface defects become important for the reaction. Besides the energetics also the diffusion at the surface influences the reaction. A nudged elastic band (NEB) routine has been implemented to evaluate diffusion paths and barriers. Hydrogen diffusion on the surface will be discussed and additional examples for NH{sub x} diffusion will be shown. Based on these results possible reaction scenarios for the dehydrogenation reaction will be presented.

  8. Charge-exchange reactions on 36 S

    International Nuclear Information System (INIS)

    Fifield, L.K.; Catford, W.N.; Orr, N.A.; Ophel, T.R.; Etchegoyen, A.; Etchegoyen, M.C.

    1992-11-01

    A series of charge-exchange reactions on 36 S targets have been investigated at beam energies ∼7 MeV/A. Pronounced selectivities to different final states in 36 P are observed which depend on the projectile employed. An interpretation of the data in terms of one- and two-step pictures of the reaction mechanism is presented. At least two, and probably all, of the reactions have a significant 1-step contribution to the reaction mechanism at these energies. 22 refs., 5 tabs., 5 figs

  9. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test.

    Science.gov (United States)

    Suin, Vanessa; Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael; Van Gucht, Steven

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  10. The redox-Mannich reaction.

    Science.gov (United States)

    Chen, Weijie; Seidel, Daniel

    2014-06-06

    A complement to the classic three-component Mannich reaction, the redox-Mannich reaction, utilizes the same starting materials but incorporates an isomerization step that enables the facile preparation of ring-substituted β-amino ketones. Reactions occur under relatively mild conditions and are facilitated by benzoic acid.

  11. Determining two-step control in heterogeneous catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, T; Silveston, P L; Hudgins, R R

    1979-10-01

    The data by Thaller and Thodos on the sec.-butanol dehydrogenation to methyl ethyl ketone on brass catalyst indicated that a dual site surface reaction was rate-controlling below 575/sup 0/K and hydrogen desorption was rate-controlling above 616/sup 0/K (Vertical BarAIChE J.

  12. The role of phosphate in a multistep enzymatic reaction: reactions of the substrate and intermediate in pieces.

    Science.gov (United States)

    Kholodar, Svetlana A; Allen, C Leigh; Gulick, Andrew M; Murkin, Andrew S

    2015-02-25

    Several mechanistically unrelated enzymes utilize the binding energy of their substrate's nonreacting phosphoryl group to accelerate catalysis. Evidence for the involvement of the phosphodianion in transition state formation has come from reactions of the substrate in pieces, in which reaction of a truncated substrate lacking its phosphorylmethyl group is activated by inorganic phosphite. What has remained unknown until now is how the phosphodianion group influences the reaction energetics at different points along the reaction coordinate. 1-Deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase (DXR), which catalyzes the isomerization of DXP to 2-C-methyl-D-erythrose 4-phosphate (MEsP) and subsequent NADPH-dependent reduction, presents a unique opportunity to address this concern. Previously, we have reported the effect of covalently linked phosphate on the energetics of DXP turnover. Through the use of chemically synthesized MEsP and its phosphate-truncated analogue, 2-C-methyl-D-glyceraldehyde, the current study revealed a loss of 6.1 kcal/mol of kinetic barrier stabilization upon truncation, of which 4.4 kcal/mol was regained in the presence of phosphite dianion. The activating effect of phosphite was accompanied by apparent tightening of its interactions within the active site at the intermediate stage of the reaction, suggesting a role of the phosphodianion in disfavoring intermediate release and in modulation of the on-enzyme isomerization equilibrium. The results of kinetic isotope effect and structural studies indicate rate limitation by physical steps when the covalent linkage is severed. These striking differences in the energetics of the natural reaction and the reactions in pieces provide a deeper insight into the contribution of enzyme-phosphodianion interactions to the reaction coordinate.

  13. Analysis of mechanism of complex chemical reaction taking radiation chemical purification of gases from impurities as an example

    International Nuclear Information System (INIS)

    Gerasimov, G.Ya.; Makarov, V.N.

    1997-01-01

    Algorithm of selecting optimal mechanism of complex chemical reaction, enabling to reduce the number of its stages, is suggested. Main steps of constructing the kinetic model of the medium are considered, taking the radiation chemical purification (using fast electron radiation) of gases (N 2 , CO 2 , O 2 and others) from impurities as an example. 17 refs., 3 figs., 2 tabs

  14. Performance prediction method for a multi-stage Knudsen pump

    Science.gov (United States)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.; Yamaguchi, H.; Niimi, T.

    2017-12-01

    In this study, the novel method to predict the performance of a multi-stage Knudsen pump is proposed. The performance prediction method is carried out in two steps numerically with the assistance of a simple experimental result. In the first step, the performance of a single-stage Knudsen pump was measured experimentally under various pressure conditions, and the relationship of the mass flow rate was obtained with respect to the average pressure between the inlet and outlet of the pump and the pressure difference between them. In the second step, the performance of a multi-stage pump was analyzed by a one-dimensional model derived from the mass conservation law. The performances predicted by the 1D-model of 1-stage, 2-stage, 3-stage, and 4-stage pumps were validated by the experimental results for the corresponding number of stages. It was concluded that the proposed prediction method works properly.

  15. Fluorogenic organocatalytic reactions

    NARCIS (Netherlands)

    Raeisolsadati Oskouei, M.

    2017-01-01

    In this thesis, we introduce fluorescence spectroscopy as a new tool to gain insight into the interactions between the substrates and catalyst during organocatalytic reactions. The ultimate goal is to resolve the kinetics of the binding and reaction steps and obtain detailed understanding of the

  16. Multi-step processes in the (d, t) and (d, 3He) reactions on 116Sn and 208Pb targets at Ed = 200 MeV

    International Nuclear Information System (INIS)

    Langevin-Joliot, H.; Van de Wiele, J.; Guillot, J.; Koning, A.J.

    2000-01-01

    The role of multi-step processes in the reactions 116 Sn(d,t), 208 Pb(d,t) and 116 Sn(d, 3 He), previously studied at E d = 200 MeV at forward angles and for relatively low energy transfers, has been investigated. We have performed for the first time multi-step calculations taking into account systematically collective excitations in the second and higher order step inelastic transitions. A calculation code based on the Feshbach, Kerman and Koonin model has been modified to handle explicitly these collective excitations, most important in the forward angle domain. One step double differential pick-up cross sections were built from finite range distorted wave results spread in energy using known or estimated hole state characteristics. It is shown that two-step cross sections calculated using the above method compare rather well with those deduced via coupled channel calculations for the same collective excitations. The multi-step calculations performed up to 6 steps reproduce reasonably well the 115 Sn, 207 Pb and 115 In experimental spectra measured up to E x ∼- 40 MeV and 15 deg. The relative contributions of steps of increasing order to pick-up cross sections at E d = 200 MeV and 150 MeV are discussed. (authors)

  17. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    Science.gov (United States)

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-02-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

  18. Accessory stimulus modulates executive function during stepping task.

    Science.gov (United States)

    Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo; Nojima, Ippei

    2015-07-01

    When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. Copyright © 2015 the American Physiological Society.

  19. Detection of Listeria monocytogenes in ready-to-eat food by Step One real-time polymerase chain reaction.

    Science.gov (United States)

    Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal

    2012-01-01

    The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.

  20. An Ugi Reaction Incorporating a Redox-Neutral Amine C-H Functionalization Step.

    Science.gov (United States)

    Zhu, Zhengbo; Seidel, Daniel

    2016-02-19

    Pyrrolidine and 1,2,3,4-tetrahydroisoquinoline (THIQ) undergo redox-neutral α-amidation with concurrent N-alkylation upon reaction with aromatic aldehydes and isocyanides. Reactions are promoted by acetic acid and represent a new variant of the Ugi reaction.

  1. The initial stages of the reaction between ZrCo and hydrogen studied by hot-stage microscopy

    International Nuclear Information System (INIS)

    Bloch, J.; Brill, M.; Ben-Eliahu, Y.; Gavra, Z.

    1998-01-01

    The development of hydride phase on the surface of ZrCo under 1 bar of hydrogen was investigated at temperatures between 75 and 300 C. Both surface modifications of the parent alloy and the nucleation and growth of hydride phase were observed. Surface modifications included: grain boundary outgrowth, intra-granular precipitation in the form of fine lamellar hydride phase and micro cracks. It is suggested that the surface modifications result from a combination of hydrogen solubility and the parent metal ductility. These modifications were enhanced near areas which had been previously transformed. The nucleation was self catalyzed, with new nuclei preferentially formed at the vicinity of growing former nuclei. All this suggested that the transport of hydrogen through the hydride phase is faster than its transfer through the surface passivation layer. The growth rate of the nuclei was similar to that of uranium. The activation energy for the growth was E a =24±3 kJ/mol. The results were compared with several other metal-hydrogen systems. It is suggested that the important physical factors controlling the mechanism of the initial hydriding reaction are hydrogen solubility and the brittleness of the parent metal/alloy. These parameters are responsible to the different changes observed during the initial hydriding stages which include: surface modifications, cracking, nucleation and growth. (orig.)

  2. Step-scan Fourier transform infrared (FTIR) spectrometer for investigating chemical reactions of energy-related materials. Final report, April 1, 1995--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.

    1997-11-04

    Two step-scan Fourier transform infrared (FTIR) spectrometers were purchased with URI-DOE funds by the University of Utah. These infrared spectrometers have been used to carry out the following investigations: the determination of strength of adsorption of organic molecules at the liquid-solid interface of coated attenuated total reflectance (ATR) elements, the kinetic study of the photoinitiated polymerization of a dental resin, the exploration of the kinetics of photochemical reactions of organic molecules in solution, and the development of a stopped-flow FTIR interface for measuring rates and mechanisms of reactions in solution that are not photoinitiated and do not have convenient ultraviolet-visible spectral features.

  3. Some calculated (p,α) cross-sections using the alpha particle knock-on and triton pick-up reaction mechanisms: An optimisation of the single-step Feshbach-Kerman-Koonin (FKK) theory

    Energy Technology Data Exchange (ETDEWEB)

    Olise, Felix S.; Ajala, Afis; Olamiyl, Hezekiah B. [Dept. of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria)

    2016-04-15

    The Feshbach-Kerman-Koonin (FKK) multi-step direct (MSD) theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α) reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core) by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process) and proton-triton (for the pick-up process) interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  4. Some Calculated (p,α Cross-Sections Using the Alpha Particle Knock-On and Triton Pick-Up Reaction Mechanisms: An Optimisation of the Single-Step Feshbach–Kerman–Koonin (FKK Theory

    Directory of Open Access Journals (Sweden)

    Felix S. Olise

    2016-04-01

    Full Text Available The Feshbach–Kerman–Koonin (FKK multi-step direct (MSD theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process and proton-triton (for the pick-up process interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  5. A Two-Step Lyssavirus Real-Time Polymerase Chain Reaction Using Degenerate Primers with Superior Sensitivity to the Fluorescent Antigen Test

    Directory of Open Access Journals (Sweden)

    Vanessa Suin

    2014-01-01

    Full Text Available A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR, based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  6. Maillard Reaction: review

    Directory of Open Access Journals (Sweden)

    Júlia d'Almeida Francisquini

    2017-11-01

    Full Text Available Maillard reaction is an important subject of study in food science and technology and different areas of knowledge are involved such as chemistry, food engineering, nutrition and food technology. The objective of this paper is to present the basic concepts of the Maillard reaction, such as the reaction stages, the main compounds producced and some technological consequences for dairy products.

  7. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    Science.gov (United States)

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-10-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  8. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...

  9. Basic reactions induced by radiation

    International Nuclear Information System (INIS)

    Charlesby, A.

    1980-01-01

    This paper summarises some of the basic reactions resulting from exposure to high energy radiation. In the initial stages energy is absorbed, but not necessarily at random, giving radical and ion species which may then react to promote the final chemical change. However, it is possible to intervene at intermediate stages to modify or reduce the radiation effect. Under certain conditions enhanced reactions are also possible. Several expressions are given to calculate radiation yield in terms of energy absorbed. Some analogies between radiation-induced reactions in polymers, and those studied in radiobiology are outlined. (author)

  10. Reorientation of the Methyl Group in MAs(III) is the Rate-Limiting Step in the ArsM As(III) S-Adenosylmethionine Methyltransferase Reaction.

    Science.gov (United States)

    Packianathan, Charles; Li, Jiaojiao; Kandavelu, Palani; Sankaran, Banumathi; Rosen, Barry P

    2018-03-01

    The most common biotransformation of trivalent inorganic arsenic (As(III)) is methylation to mono-, di-, and trimethylated species. Methylation is catalyzed by As(III) S -adenosylmethionine (SAM) methyltransferase (termed ArsM in microbes and AS3MT in animals). Methylarsenite (MAs(III)) is both the product of the first methylation step and the substrate of the second methylation step. When the rate of the overall methylation reaction was determined with As(III) as the substrate, the first methylation step was rapid, whereas the second methylation step was slow. In contrast, when MAs(III) was used as the substrate, the rate of methylation was as fast as the first methylation step when As(III) was used as the substrate. These results indicate that there is a slow conformational change between the first and second methylation steps. The structure of CmArsM from the thermophilic alga Cyanidioschyzon merolae sp. 5508 was determined with bound MAs(III) at 2.27 Å resolution. The methyl group is facing the solvent, as would be expected when MAs(III) is bound as the substrate rather than facing the SAM-binding site, as would be expected for MAs(III) as a product. We propose that the rate-limiting step in arsenic methylation is slow reorientation of the methyl group from the SAM-binding site to the solvent, which is linked to the conformation of the side chain of a conserved residue Tyr70.

  11. Early stages of interface reactions between AlN and Ti thin films

    CERN Document Server

    Pinkas, M; Froumin, N; Pelleg, J; Dariel, M P

    2002-01-01

    The early stages of interface reactions between AlN and Ti thin films were investigated using x-ray diffractions, Auger electron spectroscopy, cross section transmission electron microscopy (XTEM), and high resolution XTEM. The AlN/Ti bilayers were deposited on a molybdenum substrate using reactive and nonreactive magnetron sputtering techniques. After deposition, the bilayers were heat treated for 1-10 h at 600 deg. C in a nitrogen atmosphere. Decomposition of the AlN layer took place at the AlN/Ti interface and its products, Al and N, reacted with Ti to produce a AlN/Al sub 3 Ti/Ti sub 2 N/Ti sub 3 Al/alpha-(Ti, Al)ss phase sequence. This phase sequence is not consistent with the Ti-Al-N phase diagram and is believed to be the outcome of the particular conditions that prevail in the thin film and correspond to a particular set of kinetic parameters. A model that explains the development of the phase sequence and predicts its evolution after prolonged heat treatments is put forward. The applicability of such...

  12. Deformation dependent TUL multi-step direct model

    International Nuclear Information System (INIS)

    Wienke, H.; Capote, R.; Herman, M.; Sin, M.

    2008-01-01

    The Multi-Step Direct (MSD) module TRISTAN in the nuclear reaction code EMPIRE has been extended to account for nuclear deformation. The new formalism was tested in calculations of neutron emission spectra emitted from the 232 Th(n,xn) reaction. These calculations include vibration-rotational Coupled Channels (CC) for the inelastic scattering to low-lying collective levels, 'deformed' MSD with quadrupole deformation for inelastic scattering to the continuum, Multi-Step Compound (MSC) and Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated. The comparison with experimental data shows clear improvement over the 'spherical' MSD calculations and JEFF-3.1 and JENDL-3.3 evaluations. (authors)

  13. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    International Nuclear Information System (INIS)

    Xiong Guohong; Wang Minquan; Fan Xianping; Tang Xiaoming

    1993-01-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T c =85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  14. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Science.gov (United States)

    Xiong, Guohong; Wang, Minquan; Fan, Xianping; Tang, Xiaoming

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C 790°C, forming of the 2212 superconducting phase at 790°C 860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C 970°C. It is also confirmed that the 2212 superconducting phase ( T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.

  15. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Guohong (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Wang Minquan (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Fan Xianping (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Tang Xiaoming (Zhejiang Univ., Hangzhou (China). Center for Analysis and Measurement)

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T[sub c]=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  16. A step-by-step translation of evidence into a psychosocial intervention for everyday activities in dementia: a focus group study.

    Science.gov (United States)

    Giebel, Clarissa M; Challis, David; Hooper, Nigel M; Ferris, Sally

    2018-03-01

    In order to increase the efficacy of psychosocial interventions in dementia, a step-by-step process translating evidence and public engagement should be adhered to. This paper describes such a process by involving a two-stage focus group with people with dementia (PwD), informal carers, and staff. Based on previous evidence, general aspects of effective interventions were drawn out. These were tested in the first stage of focus groups, one with informal carers and PwD and one with staff. Findings from this stage helped shape the intervention further specifying its content. In the second stage, participants were consulted about the detailed components. The extant evidence base and focus groups helped to identify six practical and situation-specific elements worthy of consideration in planning such an intervention, including underlying theory and personal motivations for participation. Carers, PwD, and staff highlighted the importance of rapport between practitioners and PwD prior to commencing the intervention. It was also considered important that the intervention would be personalised to each individual. This paper shows how valuable public involvement can be to intervention development, and outlines a process of public involvement for future intervention development. The next step would be to formally test the intervention.

  17. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  18. Automatized Assessment of Protective Group Reactivity: A Step Toward Big Reaction Data Analysis.

    Science.gov (United States)

    Lin, Arkadii I; Madzhidov, Timur I; Klimchuk, Olga; Nugmanov, Ramil I; Antipin, Igor S; Varnek, Alexandre

    2016-11-28

    We report a new method to assess protective groups (PGs) reactivity as a function of reaction conditions (catalyst, solvent) using raw reaction data. It is based on an intuitive similarity principle for chemical reactions: similar reactions proceed under similar conditions. Technically, reaction similarity can be assessed using the Condensed Graph of Reaction (CGR) approach representing an ensemble of reactants and products as a single molecular graph, i.e., as a pseudomolecule for which molecular descriptors or fingerprints can be calculated. CGR-based in-house tools were used to process data for 142,111 catalytic hydrogenation reactions extracted from the Reaxys database. Our results reveal some contradictions with famous Greene's Reactivity Charts based on manual expert analysis. Models developed in this study show high accuracy (ca. 90%) for predicting optimal experimental conditions of protective group deprotection.

  19. Can use of walkers or canes impede lateral compensatory stepping movements?

    Science.gov (United States)

    Bateni, Hamid; Heung, Evelyn; Zettel, John; McLlroy, William E; Maki, Brian E

    2004-08-01

    Although assistive devices, such as walkers and canes are often prescribed to aid in balance control, recent studies have suggested that such devices may actually increase risk of falling. In this study, we investigated one possible mechanism: the potential for walkers or canes to interfere with, or constrain, lateral movement of the feet and thereby impede execution of compensatory stepping reactions during lateral loss of balance. Lateral stepping reactions were evoked, in 10 healthy young adults (ages 22-27 years), by means of sudden unpredictable medio-lateral support surface translation. Subjects were tested while holding and loading a standard pickup walker or single-tip cane or while using no assistive device (hands free or holding an object). Results supported the hypothesis that using a walker or cane can interfere with compensatory stepping. Collisions between the swing-foot and mobility aid were remarkably frequent when using the walker (60% of stepping reactions) and also occurred in cane trials (11% of stepping reactions). Furthermore, such collisions were associated with a significant reduction (26-37%) in lateral step length. It appeared that subjects were sometimes able to avoid collision by increasing the forward or backward displacement of the swing-foot or by moving the cane; however, attempts to lift the walker out of the way occurred rarely and were usually impeded due to collision between the contralateral walker post and stance foot. The fact that compensatory stepping behavior was altered significantly in such a healthy cohort clearly demonstrates some of the safety limitations inherent to these assistive devices, as currently designed. Copyright 2003 Elsevier B.V.

  20. Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Hsu, Chih-Liang; Wang, Xiao-Dong

    2016-01-01

    DME (Dimethyl ether) synthesis from syngas with CO_2 utilization through two-step and single step processes is analyzed thermodynamically. The influences of reaction temperature, H_2/CO molar ratio, and CO_2/CO molar ratio on CO and CO_2 conversions, DME selectivity and yield, and thermal behavior are evaluated. Particular attention is paid to the comparison of the performance of DME synthesis between the two different methods. In the two-step method, the addition of CO_2 suppresses the CO conversion during methanol synthesis. An increase in CO_2/CO ratio decreases the CO_2 conversion (negative effect), but increases the total consumption amount of CO_2 (positive effect). At a given reaction temperature with H_2/CO = 4, the maximum DME yield develops at CO_2/CO = 1. In the single step method, over 98% of CO can be converted and the DME yield can be as high as 0.52 mol (mol CO)"−"1 at CO_2/CO = 2. The comparison of the single step and two-step processes indicates that the maximum CO conversion, DME selectivity, and DME yield in the former are higher than those in the latter, whereas an opposite result in the maximum CO_2 conversion is observed. These results reveal that the single step process has lower thermodynamic limitation and is a better option for DME synthesis. From CO_2 utilization point of view, the operation with low temperature, high H_2/CO ratio, and low CO_2/CO ratio results in higher CO_2 conversion, irrespective of two-step or single step DME synthesis. - Highlights: • DME (Dimethyl ether) synthesis with CO_2 utilization is analyzed thermodynamically. • Single step and two-step DME syntheses are studied and compared with each other. • CO_2 addition suppresses CO conversion in MeOH synthesis but increases MeOH yield. • The performance of the single step DME synthesis is better than that of the two-step one. • Increase CO_2/CO ratio decreases CO_2 conversion but increases CO_2 consumption amount.

  1. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.

    Science.gov (United States)

    Best, Marcel; Degen, Anna; Baalmann, Mathis; Schmidt, Tobias T; Wombacher, Richard

    2015-05-26

    Inverse-electron-demand Diels-Alder cycloaddition (DAinv ) between strained alkenes and tetrazines is a highly bio-orthogonal reaction that has been applied in the specific labeling of biomolecules. In this work we present a two-step labeling protocol for the site-specific labeling of proteins based on attachment of a highly stable norbornene derivative to a specific peptide sequence by using a mutant of the enzyme lipoic acid ligase A (LplA(W37V) ), followed by the covalent attachment of tetrazine-modified fluorophores to the norbornene moiety through the bio-orthogonal DAinv  . We investigated 15 different norbornene derivatives for their selective enzymatic attachment to a 13-residue lipoic acid acceptor peptide (LAP) by using a standardized HPLC protocol. Finally, we used this two-step labeling strategy to label proteins in cell lysates in a site-specific manner and performed cell-surface labeling on living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Two-step bacterial broad-range polymerase chain reaction analysis of heart valve tissue improves bacteriological diagnosis of infective endocarditis.

    Science.gov (United States)

    Boussier, Rémi; Rogez, Sylvie; François, Bruno; Denes, Eric; Ploy, Marie-Cécile; Garnier, Fabien

    2013-03-01

    Positive heart valve (HV) culture is a major Duke's criterion for the diagnosis of infective endocarditis but is poorly sensitive. Two broad-range 16S rDNA polymerase chain reaction (PCR) methods were applied to 31 HV samples: first, a real-time method, then conventional end-point PCR was applied to HV samples on which the first PCR was negative. Five specific real-time PCR procedures were also used in order to identify Bartonella spp., Tropheryma whipplei, Chlamydophila pneumoniae, Mycoplasma pneumonia, and Coxiella burnetii. A strategy combining the 2-step broad-range PCR methods improved the sensitivity of the molecular method from 38.7% to 58%. Specific PCR identified 1 T. whipplei, which was also identified by conventional end-point PCR. These results confirm that blood culture is the gold standard for the diagnosis of infective endocarditis, shows that molecular methods applied to HV can be useful when blood culture is negative, and that 2-step broad-range PCR approach seems to be more sensitive. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Analyzing powers and interference between one- and multi-step processes in (polarized p, t) reactions on medium-mass vibrational nuclei

    International Nuclear Information System (INIS)

    Yagi, K.; Kunori, S.; Aoki, Y.; Nagano, K.; Tagishi, Y.

    1978-01-01

    A neutron-number (N) dependence of analyzing powers A (theta) has been observed for the first time in (polarized p, t) reactions leading to the quadrupole vibrational states (2 1 + ) in 98 Ru, sup(102,108)Pd, 114 Cd, 116 Sn, and sup(120,126)Te. Although analyzing powers for the ground-state transitions A(theta,0 sub(g)sup(+)) are very similar to each other, those for the 2 1 + transitions A(theta,2 1 + ) for the nuclei belonging to the beginning of the N = 50 - 82 shell are markedly different, having almost opposite signs, from A(theta,2 1 + ) for nuclei belonging to the latter half of the major shell. The difference is explained as a result of a sign change of the interference between one- and inelastic multi-step processes in two-neutron pickup reactions. Nuclear structure effects on such an interference are discussed on the basis of the microscopic description of collective quadrupole oscillation of nuclei. (author)

  4. Sub-step methodology for coupled Monte Carlo depletion and thermal hydraulic codes

    International Nuclear Information System (INIS)

    Kotlyar, D.; Shwageraus, E.

    2016-01-01

    Highlights: • Discretization of time in coupled MC codes determines the results’ accuracy. • The error is due to lack of information regarding the time-dependent reaction rates. • The proposed sub-step method considerably reduces the time discretization error. • No additional MC transport solutions are required within the time step. • The reaction rates are varied as functions of nuclide densities and TH conditions. - Abstract: The governing procedure in coupled Monte Carlo (MC) codes relies on discretization of the simulation time into time steps. Typically, the MC transport solution at discrete points will generate reaction rates, which in most codes are assumed to be constant within the time step. This assumption can trigger numerical instabilities or result in a loss of accuracy, which, in turn, would require reducing the time steps size. This paper focuses on reducing the time discretization error without requiring additional MC transport solutions and hence with no major computational overhead. The sub-step method presented here accounts for the reaction rate variation due to the variation in nuclide densities and thermal hydraulic (TH) conditions. This is achieved by performing additional depletion and TH calculations within the analyzed time step. The method was implemented in BGCore code and subsequently used to analyze a series of test cases. The results indicate that computational speedup of up to a factor of 10 may be achieved over the existing coupling schemes.

  5. DEFORMATION DEPENDENT TUL MULTI-STEP DIRECT MODEL

    International Nuclear Information System (INIS)

    WIENKE, H.; CAPOTE, R.; HERMAN, M.; SIN, M.

    2007-01-01

    The Multi-Step Direct (MSD) module TRISTAN in the nuclear reaction code EMPIRE has been extended in order to account for nuclear deformation. The new formalism was tested in calculations of neutron emission spectra emitted from the 232 Th(n,xn) reaction. These calculations include vibration-rotational Coupled Channels (CC) for the inelastic scattering to low-lying collective levels, ''deformed'' MSD with quadrupole deformation for inelastic scattering to the continuum, Multi-Step Compound (MSC) and Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated. The comparison with experimental data shows clear improvement over the ''spherical'' MSD calculations and JEFF-3.1 and JENDL-3.3 evaluations

  6. A theory of the stepped leader in lightning

    International Nuclear Information System (INIS)

    Lowke, J.J.

    1999-01-01

    There is no generally accepted explanation of the stepped leader behaviour in terms of basic physical processes. Existing theories generally involve significant gas heating within the stepped leader. In the present paper, the stepped nature of the leader is proposed to arise due to a combination of two physical phenomena. Electron transport is dominant over ion transport, during the luminous step stage, because electron mobilities are about 100 times larger than ion mobilities, and the streamer front velocity is determined by electron ionization effects. During the dark time between steps, there are only ions and charge transport is very much slower. The second effect leading to stepped behaviour arises because the electric field required for electric breakdown in air prior to a discharge is ∼30kV/cm, and is very much higher than the electric field of 5kV/cm that is required to sustain a glow discharge in air. During the luminous step stage, electrons tend to produce space charges to make a uniform field in the streamer of ∼5kV/cm. During the dark time between steps, there are no electrons but only ions. Time is required for ion drift to produce a space charge sheath of negative ions at the head of the streamer to produce a field of ∼30kV/cm sufficient for electron ionization to produce a new luminous step

  7. Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII*

    Science.gov (United States)

    Shibafuji, Yusuke; Nakamura, Akihiko; Uchihashi, Takayuki; Sugimoto, Naohisa; Fukuda, Shingo; Watanabe, Hiroki; Samejima, Masahiro; Ando, Toshio; Noji, Hiroyuki; Koivula, Anu; Igarashi, Kiyohiko; Iino, Ryota

    2014-01-01

    Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes. PMID:24692563

  8. Energetics and kinetics of ferrocyanide and nitrate/nitrite reactions

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Sell, R.L.

    1994-01-01

    During the 1950's, radiocesium scavenging at the Hanford site resulted in radioactive waste sludges containing ferrocyanide, nitrate, and nitrite. These waters are a concern since certain mixtures of ferrocyanide and nitrate and/or nitrite are known to explode when heated. The authors have used differential scanning calorimetry, thermogravimetric analysis, isothermal calorimetry and gravimetry, and accelerating rate calorimetry to measure the thermal behavior, the reaction enthalpies, and selected kinetic parameters for reactions between sodium nickel ferrocyanide, the suspected ferrocyanide form in Hanford wastes, and nitrate and/or nitrite. These studies indicate that the oxidation proceeds via multiple steps, the initial reaction begins near 200 degrees C, the initial step has a high activation energy (>200 kJ/mole-K), succeeding reaction steps have activation energies ranging from 90 to 160 kJ/mole-K, and that the oxidation yields about 50% of the theoretical heat of reaction for the most energetic reaction

  9. Multivariate statistical analysis of a multi-step industrial processes

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Høskuldsson, Agnar

    2007-01-01

    Monitoring and quality control of industrial processes often produce information on how the data have been obtained. In batch processes, for instance, the process is carried out in stages; some process or control parameters are set at each stage. However, the obtained data might not be utilized...... efficiently, even if this information may reveal significant knowledge about process dynamics or ongoing phenomena. When studying the process data, it may be important to analyse the data in the light of the physical or time-wise development of each process step. In this paper, a unified approach to analyse...... multivariate multi-step processes, where results from each step are used to evaluate future results, is presented. The methods presented are based on Priority PLS Regression. The basic idea is to compute the weights in the regression analysis for given steps, but adjust all data by the resulting score vectors...

  10. Modeling of uncertainties in biochemical reactions.

    Science.gov (United States)

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to

  11. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.

    Science.gov (United States)

    Farazdaghi, Hadi

    2011-02-01

    Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at

  12. Pressure modulates the self-cleavage step of the hairpin ribozyme

    Science.gov (United States)

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-03-01

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.

  13. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  14. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples.

    Science.gov (United States)

    Arandjelovic, M; Guschanski, K; Schubert, G; Harris, T R; Thalmann, O; Siedel, H; Vigilant, L

    2009-01-01

    Many studies in molecular ecology rely upon the genotyping of large numbers of low-quantity DNA extracts derived from noninvasive or museum specimens. To overcome low amplification success rates and avoid genotyping errors such as allelic dropout and false alleles, multiple polymerase chain reaction (PCR) replicates for each sample are typically used. Recently, two-step multiplex procedures have been introduced which drastically increase the success rate and efficiency of genotyping. However, controversy still exists concerning the amount of replication needed for suitable control of error. Here we describe the use of a two-step multiplex PCR procedure that allows rapid genotyping using at least 19 different microsatellite loci. We applied this approach to quantified amounts of noninvasive DNAs from western chimpanzee, western gorilla, mountain gorilla and black and white colobus faecal samples, as well as to DNA from ~100-year-old gorilla teeth from museums. Analysis of over 45 000 PCRs revealed average success rates of > 90% using faecal DNAs and 74% using museum specimen DNAs. Average allelic dropout rates were substantially reduced compared to those obtained using conventional singleplex PCR protocols, and reliable genotyping using low (< 25 pg) amounts of template DNA was possible. However, four to five replicates of apparently homozygous results are needed to avoid allelic dropout when using the lowest concentration DNAs (< 50 pg/reaction), suggesting that use of protocols allowing routine acceptance of homozygous genotypes after as few as three replicates may lead to unanticipated errors when applied to low-concentration DNAs. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  15. Reaction mechanisms and kinetics of processing glucose, xylose and glucose-xylose mixtures under hot compressed water conditions for predicting bio-crude composition

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Toor, Saqib Sohail; Rosendahl, Lasse Aistrup

    Mechanisms for bio-crude formation during the conversion of glucose, xylose and glucose-xylose mixtures as biomass model compounds under hot compressed water conditions are investigated. Studies in literature have shown that the diverse products formed at the early stages of glucose or xylose...... conversion are 5-HMF, erythrose, glyceraldehyde, dihydroxyacetone, pyruvaldehyde, and saccharinic acids resulted through reactions such as dehydration, retro-aldol condensation and isomerization. However, these compounds are mostly water soluble compounds and lack the final steps towards formation of water...... insoluble components at longer reaction times. The effects of pressure, pH, catalyst and reaction time on the main products are examined thoroughly. The possible routes for the formation of oil compounds are developed....

  16. Staged Repository Development Programmes

    International Nuclear Information System (INIS)

    Isaacs, T

    2003-01-01

    Programs to manage and ultimately dispose of high-level radioactive wastes are unique from scientific and technological as well as socio-political aspects. From a scientific and technological perspective, high-level radioactive wastes remain potentially hazardous for geological time periods-many millennia-and scientific and technological programs must be put in place that result in a system that provides high confidence that the wastes will be isolated from the accessible environment for these many thousands of years. Of course, ''proof'' in the classical sense is not possible at the outset, since the performance of the system can only be known with assurance, if ever, after the waste has been emplaced for those geological time periods. Adding to this challenge, many uncertainties exist in both the natural and engineered systems that are intended to isolate the wastes, and some of the uncertainties will remain regardless of the time and expense in attempting to characterize the system and assess its performance. What was perhaps underappreciated in the early days of waste management and repository program development were the unique and intense reactions that the institutional, political, and public bodies would have to repository program development, particularly in programs attempting to identify and then select sites for characterization, design, licensing, and ultimate development. Reactions in most nations were strong, focused, unrelenting, and often successful in hindering, derailing, and even stopping national repository programs. The reasons for such reactions and the measures to successfully respond to them are still evolving and continue to be the focus of many national program and political leaders. Adaptive Staging suggests an approach to repository program development that reflects the unique challenges associated with the disposal of high-level radioactive waste. The step-wise, incremental, learn-as-you-go approach is intended to maximize the

  17. Space Drive Physics: Introduction and Next Steps

    Science.gov (United States)

    Millis, M. G.

    Research toward the visionary goal of propellantless ``space drives'' is introduced, covering key physics issues and a listing of roughly 2-dozen approaches. The targeted advantage of a space drive is to circumvent the propellant constraints of rockets and the maneuvering limits of light sails by using the interactions between the spacecraft and its surrounding space for propulsion. At present, the scientific foundations from which to engineer a space drive have not been discovered and, objectively, might be impossible. Although no propulsion breakthroughs appear imminent, the subject has matured to where the relevant questions have been broached and are beginning to be answered. The critical make-break issues include; conservation of momentum, uncertain sources of reaction mass, and the net-external thrusting requirement. Note: space drives are not necessarily faster- than-light devices. Speed limits are a separate, unanswered issue. Relevant unsolved physics includes; the sources and mechanisms of inertial frames, coupling of gravitation and electromagnetism, and the nature of the quantum vacuum. The propulsion approaches span mostly stages 1 through 3 of the scientific method (defining the problem, collecting data, and articulating hypotheses), while some have matured to stage 4 (testing hypotheses). Nonviable approaches include `stiction drives,' `gyroscopic antigravity,' and `lifters.' No attempt is made to gauge the prospects of the remaining approaches. Instead, a list of next-step research questions is derived from the examination of these goals, unknowns, and concepts.

  18. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages

    OpenAIRE

    Zhang, Shutao; Chen, Chun; Xie, Tingna; Ye, Sudan

    2017-01-01

    The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, inc...

  19. A method of neptunium recovery into the product stream of the Purex 1st codecontamination step for LWR fuel reprocessing

    International Nuclear Information System (INIS)

    Tsuboya, Takao; Nemoto, Shinichi; Hoshino, Tadaya; Segawa, Takeshi

    1973-01-01

    An improved nitrous acid method was applied for recovering neptunium in spent fuel. Counter-current solvent extraction has been performed to find out its recovery conditions. The nitrous acid in the form of sodium salt solution was fed to the 1st stage of extraction section, and hydrazine nitrate was fed to some stages near feed point. Flow rate and the concentration of additives were altered for finding out optimum condition. Laboratory scale mixer-settlers having 6 ml of mixing volume and 17 ml of settling volume for each stage were used. The nitrous acid method was improved so that the reduction reaction in scrub section can be eliminated by the decomposition of the nitrous acid using a reagent such as sulfamic acid, urea, or hydrazine. In operation, the feed rate of the nitrous acid was about 3 mM/hr, and about 61% of neptunium charged was discharged in the product stream of Purex-1st codecontamination step designed for the LWR fuel reprocessing plant of Power Reactor and Nuclear Fuel Development Corporation. The calculated value of Δx/x for extraction section agreed with the experimental value, where Δx is the quantity of oxidation, and x is the inventory for neptunium in each stage. In conclusion, the improved nitrous acid method is effective for the neptunium discharge in product stream, and the difference of neptunium extraction between estimate and experiment is caused by some of reduction reaction in scrub section. (Iwakiri, K.)

  20. Modified Two-Step Dimethyl Ether (DME Synthesis Simulation from Indonesian Brown Coal

    Directory of Open Access Journals (Sweden)

    Dwiwahju Sasongko

    2016-08-01

    Full Text Available A theoretical study was conducted to investigate the performance of dimethyl ether (DME synthesis from coal. This paper presents a model for two-step DME synthesis from brown coal represented by the following processes: drying, gasification, water-gas reaction, acid gas removal, and DME synthesis reactions. The results of the simulation suggest that a feedstock ratio of coal : oxygen : steam of 1 : 0.13 : 0.821 produces the highest DME concentration. The water-gas reactor simulation at a temperature of 400°C and a pressure of 20 bar gave the ratio of H2/CO closest to 2, the optimal value for two-step DME synthesis. As for the DME synthesis reactor simulation, high pressure and low temperature promote a high DME concentration. It is predicted that a temperature of 300°C and a pressure of 140 bar are the optimum conditions for the DME synthesis reaction. This study also showed that the DME concentration produced by the two-step route is higher than that produced by one-step DME synthesis, implying that further improvement and research are needed to apply two-step DME synthesis to production of this liquid fuel.

  1. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  2. Fast and calibration free determination of first order reaction kinetics in API synthesis using in-situ ATR-FTIR.

    Science.gov (United States)

    Rehbein, Moritz C; Husmann, Sascha; Lechner, Christian; Kunick, Conrad; Scholl, Stephan

    2018-05-01

    In early stages of drug development only sparse amounts of the key substances are available, which is problematic for the determination of important process data like reaction kinetics. Therefore, it is important to perform experiments as economically as possible, especially in regards to limiting compounds. Here we demonstrate the use of a temperature step experiment enabling the determination of complete reaction kinetics in a single non-isothermal experiment. In contrast to the traditionally used HPLC, the method takes advantage of the high measuring rate and the low amount of labor involved in using in-situ ATR-FTIR to determine time-dependent concentration-equivalent data. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ion-Molecule Reaction Dynamics.

    Science.gov (United States)

    Meyer, Jennifer; Wester, Roland

    2017-05-05

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  4. Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma.

    Science.gov (United States)

    Chan, Sheng-Chieh; Yeh, Chih-Hua; Yen, Tzu-Chen; Ng, Shu-Hang; Chang, Joseph Tung-Chieh; Lin, Chien-Yu; Yen-Ming, Tsang; Fan, Kang-Hsing; Huang, Bing-Shen; Hsu, Cheng-Lung; Chang, Kai-Ping; Wang, Hung-Ming; Liao, Chun-Ta

    2018-03-03

    Both head and neck magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) play a crucial role in the staging of primary nasopharyngeal carcinoma (NPC). In this study, we sought to prospectively investigate the clinical utility of simultaneous whole-body 18F-FDG PET/MRI for primary staging of NPC patients. We examined 113 patients with histologically confirmed NPC who underwent pretreatment, simultaneous whole-body PET/MRI and PET/CT for primary tumor staging. The images obtained with the different imaging modalities were interpreted independently and compared with each other. PET/MRI increased the accuracy of head and neck MRI for assessment of primary tumor extent in four patients via addition of FDG uptake information to increase the conspicuity of morphologically subtle lesions. PET/MR images were more discernible than PET/CT images for mapping tumor extension, especially intracranial invasion. Regarding the N staging assessment, the sensitivity of PET/MRI (99.5%) was higher than that of head and neck MRI (94.2%) and PET/CT (90.9%). PET/MRI was particularly useful for distinguishing retropharyngeal nodal metastasis from adjacent nasopharyngeal tumors. For distant metastasis evaluation, PET/MRI exhibited a similar sensitivity (90% vs. 86.7% vs. 83.3%), but higher positive predictive value (93.1% vs. 78.8% vs. 83.3%) than whole-body MRI and PET/CT, respectively. For tumor staging of NPC, simultaneous whole-body PET/MRI was more accurate than head and neck MRI and PET/CT, and may serve as a single-step staging modality.

  5. Kinetic aspects of the Maillard reaction: a critical review

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2001-01-01

    The literature concerning the kinetics of the Maillard reaction was critically discussed according to the initial, intermediate and advanced stages, as this is the way the Maillard reaction is traditionally analysed. For each stage, a division is made between simple kinetics and complex kinetics.

  6. Consumer adverse drug reaction reporting - A new step in pharmacovigilance?

    NARCIS (Netherlands)

    van Grootheest, K; de Graaf, L; de Jong-van den Berg, LTW

    2003-01-01

    The direct reporting of adverse drug reactions by patients is becoming an increasingly important topic for discussion in the world of pharmacovigilance. At this time, few countries accept consumer reports. We present an overview of experiences with consumer reporting in various countries of the

  7. Solvents in Organic Synthesis: Replacement and Multi-step Reaction Systems

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Gómez, Paola Arenas; Folic, Milica

    2008-01-01

    Solvents are widely used as reaction media in the chemical, fine chemical and pharmaceutical industries, but they present numerous environmental, health and safety (EHS) challenges that need to be managed and are subject to increasing regulatory scrutiny. The above issues, together with the princ...

  8. Kinetic concepts of thermally stimulated reactions in solids

    Science.gov (United States)

    Vyazovkin, Sergey

    Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.

  9. Cluster emission at pre-equilibrium stage in Heavy Nuclear Reactions. A Model considering the Thermodynamics of Small Systems

    International Nuclear Information System (INIS)

    Bermudez Martinez, A.; Damiani, D.; Guzman Martinez, F.; Rodriguez Hoyos, O.; Rodriguez Manso, A.

    2015-01-01

    Cluster emission at pre-equilibrium stage, in heavy ion fusion reactions of 12 C and 16 O nuclei with 116 Sn, 208 Pb, 238 U are studied. the energy of the projectile nuclei was chosen at 0.25GeV, 0.5GeV and 1GeV. A cluster formation model is developed in order to calculate the cluster size. Thermodynamics of small systems was used in order to examine the cluster behavior inside the nuclear media. This model is based on considering two phases inside the compound nucleus, on one hand the nuclear media phase, and on the other hand the cluster itself. The cluster acts like an instability inside the compound nucleus, provoking an exchange of nucleons with the nuclear media through its surface. The processes were simulated using Monte Carlo methods. We obtained that the cluster emission probability shows great dependence on the cluster size. This project is aimed to implement cluster emission processes, during the pre-equilibrium stage, in the frame of CRISP code (Collaboration Rio-Sao Paulo). (Author)

  10. Small-angle x-ray scattering from the early growth stages of zeolite A

    International Nuclear Information System (INIS)

    Singh, P.; White, J.

    1999-01-01

    Full text: The work presented here with the use of SAXS (Small-Angle X-ray Scattering) is in attempt to identify a different paradigm to the organic template induced crystallization of zeolites, in particular zeolite 'A'. The reactions have been followed by small angle X-ray scattering from the time of first mixing of the constituents until the final separation of zeolite A crystals. The processes happening during the growth are expected to follow successive transformation of intermediate metastable phases until the formation of thermodynamically most stable phase and scattering signatures from these developments may be useful for extracting interesting information about the processes in situ. The scattering functions from a synthesis system of zeolite 'A' at the initial and final stage of reaction are presented.The different growth processes of zeolite 'A' from different silicate and aluminium sources are found. The differences are attributed to different rate limiting steps in the syntheses

  11. Efficient Hydrolysis of Rice Straw into Xylose and Glucose by a Two-step Process

    Directory of Open Access Journals (Sweden)

    YAN Lu-lu

    2016-07-01

    Full Text Available The hydrolysis of rice straw into xylose and glucose in dilute sulfuric acid aqueous solution was studied with a two-step process in batch autoclave reactor. The results showed that compared with the traditional one-step acid hydrolysis, both xylose and glucose could be produced in high yields from rice straw by using the two-step acid hydrolysis process. The effects of reaction temperature, reaction time, the amount of rice straw and acid concentration on the hydrolysis of rice straw were systematically studied, and showed that except initial rice straw loading amount, the other parameters had remarkable influence on the products distribution and yields. In the first-step of the hydrolysis process, a high xylose yield of 162.6 g·kg-1 was obtained at 140℃ after 120 min reaction time. When the solid residues from the first step were subjected to a second-step hydrolysis, a glucose yield as high as 216.5 g·kg-1 could be achieved at 180℃ after 120 min. This work provides a promising strategy for the efficient and value-added utilization of agricultural wastes such as rice straw.

  12. Method of neptunium recovery into the product stream of the Purex second codecontamination step for LWR fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboya, T; Nemoto, S; Hoshino, T; Segawa, T [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1973-04-01

    The neptunium behavior in the second codecontamination step in Purex process of Power Reactor and Nuclear Fuel Development Corporation was experimentally studied, and the conditions for discharging neptunium in product stream were examined. Improved nitrous acid method was applied to the second codecontamination step. Nitrous acid (NaNO/sub 2/) was supplied to the 1st stage of extraction section at feed rate of 7.5 mM/hr, and hydrazine (hydrazine nitrate) was supplied to some stages near feed point at feed rate of 1.6 mM/hr, by using laboratory scale mixer-settlers having 6 ml of mixing volume and 17 ml of settling volume. Neptunium extraction behavior was analyzed by the code NEPTUN-I simulating neptunium concentration profile and by the code NEPTUN-II for calculating Np (V) and Np (VI) concentration. Batch experiments were performed for explaining the reduction reaction of Np (VI) in organic phase. After shaking the aqueous solution containing Np (VI) in 3 M nitric acid with the various volume ratios of TBP, both phases were separated, and the neptunium concentration was determined. In conclusion, the improved nitrous acid method was effective for the neptunium discharge in product stream when the flow ratio of organic phase to aqueous phase was increased to about three times.

  13. The water decomposition reactions on boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Suffredini, Hugo B.; Machado, Sergio A.S; Avaca, Luis A.

    2004-01-01

    The electrochemical processes occurring at both edges of the wide electrochemical window of the boron doped diamond (BDD) electrode were studied by polarization curves experiments to evaluate the apparent energy of activation for the rate determining step in each reaction. It was found that the hydrogen evolution reaction occurs by a Volmer-Heyrovsky mechanism with the first step being the RDS. Moreover, the apparent energy of activation calculated from the Tafel plots presented a value as high as 150 kJ mol -1 , indicating the formation of the M-H intermediate that is characteristic for the Volmer step. On the other hand, the apparent energy of activation for the oxygen evolution reaction was found to be 106 kJ mol -1 suggesting that the RDS in this mechanism is the initial adsorption step. In this way, it was demonstrated that the interaction between water molecules and the electrode surface is strongly inhibited on BDD thus justifying the extended potential window observed for this material. (author)

  14. The water decomposition reactions on boron-doped diamond electrodes

    Directory of Open Access Journals (Sweden)

    Suffredini Hugo B

    2004-01-01

    Full Text Available The electrochemical processes occurring at both edges of the wide electrochemical window of the boron doped diamond (BDD electrode were studied by polarization curves experiments to evaluate the apparent energy of activation for the rate determining step in each reaction. It was found that the hydrogen evolution reaction occurs by a Volmer-Heyrovsky mechanism with the first step being the RDS. Moreover, the apparent energy of activation calculated from the Tafel plots presented a value as high as 150 kJ mol-1, indicating the formation of the M-H intermediate that is characteristic for the Volmer step. On the other hand, the apparent energy of activation for the oxygen evolution reaction was found to be 106 kJ mol-1 suggesting that the RDS in this mechanism is the initial adsorption step. In this way, it was demonstrated that the interaction between water molecules and the electrode surface is strongly inhibited on BDD thus justifying the extended potential window observed for this material.

  15. Self Blocking of CO Dissociation on a Stepped Ruthenium Surface

    DEFF Research Database (Denmark)

    Vendelbo, Søren Bastholm; Johansson, Martin; Mowbray, Duncan

    2010-01-01

    The influence of steps on CO reactions has been studied on a Ru(0 1 (1) over bar 5 4) single crystal with a step density of 4%. Based on temperature programmed desorption (TPD) and oxygen titration experiments as well as density functional theory (DFT) calculations, we show that the CO dissociation...

  16. Hydrazine in the Ugi Tetrazole Reaction

    NARCIS (Netherlands)

    Patil, Pravin; Zhang, Ji; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Dömling, Alexander

    2016-01-01

    We describe the hitherto unknown use of N-Boc-protected hydrazine in the Ugi tetrazole reaction to access a library of highly substituted 5-(hydrazinomethyl)-1-methyl-1H-tetrazoles. The reaction is very versatile and good to high yielding. A one-pot, two-step procedure is given.

  17. Treatment for the recoil effects of the multi-step heavy-ion nucleon transfers with the orthogonalized coupled-reaction-channel theory

    International Nuclear Information System (INIS)

    Misono, S.; Imanishi, B.

    1997-02-01

    We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs

  18. Multi-step processes in the (d, t) and (d, {sup 3}He) reactions on {sup 116}Sn and {sup 208}Pb targets at E{sub d} = 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Langevin-Joliot, H.; Van de Wiele, J.; Guillot, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Koning, A.J. [Nuclear Research and Consultancy Group NRG, NL (Netherlands)

    2000-07-01

    The role of multi-step processes in the reactions {sup 116}Sn(d,t), {sup 208}Pb(d,t) and {sup 116}Sn(d,{sup 3}He), previously studied at E{sub d} = 200 MeV at forward angles and for relatively low energy transfers, has been investigated. We have performed for the first time multi-step calculations taking into account systematically collective excitations in the second and higher order step inelastic transitions. A calculation code based on the Feshbach, Kerman and Koonin model has been modified to handle explicitly these collective excitations, most important in the forward angle domain. One step double differential pick-up cross sections were built from finite range distorted wave results spread in energy using known or estimated hole state characteristics. It is shown that two-step cross sections calculated using the above method compare rather well with those deduced via coupled channel calculations for the same collective excitations. The multi-step calculations performed up to 6 steps reproduce reasonably well the {sup 115}Sn, {sup 207}Pb and {sup 115}In experimental spectra measured up to E{sub x}{approx}- 40 MeV and 15 deg. The relative contributions of steps of increasing order to pick-up cross sections at E{sub d} = 200 MeV and 150 MeV are discussed. (authors)

  19. Separate-stage fermentation of biomass to methane

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, E C; Gaddy, J L

    1978-01-01

    The production of CH/sub 4/ from orchard grass by anaerobic fermentation was separated into three stages and the kinetics and economics of the process were evaluated. The first stage was acid hydrolysis of the grass polysaccharides, the second stage was acid and alcohol formation from the sugars with a mixed sewage culture, and the third was CH/sub 4/ formation, also with enriched sewage cultures, from the effluent from the second stage reactor. Separating the steps showed a significant increase in CH/sub 4/ production per g of grass, but was less economical than a single-stage process.

  20. Ethylene dissociation on flat and stepped Ni(111): A combined STM and DFT study

    DEFF Research Database (Denmark)

    Vang, R.T.; Honkala, Johanna Karoliina; Dahl, S.

    2006-01-01

    The dissociative adsorption of ethylene (C(2)H(4)) on Ni(111) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites...... are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (111) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges. DFT calculations were performed for several intermediate steps...... in the decomposition of ethylene on both Ni(111) and the stepped Ni(211) surface. In general the Ni(211) surface is found to have a higher reactivity than the Ni(111) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular...

  1. The effects of age and step length on joint kinematics and kinetics of large out-and-back steps.

    Science.gov (United States)

    Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B

    2008-06-01

    Maximum step length (MSL) is a clinical test that has been shown to correlate with age, various measures of fall risk, and knee and hip joint extension speed, strength, and power capacities, but little is known about the kinematics and kinetics of the large out-and-back step utilized. Body motions and ground reaction forces were recorded for 11 unimpaired younger and 10 older women while attaining maximum step length. Joint kinematics and kinetics were calculated using inverse dynamics. The effects of age group and step length on the biomechanics of these large out-and-back steps were determined. Maximum step length was 40% greater in the younger than in the older women (P<0.0001). Peak knee and hip, but not ankle, angle, velocity, moment, and power were generally greater for younger women and longer steps. After controlling for age group, step length generally explained significant additional variance in hip and torso kinematics and kinetics (incremental R2=0.09-0.37). The young reached their peak knee extension moment immediately after landing of the step out, while the old reached their peak knee extension moment just before the return step liftoff (P=0.03). Maximum step length is strongly associated with hip kinematics and kinetics. Delays in peak knee extension moment that appear to be unrelated to step length, may indicate a reduced ability of older women to rapidly apply force to the ground with the stepping leg and thus arrest the momentum of a fall.

  2. High accuracy step gauge interferometer

    Science.gov (United States)

    Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.

    2018-05-01

    Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .

  3. Identifying elderly people at risk for cognitive decline by using the 2-step test.

    Science.gov (United States)

    Maruya, Kohei; Fujita, Hiroaki; Arai, Tomoyuki; Hosoi, Toshiki; Ogiwara, Kennichi; Moriyama, Shunnichiro; Ishibashi, Hideaki

    2018-01-01

    [Purpose] The purpose is to verify the effectiveness of the 2-step test in predicting cognitive decline in elderly individuals. [Subjects and Methods] One hundred eighty-two participants aged over 65 years underwent the 2-step test, cognitive function tests and higher level competence testing. Participants were classified as Robust, step test, variables were compared between groups. In addition, ordered logistic analysis was used to analyze cognitive functions as independent variables in the three groups, using the 2-step test results as the dependent variable, with age, gender, etc. as adjustment factors. [Results] In the crude data, the step test was related to the Stroop test (β: 0.06, 95% confidence interval: 0.01-0.12). [Conclusion] The finding is that the risk stage of the 2-step test is related to cognitive functions, even at an initial risk stage. The 2-step test may help with earlier detection and implementation of prevention measures for locomotive syndrome and mild cognitive impairment.

  4. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance.

    Science.gov (United States)

    Xiao, Benyi; Qin, Yu; Zhang, Wenzhe; Wu, Jing; Qiang, Hong; Liu, Junxin; Li, Yu-You

    2018-02-01

    The temperature-phased anaerobic digestion (TPAD) of food waste was studied for the purpose of comparing with single-stage mesophilic and thermophilic anaerobic digestion. The biogas and methane yields in the TPAD during the steady period were 0.759 ± 0.115 L/g added VS and 0.454 ± 0.201 L/g added VS, which were lower than those in the two single-stage anaerobic digestion. The improper sludge retention time may be the reason for the lower biogas and methane production in TPAD. The removal of volatile solids in the TPAD was 78.55 ± 4.59% and the lowest among the three anaerobic digestion processes. The reaction ratios of the four anaerobic digestion steps in the TPAD were all lower than those in the two single-stage anaerobic digestion. The energy conversion efficiency of the degraded substrate in the TPAD was similar with those in single-stage mesophilic and thermophilic anaerobic digestion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Concise Synthesis of Macrocycles by Multicomponent Reactions

    NARCIS (Netherlands)

    Abdelraheem, Eman M. M.; Khaksar, Samad; Dömling, Alexander

    2018-01-01

    A short reaction pathway was devised to synthesize a library of artificial 18-27-membered macrocycles. The five-step reaction sequence involves ring opening of a cyclic anhydride with a diamine, esterification, coupling with an amino acid isocyanide, saponification, and, finally, macro-ring closure

  6. Research on the quantum multistep theory for pre-equilibrium nuclear reaction

    CERN Document Server

    Su Zong Di; Abdurixit, A; Wang Shu Nuan; Li Bao Xian; Huang Zhong; Liu Jian Feng; Zhang Benai; Zhu Yao Yin; Li Zhi Wen

    2002-01-01

    The Feshbach-Kerman-Koonin (FKK) quantum multistep theory of the pre-equilibrium reaction is further improved and perfected. A unified description for the multistep compound (MSC) process of the pre-equilibrium reaction and the compound nucleus (CN) process of full equilibrium reaction can be presented. This formula can integrate MSC and CN theories with the optical model and Hauser-Feshbach formula, and can get self-consistent expression. In multistep direct (MSD) process of the pre-equilibrium reaction, the mu-step cross section can be expressed by the convolution of mu one-step cross section. And the one step cross section for continuum can be written as the product of an averaged DWBA matrix element and the state density. For calculating the multistep direct reaction cross section, two methods, the state densities and full microscopic model, are used and compared. Some typical experiments are analyzed by using the work mentioned above. The calculated results are reasonable and in good agreement with the e...

  7. Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Gupta, A.K.

    2012-01-01

    Highlights: ► Gasification of sugarcane bagasse has been investigated using a semi batch reactor. ► Global reaction mechanism combining pyrolysis and gasification reactions is presented. ► High flow rates of syngas supported fragmentation and secondary reactions. ► CO flow rate increased at higher heating rates at the expense of CO 2 production. ► At high temperatures merger between pyrolysis and char gasification occurs. -- Abstract: Steam gasification of sugarcane bagasse has been investigated. A semi batch reactor with a fixed amount of sugarcane bagasse sample placed in steady flow of high temperature steam at atmospheric pressure has been used. The gasification of bagasse was examined at reactor and steam temperatures of 800, 900 and 1000 °C. The evolution of syngas flow rate and chemical composition has been monitored. The evolution of chemical composition and total flow rate of the syngas has been used to formulate a global reaction mechanism. The mechanism combines pyrolysis reaction mechanisms from the literature and steam gasification/reforming reactions. Steam gasification steps include steam–hydrocarbons reforming, char gasification and water gas shift reactions. Evidence of fragmentation, secondary ring opening reactions and tertiary reactions resulting in formation of gaseous hydrocarbons is supported by higher flow rates of syngas and hydrogen at high heating rates and high reactor temperatures. Increase in carbon monoxide flow rate at the expense of carbon dioxide flow rate with the increase in reactor temperature has been observed. This increase in the ratio of CO/CO 2 flow rate confirms the production of CO and CO 2 from the competing reaction routes. At 1000 °C gasification a total merging between the pyrolysis step and the char gasification step has been observed. This is attributed to acceleration of char gasification reactions and acceleration of steam–hydrocarbons reforming reactions. These hydrocarbons are the precursors to

  8. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    International Nuclear Information System (INIS)

    Birdwell, J.F. Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C.; Day, J.N.; Hullette, J.N.

    2009-01-01

    ports. Results from laboratory operations showed that the ASTM specification for bound acylglycerides was achieved only at extended reaction times (∼25 min) using a single-stage batch contact at elevated temperature and pressure. In the single-pass configuration, the time required gives no throughput advantage over the current batch reaction process. The limitation seems to be the presence of glycerine, which hinders complete conversion because of reversible reactions. Significant improvement in quality was indicated after a second and third passes, where product from the first stage was collected and separated from the glycerine, and further reacted with a minor addition of methanol. Chemical kinetics calculations suggest that five consecutive stages of 2 min residence time would produce better than ASTM specification fuel with no addition of methanol past the first stage. Additional stages may increase the capital investment, but the increase should be offset by reduced operating costs and a factor of 3 higher throughput. Biodiesel, a mixture of methyl esters, is made commercially from the transesterification of oil, often soy oil (see Reaction 1). The kinetics of the transesterification process is rapid; however, multiphase separations after the synthesis of the fuel can be problematic. Therefore, the process is typically run in batch mode. The biodiesel fuel and the glycerine product take several hours to separate. In addition, to push yields to completion, an excess of methoxide catalyst is typically used, which has to be removed from both the biodiesel and the glycerine phase after reaction. Washing steps are often employed to remove free fatty acids, which can lead to undesirable saponification. Standards for biodiesel purity are based either on the removal of contaminants before the oil feedstock is esterified or on the separation of unwanted by-products. Various methods have been examined to enhance either the pretreatment of biodiesel feedstocks or the

  9. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01

    ports. Results from laboratory operations showed that the ASTM specification for bound acylglycerides was achieved only at extended reaction times ({approx}25 min) using a single-stage batch contact at elevated temperature and pressure. In the single-pass configuration, the time required gives no throughput advantage over the current batch reaction process. The limitation seems to be the presence of glycerine, which hinders complete conversion because of reversible reactions. Significant improvement in quality was indicated after a second and third passes, where product from the first stage was collected and separated from the glycerine, and further reacted with a minor addition of methanol. Chemical kinetics calculations suggest that five consecutive stages of 2 min residence time would produce better than ASTM specification fuel with no addition of methanol past the first stage. Additional stages may increase the capital investment, but the increase should be offset by reduced operating costs and a factor of 3 higher throughput. Biodiesel, a mixture of methyl esters, is made commercially from the transesterification of oil, often soy oil (see Reaction 1). The kinetics of the transesterification process is rapid; however, multiphase separations after the synthesis of the fuel can be problematic. Therefore, the process is typically run in batch mode. The biodiesel fuel and the glycerine product take several hours to separate. In addition, to push yields to completion, an excess of methoxide catalyst is typically used, which has to be removed from both the biodiesel and the glycerine phase after reaction. Washing steps are often employed to remove free fatty acids, which can lead to undesirable saponification. Standards for biodiesel purity are based either on the removal of contaminants before the oil feedstock is esterified or on the separation of unwanted by-products. Various methods have been examined to enhance either the pretreatment of biodiesel feedstocks or the

  10. Comparisons of single-stage and two-stage approaches to genomic selection.

    Science.gov (United States)

    Schulz-Streeck, Torben; Ogutu, Joseph O; Piepho, Hans-Peter

    2013-01-01

    Genomic selection (GS) is a method for predicting breeding values of plants or animals using many molecular markers that is commonly implemented in two stages. In plant breeding the first stage usually involves computation of adjusted means for genotypes which are then used to predict genomic breeding values in the second stage. We compared two classical stage-wise approaches, which either ignore or approximate correlations among the means by a diagonal matrix, and a new method, to a single-stage analysis for GS using ridge regression best linear unbiased prediction (RR-BLUP). The new stage-wise method rotates (orthogonalizes) the adjusted means from the first stage before submitting them to the second stage. This makes the errors approximately independently and identically normally distributed, which is a prerequisite for many procedures that are potentially useful for GS such as machine learning methods (e.g. boosting) and regularized regression methods (e.g. lasso). This is illustrated in this paper using componentwise boosting. The componentwise boosting method minimizes squared error loss using least squares and iteratively and automatically selects markers that are most predictive of genomic breeding values. Results are compared with those of RR-BLUP using fivefold cross-validation. The new stage-wise approach with rotated means was slightly more similar to the single-stage analysis than the classical two-stage approaches based on non-rotated means for two unbalanced datasets. This suggests that rotation is a worthwhile pre-processing step in GS for the two-stage approaches for unbalanced datasets. Moreover, the predictive accuracy of stage-wise RR-BLUP was higher (5.0-6.1%) than that of componentwise boosting.

  11. Probability analysis of MCO over-pressurization during staging

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1997-01-01

    The purpose of this calculation is to determine the probability of Multi-Canister Overpacks (MCOs) over-pressurizing during staging at the Canister Storage Building (CSB). Pressurization of an MCO during staging is dependent upon changes to the MCO gas temperature and the build-up of reaction products during the staging period. These effects are predominantly limited by the amount of water that remains in the MCO following cold vacuum drying that is available for reaction during staging conditions. Because of the potential for increased pressure within an MCO, provisions for a filtered pressure relief valve and rupture disk have been incorporated into the MCO design. This calculation provides an estimate of the frequency that an MCO will contain enough water to pressurize beyond the limits of these design features. The results of this calculation will be used in support of further safety analyses and operational planning efforts. Under the bounding steady state CSB condition assumed for this analysis, an MCO must contain less than 1.6 kg (3.7 lbm) of water available for reaction to preclude actuation of the pressure relief valve at 100 psid. To preclude actuation of the MCO rupture disk at 150 psid, an MCO must contain less than 2.5 kg (5.5 lbm) of water available for reaction. These limits are based on the assumption that hydrogen generated by uranium-water reactions is the sole source of gas produced within the MCO and that hydrates in fuel particulate are the primary source of water available for reactions during staging conditions. The results of this analysis conclude that the probability of the hydrate water content of an MCO exceeding 1.6 kg is 0.08 and the probability that it will exceed 2.5 kg is 0.01. This implies that approximately 32 of 400 staged MCOs may experience pressurization to the point where the pressure relief valve actuates. In the event that an MCO pressure relief valve fails to open, the probability is 1 in 100 that the MCO would experience

  12. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  13. Ring-Expansion/Contraction Radical Crossover Reactions of Cyclic Alkoxyamines: A Mechanism for Ring Expansion-Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Atsushi Narumi

    2018-06-01

    Full Text Available Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical “vinyl” polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105–125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds. A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %. In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion “vinyl” polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.

  14. The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.

    Directory of Open Access Journals (Sweden)

    James W Bruce

    2008-11-01

    Full Text Available The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV vector. This approach identified a role for 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1, one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.

  15. One-stage or multi-stage creep fatigue behaviour of heat-resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1994-01-01

    For one stage realistic long term alternating strain tests on two forged steels with the duration of tests up to an order of magnitude of 45,000 hours, the generalised damage accumulation rule, using an optimised evaluation process dealing with pre-stress effects leads to a relative creep fatigue service life of one. A replacement description by the modified service life share rule is indicated for the long term area. First results from realistic three step tests are classified in the scatter band of single stage stress, where there are only slight differences from different cycle counting processes. (orig.) [de

  16. Comparative Outcomes Between Step-Cut Lengthening Calcaneal Osteotomy vs Traditional Evans Osteotomy for Stage IIB Adult-Acquired Flatfoot Deformity.

    Science.gov (United States)

    Saunders, Stuart M; Ellis, Scott J; Demetracopoulos, Constantine A; Marinescu, Anca; Burkett, Jayme; Deland, Jonathan T

    2018-01-01

    The forefoot abduction component of the flexible adult-acquired flatfoot can be addressed with lengthening of the anterior process of the calcaneus. We hypothesized that the step-cut lengthening calcaneal osteotomy (SLCO) would decrease the incidence of nonunion, lead to improvement in clinical outcome scores, and have a faster time to healing compared with the traditional Evans osteotomy. We retrospectively reviewed 111 patients (143 total feet: 65 Evans, 78 SLCO) undergoing stage IIB reconstruction followed clinically for at least 2 years. Preoperative and postoperative radiographs were analyzed for the amount of deformity correction. Computed tomography (CT) was used to analyze osteotomy healing. The Foot and Ankle Outcome Scores (FAOS) and lateral pain surveys were used to assess clinical outcomes. Mann-Whitney U tests were used to assess nonnormally distributed data while χ 2 and Fisher exact tests were used to analyze categorical variables (α = 0.05 significant). The Evans group used a larger graft size ( P lengthening. Level III, retrospective cohort study.

  17. Two steps hydrothermal growth and characterisations of BaTiO3 films composed of nanowires

    Science.gov (United States)

    Zawawi, Che Zaheerah Najeehah Che Mohd; Salleh, Shahril; Oon Jew, Lee; Tufail Chaudhary, Kashif; Helmi, Mohamad; Safwan Aziz, Muhammad; Haider, Zuhaib; Ali, Jalil

    2018-05-01

    Barium titanate (BaTiO3) films composed of nanowires have gained considerable research interest due to their lead-free composition and strong energy conversion efficiency. BaTiO3 films can be developed with a simple two steps hydrothermal reactions, which are low cost effective. In this research, BaTiO3 films were fabricated on titanium foil through two steps hydrothermal method namely, the growth of TiO2 and followed by BaTiO3 films. The structural evolutions and the dielectric properties of the films were investigated as well. The structural evolutions of titanium dioxide (TiO2) and BaTiO3 nanowires were characterized using X-ray diffraction and scanning electron microscopy. First step of hydrothermal reaction, TiO2 nanowires were prepared in varied temperatures of 160 °C, 200 °C and 250 °C respectively. Second step of hydrothermal reaction was performed to produce a layer of BaTiO3 films.

  18. Unconventional Passerini Reaction toward α-Aminoxy-amides

    NARCIS (Netherlands)

    Chandgude, Ajay L; Dömling, Alexander

    2016-01-01

    The Passerini multicomponent reaction (P-3CR) toward the one-step synthesis of α-aminoxy-amide, by employing for the first time a N-hydroxamic acid component, has been reported. The sonication-accelerated, catalyst-free, simple, fast, and highly efficient Passerini reaction is used for the synthesis

  19. Break-up stage restoration in multifragmentation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Raduta, Ad.R. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay cedex (France)]|[NIPNE, Bucharest-Magurele, POB-MG 6 (Romania); Bonnet, E.; Borderie, B.; Le Neindre, N.; Rivet, M.F. [Institut de Physique Nucleaire, IN2P3-CNRS, F-91406 Orsay cedex (France); Piantelli, S. [Dip. di Fisica e Sezione INFN, Universita di Firenze, I-50019 Sesto Fiorentino, Fi (Italy)

    2007-02-15

    In the case of Xe+Sn at 32 MeV/nucleon multifragmentation reaction break-up fragments are built-up from the experimentally detected ones using evaluations of light particle evaporation multiplicities which thus settle fragment internal excitation. Freeze-out characteristics are extracted from experimental kinetic energy spectra under the assumption of full decoupling between fragment formation and energy dissipated in different degrees of freedom. Thermal kinetic energy is determined uniquely while for freeze-out volume - collective energy a multiple solution is obtained. Coherence between the solutions of the break-up restoration algorithm and the predictions of a multifragmentation model with identical definition of primary fragments is regarded as a way to select the true value. The broad kinetic energy spectrum of {sup 3}He is consistent with break-up genesis of this isotope. (authors)

  20. Break-up stage restoration in multifragmentation reactions

    International Nuclear Information System (INIS)

    Raduta, Ad.R.; Bonnet, E.; Borderie, B.; Le Neindre, N.; Rivet, M.F.; Piantelli, S.

    2007-02-01

    In the case of Xe+Sn at 32 MeV/nucleon multifragmentation reaction break-up fragments are built-up from the experimentally detected ones using evaluations of light particle evaporation multiplicities which thus settle fragment internal excitation. Freeze-out characteristics are extracted from experimental kinetic energy spectra under the assumption of full decoupling between fragment formation and energy dissipated in different degrees of freedom. Thermal kinetic energy is determined uniquely while for freeze-out volume - collective energy a multiple solution is obtained. Coherence between the solutions of the break-up restoration algorithm and the predictions of a multifragmentation model with identical definition of primary fragments is regarded as a way to select the true value. The broad kinetic energy spectrum of 3 He is consistent with break-up genesis of this isotope. (authors)

  1. HETC-3STEP included fragmentation process

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; Iga, Kiminori; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-03-01

    High Energy Transport Code (HETC) based on the cascade-evaporation model is modified to calculate the fragmentation cross section. For the cascade process, nucleon-nucleon cross sections are used for collision computation; effective in-medium-corrected cross sections are adopted instead of the original free-nucleon collision. The exciton model is adopted for improvement of backward nucleon-emission cross section for low-energy nucleon-incident events. The fragmentation reaction is incorporated into the original HETC as a subroutine set by the use of the systematics of the reaction. The modified HETC (HETC-3STEP/FRG) reproduces experimental fragment yields to a reasonable degree. (author)

  2. Multistep processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1988-01-01

    The theories of nuclear reactions are reviewed with particular attention to the recent work on multistep processes. The evidence for compound nucleus and direct interaction reactions is described together with the results of comparisons between theories and experimental data. These theories have now proved inadequate, and there is evidence for multistep processes that take place after the initial direct stage but long before the attainment of the statistical equilibrium characteristic of compound nucleus processes. The theories of these reactions are described and it is shown how they can account for the experimental data and thus give a comprehensive understanding of nuclear reactions. (author)

  3. Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2013-01-01

    The final step in the biosynthesis of the 22nd genetically encoded amino acid, pyrrolysine, is catalyzed by PylD, a structurally and mechanistically unique dehydrogenase. This catalyzed reaction includes an induced-fit mechanism achieved by major structural rearrangements of the N-terminal helix upon substrate binding. Different steps of the reaction trajectory are visualized by complex structures of PylD with substrate and product. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2013-05-29

    The final step in the biosynthesis of the 22nd genetically encoded amino acid, pyrrolysine, is catalyzed by PylD, a structurally and mechanistically unique dehydrogenase. This catalyzed reaction includes an induced-fit mechanism achieved by major structural rearrangements of the N-terminal helix upon substrate binding. Different steps of the reaction trajectory are visualized by complex structures of PylD with substrate and product. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis.

    Science.gov (United States)

    Jamshidy, Ladan; Mozaffari, Hamid Reza; Faraji, Payam; Sharifi, Roohollah

    2016-01-01

    Introduction . One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods . A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL) regions by a stereomicroscope using a standard method. Results . The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion . The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  6. Effect of heating on Maillard reactions in milk.

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    1998-01-01

    Heated milk is subject to the Maillard reaction; lactose and lysine residues in milk proteins (mainly casein) are the reactants. An overview is given of the early, advanced and final stages of the Maillard reaction as it occurs in milk. The early Maillard reaction is confined to the formation of the

  7. Nuclear structure in deep-inelastic reactions

    International Nuclear Information System (INIS)

    Rehm, K.E.

    1986-01-01

    The paper concentrates on recent deep inelastic experiments conducted at Argonne National Laboratory and the nuclear structure effects evident in reactions between super heavy nuclei. Experiments indicate that these reactions evolve gradually from simple transfer processes which have been studied extensively for lighter nuclei such as 16 O, suggesting a theoretical approach connecting the one-step DWBA theory to the multistep statistical models of nuclear reactions. This transition between quasi-elastic and deep inelastic reactions is achieved by a simple random walk model. Some typical examples of nuclear structure effects are shown. 24 refs., 9 figs

  8. Signal-on electrochemiluminescence biosensor for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction.

    Science.gov (United States)

    Wang, Minghui; Zhou, Yunlei; Yin, Huanshun; Jiang, Wenjing; Wang, Haiyan; Ai, Shiyun

    2018-06-01

    MicroRNAs play crucial role in regulating gene expression in organism, thus it is very necessary to exploit an efficient method for the sensitive and specific detection of microRNA. Herein, a signal-on electrochemiluminescence biosensor was fabricated for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction (ISDPR). In the presence of target microRNA, amounts of trigger DNA could be generated by the first ISDPR. Then, the trigger DNA and the primer hybridized simultaneously with the hairpin probe to open the stem of the probe, and then the ECL signal will be emitted. In the presence of phi29 DNA polymerase and dNTPs, the trigger DNA could be displaced to initiate a new cycle which was the second ISDPR. Due to the two-stage amplification, this method presented excellent detection sensitivity with a low detection limit of 0.14 fM. Moreover, the applicability of the developed method was demonstrated by detecting the change of microRNA-319a content in the leaves of rice seedlings after the rice seeds were incubated with chemical mutagen of ethyl methanesulfonate. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Linac project - actual stage

    International Nuclear Information System (INIS)

    Carlin Filho, N.

    1990-01-01

    The actual development stage of Pelletron accelerator to study heavy ion reactions, nuclear structures and applied nuclear physics is presented. The construction of acceleration systems able to provide beams of several mass and energies up to 20 MeV/A, is discussed, describing acceleration structures and implemented systems. (M.C.K.)

  10. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  11. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng; Turner, Timothy L.; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop

  12. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  13. Implementing a stepped-care approach in primary care: results of a qualitative study

    Directory of Open Access Journals (Sweden)

    Franx Gerdien

    2012-01-01

    Full Text Available Abstract Background Since 2004, 'stepped-care models' have been adopted in several international evidence-based clinical guidelines to guide clinicians in the organisation of depression care. To enhance the adoption of this new treatment approach, a Quality Improvement Collaborative (QIC was initiated in the Netherlands. Methods Alongside the QIC, an intervention study using a controlled before-and-after design was performed. Part of the study was a process evaluation, utilizing semi-structured group interviews, to provide insight into the perceptions of the participating clinicians on the implementation of stepped care for depression into their daily routines. Participants were primary care clinicians, specialist clinicians, and other healthcare staff from eight regions in the Netherlands. Analysis was supported by the Normalisation Process Theory (NPT. Results The introduction of a stepped-care model for depression to primary care teams within the context of a depression QIC was generally well received by participating clinicians. All three elements of the proposed stepped-care model (patient differentiation, stepped-care treatment, and outcome monitoring, were translated and introduced locally. Clinicians reported changes in terms of learning how to differentiate between patient groups and different levels of care, changing antidepressant prescribing routines as a consequence of having a broader treatment package to offer to their patients, and better working relationships with patients and colleagues. A complex range of factors influenced the implementation process. Facilitating factors were the stepped-care model itself, the structured team meetings (part of the QIC method, and the positive reaction from patients to stepped care. The differing views of depression and depression care within multidisciplinary health teams, lack of resources, and poor information systems hindered the rapid introduction of the stepped-care model. The NPT

  14. Stepped MS(All) Relied Transition (SMART): An approach to rapidly determine optimal multiple reaction monitoring mass spectrometry parameters for small molecules.

    Science.gov (United States)

    Ye, Hui; Zhu, Lin; Wang, Lin; Liu, Huiying; Zhang, Jun; Wu, Mengqiu; Wang, Guangji; Hao, Haiping

    2016-02-11

    Multiple reaction monitoring (MRM) is a universal approach for quantitative analysis because of its high specificity and sensitivity. Nevertheless, optimization of MRM parameters remains as a time and labor-intensive task particularly in multiplexed quantitative analysis of small molecules in complex mixtures. In this study, we have developed an approach named Stepped MS(All) Relied Transition (SMART) to predict the optimal MRM parameters of small molecules. SMART requires firstly a rapid and high-throughput analysis of samples using a Stepped MS(All) technique (sMS(All)) on a Q-TOF, which consists of serial MS(All) events acquired from low CE to gradually stepped-up CE values in a cycle. The optimal CE values can then be determined by comparing the extracted ion chromatograms for the ion pairs of interest among serial scans. The SMART-predicted parameters were found to agree well with the parameters optimized on a triple quadrupole from the same vendor using a mixture of standards. The parameters optimized on a triple quadrupole from a different vendor was also employed for comparison, and found to be linearly correlated with the SMART-predicted parameters, suggesting the potential applications of the SMART approach among different instrumental platforms. This approach was further validated by applying to simultaneous quantification of 31 herbal components in the plasma of rats treated with a herbal prescription. Because the sMS(All) acquisition can be accomplished in a single run for multiple components independent of standards, the SMART approach are expected to find its wide application in the multiplexed quantitative analysis of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  16. (4+2) Cycloaddition reactions with inverse electron demand of nitrogen bearing, heteroaromatic cations

    International Nuclear Information System (INIS)

    Ritzberger-Baumgartner, W.

    1996-06-01

    Three cationic, heteroaromatic diene-systems (1, 2, 3, 4-tetramethoxycarbonyl-quinolizinium-tetrafluoroborate (M), 8, 9, 10, 11-tetrarnethoxycarbonylpyrido[2,1-a]-isoquinolinium-TFB and triazolo[1,5-b]isoquinolinium-TFBs) and a cationic, non-aromatic diene (2,5,5-trimethyl-3-oxo-1, 2, 4-triazolium-TFB) were synthesized. The dienes were employed successfully in cycloaddition reactions with a number ofconjugated dienophiles (including norbornene). The mechanism underlying these cycloaddition reactions was discussed in the theoretical section. At first quantumchemical calculations of the frontier orbital energies provided the proof, that the reactions followed the pattern of reactions with inverse electron demand. Calculation of the charge distribution and of the orbital coefficients led to the conclusion, that these reactions are mainly orbital controlled. Two mechanistic variants were in discussion. Either the reactions proceed in a concerted manner resembling the Diels-Alder reaction with inverse electron demand or in two distinct steps with the formation of a cationic intermediate following the attack of the heterodienes acting as weak electrophiles at the dienophiles being weak nucleophiles. Calculations of a possible transition state of these cycloaddition reactions revealed a pronounced preference for the formation of the bond between the logical reaction centers in the first step of a two-step reaction. However, experimental and theoretical findings led to the conviction, that cationic polar cycloaddition reactions proceed exactly along the crossroad between a concerted and a two-step mechanism and depending on the electrophilic strength of the diene and the nucleophilic strength of the dienophile these reactions show more characteristics of one of the two mechanistic possibilities. The high regioselectivity as well as the high stereoselectivity could be explained satisfactory with the help of the calculated orbital coefficients. (author)

  17. Possibilities and scope of the double isotope effect method in the elucidation of mechanisms of enzyme catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H L; Medina, R [Technische Univ. Muenchen, Freising (Germany, F.R.). Lehrstuhl fuer Allgemeine Chemie und Biochemie

    1991-01-01

    Kinetic isotope effects on enzyme catalyzed reactions are indicative for the first irreversible in a sequence of individual steps. Hints on the relative velocities of other steps can only be obtained from the partitioning factor R and its dependence on external reaction conditions. In general, the experimental data needed are obtained from isotope abundance measurements in a defined position of the substrate or product as a function of turnover. This method does not reveal events dealing with neighbour atoms or preceding the main isotope sensitive step. In the method presented here, the analytical measurement is extended to the second atom involved in a bond fission of formation (Double Isotope Effect Method). It is shown that the additional results obtained support the identification of the main isotopically sensitive step and its relative contribution to the overall reaction rate, the identification of other kinetically significant steps and the differentiation between stepwise and concerted reaction mechanisms. The method and its advantages are demonstrated on reactions comprising C-N-bond splitting (urease and arginase reaction), C-C-bound fission (reactions catalyzed by pyruvate-dehydrogenase, pyruvate-formiate-lyase and lactate-oxidase), C-O-bound formation (ribulose-bisphosphate-oxygenase reaction), and N-O-bond fission (nitrate- and nitrite-reductase reactions). (orig.).

  18. One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma Rae [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

  19. Surgical results of lung cancer with sarcoid reaction in regional lymph nodes

    International Nuclear Information System (INIS)

    Tomimaru, Yoshito; Higashiyama, Masahiko; Okami, Jiro; Oda, Kazuyuki; Takami, Koji; Kodama, Ken; Tsukamoto, Yoshitane

    2007-01-01

    There have been few reports of sarcoid reaction in the regional lymph nodes associated with lung cancer. The purpose of this study was to analyze the surgical results of lung cancer with sarcoid reaction. Of 1733 lung cancer patients undergoing surgical treatment in our institute from 1990 to 2004, we reviewed 22 patients (1.3%) with sarcoid reaction in the regional lymph nodes of lung cancer. On pre-operative computed tomography (CT), mediastinal lymph node swelling was detected in 19 patients (86%) as clinical N3 disease (c-N3) in six or as c-N2 in 13, while three patients were classified as c-N0. To these 19 patients, lymph node status was histologically checked by mediastinoscopy in four patients, sternotomy approach in two and open mini-thoracotomy in 13. Because the sampling-biopsy nodes showed no tumor metastasis, radical surgery was promptly performed. However, four patients (18%) were finally judged to have pathological lymph node positive disease. Five patients were in pathological stage (p-stage) IA, nine in p-stage IB, five in p-stage IIB, two in p-stage IIIA, and one in stage IIIB. The overall 3-, and 5-year survival rates of these patients were 85.2 and 77.7%, respectively, with no significant difference compared to those of the remaining patients without sarcoid reaction. Because lung cancer patients with sarcoid reaction in the regional lymph nodes frequently show mediastinal lymph node swelling on CT, radical resection should be performed after confirming the node status by appropriate sampling biopsy. It seems that surgical results of lung cancers with sarcoid reaction in the regional nodes are not prognostically different from those without sarcoid reaction. (author)

  20. Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.

    Directory of Open Access Journals (Sweden)

    Yiran Huang

    Full Text Available Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.

  1. Mechanistic insights into the dehalogenation reaction of fluoroacetate/fluoroacetic acid

    Science.gov (United States)

    Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro

    2015-05-01

    Fluoroacetate is a toxic compound whose environmental accumulation may represent an important contamination problem, its elimination is therefore a challenging issue. Fluoroacetate dehalogenase catalyzes its degradation through a two step process initiated by an SN2 reaction in which the aspartate residue performs a nucleophilic attack on the carbon bonded to the fluorine; the second step is hydrolysis that releases the product as glycolate. In this paper, we present a study based on density functional theory calculations of the SN2 initiation reaction modeled through the interaction between the substrate and the propionate anion as the nucleophile. Results are analyzed within the framework of the reaction force and using the reaction electronic flux to identify and characterize the electronic activity that drives the reaction. Our results reveal that the selective protonation of the substrate catalyzes the reaction by decreasing the resistance of the structural and electronic reorganization needed to reach the transition state. Finally, the reaction energy is modulated by the degree of stabilization of the fluoride anion formed after the SN2 reaction. In this way, a site-induced partial protonation acts as a chemical switch in a key process that determines the output of the reaction.

  2. Optimizing Chemical Reactions with Deep Reinforcement Learning.

    Science.gov (United States)

    Zhou, Zhenpeng; Li, Xiaocheng; Zare, Richard N

    2017-12-27

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.

  3. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Ladan Jamshidy

    2016-01-01

    Full Text Available Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  4. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  5. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Science.gov (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  6. The role of MgCl2 compounds in preparation of Tin oxide micro particles by one-step solid - state chemical reaction method and characterization of microstructure

    International Nuclear Information System (INIS)

    Hojabry, A.; Rezainik, Y.; Abdoljavad, N.; Moghimi, N.; Shakib, M.

    2007-01-01

    In this paper, Tin oxide (SnO 2 ) nano crystals have been synthesized by one-step solid-state chemical reactions method. In the first step, the powder of SnCl 4 . 5H 2 O was mixed with MgCl 2 and Mg(OH) 2 with a weight ratio of Sn to Mg (2:1) in the air atmosphere at room, and then annealed at 200 d egree C , 400 d egree C and 600 d egree C in air for 4 h to give different size of nanoparticles. This method is a simple, efficient and economic preparation for SnO 2 nanoparticles with adjustable grain sizes in the range of 7-32 nm in high yield. The microstructure and morphology of SnO 2 nanoparticles have been studied by X-ray diffraction (XRD), scanning electron microscopy and thermal analysis (thermogravimetric analysis -differential thermal analysis).

  7. Continuum spectra in light-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, T.; Udagawa, T. [Texas Univ., Austin (USA). Dept. of Physics; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Recent developments in the use of multi-step direct reaction method, to fit continuum cross sections of light-ion reactions, are reviewed. There has been a long-standing difficulty in reproducing sufficiently large (p, p') continuum cross section, but it has now been all but removed. It will be discussed in some detail, how this was achieved. Analyses of very recent data on analyzing powers in the continuum of (p, p') and (p, ..cap alpha..) reactions will also be discussed. Finally, analysis of the breakup of h into d and p will be presented.

  8. Strategies for Innovation in Multicomponent Reaction Design

    OpenAIRE

    Ganem, Bruce

    2009-01-01

    By generating structural complexity in a single step from three or more reactants, multicomponent reactions (MCRs) make it possible to synthesize target compounds with greater efficiency and atom economy. The history of such reactions can be traced to the mid-nineteenth century when Strecker first produced α-aminonitriles from the condensation of aldehydes with ammonia and hydrogen cyanide.

  9. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz; Kalachyova, Y. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Solovyev, A. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Vytykacova, S. [Institute of Chemical Technology, Department of Glass and Ceramics (Czech Republic); Svanda, J.; Siegel, J. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [Institute of Chemical Technology, Department of Biochemistry and Microbiology (Czech Republic); Svorcik, V. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic)

    2015-03-15

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  10. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-01-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications

  11. A green two-step process for adipic acid production from cyclohexene. A study on parameters affecting selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Cavani, F.; Macchia, F.; Pino, R.; Raabova, K.; Rozhko, E. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; Alini, S.; Accorinti, P.; Babini, G. [Radici Chimica SpA, Novara (Italy)

    2011-07-01

    In this paper, we report about the effect of reaction parameters on catalytic behavior in a twostep process aimed at the synthesis of adipic acid from cyclohexene. In the first step, cyclohexene reacts with an aqueous solution of hydrogen peroxide, under conditions leading to the formation of trans-1,2-cyclohexandiol as the prevailing product; the reaction is catalysed by tungstic acid, in the presence of phosphoric acid and of a PT agent. In the second step, 1,2-cyclohexandiol is oxidized with air, in the presence of an heterogeneous catalyst made of alumina-supported Ru(OH){sub 3}. This process is aimed at using the minimal amount of the costly hydrogen peroxide, since only one mole is theoretically needed per mole of cyclohexene. The first step afforded very high yield to the glycol, using only a slight excess of hydrogen peroxide. However, the second step turned out to be the more critical one, since the selectivity to adipic acid was very low because of the concomitant occurrence of several undesired side reactions. The latter were in part due to the reaction conditions used, which were necessary for the activation of cyclohexandiol. (orig.)

  12. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

    Science.gov (United States)

    Vandersickel, A.; Wright, Y. M.; Boulouchos, K.

    2013-12-01

    Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.

  13. On the reaction of the nitroso group with olefins. Mechanisms of ene reactions

    International Nuclear Information System (INIS)

    Seymour, C.A.; Greene, F.D.

    1982-01-01

    Intra- and intermolecular isotope effects point to a two-step process for the reaction of pentafluoronitrosobenzene with tetramethylethylene to afford the ene product, rate-determining formation of an intermediate (for which the arizidine N-oxide is suggested) followed by C-H (or C-D) cleavage to the ene product

  14. Modelling of the spallation reaction: analysis and testing of nuclear models; Simulation de la spallation: analyse et test des modeles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Toccoli, C

    2000-04-03

    The spallation reaction is considered as a 2-step process. First a very quick stage (10{sup -22}, 10{sup -29} s) which corresponds to the individual interaction between the incident projectile and nucleons, this interaction is followed by a series of nucleon-nucleon collisions (intranuclear cascade) during which fast particles are emitted, the nucleus is left in a strongly excited level. Secondly a slower stage (10{sup -18}, 10{sup -19} s) during which the nucleus is expected to de-excite completely. This de-excitation is performed by evaporation of light particles (n, p, d, t, {sup 3}He, {sup 4}He) or/and fission or/and fragmentation. The HETC code has been designed to simulate spallation reactions, this simulation is based on the 2-steps process and on several models of intranuclear cascades (Bertini model, Cugnon model, Helder Duarte model), the evaporation model relies on the statistical theory of Weiskopf-Ewing. The purpose of this work is to evaluate the ability of the HETC code to predict experimental results. A methodology about the comparison of relevant experimental data with results of calculation is presented and a preliminary estimation of the systematic error of the HETC code is proposed. The main problem of cascade models originates in the difficulty of simulating inelastic nucleon-nucleon collisions, the emission of pions is over-estimated and corresponding differential spectra are badly reproduced. The inaccuracy of cascade models has a great impact to determine the excited level of the nucleus at the end of the first step and indirectly on the distribution of final residual nuclei. The test of the evaporation model has shown that the emission of high energy light particles is under-estimated. (A.C.)

  15. Staged abdominal re-operation for abdominal trauma.

    Science.gov (United States)

    Taviloglu, Korhan

    2003-07-01

    To review the current developments in staged abdominal re-operation for abdominal trauma. To overview the steps of damage control laparotomy. The ever increasing importance of the resuscitation phase with current intensive care unit (ICU) support techniques should be emphasized. General surgeons should be familiar to staged abdominal re-operation for abdominal trauma and collaborate with ICU teams, interventional radiologists and several other specialties to overcome this entity.

  16. The Effect of First-Step Techniques from the Staggered Stance in American Football

    DEFF Research Database (Denmark)

    Knudsen, Nikolas Sten; Andersen, Thomas Bull

    2017-01-01

    .77±0.10 s) being faster than FFS (1.81±0.12 s) and BFS (2.01±0.13 s), and FFS being faster than BFS, although no differences were found in reaction time. In terms of mean force and power, NORM (331.1±39.2N, 542.2±72.3W) and FFS (320.8±43.2N, 550.9±81.4W) were significantly larger than BFS (256.9±36.2N, 443...... in each technique (normal (NORM), backwards false step (BFS) and forwards false step (FFS)) in random order. Sprint starts were performed on force plates to investigate ground reaction forces, reaction time and total sprint time. Analysis showed significant differences in sprint times, with NORM (1...

  17. Precipitation modeling of inclusions at different stages of the steel making process

    International Nuclear Information System (INIS)

    Carreno, V.; Morales, R.D.; Romeero, A.; Hernandez, M.; Morales, R.D.

    1998-01-01

    Steel making processes are continuously improved in order to attend the increasing requirements of the cleanness of the liquid metal. At the refining stages, as deoxidation and desulphuration, the formation of inclusions of oxides and sulphides is promoted, which on the other hand, are the most frequent inclusions. In this work a mathematical simulator of the precipitation and chemical composition of non-metallic inclusions at different steps of the steel making process is presented. To this purpose, it is assumed that inclusions formed by reoxidation can be simulated by increasing arbitrarily the oxygen levels consumed by the residual elements (aluminium, calcium, etc) and starting the chemical reaction with less powerful deoxidants (silicium and manganese). Accordingly, different operative conditions can be simulated. Numerical predictions are compared with experimental results of industrial trials, as well as results included in the bibliography. (Author) 7 refs

  18. Exchange reaction between hydrogen and deuterium. I. Importance of surface reactions in the steady-state mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, C; Gaillard-Cusin, F; James, H [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of heterogeneous initiation process of gas phase linear chain reactions is carried out through the study of H/sub 2/-D/sub 2/ exchange reaction. Experimental data under study concern mainly the stationary rate of HD formation and the prestationary proceeding. Steady-state method accounts for the first one of these data; it allows to clearly compare the wall process part to the part played by the homogeneous chain reaction towards HD formation. Activation energy of exchange elementary step between chemisorbed hydrogen (on silica) and gaseous deuterium has been evaluated: Esub(e1)=52+-1 Kcal/mole.

  19. Atomic resolution structures of discrete stages on the reaction coordinate of the [Fe4S4] enzyme IspG (GcpE)

    KAUST Repository

    Quitterer, Felix; Frank, Annika; Wang, Ke; Rao, Guodong; O'Dowd, Bing; Li, Jikun; Guerra, Francisco; Abdel-Azeim, Safwat; Bacher, Adelbert; Eppinger, Jö rg; Oldfield, Eric; Groll, Michael

    2015-01-01

    IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent as well as an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate (MEcPP) to (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate (HMBPP). In addition, the enzyme’s structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism which describes all stages from initial ring opening to formation of HMBPP via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many pro- and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.

  20. Atomic resolution structures of discrete stages on the reaction coordinate of the [Fe4S4] enzyme IspG (GcpE)

    KAUST Repository

    Quitterer, Felix

    2015-04-11

    IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent as well as an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate (MEcPP) to (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate (HMBPP). In addition, the enzyme’s structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism which describes all stages from initial ring opening to formation of HMBPP via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many pro- and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.

  1. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    Science.gov (United States)

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial

  2. Don't Deny These Five Distinct Stages of a School's Demise.

    Science.gov (United States)

    Smith, William D.

    1984-01-01

    A neighborhood's reaction to the announcement of a school closing involves the five progressive stages Elisabeth Kubler-Ross describes as inevitable for one's reaction to the death of a friend or relative. (DCS)

  3. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  4. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment

    OpenAIRE

    Bunce, D; Haynes, BI; Lord, SR; Gschwind, YJ; Kochan, NA; Reppermund, S; Brodaty, H; Sachdev, PS; Delbaere, K

    2017-01-01

    Background: Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI)...

  5. Mechanistic insights into the dehalogenation reaction of fluoroacetate/fluoroacetic acid

    International Nuclear Information System (INIS)

    Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro

    2015-01-01

    Fluoroacetate is a toxic compound whose environmental accumulation may represent an important contamination problem, its elimination is therefore a challenging issue. Fluoroacetate dehalogenase catalyzes its degradation through a two step process initiated by an S N 2 reaction in which the aspartate residue performs a nucleophilic attack on the carbon bonded to the fluorine; the second step is hydrolysis that releases the product as glycolate. In this paper, we present a study based on density functional theory calculations of the S N 2 initiation reaction modeled through the interaction between the substrate and the propionate anion as the nucleophile. Results are analyzed within the framework of the reaction force and using the reaction electronic flux to identify and characterize the electronic activity that drives the reaction. Our results reveal that the selective protonation of the substrate catalyzes the reaction by decreasing the resistance of the structural and electronic reorganization needed to reach the transition state. Finally, the reaction energy is modulated by the degree of stabilization of the fluoride anion formed after the S N 2 reaction. In this way, a site-induced partial protonation acts as a chemical switch in a key process that determines the output of the reaction

  6. Mechanistic insights into the dehalogenation reaction of fluoroacetate/fluoroacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Miranda-Rojas, Sebastián, E-mail: sebastian.miranda@unab.cl [Chemical Processes and Catalysis (CPC), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago (Chile); Toro-Labbé, Alejandro [Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago (Chile)

    2015-05-21

    Fluoroacetate is a toxic compound whose environmental accumulation may represent an important contamination problem, its elimination is therefore a challenging issue. Fluoroacetate dehalogenase catalyzes its degradation through a two step process initiated by an S{sub N}2 reaction in which the aspartate residue performs a nucleophilic attack on the carbon bonded to the fluorine; the second step is hydrolysis that releases the product as glycolate. In this paper, we present a study based on density functional theory calculations of the S{sub N}2 initiation reaction modeled through the interaction between the substrate and the propionate anion as the nucleophile. Results are analyzed within the framework of the reaction force and using the reaction electronic flux to identify and characterize the electronic activity that drives the reaction. Our results reveal that the selective protonation of the substrate catalyzes the reaction by decreasing the resistance of the structural and electronic reorganization needed to reach the transition state. Finally, the reaction energy is modulated by the degree of stabilization of the fluoride anion formed after the S{sub N}2 reaction. In this way, a site-induced partial protonation acts as a chemical switch in a key process that determines the output of the reaction.

  7. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    Science.gov (United States)

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-01-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267

  8. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    International Nuclear Information System (INIS)

    Deng Xin; Fang Zhen; Liu Yunhu

    2010-01-01

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H 2 SO 4 or by two-step process were studied in an ultrasonic reactor at 60 deg. C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H 2 SO 4 as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H 2 SO 4 for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil.

  9. An approach to eliminate stepped features in multistage incremental sheet forming process: Experimental and FEA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nirala, Harish Kumar; Jain, Prashant K.; Tandon, Puneet [PDPM Indian Institute of Information Technology, Design and Manufacturing Jabalpur Jabalpur-482005, Madhya Pradesh (India); Roy, J. J.; Samal, M. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-15

    Incremental sheet forming (ISF) is a recently developed manufacturing technique. In ISF, forming is done by applying deformation force through the motion of Numerically controlled (NC) single point forming tool on the clamped sheet metal blank. Single Point Incremental sheet forming (SPISF) is also known as a die-less forming process because no die is required to fabricate any component by using this process. Now a day it is widely accepted for rapid manufacturing of sheet metal components. The formability of SPISF process improves by adding some intermediate stages into it, which is known as Multi-stage SPISF (MSPISF) process. However during forming in MSPISF process because of intermediate stages stepped features are generated. This paper investigates the generation of stepped features with simulation and experimental results. An effective MSPISF strategy is proposed to remove or eliminate this generated undesirable stepped features.

  10. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    Science.gov (United States)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  11. Modulation of EMG-EMG Coherence in a Choice Stepping Task

    Directory of Open Access Journals (Sweden)

    Ippei Nojima

    2018-02-01

    Full Text Available The voluntary step execution task is a popular measure for identifying fall risks among elderly individuals in the community setting because most falls have been reported to occur during movement. However, the neurophysiological functions during this movement are not entirely understood. Here, we used electromyography (EMG to explore the relationship between EMG-EMG coherence, which reflects common oscillatory drive to motoneurons, and motor performance associated with stepping tasks: simple reaction time (SRT and choice reaction time (CRT tasks. Ten healthy elderly adults participated in the study. Participants took a single step forward in response to a visual imperative stimulus. EMG-EMG coherence was analyzed for 1000 ms before the presentation of the stimulus (stationary standing position from proximal and distal tibialis anterior (TA and soleus (SOL muscles. The main result showed that all paired EMG-EMG coherences in the alpha and beta frequency bands were greater in the SRT than the CRT task. This finding suggests that the common oscillatory drive to the motoneurons during the SRT task occurred prior to taking a step, whereas the lower value of corticospinal activity during the CRT task prior to taking a step may indicate an involvement of inhibitory activity, which is consistent with observations from our previous study (Watanabe et al., 2016. Furthermore, the beta band coherence in intramuscular TA tended to positively correlate with the number of performance errors that are associated with fall risks in the CRT task, suggesting that a reduction in the inhibitory activity may result in a decrease of stepping performance. These findings could advance the understanding of the neurophysiological features of postural adjustments in elderly individuals.

  12. On the importance of hydrogen bonding in the promotion of Diels-Alder reactions of unactivated aldehydes: a computational study

    Science.gov (United States)

    Chemouri, Hafida; Mekelleche, Sidi Mohamed

    2014-03-01

    The kinetic solvent effects on the Diels-Alder (DA) reaction of N,N-dimethylamino-3-trimethylsilyl butadiene with p-anisaldehyde are studied by density functional calculations at the B3LYP/6-31C(d) level of theory. Experimentally, it has been found that the acceleration of this reaction is not due to the increase of the polarity of the solvent but it is rather due to hydrogen bonding (HB). Intrinsic reaction coordinate calculations combined with electron localisation function analysis show that this reaction follows a one-step two-stage mechanism with a highly asynchronous sigma bond formation process. The calculations, performed using an explicit solvent model based on the coordination of the carbonyl group with one molecule of the solvent, show a considerable decrease of the activation energy when going from the gas phase (ɛ = 1) to solution phase and this diminution is found to be more important in isopropyl alcohol (ɛ = 18.3) in comparison with acetonitrile (ɛ = 37.5). Our calculations also show that the acceleration of this DA reaction is due to the increase of the electrophilicity power of the solvated carbonyl compound and consequently the increase of the polarity of the reaction in the presence of protic solvents. The obtained results put in evidence the relevance of HB in the promotion of DA reactions of unactivated ketones as experimentally expected.

  13. Non-equilibrium statistical mechanical approach for describing heavy ion reactions

    International Nuclear Information System (INIS)

    Sventek, J.S.

    1979-01-01

    With the availability of heavy-ion projectiles (A > 4) at low to intermediate energies (4 < E/A < 10), products showing various stages of relaxation for certain macroscopic variables (center-of-mass energy, orbital angular momentum, etc.) were produced in various reactions. The distributions for these macroscopic variables showed a correlation between the stage of relaxation reached and the net amount of mass transfer which had occurred in the reaction. There was also evidence that there was an asymmetry in the number of net transfers necessary for complete relaxation between stripping ad pickup reactions. A model for describing the time-evolution of these reactions has been formulated, the keystone of which is a master-equation approach for describing the time-dependence of the mass-asymmetry. This, coupled with deterministic equations of motion for the other macroscopic coordinates in the reaction lead to calculated distributions which provide an excellent qualitative description of these reactions, and, in some cases, quantitatively reproduce the experimental data quite well

  14. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring

    2011-05-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  15. SPAR-H Step-by-Step Guidance

    International Nuclear Information System (INIS)

    Galyean, W.J.; Whaley, A.M.; Kelly, D.L.; Boring, R.L.

    2011-01-01

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

  16. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.

    Science.gov (United States)

    Wezenberg, Daphne; Cutti, Andrea G; Bruno, Antonino; Houdijk, Han

    2014-01-01

    Decreased push-off power by the prosthetic foot and inadequate roll-over shape of the foot have been shown to increase the energy dissipated during the step-to-step transition in human walking. The aim of this study was to determine whether energy storage and return (ESAR) feet are able to reduce the mechanical energy dissipated during the step-to-step transition. Fifteen males with a unilateral lower-limb amputation walked with their prescribed ESAR foot (Vari-Flex, Ossur; Reykjavik, Iceland) and with a solid-ankle cushioned heel foot (SACH) (1D10, Ottobock; Duderstadt, Germany), while ground reaction forces and kinematics were recorded. The positive mechanical work on the center of mass performed by the trailing prosthetic limb was larger (33%, p = 0.01) and the negative work performed by the leading intact limb was lower (13%, p = 0.04) when walking with the ESAR foot compared with the SACH foot. The reduced step-to-step transition cost coincided with a higher mechanical push-off power generated by the ESAR foot and an extended forward progression of the center of pressure under the prosthetic ESAR foot. Results can explain the proposed improvement in walking economy with this kind of energy storing and return prosthetic foot.

  17. SPAR-H Step-by-Step Guidance

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean

    2012-06-01

    Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.

  18. Propargylamine-isothiocyanate reaction: efficient conjugation chemistry in aqueous media

    DEFF Research Database (Denmark)

    Viart, Helene Marie-France; Larsen, T. S.; Tassone, Chiara

    2014-01-01

    A coupling reaction between secondary propargyl amines and isothiocyanates in aqueous media is described. The reaction is high-yielding and affords cyclized products within 2-24 h. A functionalized ether lipid was synthesized in 8 steps, formulated as liposomes with POPC and conjugated to FITC un...

  19. Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing

    DEFF Research Database (Denmark)

    Liu, Yilan; Chen, Jinjin; Thygesen, Anders

    2018-01-01

    Gene splicing by fusion PCR is a versatile and widely used methodology, especially in synthetic biology. We here describe a rapid method for splicing two fragments by one-round fusion PCR with a dual-asymmetric primers and two-step annealing (ODT) method. During the process, the asymmetric...... intermediate fragments were generated in the early stage. Thereafter, they were hybridized in the subsequent cycles to serve as template for the target full-length product. The process parameters such as primer ratio, elongation temperature and cycle numbers were optimized. In addition, the fusion products...

  20. Microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process

    International Nuclear Information System (INIS)

    Lu, X.Y.; Nagata, A.; Sugawara, K.

    2008-01-01

    The microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the two-step sintering process were investigated. The tapes were then subjected to two heat treatments with an intermediate rolling. All the tapes were sintered at 835 deg. C for 24 h at initial sintering stage. A two-step sintering procedure was then used in the final sintering stage. In the first step, the tapes are sintered at 840-865 deg. C for 1 h. In the second step, they were sintered at 835 deg. C for 120 h. The results show that the first step sintering temperature has significant influence on the microstructure and the critical current density J c . The observed microstructures are consistent well with the different J c performances of the tapes first-step-sintered at different temperatures. The tape first-step-sintered at 850 deg. C, which has small secondary phases, stronger c-axis grain alignment, higher proportion of Bi-2223 phase, and no cracks, exhibits the highest J c value

  1. Explosive Forming of Low Carbon Steel Sheet into a Stepped Disc Shape

    OpenAIRE

    S. Balasubramanian; S. Sarvat Ali; E.S. Bhagiradha Rao

    1984-01-01

    This paper deals with the explosive forming of deep drawing quality steel into a two stepped disc type shape. An attempt has been made to predict the forming parameters from theoretical considerations by equating the disc shape with an equivalent dome. Results of forming this shape in a single stage vis-a-vis forming in two stages are compared.

  2. A computational study of pyrolysis reactions of lignin model compounds

    Science.gov (United States)

    Thomas Elder

    2010-01-01

    Enthalpies of reaction for the initial steps in the pyrolysis of lignin have been evaluated at the CBS-4m level of theory using fully substituted b-O-4 dilignols. Values for competing unimolecular decomposition reactions are consistent with results previously published for phenethyl phenyl ether models, but with lowered selectivity. Chain propagating reactions of free...

  3. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  4. A study on the hierarchy model of nuclear reactions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Sekiya, Tamotsu

    1975-01-01

    The application of the hierarchy model of nuclear reaction is discussed, and the hierarchy model means that the compound nucleus state is formed after several steps, at least, one step of reaction. This model was applied to the analysis of the observed cross sections of 235 U and some other elements. Neglecting exchange scattering effect, the equations for the total neutron cross section of 235 U were obtained. One of these equations describes explicitly the hierarchy of the transition from intermediate reaction state Xm into the compound nucleus state Xs, and another one describes the cross section averaged over an energy interval larger than the average level spacing of compound nucleus eigenvalues. The hierarchy of reaction mechanism was investigated in more detail, and the hierarchy model was applied to the case of unresolved energy region. It was not tried to evaluate the strength function in the mass region (A>140), since the effect of nuclear deformation was neglected in the task. (Iwase, T.)

  5. Kinetics of coal liquefaction during heating-up and isothermal stages

    Energy Technology Data Exchange (ETDEWEB)

    Xian Li; Haoquan Hu; Shengwei Zhu; Shuxun Hu; Bo Wu; Meng Meng [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2008-04-15

    Direct liquefaction of Shenhua bituminous coal was carried out in a 500 ml autoclave with iron catalyst and coal liquefaction cycle-oil as solvent at initial hydrogen of 8.0 MPa, residence time of 0-90 min. To investigate the liquefaction kinetics, a model for heating-up and isothermal stages was developed to estimate the rate constants of both stages. In the model, the coal was divided into three parts, easy reactive part, hard reactive part and unreactive part, and four kinetic constants were used to describe the reaction mechanism. The results showed that the model is valid for both heating-up and isothermal stages of liquefaction perfectly. The rate-controlled process for coal liquefaction is the reaction of preasphaltene plus asphaltene (PAA) to oil plus gas (O + G). The upper-limiting conversion of isothermal stage was estimated by the kinetic calculation. 21 refs., 4 figs., 4 tabs.

  6. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  7. Lateral step initiation behavior in older adults.

    Science.gov (United States)

    Sparto, Patrick J; Jennings, J Richard; Furman, Joseph M; Redfern, Mark S

    2014-02-01

    Older adults have varied postural responses during induced and voluntary lateral stepping. The purpose of the research was to quantify the occurrence of different stepping strategies during lateral step initiation in older adults and to relate the stepping responses to retrospective history of falls. Seventy community-ambulating older adults (mean age 76 y, range 70-94 y) performed voluntary lateral steps as quickly as possible to the right or left in response to a visual cue, in a blocked design. Vertical ground reaction forces were measured using a forceplate, and the number and latency of postural adjustments were quantified. Subjects were assigned to groups based on their stepping strategy. The frequency of trials with one or two postural adjustments was compared with data from 20 younger adults (mean age 38 y, range 21-58 y). Logistic regression was used to relate presence of a fall in the previous year with the number and latency of postural adjustments. In comparison with younger adults, who almost always demonstrated one postural adjustment when stepping laterally, older adults constituted a continuous distribution in the percentage of step trials made with one postural adjustment (from 0% to 100% of trials). Latencies of the initial postural adjustment and foot liftoff varied depending on the number of postural adjustments made. A history of falls was associated a larger percentage of two postural adjustments, and a longer latency of foot liftoff. In conclusion, the number and latency of postural adjustments made during voluntary lateral stepping provides additional evidence that lateral control of posture may be a critical indicator of aging. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Process for conversion of lignin to reformulated hydrocarbon gasoline

    Science.gov (United States)

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  9. Pressure-driven one-step solid phase-based on-chip sample preparation on a microfabricated plastic device and integration with flow-through polymerase chain reaction (PCR).

    Science.gov (United States)

    Tran, Hong Hanh; Trinh, Kieu The Loan; Lee, Nae Yoon

    2013-10-01

    In this study, we fabricate a monolithic poly(methylmethacrylate) (PMMA) microdevice on which solid phase-based DNA preparation and flow-through polymerase chain reaction (PCR) units were functionally integrated for one-step sample preparation and amplification operated by pressure. Chelex resin, which is used as a solid support for DNA preparation, can capture denatured proteins but releases DNA, and the purified DNA can then be used as a template in a subsequent amplification process. Using the PMMA microdevices, DNA was successfully purified from both Escherichia coli and human hair sample, and the plasmid vector inserted in E. coli and the D1S80 locus in human genomic DNA were successfully amplified from on-chip purified E. coli and human hair samples. Furthermore, the integration potential of the proposed sample preparation and flow-through PCR units was successfully demonstrate on a monolithic PMMA microdevice with a seamless flow, which could pave the way for a pressure-driven, simple one-step sample preparation and amplification with greatly decreased manufacture cost and enhanced device disposability. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    Unknown

    solvents to effect an asymmetric synthesis is an important step forward towards ... In continuation of our preliminary communication 2, we wish to ..... formation of chiral enamine 74 from the reaction of S-proline with pro-R carbonyl group.

  11. Reaction probability derived from an interpolation formula for diffusion processes with an absorptive boundary condition

    International Nuclear Information System (INIS)

    Misawa, T.; Itakura, H.

    1995-01-01

    The present article focuses on a dynamical simulation of molecular motion in liquids. In the simulation involving diffusion-controlled reaction with discrete time steps, lack of information regarding the trajectory within the time step may result in a failure to count the number of reactions of the particles within the step. In order to rectify this, an interpolated diffusion process is used. The process is derived from a stochastic interpolation formula recently developed by the first author [J. Math. Phys. 34, 775 (1993)]. In this method, the probability that reaction has occurred during the time step given the initial and final positions of the particles is calculated. Some numerical examples confirm that the theoretical result corresponds to an improvement over the Clifford-Green work [Mol. Phys. 57, 123 (1986)] on the same matter

  12. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition.

    Science.gov (United States)

    Jeong, Tae Su; Kim, Young Soo; Oh, Kyeong Keun

    2011-11-01

    Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Analysis of kinetic reaction mechanisms

    CERN Document Server

    Turányi, Tamás

    2014-01-01

    Chemical processes in many fields of science and technology, including combustion, atmospheric chemistry, environmental modelling, process engineering, and systems biology, can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the calculation of the overall uncertainty of simulation results and the identification of the most important input parameters, the ways in which mechanisms can be reduced without losing important kinetic and dynamic detail, and the application of reduced models for more accurate engineering optimizations. This monograph is invaluable for researchers and engineers dealing with detailed reaction mechanisms, but is also useful for graduate students of related courses in chemistry, mechanical engineering, energy and environmental science and biology.

  14. Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach.

    Directory of Open Access Journals (Sweden)

    Joanne L Dunster

    2015-11-01

    Full Text Available We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2, provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in

  15. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    Science.gov (United States)

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  16. Sonogashira–Hagihara reactions of halogenated glycals

    Directory of Open Access Journals (Sweden)

    Dennis C. Koester

    2012-05-01

    Full Text Available Herein, we report on our findings of the Sonogashira–Hagihara reaction with 1-iodinated and 2-brominated glycals using several aromatic and aliphatic alkynes. This Pd-catalyzed cross-coupling reaction presents a facile access to alkynyl C-glycosides and sets the stage for a reductive/oxidative refunctionalization of the enyne moiety to regenerate either C-glycosidic structures or pyran derivatives with a substituent in position 2.

  17. Competition Between Hydrotreating and Polymerization Reactions During Pyrolysis Oil Hydrodeoxygenation

    NARCIS (Netherlands)

    Mercader, F. De Miguel; Koehorst, P. J. J.; Heeres, H. J.; Kersten, S. R. A.; Hogendoorn, J. A.

    2011-01-01

    Hydrodeoxygenation (HDO) of pyrolysis oil is an upgrading step that allows further coprocessing of the oil product in (laboratory-scale) standard refinery units to produce advanced biofuels. During HDO, desired hydrotreating reactions are in competition with polymerization reactions that can lead to

  18. A new three-stage method for solving unit commitment problem

    Energy Technology Data Exchange (ETDEWEB)

    Khanmohammadi, S.; Amiri, M.; Haque, M. Tarafdar [Faculty of Electrical and Computer Engineering, University of Tabriz, P.O. Box 51665-343, Tabriz (Iran)

    2010-07-15

    This paper presents a new Three-Stage (THS) approach for solving Unit Commitment (UC) problem. The proposed method has a simple procedure to get at favorite solutions in a feasible duration of time by producing a primal schedule of status of units at the first step. In the second step the operating units take hourly values by doing Economic Dispatch (ED) on them via a hybrid serial algorithm of Artificial Intelligence (AI) including Particle Swarm Optimization (PSO) and Nelder-Mead (NM) algorithms. In spite of the acceptable solutions obtained by these two stages, the presented method takes another step called the solution modification process (SMP) to reach a more suitable solution. The simulation results over some standard cases of UC problem confirm that this method produces robust solutions and generally gets appropriate near-optimal solutions. (author)

  19. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Paniagua, Marta; Melero, Juan A

    2013-01-01

    glucose isomerization to fructose and subsequent reaction with methanol to form methyl fructoside (step 1), followed by hydrolysis to re-form fructose after water addition (step 2). NMR analysis with (13)C-labeled sugars confirmed this reaction pathway. Conversion of glucose for 1 h at 120 °C with H......-USY (Si/Al = 6) gave a remarkable 55% yield of fructose after the second reaction step. A main advantage of applying alcohol media and a catalyst that combines Brønsted and Lewis acid sites is that glucose is isomerized to fructose at low temperatures, while direct conversion to industrially important...

  20. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingcai; Ji, Libin; Ma, Junjun; Zhou, Xiaoxin; Huang, Zhen [Key Lab. for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)

  1. Altered Dynamic Postural Control during Step Turning in Persons with Early-Stage Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jooeun Song

    2012-01-01

    Full Text Available Persons with early-stage Parkinson’s disease (EPD do not typically experience marked functional deficits but may have difficulty with turning tasks. Studies evaluating turning have focused on individuals in advanced stages of the disease. The purpose of this study was to compare postural control strategies adopted during turning in persons with EPD to those used by healthy control (HC subjects. Fifteen persons with EPD, diagnosed within 3 years, and 10 HC participated. Participants walked 4 meters and then turned 90°. Dynamic postural control was quantified as the distance between the center of pressure (COP and the extrapolated center of mass (eCOM. Individuals with EPD demonstrated significantly shorter COP-eCOM distances compared to HC. These findings suggest that dynamic postural control during turning is altered even in the early stages of PD.

  2. Separation of uranium and rare earth elements from Rirang ore leach solution by two-step precipitation

    International Nuclear Information System (INIS)

    Sradjono; Erni Rifandriyah, A.; Zahardi

    1995-01-01

    Separation of uranium and rare-earth elements from Rirang ore leach solution was carried out through a two-step precipitation. Several condition affecting the separation processes were examined including solution pH, reagent concentration, and reaction prepitation time. Optimum conditions for the first and second precipitation steps include adjustment of precipitation pH to 1.3 and 2.3, respectively by the addition of 7.3% of NH 4 OH solution and allowing 60 minutes precipitation/reaction time. Based on the conditions, about 6% of Th, 3% of U, 0.9% of PO 4 3- , and none of RE were recovered in the first precipitation step meanwhile, about 99% of RE, 55% of U, 76% of PO 4 3- , and of the Th were recovered in the second step. (author). 3 refs. 4 tabs. 4 figs

  3. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  4. Reaction of tellurium with Zircaloy-4

    International Nuclear Information System (INIS)

    Boer, R. de; Cordfunke, E.H.P.

    1994-09-01

    Interaction of tellurium vapour with Zircaloy during the initial stage of an accident will lead to retention of tellurium in the core. For reliable estimation of the release behaviour of tellurium, it is necessary to know which zirconium tellurides are formed during this interaction. In this work the reaction of tellurium with Zircaloy-4 has been studied, using various reaction temperatures and tellurium vapour pressures. The compound ZrTe 2-x is formed on the surface of the Zircaloy in a broad range of reaction temperatures and vapour pressures. It is found that the formation of the more zirconium-rich compound Zr 5 Te 4 is favoured at high reaction temperatures is combination with low tellurium vapour pressures. (orig.)

  5. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    Directory of Open Access Journals (Sweden)

    Hepburn Iain

    2012-05-01

    Full Text Available Abstract Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins, conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates

  6. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xin; Fang, Zhen; Liu, Yun-hu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil. (author)

  7. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xin [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Fang Zhen, E-mail: zhenfang@xtbg.ac.c [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Liu Yunhu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 deg. C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil.

  8. Reaction mechanism and spectroscopy of transfer reactions induced by heavy ions

    International Nuclear Information System (INIS)

    Lemaire, M.-C.

    1977-01-01

    The specific features displayed by data on heavy ion elastic and inelastic angular distributions are discussed, and their physical origin is pointed out from semi-classical calculations in counterpart ambiguities in the phenomenological description of the optical potential appear. Two nucleon transfer reactions induced by heavy ions successfully point out important contributions of a two-step process where the transfer is proceeding via target and residual nucleus inelastic excitation. At incident energies not too high above the Coulomb barrier, such process produces clear shape changes between different final state angular distributions. At higher incident energy, the angular distributions are forward peaked and display oscillations for both mechanisms. As for four-nucleon transfer reactions, the existing data suggest that the nucleons are well transferred into a Os relative

  9. Stages as models of scene geometry.

    Science.gov (United States)

    Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

    2010-09-01

    Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations.

  10. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Mecking, Stefan

    2016-01-01

    active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction

  11. Field theoretical approach to proton-nucleus reactions: II-Multiple-step excitation process

    International Nuclear Information System (INIS)

    Eiras, A.; Kodama, T.; Nemes, M.

    1989-01-01

    A field theoretical formulation to multiple step excitation process in proton-nucleus collision within the context of a relativistic eikonal approach is presented. A closed form expression for the double differential cross section can be obtained whose structure is very simple and makes the physics transparent. Glauber's formulation of the same process is obtained as a limit of ours and the necessary approximations are studied and discussed. (author) [pt

  12. Results of the Nonelastic Reaction Code Brieff for Nuclear Data

    International Nuclear Information System (INIS)

    Duarte, H.

    2009-01-01

    We present recent changes in our nonelastic reaction code BRIEFF and especially in the fast stage of reaction described by the intranuclear cascade (INC) code BRIC. Distributions and excitation functions of residual nuclei production cross sections are shown for proton-induced reaction on target nuclei. Slight improvements are seen in the proton-induced reaction on light nuclei with a closed shell when the energy levels are taken into account in the INC stage. On the other hand, fission gives poor results in the current version. To compare to other nuclear models and LA150 libraries, BRIEFF has been incorporated into MCNPX 2.5.0. Examples of neutron production from thick target irradiation by proton beams between 30 and 350 MeV are presented. Except for some discrepancies, a good agreement with data is obtained on average. (authors)

  13. Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin

    NARCIS (Netherlands)

    Jongerius, A.L.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    A two-step approach to the conversion of organosolv, kraft and sugarcane bagasse lignin to monoaromatic compounds of low oxygen content is presented. The first step consists of lignin depolymerization in a liquid phase reforming (LPR) reaction over a 1 wt% Pt/γ-Al2O3 catalyst at 225 °C in alkaline

  14. One-step and low-temperature synthesis of iodine-doped graphene and its multifunctional applications for hydrogen evolution reaction and electrochemical sensing

    International Nuclear Information System (INIS)

    Chu, Ke; Wang, Fan; Zhao, Xiao-lin; Wei, Xiao-ping; Wang, Xin-wei; Tian, Ye

    2017-01-01

    Iodine (I) has emerged as a powerful heteroatom dopant for efficiently tailoring the electrocatalytic properties of graphene. However, the preparation methods of I-doped graphene (I-G) and its electrocatalysis applications remain largely unexplored. Herein, a one-step and low-temperature hydrothermal approach was developed for the successful synthesis of I-G with a high I-doping level (0.52 at.%). The resulting I-G was then applied as a metal-free catalyst for hydrogen evolution reaction (HER) and electrochemical sensing. It was shown that the I-G exhibited a dramatically enhanced HER activity compared to undoped graphene, attributed to the critical role of I-doping in offering large exposed active sites and high electron transfer capability. Furthermore, I-G also displayed attractive sensing performances for highly sensitive and selective detection of dopamine. These findings demonstrate that the hydrothermally synthesized I-G can be a promising electrocatalyst for multifunctional applications in water-splitting and electrochemical sensing.

  15. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    Science.gov (United States)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  16. SU-F-T-356: DosimetricComparison of VMAT Vs Step and Shoot IMRT Plans for Stage III Lung CancerPatients with Mediastinal Involvement

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D; Bogue, J [University of Toledo, Toledo, OH (United States)

    2016-06-15

    Purpose: For Stage III lung cancers that entail treatment of some or all of the mediastinum, anterior-posterior focused Step and Shoot IMRT (SS-IMRT) and VMAT plans have been clinically used to deliver the prescribed dose while working to minimize lung dose and avoid other critical structures. A comparison between the two planning methods was completed to see which treatment method is superior and minimizes dose to healthy lung tissue. Methods: Ten patients who were recently treated with SS-IMRT or VMAT plans for Stage III lung cancer with mediastinal involvement were selected. All patients received a simulation CT for treatment planning, as well as a 4D CT and PET/CT fusion for target delineation. Plans were prescribed 6250 cGy in 25 fractions and normalized such that 100% of the prescription dose covered 95% of the PTV. Clinically approved SS-IMRT or VMAT plans were then copied and planned using the alternative modality with identical optimization criteria. SS-IMRT plans utilized seven to nine beams distributed around the patient while the VMAT plans consisted of two full 360 degree arcs. Plans were compared for the lung volume receiving 20 Gy (V20). Results: Both SS-IMRT and VMAT can be used to achieve clinical treatment plans for patients with Stage III Lung cancer with targets encompassing the mediastinum. VMAT plans produced an average V20 of 23.0+/−8.3% and SS-IMRT produced an average of 24.2+/−10.0%. Conclusion: Results indicate that either method can achieve comparable dose distributions, however, VMAT can allow the optimizer to distribute dose over paths of minimal lung tissue and reduce the V20. Therefore, creating a VMAT with constraints identical to an SS-IMRT plan could help to reduce the V20 in clinical treatment plans.

  17. SU-F-T-356: DosimetricComparison of VMAT Vs Step and Shoot IMRT Plans for Stage III Lung CancerPatients with Mediastinal Involvement

    International Nuclear Information System (INIS)

    Pearson, D; Bogue, J

    2016-01-01

    Purpose: For Stage III lung cancers that entail treatment of some or all of the mediastinum, anterior-posterior focused Step and Shoot IMRT (SS-IMRT) and VMAT plans have been clinically used to deliver the prescribed dose while working to minimize lung dose and avoid other critical structures. A comparison between the two planning methods was completed to see which treatment method is superior and minimizes dose to healthy lung tissue. Methods: Ten patients who were recently treated with SS-IMRT or VMAT plans for Stage III lung cancer with mediastinal involvement were selected. All patients received a simulation CT for treatment planning, as well as a 4D CT and PET/CT fusion for target delineation. Plans were prescribed 6250 cGy in 25 fractions and normalized such that 100% of the prescription dose covered 95% of the PTV. Clinically approved SS-IMRT or VMAT plans were then copied and planned using the alternative modality with identical optimization criteria. SS-IMRT plans utilized seven to nine beams distributed around the patient while the VMAT plans consisted of two full 360 degree arcs. Plans were compared for the lung volume receiving 20 Gy (V20). Results: Both SS-IMRT and VMAT can be used to achieve clinical treatment plans for patients with Stage III Lung cancer with targets encompassing the mediastinum. VMAT plans produced an average V20 of 23.0+/−8.3% and SS-IMRT produced an average of 24.2+/−10.0%. Conclusion: Results indicate that either method can achieve comparable dose distributions, however, VMAT can allow the optimizer to distribute dose over paths of minimal lung tissue and reduce the V20. Therefore, creating a VMAT with constraints identical to an SS-IMRT plan could help to reduce the V20 in clinical treatment plans.

  18. Experimental validation of a method for performance monitoring of the impurity processing stage in the TEP system of ITER

    International Nuclear Information System (INIS)

    Bornschein, B.; Corneli, D.; Glugla, M.; Guenther, K.; Le, T.L.; Simon, K.H.

    2007-01-01

    The Tokamak Exhaust Processing (TEP) system within the Tritium Plant of ITER needs to be designed such that tritium is recovered from all exhaust gases produced during different modes and operational conditions of the vacuum vessel. The reference process for the TEP system of ITER is called CAPER and comprises three different, consecutive steps to recover hydrogen isotopes at highest purity for direct transfer to the cryogenic Isotope Separation system. The second step ('impurity processing', IP) is carried out in a closed loop involving heterogeneously catalyzed cracking or conversion reactions to liberate tritium from tritiated hydrocarbons or tritiated water combined with permeation of hydrogen isotopes through a Pd/Ag permeator. This combination shifts chemical equilibria towards dehydrogenation and, therefore, enables detritiation factors higher than 1000 in the IP stage. Such a high decontamination factor requires the optimal performance of the permeator, which on the other hand is operated under conditions which provoke coking of the permeator membrane by hydrocarbon cracking. For this reason the permeator in the impurity processing loop needs to be repeatedly regenerated in order to sustain decontamination factors higher/in the order of 1000. At the Tritium Laboratory Karlsruhe (TLK) a method to measure the actual performance of the second stage of the CAPER process has been developed. This method has been successfully tested with the CAPER facility and appears feasible for the TEP system of ITER

  19. A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Anantpinijwatna, Amata; Woodley, John

    2017-01-01

    This article describes the development of a reaction database with the objective to collect data for multiphase reactions involved in small molecule pharmaceutical processes with a search engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role of organic......; compounds participating in the reaction; use of organic solvents and their function; information for single step and multistep reactions; target products; reaction conditions and reaction data. Information for reactor scale-up together with information for the separation and other relevant information...

  20. Step out - Step in Sequencing Games

    NARCIS (Netherlands)

    Musegaas, M.; Borm, P.E.M.; Quant, M.

    2014-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out - Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order.

  1. Fluorescence photodiagnosis of early stage lung cancer

    International Nuclear Information System (INIS)

    Kato, H.; Sakai, H.; Konaka, C.; Okunaka, T.; Furukawa, K.; Saito, Y.; Aizawa, K.; Hayata, Y.

    1992-01-01

    Sputum cytology examination is the most effective method to detect early stage central type squamous cell carcinoma. As sputum-positive early stage lung cancer usually does not show any abnormal findings on chest X-ray film, fiberoptic bronchoscopy is subsequently performed for localization. However, sometimes cases do not show any abnormal findings of cancer endoscopically because they are very early stage cases. For the purpose of localization of invisible lesions the photodynamic reaction was employed in this study. Photodynamic reaction is achieved by transfer of energy of an excited photo-sensitizer induced by photoradiation of light. This phenomenon was already recognized in the beginning of this century. Study of tumor localization of the bronchial tree using hematoporphyrin derivative (HpD) and a mercury arc lamp was first performed in the Mayo Clinic in 1960s. In 1978, krypton laser was used first as a light source by Profio and Doiron. Authors have been doing research on early localization of such endoscopically occult early lung cancer since 1978. They recently developed an image processing system using an excimer dye laser for early localization of lung cancer. (author). 5 refs., 4 figs., 1 tab

  2. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  3. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...... and this contributes to the diversity in flavor, color, texture, and shelf life. The review concludes that these reactions are still only incompletely understood and that they represent an interesting area for fundamental research and also represent a fertile field for product development through a more conscious use...... of the redox properties of strains used to compose food cultures....

  4. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi; Jin, Bangti; Zou, Jun

    2013-01-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer

  5. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  6. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  7. Age-related changes in compensatory stepping in response to unpredictable perturbations.

    Science.gov (United States)

    McIlroy, W E; Maki, B E

    1996-11-01

    Recent studies highlight the importance of compensatory stepping to preserve stability, and the spatial and temporal demands placed on the control of this reaction. Age-related changes in the control of stepping could greatly influence the risk of falling. The present study compares, in healthy elderly and young adults, the characteristics of compensatory stepping responses to unpredictable postural perturbations. A moving platform was used to unpredictably perturb the upright stance of 14 naive, active and mobile subjects (5 aged 22 to 28 and 9 aged 65 to 81). The first 10 randomized trials (5 forward and 5 backward) were evaluated to allow a focus on reactions to relatively novel perturbations. The behavior of the subjects was not constrained. Forceplate and kinematic measures were used to evaluate the responses evoked by the brief (600 msec) platform translation. Subjects stepped in 98% of the trials. Although the elderly were less likely to execute a lateral anticipatory postural adjustment prior to foot-lift, the onset of swing-leg unloading tended to begin at the same time in the two age groups. There was remarkable similarity between the young and elderly in many other characteristics of the first step of the response. In spite of this similarity, the elderly subjects were twice as likely to take additional steps to regain stability (63% of trials for elderly). Moreover, in elderly subjects, the additional steps were often directed so as to preserve lateral stability, whereas the young rarely showed this tendency. Given the functional significance of base-of-support changes as a strategy for preserving stability and the age-related differences presently revealed, assessment of the capacity to preserve stability against unpredictable perturbation, and specific measures such as the occurrence or placement of multiple steps, may prove to be a significant predictor of falling risk and an important outcome in evaluating or developing intervention strategies to

  8. Recent applications of intramolecular Diels-Alder reactions to natural product synthesis

    DEFF Research Database (Denmark)

    Juhl, M.; Tanner, David Ackland

    2009-01-01

    This tutorial review presents some recent examples of intramolecular Diels-Alder (IMDA) reactions as key complexity-generating steps in the total synthesis of structurally intricate natural products. The opportunities afforded by transannular (TADA) versions of the IMDA reaction in complex molecu...... comprehensive, reviews....

  9. Step out-step in sequencing games

    NARCIS (Netherlands)

    Musegaas, Marieke; Borm, Peter; Quant, Marieke

    2015-01-01

    In this paper a new class of relaxed sequencing games is introduced: the class of Step out–Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order. First,

  10. Compensatory stepping responses in individuals with stroke: a pilot study.

    Science.gov (United States)

    Lakhani, Bimal; Mansfield, Avril; Inness, Elizabeth L; McIlroy, William E

    2011-05-01

    Impaired postural control and a high incidence of falls are commonly observed following stroke. Compensatory stepping responses are critical to reactive balance control. We hypothesize that, following a stroke, individuals with unilateral limb dyscontrol will be faced with the unique challenge of controlling such rapid stepping reactions that may eventually be linked to the high rate of falling. The objectives of this exploratory pilot study were to investigate compensatory stepping in individuals poststroke with regard to: (1) choice of initial stepping limb (paretic or non-paretic); (2) step characteristics; and (3) differences in step characteristics when the initial step is taken with the paretic vs. the non-paretic limb. Four subjects following stroke (38-165 days post) and 11 healthy young adults were recruited. Anterior and posterior perturbations were delivered by using a weight drop system. Force plates recorded centre-of-pressure excursion prior to the onset of stepping and step timing. Of the four subjects, three only attempted to step with their non-paretic limb and one stepped with either limb. Time to foot-off was generally slow, whereas step onset time and swing time were comparable to healthy controls. Two of the four subjects executed multistep responses in every trial, and attempts to force stepping with the paretic limb were unsuccessful in three of the four subjects. Despite high clinical balance scores, these individuals with stroke demonstrated impaired compensatory stepping responses, suggesting that current clinical evaluations might not accurately reflect reactive balance control in this population.

  11. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    Science.gov (United States)

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  12. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system.

    Science.gov (United States)

    McLaughlin, M; Albertini, D F; Wallace, W H B; Anderson, R A; Telfer, E E

    2018-03-01

    Can complete oocyte development be achieved from human ovarian tissue containing primordial/unilaminar follicles and grown in vitro in a multi-step culture to meiotic maturation demonstrated by the formation of polar bodies and a Metaphase II spindle? Development of human oocytes from primordial/unilaminar stages to resumption of meiosis (Metaphase II) and emission of a polar body was achieved within a serum free multi-step culture system. Complete development of oocytes in vitro has been achieved in mouse, where in vitro grown (IVG) oocytes from primordial follicles have resulted in the production of live offspring. Human oocytes have been grown in vitro from the secondary/multi-laminar stage to obtain fully grown oocytes capable of meiotic maturation. However, there are no reports of a culture system supporting complete growth from the earliest stages of human follicle development through to Metaphase II. Ovarian cortical biopsies were obtained with informed consent from women undergoing elective caesarean section (mean age: 30.7 ± 1.7; range: 25-39 years, n = 10). Laboratory setting. Ovarian biopsies were dissected into thin strips, and after removal of growing follicles were cultured in serum free medium for 8 days (Step 1). At the end of this period secondary/multi-laminar follicles were dissected from the strips and intact follicles 100-150 μm in diameter were selected for further culture. Isolated follicles were cultured individually in serum free medium in the presence of 100 ng/ml of human recombinant Activin A (Step 2). Individual follicles were monitored and after 8 days, cumulus oocyte complexes (COCs) were retrieved by gentle pressure on the cultured follicles. Complexes with complete cumulus and adherent mural granulosa cells were selected and cultured in the presence of Activin A and FSH on membranes for a further 4 days (Step 3). At the end of Step 3, complexes containing oocytes >100 μm diameter were selected for IVM in SAGE medium (Step 4) then

  13. Kinetic aspects of the embedded clusters: Reaction - Rate Theory

    International Nuclear Information System (INIS)

    Despa, F.; Apostol, M.

    1995-07-01

    The main stages of the cluster growth process are reviewed using Reaction - Rate Theory. The precipitation stage is shown as a relaxation of the solute towards a cluster state characterized by a higher stability. The kinetic of the late stage of phase separation, the coarsening process, is analyzed by an off-centre diffusion mechanism. The theoretical results are compared to the experimental ones. (author). 37 refs, 6 figs

  14. Xylose Isomerization with Zeolites in a Two-Step Alcohol–Water Process

    DEFF Research Database (Denmark)

    Paniagua, Marta; Shunmugavel, Saravanamurugan; Melián Rodriguez, Mayra

    2015-01-01

    Isomerization of xylose to xylulose was efficiently catalyzed by large-pore zeolites in a two-step methanol–water process that enhanced the product yield significantly. The reaction pathway involves xylose isomerization to xylulose, which, in part, subsequently reacts with methanol to form methyl...

  15. Reverse transcriptase-quantitative polymerase chain reaction (RT ...

    African Journals Online (AJOL)

    zino

    2014-02-05

    Feb 5, 2014 ... ecological studies - A review ... The objective of this review is to assess the importance of RT-qPCR in soil related ... phenol extraction step with heat inactivation of the added .... Real time polymerase chain reaction (PCR).

  16. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  17. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst

    International Nuclear Information System (INIS)

    Li, Yuesong; Lian, Shuang; Tong, Dongmei; Song, Ruili; Yang, Wenyan; Fan, Yong; Qing, Renwei; Hu, Changwei

    2011-01-01

    Nannochloropsis sp., one kind of green microalgae cultivated autotrophically and axenically in laboratory, is used as raw material to produce biodiesel by one-step method in an amended reactor. The effects of several reaction parameters on transesterification over Mg-Zr solid base catalyst were investigated through both conventional method and one-step method. One-step method could give a higher yield of methyl ester than conventional two-step method, which demonstrates that the present one-step method is suitable for biodiesel production from the microalgae Nannochloropsis sp. Moreover, the present one-step method realizes the convenient in situ separation of catalyst from microalgae residue which can be easily used consequently, reducing the procedure units as well as the overall costs.

  18. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-03-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of sampling type, and it faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the new approach is accurate, computationally efficient, and robust with respect to data noise. © 2012 Elsevier Inc.

  19. Two-step nuclear reactions: The Surrogate Method, the Trojan Horse Method and their common foundations

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mahir S. [DCTA, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, C. P. 72012, Sao Paulo, SP (Brazil); Universidade de Sao Paulo, Instituto de Fisica, C. P. 66318, Sao Paulo, SP (Brazil)

    2017-05-15

    In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB) Theory. Whereas the Surrogate Method relies on the premise that the extracted neutron cross section in a (d, p) reaction is predominantly a compound-nucleus one, the Trojan Horse Method assumes a predominantly direct process for the secondary reaction induced by the surrogate fragment. In general, both methods contain both direct and compound contributions, and I show how these seemingly distinct methods are in fact the same but at different energies and different kinematic regions. The unifying theory is the rather well developed INEB theory. (orig.)

  20. Two-step nuclear reactions: The Surrogate Method, the Trojan Horse Method and their common foundations

    International Nuclear Information System (INIS)

    Hussein, Mahir S.

    2017-01-01

    In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB) Theory. Whereas the Surrogate Method relies on the premise that the extracted neutron cross section in a (d, p) reaction is predominantly a compound-nucleus one, the Trojan Horse Method assumes a predominantly direct process for the secondary reaction induced by the surrogate fragment. In general, both methods contain both direct and compound contributions, and I show how these seemingly distinct methods are in fact the same but at different energies and different kinematic regions. The unifying theory is the rather well developed INEB theory. (orig.)

  1. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  2. Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazocarbonyl compounds

    International Nuclear Information System (INIS)

    Medvedev, J J; Nikolaev, V A

    2015-01-01

    Multicomponent reactions of diazo compounds catalyzed by Rh II complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O–ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references

  3. Transesterification of Jatropha curcas oil glycerides: Theoretical and experimental studies of biodiesel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Neyda C. Om Tapanes; Donato A. Gomes Aranda; Jose W. de Mesquita Carneiro; Octavio A. Ceva Antunes [Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil). Laboratorio GREENTEC

    2008-08-15

    Vegetal oil, also known as triglycerides, is a mixture of fatty acid triesters of glycerol. In the triglycerides alkyl chains of Jatropha curcas oil, predominate the palmitic, oleic and linoleic fatty acids. The process usually used to convert these triglycerides to biodiesel is called transesterification. The overall process is a sequence of three equivalent, consecutive and reversible reactions, in which di- and monoglycerides are formed as intermediates. Semi-empirical AM1 molecular orbital calculations were used to investigate the reaction pathways of base-catalyzed transesterification of glycerides of palmitic, oleic and linoleic acid. The most probable pathway and the rate determining-step of the reactions were estimated from the molecular orbital calculations. Our results suggest the formation of only one tetrahedral intermediate, which in a subsequent step rearranges to form the products. The rate determining-step is the break of this tetrahedral intermediate. 27 refs., 6 figs., 4 tabs.

  4. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    International Nuclear Information System (INIS)

    El-Gohary, F.A.; Badawy, M.I.; El-Khateeb, M.A.; El-Kalliny, A.S.

    2009-01-01

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H 2 O 2 dose, Fe +2 , COD:H 2 O 2 ratio and Fe +2 :H 2 O 2 ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l -1 for ρ-hydroxy-benzaldhyde to 3.273 mg l -1 for cinnamic acid

  5. Detection of Mycobacterium tuberculosis in clinical samples by two-step polymerase chain reaction and nonisotopic hybridization methods.

    OpenAIRE

    Shawar, R M; el-Zaatari, F A; Nataraj, A; Clarridge, J E

    1993-01-01

    Detection of Mycobacterium tuberculosis in clinical specimens by the polymerase chain reaction (PCR) was compared with detection by culture. A 317-bp segment within the M. tuberculosis-specific insertion sequence IS6110 was amplified. The detection limit of the PCR assay for cultured mycobacteria was 50 cells per reaction by ethidium bromide-stained agarose gel electrophoresis and 5 cells per reaction by hybridization with an oligonucleotide probe conjugated with either digoxigenin or alkalin...

  6. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion.

    Science.gov (United States)

    Potthoff, K; Hofheinz, R; Hassel, J C; Volkenandt, M; Lordick, F; Hartmann, J T; Karthaus, M; Riess, H; Lipp, H P; Hauschild, A; Trarbach, T; Wollenberg, A

    2011-03-01

    Anti-epidermal growth factor receptor treatment strategies, i.e. monoclonal antibodies such as cetuximab and panitumumab, or epidermal growth factor receptor (EGFR) small molecule tyrosine kinase inhibitors, such as erlotinib and gefitinib, have expanded the treatment options for different tumor types. Dermatologic toxic effects are the most common side-effects of EGFR inhibitor therapy. They can profoundly affect the patient's quality of life. The aim of this study was to provide interdisciplinary expert recommendations on how to treat patients with skin reactions undergoing anti-EGFR treatment. An expert panel from Germany with expertise in medical oncology, dermatology or clinical pharmacology was convened to develop expert recommendations based on published peer-reviewed literature. The expert recommendations for the state-of-the-art treatment of skin reactions induced by EGFR inhibitor therapy include recommendations for diagnostics and grading as well as grade-specific and stage-adapted treatment approaches and preventive measures. It was concluded that EGFR-inhibitor-related dermatologic reactions should always be treated combining basic care of the skin and a specific therapy adapted to stage and grade of skin reaction. For grade 2 and above, specific treatment recommendations for early- and later-stage skin reactions induced by EGFR-inhibitor therapy were proposed. This paper presents a German national expert opinion for the treatment of skin reactions in patients receiving EGFR inhibitor therapy.

  7. Effects of walking speed on the step-by-step control of step width.

    Science.gov (United States)

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  8. Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Takahashi, Shnsuke; Komatsu, Takanori; Song, Inho; Watanabe, Masato; Hotta, Eiki

    2010-01-01

    Highly efficient and compact pulsed power supply system for a capillary discharge soft x-ray laser (SXRL) has been developed. The system consists of a 2.2 μF two-stage LC inversion generator, a 2:54 step-up transformer, a 3 nF water capacitor, and a discharge section with a few tens of centimeter length capillary. Adoption of the pulsed transformer in combination with the LC inversion generator enables us to use only one gap switch in the circuit for charging the water capacitor up to about 0.5 MV. Furthermore, step-up ratio of a water capacitor voltage to a LC inversion generator initial charging voltage is about 40 with energy transfer efficiency of about 50%. It also leads to good reproducibility of a capillary discharge which is necessary for lasing a SXRL stably. For the study of the possibility of lasing a SXRL at shorter wavelength in a small laboratory scale, high-density and high-temperature plasma column suitable for the laser can be generated relatively easily with this system.

  9. Modeling chemical reactions for drug design.

    Science.gov (United States)

    Gasteiger, Johann

    2007-01-01

    Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

  10. Nonlinear Stability and Convergence of Two-Step Runge-Kutta Methods for Volterra Delay Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Haiyan Yuan

    2013-01-01

    Full Text Available This paper introduces the stability and convergence of two-step Runge-Kutta methods with compound quadrature formula for solving nonlinear Volterra delay integro-differential equations. First, the definitions of (k,l-algebraically stable and asymptotically stable are introduced; then the asymptotical stability of a (k,l-algebraically stable two-step Runge-Kutta method with 0stage order are firstly introduced; then it is proved by some theorems that if a two-step Runge-Kutta method is algebraically stable and diagonally stable and its generalized stage order is p, then the method with compound quadrature formula is D-convergent of order at least min{p,ν}, where ν depends on the compound quadrature formula.

  11. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    International Nuclear Information System (INIS)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; Nørskov, Jens K.

    2017-01-01

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.

  12. Fluorination reaction uranium dioxide by fluorine

    International Nuclear Information System (INIS)

    Ogata, Shinji; Homma, Shunji; Koga, Jiro; Matsumoto, Shiro; Sasahira, Akira; Kawamura, Fumio

    2004-01-01

    Kinetics of the fluorination reaction of uranium dioxide is studied using un-reacted core model with shrinking particles. The model includes the film mass transfer of fluorine gas and its diffusion in the particle. The rate constants of the model are determined by fitting the experimental data for 370-450degC. The model successfully represents the fluorination in this temperature range. The rate control step is identified by examining the rate constants of the model for 300-1,800degC. For temperature range up to 900degC, the fluorination reaction is rate controlling. For over 900degC, both mechanisms of the mass transfer of fluorine and the fluorination reaction control the rate of the fluorination. With further increase of the temperature, however, the fluorination reaction becomes so fast that the mass transfer of fluorine eventually controls the rate of the fluorination. (author)

  13. Synthesis of porous gold nanoshells by controlled transmetallation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pattabi, Manjunatha, E-mail: manjupattabi@yahoo.com; M, Krishnaprabha [Department of Materials Science, Mangalore University, Mangalagangothri-574199 (India)

    2015-06-24

    Aqueous synthesis of porous gold nanoshells in one step is carried out through controlled transmetallation (TM) reaction using a naturally available egg shell membrane (ESM) as a barrier between the sacrificial silver particles (AgNPs) and the gold precursor solution (HAuCl{sub 4}). The formation of porous gold nanoshells via TM reaction is inferred from UV-Vis spectroscopy and the scanning electron microscopic (SEM) studies.

  14. Mechanism of tellurium isomers excitation in (γ, n) reactions

    International Nuclear Information System (INIS)

    Mazur, V.M.; Symochko, D.M.; Bigan, Z.M.; Poltorzhytska, T.V.; Derechkey, P.S.

    2012-01-01

    Isomeric yield ratios for the 119 Te, 121 Te, 123 Te, 127 Te, 129 Te nuclei were obtained in (γ, n) reactions with bremsstrahlung end point energies ranging 10 - 22 MeV with δE = 0.5 MeV step. Experimental isomeric ratios were used to calculate the cross-sections of (γ, n) m reactions, that were further compared with TALYS-1.4 calculations

  15. Modulation of individual steps in group I intron catalysis by a peripheral metal ion.

    Science.gov (United States)

    Forconi, Marcello; Piccirilli, Joseph A; Herschlag, Daniel

    2007-10-01

    Enzymes are complex macromolecules that catalyze chemical reactions at their active sites. Important information about catalytic interactions is commonly gathered by perturbation or mutation of active site residues that directly contact substrates. However, active sites are engaged in intricate networks of interactions within the overall structure of the macromolecule, and there is a growing body of evidence about the importance of peripheral interactions in the precise structural organization of the active site. Here, we use functional studies, in conjunction with published structural information, to determine the effect of perturbation of a peripheral metal ion binding site on catalysis in a well-characterized catalytic RNA, the Tetrahymena thermophila group I ribozyme. We perturbed the metal ion binding site by site-specifically introducing a phosphorothioate substitution in the ribozyme's backbone, replacing the native ligands (the pro-R (P) oxygen atoms at positions 307 and 308) with sulfur atoms. Our data reveal that these perturbations affect several reaction steps, including the chemical step, despite the absence of direct contacts of this metal ion with the atoms involved in the chemical transformation. As structural probing with hydroxyl radicals did not reveal significant change in the three-dimensional structure upon phosphorothioate substitution, the effects are likely transmitted through local, rather subtle conformational rearrangements. Addition of Cd(2+), a thiophilic metal ion, rescues some reaction steps but has deleterious effects on other steps. These results suggest that native interactions in the active site may have been aligned by the naturally occurring peripheral residues and interactions to optimize the overall catalytic cycle.

  16. Thermodynamic simulation of a multi-step externally fired gas turbine powered by biomass

    International Nuclear Information System (INIS)

    Durante, A.; Pena-Vergara, G.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A.

    2017-01-01

    Highlights: • A realistic model for an EFGT fueled with solid biomass is presented. • Detailed submodels for the HTHE and the chemical reactions are incorporated. • An arbitrary number of compression and expansion stages is considered. • Model validation leads to good agreement with experimental results. • A layout with two-stage compression leads to good efficiencies and power output. - Abstract: A thermodynamic model for a realistic Brayton cycle, working as an externally fired gas turbine fueled with biomass is presented. The use of an external combustion chamber, allows to burn dirty fuels to preheat pure air, which is the working fluid for the turbine. It also avoids direct contact of ashes with the turbine blades, resulting in a higher life cycle for the turbine. The model incorporates a high temperature heat exchanger and an arbitrary number of turbines and compressors, with the corresponding number of intercoolers and reheaters. It considers irreversibilities such as non-isentropic compressions and expansions, and pressure losses in heat input and release. The composition and temperature of the combustion gases, as well as the variable flow rate of air and combustion gases, are calculated for specific biomasses. The numerical model for a single stage configuration has been validated by comparing its predictions with the data sheets of two commercial turbines. Results are in good agreement. Curves on the dependence of thermal efficiency and power output with the overall pressure ratio will be shown for several plant configurations with variable number of compression/expansion stages. Also the influence of different types of biomasses and their moisture will be analyzed on parameters such as fuel consumption and exhaust gases temperature. For a single step plant layout fueled with eucalyptus wood an efficiency of 23% is predicted, whereas for a configuration with two compressors and one turbine efficiency increases up to 25%. But it is remarkable

  17. Free Modal Algebras Revisited: The Step-by-Step Method

    NARCIS (Netherlands)

    Bezhanishvili, N.; Ghilardi, Silvio; Jibladze, Mamuka

    2012-01-01

    We review the step-by-step method of constructing finitely generated free modal algebras. First we discuss the global step-by-step method, which works well for rank one modal logics. Next we refine the global step-by-step method to obtain the local step-by-step method, which is applicable beyond

  18. Automatic analysis and reduction of reaction mechanisms for complex fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel

    2001-05-01

    general, detailed calculations of temperature, pressure, concentration and flame velocity show excellent agreement with measurements. Skeletal mechanisms for PRF were constructed for the SI engine case, reproducing autoignition well on removal of reactions pertaining to 15% of the species. QSSA reduction was tested on the staged combustor and the engines, using pure and weighted lifetime indices. Monitoring NO concentrations in the staged combustor and ignition timing in the engines, good reproduction is possible while approximating about 70% of the species. However, some species have to be manually retained for accuracy and numerical stability. For improved ranking, sensitivity was added to the index applied to the premixed flames, in addition to necessary molecular transport information. The maximum atomic mass fraction occupied by a certain molecular species was also constrained to limit the mass and energy deficiency caused by QSSA. For methane, the laminar flame velocities as well as concentration profiles are well predicted by the most strongly reduced mechanism with five global reaction steps. For the kerosene surrogate mechanism, QSSA involving 50% of the species was successfully attempted.

  19. Exploring the Reaction Pathways of Bioglycerol Hydrodeoxygenation to Propene over Molybdena-Based Catalysts.

    Science.gov (United States)

    Zacharopoulou, Vasiliki; Vasiliadou, Efterpi S; Lemonidou, Angeliki A

    2018-01-10

    The one-step reaction of glycerol with hydrogen to form propene selectively is a particularly challenging catalytic pathway that has not yet been explored thoroughly. Molybdena-based catalysts are active and selective to C-O bond scission; propene is the only product in the gas phase under the standard reaction conditions, and further hydrogenation to propane is impeded. Within this context, this work focuses on the exploration of the reaction pathways and the investigation of various parameters that affect the catalytic performance, such as the role of hydrogen on the product distribution and the effect of the catalyst pretreatment step. Under a hydrogen atmosphere, propene is produced primarily via 2-propenol, whereas under an inert atmosphere propanal and glycerol dissociation products are formed mainly. The reaction most likely proceeds through a reverse Mars-van Krevelen mechanism as partially reduced Mo species drive the reaction to the formation of the desired product. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SYSTEMATIZATION OF THE BASIC STEPS OF THE STEP-AEROBICS

    Directory of Open Access Journals (Sweden)

    Darinka Korovljev

    2011-03-01

    Full Text Available Following the development of the powerful sport industry, in front of us appeared a lot of new opportunities for creating of the new programmes of exercising with certain requisites. One of such programmes is certainly step-aerobics. Step-aerobics can be defined as a type of aerobics consisting of the basic aerobic steps (basic steps applied in exercising on stepper (step bench, with a possibility to regulate its height. Step-aerobics itself can be divided into several groups, depending on the following: type of music, working methods and adopted knowledge of the attendants. In this work, the systematization of the basic steps in step-aerobics was made on the basis of the following criteria: steps origin, number of leg motions in stepping and relating the body support at the end of the step. Systematization of the basic steps of the step-aerobics is quite significant for making a concrete review of the existing basic steps, thus making creation of the step-aerobics lesson easier

  1. Confidence-increasing elements in user instructions: Seniors' reactions to verification steps and personal stories

    NARCIS (Netherlands)

    Loorbach, N.R.; Karreman, Joyce; Steehouder, M.F.

    2013-01-01

    Purpose: Research shows that confidence-increasing elements in user instructions positively influence senior users' task performance and motivation. We added verification steps and personal stories to user instructions for a cell phone, to find out how seniors (between 60 and 70 years) perceive

  2. Process analysis and mechanism of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B.Q. [Chinese Academy of Science, Taiyuan (China). Inst. of Coal Chemistry, State Key Laboratory of Coal Conversion

    2002-07-01

    The mechanism of multi-stage hydropyrolysis of coal was probed through detailed analysis of products of hydropyrolysis with different holding methods. The results showed that the holding method significantly affects the product distributions, thus making an apparent difference in hydrogen utilization efficiency. The holding temperature should be about 350-500{degree}C during which more free radicals are produced rapidly. Pore-riched structures are formed at the holding stage at 350{degree}C due to the evolution of large amount of volatiles, which is favorable to the subsequent hydrogenation reaction. The holding at a low temperature favors the reaction of hydrogen with oxygen-containing groups, leading to the formation of phenol and avoiding the formation of water at a high temperature. The cleavage of chemical bonds in the char is mainly dependent-on the pyrolysis temperature. The effect of holding stage is to change the distribution and components of products via stabilizing the free radicals and hydrogenating the heavier products.

  3. Understanding the two neutron transfer reaction mechanism in {sup 206}Pb({sup 18}O,{sup 16}O){sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, A.; Sonika [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Roy, B.J., E-mail: bjroy@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Jha, V.; Pal, U.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Sinha, T. [High Energy Nuclear and Particle Physics Division, Saha Institute of Nuclear Physics, Kolkata - 700 064 (India); Pandit, S.K.; Parkar, V.V.; Ramachandran, K.; Mahata, K.; Santra, S.; Mohanty, A.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India)

    2015-08-15

    The absolute cross sections for elastic scattering and two-neutron transfer reaction for {sup 18}O + {sup 206}Pb system have been measured at an incident energy near the Coulomb barrier. Detailed coupled reaction channel calculations have been carried out for description of the measured angular distributions for the elastic scattering and transfer reactions simultaneously. The two-neutron transfer reaction {sup 206}Pb({sup 18}O, {sup 16}O){sup 208}Pb in the g.s. → g.s. transition is analyzed in (i) extreme cluster model assuming a di-neutron transfer, (ii) two-step successive transfer, and (iii) microscopic approach (independent coordinate scheme) of simultaneous transfer of two neutrons. The relative importance of one step simultaneous transfer versus two-step successive transfer has been studied. Present analysis suggests dominance of cluster transfer of a di-neutron. The contribution from the two-step sequential processes is less significant, however, the combined “two-step plus simultaneous (microscopic)” calculations give a reasonably good agreement with the measurement. The possibility of multi-step route via projectile and target excitations and contribution from such indirect transfer paths to the present two-neutron transfer cross section has been investigated.

  4. A tandem cross-metathesis/semipinacol rearrangement reaction.

    Science.gov (United States)

    Plummer, Christopher W; Soheili, Arash; Leighton, James L

    2012-05-18

    An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.

  5. A theoretical model investigation of peptide bond formation involving two water molecules in ribosome supports the two-step and eight membered ring mechanism

    International Nuclear Information System (INIS)

    Wang, Qiang; Gao, Jun; Zhang, Dongju; Liu, Chengbu

    2015-01-01

    Highlights: • We theoretical studied peptide bond formation reaction mechanism with two water molecules. • The first water molecule can decrease the reaction barriers by forming hydrogen bonds. • The water molecule mediated three-proton transfer mechanism is the favorable mechanism. • Our calculation supports the two-step and eight membered ring mechanism. - Abstract: The ribosome is the macromolecular machine that catalyzes protein synthesis. The kinetic isotope effect analysis reported by Strobel group supports the two-step mechanism. However, the destination of the proton originating from the nucleophilic amine is uncertain. A computational simulation of different mechanisms including water molecules is carried out using the same reaction model and theoretical level. Formation the tetrahedral intermediate with proton transfer from nucleophilic nitrogen, is the rate-limiting step when two water molecules participate in peptide bond formation. The first water molecule forming hydrogen bonds with O9′ and H15′ in the A site can decrease the reaction barriers. Combined with results of the solvent isotope effects analysis, we conclude that the three-proton transfer mechanism in which water molecule mediate the proton shuttle between amino and carbon oxygen in rate-limiting step is the favorable mechanism. Our results will shield light on a better understand the reaction mechanism of ribosome

  6. Synthesis of conformationally constrained peptidomimetics using multicomponent reactions

    NARCIS (Netherlands)

    Scheffelaar, R.; Klein Nijenhuis, R.A.; Paravidino, M.; Lutz, M.; Spek, A.L.; Ehlers, A.W.; de Kanter, F.J.J.; Groen, M.B.; Orru, R.V.A.; Ruijter, E.

    2009-01-01

    A novel modular synthetic approach toward constrained peptidomimetics is reported. The approach involves a highly efficient three-step sequence including two multicomponent reactions, thus allowing unprecedented diversification of both the peptide moieties and the turn-inducing scaffold. The

  7. A taxonomy of integral reaction path analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F.; Day, Marcus S.; Bell, John B.

    2004-12-23

    W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.

  8. Major mechanistic differences between the reactions of hydroxylamine with phosphate di- and tri-esters.

    Science.gov (United States)

    Medeiros, Michelle; Wanderlind, Eduardo H; Mora, José R; Moreira, Raphaell; Kirby, Anthony J; Nome, Faruk

    2013-10-07

    Hydroxylamine reacts as an oxygen nucleophile, most likely via its ammonia oxide tautomer, towards both phosphate di- and triesters of 2-hydroxypyridine. But the reactions are very different. The product of the two-step reaction with the triester TPP is trapped by the NH2OH present in solution to generate diimide, identified from its expected disproportionation and trapping products. The reaction with H3N(+)-O(-) shows general base catalysis, which calculations show is involved in the breakdown of the phosphorane addition-intermediate of a two-step reaction. The reactivity of the diester anion DPP(-) is controlled by its more basic pyridyl N. Hydroxylamine reacts preferentially with the substrate zwitterion DPP(±) to displace first one then a second 2-pyridone, in concerted S(N)2(P) reactions, forming O-phosphorylated products which are readily hydrolysed to inorganic phosphate. The suggested mechanisms are tested and supported by extensive theoretical calculations.

  9. Three-step interferometric method with blind phase shifts by use of interframe correlation between interferograms

    Science.gov (United States)

    Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.

    2018-06-01

    A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.

  10. Experimental and numerical studies on two-stage combustion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Houshfar, Eshan

    2012-07-01

    fate of the main corrosive compounds, in particular chlorine, was determined in an experimental campaign using fuel mixtures. The corrosion risk associated with three fuel mixtures was quite different. Grot (Norwegian term used for tree's tops and branches) was found to be a poor corrosion-reduction additive and could not serve as an alternative fuel for co-firing with straw. Peat was found to reduce the corrosive compounds only at high peat additions (50 wt%). Sewage sludge was the best alternative for corrosion reduction as 10 wt% addition almost eliminated chlorine from the fly ash. Numerical studies were also performed to estimate the emission level in the flue gas using a comprehensive mechanism in a configuration which simulated two-stage combustion of biomass. Furthermore, a reduction of the comprehensive chemical mechanism was performed since the mechanism is still complex and needs very long computational time and powerful hardware resources. The selected detailed mechanism in this study contains 81 species and 703 elementary reactions. Necessity analysis was used to determine which species and reactions that are of less importance for the predictability of the final result and, hence, can be discarded. For validation, numerical results using the derived reduced mechanism were compared with the results obtained with the original detailed mechanism. The reduced mechanism contains 35 species and 198 reactions, corresponding to 72% reduction in the number of reactions and, therefore, improving the computational time considerably. Yet the model based on the reduced mechanism predicts correctly concentrations of NOx and CO that are essentially identical to those of the complete mechanism in the range of reaction conditions of interest. The modeling conditions are selected in a way to mimic values in the different ranges of temperature, excess air ratio and residence time, since these variables are the main affecting parameters on NOx emission. (Author)

  11. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring.

    Science.gov (United States)

    Kim, Kyunggon; Kim, Sang Jin; Han, Dohyun; Jin, Jonghwa; Yu, Jiyoung; Park, Kyong Soo; Yu, Hyeong Gon; Kim, Youngsoo

    2013-03-01

    Diabetic retinopathy (DR) is a complication of diabetes and 80% of diabetes mellitus (DM) patients whose DM duration is over 10 years can be expected to suffer with DR. The diagnosis of DR depends on an ophthalmological examination, and no molecular methods of screening DR status exist. Nonproliferative diabetic retinopathy (NPDR) is the early DR which is hard to be noticed in early NPDR, showing significant cause of adult blindness in type 2 diabetes patients. Protein biomarkers have been valuable in the diagnosis of disease and the use of multiple biomarkers has been suggested to overcome the low specificity of single ones. For biomarker development, multiple reaction monitoring (MRM) has been spotlighted as an alternative method to quantify target proteins with no need for immunoassay. In this study, 54 candidate DR marker proteins from a previous study were verified by MRM in plasma samples from NPDR patients in 3 stages (mild, moderate and severe; 15 cases each) and diabetic patients without retinopathy (15 cases) as a control. Notably, 27 candidate markers distinguished moderate NPDR from type 2 diabetic patients with no diabetic retinopathy, generating AUC values (>0.7). Specifically, 28 candidate proteins underwent changes in expression as type 2 diabetic patients with no diabetic retinopathy progressed to mild and moderate NPDR. Further, a combination of 4 markers from these 28 candidates had the improved specificity in distinguishing moderate NPDR from type 2 diabetic patients with no diabetic retinopathy, yielding a merged AUC value of nearly 1.0. We concluded that MRM is a fast, robust approach of multimarker panel determination and an assay platform that provides improved specificity compared with single biomarker assay systems.

  12. Statistical theory of neutron-nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1981-01-01

    In addition to the topics dealt with by the author in his lectures at the Joint IAEA/ICTP Course held at Trieste in 1978, recent developments in the statistical theory of multistep reactions are reviewed as well as the transport theory and intranuclear cascade approaches to the description of nuclear multi-step processes. (author)

  13. Mandated college students' response to sequentially administered alcohol interventions in a randomized clinical trial using stepped care.

    Science.gov (United States)

    Borsari, Brian; Magill, Molly; Mastroleo, Nadine R; Hustad, John T P; Tevyaw, Tracy O'Leary; Barnett, Nancy P; Kahler, Christopher W; Eaton, Erica; Monti, Peter M

    2016-02-01

    Students referred to school administration for alcohol policies violations currently receive a wide variety of interventions. This study examined predictors of response to 2 interventions delivered to mandated college students (N = 598) using a stepped care approach incorporating a peer-delivered 15-min brief advice (BA) session (Step 1) and a 60- to 90-min brief motivational intervention (BMI) delivered by trained interventionists (Step 2). Analyses were completed in 2 stages. First, 3 types of variables (screening variables, alcohol-related cognitions, mandated student profile) were examined in a logistic regression model as putative predictors of lower risk drinking (defined as 3 or fewer heavy episodic drinking [HED] episodes and/or 4 or fewer alcohol-related consequences in the past month) 6 weeks following the BA session. Second, we used generalized estimating equations to examine putative moderators of BMI effects on HED and peak blood alcohol content compared with assessment only (AO) control over the 3-, 6-, and 9-month follow-ups. Participants reporting lower scores on the Alcohol Use Disorders Identification Test, more benefits to changing alcohol use, and those who fit the "Bad Incident" profile at baseline were more likely to report lower risk drinking 6 weeks after the BA session. Moderation analyses revealed that Bad Incident students who received the BMI reported more HED at 9-month follow-up than those who received AO. Current alcohol use as well as personal reaction to the referral event may have clinical utility in identifying which mandated students benefit from treatments of varying content and intensity. (c) 2016 APA, all rights reserved).

  14. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  15. Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater.

    Science.gov (United States)

    Leifeld, Vanessa; Dos Santos, Tâmisa Pires Machado; Zelinski, Danielle Wisniewski; Igarashi-Mafra, Luciana

    2018-09-15

    Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10 -4 min -1 ). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC 50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Hypersensitivity reactions in patients receiving hemodialysis.

    Science.gov (United States)

    Butani, Lavjay; Calogiuri, Gianfranco

    2017-06-01

    To describe hypersensitivity reactions in patients receiving maintenance hemodialysis. PubMed search of articles published during the past 30 years with an emphasis on publications in the past decade. Case reports and review articles describing hypersensitivity reactions in the context of hemodialysis. Pharmacologic agents are the most common identifiable cause of hypersensitivity reactions in patients receiving hemodialysis. These include iron, erythropoietin, and heparin, which can cause anaphylactic or pseudoallergic reactions, and topical antibiotics and anesthetics, which lead to delayed-type hypersensitivity reactions. Many hypersensitivity reactions are triggered by complement activation and increased bradykinin resulting from contact system activation, especially in the context of angiotensin-converting enzyme inhibitor use. Several alternative pharmacologic preparations and dialyzer membranes are available, such that once an etiology for the reaction is established, recurrences can be prevented without affecting the quality of care provided to patients. Although hypersensitivity reactions are uncommon in patients receiving hemodialysis, they can be life-threatening. Moreover, considering the large prevalence of the end-stage renal disease population, the implications of such reactions are enormous. Most reactions are pseudoallergic and not mediated by immunoglobulin E. The multiplicity of potential exposures and the complexity of the environment to which patients on dialysis are exposed make it challenging to identify the precise cause of these reactions. Great diligence is needed to investigate hypersensitivity reactions to avoid recurrence in this high-risk population. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  18. Configuration of a pulse radiolysis system for the study of gas-phase reactions and kinetic investigations of the reactions of hydroxyl radicals with methyl and ethyl radicals

    International Nuclear Information System (INIS)

    Fagerstroem, K.

    1993-01-01

    The work that is presented in this thesis deals with the assembling and testing of a pulse radiolysis system for kinetic studies of gas-phase reactions as well as with the kinetics of the gas-phase reactions of hydroxyl radicals with methyl and ethyl radicals. These radicals are very important as these are formed at an early stage in hydrocarbon combustion processes. The two studied reactions are key reactions in those processes. (6 refs., 4 figs., 2 tabs.)

  19. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  20. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  1. Supersonic molecular beam experiments on surface chemical reactions.

    Science.gov (United States)

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  3. Investigation of the (p,p'), (p,d) and (p,t) reactions on some light Sn isotopes

    International Nuclear Information System (INIS)

    Blankert, P.J.

    1979-01-01

    The results are presented of the 112 Sn(p,p') 112 Sn reaction. Apart from the usual distorted-wave analysis the excitation of some states is described in the coupled-channels formalism. The results of the 112 Sn(p,d) 111 Sn and the 112 Sn(p,t) 110 Sn reactions are also reported. From the (p,d) reaction quasi-particle energies and occupation numbers are determined. Two-step DWBA calculations are performed for some states that are assumed to result from the coupling of a quasiparticle to the 2 + 1 or 3 - 1 state of the even core. In the gross structure above 3 MeV of excitation, pickup strength from deeply-bound hole states is observed. The (p,t) reaction provided spin and parity of a number of levels in 110 Sn. A two-step DWBA analysis of the excitation of the ground state and first excited 2 + state shows the importance of second-order processes. The combined results of the (p,t) reactions on 112 Sn, 114 Sn and 116 Sn are given with some emphasis on the systematic features. The derivation is given of some expressions for spectroscopic amplitudes necessary in the two-step DWBA calculations for the (p,t) reactions. For all reactions a comparison is made with other existing data and with the results of model calculations. (Auth.)

  4. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Huang, Huei Tsz

    2012-01-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: ► Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. ► The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. ► Modified SBS membrane for wound dressing is evaluated. ► Membranes are sterile semipermeable with bactericidal activity and transparent. ► Membranes can be considered for shallow wound with low exudates.

  5. Advice on the management of reactions to intravenous contrast media

    International Nuclear Information System (INIS)

    1996-01-01

    The College has previously issued guidelines for the management of adverse reactions to intravenous ionic and non-ionic contrast media. The following updated guidelines are applicable to both children and adults. The reported adverse reaction rate to conventional ionic contrast media is about 5%, the vast majority of reactions being of a minor nature, and to the newer non-ionic contrast media, approximately 1%. The rare serious reaction, with an estimated incidence of 0.05% with ionic contrast media and substantially less with non-ionic media, must be treated quickly and appropriately. Identification and symptomatic characterisation of the reaction are the key first steps and should be followed by ad hoc management based on general principles. (author)

  6. Preparation of biodiesel from waste cooking oil via two-step catalyzed process

    International Nuclear Information System (INIS)

    Wang Yong; Liu Pengzhan; Ou Shiyi; Zhang Zhisen

    2007-01-01

    Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. In this research, a two step catalyzed process was adopted to prepare biodiesel from waste cooking oil whose acid value was 75.92 ± 0.036 mgKOH/g. The free fatty acids of WCO were esterified with methanol catalyzed by ferric sulfate in the first step, and the triglycerides (TGs) in WCO were transesterified with methanol catalyzed by potassium hydroxide in the second step. The results showed that ferric sulfate had high activity to catalyze the esterification of free fatty acids (FFA) with methanol, The conversion rate of FFA reached 97.22% when 2 wt% of ferric sulfate was added to the reaction system containing methanol to TG in10:1 (mole ratio) composition and reacted at 95 deg. C for 4 h. The methanol was vacuum evaporated, and transesterification of the remained triglycerides was performed at 65 deg. C for 1 h in a reaction system containing 1 wt% of potassium hydroxide and 6:1 mole ratio of methanol to TG. The final product with 97.02% of biodiesel, obtained after the two step catalyzed process, was analyzed by gas chromatography. This new process has many advantages compared with the old processes, such as no acidic waste water, high efficiency, low equipment cost and easy recovery of the catalyst

  7. A multi-stage noise adaptive switching filter for extremely corrupted images

    Science.gov (United States)

    Dinh, Hai; Adhami, Reza; Wang, Yi

    2015-07-01

    A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.

  8. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  9. Hidden Hydride Transfer as a Decisive Mechanistic Step in the Reactions of the Unligated Gold Carbide [AuC]+ with Methane under Ambient Conditions.

    Science.gov (United States)

    Li, Jilai; Zhou, Shaodong; Schlangen, Maria; Weiske, Thomas; Schwarz, Helmut

    2016-10-10

    The reactivity of the cationic gold carbide [AuC] + (bearing an electrophilic carbon atom) towards methane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The product pairs generated, that is, Au + /C 2 H 4 , [Au(C 2 H 2 )] + /H 2 , and [C 2 H 3 ] + /AuH, point to the breaking and making of C-H, C-C, and H-H bonds under single-collision conditions. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. As a major result, based on molecular orbital and NBO-based charge analysis, an unprecedented hydride transfer from methane to the carbon atom of [AuC] + has been identified as a key step. Also, the origin of this novel mechanistic scenario has been addressed. The mechanistic insights derived from this study may provide guidance for the rational design of carbon-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Application of Carbohydrate-Templated Asymmetric Diels-Alder Reaction to the Syntheses of ent-Penicillones A and B.

    Science.gov (United States)

    Weng, Chia-Hao; Hsu, Day-Shin; Liao, Chun-Chen

    2016-11-18

    Total syntheses of ent-penicillones A (ent-1) and B (ent-2) from 3,5-dimethylcatechol (3) were accomplished in 10 and 9 synthetic steps, respectively. A carbohydrate-templated asymmetric intramolecular Diels-Alder reaction of a masked o-benzoquinone (MOB) 9 and an aqueous acid-catalyzed intramolecular aldol reaction are the key synthetic steps. In addition, the absolute configurations of the bicyclo[2.2.2]oct-5-en-2-one core obtained from the per-O-benzylated α-d-glucopyranosyl as a carbohydrate template in the intramolecular Diels-Alder reaction of MOBs were revised.

  11. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  12. Dissertation: Precompound Emission of Energetic Light Fragments in Spallation Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-04

    Emission of light fragments (LF) from nuclear reactions is an open question. Different reaction mechanisms contribute to their production; the relative roles of each, and how they change with incident energy, mass number of the target, and the type and emission energy of the fragments is not completely understood. None of the available models are able to accurately predict emission of LF from arbitrary reactions. However, the ability to describe production of LF (especially at energies ≳ 30 MeV) from many reactions is important for different applications, such as cosmic-ray-induced Single Event Upsets (SEUs), radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The Cascade-Exciton Model (CEM) version 03.03 and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) version 03.03 event generators in Monte Carlo N-Particle Transport Code version 6 (MCNP6) describe quite well the spectra of fragments with sizes up to ⁴He across a broad range of target masses and incident energies (up to ~ 5 GeV for CEM and up to ~ 1 TeV/A for LAQGSM). However, they do not predict the high energy tails of LF spectra heavier than ⁴He well. Most LF with energies above several tens of MeV are emitted during the precompound stage of a reaction. The current versions of the CEM and LAQGSM event generators do not account for precompound emission of LF larger than ⁴He. The aim of our work is to extend the precompound model in them to include such processes, leading to an increase of predictive power of LF-production in MCNP6. This entails upgrading the Modified Exciton Model currently used at the preequilibrium stage in CEM and LAQGSM. It also includes expansion and examination of the coalescence and Fermi break-up models used in the precompound stages of spallation reactions within CEM and LAQGSM. Extending our models to include emission of fragments heavier than ⁴He at the precompound stage has indeed provided results that have much

  13. MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease.

    Science.gov (United States)

    Guo, Yihang; Li, Xiaorong; Lin, Changwei; Zhang, Yi; Hu, Gui; Zhou, Jianyu; Du, Juan; Gao, Kai; Gan, Yi; Deng, Hao

    2015-04-01

    Accumulating evidence indicates that dysregulation of microRNA‑133b (miR‑133b) is an important step in the development of certain types of human cancer and contributes to tumorigenesis. Altered expression of miR‑133b has been reported in colon carcinoma, but its association with clinical stage in colorectal cancer (CRC) has remained elusive. Connective tissue growth factor (CTGF), a potentially promising candidate gene for interaction with miR‑133b, was screened using microarray analysis. The expression of miR‑133b and CTGF was evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The regulatory effects of miR‑133b on CTGF were evaluated using a dual‑luciferase reporter assay. CTGF was identified as a functional target of miR‑133b. The results demonstrated low expression of miR‑133b in CRC specimens with poor cell differentiation (P=0.011), lymph node metastasis (P=0.037) and advanced clinical stages (stage III or IV vs. I or II; P=0.036). Furthermore, there was a significant association between a high level of expression of CTGF mRNA and an advanced clinical stage (stage III or IV vs. I or II; P=0.015) and lymph node metastasis (P=0.034). CTGF expression was negatively regulated by miR‑133b in the human colorectum, suggesting that miR‑133b and CTGF may be candidate therapeutic targets in colorectal cancer.

  14. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Science.gov (United States)

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  15. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Directory of Open Access Journals (Sweden)

    Daniel E Almonacid

    2010-03-01

    Full Text Available Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3 show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1 catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56% suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to

  16. Determination of thermodynamic parameters for enolization reaction of malonic and metylmalonic acids by using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Minoru Yoshimoto

    2016-06-01

    Full Text Available We investigated the process of a bromination reaction of malonic acid and methylmalonic acid in the Belousov-Zhabotinsky reaction by using a quartz crystal microbalance (QCM. The process involves an enolization reaction as a rate-determining step. We found that, in the step, the variation of Br2 concentration induced an exactly quantitative shift of a resonant frequency of the QCM, based on the change of the surface mass on the QCM and the solution viscosity and density. This new finding enabled us to estimate the reaction rate constants and the thermodynamic parameters of the enolization reaction due to a QCM measurement. The values measured by the QCM were in good agreement with those measured by a UV-spectrophotometer. As a result, we succeeded to develop a new measurement method of a nonlinear chemical reaction.

  17. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.

    Science.gov (United States)

    Troise, Antonio Dario; Buonanno, Martina; Fiore, Alberto; Monti, Simona Maria; Fogliano, Vincenzo

    2016-12-01

    Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37°C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Two-stage fungal leaching of vanadium from uranium ore residue of the leaching stage using statistical experimental design

    International Nuclear Information System (INIS)

    Gharehbagheri, Hassan; Safdari, Jaber; Roostaazad, Reza; Rashidi, Abbas

    2013-01-01

    Highlights: ► In this work, the percent of vanadium recovery from uranium mine waste was 44.8. ► Unlike autotrophs, Aspergillus niger is a suitable microorganism to deal with such a resource. ► In the first step of the present work, citric acid was produced more than the other acids. ► When sterilization of uranium ore waste is not economic, two-step bioleaching is an appropriate method. - Abstract: In this investigation, bioleaching of vanadium from uranium ore residue of the leaching stage was studied by Aspergillus niger in a two-step process at 30 °C and 150 rpm. The first step was initiated by growth of fungi in the absence of mine waste. Using response surface methodology, three factors were surveyed for fungal growth: initial pH, sucrose concentration and spore population. Also concentrations of oxalic, citric, and gluconic acids were measured as response in this step. During 30 days, maximum productions of these acids were 3265, 11578, and 7988 mg/l, respectively. Initial pH and sucrose concentration were significant factors for oxalic and citric acid production; however, for gluconic acid production sucrose concentration and spore population were significant. Then, the content of each flask was filtered and mine waste was added to liquor with pulp density of 3%. During 3 days, in the second step, vanadium recovered about 44.8% in the liquor

  19. Sulphation reactions of oxidic dust particles in waste heat boiler environment. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Ranki, T.

    1999-09-01

    behaviour of flash smelting dust particles. Generally initial sulphation rate of small particles was noticed to be very fast, presumably until the whole oxide surface is covered by the dense sulphate layer. After the initial period the reaction rate slowed down and in some experiments even seemed to cease totally. At least after the fast start, sulphation of metal oxides was noticed to follow the parabolic rate law, which indicates that the rate controlling step is then solid-state diffusion through the dense growing sulphate layer. Most of the investigations suggest that the sulphate layer grows outwards from the oxide surface. The microstructure (porosity) of the particles was found to have a significant effect on the conversion rate. As a conclusion, based on several experiments with small calcium oxide particles sulphation is suggested to be a two-stage process: Initially chemical reaction controls the process until the surface coverage is complete, and weight of the sample increases linearly vs. time. This stage is followed by the parabolic reaction period, when the solid state diffusion controls the sulphate growth rate, and there is a parabolic relation between weight-gain and time. (orig.) 49 refs.

  20. Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed

    International Nuclear Information System (INIS)

    Nguyen, Thanh D.B.; Ngo, Son Ich; Lim, Young-Il; Lee, Jeong Woo; Lee, Uen-Do; Song, Byung-Ho

    2012-01-01

    Highlights: ► Steam gasification of woodchips is examined in dual circulating fluidized-bed (DFB). ► We develop a three-stage model (TSM) for process performance evaluation. ► Effect of gasification temperature and steam to fuel ratio is investigated. ► Several effective operating conditions are found by parametric study. - Abstract: A three-stage steady state model (TSM) was developed for biomass steam gasification in a dual circulating fluidized-bed (DFB) to calculate the composition of producer gas, carbon conversion, heat recovery, cost efficiency, and heat demand needed for the endothermic gasification reactions. The model was divided into three stages including biomass pyrolysis, char–gas reactions, and gas–phase reaction. At each stage, an empirical equation was estimated from experimental data. It was assumed that both unconverted char and additional fuel were completely combusted at 950 °C in the combustor (riser) and the heat required for gasification reactions was provided by the bed material (silica sand). The model was validated with experimental data taken from the literature. The parametric study of the gasification temperature (T) and the steam to fuel ratio (γ) was then carried out to evaluate performance criteria of a 1.8 MW DFB gasifier using woodchips as a feedstock for the electric power generation. Effective operating conditions of the DFB gasifier were proposed by means of the contour of the solid circulation ratio, the heat recovery, the additional fuel ratio and the cost efficiency with respect to T and γ.

  1. Reactions of modulated molecular beams with pyrolytic graphite IV. Water vapor

    International Nuclear Information System (INIS)

    Olander, D.R.; Acharya, T.R.; Ullman, A.Z.

    1977-01-01

    The reaction of water vapor with the prism plane face of anneal pyrolytic graphite was investigated by modulated molecular beam--mass spectrometry methods. The equivalent water vapor pressure of the beam was approx.2 x 10 -5 Torr and the graphite temperature was varied from 300 to 2500 0 K. The mechanism was deduced from three types of experiments: isotope exchange utilizing modulated H 2 O and steady D 2 O beams; measurements of the phase difference between H 2 O and neon reflected from the surface from a mixed primary beam of these species; and reaction of a modulated H 2 O beam to produce CO and H 2 . Based upon the isotope exchange experiments chemisorption of water on graphite was found to be dissociative and reversible. Incident water molecules chemisorbed with a sticking probability of 0.15 +- 0.02 to form the complexes C--OH and C--H. Recombination of the surface complexes reverses the adsorption step and is responsible for the isotope exchange properties of the graphite surface. This process is unactivated. Reaction to produce CO and H 2 also results from collisions of the primary surface complexes, but this step has an activation energy of 170 kJ/mole. This reaction yields bound complexes tentatively identified as C--O and H--C--H, which then decompose to produce the stable reaction products. All of the above steps exhibit characteristic times on the order of milliseconds, and are therefore detectable by the modulated beam method. All surface intermediates are strongly affected by solution and diffusion in the bulk of the solid

  2. Biphasic kinetics in the reaction between amino acids or glutathione and the chromium acetate cluster, [Cr3O(OAc)6]+.

    Science.gov (United States)

    Chaudhary, Shveta; Van Horn, J David

    2006-11-07

    Kinetics for the breakdown of the trinuclear chromium acetate cluster with a series of monoprotic and diprotic amino acid ligands and with glutathione in aqueous media have been investigated spectrophotometrically at pH 3.5-5.5 and in a temperature range of 45-60 degrees C. Under pseudo-first-order conditions, reactions with these ligands exhibited biphasic kinetic behavior that can be accounted for by a consecutive two-step reaction, A-->B-->C, where A is assumed to be a forced ion pair, B an intermediate and C is the product; experimental data fit to a biexponential equation for the transformation. Rates for k(short), k(long), and k(obs) were determined by manual extrapolation of absorbance data or curve-fitting routines; associated activation parameters for each step of the reaction were calculated using the Eyring equation. Rates for the first and second steps of the reaction are on the order of approximately 10(-4) and approximately 10(-5)s(-1), respectively. The large negative values of DeltaS++ and smaller DeltaH++ in the first step indicate an associative step, while high positive values of DeltaS(double dagger) in the second step indicate dissociation. To account for the results mechanistically, the results are interpreted to be a first step of ligand exchange with a pseudo-axial aqua ligand, followed by a dissociative step involving acetate or oxo ligand displacement. The dissociative step is the rate determining step, with k(obs) approximately k(long). The results demonstrate reaction pathways that are available to the Cr(III) metal centers that may be physiologically relevant in the ligand-rich environment of biological systems. Under general conditions Cr(III) clusters may be expected to be broken down, unless some unique biological environment stabilizes the cluster. The present study has application to the processes related to Cr(III) transport and excretion, to potential mechanisms of Cr(III) action in a biological setting, and to the

  3. SCScore: Synthetic Complexity Learned from a Reaction Corpus.

    Science.gov (United States)

    Coley, Connor W; Rogers, Luke; Green, William H; Jensen, Klavs F

    2018-02-26

    Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

  4. Data-based control of a multi-step forming process

    Science.gov (United States)

    Schulte, R.; Frey, P.; Hildenbrand, P.; Vogel, M.; Betz, C.; Lechner, M.; Merklein, M.

    2017-09-01

    The fourth industrial revolution represents a new stage in the organization and management of the entire value chain. However, concerning the field of forming technology, the fourth industrial revolution has only arrived gradually until now. In order to make a valuable contribution to the digital factory the controlling of a multistage forming process was investigated. Within the framework of the investigation, an abstracted and transferable model is used to outline which data have to be collected, how an interface between the different forming machines can be designed tangible and which control tasks must be fulfilled. The goal of this investigation was to control the subsequent process step based on the data recorded in the first step. The investigated process chain links various metal forming processes, which are typical elements of a multi-step forming process. Data recorded in the first step of the process chain is analyzed and processed for an improved process control of the subsequent process. On the basis of the gained scientific knowledge, it is possible to make forming operations more robust and at the same time more flexible, and thus create the fundament for linking various production processes in an efficient way.

  5. Proton induced nuclide production cross section by HETC-3STEP/FRG-R

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan); Yoshizawa, Nobuaki; Takada, Hiroshi

    1998-03-01

    High Energy Transport Code (HETC) based on the intranuclear-cascade-evaporation model is modified to calculate the fragmentation cross section. The exciton model is adopted for improvement of backward nucleon-emission cross section for low-energy nucleon-incident events. The level density parameter depending on the excitation energy is taken in the evaporation process. The fragmentation reaction is incorporated into HETC as a subroutine set by the use of the systematics of the reaction. The modified HETC (HETC-3STEP/FRG-R) reproduces experimental fragment yields to a reasonable degree. (author)

  6. Step-edge calibration of torsional sensitivity for lateral force microscopy

    International Nuclear Information System (INIS)

    Sul, Onejae; Jang, Seongjin; Yang, Eui-Hyeok

    2009-01-01

    A novel calibration technique has been developed for lateral force microscopy (LFM). Typically, special preparation of the atomic force microscope (AFM) cantilever or a substrate is required for LFM calibration. The new calibration technique reported in this paper greatly reduces the required preparation processes by simply scanning over a rigid step and measuring the response of the AFM photodiode in the normal and lateral directions. When an AFM tip touches a step while scanning, the tip experiences a reaction force from the step edge, and the amount of torsion can be estimated based on the ratio of the normal and torsional spring constants of an AFM cantilever. Therefore, the torsion can be calibrated using the measured response of the photodiode from the lateral movement of the AFM tip. This new calibration technique has been tested and confirmed by measuring Young's modulus of a nickel (Ni) nanowire

  7. Developmental stages of developmental screening: steps to implementation of a successful program.

    Science.gov (United States)

    Pinto-Martin, Jennifer A; Dunkle, Margaret; Earls, Marian; Fliedner, Dane; Landes, Cynthia

    2005-11-01

    Through the use of 2-stage screening strategies, research studies have shown that autism spectrum disorders and other developmental disabilities can now be detected reliably and with greater validity and in children as young as 18 months of age. Screening and diagnostic practices in the medical and educational arena lag far behind clinical research, however, with the average patient age at time of diagnosis being 3 to 6 years.We discuss the challenges of instituting universal developmental screening as part of pediatric care and present 2 models of existing or planned programs of early screening for autism spectrum disorder and developmental disability (1 in a community-based setting and 1 in a pediatric setting), and discuss the pros and cons of the different strategies.

  8. Arousal and exposure duration affect forward step initiation

    Directory of Open Access Journals (Sweden)

    Daniëlle eBouman

    2015-11-01

    Full Text Available Emotion influences parameters of goal-directed whole-body movements in several ways. For instance, previous research has shown that approaching (moving toward pleasant stimuli is easier compared to approaching unpleasant stimuli. However, some studies found that when emotional pictures are viewed for a longer time, approaching unpleasant stimuli may in fact be facilitated. The effect of viewing duration may modulate whole-body approach movement in previous research but this has not been investigated before. In the current study, participants initiated a step forward after viewing neutral, high-arousal pleasant and high-arousal unpleasant stimuli. The viewing duration of the stimuli was set to 7 different durations, varying from 100 to 4000ms. Valence and arousal scores were collected for all stimuli.The results indicate that both viewing duration and the arousal of the stimuli influence kinematic parameters in forward gait initiation. Specifically, longer viewing duration, compared to shorter viewing duration, (a diminished the step length and peak velocity in both neutral and emotional stimuli, (b increased reaction time in neutral stimuli and, (c decreased reaction time in pleasant and unpleasant stimuli. Strikingly, no differences were found between high-arousal pleasant and high-arousal unpleasant stimuli. In other words, the valence of the stimuli did not influence kinematic parameters of forward step initiation. In contrast, the arousal level (neutral: low; pleasant and unpleasant: high explained the variance found in the results. The kinematics of forward gait initiation seemed to be reflected in the subjective arousal scores, but not the valence scores. So it seems arousal affects forward gait initiation parameters more strongly than valence. In addition, longer viewing duration seemed to cause diminished alertness, affecting GI parameters. These results shed new light on the prevailing theoretical interpretations regarding approach

  9. Chemical cleavage reactions of DNA on solid support: application in mutation detection

    Directory of Open Access Journals (Sweden)

    Cotton Richard GH

    2003-05-01

    Full Text Available Abstract Background The conventional solution-phase Chemical Cleavage of Mismatch (CCM method is time-consuming, as the protocol requires purification of DNA after each reaction step. This paper describes a new version of CCM to overcome this problem by immobilizing DNA on silica solid supports. Results DNA test samples were loaded on to silica beads and the DNA bound to the solid supports underwent chemical modification reactions with KMnO4 (potassium permanganate and hydroxylamine in 3M TEAC (tetraethylammonium chloride solution. The resulting modified DNA was then simultaneously cleaved by piperidine and removed from the solid supports to afford DNA fragments without the requirement of DNA purification between reaction steps. Conclusions The new solid-phase version of CCM is a fast, cost-effective and sensitive method for detection of mismatches and mutations.

  10. Elementary steps and reaction pathways in the aqueous phase alkylation of phenol with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Sebastian; Hintermeier, Peter H.; Olarte, Mariefel V.; Liu, Yue; Baráth, Eszter; Lercher, Johannes A.

    2017-08-01

    The hydronium ion normalized reaction rate in aqueous phase alkylation of phenol with ethanol on H-MFI zeolites increases with decreasing concentration of acid sites. Higher rates are caused by higher concentrations of phenol in the zeolite pores, as the concentration of hydronium ions generated by zeolite Brønsted acid sites decreases. Considering the different concentrations of reacting species it is shown that the intrinsic rate constant for alkylation is independent of the concentration of hydronium ions in the zeolite pores. Alkylation at the aromatic ring of phenol and of toluene as well as O-alkylation of phenol have the same activation energy, 104 ± 5 kJ/mol. This is energetic barrier to form the ethyl carbenium ion from ethanol associated to the hydronium ion. Thus, in both the reaction pathways the catalyst involves a carbenium ion, which forms a bond to a nucleophilic oxygen (ether formation) or carbon (alkylation).

  11. Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction.

    Science.gov (United States)

    Fayol, Aude; Fang, Yuan-Qing; Lautens, Mark

    2006-09-14

    A novel one-step synthesis of valuable 2-vinylic indoles and their tricycle derivatives is described. This reaction, which utilizes a gem-dibromovinyl unit as a readily available starting material, occurs via an efficient Pd-catalyzed tandem Buchwald-Hartwig/Heck reaction.

  12. Automotive exhaust gas conversion: from elementary step kinetics to prediction of emission dynamics

    NARCIS (Netherlands)

    Hoebink, J.H.B.J.; Harmsen, J.M.A.; Balenovic, M.; Backx, A.C.P.M.; Schouten, J.C.

    2001-01-01

    Elementary step based kinetics show a high added value to describe the performance of catalytic exhaust gas converters under dynamic conditions, as demonstrated with a Euro test cycle. Combination of such kinetic models for individual global reactions covers the mutual interactions via common

  13. Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-01-01

    Full Text Available Wolff–Kishner reduction reactions were investigated by DFT calculations for the first time. B3LYP/6-311+G(d,p SCRF=(PCM, solvent = 1,2-ethanediol optimizations were carried out. To investigate the role of the base catalyst, the base-free reaction was examined by the use of acetone, hydrazine (H2N–NH2 and (H2O8. A ready reaction channel of acetone → acetone hydrazine (Me2C=N–NH2 was obtained. The channel involves two likely proton-transfer routes. However, it was found that the base-free reaction was unlikely at the N2 extrusion step from the isopropyl diimine intermediate (Me2C(H–N=N–H. Two base-catalyzed reactions were investigated by models of the ketone, H2N–NH2 and OH−(H2O7. Here, ketones are acetone and acetophenone. While routes of the ketone → hydrazone → diimine are similar, those from the diimines are different. From the isopropyl diimine, the N2 extrusion and the C–H bond formation takes place concomitantly. The concomitance leads to the propane product concertedly. From the (1-phenylethyl substituted diimine, a carbanion intermediate is formed. The para carbon of the phenyl ring of the anion is subject to the protonation, which leads to a 3-ethylidene-1,4-cyclohexadiene intermediate. Its [1,5]-hydrogen migration gives the ethylbenzene product. For both ketone substrates, the diimines undergoing E2 reactions were found to be key intermediates.

  14. Cautioning Health-Care Professionals : Bereaved Persons Are Misguided Through the Stages of Grief

    NARCIS (Netherlands)

    Stroebe, Margaret; Schut, Henk; Boerner, Kathrin

    2017-01-01

    Science and practice seem deeply stuck in the so-called stage theory of grief. Health-care professionals continue to "prescribe" stages. Basically, this perspective endorses the idea that bereaved people go through a set pattern of specific reactions over time following the death of a loved one. It

  15. Sequential Au(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    2011-05-01

    Full Text Available The gold(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates provides 1H-isochromene derivatives in good yields. The reaction follows a catalytic sequence of gold carbene formation/water O–H insertion/alcohol-alkyne cyclization. The gold(I complex is the only catalyst in each of these steps.

  16. Influence of step length and landing pattern on patellofemoral joint kinetics during running.

    Science.gov (United States)

    Willson, J D; Ratcliff, O M; Meardon, S A; Willy, R W

    2015-12-01

    Elevated patellofemoral joint kinetics during running may contribute to patellofemoral joint symptoms. The purpose of this study was to test for independent effects of foot strike pattern and step length on patellofemoral joint kinetics while running. Effects were tested relative to individual steps and also taking into account the number of steps required to run a kilometer with each step length. Patellofemoral joint reaction force and stress were estimated in 20 participants running at their preferred speed. Participants ran using a forefoot strike and rearfoot strike pattern during three different step length conditions: preferred step length, long (+10%) step length, and short (-10%) step length. Patellofemoral kinetics was estimated using a biomechanical model of the patellofemoral joint that accounted for cocontraction of the knee flexors and extensors. We observed independent effects of foot strike pattern and step length. Patellofemoral joint kinetics per step was 10-13% less during forefoot strike conditions and 15-20% less with a shortened step length. Patellofemoral joint kinetics per kilometer decreased 12-13% using a forefoot strike pattern and 9-12% with a shortened step length. To the extent that patellofemoral joint kinetics contribute to symptoms among runners, these running modifications may be advisable for runners with patellofemoral pain. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Mast cell subsets and neuropeptides in leprosy reactions

    Directory of Open Access Journals (Sweden)

    Antunes Sérgio Luiz Gomes

    2003-01-01

    Full Text Available The immunohistochemical identification of neuropeptides (calcitonin gene-related peptide, vasoactive intestinal polypeptide, substance P, alpha-melanocyte stimulating hormone and gamma-melanocyte stimulating hormone quantification of mast cells and their subsets (tryptase/chymase-immunoreactive mast cells = TCMC and tryptase-immunoreactive mast cells = TMC were determined in biopsies of six patients with leprosy reactions (three patients with type I reaction and three with type II. Biopsies were compared with those taken from the same body site in the remission stage of the same patient. We found a relative increase of TMC in the inflammatory infiltrate of the reactional biopsies compared to the post-reactional biopsy. Also, the total number of mast cells and the TMC/TCMC ratio in the inflammatory infiltrate was significantly higher than in the intervening dermis of the biopsies of both periods. No significant difference was found regarding neuroptide expression in the reactional and post-reactional biopsies. The relative increase of TMC in the reactional infiltrates could implicate this mast cell subset in the reported increase of the immune response in leprosy reactions.

  18. One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways.

    Science.gov (United States)

    Xing, Shiyou; Lv, Pengmei; Wang, Jiayan; Fu, Junying; Fan, Pei; Yang, Lingmei; Yang, Gaixiu; Yuan, Zhenhong; Chen, Yong

    2017-01-25

    For high caloricity and stability in bio-aviation fuels, a certain content of aromatic hydrocarbons (AHCs, 8-25 wt%) is crucial. Fatty acids, obtained from waste or inedible oils, are a renewable and economic feedstock for AHC production. Considerable amounts of AHCs, up to 64.61 wt%, were produced through the one-step hydroprocessing of fatty acids over Ni/HZSM-5 catalysts. Hydrogenation, hydrocracking, and aromatization constituted the principal AHC formation processes. At a lower temperature, fatty acids were first hydrosaturated and then hydrodeoxygenated at metal sites to form long-chain hydrocarbons. Alternatively, the unsaturated fatty acids could be directly deoxygenated at acid sites without first being saturated. The long-chain hydrocarbons were cracked into gases such as ethane, propane, and C 6 -C 8 olefins over the catalysts' Brønsted acid sites; these underwent Diels-Alder reactions on the catalysts' Lewis acid sites to form AHCs. C 6 -C 8 olefins were determined as critical intermediates for AHC formation. As the Ni content in the catalyst increased, the Brønsted-acid site density was reduced due to coverage by the metal nanoparticles. Good performance was achieved with a loading of 10 wt% Ni, where the Ni nanoparticles exhibited a polyhedral morphology which exposed more active sites for aromatization.

  19. Developmental steps of the human cervical spine: parameters for evaluation of skeletal maturation stages.

    Science.gov (United States)

    dos Santos, Marcos Fabio Henriques; de Lima, Rodrigo Lopes; De-Ary-Pires, Bernardo; Pires-Neto, Mário Ary; de Ary-Pires, Ricardo

    2010-06-01

    The central objective of this investigation was to focus on the development of the cervical spine observed by lateral cephalometric radiological images of children and adolescents (6-16 years old). A sample of 26 individuals (12 girls and 14 boys) was classified according to stages of cervical spine maturation in two subcategories: group I (initiation phase) and group II (acceleration phase). The morphology of the cervical spine was assessed by lateral cephalometric radiographs obtained in accordance with an innovative method for establishing a standardized head posture. A total of 29 linear variables and 5 angular variables were used to clarify the dimensions of the cervical vertebrae. The results suggest that a few measurements can be used as parameters of vertebral maturation both for males and females. The aforementioned measurements include the inferior depth of C2-C4, the inferior depth of C5, the anterior height of C4-C5, and the posterior height of C5. We propose original morphological parameters that may prove remarkably useful in the determination of bone maturational stages of the cervical spine in children and adolescents.

  20. Determining Annealing Temperatures for Polymerase Chain Reaction

    Science.gov (United States)

    Porta, Angela R.; Enners, Edward

    2012-01-01

    The polymerase chain reaction (PCR) is a common technique used in high school and undergraduate science teaching. Students often do not fully comprehend the underlying principles of the technique and how optimization of the protocol affects the outcome and analysis. In this molecular biology laboratory, students learn the steps of PCR with an…

  1. Multistage reaction pathways in detonating high explosives

    International Nuclear Information System (INIS)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-01-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N 2 and H 2 O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N 2 and H 2 O productions

  2. Multistage reaction pathways in detonating high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  3. Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-07-01

    Full Text Available Atom efficient processes such as the Diels–Alder reaction (DA and the ring-rearrangement metathesis (RRM have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  4. Design and synthesis of fused polycycles via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Ravikumar, Ongolu

    2015-01-01

    Atom efficient processes such as the Diels-Alder reaction (DA) and the ring-rearrangement metathesis (RRM) have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  5. The Neuroergonomics of Aircraft Cockpits: The Four Stages of Eye-Tracking Integration to Enhance Flight Safety

    Directory of Open Access Journals (Sweden)

    Vsevolod Peysakhovich

    2018-02-01

    Full Text Available Commercial aviation is currently one of the safest modes of transportation; however, human error is still one major contributing cause of aeronautical accidents and incidents. One promising avenue to further enhance flight safety is Neuroergonomics, an approach at the intersection of neuroscience, cognitive engineering and human factors, which aims to create better human–system interaction. Eye-tracking technology allows users to “monitor the monitoring” by providing insights into both pilots’ attentional distribution and underlying decisional processes. In this position paper, we identify and define a framework of four stages of step-by-step integration of eye-tracking systems in modern cockpits. Stage I concerns Pilot Training and Flight Performance Analysis on-ground; stage II proposes On-board Gaze Recordings as extra data for the “black box” recorders; stage III describes Gaze-Based Flight Deck Adaptation including warning and alerting systems, and, eventually, stage IV prophesies Gaze-Based Aircraft Adaptation including authority taking by the aircraft. We illustrate the potential of these four steps with a description of incidents or accidents that we could certainly have avoided thanks to eye-tracking. Estimated milestones for the integration of each stage are also proposed together with a list of some implementation limitations. We believe that the research institutions and industrial actors of the domain will all benefit from the integration of the framework of the eye-tracking systems into cockpits.

  6. Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency.

    Science.gov (United States)

    Taylor, Mark R; Conrad, John A; Wahl, Daniel; O'Brien, Patrick J

    2011-07-01

    DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.

  7. Strong Stability Preserving Two-step Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Gottlieb, Sigal; Macdonald, Colin B.

    2011-01-01

    We investigate the strong stability preserving (SSP) property of two-step Runge–Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present explicit TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order weighted essentially non-oscillatory discretizations.

  8. Strong Stability Preserving Two-step Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2011-12-22

    We investigate the strong stability preserving (SSP) property of two-step Runge–Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present explicit TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order weighted essentially non-oscillatory discretizations.

  9. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: Black-Right-Pointing-Pointer Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. Black-Right-Pointing-Pointer The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. Black-Right-Pointing-Pointer Modified SBS membrane for wound dressing is evaluated. Black-Right-Pointing-Pointer Membranes are sterile semipermeable with bactericidal activity and transparent. Black-Right-Pointing-Pointer Membranes can be considered for shallow wound with low exudates.

  10. Developmental stage of strongyle eggs affects the outcome variations of real-time PCR analysis

    DEFF Research Database (Denmark)

    Andersen, Ulla Vestergaard; Haakansson, I. T.; Roust, Tina

    2013-01-01

    extent developmental stages can affect the variation of diagnostic test results. This study investigated the influence of developmental stages of strongyle eggs on the variation real-time polymerase chain reaction (PCR) results. Mixed species strongyle eggs were obtained from the faeces of a naturally...

  11. Practice makes better - Learning effects of driving with a multi-stage collision warning.

    Science.gov (United States)

    Winkler, Susann; Kazazi, Juela; Vollrath, Mark

    2018-02-21

    Advanced driver assistance systems like (forward) collision warnings can increase traffic safety. As safety-critical situations (especially in urban traffic) can be diverse, integrated adaptive systems (such as multi-stage warnings) need to be developed and examined in a variety of use cases over time instead of the more common approach of testing only one-time effectiveness in the most relevant use case. Thus, this driving simulator experiment investigated a multi-stage collision warning in partially repetitive trials (T) of various safety-critical situations (scenarios confronting drivers with hazards in form of pedestrians, obstacles or preceding vehicles). Its output adapted according to the drivers' behavior in two warning stages (W1 - warning for moderate deceleration in less critical situations; W2 - urgent warning for strong, fast braking in more critical situations). To analyze how much drivers benefit from the assistance when allowed practice with it, the driving behavior and subjective ratings of 24 participants were measured over four trials. They comprised a baseline without assistance (T1) and three further trials with assistance - a learning phase repeating the scenarios from T1 twice (T2 + T3) and a concluding transfer drive with new scenarios (T4). As expected, the situation criticality in the urgent warning (W2) scenarios was rated higher than in the warning (W1) scenarios. While the brake reaction time differed more between the W1 scenarios, the applied brake force differed more between the W2 scenarios. However, the scenario factor often interacted with the trial factor. Since in later warning stages reaction time reductions become finite, the reaction strength gains importance. Overall the drivers benefited from the assistance. Both warning stages led to faster brake reactions (of similar strength) in all three assisted trials compared to the baseline, which additionally improved successively over time (T1-T3, T1 vs. T4, T2 vs. T4

  12. Strategies for catalyst development: possibilities of the ``rational approach`` illustrated with partial oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.; Schedel-Niedrig, T.; Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany). Abt. Oberflaechenphysik

    1998-12-31

    The paper discusses two petrochemical selective oxidation reactions namely the practised formation of styrene (STY) and the desired oxidative functionalisation of propane. The present knowledge about the mode of operation of oxide catalysts is critically considered. The dehydrogenation of ethylbenzene (EB) should be described by an oxidehydration with water acting as oxidant. The potential role of the coke formed during catalytic reaction as co-catalyst will be discussed. Selective oxidation is connected with the participation of lattice oxygen mechanism which transforms unselective gas phase oxygen into selective oxygen. The atomistic description of this process is still quite unclear as well as the electron structural properties of the activated oxygen atom. The Role of solid state acidity as compared to the role of lattice oxygen is much less well investigated modern multiphase-multielement oxide (MMO) catalysts. The rationale is that the significant efforts made to improve current MMO systems by chemical modifications can be very much more fruitful when in a first step the mode of action of a catalyst is clarified on the basis of suitable experiments. Such time-consuming experiments at the beginning of a campaign for catalyst improvement pay back their investment in later stages of the project when strategies of chemical development can be derived on grounds of understanding. (orig.)

  13. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  14. Reactions of nitrate salts with ammonia in supercritical water

    International Nuclear Information System (INIS)

    Dell'Orco, P.C.; Gloyna, E.F.; Buelow, S.J.

    1997-01-01

    Reactions involving nitrate salts and ammonia were investigated in supercritical water at temperatures from 450 to 530 C and pressures near 300 bar. Reaction products included nitrite, nitrogen gas, and nitrous oxide. Observed reaction rates and product distributions provided evidence for a free-radical reaction mechanism with NO 2 , NO, and NH 2 · as the primary reactive species at supercritical conditions. In the proposed elementary mechanism, the rate-limiting reaction step was determined to be the hydrolysis of MNO 3 species, which resulted in the formation of nitric acid and subsequently NO 2 . A simple second-order reaction model was used to represent the data. In developing an empirical kinetic model, nitrate and nitrate were lumped as an NO x - reactant. Empirical kinetic parameters were developed for four MNO x /NH 3 reacting systems, assuming first orders in both NH 3 and NO x - . Observed MNO x /NH 3 reaction rates and mechanisms suggest immediately a practical significance of these reactions for nitrogen control strategies in supercritical water oxidation processes

  15. Use of sodium dodecyl sulfate pretreatment and 2-stage curing for improved quality of salted duck eggs.

    Science.gov (United States)

    Lian, Zixuan; Qiao, Longshan; Zhu, Guanghong; Deng, Yun; Qian, Bingjun; Yue, Jin; Zhao, Yanyun

    2014-03-01

    The effects of use of sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing on the microbial, physicochemical, and microstructural qualities of salted duck eggs were studied. After pretreatment in 0.5% (w/v) SDS solution at room conditions for 15 min, no discolorations were observed and no microorganisms were detected on the egg shells. In the 2-stage curing process, 25% (w/v) and 30% (w/v) saline solutions were evaluated in the 1st step (Stage I, approximately 18 d), whereas 4% (w/v) saline solution was applied in the 2nd step (Stage II, approximately 15 d). Along with increased curing time, water content decreased and NaCl content increased in the egg yolks from approximately 0.40% to 0.86%, whereas the water content of egg albumen remained at approximately 85% during the 2-stage curing. More importantly, the NaCl content of albumen maintained at approximately 4.0% at Stage II curing. Yolk index as a sign of maturity for salted duck eggs reached 1 at the end of Stage I (18 d) and retained the same value during Stage II curing regardless of the NaCl concentration in the Stage I saline solution. Oil exudation in egg yolks increased as the time of curing increased. As seen from scanning electron microscopy, oil was released from yolk granules. This study indicated that SDS pretreatment is effective to reduce microbial load on the shells of fresh duck eggs and the 2-stage curing can improve physicochemical qualities of the salted duck eggs and shortened curing time to about 7 to 17 d as compared to the traditional 1-step curing method. Spoiled saline solution and uneven distribution of salt are the 2 major problems in producing salted duck eggs. Sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing process have shown effective to solve these problems, respectively. The SDS pretreatment was able to remove microorganisms and soil from the surface of fresh egg shells, thus preventing the spoilage of the saline solution. The 2-stage curing process

  16. Forecasting long memory series subject to structural change: A two-stage approach

    DEFF Research Database (Denmark)

    Papailias, Fotis; Dias, Gustavo Fruet

    2015-01-01

    A two-stage forecasting approach for long memory time series is introduced. In the first step, we estimate the fractional exponent and, by applying the fractional differencing operator, obtain the underlying weakly dependent series. In the second step, we produce multi-step-ahead forecasts...... for the weakly dependent series and obtain their long memory counterparts by applying the fractional cumulation operator. The methodology applies to both stationary and nonstationary cases. Simulations and an application to seven time series provide evidence that the new methodology is more robust to structural...

  17. Neutron-capture reactions by stable and unstable neutron-rich nuclei and their relevance for nucleosynthesis in hot and explosive astrophysical scenarios

    International Nuclear Information System (INIS)

    Hofinger, R.

    1997-10-01

    This thesis deals on the one hand with neutron-capture reactions by carbon-, nitrogen-, oxygen- and sulfur-isotopes, and on the other hand with the two-step processes 4 He(2n, γ) 6 He and 9 Li(2n, γ) 11 Li. Some of the involved carbon-, nitrogen- and oxygen-isotopes possess neutron-halos characterized by the unexpected large radial extension of the nuclear matter density distribution. Special attention is paid to the halo properties in the calculation of the direct neutron capture cross section. For the determination of the nuclear structure, models are used, when no experimental information is available. The results for the reaction rates are compared to previously used rates. The rates obtained in this work are partly orders of magnitude higher than the previously used reaction rates. The reaction rates for the two-step processes are on the one hand calculated assuming a two-step process, on the other hand from genuine three-body models for the process of photodisintegration of the nuclei 6 He and 11 Li. It turns out that the calculations assuming a trio-step process underestimate the reaction rates by orders of magnitude. The influence of the reaction rate for the reaction 4 He(2n, γ) 6 He and the formation of 12 C is examined in a nuclear reaction network under conditions which are typical for the α- process in supernovae of type II. It turns out that under these conditions the influence of the reaction 4 He(2n, γ) 6 He is negligible on the formation of 12 C. (author)

  18. Possibility of the Nonenzymatic Browning (Maillard) Reaction in the ISM

    Science.gov (United States)

    Jalbout, Abraham F.; Shipar, M. Abul Haider

    2008-04-01

    The possibility of the occurrence of the nonenzymatic browning reaction in the gaseous phase in the interstellar medium has been investigated by using Density Functional Theory computations. Mechanisms for the reactions between formaldehyde ( Fald) + glycine ( Gly), Fald + NH 3 and Fald + methylamine ( MeAm) have been proposed, and the possibility of the formation of different compounds in the proposed mechanisms has been evaluated through calculating the Gibb's free energy changes for different steps of the reaction, by following the total mass balance. The Fald + Gly reaction under basic conditions is found as the most favorable for producing 1-methyl-amino methene or 1-methyl-amino methelene ( MAM). The reaction under acidic conditions is found to be the least favorable for producing MAM. The Fald + NH 3 reaction is found to be plausible for the production of MeAm, which can participate by reaction with Fald, resulting in the formation of MAM.

  19. A Selected Reaction Monitoring Mass Spectrometry Protocol for Validation of Proteomic Biomarker Candidates in Studies of Psychiatric Disorders.

    Science.gov (United States)

    Reis-de-Oliveira, Guilherme; Garcia, Sheila; Guest, Paul C; Cassoli, Juliana S; Martins-de-Souza, Daniel

    2017-01-01

    Most biomarker candidates arising from proteomic studies of psychiatric disorders have not progressed for use in clinical studies due to insufficient validation steps. Here we describe a selective reaction monitoring mass spectrometry (SRM-MS) approach that could be used as a follow-up validation tool of proteins identified in blood serum or plasma. This protocol specifically covers the stages of peptide selection and optimization. The increasing application of SRM-MS should enable fast, sensitive, and robust methods with the potential for use in clinical studies involving sampling of serum or plasma. Understanding the molecular mechanisms and identifying potential biomarkers for risk assessment, diagnosis, prognosis, and prediction of drug response goes toward the implementation of translational medicine strategies for improved treatment of patients with psychiatric disorders and other debilitating diseases.

  20. One-nucleon pickup reactions and compound-nuclear decays

    Science.gov (United States)

    Escher, J. E.; Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Scielzo, N. D.

    2018-05-01

    One-nucleon transfer reactions, long used as a tool to study the structure of nuclei, are potentially valuable for determining reaction cross sections indirectly. This is significant, as many reactions of interest to astrophysics and other applications involve short-lived isotopes and cannot be measured directly. We describe a procedure for obtaining constraints for calculations of neutron capture cross sections using observables from experiments with transfer reactions. As a first step toward demonstrating the method, we outline the theory developments used to properly describe the production of the compound nucleus 88Y* via the one-nucleon pickup reaction 89Y(p,d)88Y* and test the description with data from a recent experiment. We indicate how this development can be used to extract the unknown 87Y(n,γ) cross section from 89Y(p,dγ) data. The example illustrates a more generally applicable method for determining unknown cross sections via a combination of theory and transfer (or inelastic scattering) experiments.

  1. Computational Approach to Electron Charge Transfer Reactions

    DEFF Research Database (Denmark)

    Jónsson, Elvar Örn

    -molecular mechanics scheme, and tools to analyse statistical data and generate relative free energies and free energy surfaces. The methodology is applied to several charge transfer species and reactions in chemical environments - chemical in the sense that solvent, counter ions and substrate surfaces are taken...... in to account - which directly influence the reactants and resulting reaction through both physical and chemical interactions. All methods are though general and can be applied to different types of chemistry. First, the basis of the various theoretical tools is presented and applied to several test systems...... and asymmetric charge transfer reactions between several first-row transition metals in water. The results are compared to experiments and rationalised with classical analytic expressions. Shortcomings of the methods are accounted for with clear steps towards improved accuracy. Later the analysis is extended...

  2. Chemical tailoring of teicoplanin with site-selective reactions.

    Science.gov (United States)

    Pathak, Tejas P; Miller, Scott J

    2013-06-05

    Semisynthesis of natural product derivatives combines the power of fermentation with orthogonal chemical reactions. Yet, chemical modification of complex structures represents an unmet challenge, as poor selectivity often undermines efficiency. The complex antibiotic teicoplanin eradicates bacterial infections. However, as resistance emerges, the demand for improved analogues grows. We have discovered chemical reactions that achieve site-selective alteration of teicoplanin. Utilizing peptide-based additives that alter reaction selectivities, certain bromo-teicoplanins are accessible. These new compounds are also scaffolds for selective cross-coupling reactions, enabling further molecular diversification. These studies enable two-step access to glycopeptide analogues not available through either biosynthesis or rapid total chemical synthesis alone. The new compounds exhibit a spectrum of activities, revealing that selective chemical alteration of teicoplanin may lead to analogues with attenuated or enhanced antibacterial properties, in particular against vancomycin- and teicoplanin-resistant strains.

  3. Recoil properties of radionuclides formed in photospallation reactions on complex nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Haba, Hiromitsu; Oura, Yasuji; Shibata, Seiichi; Furukawa, Michiaki; Fujiwara, Ichiro

    2001-01-01

    A short review is given on our studies of recoil properties of radionuclides formed in photospallation reactions induced by bremsstrahlung of end-point energies (E 0 ) from 600 to 1100 MeV, in which the thick-target thick-catcher method was employed. The measurements have been successful on 14, 24, 26, 31, 21 and 20 nuclides from nat V, nat Cu, 93 Nb, nat Ag, nat Ta, and 197 Au, respectively. Reflecting the resonance character in a photonuclear reaction, the mean ranges FW and BW in the forward and backward directions, respectively, are E 0 -independent at the studied energies and classified into two groups accounting for the (γ, xn) (x ≥ 1) and (γ, xnyp) (x, y ≥ 1) processes. The forward-to-backward ratios (F/B) are independent of the mass difference (ΔA) between a product (A p ) and a target (A t ) and also of A t . The kinematic properties of the product nuclei were analyzed by the two-step vector velocity model. The forward velocity ν after the first step of photon-reaction is quite different from that of proton-reaction at proton energies of E p ≤ 3 GeV, though the difference disappears at higher energies. On the other hand, the mean kinetic energy T of the residual nucleus in the second step is almost equal to that of proton-reaction irrespective of E p . A comparison with T values calculated by the PICA (Photon-Induced Intranuclear Cascade Analysis) code at E 0 =400 MeV was also performed. It was found that although the code well reproduces the experimental results of nat V and nat Cu, the same calculation for heavier targets gives T values lower than the experimental results, indicating some nuclear-structure effect, such as a medium effect notably at A t ≥ 100. An average kinetic energy carried off by the emitted particles ε s =T/(ΔA/A t ) of both photon- and proton-reactions seem to increase with an increase of A t up to around A t =100, and become almost constant at larger A t , implying some change in the nuclear structure effect in this

  4. Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei, E-mail: nanoyang@qq.com; Jiang, Zhongcheng; Dong, Jiazhang; Zhang, Liuqian [Hunan University, College of Materials Science and Engineering (China); Pan, Anlian, E-mail: anlian.pan@gmail.com; Zhuang, Xiujuan [Hunan University, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province (China)

    2015-10-15

    We report a scheme for investigating two-step stimulated structure change of luminescence centers. Amorphous silica nanospheres with uniform diameter of 9–15 nm have been synthesized by Stöber method. Strong hydroxyl-related infrared-absorption band is observed in infrared spectrum. The surface hydroxyl groups exert great influence on the luminescent behavior of silica. They provide stable and intermediate energy states to accommodate excitation electrons. The existence of these surface states reduces the energy barrier of photochemical reactions, creating conditions for two-step excitation process. By carefully examining excitation and emission process, the nearest excitation band is absent in both optical absorption spectrum and excitation spectrum. This later generated state confirms the generation of new luminescence centers as well as the existence of photochemical reactions. Stimulated by different energies, two-step excitation process impels different photochemical reactions, prompting generation of different lattice defects on surface area of silica. Thereby, tunable luminescence is achieved. After thermal treatment, strong gap excitation band appears with the disappearance of strong surface excitation band. Strong blue luminescence also disappears. The research is significance to precise introducing structural defects and controlling position of luminescence peaks.

  5. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    Science.gov (United States)

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Electron transfer reactions in structural units of copper proteins

    International Nuclear Information System (INIS)

    Faraggi, M.

    1975-01-01

    In previous pulse radiolysis studies it was suggested that the reduction of the Cu(II) ions in copper proteins by the hydrated electron is a multi-step electron migration process. The technique has been extended to investigate the reduction of some structural units of these proteins. These studies include: the reaction of the hydrated electron with peptides, the reaction of the disulphide bridge with formate radical ion and radicals produced by the reduction of peptides, and the reaction of Cu(II)-peptide complex with esub(aq)sup(-) and CO 2 - . Using these results the reduction mechanism of copper and other proteins will be discussed. (author)

  7. Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase.

    Science.gov (United States)

    Sevastik, Robin; Himo, Fahmi

    2007-12-01

    The reaction mechanism of 4-oxalocrotonate tautomerase (4-OT) is studied using the density functional theory method B3LYP. This enzyme catalyzes the isomerisation of unconjugated alpha-keto acids to their conjugated isomers. Two different quantum chemical models of the active site are devised and the potential energy curves for the reaction are computed. The calculations support the proposed reaction mechanism in which Pro-1 acts as a base to shuttle a proton from the C3 to the C5 position of the substrate. The first step (proton transfer from C3 to proline) is shown to be the rate-limiting step. The energy of the charge-separated intermediate (protonated proline-deprotonated substrate) is calculated to be quite low, in accordance with measured pKa values. The results of the two models are used to evaluate the methodology employed in modeling enzyme active sites using quantum chemical cluster models.

  8. Reconstitution of Low Bandwidth Reaction History

    International Nuclear Information System (INIS)

    May, M.; Clancy, T.; Fittinghoff, D.; Gennaro, P.; Hagans, K.; Halvorson, G.; Lowry, M.; Perry, T.; Roberson, P.; Smith, D.; Teruya, A.; Blair, J.; Davis, B.; Hunt, E.; Emkeit, B.; Galbraith, J.; Kelly, B.; Montoya, R.; Nickel, G.; Ogle, J.; Wilson, K.; Wood, M.

    2004-01-01

    The goal of the Test Readiness Program is to transition to a 24 month test readiness posture and if approved move to an 18-month posture. One of the key components of the Test Readiness Program necessary to meet this goal is the reconstitution of the important diagnostics. Since the end of nuclear testing, the ability to field diagnostics on a nuclear test has deteriorated. Reconstitution of diagnostics before those who had experience in nuclear testing either retire or leave is essential to achieving a shorter test readiness posture. Also, the data recording systems have not been used since the end of testing. This report documents the reconstitution of one vital diagnostic: the low bandwidth reaction history diagnostic for FY04. Reaction history is one of the major diagnostics that has been used on all LLNL and LANL tests since the early days of nuclear testing. Reaction history refers to measuring the time history of the gamma and neutron output from a nuclear test. This gives direct information on the nuclear reactions taking place in the device. The reaction history measurements are one of the prime measurements the nuclear weapon scientists use to validate their models of device performance. All tests currently under consideration require the reaction history diagnostic. Thus moving to a shorter test readiness posture requires the reconstitution of the ability to make reaction history measurements. Reconstitution of reaction history was planned to be in two steps. Reaction history measurements that have been used in the past can be broadly placed into two categories. The most common type of reaction history and the one that has been performed on virtually all nuclear tests is termed low bandwidth reaction history. This measurement has a time response that is limited by the bandpass of kilometer length coaxial cables. When higher bandwidth has been required for specific measurements, fiber optic techniques have been used. This is referred to as high

  9. Flexible single molecule simulation of reaction-diffusion processes

    International Nuclear Information System (INIS)

    Hellander, Stefan; Loetstedt, Per

    2011-01-01

    An algorithm is developed for simulation of the motion and reactions of single molecules at a microscopic level. The molecules diffuse in a solvent and react with each other or a polymer and molecules can dissociate. Such simulations are of interest e.g. in molecular biology. The algorithm is similar to the Green's function reaction dynamics (GFRD) algorithm by van Zon and ten Wolde where longer time steps can be taken by computing the probability density functions (PDFs) and then sample from the distribution functions. Our computation of the PDFs is much less complicated than GFRD and more flexible. The solution of the partial differential equation for the PDF is split into two steps to simplify the calculations. The sampling is without splitting error in two of the coordinate directions for a pair of molecules and a molecule-polymer interaction and is approximate in the third direction. The PDF is obtained either from an analytical solution or a numerical discretization. The errors due to the operator splitting, the partitioning of the system, and the numerical approximations are analyzed. The method is applied to three different systems involving up to four reactions. Comparisons with other mesoscopic and macroscopic models show excellent agreement.

  10. [Investigation of stages of chemical leaching and biooxidation during the extraction of gold from sulfide concentrates].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T V

    2015-01-01

    We examined the chemical leaching and biooxidation stages in a two-stage biooxidation process of an auriferous sulfide concentrate containing pyrrhotite, arsenopyrite and pyrite. Chemical leaching of the concentrate (slurry density at 200 g/L) by ferric sulfate biosolvent (initial concentration at 35.6 g/L), which was obtained by microbial oxidation of ferrous sulfate for 2 hours at 70°C at pH 1.4, was allowed to oxidize 20.4% ofarsenopyrite and 52.1% of sulfur. The most effective biooxidation of chemically leached concentrate was observed at 45°C in the presence of yeast extract. Oxidation of the sulfide concentrate in a two-step process proceeded more efficiently than in one-step. In a two-step mode, gold extraction from the precipitate was 10% higher and the content of elemental sulfur was two times lower than in a one-step process.

  11. On light cluster production in nucleon induced reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Blideanu, V.; Durand, D

    2004-09-01

    A dynamical model dedicated to nucleon induced reaction between 30-150 MeV is presented. It considers different stages of the reaction: the approaching phase, the in-medium nucleon-nucleon collisions, the cluster formation and the secondary de-excitation process. The notions of influence area and phase-space exploration during the reaction are introduced. The importance of the geometry of the reaction and of the conservation laws are underlined. The model is able to globally reproduce the absolute cross sections for the emission of neutron and light charged particles for proton and neutron induced reactions on heavy and intermediate mass targets ({sup 56}Fe and {sup 208}Pb). (authors)

  12. On light cluster production in nucleon induced reactions at intermediate energy

    International Nuclear Information System (INIS)

    Lacroix, D.; Blideanu, V.; Durand, D.

    2004-09-01

    A dynamical model dedicated to nucleon induced reaction between 30-150 MeV is presented. It considers different stages of the reaction: the approaching phase, the in-medium nucleon-nucleon collisions, the cluster formation and the secondary de-excitation process. The notions of influence area and phase-space exploration during the reaction are introduced. The importance of the geometry of the reaction and of the conservation laws are underlined. The model is able to globally reproduce the absolute cross sections for the emission of neutron and light charged particles for proton and neutron induced reactions on heavy and intermediate mass targets ( 56 Fe and 208 Pb). (authors)

  13. No-Core Shell Model and Reactions

    International Nuclear Information System (INIS)

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-01-01

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+ 6 Li and 6 He+p scattering as well as a calculation of the astrophysically important 7 Be(p, γ) 8 B S-factor

  14. Theoretical insights into the effect of terrace width and step edge coverage on CO adsorption and dissociation over stepped Ni surfaces.

    Science.gov (United States)

    Yang, Kuiwei; Zhang, Minhua; Yu, Yingzhe

    2017-07-21

    Vicinal surfaces of Ni are model catalysts of general interest and great importance in computational catalysis. Here we report a comprehensive study conducted with density functional theory on Ni[n(111) × (100)] (n = 2, 3 and 4) surfaces to explore the effect of terrace width and step edge coverage on CO adsorption and dissociation, a probe reaction relevant to many industrial processes. The coordination numbers (CN), the generalized coordination numbers and the d band partial density of states (d-PDOS) of Ni are identified as descriptors to faithfully reflect the difference of the step edge region for Ni[n(111) × (100)]. Based on analysis of the energy diagrams for CO activation and dissociation as well as the structural features of the Ni(311), Ni(211) and Ni(533) surfaces, Ni(211) (n = 3) is proposed as a model of adequate representativeness for Ni[n(111) × (100)] (n≥ 3) surface groups in investigating small molecule activation over such stepped structures. Further, a series of Ni(211) surfaces with the step edge coverage ranging from 1/4 to 1 monolayer (ML) were utilized to assess their effect on CO activation. The results show that CO adsorption is not sensitive to the step edge coverage, which could readily approach 1 ML under a CO-rich atmosphere. In contrast, CO dissociation manifests strong coverage dependence when the coverage exceeds 1/2 ML, indicating that significant adsorbate-adsorbate interactions emerge. These results are conducive to theoretical studies of metal-catalyzed surface processes where the defects play a vital role.

  15. Robotic-assisted laparoscopic radical nephrectomy using the Da Vinci Si system: how to improve surgeon autonomy. Our step-by-step technique.

    Science.gov (United States)

    Davila, Hugo H; Storey, Raul E; Rose, Marc C

    2016-09-01

    Herein, we describe several steps to improve surgeon autonomy during a Left Robotic-Assisted Laparoscopic Radical Nephrectomy (RALRN), using the Da Vinci Si system. Our kidney cancer program is based on 2 community hospitals. We use the Da Vinci Si system. Access is obtained with the following trocars: Two 8 mm robotic, one 8 mm robotic, bariatric length (arm 3), 15 mm for the assistant and 12 mm for the camera. We use curved monopolar scissors in robotic arm 1, Bipolar Maryland in arm 2, Prograsp Forceps in arm 3, and we alternate throughout the surgery with EndoWrist clip appliers and the vessel sealer. Here, we described three steps and the use of 3 robotic instruments to improve surgeon autonomy. Step 1: the lower pole of the kidney was dissected and this was retracted upwards and laterally. This maneuver was performed using the 3rd robotic arm with the Prograsp Forceps. Step 2: the monopolar scissors was replaced (robotic arm 1) with the robotic EndoWrist clip applier, 10 mm Hem-o-Lok. The renal artery and vein were controlled and transected by the main surgeon. Step 3: the superior, posterolateral dissection and all bleeders were carefully coagulated by the surgeon with the EndoWrist one vessel sealer. We have now performed 15 RALRN following these steps. Our results were: blood loss 300 cc, console time 140 min, operating room time 200 min, anesthesia time 180 min, hospital stay 2.5 days, 1 incisional hernia, pathology: (13) RCC clear cell, (1) chromophobe and (1) papillary type 1. Tumor Stage: (5) T1b, (8) T2a, (2) T2b. We provide a concise, step-by-step technique for radical nephrectomy (RN) using the Da Vinci Si robotic system that may provide more autonomy to the surgeon, while maintaining surgical outcome equivalent to standard laparoscopic RN.

  16. Ionic Conductivity and its Role in Oxidation Reactions

    Science.gov (United States)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the

  17. One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production

    Science.gov (United States)

    Manurung, Renita; Ramadhani, Debbie Aditia; Maisarah, Siti

    2017-06-01

    Biodiesel production by using sludge palm oil (SPO) as raw material is generally synthesized in two step reactions, namely esterification and transesterification, because the free fatty acid (FFA) content of SPO is relatively high. However, the presence of choline chloride (ChCl), glycerol based deep eutectic solvent (DES), in transesterification may produce biodiesel from SPO in just one step. In this study, DES was produced by the mixture of ChCl and glycerol at molar ratio of 1:2 at a temperature of 80°C and stirring speed of 400 rpm for 1 hour. DES was characterized by its density and viscosity. The transesterification process was performed at reaction temperature of 70 °C, ethanol to oil molar with ratio of 9:1, sodium hydroxide as catalyst concentration of 1 % wt, DES as cosolvent with concentration of 0 to 5 % wt, stirring speed of 400 rpm, and one hour reaction time. The obtained biodiesel was then assessed with density, viscosity, and ester content as the parameters. FFA content of SPO as the raw material was 7.5290 %. In this case, DES as cosolvent in one step transesterification process of low feedstock could reduce the side reaction (saponification), decrease the time reaction, decrease the surface tension between ethanol and oil, and increase the mass transfer that simultaneously simplified the purification process and obtained the highest yield. The esters properties met the international standards of ASTM D 6751, with the highest yield obtained was 83.19% with 99.55% of ester content and the ratio of ethanol:oil of 9:1, concentration of DES of 4%, catalyst amount of 1%, temperature of reaction at 70°C and stirring speed of 400 rpm.

  18. Reduction of very large reaction mechanisms using methods based on simulation error minimization

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Tibor; Turanyi, Tamas [Institute of Chemistry, Eoetvoes University (ELTE), P.O. Box 32, H-1518 Budapest (Hungary)

    2009-02-15

    A new species reduction method called the Simulation Error Minimization Connectivity Method (SEM-CM) was developed. According to the SEM-CM algorithm, a mechanism building procedure is started from the important species. Strongly connected sets of species, identified on the basis of the normalized Jacobian, are added and several consistent mechanisms are produced. The combustion model is simulated with each of these mechanisms and the mechanism causing the smallest error (i.e. deviation from the model that uses the full mechanism), considering the important species only, is selected. Then, in several steps other strongly connected sets of species are added, the size of the mechanism is gradually increased and the procedure is terminated when the error becomes smaller than the required threshold. A new method for the elimination of redundant reactions is also presented, which is called the Principal Component Analysis of Matrix F with Simulation Error Minimization (SEM-PCAF). According to this method, several reduced mechanisms are produced by using various PCAF thresholds. The reduced mechanism having the least CPU time requirement among the ones having almost the smallest error is selected. Application of SEM-CM and SEM-PCAF together provides a very efficient way to eliminate redundant species and reactions from large mechanisms. The suggested approach was tested on a mechanism containing 6874 irreversible reactions of 345 species that describes methane partial oxidation to high conversion. The aim is to accurately reproduce the concentration-time profiles of 12 major species with less than 5% error at the conditions of an industrial application. The reduced mechanism consists of 246 reactions of 47 species and its simulation is 116 times faster than using the full mechanism. The SEM-CM was found to be more effective than the classic Connectivity Method, and also than the DRG, two-stage DRG, DRGASA, basic DRGEP and extended DRGEP methods. (author)

  19. Step Sizes for Strong Stability Preservation with Downwind-Biased Operators

    KAUST Repository

    Ketcheson, David I.

    2011-08-04

    Strong stability preserving (SSP) integrators for initial value ODEs preserve temporal monotonicity solution properties in arbitrary norms. All existing SSP methods, including implicit methods, either require small step sizes or achieve only first order accuracy. It is possible to achieve more relaxed step size restrictions in the discretization of hyperbolic PDEs through the use of both upwind- and downwind-biased semidiscretizations. We investigate bounds on the maximum SSP step size for methods that include negative coefficients and downwind-biased semi-discretizations. We prove that the downwind SSP coefficient for linear multistep methods of order greater than one is at most equal to two, while the downwind SSP coefficient for explicit Runge–Kutta methods is at most equal to the number of stages of the method. In contrast, the maximal downwind SSP coefficient for second order Runge–Kutta methods is shown to be unbounded. We present a class of such methods with arbitrarily large SSP coefficient and demonstrate that they achieve second order accuracy for large CFL number.

  20. Step growth of an AB2 monomer, with cycle formation

    DEFF Research Database (Denmark)

    Cameron, Colin; Fawcett, Allan H.; Hetherington, Cecil R.

    1998-01-01

    A computer-based lattice model of the step growth reaction of an AB2 monomer, the next elaborate system after an AB monomer, has been devised that allows the simultaneous and explicit occurrence of inter- and intramolecular reactions of A and B groups of the flexible and moving molecules according...... with fractal characteristics. Growth stops when each molecule contains a cycle. For the model explored, in which six lattice sites are used for each monomer, the limiting value of the number average degree of polymerization, 〈x〉n,∞, is 14.6(±0.3) (after infinite time). The occurrence within the system of rings...... of m residues (m=1,2,3,...) is found to depend upon m and the extent of reaction of the A groups, pa, according to Rm=C0pm am-2.71, the constant C0 reflecting the structure of the lattice and the monomer, and being shown to determine the final degree of polymerization. The exponent of the integers m...

  1. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    Norinaga, Koyo; Yang, Huamei; Tanaka, Ryota; Appari, Srinivas; Iwanaga, Keita; Takashima, Yuka; Kudo, Shinji; Shoji, Tetsuya; Hayashi, Jun-ichiro

    2014-01-01

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C 3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  2. An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study.

    Science.gov (United States)

    De Tobel, J; Radesh, P; Vandermeulen, D; Thevissen, P W

    2017-12-01

    Automated methods to evaluate growth of hand and wrist bones on radiographs and magnetic resonance imaging have been developed. They can be applied to estimate age in children and subadults. Automated methods require the software to (1) recognise the region of interest in the image(s), (2) evaluate the degree of development and (3) correlate this to the age of the subject based on a reference population. For age estimation based on third molars an automated method for step (1) has been presented for 3D magnetic resonance imaging and is currently being optimised (Unterpirker et al. 2015). To develop an automated method for step (2) based on lower third molars on panoramic radiographs. A modified Demirjian staging technique including ten developmental stages was developed. Twenty panoramic radiographs per stage per gender were retrospectively selected for FDI element 38. Two observers decided in consensus about the stages. When necessary, a third observer acted as a referee to establish the reference stage for the considered third molar. This set of radiographs was used as training data for machine learning algorithms for automated staging. First, image contrast settings were optimised to evaluate the third molar of interest and a rectangular bounding box was placed around it in a standardised way using Adobe Photoshop CC 2017 software. This bounding box indicated the region of interest for the next step. Second, several machine learning algorithms available in MATLAB R2017a software were applied for automated stage recognition. Third, the classification performance was evaluated in a 5-fold cross-validation scenario, using different validation metrics (accuracy, Rank-N recognition rate, mean absolute difference, linear kappa coefficient). Transfer Learning as a type of Deep Learning Convolutional Neural Network approach outperformed all other tested approaches. Mean accuracy equalled 0.51, mean absolute difference was 0.6 stages and mean linearly weighted kappa was

  3. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  4. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-07-26

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.

  5. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  6. Kinetic isotope effect in the reaction of dehydration of fructose into 5-hydroxymethylfurfural

    International Nuclear Information System (INIS)

    Grin', S.A.; Tsimbaliev, S.R.; Gel'fand, S.Yu.

    1993-01-01

    Kinetic isotopic effect in the reaction of fructose dehydration into 5- hydroxymethylfurfural was determined. The results suggest hydrogen participation in the limiting stage of the process. The assumption that proton addition to 4, 5, 6 -trihydroxy - 2- on - hexal is the limiting stage is made

  7. Step Cut Lengthening: A Technique for Treatment of Flexor Pollicis Longus Tendon Rupture.

    Science.gov (United States)

    Chong, Chew-Wei; Chen, Shih-Heng

    2018-04-01

    Reconstruction of a tendon defect is a challenging task in hand surgery. Delayed repair of a ruptured flexor pollicis longus (FPL) tendon is often associated with tendon defect. Primary repair of the tendon is often not possible, particularly after debridement of the unhealthy segment of the tendon. As such, various surgical treatments have been described in the literature, including single-stage tendon grafting, 2-stage tendon grafting, flexor digitorum superficialis tendon transfer from ring finger, and interphalangeal joint arthrodesis. We describe step cut lengthening of FPL tendon for the reconstruction of FPL rupture. This is a single-stage reconstruction without the need for tendon grafting or tendon transfer. To our knowledge, no such technique has been previously described.

  8. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    Science.gov (United States)

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Crucial steps to life: From chemical reactions to code using agents.

    Science.gov (United States)

    Witzany, Guenther

    2016-02-01

    The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept

    International Nuclear Information System (INIS)

    Gu, Di; Shao, Nan; Zhu, Yanji; Wu, Hongjun; Wang, Baohui

    2017-01-01

    Highlights: • STEP for NB treatment was established without input of energy and chemicals. • Treatment of NB was theoretically and experimentally studied by STEP. • The results demonstrated that STEP is more efficient than classical AOPs. • The mechanism of STEP was illustratively presented for NB wastewater. - Abstract: The STEP concept has successfully been demonstrated for driving chemical reaction by utilization of solar heat and electricity to minimize the fossil energy, meanwhile, maximize the rate of thermo- and electrochemical reactions in thermodynamics and kinetics. This pioneering investigation experimentally exhibit that the STEP concept is adapted and adopted efficiently for degradation of nitrobenzene. By employing the theoretical calculation and thermo-dependent cyclic voltammetry, the degradation potential of nitrobenzene was found to be decreased obviously, at the same time, with greatly lifting the current, while the temperature was increased. Compared with the conventional electrochemical methods, high efficiency and fast degradation rate were markedly displayed due to the co-action of thermo- and electrochemical effects and the switch of the indirect electrochemical oxidation to the direct one for oxidation of nitrobenzene. A clear conclusion on the mechanism of nitrobenzene degradation by the STEP can be schematically proposed and discussed by the combination of thermo- and electrochemistry based the analysis of the HPLC, UV–vis and degradation data. This theory and experiment provide a pilot for the treatment of nitrobenzene wastewater with high efficiency, clean operation and low carbon footprint, without any other input of energy and chemicals from solar energy.

  11. Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Di; Shao, Nan; Zhu, Yanji; Wu, Hongjun; Wang, Baohui, E-mail: wangbh@nepu.edu.cn

    2017-01-05

    Highlights: • STEP for NB treatment was established without input of energy and chemicals. • Treatment of NB was theoretically and experimentally studied by STEP. • The results demonstrated that STEP is more efficient than classical AOPs. • The mechanism of STEP was illustratively presented for NB wastewater. - Abstract: The STEP concept has successfully been demonstrated for driving chemical reaction by utilization of solar heat and electricity to minimize the fossil energy, meanwhile, maximize the rate of thermo- and electrochemical reactions in thermodynamics and kinetics. This pioneering investigation experimentally exhibit that the STEP concept is adapted and adopted efficiently for degradation of nitrobenzene. By employing the theoretical calculation and thermo-dependent cyclic voltammetry, the degradation potential of nitrobenzene was found to be decreased obviously, at the same time, with greatly lifting the current, while the temperature was increased. Compared with the conventional electrochemical methods, high efficiency and fast degradation rate were markedly displayed due to the co-action of thermo- and electrochemical effects and the switch of the indirect electrochemical oxidation to the direct one for oxidation of nitrobenzene. A clear conclusion on the mechanism of nitrobenzene degradation by the STEP can be schematically proposed and discussed by the combination of thermo- and electrochemistry based the analysis of the HPLC, UV–vis and degradation data. This theory and experiment provide a pilot for the treatment of nitrobenzene wastewater with high efficiency, clean operation and low carbon footprint, without any other input of energy and chemicals from solar energy.

  12. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

    Directory of Open Access Journals (Sweden)

    Benjamin F. Schultz

    2016-07-01

    Full Text Available In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.

  13. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    Science.gov (United States)

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  15. The reductive decomposition of calcium sulphate I. Kinetics of the apparent solid-solid reaction

    NARCIS (Netherlands)

    Kamphuis, B.; Potma, A.W.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    The reductive decomposition of calcium sulphate by hydrogen is used for the regeneration of calcium-based atmospheric fluidized bed combustion (AFBC) SO2 sorbents. The apparent solid¿solid reaction between CaS and CaSO4, one of the steps involved in the reaction mechanism of the reductive

  16. Insects and their life cycle: Steps to take to assess threats

    Science.gov (United States)

    Alicia M. Bray; Jason B. Oliver

    2013-01-01

    This paper provides a brief overview of the importance of wood-boring insects to the forest nursery industry. Descriptions of the major insect groups are provided with special attention to the life stages that are most problematic within each group. Steps are provided to guide individuals to mitigate potential threats if a new insect is detected causing damage to trees...

  17. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  18. Creating Socionas : Building creative understanding of people's experiences in the early stages of new product development

    NARCIS (Netherlands)

    Postma, C.E.

    2012-01-01

    This work presents the research into Creating Socionas, a step-by-step approach to building creative understanding of user experience in the early stages of new product development (NPD). Creative understanding is the combination of a rich, cognitive and affective understanding of the other, and the

  19. Positronium reactions in the Triton X-100-p-nitro phenol system

    International Nuclear Information System (INIS)

    Kumar Das, S.; Nandi Ganguly, B.

    1997-01-01

    The positronium reactions have been used as a probe to study the solubilization of p-nitro phenol within the micellar phase of a Triton X-100 solution and the corresponding changes in the molecular association phenomenon. The presence of p-nitro phenol resulted in an enhancement of micellization which has been corroborated by surface tension measurements. This paper also lays emphasis on the secondary aggregation phenomenon of Triton X-100 molecules at the far post-micellar stage (∼ 10-15 mM). The solubilization of p-nitro phenol at various stages of aggregation has been discussed through the interaction with positronium atoms by setting up a kinetic model and reaction equilibria. (author)

  20. Hydrogen electrode reaction: A complete kinetic description

    International Nuclear Information System (INIS)

    Quaino, P.M.; Gennero de Chialvo, M.R.; Chialvo, A.C.

    2007-01-01

    The kinetic description of the hydrogen electrode reaction (HER) in the whole range of overpotentials (-0.2 < η (V) < 0.40) is presented. The Volmer-Heyrovsky-Tafel mechanism was solved considering simultaneously the following items: (i) the diffusional contribution of the molecular hydrogen from and towards the electrode surface, (ii) the forward and backward reaction rates of each elementary step and (iii) a Frumkin type adsorption for the reaction intermediate. In order to verify the descriptive capability of the kinetic expressions derived, an experimental study of the HER was carried out on a rotating platinum disc electrode in acid solution. From the correlation of these results the elementary kinetic parameters were evaluated and several aspects related to the kinetic mechanism were discussed. Finally, the use of these kinetic expressions to interpret results obtained on microelectrodes is also analysed