WorldWideScience

Sample records for stage metrology shorya

  1. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.

    Science.gov (United States)

    Lou, Yingtian; Yan, Liping; Chen, Benyong; Zhang, Shihua

    2017-03-20

    A laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors is proposed for precision linear stage metrology. In this interferometer, the vertical straightness error and its position are measured by interference fringe counting, the yaw and pitch errors are obtained by measuring the spacing changes of interference fringe and the horizontal straightness and roll errors are determined by laser collimation. The merit of this interferometer is that four degrees of freedom motion errors are obtained by using laser interferometry with high accuracy. The optical configuration of the proposed interferometer is designed. The principle of the simultaneous measurement of six degrees of freedom errors including yaw, pitch, roll, two straightness errors and straightness error's position of measured linear stage is depicted in detail, and the compensation of crosstalk effects on straightness error and its position measurements is presented. At last, an experimental setup is constructed and several experiments are performed to demonstrate the feasibility of the proposed interferometer and the compensation method.

  2. FOREWORD: Neutron metrology Neutron metrology

    Science.gov (United States)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  3. Temperature metrology

    International Nuclear Information System (INIS)

    Fischer, J; Fellmuth, B

    2005-01-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  4. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, Steven R.; Woody, Shane C.; Ellis, Jonathan D.

    2016-01-01

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  5. Metrology of image placement

    International Nuclear Information System (INIS)

    Starikov, Alexander

    1998-01-01

    Metrology of registration, overlay and alignment offset in microlithography are discussed. Requirements and limitations are traced to the device ground rules and the definitions of edge, linewidth and centerline. Precision, accuracy, system performance and metrology in applications are discussed. The impact of image acquisition and data handling on performance is elucidated. Much attention is given to the manufacturing environment and effects of processing. General new methods of metrology error diagnostics and technology characterization are introduced and illustrated. Applications of these diagnostics to tests of tool performance, error diagnostics and culling, as well as to process integration in manufacturing are described. Realistic overlay reference materials and results of accuracy evaluations are discussed. Requirements in primary standards and alternative metrology are explained. The role and capability of SEM based overlay metrology is described, along with applications to device overlay metrology

  6. Metrology and testing

    International Nuclear Information System (INIS)

    2010-01-01

    The chapter presents the Metrology Service of Ionizing Radiation (SEMRI), the Metrology Service of Radioisotopes (SEMRA), the External Individual Monitoring Service (SEMEX), the Internal Individual Monitoring Service (SEMIN) and the associated laboratories, the analysis of environmental samples, system for management of quality from IRD and the National Program for intercomparison results of environmental samples analysis to radioisotopes determination

  7. Metrology Measurement Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  8. High accuracy flatness metrology within the European Metrology Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael, E-mail: Michael.Schulz@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ehret, Gerd [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Křen, Petr [Czech Metrology Institute (CMI), V Botanice 4, CZ-150 00 Praha (Czech Republic)

    2013-05-11

    Recently, a project within the European Metrology Research Program (EMRP) started with the aim of improving the form metrology of optical surfaces. Within this project, in a work package on high accuracy flatness metrology, the National Metrology Institutes of the Czech Republic (CMI) and Germany (PTB) are involved. In the following, this EMRP project, the capabilities of CMI and PTB and the aims of the project will be presented. The new developments in flatness metrology cover the reduction of uncertainty, the enhancement of lateral resolution of deflectometric methods and the test of capacitive sensors for flatness metrology.

  9. Metrology of electrical quantum

    International Nuclear Information System (INIS)

    Camon, A.

    1996-01-01

    Since 1989 the electrical metrology laboratory of TPYCEA and the low temperature physics department of ICMA have been collaborating in the development of electrical quantum metrology. ICMA has been mainly dedicated to implement the state of the art quantum standards for which its experience on cryogenics, superconductivity and low noise instrumentation was essential. On the other hand TPYCEA concentrated its efforts on the metrological aspects, in which it has great experience. The complimentary knowledge of both laboratories, as well as the advice obtained from several prestigious metrology institutes was the key to successful completion of the two projects so far developed: i) The Josephson voltage standard (1989-1991) ii) The quantum Hall resistance standard (1991-1996) This report contains a description of both projects. Even though we can consider that the two projects are finished from the instrumental and metrological point of view, there is still a strong cooperation between ICMA and TPYCEA on the improvement of these standards, as well as on their international validation

  10. Realizing "value-added" metrology

    Science.gov (United States)

    Bunday, Benjamin; Lipscomb, Pete; Allgair, John; Patel, Dilip; Caldwell, Mark; Solecky, Eric; Archie, Chas; Morningstar, Jennifer; Rice, Bryan J.; Singh, Bhanwar; Cain, Jason; Emami, Iraj; Banke, Bill, Jr.; Herrera, Alfredo; Ukraintsev, Vladamir; Schlessinger, Jerry; Ritchison, Jeff

    2007-03-01

    The conventional premise that metrology is a "non-value-added necessary evil" is a misleading and dangerous assertion, which must be viewed as obsolete thinking. Many metrology applications are key enablers to traditionally labeled "value-added" processing steps in lithography and etch, such that they can be considered integral parts of the processes. Various key trends in modern, state-of-the-art processing such as optical proximity correction (OPC), design for manufacturability (DFM), and advanced process control (APC) are based, at their hearts, on the assumption of fine-tuned metrology, in terms of uncertainty and accuracy. These trends are vehicles where metrology thus has large opportunities to create value through the engineering of tight and targetable process distributions. Such distributions make possible predictability in speed-sorts and in other parameters, which results in high-end product. Additionally, significant reliance has also been placed on defect metrology to predict, improve, and reduce yield variability. The necessary quality metrology is strongly influenced by not only the choice of equipment, but also the quality application of these tools in a production environment. The ultimate value added by metrology is a result of quality tools run by a quality metrology team using quality practices. This paper will explore the relationships among present and future trends and challenges in metrology, including equipment, key applications, and metrology deployment in the manufacturing flow. Of key importance are metrology personnel, with their expertise, practices, and metrics in achieving and maintaining the required level of metrology performance, including where precision, matching, and accuracy fit into these considerations. The value of metrology will be demonstrated to have shifted to "key enabler of large revenues," debunking the out-of-date premise that metrology is "non-value-added." Examples used will be from critical dimension (CD

  11. Metrology for WEST components design and integration optimization

    International Nuclear Information System (INIS)

    Brun, C.; Archambeau, G.; Blanc, L.; Bucalossi, J.; Chantant, M.; Gargiulo, L.; Hermenier, A.; Le, R.; Pilia, A.

    2015-01-01

    Highlights: • Metrology methods. • Interests of metrology campaign to optimize margins by reducing uncertainties. • Assembly problems are solved and validated on a numerical mock up. • Post treatment of full 3DScan of the vacuum vessel. - Abstract: On WEST new components will be implemented in an existing environment, emphasis has to be put on the metrology to optimize the design and the assembly. Hence, at a particular stage of the project, several components have to coexist in the limited vessel. Therefore, all the difficulty consists in validating the mechanical interfaces between existing components and new one; minimize the risk of the assembling and to maximize the plasma volume. The CEA/IRFM takes the opportunity of the ambitious project to sign a partnership with an industrial specialized in multipurpose metrology domains. To optimize the assembly procedure, the IRFM Assembly group works in strong collaboration with its industrial, to define and plan the campaigns of metrology. The paper will illustrate the organization, methods and results of the dedicated metrology campaigns have been defined and carried out in the WEST dis/assembly phase. To conclude, the future needs of metrology at CEA/IRFM will be exposed to define the next steps.

  12. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  13. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  14. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: Advanced metrology for an early stage photovoltaic material

    Science.gov (United States)

    Jaramillo, R.; Sher, Meng-Ju; Ofori-Okai, Benjamin K.; Steinmann, V.; Yang, Chuanxi; Hartman, Katy; Nelson, Keith A.; Lindenberg, Aaron M.; Gordon, Roy G.; Buonassisi, T.

    2016-01-01

    Materials research with a focus on enhancing the minority-carrier lifetime of the light-absorbing semiconductor is key to advancing solar energy technology for both early stage and mature material platforms alike. Tin sulfide (SnS) is an absorber material with several clear advantages for manufacturing and deployment, but the record power conversion efficiency remains below 5%. We report measurements of bulk and interface minority-carrier recombination rates in SnS thin films using optical-pump, terahertz-probe transient photoconductivity (TPC) measurements. Post-growth thermal annealing in H2S gas increases the minority-carrier lifetime, and oxidation of the surface reduces the surface recombination velocity. However, the minority-carrier lifetime remains below 100 ps for all tested combinations of growth technique and post-growth processing. Significant improvement in SnS solar cell performance will hinge on finding and mitigating as-yet-unknown recombination-active defects. We describe in detail our methodology for TPC experiments, and we share our data analysis routines in the form freely available software.

  15. Combining classical metrology models

    OpenAIRE

    Francisco Roldán

    2013-01-01

    The results obtained in the graphic analysis of the modulation of the Cuarto Real de Santo Domingo building in Granada, Spain, (ROLDÁN, 2011) have provided new insights to further approach the research on possible use the double-scale in historical monumental architecture. We propose the characterization of the singularities of the system, from the implications and graphic representation required by the metrological scheme identified, as well as the variety of typologies that are presented in...

  16. Computed tomography for dimensional metrology

    DEFF Research Database (Denmark)

    Kruth, J.P.; Bartscher, M.; Carmignato, S.

    2011-01-01

    metrology, putting emphasis on issues as accuracy, traceability to the unit of length (the meter) and measurement uncertainty. It provides a state of the art (anno 2011) and application examples, showing the aptitude of CT metrology to: (i) check internal dimensions that cannot be measured using traditional...

  17. Metrological Support in Technosphere Safety

    Science.gov (United States)

    Akhobadze, G. N.

    2017-11-01

    The principle of metrological support in technosphere safety is considered. It is based on the practical metrology. The theoretical aspects of accuracy and errors of the measuring instruments intended for diagnostics and control of the technosphere under the influence of factors harmful to human beings are presented. The necessity to choose measuring devices with high metrological characteristics according to the accuracy class and contact of sensitive elements with a medium under control is shown. The types of additional errors in measuring instruments that arise when they are affected by environmental influences are described. A specific example of the analyzers application to control industrial emissions and measure the oil and particulate matter in wastewater is shown; it allows assessing advantages and disadvantages of analyzers. Besides, the recommendations regarding the missing metrological characteristics of the instruments in use are provided. The technosphere continuous monitoring taking into account the metrological principles is expected to efficiently forecast the technosphere development and make appropriate decisions.

  18. Management of metrology in measuring of the displacement of building construction

    Directory of Open Access Journals (Sweden)

    Jiří Kratochvíl

    2007-06-01

    Full Text Available The metrology management of the measurement of the displacement of building construction is not regulated in the standard ČSN ISO 73 0405 - Measurement of the displacement of building construction. But the metrology management has to be included in the project of measurement of the displacement (Stage of project. Then we have to pay an attention to the metrological management during this measurement (Stage of realization and during the evaluation of this measurement (Stage of evaluation. We have to insist on the subsequent improving of metrology management within the frame of the next project (so-called feedback. The metrology management in the measurement of the displacement during the stages should be based on an application of statutory instruments and technical standards. We should insist especially on the system of standards for the quality control ISO 9000. Considering specialities of geodetic measurements it is necessary to adapt the metrology management. That is why it will differ from the metrology management in other fields of knowledge. This paper includes some steps of metrological provision which must not be ignored.

  19. Combining classical metrology models

    Directory of Open Access Journals (Sweden)

    Francisco Roldán

    2013-11-01

    Full Text Available The results obtained in the graphic analysis of the modulation of the Cuarto Real de Santo Domingo building in Granada, Spain, (ROLDÁN, 2011 have provided new insights to further approach the research on possible use the double-scale in historical monumental architecture. We propose the characterization of the singularities of the system, from the implications and graphic representation required by the metrological scheme identified, as well as the variety of typologies that are presented in their modular frames, and the iterative combination of two-scale modules which allow operational approximations to fractions and ratios not explicitly present in the system.

  20. Dimensional Metrology for Microtechnology

    DEFF Research Database (Denmark)

    Bariani, Paolo

    2005-01-01

    repositioning of the AFM through the CMM axes. However, the existing manual stitching of images was affected by heavy inaccuracies. During the Ph.D. work, stitching software was developed, which performs stitching of AFM images based on partial overlapping and cross correlation. This method allows compensation...... was proposed and the principle demonstrated on software gauges. Simulations of Surface Mapping were done, based on the model developed. Direct performance verification of the Large Range AFM was eventually carried out, and lateral metrology was possible, in the millimeter range, with accuracy in the order...... of one percent, with this instrument. Uncertainty is dominated by residual non linearity after off line correction. SEM based stereo-photogrammetry was also studied. A commercially available software package was purchased. The working hypothesis for the package in use was eucentric tilting. This is only...

  1. Status and Strategy for Moisture Metrology in European Metrology Institutes

    Science.gov (United States)

    Bell, S.; Boese, N.; Bosma, R.; Buzoianu, M.; Carroll, P.; Fernicola, V.; Georgin, E.; Heinonen, M.; Kentved, A.; Melvad, C.; Nielsen, J.

    2015-08-01

    Measurement of moisture in materials presents many challenges, due to diverse measuring principles, sample interactions with atmosphere, and variation in what is measured (either water content alone or moisture including other liquids). Calibrations are variously referenced to published standard methods, primary calibration facilities, or certified reference materials, but each of these addresses limited substances and ranges of measurement. Overall, metrology infrastructure is not as fully developed or coherent for this field as it is for many other areas of measurement. In order to understand the metrology needs and to support developments, several European national metrology institutes (NMIs) have undertaken some collaborative activities. These have included a "cooperation in research" project for sharing of information, a survey of moisture capabilities at NMIs, the formulation of a strategy for moisture metrology at the NMI level, and a funded research project to develop improved metrology for the moisture field. This paper summarizes the information gathered, giving an overview of the status of moisture metrology at NMIs, and it reports a proposed strategy to improve the current situation.

  2. Color and appearance metrology facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST Physical Measurement Laboratory has established the color and appearance metrology facility to support calibration services for 0°/45° colored samples, 20°,...

  3. CSAM Metrology Software Tool

    Science.gov (United States)

    Vu, Duc; Sandor, Michael; Agarwal, Shri

    2005-01-01

    CSAM Metrology Software Tool (CMeST) is a computer program for analysis of false-color CSAM images of plastic-encapsulated microcircuits. (CSAM signifies C-mode scanning acoustic microscopy.) The colors in the images indicate areas of delamination within the plastic packages. Heretofore, the images have been interpreted by human examiners. Hence, interpretations have not been entirely consistent and objective. CMeST processes the color information in image-data files to detect areas of delamination without incurring inconsistencies of subjective judgement. CMeST can be used to create a database of baseline images of packages acquired at given times for comparison with images of the same packages acquired at later times. Any area within an image can be selected for analysis, which can include examination of different delamination types by location. CMeST can also be used to perform statistical analyses of image data. Results of analyses are available in a spreadsheet format for further processing. The results can be exported to any data-base-processing software.

  4. Metrological Reliability of Medical Devices

    Science.gov (United States)

    Costa Monteiro, E.; Leon, L. F.

    2015-02-01

    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  5. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  6. Absolute metrology for space interferometers

    Science.gov (United States)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  7. Subaperture metrology technologies extend capabilities in optics manufacturing

    Science.gov (United States)

    Tricard, Marc; Forbes, Greg; Murphy, Paul

    2005-10-01

    Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.

  8. Metrology at Philip Morris Europe

    Directory of Open Access Journals (Sweden)

    Gualandris R

    2014-12-01

    Full Text Available The importance of the metrology function at Philip Morris Europe (PME, a multinational organisation producing at over 40 sites in the European, Middle Eastern and African Regions is presented. Standardisation of test methods and equipment as well as the traceability of calibration gauges to the same reference gauge are essential in order to obtain comparable results among the various production centers. The metrology function as well as the qualification of instruments and the drafting of test and calibration operating procedures for this region are conducted or co-ordinated by the Research and Development Department in Neuchatel, Switzerland. In this paper the metrology function within PME is presented based on the measurement of the resistance to draw for which the PME R&D laboratory is accredited (ISO/CEI 17025, as both a calibration and a testing laboratory. The following topics are addressed in this paper: traceability of calibration standards to national standards; comparison of results among manufacturing centres; the choice, the budget as well as the computation of uncertainties. Furthermore, some practical aspects related to the calibration and use of the glass multicapillary gauges are discussed.

  9. Metrology of cesium ion thrusters

    International Nuclear Information System (INIS)

    Benoist, Roger; Labbe, Jean; Le Grives, Emile

    1974-01-01

    The various controls necessary to characterize cesium ion thrusters are presented. The following metrological process was developed by the ONERA: control of the thermal equilibrium and regulation of the temperature of the ionizer and of the cesium supply device, control of the ion current emission characterized both globally and locally, control of the ionization yield by the determination of the number of neutral cesium atoms by means of an appropriate detector and analysis of the structure of the beam by mapping the ionic current density. This characterization is completed by the results of cyclic regime tests runs reproducing the working conditions in satellites [fr

  10. Software Metrics and Software Metrology

    CERN Document Server

    Abran, Alain

    2010-01-01

    Most of the software measures currently proposed to the industry bring few real benefits to either software managers or developers. This book looks at the classical metrology concepts from science and engineering, using them as criteria to propose an approach to analyze the design of current software measures and then design new software measures (illustrated with the design of a software measure that has been adopted as an ISO measurement standard). The book includes several case studies analyzing strengths and weaknesses of some of the software measures most often quoted. It is meant for sof

  11. Opportunities and Risks in Semiconductor Metrology

    Science.gov (United States)

    Borden, Peter

    2005-09-01

    New metrology opportunities are constantly emerging as the semiconductor industry attempts to meet scaling requirements. The paper summarizes some of the key FEOL and BEOL needs. These must be weighed against a number of considerations to ensure that they are good opportunities for the metrology equipment supplier. The paper discusses some of these considerations.

  12. Fractal Metrology for biogeosystems analysis

    Science.gov (United States)

    Torres-Argüelles, V.; Oleschko, K.; Tarquis, A. M.; Korvin, G.; Gaona, C.; Parrot, J.-F.; Ventura-Ramos, E.

    2010-11-01

    The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay) and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM). We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  13. Fractal Metrology for biogeosystems analysis

    Directory of Open Access Journals (Sweden)

    V. Torres-Argüelles

    2010-11-01

    Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  14. Metrological assurance in radiochemical production

    Directory of Open Access Journals (Sweden)

    Yuliya A. Tadevosyan

    2017-01-01

    Full Text Available Introduction: Radiochemical production is one of the richest in terms of data for analytical control, high-quality implementation of which is impossible without using type approved reference materials (RMs. Industry-specific institutes used to satisfy the demand for RMs, many of which nowadays have ceased this type of activities due to various reasons. The paper in question covers problems of metrological support in radiochemical production caused by the lack of type approved RMs.Materials and methods: Technologies used for obtaining homogeneous reference material for radiochemical production are described. Methods and measuring instruments used for certifying RMs are listed.Results: Results of developing certified reference materials at Mayak Production Association are given. Examples of codeveloping RMs of triuranium octoxide and plutonium dioxide are provided.Discussion and conclusions: Assessment of the current situation in terms of provision of type approved RMs is given. The paper provides data on availability of raw material, quality of instrument and methodological base in order to create a reference material production site at Mayak Production Association. Results of step-by-step solutions to problems of metrological assurance in radiochemical production are presented. Research prospects of developing RMs for inductively coupled plasma mass spectrometry are outlined. An outlook is given and practical proposals are formulated in the paper. The proposals in question are related to the interaction between institutes and enterprises of the field in terms of developing type approved RMs. 

  15. 100 Years of radionuclide metrology

    International Nuclear Information System (INIS)

    Judge, S.M.; Arnold, D.; Chauvenet, B.; Collé, R.; De Felice, P.; García-Toraño, E.; Wätjen, U.

    2014-01-01

    The discipline of radionuclide metrology at national standards institutes started in 1913 with the certification by Curie, Rutherford and Meyer of the first primary standards of radium. In early years, radium was a valuable commodity and the aim of the standards was largely to facilitate trade. The focus later changed to providing standards for the new wide range of radionuclides, so that radioactivity could be used for healthcare and industrial applications while minimising the risk to patients, workers and the environment. National measurement institutes responded to the changing demands by developing new techniques for realising primary standards of radioactivity. Looking ahead, there are likely to be demands for standards for new radionuclides used in nuclear medicine, an expansion of the scope of the field into quantitative imaging to facilitate accurate patient dosimetry for nuclear medicine, and an increasing need for accurate standards for radioactive waste management and nuclear forensics. - Highlights: • The driving forces for the development of radionuclide metrology. • Radium standards to facilitate trade of this valuable commodity in the early years. • After 1950, focus changes to healthcare and industrial applications. • National Measurement Institutes develop new techniques, standards, and disseminate the best practice in measurement. • Challenges in nuclear medicine, radioactive waste management and nuclear forensics

  16. Electromagnetic compatibility and interference metrology

    Science.gov (United States)

    Ma, M. T.; Kanda, M.

    1986-07-01

    The material included in the report is intended for a short course on electromagnetic compatibility/interference (EMC/EM) metrology. The entire course is presented in nine chapters with the introductory part given as Chapter 1. The particular measurement topics to be covered are: (1) open sites (Chapters 2 and 6), (2) transverse electromagnetic cells (Chapter 3), (3) techniques for measuring the electromagnetic shielding of materials (Chapter 4), (4) anechoic chambers (Chapter 5), and (5) reverberating chambers (Chapter 8). In addition, since small probe antennas play an important role in some of the EMC/EMI measurements discussed, a separate chapter on various probe systems developed at NBS is given in Chapter 7. Selected contemporary EMI topics such as the characterization and measurement of a complex EM environment, interferences in the form of out-of-band receptions to an antenna, and some conducted EMI problems are also briefly discussed (Chapter 9).

  17. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  18. Metrology in Pharmaceutical Industry - A Case Study

    Science.gov (United States)

    Yuvamoto, Priscila D.; Fermam, Ricardo K. S.; Nascimento, Elizabeth S.

    2016-07-01

    Metrology is recognized by improving production process, increasing the productivity, giving more reliability to the measurements and consequently, it impacts in the economy of a country. Pharmaceutical area developed GMP (Good Manufacture Practice) requeriments, with no introduction of metrological concepts. However, due to Nanomedicines, it is expected this approach and the consequent positive results. The aim of this work is to verify the level of metrology implementation in a Brazilian pharmaceutical industry, using a case study. The purpose is a better mutual comprehension by both areas, acting together and governmental support to robustness of Brazilian pharmaceutical area.

  19. Metrology in Pharmaceutical Industry - A Case Study

    International Nuclear Information System (INIS)

    Yuvamoto, Priscila D.; Fermam, Ricardo K. S.; Nascimento, Elizabeth S.

    2016-01-01

    Metrology is recognized by improving production process, increasing the productivity, giving more reliability to the measurements and consequently, it impacts in the economy of a country. Pharmaceutical area developed GMP (Good Manufacture Practice) requeriments, with no introduction of metrological concepts. However, due to Nanomedicines, it is expected this approach and the consequent positive results. The aim of this work is to verify the level of metrology implementation in a Brazilian pharmaceutical industry, using a case study. The purpose is a better mutual comprehension by both areas, acting together and governmental support to robustness of Brazilian pharmaceutical area. (paper)

  20. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  1. Information modeling for interoperable dimensional metrology

    CERN Document Server

    Zhao, Y; Brown, Robert; Xu, Xun

    2014-01-01

    This book analyzes interoperability issues in dimensional metrology systems and describes information modeling techniques. Coverage includes theory, techniques and key technologies, and explores new approaches for solving real-world interoperability problems.

  2. UPWIND 1A2 Metrology. Final Report

    DEFF Research Database (Denmark)

    Eecen, P.J.; Wagenaar, J.W.; Stefanatos, N.

    by metrology problems (measurement problems). Other examples are in the fields of: • Warranty performance measurements • Improvement of aerodynamic codes • Assessment of wind resources In general terms the uncertainties of the testing techniques and methods are typically much higher than the requirements....... Since this problem covers many areas of wind energy, the work package is defined as a crosscutting activity. The objectives of the metrology work package are to develop metrology tools in wind energy to significantly enhance the quality of measurement and testing techniques. The first deliverable...... is a valuable tool for the further assessment and interest has been shown from other work packages, such as Training. This report describes the activities that have been carried out in the Work Package 1A2 Metrology of the UpWind project. Activities from Risø are described in a separate report: T.F. Pedersen...

  3. The quality of measurements a metrological reference

    CERN Document Server

    Fridman, A E

    2012-01-01

    This book provides a detailed discussion and commentary on the fundamentals of metrology. The fundamentals of metrology, the principles underlying the design of the SI International System of units, the theory of measurement error, a new methodology for estimation of measurement accuracy based on uncertainty, and methods for reduction of measured results and estimation of measurement uncertainty are all discussed from a modern point of view. The concept of uncertainty is shown to be consistent with the classical theory of accuracy. The theory of random measurement errors is supplemented by a very general description based on the generalized normal distribution; systematic instrumental error is described in terms of a methodology for normalizing the metrological characteristics of measuring instruments. A new international system for assuring uniformity of measurements based on agreements between national metrological institutes is discussed, in addition to the role and procedure for performance of key compari...

  4. Two Approaches to Calibration in Metrology

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mark

    2014-04-01

    Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.

  5. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  6. Attosecond Metrology Comes of Age

    Science.gov (United States)

    Kienberger, Reinhard; Krausz, Ferenc

    Atoms exposed to a few oscillation cycles of intense visible or near-infrared light are able to emit a single X-ray burst of sub-femtosecond duration (1fs = 10-15 s). Precise temporal control of this energetic photon emission can be achieved by full control of the hyperfast field oscillations in the laser pulses driving the emission process. Sub-femtosecond X-ray pulses along with intense, synchronized, waveform-controlled few-cycle laser pulses led to the development of a new measuring apparatus, which has been dubbed a light-field-controlled streak camera. It measures the time-momentum distribution of electrons ejected from atoms following an impulsive excitation by a sub-femtosecond X-ray pulse. From the time-momentum distribution of ejected primary (photo) and secondary (Auger) electrons the excitation dynamics (i.e. characteristics of the exciting X-ray pulse) and the subsequent relaxation of the electron shell of the excited atom, respectively, can be inferred, currently with a resolution of âe 1/4 100 attoseconds (1as = 10-18 s). The techniques reviewed in this paper offer the potential for advancing time-domain metrology towards the atomic unit of time (24 as).

  7. Maximum-information photoelectron metrology

    Science.gov (United States)

    Hockett, P.; Lux, C.; Wollenhaupt, M.; Baumert, T.

    2015-07-01

    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are high-information, coherent observables. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, three-dimensional (3D), photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyze the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et al., Phys. Rev. Lett. 112, 223001 (2014), 10.1103/PhysRevLett.112.223001] concerning the main spectral features, but also indicate unexpected symmetry breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum-information measurements of coherent observables for quantum metrology of complex systems.

  8. High accuracy absolute distance metrology

    Science.gov (United States)

    Swinkels, Bas L.; Bhattacharya, Nandini; Verlaan, Ad L.; Braat, Joseph J. M.

    2017-11-01

    One of ESA's future missions is the Darwin Space Interferometer, which aims to detect planets around nearby stars using optical aperture synthesis with free-flying telescopes. Since this involves interfering white (infra-red) light over large distances, the mission is not possible without a complex metrology system that monitors various speeds, distances and angles between the satellites. One of its sub-systems should measure absolute distances with an accuracy of around 70 micrometer over distances up to 250 meter. To enable such measurements, we are investigating a technique called frequency sweeping interferometry, in which a single laser is swept over a large known frequency range. Central to our approach is the use of a very stable, high finesse Fabry-Ṕerot cavity, to which the laser is stabilized at the endpoints of the frequency sweep. We will discuss the optical set-up, the control system that controls the fast sweeping, the calibration and the data analysis. We tested the system using long fibers and achieved a repeatability of 50 micrometers at a distance of 55 meters. We conclude with some recommendations for further improvements and the adaption for use in space.

  9. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  10. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  11. Interoperability: linking design and tolerancing with metrology.

    Science.gov (United States)

    Morse, Edward; Heysiattalab, Saeed; Barnard-Feeney, Allison; Hedberg, Thomas

    2016-01-01

    On October 30, 2014 the American National Standards Institute (ANSI) approved QIF v 2.0 (Quality Information Framework, version 2.0) as an American National Standard. Subsequently in early 2016 QIF version 2.1 was approved. This paper describes how the QIF standard models the information necessary for quality workflow across the full metrology enterprise. After a brief description of the XML 'language' used in the standard, the paper reports on how the standard enables information exchange among four major activities in the metrology enterprise (product definition; measurement planning; measurement execution; and the analysis and reporting of the quality data).

  12. Vacuum Technology Considerations For Mass Metrology

    Science.gov (United States)

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  13. Three-dimensional metrology for printed electronics

    Science.gov (United States)

    Bromberg, Vadim; Harding, Kevin

    2017-05-01

    Novel materials and printing technologies can enable rapid and low cost prototyping and manufacturing of electronic devices with increased flexibility and complexity. However, robust and on-demand printing of circuits will require accurate metrology methods that can measure micron level patterns to verify proper production. This paper presents an evaluation of a range of optical gaging tools ranging from confocal to area 3D systems to determine metrological capability for a range of key parameters from trace thickness to solder paste volumes. Finally, this paper will present a select set of optimized measurement tools detailing both capabilities and gaps in the available technologies needed to fully realize the potential of printed electronics.

  14. Advances in speckle metrology and related techniques

    CERN Document Server

    Kaufmann, Guillermo H

    2010-01-01

    Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the l

  15. Metrological traceability of holmium oxide solution

    Science.gov (United States)

    Gonçalves, D. E. F.; Gomes, J. F. S.; Alvarenga, A. P. D.; Borges, P. P.; Araujo, T. O.

    2018-03-01

    Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.

  16. Absolute distance metrology for space interferometers

    NARCIS (Netherlands)

    Swinkels, B.L.; Latoui, A.; Bhattacharya, N.; Wielders, A.A.; Braat, J.J.M.

    2005-01-01

    Future space missions, among which the Darwin Space Interferometer, will consist of several free flying satellites. A complex metrology system is required to have all the components fly accurately in formation and have it operate as a single instrument. Our work focuses on a possible implementation

  17. MICROSCALE METROLOGY USING STANDING WAVE PROBES

    Energy Technology Data Exchange (ETDEWEB)

    Bauza, M B; Woody, S C; Smith, S T; Seugling, R M; Darnell, I; Florando, J N

    2008-08-04

    Miniaturization has been one of the driving forces in the development of new technologies leading to new products in a variety of industries. As a result, the integration of components over several orders of magnitude on the length scale poses enormous challenges for quality assurance and control. Therefore, new solutions are necessary to meet the growing need for more challenging metrology tasks and metrology requirements in nano- and micro-technology. However, with miniaturization, new challenges arise such as the increased influence of adhesion, electrostatic, Van der Waals and meniscus forces that affect the measurement process. Technical solutions to overcome these micro- and nano-metrology challenges will include the need for traceability, new calibration procedures and calibration artifacts. Over the past decade many new metrology tools have been proposed, however; for contact based measurements, adhesion between the measurement probe and the specimen still proves to be one of the more difficult challenges to overcome. To address this issue, a new class of tactile sensing probe referred to as standing wave sensor has been developed and was previously presented. Previous work introduced the principle of operation of the standing wave senor. This work presents new measurements showing applications of the standing wave probe as the sensing element in a microscale high aspect ratio profiling system.

  18. Overlay metrology for double patterning processes

    Science.gov (United States)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double

  19. An alternative method to achieve metrological confirmation in measurement process

    Science.gov (United States)

    Villeta, M.; Rubio, E. M.; Sanz, A.; Sevilla, L.

    2012-04-01

    Metrological confirmation process must be designed and implemented to ensure that metrological characteristics of the measurement system meet metrological requirements of the measurement process. The aim of this paper is to present an alternative method to the traditional metrological requirements about the relationship between tolerance and measurement uncertainty, to develop such confirmation processes. The proposed way to metrological confirmation considers a given inspection task of the measurement process into the manufacturing system, and it is based on the Index of Contamination of the Capability, ICC. Metrological confirmation process is then developed taking into account the producer risks and economic considerations on this index. As a consequence, depending on the capability of the manufacturing process, the measurement system will be or will not be in adequate state of metrological confirmation for the measurement process.

  20. Automated metrology and NDE measurements for increased throughput in aerospace component manufacture

    Science.gov (United States)

    MacLeod, Charles N.; Pierce, S. Gareth; Morozov, Maxim; Summan, Rahul; Dobie, Gordon; McCubbin, Paul; McCubbin, Coreen; Dearie, Scott; Munro, Gavin

    2015-03-01

    Composite materials, particularly Carbon-Fibre-Reinforced Polymer (CFRP), find extensive use in construction of modern airframe structures. Quality and conformance checks can be a serious limitation on production throughput in aerospace manufacturing. Traditionally Non-Destructive Evaluation (NDE) and metrology measurements are undertaken at different stages of a product manufacture cycle using specific dedicated equipment and personnel. However, since both processes involve direct interaction with the component's surface, an opportunity exists to combine these to potentially reduce overall cycle time. In addition when considering moves towards automation of both inspection processes, it is clear that measured metrology data is an essential input parameter to the automated NDE workflow. The authors present the findings of a proof of concept combined sub-scale NDE and Metrology demonstrator cell for aerospace components. Permitting a maximum part area size of 3 × 1 m2, KUKA KR5 6 degree of freedom robotic manipulators were utilised to deploy two inspection payloads. Firstly automated non-contact photogrammetric metrology measurement was employed to inspect the structure for conformance of dimension in relation to reference designs (available from CAD). Secondly automated phased array technology was deployed to inspect and produce ultrasonic thickness mapping of components of nominal 20mm thickness. Parameters such as overall cycle time, part dimensional accuracy, robotic path accuracy and data registration are assessed in the paper to highlight both the current state of the art performance available and the future direction of required research focus.

  1. Quantum metrology foundation of units and measurements

    CERN Document Server

    Goebel, Ernst O

    2015-01-01

    The International System of Units (SI) is the world's most widely used system of measurement, used every day in commerce and science, and is the modern form of the metric system. It currently comprises the meter (m), the kilogram (kg), the second (s), the ampere (A), the kelvin (K), the candela (cd) and the mole (mol)). The system is changing though, units and unit definitions are modified through international agreements as the technology of measurement progresses, and as the precision of measurements improves. The SI is now being redefined based on constants of nature and their realization by quantum standards. Therefore, the underlying physics and technologies will receive increasing interest, and not only in the metrology community but in all fields of science. This book introduces and explains the applications of modern physics concepts to metrology, the science and the applications of measurements. A special focus is made on the use of quantum standards for the realization of the forthcoming new SI (the...

  2. Machine tool metrology an industrial handbook

    CERN Document Server

    Smith, Graham T

    2016-01-01

    Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of the existing published literature and valid information obtained from a wide-spectrum of manufacturers of plant, equipment and instrumentation before putting forward novel ideas and methodologies. Providing easy to understand bullet points and lucid descriptions of metrological and calibration subjects, this book aids reader understanding of the topics discussed whilst adding a voluminous-amount of footnotes utilised throughout all of the chapters, which adds some additional detail to the subject. Featuring an extensive amount of photographic-support, this book will serve as a key reference text for all those involved in the field. .

  3. Metrology for fire experiments in outdoor conditions

    CERN Document Server

    Silvani, Xavier

    2013-01-01

    Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisitio...

  4. Digital holography for MEMS and microsystem metrology

    CERN Document Server

    Asundi, Anand

    2011-01-01

    Approaching the topic of digital holography from the practical perspective of industrial inspection, Digital Holography for MEMS and Microsystem Metrology describes the process of digital holography and its growing applications for MEMS characterization, residual stress measurement, design and evaluation, and device testing and inspection. Asundi also provides a thorough theoretical grounding that enables the reader to understand basic concepts and thus identify areas where this technique can be adopted. This combination of both practical and theoretical approach will ensure the

  5. Quantum metrology and its application in biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael A. [Centre for Engineered Quantum Systems, University of Queensland, St Lucia, Queensland 4072 (Australia); Research Institute of Molecular Pathology (IMP), Max F. Perutz Laboratories & Research Platform for Quantum Phenomena and Nanoscale Biological Systems (QuNaBioS), University of Vienna, Dr. Bohr Gasse 7-9, A-1030 Vienna (Austria); Bowen, Warwick P., E-mail: w.bowen@uq.edu.au [Centre for Engineered Quantum Systems, University of Queensland, St Lucia, Queensland 4072 (Australia)

    2016-02-23

    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artefacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient details to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science. We hope that this will aid in bridging the communication gap that exists

  6. Measurement capabilities of the Bendix Metrology Organization

    International Nuclear Information System (INIS)

    Barnes, L.M.

    1984-01-01

    The purpose of this manual is to communicate the measurement and calibration capabilities of the Metrology Organization of the Bendix Kansas City Division. Included is a listing of the measurement types and ranges available, and the accuracies normally attainable under conditions at the Kansas City Division. Also described are currently used standards and measurement devices. The manual is divided into four major sections, each describing a broad general area of measurement: mechanical; environmental, gas, liquid; electrical; and optical and radiation

  7. Quantum metrology and its application in biology

    Science.gov (United States)

    Taylor, Michael A.; Bowen, Warwick P.

    2016-02-01

    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artefacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient details to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science. We hope that this will aid in bridging the communication gap that exists

  8. Efficiency improvements of offline metrology job creation

    Science.gov (United States)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  9. Metrological needs for radioprotection technical controls

    International Nuclear Information System (INIS)

    Tranchant, Ph.

    2009-01-01

    After having outlined that some aspects of the French 'Controls' decree of October 2005 are still subject to interpretation, and that some metrological aspects related to radioprotection have been 'forgotten', the author illustrates these weaknesses by different examples for which the current regulation status makes decisions or choices problematic. These examples are: X ray leaks on electric generators, dose rate measurements (neutron excluded), neutron dose rate measurements, conventional or complex labile contamination measurement, atmospheric contamination measurement

  10. Traceability and uncertainty estimation in coordinate metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Savio, Enrico; De Chiffre, Leonardo

    2001-01-01

    National and international standards have defined performance verification procedures for coordinate measuring machines (CMMs) that typically involve their ability to measure calibrated lengths and to a certain extent form. It is recognised that, without further analysis or testing, these results...... are required. Depending on the requirements for uncertainty level, different approaches may be adopted to achieve traceability. Especially in the case of complex measurement situations and workpieces the procedures are not trivial. This paper discusses the establishment of traceability in coordinate metrology...

  11. Implementation of the Brazilian radiation metrology network

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Araujo, Margareth M. de

    1998-01-01

    The ever increasing need for calibration of survey, personal, and contamination meters in Brazil are not completely satisfied by the two operating laboratories. To overcome this deficiency a radiation metrology network is being implemented with the support of IAEA. In a near future this network will count other three calibration laboratories which are being installed in different regions of the country, and accredited through INMETRO. (author)

  12. Current capabilities at the Metrology Light Source

    International Nuclear Information System (INIS)

    Gottwald, Alexander; Klein, Roman; Mueller, Ralph; Richter, Mathias; Scholze, Frank; Thornagel, Reiner; Ulm, Gerhard

    2012-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) has set up the 630 MeV electron storage ring Metrology Light Source (MLS) in close cooperation with the Helmholtz-Zentrum Berlin (HZB). This electron storage ring has been in regular user operation since April 2008. It is dedicated to synchrotron-radiation-based metrology and technological developments in the far-IR/THz, IR, UV, VUV and EUV spectral ranges, with the use as primary source standard as the key activity. In a permanent process of improvement, the storage ring itself was optimized regarding its regular performance (beam current and lifetime) as well as for special operations (e.g. variable electron energies and electron bunch lengths). The measurement capabilities at the seven different beamline ports were set up sequentially, first in the UV/VUV and IR spectral ranges. This first phase of instrumentation set-up will be finished in 2011 by completing the beamlines for EUV metrology, for the calibration of radiation sources and for the application of undulator radiation. (authors)

  13. Slovak Office of Standards, Metrology and Testing. Annual Report 2001

    International Nuclear Information System (INIS)

    2002-01-01

    A brief account of activities carried out by the Slovak Office of Standards, Metrology and Testing of the Slovak Republic in 2001 is presented. These activities are reported under the headings: (1) Introduction by the President of the Slovak Office of Standards, Metrology and Testing; (2) The Vice-president's Unit Standardization and Quality; (3) The President's Office; (4) Chief Inspector Department; (5) Legislative-juridical Department; (6) Department of Economy; (7) Department of International Co-operation; (8) Department of European Integration; (9) Department of Metrology; (10) Department of Testing; (11) Department of the Cyclotron Centre SR; (12) Slovak Institute of Metrology; (13) Slovak Standards Institution; (14) Slovak Metrology Inspectorate; (15) Slovak Legal Metrology; (16) Measuring Techniques - Technocentre - MTT; Abbreviations; (17) Technical Testing Institute Piestany; (18) Testing Institute of Transport and Earthmoving Machinery - SUDST

  14. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server

    2014-01-01

    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  15. Metrology requirements for the serial production of ELT primary mirror segments

    Science.gov (United States)

    Rees, Paul C. T.; Gray, Caroline

    2015-08-01

    The manufacture of the next generation of large astronomical telescopes, the extremely large telescopes (ELT), requires the rapid manufacture of greater than 500 1.44m hexagonal segments for the primary mirror of each telescope. Both leading projects, the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT), have set highly demanding technical requirements for each fabricated segment. These technical requirements, when combined with the anticipated construction schedule for each telescope, suggest that more than one optical fabricator will be involved in the delivery of the primary mirror segments in order to meet the project schedule. For one supplier, the technical specification is challenging and requires highly consistent control of metrology in close coordination with the polishing technologies used in order to optimize production rates. For production using multiple suppliers, however the supply chain is structured, consistent control of metrology along the supply chain will be required. This requires a broader pattern of independent verification than is the case of a single supplier. This paper outlines the metrology requirements for a single supplier throughout all stages of the fabrication process. We identify and outline those areas where metrology accuracy and duration have a significant impact on production efficiency. We use the challenging ESO E-ELT technical specification as an example of our treatment, including actual process data. We further develop this model for the case of a supply chain consisting of multiple suppliers. Here, we emphasize the need to control metrology throughout the supply chain in order to optimize net production efficiency.

  16. Advanced Mathematical Tools in Metrology III

    Science.gov (United States)

    Ciarlini, P.

    The Table of Contents for the book is as follows: * Foreword * Invited Papers * The ISO Guide to the Expression of Uncertainty in Measurement: A Bridge between Statistics and Metrology * Bootstrap Algorithms and Applications * The TTRSs: 13 Oriented Constraints for Dimensioning, Tolerancing & Inspection * Graded Reference Data Sets and Performance Profiles for Testing Software Used in Metrology * Uncertainty in Chemical Measurement * Mathematical Methods for Data Analysis in Medical Applications * High-Dimensional Empirical Linear Prediction * Wavelet Methods in Signal Processing * Software Problems in Calibration Services: A Case Study * Robust Alternatives to Least Squares * Gaining Information from Biomagnetic Measurements * Full Papers * Increase of Information in the Course of Measurement * A Framework for Model Validation and Software Testing in Regression * Certification of Algorithms for Determination of Signal Extreme Values during Measurement * A Method for Evaluating Trends in Ozone-Concentration Data and Its Application to Data from the UK Rural Ozone Monitoring Network * Identification of Signal Components by Stochastic Modelling in Measurements of Evoked Magnetic Fields from Peripheral Nerves * High Precision 3D-Calibration of Cylindrical Standards * Magnetic Dipole Estimations for MCG-Data * Transfer Functions of Discrete Spline Filters * An Approximation Method for the Linearization of Tridimensional Metrology Problems * Regularization Algorithms for Image Reconstruction from Projections * Quality of Experimental Data in Hydrodynamic Research * Stochastic Drift Models for the Determination of Calibration Intervals * Short Communications * Projection Method for Lidar Measurement * Photon Flux Measurements by Regularised Solution of Integral Equations * Correct Solutions of Fit Problems in Different Experimental Situations * An Algorithm for the Nonlinear TLS Problem in Polynomial Fitting * Designing Axially Symmetric Electromechanical Systems of

  17. Metrology for radioactive waste management. (WP2, WP3)

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. In this presentation the Project is described. (author)

  18. Optical vortex metrology: Are phase singularities foes or friends in optical metrology?

    DEFF Research Database (Denmark)

    Takeda, M.; Wang, W.; Hanson, Steen Grüner

    2008-01-01

    We raise an issue whether phase singularities are foes or friends in optical metrology, and give an answer by introducing the principle and applications of a new technique which we recently proposed for displacement and flow measurements. The technique is called optical vortex metrology because...... it makes use of the unique characteristics of phase singularities as markers or tracers for the displacement and flow measurements. The phase singularities are created in the complex signal representation of a speckle-like random pattern, which is generated by means of a vortex filer operating a Riesz...

  19. Problems of metrological supply of carbon materials production

    International Nuclear Information System (INIS)

    Belov, G.V.; Bazilevskij, L.P.; Cherkashina, N.V.

    1989-01-01

    Carbon materials and products contain internal residual stresses and have an anisotropy of properties therefore special methods of tests are required to control their quality. The main metrological problems during development, production and application of carbon products are: metrological supply of production forms and records during the development of production conditions; metrological supply of quality control of the product; metrological supply of methods for the tests of products and the methods to forecast the characteristics of product quality for the period of quaranteed service life

  20. PREFACE: VII Brazilian Congress on Metrology (Metrologia 2013)

    Science.gov (United States)

    Costa-Félix, Rodrigo; Bernardes, Americo; Valente de Oliveira, José Carlos; Mauro Granjeiro, José; Epsztejn, Ruth; Ihlenfeld, Waldemar; Smarçaro da Cunha, Valnei

    2015-01-01

    SEVENTH BRAZILIAN CONGRESS ON METROLOGY (METROLOGIA 2013) Metrology and Quality for a Sustainable Development From November 24th to 27th 2013 was issued the Seventh Brazilian Congress on Metrology (Metrologia 2013), which is a biannual conference organized and sponsored by the Brazilian Society of Metrology (SBM) and the Brazilian National Institute of Metrology, Quality and Technology (Inmetro). This edition was held in the charming and historical city of Ouro Preto, MG, Brazil, and aimed to join people and institutions devoted to the dissemination of the metrology and conformity assessment. The Metrologia 2013 Conference consisted of Keynote Speeches (7) and regular papers (204). Among the regular papers, the 47 most outstanding ones, comprising a high quality content on Metrology and Conformity Assessment, were selected to be published in this issue of the Journal of Physics: Conference Series. The topics of the conference covered all important areas of Metrology, which were agglutinated in the following sessions in the present issue: . Physical Metrology (Acoustics, Vibration and Ultrasound; Electricity and Magnetism; Mechanics; Optics); . Metrology on Ionizing Radiations; . Time and Frequency; . Chemistry Metrology; . Materials Metrology; . Biotechnology; . Uncertainty, Statistics and Mathematics; . Legal Metrology; . Conformity Assessment. It is our great pleasure to present this volume of IOP Journal of Physics: Conference Series (JPCS) to the scientific community to promote further research in Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by Metrologia 2013. President of the congress Americo Bernardes Federal University of Ouro Preto atb@iceb.ufop.br Editor-in-chief Rodrigo Costa-Félix Brazilian National Institute of Metrology, Quality and Technology rpfelix@inmetro.gov.br Editors José Carlos Valente de Oliveira (Editor on Mechanical Metrology

  1. Laser thermoreflectance for semiconductor thin films metrology

    Science.gov (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.

    2012-06-01

    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  2. Quantum metrology for gravitational wave astronomy.

    Science.gov (United States)

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  3. 222Rn gas metrology in Latvia

    International Nuclear Information System (INIS)

    Bogucarska, T.; Lapenas, A.

    2004-01-01

    The measurements of radon gas provides in Latvia according with the State radiation monitoring program. The national standard/reference level for the protection of employees and population from exposure to radon Latvia has been accepted. The facilities for calibration of the radon gas measurement instruments and detectors have been established on basic of the Radiation Metrology and Testing Center which is the local SSDL for Baltic Region. The radon measurement instruments and detectors calibration can be performed at the 170-4000 Bq/m 3 range. (author)

  4. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs

  5. Efficient hybrid metrology for focus, CD, and overlay

    Science.gov (United States)

    Tel, W. T.; Segers, B.; Anunciado, R.; Zhang, Y.; Wong, P.; Hasan, T.; Prentice, C.

    2017-03-01

    In the advent of multiple patterning techniques in semiconductor industry, metrology has progressively become a burden. With multiple patterning techniques such as Litho-Etch-Litho-Etch and Sidewall Assisted Double Patterning, the number of processing step have increased significantly and therefore, so as the amount of metrology steps needed for both control and yield monitoring. The amount of metrology needed is increasing in each and every node as more layers needed multiple patterning steps, and more patterning steps per layer. In addition to this, there is that need for guided defect inspection, which in itself requires substantially denser focus, overlay, and CD metrology as before. Metrology efficiency will therefore be cruicial to the next semiconductor nodes. ASML's emulated wafer concept offers a highly efficient method for hybrid metrology for focus, CD, and overlay. In this concept metrology is combined with scanner's sensor data in order to predict the on-product performance. The principle underlying the method is to isolate and estimate individual root-causes which are then combined to compute the on-product performance. The goal is to use all the information available to avoid ever increasing amounts of metrology.

  6. Assembly and metrology of first wall components of SST-1

    International Nuclear Information System (INIS)

    Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal

    2015-01-01

    First Wall components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring and port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 under going a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects and procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel. (author)

  7. Assembly & Metrology of First Wall Components of SST-1

    Science.gov (United States)

    Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal; Patel, Hiteshkumar; Paravastu, Yuvakiran; Jaiswal, Snehal; Chauhan, Pradeep; Babu, Gattu Ramesh; A, Arun Prakash; Bhavsar, Dhaval; Raval, Dilip C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects & procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel.

  8. Consultative committee on ionizing radiation: Impact on radionuclide metrology

    International Nuclear Information System (INIS)

    Karam, L.R.; Ratel, G.

    2016-01-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. - Highlights: • Influence of CIPM MRA on radionuclide metrology at laboratories around the world. • CCRI strategy: to be the “undisputed hub for ionizing radiation global metrology.” • CCRI Strategic Plan stresses importance of measurement confidence for stakeholder. • NMIs increasing role in radionuclide metrology by designating institutions (DIs). • NMIs and DIs establish quality systems; validate capabilities through comparisons.

  9. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  10. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  11. Dimensionality reduction methods in virtual metrology

    Science.gov (United States)

    Zeng, Dekong; Tan, Yajing; Spanos, Costas J.

    2008-03-01

    The objective of this work is the creation of predictive models that can forecast the electrical or physical parameters of wafers using data collected from the relevant processing tools. In this way, direct measurements from the wafer can be minimized or eliminated altogether, hence the term "virtual" metrology. Challenges include the selection of the appropriate process step to monitor, the pre-treatment of the raw data, and the deployment of a Virtual Metrology Model (VMM) that can track a manufacturing process as it ages. A key step in any VM application is dimensionality reduction, i.e. ensuring that the proper subset of predictors is included in the model. In this paper, a software tool developed with MATLAB is demonstrated for interactive data prescreening and selection. This is combined with a variety of automated statistical techniques. These include step-wise regression and genetic selection in conjunction with linear modeling such as Principal Component Regression (PCR) and Partial Least Squares (PLS). Modeling results based on industrial datasets are used to demonstrate the effectiveness of these methods.

  12. METROLOGICAL PERFORMANCE OF SEM 3D TECHNIQUES

    DEFF Research Database (Denmark)

    Marinello, Francesco; Carmignato, Simone; Savio, Enrico

    2008-01-01

    This paper addresses the metrological performance of three-dimensional measurements performed with Scanning Electron Microscopes (SEMs) using reconstruction of surface topography through stereo-photogrammetry. Reconstruction is based on the model function introduced by Piazzesi adapted for eucent...... condition are studied, in order to define a strategy to optimise the measurements taking account of the critical factors in SEM 3D reconstruction. Investigations were performed on a novel sample, specifically developed and implemented for the tests....... and the instrument set-up; the second concerns the quality of scanned images and represents the major criticality in the application of SEMs for 3D characterizations. In particular the critical role played by the tilting angle and its relative uncertainty, the magnification and the deviations from the eucentricity......This paper addresses the metrological performance of three-dimensional measurements performed with Scanning Electron Microscopes (SEMs) using reconstruction of surface topography through stereo-photogrammetry. Reconstruction is based on the model function introduced by Piazzesi adapted...

  13. Diffraction gratings metrology and ray-tracing results for an XUV Raman spectrometer at FLASH.

    Science.gov (United States)

    Dziarzhytski, Siarhei; Siewert, Frank; Sokolov, Andrey; Gwalt, Grzegorz; Seliger, Tino; Rübhausen, Michael; Weigelt, Holger; Brenner, Günter

    2018-01-01

    The extreme-ultraviolet double-stage imaging Raman spectrometer is a permanent experimental endstation at the plane-grating monochromator beamline branch PG1 at FLASH at DESY in Hamburg, Germany. This unique instrument covers the photon energy range from 20 to 200 eV with high energy resolution of about 2 to 20 meV (design values) featuring an efficient elastic line suppression as well as effective stray light rejection. Such a design enables studies of low-energy excitations like, for example, phonons in solids close to the vicinity of the elastic line. The Raman spectrometer effectively operates with four reflective off-axial parabolic mirrors and two plane-grating units. The optics quality and their precise alignment are crucial to guarantee best performance of the instrument. Here, results on a comprehensive investigation of the quality of the spectrometer diffraction gratings are presented. The gratings have been characterized by ex situ metrology at the BESSY-II Optics Laboratory, employing slope measuring deflectometry and interferometry as well as atomic force microscopy studies. The efficiency of these key optical elements has been measured at the at-wavelength metrology laboratory using the reflectometer at the BESSY-II Optics beamline. Also, the metrology results are discussed with respect to the expected resolving power of the instrument by including them in ray-tracing studies of the instrument.

  14. Improving OCD time to solution using Signal Response Metrology

    Science.gov (United States)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  15. Metrology network: a case study on the metrology network of defense and security from SIBRATEC

    International Nuclear Information System (INIS)

    Pereira, Marisa Ferraz Figueira

    2016-01-01

    This study is focused on understanding the effects of the infrastructure improvement of these laboratories and the role of network management in offering support and metrological services to the defense and security sector enterprises, within the project purposes. It is also aimed identify gaps on offering calibration and, or testing services to supply demands of the defense and security industries, and analyze adequacy of RDS project to demands of defense and security industries, with the purpose to contribute with information for future actions. The experimental research is qualitative type, with exploratory research characteristics, based on case study. It was structured in two parts, involving primary data collection and secondary data. In order to collect the primary data two questionnaires were prepared, one (Questionnaire A) to the five RDS laboratories representatives and other (Questionnaire B) to the contacts of 63 defense and security enterprises which need calibration and test services, possible customers of RDS laboratories. Answers from four representatives of RDS laboratories and from 26 defense and security enterprises were obtained. The collection of secondary data was obtained from documentary research. The analysis was made based on five dimensions defined in order to organize and improve the understanding of the research setting. They are RDS project coverage, regional, network management, metrological traceability and importance and visibility of RDS. The results indicated that the performance of RDS does not interfere, by that time, in the metrological traceability of the products of the defense and security enterprises that participated in the research. (author)

  16. Plant equipment services with laser metrology

    International Nuclear Information System (INIS)

    Hayes, J.H.; Kreitman, P.J.

    1995-01-01

    A new industrial metrology process is now being applied to support PWR Nuclear Plant Steam Generator Replacement Projects. The method uses laser tracking interferometry to perform as built surveys of existing and replacement plant equipment. This method provides precision data with a minimum of setup when compared to alternative methods available. In addition there is no post processing required to ascertain validity. The data is obtained quickly, processed in real time and displayed during the survey in the desired coordinate system. These capabilities make this method of industrial measure ideal for various data acquisition needs throughout the power industry, from internal/external equipment templating to area mapping. Laser tracking interferometry is an improvement on the present use of optical instruments and surveying technique. In order to describe the laser tracking interferometry measurement process, previous methods of templating and surveying are first reviewed

  17. Radionuclide metrology research for nuclear site decommissioning

    Science.gov (United States)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  18. Metrology of Radionuclides. Proceedings of a Symposium

    International Nuclear Information System (INIS)

    1960-01-01

    ''Metrology of Radionuclides'' is the science of precise measurements of the absolute value of the activity of radioactive sources. A rapid expansion has taken place over the past few years in the applications of radionuclides in various fields of scientific research, particularly in the production of commodities which lead to improved living standards. This has occurred not only in the countries most advanced in nuclear science, but in many others. In order to allow those actively engaged in this field to exchange research results and discuss their problems, the International Atomic Energy Agency sponsored a symposium which was held in Vienna from 14-16 October, 1959. Thirty-seven papers were presented from 14 countries. These covered a general survey on the routine methods of standardization of radionuclides and new developments of absolute measuring methods for their standardization.

  19. Coordinate metrology accuracy of systems and measurements

    CERN Document Server

    Sładek, Jerzy A

    2016-01-01

    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  20. Scanning probe microscope dimensional metrology at NIST

    International Nuclear Information System (INIS)

    Kramar, John A; Dixson, Ronald; Orji, Ndubuisi G

    2011-01-01

    Scanning probe microscope (SPM) dimensional metrology efforts at the US National Institute of Standards and Technology (NIST) are reviewed in this paper. The main SPM instruments for realizing the International System of Units (SI) are the Molecular Measuring Machine, the calibrated atomic force microscope and the critical dimension atomic force microscope. These are optimized for long-distance measurements, three-dimensional measurements over conventional SPM distances and critical dimension or linewidth measurements, respectively. 10 mm distances have been measured with the relative standard uncertainty, u c , of 1.5 × 10 −5 ; step heights at the 100 nm scale have been measured with the relative u c of 2.5 × 10 −3 and sub-micrometer linewidths have been measured with u c = 0.8 nm

  1. Ionising radiation metrology for the metallurgical industry

    Directory of Open Access Journals (Sweden)

    García-Toraño E.

    2014-01-01

    Full Text Available Every year millions tons of steel are produced worldwide from recycled scrap loads. Although the detection systems in the steelworks prevent most orphan radioactive sources from entering the furnace, there is still the possibility of accidentally melting a radioactive source. The MetroMetal project, carried out in the frame of the European Metrology Research Programme (EMRP, addresses this problem by studying the existing measurement systems, developing sets of reference sources in various matrices (cast steel, slag, fume dust and proposing new detection instruments. This paper presents the key lines of the project and describes the preparation of radioactive sources as well as the intercomparison exercises used to test the calibration and correction methods proposed within the project.

  2. Advanced Metrologies for Topography and Thickness Measurements

    Science.gov (United States)

    Riou, G.; Acosta, P.; Darwin, M.; Kamenev, B.

    2011-11-01

    Despite its limitations, like the low through put, Atomic force microscopy (AFM) is in common use in the semiconductor industry for surface geometry characterization. Recent development in optical profilometry, Index Corrected Topography (ICT), further expands the technique by analysis of the collected interferograms to extract films parameters (thickness, for instance) and surface topography. This model based technique delivers literally complete information (e.g. topography, roughness, filmstack properties) of measured structure with sub-micron lateral resolution and angstrom vertical resolution. The approach is a strong asset since it allows contact less topography measurement of wafer surfaces. In this paper we will show how this specific metrology can meet the aforementioned stringent requirements. The comparison with both the AFM and the spectroscopic ellipsometry will be presented.

  3. X-ray metrology for ULSI structures

    International Nuclear Information System (INIS)

    Bowen, D. K.; Matney, K. M.; Wormington, M.

    1998-01-01

    Non-destructive X-ray metrological methods are discussed for application to both process development and process control of ULSI structures. X-ray methods can (a) detect the unacceptable levels of internal defects generated by RTA processes in large wafers, (b) accurately measure the thickness and roughness of layers between 1 and 1000 nm thick and (c) can monitor parameters such as crystallographic texture and the roughness of buried interfaces. In this paper we review transmission X-ray topography, thin film texture measurement, grazing-incidence X-ray reflectivity and high-resolution X-ray diffraction. We discuss in particular their suitability as on-line sensors for process control

  4. A heterodyne interferometer for angle metrology

    International Nuclear Information System (INIS)

    Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R.

    2010-01-01

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/√(Hz) at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately ±0.15 mrad, and 3 μrad rms, respectively.

  5. Nuclear forensics-metrological basis for legal defensibility

    International Nuclear Information System (INIS)

    Leggitt, J.; Inn, K.; Goldberg, S.; Essex, R.; LaMont, S.; Chase, S.

    2009-01-01

    The admissibility of nuclear forensics measurements and opinions derived from them in US Federal and State courts are based on criteria established by the US Supreme Court in the case of Daubert v. Merrell Dow and the 2000 Amendment of Rule 702 of the Federal Rules of Evidence. These criteria are being addressed by new efforts that include the development of certified reference materials (CRMs) to provide the basis for analytical method development, optimization, calibration, validation, quality control, testing, readiness, and declaration of measurement uncertainties. Quality data is crucial for all stages of the program, from R and D, and database development, to actual casework. Weakness at any point in the program can propagate to reduce the confidence of final conclusions. The new certified reference materials will provide the necessary means to demonstrate a high level of metrological rigor for nuclear forensics evidence and will form a foundation for legally defensible nuclear chemical analysis. The CRMs will allow scientists to devise validated analytical methods, which can be corroborated by independent analytical laboratories. CRMs are required for ISO accreditation of many different analytical techniques which may be employed in the analysis of interdicted nuclear materials. (author)

  6. Automated CD-SEM metrology for efficient TD and HVM

    Science.gov (United States)

    Starikov, Alexander; Mulapudi, Satya P.

    2008-03-01

    CD-SEM is the metrology tool of choice for patterning process development and production process control. We can make these applications more efficient by extracting more information from each CD-SEM image. This enables direct monitors of key process parameters, such as lithography dose and focus, or predicting the outcome of processing, such as etched dimensions or electrical parameters. Automating CD-SEM recipes at the early stages of process development can accelerate technology characterization, segmentation of variance and process improvements. This leverages the engineering effort, reduces development costs and helps to manage the risks inherent in new technology. Automating CD-SEM for manufacturing enables efficient operations. Novel SEM Alarm Time Indicator (SATI) makes this task manageable. SATI pulls together data mining, trend charting of the key recipe and Operations (OPS) indicators, Pareto of OPS losses and inputs for root cause analysis. This approach proved natural to our FAB personnel. After minimal initial training, we applied new methods in 65nm FLASH manufacture. This resulted in significant lasting improvements of CD-SEM recipe robustness, portability and automation, increased CD-SEM capacity and MT productivity.

  7. Optical Fabrication and Metrology of Aspheric and Freeform Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The requirement for cost effective manufacturing and metrology of large optical surfaces is instrumental for the success of future NASA programs such as LISA, WFIRST...

  8. Metrology for environment and climate; Metrologie fuer Umwelt und Klima

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Klaus-Dieter [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Abt. ' Chemische Physik und Explosionsschutz' ; Spitzer, Petra [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Elektrochemie'

    2012-12-15

    The author describes the observation and monitoring systems developed by the EU and the Federal Republic of Germany. In this connection the metrological aims are described in connection with the activities of the PTB. (HSI)

  9. Optical vortex metrology for non-destructive testing

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner

    2009-01-01

    Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis.......Based on the phase singularities in optical fields, we introduce a new technique, referred to as Optical Vortex Metrology, and demonstrate its application to nano- displacement, flow measurements and biological kinematic analysis....

  10. Evaluation of metrology technologies for free form surfaces

    DEFF Research Database (Denmark)

    Arámbula, K.; Siller, H.R.; De Chiffre, Leonardo

    2012-01-01

    This research work describes a novel approach for comparing different technologies for free form surface metrology: computerized tomography (CT), photogrammetry and coordinate measuring machines (CMM). The comparison has the aim of providing relevant information for the selection of metrology...... equipment when measuring free form components. Results demonstrate that there is the imperative need to assess the uncertainty and reproducibility of CT and photogrammetry measurements by applying some calibration procedures taking into account some recommendations for work piece alignment. This article...

  11. Metrology in electricity and magnetism: EURAMET activities today and tomorrow

    Science.gov (United States)

    Piquemal, F.; Jeckelmann, B.; Callegaro, L.; Hällström, J.; Janssen, T. J. B. M.; Melcher, J.; Rietveld, G.; Siegner, U.; Wright, P.; Zeier, M.

    2017-10-01

    Metrology dedicated to electricity and magnetism has changed considerably in recent years. It encompasses almost all modern scientific, industrial, and societal challenges, e.g. the revision of the International System of Units, the profound transformation of industry, changes in energy use and generation, health, and environment, as well as nanotechnologies (including graphene and 2D materials) and quantum engineering. Over the same period, driven by the globalization of worldwide trade, the Mutual Recognition Arrangement (referred to as the CIPM MRA) was set up. As a result, the regional metrology organizations (RMOs) of national metrology institutes have grown in significance. EURAMET is the European RMO and has been very prominent in developing a strategic research agenda (SRA) and has established a comprehensive research programme. This paper reviews the highlights of EURAMET in electrical metrology within the European Metrology Research Programme and its main contributions to the CIPM MRA. In 2012 EURAMET undertook an extensive roadmapping exercise for proposed activities for the next decade which will also be discussed in this paper. This work has resulted in a new SRA of the second largest European funding programme: European Metrology Programme for Innovation and Research.

  12. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  13. Chemical metrology, strategic job for the Chilean Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gras, Nuri; Munoz, Luis; Cortes, Eduardo

    2001-01-01

    The National Standardization Institute's (INN) Metrology unit prepared a study in 1996 to evaluate the impact of metrological activity in Chile. This study was based on a survey of the supply and demand of metrological services and on studies of the behavior of the production system and technological services in Chile during the period 1990-1996. With the information obtained in this study the economic impact resulting from the lack of a national metrology system could be evaluated. This impact was estimated to be a 5% loss in gross national product equal to 125-500 million dollars because of direct product rejection in the mining, fisheries, agricultural and manufacturing sectors. Chemical measurements are responsible for 50% of these losses. In response to this need and coordinated by the INN, a metrological network of reference laboratories began to operate in 1997 for the principal physical magnitudes (mass, temperature, longitude and force) and a CORFO-FDI project began in 2001 that includes the chemical magnitudes. The Chilean Nuclear Energy Commission, aware of the problem's importance and the amount of economic damage that the country may suffer, as a result of these deficiencies, has formed a Chemical Metrology Unit to provide technical support. It aims to raise the standards of local analytical laboratories by providing international recognition to the export sector. Nuclear analytical techniques are used as reference methods. This work describes the laboratories that are included in this Chemical Metrology Unit and the historical contribution to the development of local analytical chemistry. The national and international projects are described together with the publications they have generated. The quality assurance program applied to the laboratories is described as well, which has led to the accreditation of the analytical chemical assays. The procedures used for validation and calculation of uncertain nuclear methodologies are described together with

  14. Hierarchical characterization procedures for dimensional metrology

    Science.gov (United States)

    MacKinnon, David; Beraldin, Jean-Angelo; Cournoyer, Luc; Carrier, Benjamin

    2011-03-01

    We present a series of dimensional metrology procedures for evaluating the geometrical performance of a 3D imaging system that have either been designed or modified from existing procedures to ensure, where possible, statistical traceability of each characteristic value from the certified reference surface to the certifying laboratory. Because there are currently no internationally-accepted standards for characterizing 3D imaging systems, these procedures have been designed to avoid using characteristic values provided by the vendors of 3D imaging systems. For this paper, we focus only on characteristics related to geometric surface properties, dividing them into surface form precision and surface fit trueness. These characteristics have been selected to be familiar to operators of 3D imaging systems that use Geometrical Dimensioning and Tolerancing (GD&T). The procedures for generating characteristic values would form the basis of either a volumetric or application-specific analysis of the characteristic profile of a 3D imaging system. We use a hierarchical approach in which each procedure builds on either certified reference values or previously-generated characteristic values. Starting from one of three classes of surface forms, we demonstrate how procedures for quantifying for flatness, roundness, angularity, diameter error, angle error, sphere-spacing error, and unidirectional and bidirectional plane-spacing error are built upon each other. We demonstrate how these procedures can be used as part of a process for characterizing the geometrical performance of a 3D imaging system.

  15. Metrology Sampling Strategies for Process Monitoring Applications

    KAUST Repository

    Vincent, Tyrone L.

    2011-11-01

    Shrinking process windows in very large scale integration semiconductor manufacturing have already necessitated the development of control systems capable of addressing sub-lot-level variation. Within-wafer control is the next milestone in the evolution of advanced process control from lot-based and wafer-based control. In order to adequately comprehend and control within-wafer spatial variation, inline measurements must be performed at multiple locations across the wafer. At the same time, economic pressures prompt a reduction in metrology, for both capital and cycle-time reasons. This paper explores the use of modeling and minimum-variance prediction as a method to select the sites for measurement on each wafer. The models are developed using the standard statistical tools of principle component analysis and canonical correlation analysis. The proposed selection method is validated using real manufacturing data, and results indicate that it is possible to significantly reduce the number of measurements with little loss in the information obtained for the process control systems. © 2011 IEEE.

  16. Advances in precision mirror figure metrology (abstract)

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Furenlid, K.; Church, E.L.

    1992-01-01

    New developments in optical measurement techniques have made it possible to test the surface quality on grazing incidence optics with extreme precision and accuracy. An instrument developed at Brookhaven, the Long Trace Profiler (LTP), measures the figure of large (up to 1 m long) cylindrical aspheres with nanometer accuracy. The LTP optical system is based around a common-path interferometer design belonging to the class of slope measuring interferometers and, as such, it is very robust, stable, and vibration insensitive. A unique error correction technique removes the effect of tilt errors in the optical head as it traverses the air bearing, thus allowing one to accurately measure the absolute surface profile and radius of curvature. This is of critical importance to the manufacture of long-radius spherical optics used in high-resolution soft x-ray monochromators and in the testing of mirror bending systems. This talk will review the principle of operation of the LTP, probe the factors limiting the performance of the system, and will examine the current state of the art in synchrotron radiation mirror manufacturing quality (as viewed by our metrology techniques). This research was supported by the U.S. Department of Energy Contract No. DE-AC02-76CH00016

  17. Developments in remote metrology at JET

    Energy Technology Data Exchange (ETDEWEB)

    Mindham, T.J., E-mail: tim.mindham@ccfe.ac.uk [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sandford, G.C.; Hermon, G. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Belcher, C. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, OX14 1RJ (United Kingdom); CCFE, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Pace, N. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Babcock Nuclear Division, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2011-10-15

    The need to maximise the operational availability of fusion devices has driven the enhancements in accuracy, flexibility and speed associated with the inspection techniques used at JET. To this end, the remote installation of the ITER-Like Wall (ILW) tiles, conduits and embedded diagnostics has necessitated the adoption of technologies from other industries for their use in conjunction with the JET Remote Handling (RH) system. The novel adaptation of targetless stereophotogrammetry, targeted single-camera photogrammetry and gap measurement techniques for remote applications has prompted a range of challenges and lessons learnt both from the design process and operational experience. Interfacing Commercial Off-The-Shelf (COTS) components with the existing RH equipment has highlighted several issues of relevance to the developing ITER RH system. This paper reports results from the stereophotogrammetry and the single-camera photogrammetry surveys, allowing analysis of the effectiveness of the RH system as a platform for in-vessel measurement. This includes scrutiny of the accuracy achieved with each technique as well as the impact on the in-vessel Configuration Management Model (CMM). The paper concludes with a summary of key recommendations for the ITER RH system based on the experience of remote metrology at JET.

  18. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  19. Effect of measurement error budgets and hybrid metrology on qualification metrology sampling

    Science.gov (United States)

    Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Osorio, Carmen; Archie, Chas

    2014-10-01

    Until now, metrologists had no statistics-based method to determine the sampling needed for an experiment before the start that accuracy experiment. We show a solution to this problem called inverse total measurement uncertainty (TMU) analysis, by presenting statistically based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk versus reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions and then to reveal why low sampling can lead to unstable and misleading results. One model is developed that can help experimenters minimize sampling costs. A second cost model reveals the inadequacy of some current sampling practices-and the enormous costs associated with sampling that provides reasonable levels of certainty in the result. We introduce the strategies on how to manage and mitigate these costs and begin the discussion on how fabs are able to manufacture devices using minimal reference sampling when qualifying metrology steps. Finally, the relationship between inverse TMU analysis and hybrid metrology is explored.

  20. USING VISION METROLOGY SYSTEM FOR QUALITY CONTROL IN AUTOMOTIVE INDUSTRIES

    Directory of Open Access Journals (Sweden)

    N. Mostofi

    2012-07-01

    Full Text Available The need of more accurate measurements in different stages of industrial applications, such as designing, producing, installation, and etc., is the main reason of encouraging the industry deputy in using of industrial Photogrammetry (Vision Metrology System. With respect to the main advantages of Photogrammetric methods, such as greater economy, high level of automation, capability of noncontact measurement, more flexibility and high accuracy, a good competition occurred between this method and other industrial traditional methods. With respect to the industries that make objects using a main reference model without having any mathematical model of it, main problem of producers is the evaluation of the production line. This problem will be so complicated when both reference and product object just as a physical object is available and comparison of them will be possible with direct measurement. In such case, producers make fixtures fitting reference with limited accuracy. In practical reports sometimes available precision is not better than millimetres. We used a non-metric high resolution digital camera for this investigation and the case study that studied in this paper is a chassis of automobile. In this research, a stable photogrammetric network designed for measuring the industrial object (Both Reference and Product and then by using the Bundle Adjustment and Self-Calibration methods, differences between the Reference and Product object achieved. These differences will be useful for the producer to improve the production work flow and bringing more accurate products. Results of this research, demonstrate the high potential of proposed method in industrial fields. Presented results prove high efficiency and reliability of this method using RMSE criteria. Achieved RMSE for this case study is smaller than 200 microns that shows the fact of high capability of implemented approach.

  1. Using Vision Metrology System for Quality Control in Automotive Industries

    Science.gov (United States)

    Mostofi, N.; Samadzadegan, F.; Roohy, Sh.; Nozari, M.

    2012-07-01

    The need of more accurate measurements in different stages of industrial applications, such as designing, producing, installation, and etc., is the main reason of encouraging the industry deputy in using of industrial Photogrammetry (Vision Metrology System). With respect to the main advantages of Photogrammetric methods, such as greater economy, high level of automation, capability of noncontact measurement, more flexibility and high accuracy, a good competition occurred between this method and other industrial traditional methods. With respect to the industries that make objects using a main reference model without having any mathematical model of it, main problem of producers is the evaluation of the production line. This problem will be so complicated when both reference and product object just as a physical object is available and comparison of them will be possible with direct measurement. In such case, producers make fixtures fitting reference with limited accuracy. In practical reports sometimes available precision is not better than millimetres. We used a non-metric high resolution digital camera for this investigation and the case study that studied in this paper is a chassis of automobile. In this research, a stable photogrammetric network designed for measuring the industrial object (Both Reference and Product) and then by using the Bundle Adjustment and Self-Calibration methods, differences between the Reference and Product object achieved. These differences will be useful for the producer to improve the production work flow and bringing more accurate products. Results of this research, demonstrate the high potential of proposed method in industrial fields. Presented results prove high efficiency and reliability of this method using RMSE criteria. Achieved RMSE for this case study is smaller than 200 microns that shows the fact of high capability of implemented approach.

  2. Why should we apply more metrological knowledge to field measurements?

    Science.gov (United States)

    Buchholz, B.; Kraemer, M.; Rolf, C.; Wagner, S.; Zondlo, M. A.; Ebert, V.

    2016-12-01

    Metrology, the science of measurement, defines the SI, the international system of measurement units, their realization and aims to provide a traceable linkage of measurements to the SI. Primary standards at the national metrology institutes (NMIs) provide the highest achievable accuracy levels linked to the SI and thus are ideal scale reference points to establish long-term comparability between instruments in large networks e.g. in global atmospheric monitoring. However, NMIs offer much more than traceable standards. Metrological communities share internally a large valuable knowledge about "how to measure", e.g. how to calculate, assess and estimate impacts which deteriorate measurements or how to minimize negative impacts and address them in a systematic way with a scientific approach. Over the last years WMO, the world meteorological organization, as well as sub communities in the environmental sciences (e.g. the TCCON or GRUAN network), have greatly increased their efforts to integrate metrological principles and improved the comparability across the network. Prominent examples are airborne water vapor measurements, which, despite the well validated global metrological water scale for industry applications, are only very rarely linked to it, mainly due to the lack of established transfer standards. During the last years our group at PTB developed a new class of optical hygrometers and related validation strategies, in order to reduce deviations of up to 20% found in AquaVIT, a large scale, lab based comparison of leading airborne field hygrometers (Fahey et al, AMT, 7, 3159-3251, 2014) down to a long-term stability over 18 month of 0.35%, making this instrument (SEALDH-II) the first dTDLAS-based airborne transfer standards for atmospheric humidity. These and other examples lead to the conclusion that scientific communities starting to enroll metrological principles significantly improve their measurements and eventually the validity as well as interpretation

  3. Integration of mask and silicon metrology in DFM

    Science.gov (United States)

    Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2009-03-01

    We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based

  4. Introduction to quantum metrology quantum standards and instrumentation

    CERN Document Server

    Nawrocki, Waldemar

    2015-01-01

    This book presents the theory of quantum effects used in metrology and results of the author’s own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called  Quantum SI, is introduced. This book helps to understand and approve the new system to both technology a...

  5. [The EFS metrology: From the production to the reason].

    Science.gov (United States)

    Reifenberg, J-M; Riout, E; Leroy, A; Begue, S

    2014-06-01

    In order to answer statutory requirements and to anticipate the future needs and standards, the EFS is committed, since a few years, in a process of harmonization of its metrology function. In particular, the institution has opted for the skills development by internalizing the metrological traceability of the main critical quantities (temperature, volumetric) measurements. The development of metrology so resulted in a significant increase in calibration and testing activities. Methods are homogenized and improved through accreditations. The investment strategies are based on more and more demanding specifications. The performance of the equipments is better known and mastered. Technical expertise and maturity of the national metrology function today are assets to review in more informed ways the appropriateness of the applied periodicities. Analysis of numerous information and data in the calibration and testing reports could be pooled and operated on behalf of the unique establishment. The objective of this article is to illustrate these reflections with a few examples from of a feedback of the EFS Pyrénées Méditerranée. The analysis of some methods of qualification, the exploitation of the historical metrology in order to quantify the risk of non-compliance, and to adapt the control strategy, analysis of the criticality of an instrument in a measurement process, risk analyses are tools that deserve to be more widely exploited for that discipline wins in efficiency at the national level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  7. Remote metrology system (RMS) design concept

    International Nuclear Information System (INIS)

    1995-01-01

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR's fiber optic implementation allows a 3D scanner to operate remotely from the RMS system's vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm 2 density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner

  8. Remote metrology system (RMS) design concept

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  9. Reconstruction of freeform surfaces for metrology

    International Nuclear Information System (INIS)

    El-Hayek, N; Nouira, H; Anwer, N; Damak, M; Gibaru, O

    2014-01-01

    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks ® or Geomagic ® ). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces

  10. Dynamic Length Metrology (DLM) for measurements with sub-micrometre uncertainty in a production environment

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Hattel, Jesper Henri

    2016-01-01

    Conventional length metrology for traceable accurate measurements requires costly temperature controlled facilities, long waiting time for part acclimatisation, and separate part material characterisation. This work describes a method called Dynamic Length Metrology (DLM) developed to achieve sub...

  11. Laser metrology and optic active control system for GAIA

    Science.gov (United States)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  12. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  13. Automation of testing the metrological reliability of nondestructive control systems

    International Nuclear Information System (INIS)

    Zhukov, Yu.A.; Isakov, V.B.; Karlov, Yu.K.; Kovalevskij, Yu.A.

    1987-01-01

    Opportunities of microcomputers are used to solve the problem of testing control-measuring systems. Besides the main program the program of data processing when characterizing the nondestructive control systems is written in the microcomputer. The program includes two modules. The first module contains tests-programs, by which accuracy of functional elements of the microcomputer and interface elements with issuing a message to the operator on readiness of the elements for operation and failure of a certain element are determined. The second module includes: calculational programs when determining metrological reliability of measuring channel reliability, a calculational subprogram for random statistical measuring error, time instability and ''dead time''. Automation of testing metrological reliability of the nondestructive control systems increases reliability of determining metrological parameters and reduces time of system testing

  14. Metrology and analytical chemistry: Bridging the cultural gap

    International Nuclear Information System (INIS)

    King, Bernard

    2002-01-01

    Metrology in general and issues such as traceability and measurement uncertainty in particular are new to most analytical chemists and many remain to be convinced of their value. There is a danger of the cultural gap between metrologists and analytical chemists widening with unhelpful consequences and it is important that greater collaboration and cross-fertilisation is encouraged. This paper discusses some of the similarities and differences in the approaches adopted by metrologists and analytical chemists and indicates how these approaches can be combined to establish a unique metrology of chemical measurement which could be accepted by both cultures. (author)

  15. Metrology in CNEN NN 3.05/13 standard

    International Nuclear Information System (INIS)

    Mello, Marina Santiago de

    2014-01-01

    The nuclear medicine exams are widely used tools in health services for a reliable clinical and functional diagnosis of a disease. In Brazil, the National Nuclear Energy Commission, through the norm CNEN-NN 3:05/13, provides for the requirements of safety and radiological protection in nuclear medicine services. The objective of this review article was to emphasize the importance of metrology in compliance with this norm. We observed that metrology plays a vital role as it ensures the quality, accuracy, reproducibility and consistency of the measurements in the field of nuclear medicine. (author)

  16. No-signaling bounds for quantum cloning and metrology

    Science.gov (United States)

    Sekatski, P.; Skotiniotis, M.; Dür, W.

    2015-08-01

    The impossibility of superluminal communication is a fundamental principle of physics. Here we show that this principle underpins the performance of several fundamental tasks in quantum information processing and quantum metrology. In particular, we derive tight no-signaling bounds for probabilistic cloning and superreplication that coincide with the corresponding optimal achievable fidelities and rates known. In the context of quantum metrology, we derive the Heisenberg limit from the no-signaling principle for certain scenarios including reference frame alignment and maximum likelihood state estimation. We elaborate on the equivalence of assymptotic phase-covariant cloning and phase estimation for different figures of merit.

  17. Forum metrology 2009: control of optics, targets and optical analyzers

    International Nuclear Information System (INIS)

    Desenne, D.; Andre, R.

    2010-01-01

    The 1. 'Forum Metrologie' of the CEA/DAM has been held in the 'Institut Laser et Plasma' on the December 9, 2009, close to the 'Centre d'etudes Scientifiques et Techniques d'Aquitaine'. It has been set up by the 'Departement Lasers de Puissance'. The chosen thematic was the metrology around laser experiments, with a special focus on the metrology of the dedicated optics, targets and optical analysers. The talks have shown the progress and difficulties in each of these fields. (authors)

  18. Handbook of 3D machine vision optical metrology and imaging

    CERN Document Server

    Zhang, Song

    2013-01-01

    With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and

  19. Evaluation of metrology technologies for free form surfaces

    DEFF Research Database (Denmark)

    Arámbula, K.; Siller, H.R.; De Chiffre, Leonardo

    2012-01-01

    This research work describes a novel approach for comparing different technologies for free form surface metrology: computerized tomography (CT), photogrammetry and coordinate measuring machines (CMM). The comparison has the aim of providing relevant information for the selection of metrology...... equipment when measuring free form components. Results demonstrate that there is the imperative need to assess the uncertainty and reproducibility of CT and photogrammetry measurements by applying some calibration procedures taking into account some recommendations for work piece alignment. This article...... also deals with costs issues, required standards, and necessary additional information when selecting inspection equipment....

  20. Low contact resistance in epitaxial graphene devices for quantum metrology

    Energy Technology Data Exchange (ETDEWEB)

    Yager, Tom, E-mail: yager@chalmers.se, E-mail: ywpark@snu.ac.kr; Lartsev, Arseniy; Lara-Avila, Samuel; Kubatkin, Sergey [Department of Microtechnology and Nanoscience, Chalmers University of Technology Göteborg, S-412 96 (Sweden); Cedergren, Karin [School of Physics, University of New South Wales, Sydney, NSW-2052 (Australia); Yakimova, Rositsa [Department of Physics, Chemistry and Biology (IFM), Linköping University Linköping, S-581 83 (Sweden); Panchal, Vishal; Kazakova, Olga [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Tzalenchuk, Alexander [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Department of Physics, Royal Holloway, University of London, Egham, TW20 0EX (United Kingdom); Kim, Kyung Ho; Park, Yung Woo, E-mail: yager@chalmers.se, E-mail: ywpark@snu.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-08-15

    We investigate Ti/Au contacts to monolayer epitaxial graphene on SiC (0001) for applications in quantum resistance metrology. Using three-terminal measurements in the quantum Hall regime we observed variations in contact resistances ranging from a minimal value of 0.6 Ω up to 11 kΩ. We identify a major source of high-resistance contacts to be due bilayer graphene interruptions to the quantum Hall current, whilst discarding the effects of interface cleanliness and contact geometry for our fabricated devices. Moreover, we experimentally demonstrate methods to improve the reproducibility of low resistance contacts (<10 Ω) suitable for high precision quantum resistance metrology.

  1. Low contact resistance in epitaxial graphene devices for quantum metrology

    Directory of Open Access Journals (Sweden)

    Tom Yager

    2015-08-01

    Full Text Available We investigate Ti/Au contacts to monolayer epitaxial graphene on SiC (0001 for applications in quantum resistance metrology. Using three-terminal measurements in the quantum Hall regime we observed variations in contact resistances ranging from a minimal value of 0.6 Ω up to 11 kΩ. We identify a major source of high-resistance contacts to be due bilayer graphene interruptions to the quantum Hall current, whilst discarding the effects of interface cleanliness and contact geometry for our fabricated devices. Moreover, we experimentally demonstrate methods to improve the reproducibility of low resistance contacts (<10 Ω suitable for high precision quantum resistance metrology.

  2. Dark matter: a problem in relativistic metrology?

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2017-01-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least

  3. 8th Brazilian Congress on Metrology (Metrologia 2015)

    International Nuclear Information System (INIS)

    2016-01-01

    THE EIGHTH BRAZILIAN CONGRESS ON METROLOGY (METROLOGIA 2015) The United Nations celebrated 2015 as the International Year of Light. By a curious coincidence, many notable events in science and technology completed a multiple of 50 or 100 years in 2015. From the pioneering work of the wise Ibn Al-Haytham in 1015, through Fresnel, Maxwell, Einstein, the discovery of the cosmic microwave background, to the use of optical fibres in communications in 1965. Electromagnetic radiation is present in our daily lives in countless applications. It is remarkable that there is no way to think about these applications without thinking of measurements. From entangled photons to more prosaic public illumination of our daily life, we are intrinsically connected all the time with the luminous phenomena. Among other things, the light allows global communication on a large scale. It strengthens the internationalization of production processes, which brings considerable changes in relations, processes and economic structures, as well as it orients the social, political and cultural behaviour of any country. These conditions of this internationalization require interchangeability of parts of complex systems, translated into strict adherence to the standards and specifications that use increasingly accurate measurement techniques, as well as the growing demand from consumer markets for products and higher quality services. They also require innovation and improvements in domestic production to boost the competitiveness of industries in domestic and foreign markets. Thus, if the Science of Measurements is taken as a serious concern, countries are better prepared to evolve towards economic and social development. In this 8 th edition of the Brazilian Congress on Metrology (METROLOGIA 2015), in addition to the thematic sessions in various areas of Metrology and Conformity Assessment, we hold several satellite events. They are already traditional events or highlight important current issues

  4. Performance of the upgraded LTP-II at the ALS Optical Metrology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Yashchuk, Valeriy V; Kirschman, Jonathan L.; Domning, Edward E.; McKinney, Wayne R.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2008-07-14

    The next generation of synchrotrons and free electron laser facilities requires x-ray optical systems with extremely high performance, generally of diffraction limited quality. Fabrication and use of such optics requires adequate, highly accurate metrology and dedicated instrumentation. Previously, we suggested ways to improve the performance of the Long Trace Profiler (LTP), a slope measuring instrument widely used to characterize x-ray optics at long spatial wavelengths. The main way is use of a CCD detector and corresponding technique for calibration of photo-response non-uniformity [J. L. Kirschman, et al., Proceedings of SPIE 6704, 67040J (2007)]. The present work focuses on the performance and characteristics of the upgraded LTP-II at the ALS Optical Metrology Laboratory. This includes a review of the overall aspects of the design, control system, the movement and measurement regimes for the stage, and analysis of the performance by a slope measurement of a highly curved super-quality substrate with less than 0.3 microradian (rms)slope variation.

  5. Optical metrology tools for the Virgo projet

    Science.gov (United States)

    Loriette, V.

    For more than thirty years the search for gravitationnal waves, predicted by Einstein's relativistic theory of gravitation, has been an intense research field in experimental as well as theoretical physics. Today, with the constant advance of technology in optics, lasers, data analysis and processing, ... a promising way of directly detecting gravitationnal waves with earth-based instruments is optical interferometry. Before the end of this century many experiments will be carried on in Australia, Europe, Japan and the United States to detect the passage of a gravitationnal wave through giant Michelson-type interferometers. The effects predicted are so small, (a gravitationnal wave changes the length of three kilometer long arms by one thousandth of a fermi) that the need for “perfect” optical components is a key to the success of these experiments. Still a few years ago it would have been impossible to make optical components that would satisfy the required specifications for such interferometric detectors. For nearly ten years constant R&D efforts in optical coating manufacturing, optical material fabrication and optical metrology, allow us today to make such components. This text is intended to describe the field of optical metrology as it is needed for the testing of optical parts having performances far beyond than everything previously made. The first chapter is an introduction to gravitationnal waves, their sources and their effects on detectors. Starting by newtonian mechanics we jump rapidly to the general theory of relativity and describe particular solutions of Einstein's equations in the case of weak gravitationnal fields, which are periodic perturbations of the space-time metric in the form of plane waves, the so-called gravitationnal waves. We present various candidate sources, terrestrial and extra-terrestrial and give a short description of the two families of detectors: resonnant bars and optical interferometers. The second part of this chapter

  6. Digital terrain modeling and industrial surface metrology: Converging realms

    Science.gov (United States)

    Pike, R.J.

    2001-01-01

    Digital terrain modeling has a micro-and nanoscale counterpart in surface metrology, the numerical characterization of industrial surfaces. Instrumentation in semiconductor manufacturing and other high-technology fields can now contour surface irregularities down to the atomic scale. Surface metrology has been revolutionized by its ability to manipulate square-grid height matrices that are analogous to the digital elevation models (DEMs) used in physical geography. Because the shaping of industrial surfaces is a spatial process, the same concepts of analytical cartography that represent ground-surface form in geography evolved independently in metrology: The surface topography of manufactured components, exemplified here by automobile-engine cylinders, is routinely modeled by variogram analysis, relief shading, and most other techniques of parameterization and visualization familiar to geography. This article introduces industrial surface-metrology, examines the field in the context of terrain modeling and geomorphology and notes their similarities and differences, and raises theoretical issues to be addressed in progressing toward a unified practice of surface morphometry.

  7. Mirror surface metrology and polishing for AXAF/TMA

    International Nuclear Information System (INIS)

    Slomba, A.; Babish, R.; Glenn, P.

    1985-01-01

    The achievement of the derived goals for mirror surface quality on the Advanced X-ray Astrophysics Facility (AXAF), Technology Mirror Assembly (TMA) required a combination of state-of-the-art metrology and polishing techniques. In this paper, the authors summarize the derived goals and cover the main facets of the various metrology instruments employed, as well as the philosophy and technique used in the polishing work. In addition, they show how progress was measured against the goals, using the detailed error budget for surface errors and a mathematical model for performance prediction. The metrology instruments represented a considerable advance on the state-of-the-art and fully satisfied the error budget goals for the various surface errors. They were capable of measuring the surface errors over a large range of spatial periods, from low-frequency figure errors to microroughness. The polishing was accomplished with a computer-controlled process, guided by the combined data from various metrology instruments. This process was also tailored to reduce the surface errors over the full range of spatial periods

  8. User-friendly optical metrology in production engineering

    Science.gov (United States)

    Bichmann, Stephan; Glaser, Ulf; Pfeifer, Tilo

    2004-09-01

    In order to tap the full potential of optical metrology, a comprehensive knowledge of the measuring system properties is of particular importance. The surface characteristics, the sensor's orientation towards the device under test and even the measuring frequency affect the result. Understanding the function of particular components of the device under test must also be seen as a basic prerequisite for the definition of the inspection features which will make up the inspection plan. The problems arising from the complex application of optical metrology, mainly in machine integration and embedment into existing quality management, will be the central theme of two research projects. An emphases of the technical development will be on the integration of optical metrology into machine tools and production-related coordinate measuring machines while ensuring consistency of data and on the conceptual design of software interfaces for user-friendly application of optical metrology. For that purpose, database-supported automatic generation of measurement and digitization procedures from CAD data will be implemented. This work will centre around the definition of variable sensor parameters and the allocation and configuration of these parameters according to the measurement task at hand. The technological basis for these studies are a conoscopic sensor mounted on a coordinate measuring machine and a scanning triangulation sensor integrated into a five axis machine tool.

  9. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  10. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  11. At-wavelength Optical Metrology Development at the ALS

    International Nuclear Information System (INIS)

    Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Smith, Brian V.; Domning, Edward E.; McKinney, Wayne R.; Warwick, Tony

    2010-01-01

    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application.

  12. Optical antennas for far and near field metrology

    NARCIS (Netherlands)

    Silvestri, F.; Bernal Arango, F.; Vendel, K.J.A.; Gerini, G.; Bäumer, S.M.B.; Koenderink, A.F.

    2016-01-01

    This paper presents the use of optical antennas in metrology scenarios. Two design concepts are presented: dielectric nanoresonator arrays and plasmonic nanoantennas arrays. The first ones are able to focus an incident light beam at an arbitrary focal plane. The nanoantennas arrays can be employed

  13. Development of the metrology and imaging of cellulose nanocrystals

    Science.gov (United States)

    Michael T. Postek; Andras Vladar; John Dagata; Natalia Farkas; Bin Ming; Ryan Wagner; Arvind Raman; Robert J. Moon; Ronald Sabo; Theodore H. Wegner; James Beecher

    2011-01-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the...

  14. Using grating based X-ray contrast modalities for metrology

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; Lauridsen, T.; Feidenhans'l, R.

    2014-01-01

    Traditionally, segmentation between multi-materials in CT is only available for cases, where material densities are not close to each other. A novel method called GBI offers a new possibility to overcome this problem, and was evaluated with respect to its metrological performance by comparisons t...

  15. A new approach to stitching optical metrology data

    Science.gov (United States)

    King, Christopher W.

    The next generation of optical instruments, including telescopes and imaging apparatus, will generate an increased requirement for larger and more complex optical forms. A major limiting factor for the production of such optical components is the metrology: how do we measure such parts and with respect to what reference datum This metrology can be thought of as part of a complete cycle in the production of optical components and it is currently the most challenging aspect of production. This thesis investigates a new and complete approach to stitching optical metrology data to extend the effective aperture or, in future, the dynamic range of optical metrology instruments. A practical approach is used to build up a complete process for stitching on piano and spherical parts. The work forms a basis upon which a stitching system for aspheres might be developed in the future, which is inherently more complicated. Beginning with a historical perspective and a review of optical polishing and metrology, the work presented relates the commercially available metrology instruments to the stitching process developed. The stitching is then performed by a numerical optimization routine that seeks to join together overlapping sub-aperture measurements by consideration of the aberrations introduced by the measurement scenario, and by the overlap areas between measurements. The stitching is part of a larger project, the PPARC Optical Manipulation and Metrology project, and was to benefit from new wavefront sensing technology developed by a project partner, and to be used for the sub-aperture measurement. Difficult mathematical problems meant that such a wavefront sensor was not avail able for this work and a work-around was therefore developed using commercial instruments. The techniques developed can be adapted to work on commercial ma chine platforms, and in partuicular, the OMAM NPL/UCL swing-arm profilometer described in chapter 5, or the computer controlled polishing machines

  16. In-die photomask registration and overlay metrology with PROVE using 2D correlation methods

    Science.gov (United States)

    Seidel, D.; Arnz, M.; Beyer, D.

    2011-11-01

    According to the ITRS roadmap, semiconductor industry drives the 193nm lithography to its limits, using techniques like double exposure, double patterning, mask-source optimization and inverse lithography. For photomask metrology this translates to full in-die measurement capability for registration and critical dimension together with challenging specifications for repeatability and accuracy. Especially, overlay becomes more and more critical and must be ensured on every die. For this, Carl Zeiss SMS has developed the next generation photomask registration and overlay metrology tool PROVE® which serves the 32nm node and below and which is already well established in the market. PROVE® features highly stable hardware components for the stage and environmental control. To ensure in-die measurement capability, sophisticated image analysis methods based on 2D correlations have been developed. In this paper we demonstrate the in-die capability of PROVE® and present corresponding measurement results for shortterm and long-term measurements as well as the attainable accuracy for feature sizes down to 85nm using different illumination modes and mask types. Standard measurement methods based on threshold criteria are compared with the new 2D correlation methods to demonstrate the performance gain of the latter. In addition, mask-to-mask overlay results of typical box-in-frame structures down to 200nm feature size are presented. It is shown, that from overlay measurements a reproducibility budget can be derived that takes into account stage, image analysis and global effects like mask loading and environmental control. The parts of the budget are quantified from measurement results to identify critical error contributions and to focus on the corresponding improvement strategies.

  17. An OCD perspective of line edge and line width roughness metrology

    Science.gov (United States)

    Bonam, Ravi; Muthinti, Raja; Breton, Mary; Liu, Chi-Chun; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Patlolla, Raghuveer; Huang, Huai

    2017-03-01

    Metrology of nanoscale patterns poses multiple challenges that range from measurement noise, metrology errors, probe size etc. Optical Metrology has gained a lot of significance in the semiconductor industry due to its fast turn around and reliable accuracy, particularly to monitor in-line process variations. Apart from monitoring critical dimension, thickness of films, there are multiple parameters that can be extracted from Optical Metrology models3. Sidewall angles, material compositions etc., can also be modeled to acceptable accuracy. Line edge and Line Width roughness are much sought of metrology following critical dimension and its uniformity, although there has not been much development in them with optical metrology. Scanning Electron Microscopy is still used as a standard metrology technique for assessment of Line Edge and Line Width roughness. In this work we present an assessment of Optical Metrology and its ability to model roughness from a set of structures with intentional jogs to simulate both Line edge and Line width roughness at multiple amplitudes and frequencies. We also present multiple models to represent roughness and extract relevant parameters from Optical metrology. Another critical aspect of optical metrology setup is correlation of measurement to a complementary technique to calibrate models. In this work, we also present comparison of roughness parameters extracted and measured with variation of image processing conditions on a commercially available CD-SEM tool.

  18. Metrology in an ISO 15189 accredited medical biology laboratory

    Directory of Open Access Journals (Sweden)

    Guichet C.

    2014-01-01

    Full Text Available All French medical biology laboratories must be accredited according to ISO 15189 for all tests conducted. Metrology is therefore critical and covers a wide variety of areas. This presentation will focus on the metrology manager’s role which is tailored to the medical biology laboratory: human resources in place, methods used, parameters followed, equipment used and strategies implemented when using equipment which is not connected to the International System of Units. It will be illustrated by examples of in vitro and in vivo clinical biochemistry, biological haematology, human toxicology and radiotoxicology. The presentation will cover the exploitation of results of internal controls and interlaboratory comparisons in order to calculate uncertainties and provide doctors with a result along with an interpretation or opinion to ensure optimum patient care. The conclusion will present the steps carried out at the Laboratoire National d’Essai (French National Testing Laboratory to provide medical biology laboratories with certified clinical biology standards.

  19. PSM and thin OMOG reticles aerial imaging metrology comparison study

    Science.gov (United States)

    Cohen, Yaron; Finders, Jo; Mangan, Shmoolik; Englard, Ilan; Mouraille, Orion; Janssen, Maurice; Miyazaki, Junji; Connolly, Brid; Kojima, Yosuke; Higuchi, Masaru

    2012-02-01

    For sub 20nm features, IC (integrated circuits) designs include an increasing number of features approaching the resolution limits of the scanner compared to the previous generation of IC designs. This trend includes stringent design rules and complex, ever smaller optical proximity correction (OPC) structures. In this regime, a new type of mask, known as opaque MoSi on glass (OMOG), has been introduced to overcome the shortcomings of the well-established phase shift masks (PSM). This paper reviews the fundamental aerial imaging differences between identically designed PSM and thin OMOG masks. The masks were designed for scanner qualification tests and therefore contain large selections of 1D and 2D features, including various biases and OPCs. Aerial critical dimension uniformity (CDU) performance for various features on both masks are reported. Furthermore, special efforts have been made to emphasize the advantages of aerial imaging metrology versus wafer metrology in terms of shortening scanner qualification cycle time.

  20. Development of a virtual metrology method using plasma harmonics analysis

    Science.gov (United States)

    Jun, H.; Shin, J.; Kim, S.; Choi, H.

    2017-07-01

    A virtual metrology technique based on plasma harmonics is developed for predicting semiconductor processes. From a plasma process performed by 300 mm photoresist stripper equipment, a strong correlation is found between optical plasma harmonics intensities and the process results, such as the photoresist strip rate and strip non-uniformity. Based on this finding, a general process prediction model is developed. The developed virtual metrology model shows that the R-squared (R2) values between the measured and predicted process results are 95% and 64% for the photoresist strip rate and photoresist strip non-uniformity, respectively. This is the first research on process prediction based on optical plasma harmonics analysis, and the results can be applied to semiconductor processes such as dry etching and plasma enhanced chemical vapor deposition.

  1. Development of ITER in-vessel viewing and metrology systems

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation ({approx}30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  2. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  3. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  4. METROLOGICAL SUPPORT OF AGROCHEMICAL LABORATORIES IN AGROECOLOGICAL MONITORING

    Directory of Open Access Journals (Sweden)

    G A Stupakova

    2015-01-01

    Full Text Available Activities of the All-Russian Research Institute of Agrochemistry are outlined in the field of the development of interstate, state, and branch certified reference materials for the composition of soils, forages, foods, and raw materials used in the certification of analytical procedures, verification and calibration of measuring instruments, and intralaboratory tests, as well as in the organization and fulfillment of interlaboratory comparison tests within the framework of the metrological support of Russia agrochemical service. It is shown that the All-Russian Research Institute of Agrochemistry has developed the system of metrological supply of analytical work, which is based on the methodology of the development and application of certified reference materials for the composition of soils and plant products, and applied it in the laboratories of Russian agroindustrial complex.

  5. Development of a virtual metrology method using plasma harmonics analysis

    Directory of Open Access Journals (Sweden)

    H. Jun

    2017-07-01

    Full Text Available A virtual metrology technique based on plasma harmonics is developed for predicting semiconductor processes. From a plasma process performed by 300 mm photoresist stripper equipment, a strong correlation is found between optical plasma harmonics intensities and the process results, such as the photoresist strip rate and strip non-uniformity. Based on this finding, a general process prediction model is developed. The developed virtual metrology model shows that the R-squared (R2 values between the measured and predicted process results are 95% and 64% for the photoresist strip rate and photoresist strip non-uniformity, respectively. This is the first research on process prediction based on optical plasma harmonics analysis, and the results can be applied to semiconductor processes such as dry etching and plasma enhanced chemical vapor deposition.

  6. Alternative measures of uncertainty in quantum metrology: Contradictions and limits

    Science.gov (United States)

    Luis, Alfredo; Rodil, Alfonso

    2013-03-01

    We examine a family of intrinsic performance measures in terms of probability distributions that generalize Hellinger distance and Fisher information. They are applied to quantum metrology to assess the uncertainty in the detection of minute changes of physical quantities. We show that different measures lead to contradictory conclusions, including the possibility of arbitrarily small uncertainty for fixed resources. These intrinsic performances are compared with the averaged error in the corresponding estimation problem after single-shot measurements.

  7. Metrology and Proportion in the Ecclesiastical Architecture of Medieval Ireland

    OpenAIRE

    Behan, Avril; Moss, Rachel

    2008-01-01

    The aim of this paper is to examine the extent to which detailed empirical analysis of the metrology and proportional systems used in the design of Irish ecclesiastical architecture can be analysed to provide historical information not otherwise available. Focussing on a relatively limited sample of window tracery designs as a case study, it will first set out to establish what, if any, systems were in use, and then what light these might shed on the background, training and work practices of...

  8. The Remarkable Metrological History of Radiocarbon Dating [II].

    Science.gov (United States)

    Currie, Lloyd A

    2004-01-01

    This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought (14)C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for "molecular dating" at the 10 µg to 100 µg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the "bomb effect," that gave rise to new multidisciplinary areas of application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthropogenic pollutants to the reconstruction of environmental history. Beyond the specific topic of natural (14)C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanticipated metrological advances in their own chosen fields, and unanticipated anthropogenic or natural chemical events in the environment, can spawn new areas of research having exciting theoretical and practical implications.

  9. Metrological traceability of carbon dioxide measurements in atmosphere and seawater

    Science.gov (United States)

    Rolle, F.; Pessana, E.; Sega, M.

    2017-05-01

    The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO2), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO2 in the atmosphere. The well established activity to assure the metrological traceability of CO2 in the atmosphere will be applied to the determination of CO2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use.

  10. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    Science.gov (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  11. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  12. World wide matching of registration metrology tools of various generations

    Science.gov (United States)

    Laske, F.; Pudnos, A.; Mackey, L.; Tran, P.; Higuchi, M.; Enkrich, C.; Roeth, K.-D.; Schmidt, K.-H.; Adam, D.; Bender, J.

    2008-10-01

    Turn around time/cycle time is a key success criterion in the semiconductor photomask business. Therefore, global mask suppliers typically allocate work loads based on fab capability and utilization capacity. From a logistical point of view, the manufacturing location of a photomask should be transparent to the customer (mask user). Matching capability of production equipment and especially metrology tools is considered a key enabler to guarantee cross site manufacturing flexibility. Toppan, with manufacturing sites in eight countries worldwide, has an on-going program to match the registration metrology systems of all its production sites. This allows for manufacturing flexibility and risk mitigation.In cooperation with Vistec Semiconductor Systems, Toppan has recently completed a program to match the Vistec LMS IPRO systems at all production sites worldwide. Vistec has developed a new software feature which allows for significantly improved matching of LMS IPRO(x) registration metrology tools of various generations. We will report on the results of the global matching campaign of several of the leading Toppan sites.

  13. European research project 'Metrology for radioactive waste management'

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. This poster presents impact, excellence, relevance to EMPR objectives, and implementation and management of this project.(author)

  14. A three-fingered, touch-sensitive, metrological micro-robotic assembly tool

    International Nuclear Information System (INIS)

    Torralba, Marta; Hastings, D J; Thousand, Jeffery D; Nowakowski, Bartosz K; Smith, Stuart T

    2015-01-01

    This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere

  15. A three-fingered, touch-sensitive, metrological micro-robotic assembly tool

    Science.gov (United States)

    Torralba, Marta; Hastings, D. J.; Thousand, Jeffery D.; Nowakowski, Bartosz K.; Smith, Stuart T.

    2015-12-01

    This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere

  16. Metrological Needs for Monitoring Aquatic Environments: From the Demonstration of Metrological Traceability to the Decision Making Process

    Directory of Open Access Journals (Sweden)

    Lardy-Fontan Sophie

    2014-01-01

    Full Text Available In Europe, the implementation of the Water Framework Directive WFD, in 2001, marks a strong standpoint. In addition to its objectives of a return to good chemical and good ecological status by the year 2015, it fixes the achievement of trends over space and time. The new requirements that arise from the WFD put considerable financial pressure on water management authorities. Because the overall decision-making process relies most of the time on acquired data, it puts considerable pressures on the display of high quality biological as well as chemical environmental measurements. However, performing measurements implies that i the demonstration of their metrological traceability ii the evidence of their achievement thanks to accurate and sensitive analytical methods and iii their statement with a reliable estimate of expanded uncertainty is thoroughly addressed. Moreover, the measurement representativeness, especially in highly dynamic environment, is of prime interest in a context where comparability over space and time is needed. As a consequence, considerable challenges are dwelt on metrologists with great emphasis on parameters that are under regulation. This paper will discuss a panorama of the unavoidable metrological questions that have to be addressed: from the definition of the measurand to the final estimation of uncertainty; from the initial performances demonstration of methods to the final demonstration of mastery and capabilities through inter comparison laboratories and reference materials. A focus will be made on upcoming alternative monitoring approaches that are seldom addressed from a metrological point of view.

  17. Metrological control of instruments, equipment and measurement system for ultrasonic meters of flow; Controle metrologico de instrumentos, equipamentos e sistema de medicao para medidores ultra-sonicos de vazao

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Oscar de

    2004-07-01

    Following the actual tendency to obtaining greater precision in Natural Gas measurement, in the past few years the use of Ultrasonic Flow Meters as Custody Transfer applications has grown significantly. There are several units currently operating in Brazil. The legislation for model approval, measure system certification and periodical metrological control of the above mentioned equipment, is currently under elaboration final stage. It was placed under public inquire through the 'Portaria 037' of 2004 of INMETRO, which proposes the authorization to perform the Metrological control by the Operator, once it has a quality system implemented according NBR ISO 9001-2000 and/or ISO 17025. This paper describes the verification procedure adopted by most of ultrasonic meters manufacturers. It also describes the application of the procedure for create the 'Metrological Control System of the Measurement System' of a 12'' Ultrasonic Meter installed and operating, with 3 years operation's data. (author)

  18. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  19. Spectroscopic metrology for isotope composition measurements and transfer standards

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2017-04-01

    The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H

  20. Comparison of overlay metrology with analogue and digital cameras

    Science.gov (United States)

    Rigden, Timothy C.; Soroka, Andrew J.; Binns, Lewis A.

    2005-05-01

    Overlay metrology is a very demanding image processing application; current applications are achieving dynamic precision of one hundredth of a pixel or better. As such it requires an accurate image acquisition system, with minimal distortions. Distortions can be physical (e.g. pixel size / shape) or electronic (e.g. clock skew) in nature. They can also affect the image shape, or the gray level intensity of individual pixels, the former causing severe problems to pattern recognition and measurement algorithms, the latter having an adverse effect primarily on the measurement itself. This paper considers the artifacts that are present in a particular analogue camera, with a discussion on how these artifacts translate into a reduction of overlay metrology performance, in particular their effect on precision and tool induced shift (TIS). The observed effects include, but are not limited to, banding and interlacing. This camera is then compared to two digital cameras. The first of these operates at the same frame rate as the analogue camera, and is found to have fewer distortions than the analogue camera. The second camera operates with a frame rate twice that of the other two. It is observed that this camera does not exhibit the distortions of the analogue camera, but instead has some very specific problems, particularly with regards to noise. The quantitative data on the effect on precision and TIS under a wide variety of conditions, is presented. These show that while it is possible to achieve metrology-capable images using an analogue camera, it is preferable to use a digital camera, both from the perspective of overall system performance, and overall system complexity.

  1. Metrology of human-based and other qualitative measurements

    Science.gov (United States)

    Pendrill, Leslie; Petersson, Niclas

    2016-09-01

    The metrology of human-based and other qualitative measurements is in its infancy—concepts such as traceability and uncertainty are as yet poorly developed. This paper reviews how a measurement system analysis approach, particularly invoking as performance metric the ability of a probe (such as a human being) acting as a measurement instrument to make a successful decision, can enable a more general metrological treatment of qualitative observations. Measures based on human observations are typically qualitative, not only in sectors, such as health care, services and safety, where the human factor is obvious, but also in customer perception of traditional products of all kinds. A principal challenge is that the usual tools of statistics normally employed for expressing measurement accuracy and uncertainty will probably not work reliably if relations between distances on different portions of scales are not fully known, as is typical of ordinal or other qualitative measurements. A key enabling insight is to connect the treatment of decision risks associated with measurement uncertainty to generalized linear modelling (GLM). Handling qualitative observations in this way unites information theory, the perceptive identification and choice paradigms of psychophysics. The Rasch invariant measure psychometric GLM approach in particular enables a proper treatment of ordinal data; a clear separation of probe and item attribute estimates; simple expressions for instrument sensitivity; etc. Examples include two aspects of the care of breast cancer patients, from diagnosis to rehabilitation. The Rasch approach leads in turn to opportunities of establishing metrological references for quality assurance of qualitative measurements. In psychometrics, one could imagine a certified reference for knowledge challenge, for example, a particular concept in understanding physics or for product quality of a certain health care service. Multivariate methods, such as Principal Component

  2. Metrology of human-based and other qualitative measurements

    International Nuclear Information System (INIS)

    Pendrill, Leslie; Petersson, Niclas

    2016-01-01

    The metrology of human-based and other qualitative measurements is in its infancy—concepts such as traceability and uncertainty are as yet poorly developed. This paper reviews how a measurement system analysis approach, particularly invoking as performance metric the ability of a probe (such as a human being) acting as a measurement instrument to make a successful decision, can enable a more general metrological treatment of qualitative observations. Measures based on human observations are typically qualitative, not only in sectors, such as health care, services and safety, where the human factor is obvious, but also in customer perception of traditional products of all kinds. A principal challenge is that the usual tools of statistics normally employed for expressing measurement accuracy and uncertainty will probably not work reliably if relations between distances on different portions of scales are not fully known, as is typical of ordinal or other qualitative measurements. A key enabling insight is to connect the treatment of decision risks associated with measurement uncertainty to generalized linear modelling (GLM). Handling qualitative observations in this way unites information theory, the perceptive identification and choice paradigms of psychophysics. The Rasch invariant measure psychometric GLM approach in particular enables a proper treatment of ordinal data; a clear separation of probe and item attribute estimates; simple expressions for instrument sensitivity; etc. Examples include two aspects of the care of breast cancer patients, from diagnosis to rehabilitation. The Rasch approach leads in turn to opportunities of establishing metrological references for quality assurance of qualitative measurements. In psychometrics, one could imagine a certified reference for knowledge challenge, for example, a particular concept in understanding physics or for product quality of a certain health care service. Multivariate methods, such as Principal Component

  3. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  4. Industrial, agricultural, and medical applications of radiation metrology

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1987-01-01

    Photon and particle radiations (gamma rays, X-rays, bremsstrahlung, electrons and other charged particles, neutrons) from radioactive isotopes, X-ray tubes, and accelerators are now widely used in gauging, production control, and other monitoring and metrology devices where avoidance of mechanical contact is desirable. The general principles of radiation gauges, which rely on detection of radiation transmitted by the sample, or on detection of scattered or other secondary radiations produced in the sample, are discussed. Examples of such devices currently used in industrial, agricultural, and medical situations are presented, and some anticipated developments are mentioned. (author)

  5. Precision metrology of NSTX surfaces using coherent laser radar ranging

    International Nuclear Information System (INIS)

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  6. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  7. Development of a free software for laboratory of metrology

    International Nuclear Information System (INIS)

    Silveira, Renata R. da; Benevides, Clayton A.

    2014-01-01

    The Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE) has a Metrology Laboratory to realize radioactive assays and calibrations in X and gamma radiation. This job, realized before in a manual way, had only paper recording and a hard-working data recovery. The objective of this job was to develop an application with free software to manage the laboratory activities, as service recording, rastreability control and environmental conditions monitoring, beyond automate the certificates and reports. As result, we have obtained the optimization of the routine and the management of the laboratory. (author)

  8. Scientific language and metrology; El lenguaje cientificio y la metrologia

    Energy Technology Data Exchange (ETDEWEB)

    Campo Maldonado, D. del; Martin Blasco, B.; Prieto Esteban, E.

    2011-07-01

    The International System of Units (SI) reflects all the decisions and recommendations regarding units of measurement issued by the General Conference on Weights and Measures, including rules for writing the names and symbols of measurement units and for expressing the values of quantities. Even though the SI is internationally accepted and is the declared legal system whose use is obligatory in Spain, the Spanish Metrology Centre has been detecting an incorrect use of the units of measurement both in textbooks at all levels and in scientific articles. (Author) 5 refs.

  9. Fringe pattern analysis for optical metrology theory, algorithms, and applications

    CERN Document Server

    Servin, Manuel; Padilla, Moises

    2014-01-01

    The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such

  10. LISA Pathfinder: Optical Metrology System monitoring during operations

    Science.gov (United States)

    Audley, Heather E.; LISA Pathfinder Collaboration

    2017-05-01

    The LISA Pathfinder (LPF) mission has demonstrated excellent performance. In addition to having surpassed the main mission goals, data has been collected from the various subsystems throughout the duration of the mission. This data is a valuable resource, both for a more complete understanding of the LPF satellite and the differential acceleration measurements, as well as for the design of the future Laser Interferometer Space Antenna (LISA) mission. Initial analysis of the Optical Metrology System (OMS) data was performed as part of daily system monitoring, and more in-depth analyses are ongoing. This contribution presents an overview of these activities along with an introduction to the OMS.

  11. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  12. Issues of Teaching Metrology in Higher Education Institutions of Civil Engineering in Russia

    Science.gov (United States)

    Pukharenko, Yurii Vladimirovich; Norin, Veniamin Aleksandrovich

    2017-01-01

    The work analyses the training process condition in teaching the discipline "Metrology, Standardization, Certification and Quality Control." It proves that the current educational standard regarding the instruction of the discipline "Metrology, Standardization, Certification and Quality Control" does not meet the needs of the…

  13. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN; Laboratorio Nacional de Metrologia das Radiacoes Ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs.

  14. Breakthrough In Current In Plane Metrology For Monitoring Large Scale MRAM Production

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Østerberg, Frederik Westergaard; Hansen, Ole

    2017-01-01

    of the Resistance Area product (RA) and the Tunnel Magnetoresistance (TMR) measurements, compared to state of the art CIPT metrology tools dedicated to R&D. On two test wafers, the repeatability of RA and MR was improved up to 350% and the measurement reproducibility up to 1700%. We believe that CIPT metrology now...

  15. Quantum interference metrology at deep-UV wavelengths using phase-controlled ultrashort laser pulses

    NARCIS (Netherlands)

    Zinkstok, R. Th; Witte, S.; Ubachs, W.; Hogervorst, W.; Eikema, K. S E

    2005-01-01

    High-resolution metrology at wavelengths shorter than ultraviolet is in general hampered by a limited availability of appropriate laser sources. It is demonstrated that this limitation can be overcome by quantum-interference metrology with frequency up-converted ultrafast laser pulses. The required

  16. Metrology for decommissioning nuclear facilities: Partial outcomes of joint research project within the European Metrology Research Program.

    Science.gov (United States)

    Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas

    2018-04-01

    Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Defining acceptable limits for the metrological traceability of specific measurands.

    Science.gov (United States)

    Bais, Renze; Armbruster, Dave; Jansen, Rob T P; Klee, George; Panteghini, Mauro; Passarelli, Joseph; Sikaris, Ken A

    2013-05-01

    Although manufacturers are compelled by the European IVD Directive, 98/79/EC, to have traceability of the values assigned to their calibrators if suitable higher order reference materials and/or procedures are available, there is still no equivalence of results for many measurands determined in clinical laboratories. The adoption of assays with metrological traceable results will have a significant impact on laboratory medicine in that results will be equivalent across different laboratories and different analytical platforms. The IFCC WG on Allowable Errors for Traceable Results has been formed to define acceptable limits for metrological traceability chains for specific measurands in order to promote the equivalence of patient results. These limits are being developed based on biological variation for the specific measurands. Preliminary investigations have shown that for some measurands, it is possible for manufacturers to assign values to assay calibrators with a measurement uncertainty that allows the laboratory enough combined uncertainty for their routine measurements. However, for other measurands, e.g., plasma sodium, current assays are too imprecise to fulfil limits based on biological variation. Although an alternative approach based on probability theory is being investigated, the most desirable approach would be for industry to improve measurement methods so that they meet clinical requirements.

  18. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  19. Adhesive Bonding for Optical Metrology Systems in Space Applications

    Science.gov (United States)

    Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2015-05-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.

  20. Mechanical machining and metrology at micro/nano scale

    Science.gov (United States)

    Liang, Steven Y.

    2006-11-01

    Micro-scale machining performed in a mechanical manner is an ultra-precision material removal process to achieve micron form accuracy and a few nanometer finish. It has gained increasing importance in the manufacture of optical, mechanical, biomedical, and electronic components with intricate details in many industry and consumer products, both as a means to produce final products and to create dies and molds for further mass production. The backbone of science and technology for the success of machining at such fine length scales hinges on the understanding of microstructual machining mechanics, precision control of machine tool motions, miniaturization of cutters, miniaturization of machine tools, and the availability of high resolution metrology. This paper examines a number of recent research developments at Georgia Tech in these areas. On microstructual mechanics, cutting at submicron depth to control brittle-ductile transition of material will be discussed. On precision machine control, compensation of micrometer multitooth runout error through the chip load servo will be illustrated. On cutter miniaturization, the concept of magnetic single-grit abrasive as a micro cutting tool for submicron dimensional accuracy will be presented. On machine tool miniaturization, the downsizing of machining center and its associated benefits on precision will be elaborated. On metrology, a micro laser-based system and acoustic emission systems are presented for the measurement of micro cutting tool locations. The presentation of these topics will focus on the underlying fundamentals of fine scale machining and their implications toward ultra-precision engineering and micro/nano manufacturing.

  1. ALP: universal DMD controller for metrology and testing

    Science.gov (United States)

    Hoefling, Roland; Ahl, Enrico

    2004-05-01

    The paper presents a current development in the field of high-speed spatial light modulators. The Digital Micromirror Device (DMD) developed and produced by Texas Instruments Inc. (TI) stimulated new approaches in photonics. Recently, TI introduced the Discovery general purpose chipset to support new business areas in addition to the mainstream application of DMD technology in digital projection. ViALUX developed the ALP parallel interface controller board as a Discovery 1100 accessory for high speed micromirror operation. ALP (Accessory Light Modulator Package) has been designed for use in optical metrology but is widely open for numerous applications. It allows for rapid launch into new DMD applications and can be integrated instantly into existing systems or may initiate new developments. The paper describes both, the general hardware architecture and the software concept of the new high-speed controller solution. Binary and gray-value patterns of variable bit-depth can be pre-loaded to on-board SDRAM via USB and transferred to DMD at high speed (up to 6900 XGA frames per second). Three examples are to illustrate how the approach enables advanced applications of DMD technology in metrology, testing and beyond.

  2. Industrial Photogrammetry - Accepted Metrology Tool or Exotic Niche

    Science.gov (United States)

    Bösemann, Werner

    2016-06-01

    New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]). This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly) illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM's. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.

  3. INDUSTRIAL PHOTOGRAMMETRY - ACCEPTED METROLOGY TOOL OR EXOTIC NICHE

    Directory of Open Access Journals (Sweden)

    W. Bösemann

    2016-06-01

    Full Text Available New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]. This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM’s. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.

  4. Overlay metrology solutions in a triple patterning scheme

    Science.gov (United States)

    Leray, Philippe; Mao, Ming; Baudemprez, Bart; Amir, Nuriel

    2015-03-01

    Overlay metrology tool suppliers are offering today several options to their customers: Different hardware (Image Based Overlay or Diffraction Based Overlay), different target designs (with or without segmentation) or different target sizes (from 5 um to 30 um). All these variations are proposed to resolve issues like robustness of the target towards process variations, be more representative of the design or increase the density of measurements. In the frame of the development of a triple patterning BEOL scheme of 10 nm node layer, we compare IBO targets (standard AIM, AIMid and multilayer AIMid). The metrology tools used for the study are KLA-Tencor's nextgeneration Archer 500 system (scatterometry- and imaging-based measurement technologies on the same tool). The overlay response and fingerprint of these targets will be compared using a very dense sampling (up to 51 pts per field). The benefit of indie measurements compared to the traditional scribes is discussed. The contribution of process effects to overlay values are compared to the contribution of the performance of the target. Different targets are combined in one measurement set to benefit from their different strengths (performance vs size). The results are summarized and possible strategies for a triple patterning schemes are proposed.

  5. The origins of the metrology of ionizing radiation

    International Nuclear Information System (INIS)

    Paschoa, Anselmo S.

    2000-01-01

    Metrology of ionizing radiation started soon after the discovery of radioactivity. However, the modern metrology of ionizing radiation can be considered a by product of the Manhattan Project. When this mammoth effort to produce the first nuclear weapons was initiated, little was known about some of the properties of natural elements, though the phenomenon of natural radioactivity was already known for almost half a century. Less was known about the radioactive materials involved in that project. The amount of those materials which had to be handled were higher than any amount of 226 Ra and 228 Ra ever used thus far. The first atomic piles produced concentration levels of radioactivity much higher than any level known before. There was then a threat not only for the health of hundred of technicians and scientists, but also for thousands of workers. The secrecy involving that project would not allow much to be told about the radioactive hazards. There was, however, the need to protect workers and the public in General against unnecessary exposures to ionizing radiation. The origin of the standards used in radiological protection from pre-world war II and their remarkable evolution during and immediately after this war will be discussed in the paper. (author)

  6. Update on next generation metrology tool for DPL reticles

    Science.gov (United States)

    Roeth, Klaus-Dieter; Bender, Jochen; Laske, Frank; Adam, Dieter; Schmidt, Karl-Heinrich

    2010-05-01

    Double Patterning Lithography (DPL) techniques for next generation wafer exposures are placing greater demand on the requirements for pattern placement accuracy on photomasks for three reasons. First, a new source of wafer overlay error results from interactions between the two masks, so the specification for each individual mask must be tightened to compensate. Second, specifications have become so tight that the distortion caused by the pellicle bending the mask has become a significant contributor to the wafer overlay error budget. Pellicle-induced distortions are particularly insidious because they are not repeatable from substrate to substrate. Third, the tightening of overlay specifications demands tighter e-beam pattern placement control throughout the die, regardless of pattern density. This makes measuring actual features in-die instead of registration test structures important. The combination of increased demand for greater pattern placement accuracy, a need to characterize the influence of pellicle distortions, and the requirement to measure actual device features drives the need for a pattern placement metrology system capable of high resolution through-pellicle in-die measurements. Key enablers of this capability include high measurement resolution, a low noise platform and a long working distance objective. This paper reports experimental results on mask features of various sizes using a next-generation pattern placement metrology system designed to meet the strict DPL requirements outlined here.

  7. Metrology challenges for high-rate nanomanufacturing of polymer structures

    Science.gov (United States)

    Mead, Joey; Barry, Carol; Busnaina, Ahmed; Isaacs, Jacqueline

    2012-10-01

    The transfer of nanoscience accomplishments into commercial products is hindered by the lack of understanding of barriers to nanoscale manufacturing. We have developed a number of nanomanufacturing processes that leverage available high-rate plastics fabrication technologies. These processes include directed assembly of a variety of nanoelements, such as nanoparticles and nanotubes, which are then transferred onto a polymer substrate for the fabrication of conformal/flexible electronic materials, among other applications. These assembly processes utilize both electric fields and/or chemical functionalization. Conducting polymers and carbon nanotubes have been successfully transferred to a polymer substrate in times less than 5 minutes, which is commercially relevant and can be utilized in a continuous (reel to reel/roll to roll) process. Other processes include continuous high volume mixing of nanoelements (CNTs, etc) into polymers, multi-layer extrusion and 3D injection molding of polymer structures. These nanomanufacturing processes can be used for wide range of applications, including EMI shielding, flexible electronics, structural materials, and novel sensors (specifically for chem/bio detection). Current techniques to characterize the quality and efficacy of the processes are quite slow. Moreover, the instrumentation and metrology needs for these manufacturing processes are varied and challenging. Novel, rapid, in-line metrology to enable the commercialization of these processes is critically needed. This talk will explore the necessary measurement needs for polymer based nanomanufacturing processes for both step and continuous (reel to reel/roll to roll) processes.

  8. Development of laser materials processing and laser metrology techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  9. Reducing the overlay metrology sensitivity to perturbations of the measurement stack

    Science.gov (United States)

    Zhou, Yue; Park, DeNeil; Gutjahr, Karsten; Gottipati, Abhishek; Vuong, Tam; Bae, Sung Yong; Stokes, Nicholas; Jiang, Aiqin; Hsu, Po Ya; O'Mahony, Mark; Donini, Andrea; Visser, Bart; de Ruiter, Chris; Grzela, Grzegorz; van der Laan, Hans; Jak, Martin; Izikson, Pavel; Morgan, Stephen

    2017-03-01

    Overlay metrology setup today faces a continuously changing landscape of process steps. During Diffraction Based Overlay (DBO) metrology setup, many different metrology target designs are evaluated in order to cover the full process window. The standard method for overlay metrology setup consists of single-wafer optimization in which the performance of all available metrology targets is evaluated. Without the availability of external reference data or multiwafer measurements it is hard to predict the metrology accuracy and robustness against process variations which naturally occur from wafer-to-wafer and lot-to-lot. In this paper, the capabilities of the Holistic Metrology Qualification (HMQ) setup flow are outlined, in particular with respect to overlay metrology accuracy and process robustness. The significance of robustness and its impact on overlay measurements is discussed using multiple examples. Measurement differences caused by slight stack variations across the target area, called grating imbalance, are shown to cause significant errors in the overlay calculation in case the recipe and target have not been selected properly. To this point, an overlay sensitivity check on perturbations of the measurement stack is presented for improvement of the overlay metrology setup flow. An extensive analysis on Key Performance Indicators (KPIs) from HMQ recipe optimization is performed on µDBO measurements of product wafers. The key parameters describing the sensitivity to perturbations of the measurement stack are based on an intra-target analysis. Using advanced image analysis, which is only possible for image plane detection of μDBO instead of pupil plane detection of DBO, the process robustness performance of a recipe can be determined. Intra-target analysis can be applied for a wide range of applications, independent of layers and devices.

  10. The At-Wavelength Metrology Facility at BESSY-II

    Directory of Open Access Journals (Sweden)

    Franz Schäfers

    2016-02-01

    Full Text Available The At-Wavelength Metrology Facility at BESSY-II is dedicated to short-term characterization of novel UV, EUV and XUV optical elements, such as diffraction gratings, mirrors, multilayers and nano-optical devices like reflection zone plates. It consists of an Optics Beamline PM-1 and a Reflectometer in a clean-room hutch as a fixed end station. The bending magnet Beamline is a Plane Grating Monochromator beamline (c-PGM equipped with an SX700 monochromator. The beamline is specially tailored for efficient high-order suppression and stray light reduction. The versatile 11-axes UHV-Reflectometer can house life-sized optical elements, which are fully adjustable and of which the reflection properties can be measured in the full incidence angular range as well as in the full azimuthal angular range to determine polarization properties.

  11. Characterization and Metrology for ULSI Technology: 1998 International Conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, D.G. [NIST, Gaithersburg, MD 20899 (United States); Diebold, A.C. [SEMATECH, Austin, TX 78741 (United States); Bullis, W.M. [SEMI, Mountain View, CA 94043 (United States); Schaffner, T.J. [Texas Instruments, Dallas, TX 75221 (United States); McDonald, R. [Intel Corp., Santa Clara, CA 95050 (United States); Walters, E.J. [NIST, Gaithersburg, MD 20899 (United States)

    1998-11-01

    These proceedings represent papers presented at the 1998 International Conference on Characterization and Metrology for ULSI Technology (INIST) in March 1998. The Conference reviewed important semiconductor techniques that are crucial to continued advancements in the semiconductor industry. It brought together leaders, scientists, and engineers concerned with all aspects of the technology and characterization techniques for silicon research. The topics covered included front end processes consisting of modeling, materials, gate dielectrics, doping and wafer issues. Interconnects were discussed in detail including deposition technology. Lithography and patterning was also discussed. Finally, packaging/assembly of the integrated circuits and materials characterization including dopant profiling was discussed. The papers provide an effective portrayal of industry characterization needs and point out some of the problems that must be addressed by industry, academia, and government to continue the dramatic progress in semiconductor technology. There were 141 papers included in these proceedings, out of which 9 have been abstracted for the Energy,Science and Technology database.(AIP)

  12. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  13. Applying Metrological Techniques to Satellite Fundamental Climate Data Records

    Science.gov (United States)

    Woolliams, Emma R.; Mittaz, Jonathan PD; Merchant, Christopher J.; Hunt, Samuel E.; Harris, Peter M.

    2018-02-01

    Quantifying long-term environmental variability, including climatic trends, requires decadal-scale time series of observations. The reliability of such trend analysis depends on the long-term stability of the data record, and understanding the sources of uncertainty in historic, current and future sensors. We give a brief overview on how metrological techniques can be applied to historical satellite data sets. In particular we discuss the implications of error correlation at different spatial and temporal scales and the forms of such correlation and consider how uncertainty is propagated with partial correlation. We give a form of the Law of Propagation of Uncertainties that considers the propagation of uncertainties associated with common errors to give the covariance associated with Earth observations in different spectral channels.

  14. Probabilistic Metrology Attains Macroscopic Cloning of Quantum Clocks

    Science.gov (United States)

    Gendra, B.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.; Chiribella, G.

    2014-12-01

    It has recently been shown that probabilistic protocols based on postselection boost the performances of the replication of quantum clocks and phase estimation. Here we demonstrate that the improvements in these two tasks have to match exactly in the macroscopic limit where the number of clones grows to infinity, preserving the equivalence between asymptotic cloning and state estimation for arbitrary values of the success probability. Remarkably, the cloning fidelity depends critically on the number of rationally independent eigenvalues of the clock Hamiltonian. We also prove that probabilistic metrology can simulate cloning in the macroscopic limit for arbitrary sets of states when the performance of the simulation is measured by testing small groups of clones.

  15. Development of Electromechanical Architectures for AC Voltage Metrology

    Directory of Open Access Journals (Sweden)

    Alexandre BOUNOUH

    2010-12-01

    Full Text Available This paper presents results of work undertaken for exploring MEMS capabilities to fabricate AC voltage references for electrical metrology and high precision instrumentation through the mechanical-electrical coupling in MEMS. From first MEMS test structures previously realized, a second set of devices with improved characteristics has been developed and fabricated with Silicon on Insulator (SOI Surface Micromachining process. These MEMS exhibit pull-in voltages of 5 V and 10 V to match with the best performance of the read-out electronics developed for driving the MEMS. Deep Level Transient Spectroscopy measurements carried out on the new design show resonance frequencies of about only some kHz, and the stability of the MEMS output voltage measured at 100 kHz has been found very promising for the best samples where the relative deviation from the mean value over almost 12 hours showed a standard deviation of about 6.3 ppm.

  16. Design, fabrication and metrological evaluation of wearable pressure sensors.

    Science.gov (United States)

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  17. Present status of metrology of electro-optical surveillance systems

    Science.gov (United States)

    Chrzanowski, K.

    2017-10-01

    There has been a significant progress in equipment for testing electro-optical surveillance systems over the last decade. Modern test systems are increasingly computerized, employ advanced image processing and offer software support in measurement process. However, one great challenge, in form of relative low accuracy, still remains not solved. It is quite common that different test stations, when testing the same device, produce different results. It can even happen that two testing teams, while working on the same test station, with the same tested device, produce different results. Rapid growth of electro-optical technology, poor standardization, limited metrology infrastructure, subjective nature of some measurements, fundamental limitations from laws of physics, tendering rules and advances in artificial intelligence are major factors responsible for such situation. Regardless, next decade should bring significant improvements, since improvement in measurement accuracy is needed to sustain fast growth of electro-optical surveillance technology.

  18. Robust symmetry-protected metrology with the Haldane phase

    Science.gov (United States)

    Bartlett, Stephen D.; Brennen, Gavin K.; Miyake, Akimasa

    2018-01-01

    We propose a metrology scheme that is made robust to a wide range of noise processes by using the passive, error-preventing properties of symmetry-protected topological phases. The so-called fractionalized edge mode of an antiferromagnetic Heisenberg spin-1 chain in a rotationally- symmetric Haldane phase can be used to measure the direction of an unknown electric field, by exploiting the way in which the field direction reduces the symmetry of the chain. Specifically, the direction (and when supplementing with a known background field, also the strength) of the field is registered in the holonomy under an adiabatic sensing protocol, and the degenerate fractionalized edge mode is protected through this process by the remaining reduced symmetry. We illustrate the scheme with respect to a potential realization by Rydberg dressed atoms.

  19. Metrological provision in radiometry of long-lived radionuclide aerosols

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1984-01-01

    An optimal, as regards expenditures and resulting effect in development, production and operation, scheme is given for metrological provision of working means to measure radioactive aerosols. Model solid sources are recommended to be used for testing calibration and certification of aerosol radiometers when no losses or distortions of information take place. A model radiometer for long-lived radionuclides operating in the 3x10 -2 - 4x10 4 BK/m 3 range of volumetric activity of α-active nuclides and 5-2x10 5 BK/m 3 range of β-active nuclides is successfully utilized at present. Recommendations on reducing the measurement errors by means of different means are given

  20. Metrological provision in radiometry of long-lived radionuclide aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1984-05-01

    An optimal, as regards expenditures and resulting effect in development, production and operation, scheme is given for metrological provision of working means to measure radioactive aerosols. Model solid sources are recommended to be used for testing calibration and certification of aerosol radiometers when no losses or distortions of information take place. A model radiometer for long-lived radionuclides operating in the 3 x 10/sup -2/ - 4 x 10/sup 4/ BK/m/sup 3/ range of volumetric activity of ..cap alpha..-active nuclides and 5-2 x 10/sup 5/ BK/m/sup 3/ range of ..beta..-active nuclides is successfully utilized at present. Recommendations on reducing the measurement errors by means of different means are given.

  1. Use of well-type ionization chambers in radioactive metrology

    International Nuclear Information System (INIS)

    Dalmazzone, J.; Guiho, J.P.

    1968-01-01

    A summary is given of the results of our observations and experiments gathered together over a period of 10 years in the Radioelement Measurements Laboratory, concerning the use of well-type chambers in refined metrology. The optimum conditions for obtaining good reproducibility are defined; this is indispensable if improved sensitivity and accuracy are required. For this, we consider, and measure, the effects of: the nature and the shape of the sources and of the containers; the random form of the response and its statistical treatment; the non-linearity and the show drift of the installation. A sound knowledge of the causes of error, the application of adequate correction methods and an exact calculation of the error, all make it possible to carry out measurements under the best conditions for obtaining a good reproducibility. The accuracy can attain 1.5 per cent. (author) [fr

  2. Advanced Metrology for Characterization of Magnetic Tunnel Junctions

    DEFF Research Database (Denmark)

    Kjær, Daniel

    solutions to take products to the next node and the field of memory technology is no exception. Over the past decade research and development in a novel, non-volatile memory type known as MRAM has intensified, and commercial MRAM devices are now available. MRAM holds an extremely favorable position...... as it is believed to have the potential of becoming a truly universal memory solution dominant within all fields of memory application. A decade ago the company CAPRES A/S introduced the so-called CIPTech, which is a metrology tool utilizing micro four-point probes (M4PPs) and a method known as current in......-plane tunneling (CIPT) for characterization of magnetic tunnel junctions (MTJs), which constitutes the key component not only in MRAM but also the read-heads of modern hard disk drives. MTJs are described by their tunnel magnetoresistance (TMR), which is the relative difference of the resistance area products (RA...

  3. Overlay mark optimization for thick-film resist overlay metrology

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Liang [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Li Jie; Zhou Congshu; Gu Yili; Yang Huayue, E-mail: liang.zhu@gracesemi.co [Grace Semiconductor Manufacturing Corporation, Shanghai 201203 (China)

    2009-06-01

    For thick resist implant layers, such as a high voltage P well and a deep N well, systematic and uncorrectable overlay residues brought about by the tapered resist profiles were found. It was found that the tapered profile is closely related to the pattern density. Potential solutions of the manufacturing problem include hardening the film solidness or balancing the exposure density. In this paper, instead of focusing on the process change methodology, we intend to solve the issue of the overlay metrology error from the perspective of the overlay mark design. Based on the comparison of the overlay performances between the proposed overlay mark and the original design, it is shown that the optimized overlay mark target achieves better performance in terms of profiles, dynamic precision, tool induced shift (TIS), and residues. Furthermore, five types of overlay marks with dummy bars are studied, and a recommendation for the overlay marks is given.

  4. Metrology and process control: dealing with measurement uncertainty

    Science.gov (United States)

    Potzick, James

    2010-03-01

    Metrology is often used in designing and controlling manufacturing processes. A product sample is processed, some relevant property is measured, and the process adjusted to bring the next processed sample closer to its specification. This feedback loop can be remarkably effective for the complex processes used in semiconductor manufacturing, but there is some risk involved because measurements have uncertainty and product specifications have tolerances. There is finite risk that good product will fail testing or that faulty product will pass. Standard methods for quantifying measurement uncertainty have been presented, but the question arises: how much measurement uncertainty is tolerable in a specific case? Or, How does measurement uncertainty relate to manufacturing risk? This paper looks at some of the components inside this process control feedback loop and describes methods to answer these questions.

  5. Digital instrumentation and dead-time processing for radionuclide metrology

    International Nuclear Information System (INIS)

    Censier, B.; Bobin, Ch.; Bouchard, J.

    2010-01-01

    Most of the acquisition chains used in radionuclide metrology are based on NIM modules. These analogue setups have been thoroughly tested for decades now, becoming a reference in the field. Nevertheless, the renewal of ageing modules and the need for extra features both call for the development of new acquisition schemes based on digital processing. In this article, several technologies usable for instrumentation are first presented. A review of past and present projects is made in the second part, highlighting the fundamental role of dead-time management. The last part is dedicated to the description of two digital systems developed at LNE-LNHB. The first one has been designed for the instrumentation of a NaI(Tl) well-type crystal set-up, while the second one is used for the management of three photomultipliers in the framework of the TDCR method and as a part of the development of a digital platform for coincidence counting. (authors)

  6. 5th Conference on Advanced Mathematical and Computational Tools in Metrology

    CERN Document Server

    Cox, M G; Filipe, E; Pavese, F; Richter, D

    2001-01-01

    Advances in metrology depend on improvements in scientific and technical knowledge and in instrumentation quality, as well as on better use of advanced mathematical tools and development of new ones. In this volume, scientists from both the mathematical and the metrological fields exchange their experiences. Industrial sectors, such as instrumentation and software, will benefit from this exchange, since metrology has a high impact on the overall quality of industrial products, and applied mathematics is becoming more and more important in industrial processes.This book is of interest to people

  7. THE IDENTIFICATION ALGORITHM OF METROLOGICAL CHARACTERISTICS OF WIDE-RANGE PHOTOVOLTAIC SEMICONDUCTOR CONVERTERS WITH MULTIPLY IMPURITIES

    Directory of Open Access Journals (Sweden)

    O. K. Gusev

    2011-01-01

    Full Text Available Metrological features of photovoltaic semiconductor converters (PSC based on semiconductors with the multiple-charge impurities are investigated in a wide range of power densities of optical radiation. The algorithm of the measurement procedure of the metrological characteristics of PSC is introduced not only at low densities of optical power, but at high, taking into account the boundary of nonlinear recombination. The estimation of accuracy of feature finding of the metrological characteristics PSC based on semiconductors with the multiple-charge impurities, is carried out, taking into consideration the area of nonlinear recombination. 

  8. Deep sub-wavelength metrology for advanced defect classification

    Science.gov (United States)

    van der Walle, P.; Kramer, E.; van der Donck, J. C. J.; Mulckhuyse, W.; Nijsten, L.; Bernal Arango, F. A.; de Jong, A.; van Zeijl, E.; Spruit, H. E. T.; van den Berg, J. H.; Nanda, G.; van Langen-Suurling, A. K.; Alkemade, P. F. A.; Pereira, S. F.; Maas, D. J.

    2017-06-01

    Particle defects are important contributors to yield loss in semi-conductor manufacturing. Particles need to be detected and characterized in order to determine and eliminate their root cause. We have conceived a process flow for advanced defect classification (ADC) that distinguishes three consecutive steps; detection, review and classification. For defect detection, TNO has developed the Rapid Nano (RN3) particle scanner, which illuminates the sample from nine azimuth angles. The RN3 is capable of detecting 42 nm Latex Sphere Equivalent (LSE) particles on XXX-flat Silicon wafers. For each sample, the lower detection limit (LDL) can be verified by an analysis of the speckle signal, which originates from the surface roughness of the substrate. In detection-mode (RN3.1), the signal from all illumination angles is added. In review-mode (RN3.9), the signals from all nine arms are recorded individually and analyzed in order to retrieve additional information on the shape and size of deep sub-wavelength defects. This paper presents experimental and modelling results on the extraction of shape information from the RN3.9 multi-azimuth signal such as aspect ratio, skewness, and orientation of test defects. Both modeling and experimental work confirm that the RN3.9 signal contains detailed defect shape information. After review by RN3.9, defects are coarsely classified, yielding a purified Defect-of-Interest (DoI) list for further analysis on slower metrology tools, such as SEM, AFM or HIM, that provide more detailed review data and further classification. Purifying the DoI list via optical metrology with RN3.9 will make inspection time on slower review tools more efficient.

  9. New method of 2-dimensional metrology using mask contouring

    Science.gov (United States)

    Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2008-10-01

    We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.

  10. Manufacturing and metrology for IR conformal windows and domes

    Science.gov (United States)

    Ferralli, Ian; Blalock, Todd; Brunelle, Matt; Lynch, Timothy; Myer, Brian; Medicus, Kate

    2017-05-01

    Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes. Additionally, standard metrology tools cannot measure these surfaces. Desired substrates are typically hard ceramics, including poly-crystalline alumina or aluminum oxynitride. Notwithstanding the challenges that the hardness provides to manufacturing, these crystalline materials can be highly susceptible to grain decoration creating unacceptable scatter in optical systems. In this presentation, we will show progress towards addressing the unique challenges of manufacturing conformal windows and domes. Particular attention is given to our robotic polishing platform. This platform is based on an industrial robot adapted to accept a wide range of tooling and parts. The robot's flexibility has provided us an opportunity to address the unique challenges of conformal windows. Slurries and polishing active layers can easily be changed to adapt to varying materials and address grain decoration. We have the flexibility to change tool size and shape to address the varying sizes and shapes of conformal optics. In addition, the robotic platform can be a base for a deflectometry-based metrology tool to measure surface form error. This system, whose precision is independent of the robot's positioning accuracy, will allow us to measure optics in-situ saving time and reducing part risk. In conclusion, we will show examples of the conformal windows manufactured using our developed processes.

  11. Novel control scheme for a high-speed metrological scanning probe microscope

    Science.gov (United States)

    Vorbringer-Dorozhovets, N.; Hausotte, T.; Manske, E.; Shen, J. C.; Jäger, G.

    2011-09-01

    Some time ago, an interferometer-based metrological scanning probe microscope (SPM) was developed at the Institute of Process Measurement and Sensor Technology of the Ilmenau University of Technology, Germany. The specialty of this SPM is the combined deflection detection system that comprises an interferometer and a beam deflection. Due to this system it is possible to simultaneously measure the displacement, bending and torsion of the probe (cantilever). The SPM is integrated into a nanopositioning and nanomeasuring machine (NPM machine) and allows measurements with a resolution of 0.1 nm over a range of 25 mm × 25 mm × 5 mm. Excellent results were achieved for measurements of calibrated step height and lateral standards and these results are comparable to the calibration values from the Physikalisch-Technische Bundesanstalt (PTB) (Dorozhovets N et al 2007 Proc. SPIE 6616 661624-1-7). The disadvantage was a low attainable scanning speed and accordingly large expenditure of time. Control dynamics and scanning speed are limited because of the high masses of the stage and corner mirror of the machine. For the vertical axis an additional high-speed piezoelectric drive is integrated in the SPM in order to increase the measuring dynamics. The movement of the piezoelectric drive is controlled and traceable measured by the interferometer. Hence, nonlinearity and hysteresis in the actuator do not affect the measurement. The outcome of this is an improvement of the bending control of the cantilever and much higher scan speeds of up to 200 µm s-1.

  12. Two-spheres method for evaluating the metrological structural resolution in dimensional computed tomography

    Science.gov (United States)

    Zanini, F.; Carmignato, S.

    2017-11-01

    In recent years, x-ray computed tomography has been successfully applied as an innovative coordinate measurement technology for dimensional metrology. An important characteristic to be evaluated when testing the metrological performances of computed tomography systems is the metrological structural resolution for dimensional measurements, which describes the size of the smallest structure that can still be measured within error limits to be specified. The ‘two-spheres’ concept allows for the investigation of the metrological structural resolution by using a simple reference standard consisting of two touching spheres with the same nominal diameter. This work is aimed at defining and validating an enhanced method based on the ‘two-spheres’ concept and on a new measurement strategy. Advantages in using this method are discussed and a selection of the factors influencing the results are evaluated through experimental and simulation analyses.

  13. High Performance Computing-Accelerated Metrology for Large Optical Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has unique non-contact precision metrology requirements for dimensionally inspecting the global position and orientation of large and highly-polished...

  14. Coherent Laser Radar Metrology System for Large Scale Optical Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  15. Integration of full-spectrum metrology and polishing for rapid production of large aspheres, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integration of three proven, non-contact, optical metrology techniques with an emerging new polishing approach in a single machine will enable the rapid production...

  16. Metrological management evaluation based on ISO10012: an empirical study in ISO-14001-certified Spanish companies

    International Nuclear Information System (INIS)

    Beltran, Jaime; Rivas, Miguel; Munuzuri, Jesus; Gonzalez, Cristina

    2010-01-01

    Environmental management systems based on the ISO 14001 standard rely strongly on metrological measurement and confirmation processes to certify the extent to which organizations monitor and improve their environmental behavior. Nevertheless, the literature lacks in studies that assess the influence of these metrological processes on the performance of environmental management in organizations, even now that the international standard ISO 10012 is already available to establish requisites and guidelines for the development of a metrological management system that is compatible with any other standardized management system. This work seeks to assess that influence through the development of an evaluation model for metrological management, which is then validated through an experimental analysis of the results obtained from the application of an audit process in 11 Spanish companies, all ISO-14001-certified and operating in different industrial sectors. (author)

  17. Metrology with synchrotron radiation. A short introduction; Metrologie mit Synchrotronstrahlung. Eine kurze Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Mathias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Fachbereich ' Radiometrie mit Synchrotronstrahlung' ; Ulm, Gerhard

    2014-09-15

    The beam tubes and measuring places at the Metrology Light Source and BESSY II are listed together with their monochromator types, spectral ranges, spectral resolution powers, photon fluxes, beam sizes, and divergences. (HSI)

  18. INNOVATIVE NON-CONTACT METROLOGY SOLUTIONS FOR LARGE OPTICAL TELESCOPES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has unique non-contact precision metrology requirements for dimensionally inspecting the global position and orientation of large and highly-polished...

  19. In-line CD metrology with combined use of scatterometry and CD-SEM

    Science.gov (United States)

    Asano, Masafumi; Ikeda, Takahiro; Koike, Toru; Abe, Hideaki

    2006-03-01

    Measurement characteristics in scatterometry and CD-SEM for lot acceptance sampling of inline critical dimension (CD) metrology were investigated by using a statistical approach with Monte Carlo simulation. By operation characteristics curve analysis, producer's risk and consumer's risk arising from sampling were clarified. Single use of scatterometry involves a higher risk, such risk being particularly acute in the case of large intra-chip CD variation because it is unable to sufficiently monitor intra-chip CD variation including local CD error. Substituting scatterometry for conventional SEM metrology is accompanied with risks, resulting in the increase of unnecessary cost. The combined use of scatterometry and SEM metrology in which the sampling plan for SEM is controlled by scatterometry is a promising metrology from the viewpoint of the suppression of risks and cost. This is due to the effect that CD errors existing in the distribution tails are efficiently caught.

  20. The use of Monte Carlo codes in metrology of ionizing radiations

    International Nuclear Information System (INIS)

    Bathe, J.; Gouriou, J.; Daures, J.; Ostrowsky, A.; Bordy, J.M.

    2003-01-01

    The use of Monte Carlo codes allows to get corrective values more exact or inaccessible by traditional methods. Here are presented several results got in te frame of dose metrology (influence of vacuum interstices in a calorimeter, influence of walls in a chemical dosemeter) as well as in this one of radioactivity metrology ( efficiency and spectra of energy deposition in a detector, spectra in energy of thick sources). (N.C.)

  1. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  2. State preparation for quantum information science and metrology

    International Nuclear Information System (INIS)

    Samblowski, Aiko

    2012-01-01

    The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed

  3. State preparation for quantum information science and metrology

    Energy Technology Data Exchange (ETDEWEB)

    Samblowski, Aiko

    2012-06-08

    The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed

  4. A primary mirror metrology system for the GMT

    Science.gov (United States)

    Rakich, A.

    2016-07-01

    The Giant Magellan Telescope (GMT)1 is a 25 m "doubly segmented" telescope composed of seven 8.4 m "unit Gregorian telescopes", on a common mount. Each primary and secondary mirror segment will ideally lie on the geometrical surface of the corresponding rotationally symmetrical full aperture optical element. Therefore, each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and cophased. First light with a subset of four unit telescopes is currently scheduled for 2022. The project is currently considering an important aspect of the assembly, integration and verification (AIV) phase of the project. This paper will discuss a dedicated system to directly characterize the on-sky performance of the M1 segments, independently of the M2 subsystem. A Primary Mirror Metrology System (PMS) is proposed. The main purpose of this system will be to he4lp determine the rotation axis of an instrument rotator (the Gregorian Instrument Rotator or GIR in this case) and then to characterize the deflections and deformations of the M1 segments with respect to this axis as a function of gravity and temperature. The metrology system will incorporate a small (180 mm diameter largest element) prime focus corrector (PFC) that simultaneously feeds a risk reduction during AIV; it allows an on-sky characterization of the primary mirror segments and cells, without the complications of other optical elements. The PMS enables a very useful alignment strategy that constrains each primary mirror segments' optical axes to follow the GIR axis to within a few arc seconds. An additional attractive feature of the incorporation of the PMS into the AIV plan, is that it allows first on-sky telescope operations to occur with a system of considerably less optical and control complexity than the final doubly segmented Gregorian telescope configuration. This paper first discusses the strategic rationale for a PMS. Next the system itself is

  5. EXPERIENCE IN DEVELOPING THE IMPORT-SUBSTITUTING NATIONAL REFERENCE MATERIALS OF COMPOSITION AND PROPERTIES OF PETROL AND PETROLEUM PRODUCTS UNDER THE PROGRAM OF THE METROLOGICAL ASSURANCE OF PRODUCTION OF THE MINISTRY OF OIL REFINING AND PETROCHEMICAL INDUSTRY OF USSR APPROVED BY THE GOSSTANDART'S DECREE NO. 8 OF 30.01.1986

    Directory of Open Access Journals (Sweden)

    A. Kh. Mukhamedzianov

    2015-01-01

    Full Text Available The article deals with the main stages of the development of activities of INTEGRSO branches in the field of the development of national reference materials of petrol and petroleum products composition and properties under the Program of the metrological assurance of petroleum processing plant products. The scientific and production program of metrological assurance of test methods and control means for petrol and petroleum product composition and properties on the basis of reference materials with trademark NPO "INTEGRSO" is self-fulfilled. From 1986 more than 185 types of reference materials were developed and produced including 36 types of import-substituting reference materials.

  6. State of the Art of Tactile Micro Coordinate Metrology

    Directory of Open Access Journals (Sweden)

    Rudolf Thalmann

    2016-05-01

    Full Text Available Micro parts are increasingly found in a number of industrial products. They often have complex geometrical features in the millimeter to micrometer range which are not accessible or difficult to measure by conventional coordinate measuring machines or by optical microscopy techniques. In the last years, several concepts of tactile micro coordinate measuring machines have been developed in research laboratories and were partly commercialized by industry. The major challenges were related to the development of innovative micro probes, to the requirements for traceability and to the performance assessment at reduced measurement uncertainty. This paper presents a review on state of the art developments of micro coordinate measuring machines and 3D micro probes in the last 20 years, as far as these were qualified in a comparable way, with a special emphasis on research conducted by the Federal Institute of Metrology METAS in this field. It outlines the accuracy limitations for the probe head including the probing element and for the geometrical errors of the machine axes. Finally, the achieved performances are summarized and the challenges for further research are addressed.

  7. METROLOGICAL PERFORMANCES OF BOMB CALORIMETERS AT REAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yu. V. Maksimuk

    2016-01-01

    Full Text Available The high-usage measurement equipment for heat of combustion of organic fuels are bomb isoperibol calorimeters with a water thermostat. The stability of work of calorimeters at real conditions is important for maintenance of reliability of measurement results. The article purpose – the analysis of stability for parameters of calorimeters to environment changes. In this work influence room temperature (Тк and heat exchange conditions on metrological characteristics of two models of calorimeters is considered with different degree of thermal protection: V-08МА and BIC 100. For calorimeters V-08МА the increase in a effective heat capacity (W on 0,1 % by growth of Tк on everyone 5 °С is established. To use value W in all interval laboratory temperatures Tк = 14–28 °С it is necessary to correct W on 2,8 J/°C on everyone 1 °С changes of Tк. Updating W is required, if the correction exceeds error in determination W. For calorimeter BIC 100 it is not revealed dependences W from Tк. BIC 100 have constant-temperature cap, high stability a temperature in thermostat and stabilized heat exchange. It is established that an standard deviation of cooling constant for all calorimeters in direct proportional to standard deviation W. 

  8. Beyond the GUM: variance-based sensitivity analysis in metrology

    International Nuclear Information System (INIS)

    Lira, I

    2016-01-01

    Variance-based sensitivity analysis is a well established tool for evaluating the contribution of the uncertainties in the inputs to the uncertainty in the output of a general mathematical model. While the literature on this subject is quite extensive, it has not found widespread use in metrological applications. In this article we present a succinct review of the fundamentals of sensitivity analysis, in a form that should be useful to most people familiarized with the Guide to the Expression of Uncertainty in Measurement (GUM). Through two examples, it is shown that in linear measurement models, no new knowledge is gained by using sensitivity analysis that is not already available after the terms in the so-called ‘law of propagation of uncertainties’ have been computed. However, if the model behaves non-linearly in the neighbourhood of the best estimates of the input quantities—and if these quantities are assumed to be statistically independent—sensitivity analysis is definitely advantageous for gaining insight into how they can be ranked according to their importance in establishing the uncertainty of the measurand. (paper)

  9. Metrology of Multiphoton Microscopes Using Second Harmonic Generation Nanoprobes.

    Science.gov (United States)

    Mahou, Pierre; Malkinson, Guy; Chaudan, Élodie; Gacoin, Thierry; Beaurepaire, Emmanuel; Supatto, Willy

    2017-11-01

    In multiphoton microscopy, the ongoing trend toward the use of excitation wavelengths spanning the entire near-infrared range calls for new standards in order to quantify and compare the performances of microscopes. This article describes a new method for characterizing the imaging properties of multiphoton microscopes over a broad range of excitation wavelengths in a straightforward and efficient manner. It demonstrates how second harmonic generation (SHG) nanoprobes can be used to map the spatial resolution, field curvature, and chromatic aberrations across the microscope field of view with a precision below the diffraction limit and with unique advantages over methods based on fluorescence. KTiOPO4 nanocrystals are used as SHG nanoprobes to measure and compare the performances over the 850-1100 nm wavelength range of several microscope objectives designed for multiphoton microscopy. Finally, this approach is extended to the post-acquisition correction of chromatic aberrations in multicolor multiphoton imaging. Overall, the use of SHG nanoprobes appears as a uniquely suited method to standardize the metrology of multiphoton microscopes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. metrological performance improvement of a superconducting cable test station

    CERN Document Server

    Montenero, Giuseppe; Ballarino, Amalia

    The work presented in this PhD thesis concerns the metrological performance improvement of a superconducting cable test station based on superconducting transformers. The main cable’s parameter to be assessed –as a function of temperature and magnetic field– is the critical current, i.e. beyond this limit the phase transition to the normal state occurs. Ramping the current at levels in the order of the tens of kA can be achieved with superconducting transformers at moderate capital and operational cost. But, issues such as (i) accurate/precise measurements and (ii) monitoring of the secondary current during the device operation have to be addressed. In this regard, the goals of the thesis are the design, prototyping, and validation of a new cryogenic current transducer and effective monitoring system for test stations transformer-based. Among the available transducers for current sensing at room temperature, the DC current transformer (DCCT) provides measurement accuracy in the order of the hundreds of ...

  11. Flash spectral imaging for optical metrology of solar cells

    Science.gov (United States)

    Ho, Jian Wei; Koh, Jessica Li Jian; Wong, Johnson Kai Chi; Raj, Samuel; Janssen, Eric; Aberle, Armin G.

    2017-08-01

    Flash spectral imaging of full area (156 mm by 156 mm) silicon solar wafers and cells is realized in a setup integrating pseudo-monochromatic LEDs over the wavelength range of 370 to 1050 nm and a high-resolution monochrome camera. The captured information allows the computation of sample reflectance as a function of wavelength and coordinates, thereby constituting a spectral reflectance map. The derived values match that obtained from monochromator-based measurements. Optical inspection is then based on the characteristic reflectance of surface features at optimally contrasting wavelengths. The technique reveals otherwise hidden stains and anti-reflection coating (ARC) non-uniformities, and enable more selective visualization of grains in multicrystalline Si wafers. Optical contrast enhancement of metallization significantly improves accuracy of metal detection. The high effective resolution of the monochrome camera also allows fine metallization patterns to be measured. The rapid succession of flash-and-image-capture at each wavelength makes the reported optical metrology technique amenable in photovoltaic manufacturing for solar wafers/cells sorting, monitoring and optimization of processes.

  12. Using RF Smart Points for the Improvement of Metrological Activities

    Directory of Open Access Journals (Sweden)

    Claudio de Capua

    2007-03-01

    Full Text Available This work describes the realization of a “radio-frequency identification system” for the improvement of the activities of a metrological laboratory. Some radio-frequency modules, called by the authors RF Smart Points (“radio-frequency smart points”, have been designed to store into their memories all data which are necessary for the instruments tracking (the type of instruments, their identification numbers or serial numbers, the manufacturer, the date when they have been admitted to the installed base of the laboratory, their working state, the elapsed time from the last calibration procedure. The insertion of the data and the inquiry of the instruments are executed by the technical staff of the laboratory through a PDA (Personal Digital Assistant or a PC, which manage the radio-frequency communication by using the RS 232 interface for sending messages to a RF Transceiver. The executable software for managing the communication between the Smart Points and the “PDA/PC-Controllers” is realized in LabVIEW graphical programming environment.

  13. Robust overlay metrology with differential Mueller matrix calculus.

    Science.gov (United States)

    Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2017-04-17

    Overlay control is of vital importance to good device performances in semiconductor manufacturing. In this work, the differential Mueller matrix calculus is introduced to investigate the Mueller matrices of double-patterned gratings with overlay displacements, which helps to reveal six elementary optical properties hidden in the Mueller matrices. We find and demonstrate that, among these six elementary optical properties, the linear birefringence and dichroism, LB' and LD', along the ± 45° axes show a linear response to the overlay displacement and are zero when the overlay displacement is absent at any conical mounting. Although the elements from the two 2 × 2 off-diagonal blocks of the Mueller matrix have a similar property to LB' and LD', as reported in the literature, we demonstrate that it is only valid at a special conical mounting with the plane of incidence parallel to grating lines. The better property of LB' and LD' than the Mueller matrix elements of the off-diagonal blocks in the presence of overlay displacement verifies them to be a more robust indicator for the diffraction-based overlay metrology.

  14. Phase and absorption metrology for thick photopolymer devices

    Science.gov (United States)

    Sullivan, Amy C.; Ayres, Mark R.; McLeod, Robert R.

    2006-08-01

    Studies of development kinetics in volume photopolymers typically use transmission holography to quantify the index distribution. This method has advantages including simplicity, quantitative index data and natural mapping onto theories using harmonic expansion of the material response. A particular disadvantage is that the low spatialfrequency response corresponding to the intensity of the writing beams can never be Bragg matched and thus remains invisible. In configurations where the exposure is not primarily sinusoidal, the holographic method is not applicable. Important examples include bit-oriented data storage, direct-write lithography, and the object beam of page-based holography. In these cases the exposure intensity is essentially arbitrary and there is a need for metrology tools that can quantitatively measure the real and imaginary parts of the weak 3D index perturbation. Images produced by bright-field and phase-contrast microscopes are generally not quantitative and are corrupted by objects out of the focal plane. We have developed two methods, a form of optical diffraction tomography and a scanning transmission microscope, that are specifically designed to measure the 3D index response of holographic materials. Both are optimized to measure the extremely weak absorption and phase structures typical of photopolymers and have passbands that match the expected spatial frequencies.

  15. Development of metrology instruments for grazing incidence mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Church, E.L.; Qian, Shi-nan; Liu, Wuming

    1989-10-01

    The effective utilization of synchrotron radiation (SR) from high-brightness sources requires the use of optical components with very smooth surfaces and extremely precise shapes. Most manufacturers are not capable of measuring the figure and finish quality of the aspheric optics required for use in grazing incidence beam lines. Over the past several years we have developed measurement techniques and metrology instrumentation that have allowed us to measure the surface profile and roughness of large cylinder optics, up to one meter in length. Based on our measurements and feedback, manufacturers have been able to advance the state-of-the-art in mirror fabrication and are now able to produce acceptable components. Our analysis techniques enable designers to write meaningful specifications and predict the performance of real surfaces in their particular beamline configurations. Commercial instruments are now available for measuring surface microroughness with spatial periods smaller than about one millimeter. No commercial instruments are available for measuring the surface figure on cylindrical aspheres over long spatial periods, from one millimeter up to one meter. For that reason we developed a Long Trace Profiler (LTP) that measures surface profile over the long period range in a non-contact manner to extremely high accuracy. Examples of measured surfaces and data analysis techniques will be discussed, and limitations on the quality of optical surfaces related to intrinsic material properties will also be discussed. 15 refs., 14 figs., 2 tabs

  16. Some answers to new challenges in optical metrology

    Science.gov (United States)

    Osten, W.

    2008-09-01

    The visible trend in the implementation of new technologies and creation of new products is the continuous reduction of feature sizes. However, in the same way as the feature sizes are decreasing, the theoretical and practical constraints of making them and ensuring their quality are increasing. Consequently, modern production and inspection technologies are confronted with a bundle of challenges. An important barrier for optical imaging and sensing is the diffraction limited lateral resolution. The observation of this physical limitation is of increasing importance, not only for microscopic techniques but also for the application of 3D-measurement techniques on wafer scale level. A further challenge is the reliable detection of imperfections and material faults within the production chain. This means in-line metrology/defectoscopy is a must for future production systems. Only the real-time feedback of the inspection results into the production process can contribute to a consistent quality assurance in processes with high cost risk. Moreover the reliable measurement of free form surfaces, both technical and optical, the assurance of the traceability and the certified assessment of the uncertainty of the measurement results are ongoing challenges. The challenges and the physical limitations are addressed here by new approaches for testing semiconductor structures with enhanced resolution, the measurement of aspheric lenses with increased flexibility and the inspection of micro components with improved traceability.

  17. Matter wave interferometry as a tool for molecule metrology

    Science.gov (United States)

    Gerlich, Stefan; Gring, Michael; Ulbricht, Hendrik; Hornberger, Klaus; Tuexen, Jens; Mayor, Marcel; Arndt, Markus

    2009-03-01

    Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has recently been established as an ideal method to perform quantum matter wave experiments with large, highly polarizable molecules in an unprecedented mass range of beyond 1000 atomic mass units [1]. Since the interference visibility reveals important information on the properties of the examined particles, such as their mass and polarizability, we identified KDTLI as a valuable tool for precision metrology. We demonstrate that quantum interferometry can therefore also serve as a powerful complement to mass spectrometry [2], in particular in cases where fragmentation may occur in the detector. Our new method is applicable to a wide range of molecules and is particularly valuable for characterizing neutral molecular beams. [1] S. Gerlich, L. Hackerm"uller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. M"uri, M. Mayor, M. Arndt, Nat. Phys. 2007, 3, 711 - 715. [2] Stefan Gerlich, Michael Gring, Hendrik Ulbricht, Klaus Hornberger, Jens T"uxen, Marcel Mayor, and Markus Arndt, Angew. Chem. Int. Ed. 2008, 47, 6195 - 6198.

  18. Bayesian statistics in radionuclide metrology: measurement of a decaying source

    International Nuclear Information System (INIS)

    Bochud, F. O.; Bailat, C.J.; Laedermann, J.P.

    2007-01-01

    The most intuitive way of defining a probability is perhaps through the frequency at which it appears when a large number of trials are realized in identical conditions. The probability derived from the obtained histogram characterizes the so-called frequentist or conventional statistical approach. In this sense, probability is defined as a physical property of the observed system. By contrast, in Bayesian statistics, a probability is not a physical property or a directly observable quantity, but a degree of belief or an element of inference. The goal of this paper is to show how Bayesian statistics can be used in radionuclide metrology and what its advantages and disadvantages are compared with conventional statistics. This is performed through the example of an yttrium-90 source typically encountered in environmental surveillance measurement. Because of the very low activity of this kind of source and the small half-life of the radionuclide, this measurement takes several days, during which the source decays significantly. Several methods are proposed to compute simultaneously the number of unstable nuclei at a given reference time, the decay constant and the background. Asymptotically, all approaches give the same result. However, Bayesian statistics produces coherent estimates and confidence intervals in a much smaller number of measurements. Apart from the conceptual understanding of statistics, the main difficulty that could deter radionuclide metrologists from using Bayesian statistics is the complexity of the computation. (authors)

  19. Comparative scatterometric CD measurements on a MoSi photo mask using different metrology tools

    Science.gov (United States)

    Richter, Jan; Rudolf, Jens; Bodermann, Bernd; Lam, John C.

    2008-10-01

    The demands on CD metrology techniques in terms of both reproducibility and measurement uncertainty increase with decreasing critical dimensions (CD) on lithography masks. Additionally a full 3D characterization of the mask structures becomes more and more important to understand and control the printing behavior of state of the art photomasks. Furthermore, an extension of metrology characterization including material properties can provide the final puzzle pieces for a better correlation of mask metrology to wafer metrology. Here, optical metrology systems, especially at-wavelength systems, are very well suited to characterize structure features of a photomask regarding their printing behavior on a wafer. In particular scatterometry is able to provide a better understanding of the investigated structure and allows for modeling of secondary structure parameters as well as material composition. AMTC has a commercial scatterometer from n&k Technology (n&k 5700-CDRT) in use. This system measures the spectral transmission and reflection, the 0th diffraction order. Beside thin film characterization this system is used for CD and edge profile characterization, also. The analysis of the data uses a look-up table approach in combination with a database, which has been generated and can be expanded, respectively, using a RCWA based software. At PTB we have realized a new DUV hybrid scatterometer which combines essential elements of a radiometer, an ellipsometer, and a diffractometer. These two systems are different both in terms of the measurement modes, the data evaluation method and the Maxwell-solver used. Therefore we started to compare the performance of both systems to traditional metrology system for CD metrology and phase measurement. For this purpose we performed first comparative scatterometric measurements on a MoSi phase shifting mask.

  20. Development of a metrological atomic force microscope with minimized Abbe error and differential interferometer-based real-time position control

    International Nuclear Information System (INIS)

    Ducourtieux, Sebastien; Poyet, Benoit

    2011-01-01

    A metrological atomic force microscope (mAFM) has been developed at LNE. It will be dedicated to traceable dimensional measurements and calibrations of transfer standards with a maximum size of 25 mm × 25 mm × 7 mm. The displacement range is 60 µm for the X and Y axes and 15 µm for the Z axis. The instrument uses four laser differential interferometers in an original Abbe-compliant arrangement to measure the position of the tip relative to the sample and to be directly traceable to the SI. The expected uncertainty for the measurement of the tip/sample relative position is 1 nm for the whole range without taking into account the tip contribution. To fulfill this specification, the design of the instrument has been optimized to minimize Abbe errors, to reduce the metrology loop length, to limit the drifts due to thermal dilatation and to improve the stability of interferometric position measurement in ambient air. To limit Abbe errors, a dedicated three-axis flexure stage has been developed to reduce parasitic rotational motion at the level of 1 µrad for the whole range. This stage is driven by piezo-actuators. The instrument controller is based on a FPGA combined with an embedded PXI controller to perform real-time control of the XYZ position. We present the design of the instrument and the very first results

  1. Novel control scheme for a high-speed metrological scanning probe microscope

    International Nuclear Information System (INIS)

    Vorbringer-Dorozhovets, N; Hausotte, T; Manske, E; Jäger, G; Shen, J C

    2011-01-01

    Some time ago, an interferometer-based metrological scanning probe microscope (SPM) was developed at the Institute of Process Measurement and Sensor Technology of the Ilmenau University of Technology, Germany. The specialty of this SPM is the combined deflection detection system that comprises an interferometer and a beam deflection. Due to this system it is possible to simultaneously measure the displacement, bending and torsion of the probe (cantilever). The SPM is integrated into a nanopositioning and nanomeasuring machine (NPM machine) and allows measurements with a resolution of 0.1 nm over a range of 25 mm × 25 mm × 5 mm. Excellent results were achieved for measurements of calibrated step height and lateral standards and these results are comparable to the calibration values from the Physikalisch-Technische Bundesanstalt (PTB) (Dorozhovets N et al 2007 Proc. SPIE 6616 661624–1–7). The disadvantage was a low attainable scanning speed and accordingly large expenditure of time. Control dynamics and scanning speed are limited because of the high masses of the stage and corner mirror of the machine. For the vertical axis an additional high-speed piezoelectric drive is integrated in the SPM in order to increase the measuring dynamics. The movement of the piezoelectric drive is controlled and traceable measured by the interferometer. Hence, nonlinearity and hysteresis in the actuator do not affect the measurement. The outcome of this is an improvement of the bending control of the cantilever and much higher scan speeds of up to 200 µm s −1

  2. Speckle-based at-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Zhou, Tunhe; Kashyap, Yogesh; Sawhney, Kawal

    2017-08-01

    To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ metrology at the optics' operating wavelength (`at-wavelength' metrology) to optimize the performance of X-ray optics and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative examples of the applications of the speckle-based technique will also be given - including optimization of X-ray mirrors and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron beamlines.

  3. Analysis of Standards and Specific Documentation about Equipment of Dimensional Metrology

    Science.gov (United States)

    Martin, M. J.; Flores, I.; Sebastian, M. A.

    2009-11-01

    Currently the certification of quality systems and accreditation of laboratories for metrology and testing are activities of great interest within the framework of advanced production systems. In this context, the availability of standardized documents, complete and efficient as well as specific documents edited by agencies with experience in this field, is especially important to obtain better results and lower costs. This work tries to establish the foundations to evaluate a documental system about equipment of Dimensional Metrology. An integrated and complete system does not exist in international field, so the Spanish case will be analyzed as example to the general study. In this paper we consider three types of instruments commonly used in the field of Dimensional Metrology (vernier calliper, micrometer calliper and mechanical dial gauge) and are passed to analyze the contents of UNE standards that affect them directly, and the two collections of documents produced and edited by the Centro Español de Metrología (CEM), such as "calibration procedures" and "use manuals." Given the results of this analysis, a discussion on the metrological characteristics of the contents of the document in question is developed and recommendations for their use and improvement are proposed.

  4. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    International Nuclear Information System (INIS)

    Pogány, Andrea; Ebert, Volker; Balslev-Harder, David; Braban, Christine F; Twigg, Marsailidh M; Cassidy, Nathan; Ferracci, Valerio; Martin, Nicholas A; Hieta, Tuomas; Peltola, Jari; Leuenberger, Daiana; Pascale, Céline; Niederhauser, Bernhard; Persijn, Stefan; Van Wijk, Janneke; Tiebe, Carlo; Vaittinen, Olavi; Wirtz, Klaus

    2016-01-01

    The environmental impacts of ammonia (NH 3 ) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5–500 nmol mol −1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project. (paper)

  5. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    Science.gov (United States)

    Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-11-01

    The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.

  6. Perspectives in absorbed dose metrology with regard to the technical evolutions of external beam radiotherapy

    International Nuclear Information System (INIS)

    Chauvenet, B.; Bordy, J.M.; Barthe, J.

    2009-01-01

    This paper presents several R and D axes in absorbed close metrology to meet the needs resulting from the technical evolutions of external beam radiotherapy. The facilities in operation in France have considerably evolved under the impulse of the plan Cancer launched in 2003: replacements and increase of the number of accelerators, substitution of accelerators for telecobalt almost completed and acquisition of innovative facilities for tomo-therapy and stereotaxy. The increasing versatility of facilities makes possible the rapid evolution of treatment modalities, allowing to better delimit irradiation to tumoral tissues and spare surrounding healthy tissues and organs at risk. This leads to a better treatment efficacy through dose escalation. National metrology laboratories must offer responses adapted to the new need, i.e. not restrict themselves to the establishment of references under conventional conditions defined at international level, contribute to the improvement of uncertainties at all levels of reference transfer to practitioners: primary measurements under conditions as close as possible to those of treatment, characterization of transfer and treatment control dosimeters., metrological validation of treatment planning tools... Those axes have been identified as priorities for the next years in ionizing radiation metrology at the European level and included in the European. Metrology Research Programme. A project dealing with some of those topics has been selected in the frame of the Eranet+ Call EMRP 2007 and is now starting. The LNE-LAM is strongly engaged in it. (authors)

  7. Laser metrology — a diagnostic tool in automotive development processes

    Science.gov (United States)

    Beeck, Manfred-Andreas; Hentschel, Werner

    2000-08-01

    Laser measurement techniques are widely used in automotive development processes. Applications at Volkswagen are presented where laser metrology works as a diagnostic tool for analysing and optimising complex coupled processes inside and between automotive components and structures such as the reduction of a vehicle's interior or outer acoustic noise, including brake noise, and the combustion analysis for diesel and gasoline engines to further reduce fuel consumption and pollution. Pulsed electronic speckle pattern interferometry (ESPI) and holographic interferometry are used for analysing the knocking behaviour of modern engines and for correct positioning of knocking sensors. Holographic interferometry shows up the vibrational behaviour of brake components and their interaction during braking, and allows optimisation for noise-free brake systems. Scanning laser vibrometry analyses structure-born noise of a whole car body for the optimisation of its interior acoustical behaviour.Modern engine combustion concepts such as in direct-injection (DI) gasoline and diesel engines benefit from laser diagnostic tools which permit deeper insight into the in-cylinder processes such as flow generation, fuel injection and spray formation, atomisation and mixing, ignition and combustion, and formation and reduction of pollutants. The necessary optical access inside a cylinder is realised by so-called 'transparent engines' allowing measurements nearly during the whole engine cycle. Measurement techniques and results on double-pulse particle image velocimetry (PIV) with a frequency-doubled YAG laser for in-cylinder flow analysis are presented, as well as Mie-scattering on droplets using a copper vapour laser combined with high-speed filming, and laser-induced fluorescence (LIF) with an excimer laser for spray and fuel vapour analysis.

  8. Metrological evaluation of characterization methods applied to nuclear fuels

    International Nuclear Information System (INIS)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho

    2010-01-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO 2 that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO 2 samples were focused. The thermal characterization of UO 2 samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of the

  9. The cell pattern correction through design-based metrology

    Science.gov (United States)

    Kim, Yonghyeon; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Lee, Kyusun; Hong, Aeran; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Yeom, Kyehee; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    Starting with the sub 2Xnm node, the process window becomes smaller and tighter than before. Pattern related error budget is required for accurate critical-dimension control of Cell layers. Therefore, lithography has been faced with its various difficulties, such as weird distribution, overlay error, patterning difficulty etc. The distribution of cell pattern and overlay management are the most important factors in DRAM field. We had been experiencing that the fatal risk is caused by the patterns located in the tail of the distribution. The overlay also induces the various defect sources and misalignment issues. Even though we knew that these elements are important, we could not classify the defect type of Cell patterns. Because there is no way to gather massive small pattern CD samples in cell unit block and to compare layout with cell patterns by the CD-SEM. The CD- SEM is used in order to gather these data through high resolution, but CD-SEM takes long time to inspect and extract data because it measures the small FOV. (Field Of View) However, the NGR(E-beam tool) provides high speed with large FOV and high resolution. Also, it's possible to measure an accurate overlay between the target layout and cell patterns because they provide DBM. (Design Based Metrology) By using massive measured data, we extract the result that it is persuasive by applying the various analysis techniques, as cell distribution and defects, the pattern overlay error correction etc. We introduce how to correct cell pattern, by using the DBM measurement, and new analysis methods.

  10. Metrology for New Generation Nuclear Power Plants - MetroFission

    International Nuclear Information System (INIS)

    Johansson, Lena; Dinsdale, Alan; Keightley, John; Filtz, Jean-Remy; Hay, Bruno; DeFelice, Pierino; Sadli, Mohamed; Plompen, Arjan; Heyse, Jan; Pomme, Stefaan; Cassette, Philippe

    2013-06-01

    MetroFission project has been looking at solving metrological problems related to a new generation of NPPs. The proposed Gen. IV NPPs are designed to run safely, make efficient use of natural resources, minimize the waste and maintain proliferation resistance. In order to reach these goals, the reactor operation involves higher temperatures, high-energy neutron fluence, different types of fuel where the minor actinides are included etc. The work has focused on improved temperature measurements, investigation of thermal properties of advanced materials, determination of new and relevant nuclear data and development of measurement techniques for radionuclides suitable for Gen. IV NPPs. The improved temperature measurement for nuclear power plant applications includes the development of a new Fe-C fixed point. Robust, repeatable and versatile cells have been constructed and compared with success among the project participants and their melting temperatures have been determined. Methodology of self-validating thermocouples has proven efficient at several fixed point temperatures using different designs. A practical acoustic thermometer has been tested at 1000 deg. C with success thanks to the use of innovative signal processing methods. Mo/Nb thermocouples have been obtained with different sheath materials and tested with the aim to achieve for the first time a reference function determined with the best possible uncertainties. Following reviews of designs and technology proposed for fourth generation nuclear plants effort within this project, with regards to thermal properties of advanced materials for nuclear design, has concentrated on provision of thermodynamic data to support the development of the sodium cooled fast reactor. Data has been critically assessed to represent the potential interaction between the Na coolant and the nuclear fuel taken to be based on (U, Pu)O 2 but incorporating minor actinides such as Np and Am. Data for the fission products and

  11. Stage design

    International Nuclear Information System (INIS)

    Shacter, J.

    1975-01-01

    A method is described of cycling gases through a plurality of diffusion stages comprising the steps of admitting the diffused gases from a first diffusion stage into an axial compressor, simultaneously admitting the undiffused gases from a second diffusion stage into an intermediate pressure zone of said compressor corresponding in pressure to the pressure of said undiffused gases, and then admitting the resulting compressed mixture of diffused and undiffused gases into a third diffusion stage

  12. A laser metrology/viewing system for ITER in-vessel inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Herndon, J.N.; Menon, M.M.; Slotwinski, A.; Dagher, M.A.; Yuen, J.L.

    1998-01-01

    This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision surface mapping system. A metrology system capable of achieving sub-millimeter accuracy must operate in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser optics module linked through fiber optics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic-mast. Gamma irradiation to 10 7 Gy was conducted on critical sensor components at Oak Ridge National Laboratory, with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway. (orig.)

  13. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  14. Quantifying Human Response: Linking metrological and psychometric characterisations of Man as a Measurement Instrument

    International Nuclear Information System (INIS)

    Pendrill, L R; Fisher, William P Jr

    2013-01-01

    A better understanding of how to characterise human response is essential to improved person-centred care and other situations where human factors are crucial. Challenges to introducing classical metrological concepts such as measurement uncertainty and traceability when characterising Man as a Measurement Instrument include the failure of many statistical tools when applied to ordinal measurement scales and a lack of metrological references in, for instance, healthcare. The present work attempts to link metrological and psychometric (Rasch) characterisation of Man as a Measurement Instrument in a study of elementary tasks, such as counting dots, where one knows independently the expected value because the measurement object (collection of dots) is prepared in advance. The analysis is compared and contrasted with recent approaches to this problem by others, for instance using signal error fidelity

  15. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.

    Science.gov (United States)

    Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P

    2012-01-01

    Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

  16. Dynamic metrology and data processing for precision freeform optics fabrication and testing

    Science.gov (United States)

    Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook

    2017-06-01

    Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.

  17. Methodology for implementation of a national metrology net of radionuclides used in nuclear medicine

    International Nuclear Information System (INIS)

    Santos, Joyra Amaral dos

    2004-01-01

    The National Laboratory for Ionizing Radiation Metrology, of the Institute of Radiation Protection and Dosimetry, of the National Commission on Nuclear Energy (IRD/CNEN), comes leading a comparison program for activity measurements of radiopharmaceuticals administered to patients in the Nuclear Medicine Services (NMS) with the purpose to promote the quality control. This work presents a quality assurance program for the performance of such measurements, evaluated in the comparison runs between hospitals and LNMRI, under the statistic point of view and the compliment of regulatory authority norms. The performance of the radionuclides 67 Ga, 123 I, 131 I, 99m Tc and 210 Tl were evaluated and 201 TI have been standardized by absolute methods. Besides, it was established the traceability of the radioactivity standards used in nuclear medicine and a methodology for implementation of a national metrology net of radionuclides. The comparison results prove that the implementation of a radionuclide metrology net is viable, important and feasible. (author)

  18. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Settens, Charles M. [State Univ. of New York (SUNY), Albany, NY (United States)

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  19. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    Science.gov (United States)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  20. A survey on coordinate metrology using dimensional X-ray CT

    International Nuclear Information System (INIS)

    Matsuzaki, Kazuya

    2016-01-01

    X-ray computed tomography (X-ray CT) has been occupying indispensable position in geometrical and dimensional measurements in industry, which is capable of measuring both external and internal dimensions of industrial products. Since dimensional X-ray CT has problems about ensuring traceability and estimating uncertainty, requirement of developing measurement standard for dimensional X-ray CT is increasing. Some of national metrology institutes (NMIs) including NMIJ have been working on developing measurement standard. In this report, the background of coordinate metrology using dimensional X-ray CT is reviewed. Then, measurement error sources are discussed. Finally, the plan to develop high accuracy dimensional X-ray CT is presented. (author)

  1. Radiation protection metrology in Austria: status and needs in a European perspective

    International Nuclear Information System (INIS)

    Maringer, F. J.; Leitner, A.; Tschurlovits, M.

    2005-01-01

    A global harmonised system of radiation protection and radiation dosimetry metrology is required to assure quality and accuracy in exchange of ideas, science, technologies and products. Accurate and high-grade measurements of ionising radiation are required in a wide range of industrial and medical applications where they are critical for human health and safety. This paper presents current work of international and Austrian metrological institutions in the field of ionising radiation and briefly discusses the future need and perspectives in the European context.(author)

  2. Metrological aspects to quality control for natural gas analyses

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Claudia Cipriano; Borges, Cleber Nogueira; Cunha, Valnei S. [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Rio de Janeiro, RJ (Brazil); Augusto, Cristiane R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Augusto, Marco Ignazio [Companhia Estadual de Gas do Rio de Janeiro (CEG), RJ (Brazil)

    2008-07-01

    The Product's Quality and Services are fundamental topics in the globalized commercial relationship inclusive concern the measurements in natural gas. Considerable investments were necessary for industry especially about the quality control in the commercialized gas with an inclusion of the natural gas in Brazilian energetic resources The Brazilian Regulatory Agency, ANP - Agencia Nacional de Petroleo, Gas Natural e Biocombustiveis - created the Resolution ANP no.16. This Resolution defines the natural gas specification, either national or international source, for commercialization in Brazil and list the tolerance concentration for some components. Between of this components are the inert compounds like the CO{sub 2} and N{sub 2}. The presence of this compounds reduce the calorific power, apart from increase the resistance concern the detonation in the case of vehicular application, and occasion the reduction in the methane concentration in the gas. Controls charts can be useful to verify if the process are or not under Statistical Control. The process can be considerate under statistical control if the measurements have it values between in lower and upper limits stated previously The controls charts can be approach several characteristics in each subgroup: means, standard deviations, amplitude or proportion of defects. The charts are draws for a specific characteristic and to detect some deviate in the process under specific environment conditions. The CEG - Companhia de Distribuicao de Gas do Rio de Janeiro and the DQUIM - Chemical Metrology Division has an agreement for technical cooperation in research and development of gas natural composition Concern the importance of the natural gas in the Nation development, as well as the question approaching the custody transference, the objective of this work is demonstrate the control quality of the natural gas composition between the CEG laboratory and the DQUIM laboratory aiming the quality increase of the

  3. Remote photonic metrology in the conservation of cultural heritage

    Science.gov (United States)

    Tornari, Vivi; Pedrini, G.; Osten, W.

    2013-05-01

    not only remote research, inspection and evaluation, but also providing the results to the members and the public with instant and simultaneous access to necessary information, knowledge and technologies. In this paper it is presented the concept and first results confirming the potential of implementing metrology techniques as remote digital laboratory facilities in artwork structural assessment. The method paves the way of the general objective to introduce remote photonic technologies in the sensitive field of Cultural Heritage.

  4. Trading stages

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Coulson, Tim

    2012-01-01

    because they are hard to use and interpret, and tools for age and stage structured populations are missing. We present easily interpretable expressions for the sensitivities and elasticities of life expectancy to vital rates in age-stage models, and illustrate their application with two biological......Interest in stage-and age structured models has recently increased because they can describe quantitative traits such as size that are left out of age-only demography. Available methods for the analysis of effects of vital rates on lifespan in stage-structured models have not been widely applied...... examples. Much of our approach relies on trading of time and mortality risk in one stage for time and risk in others. Our approach contributes to the new framework of the study of age- and stage-structured biodemography....

  5. DABAM: an open-source database of X-ray mirrors metrology

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, Manuel, E-mail: srio@esrf.eu [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Bianchi, Davide [AC2T Research GmbH, Viktro-Kaplan-Strasse 2-C, 2700 Wiener Neustadt (Austria); Cocco, Daniele [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Glass, Mark [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Idir, Mourad [NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Metz, Jim [InSync Inc., 2511C Broadbent Parkway, Albuquerque, NM 87107 (United States); Raimondi, Lorenzo; Rebuffi, Luca [Elettra-Sincrotrone Trieste SCpA, Basovizza (TS) (Italy); Reininger, Ruben; Shi, Xianbo [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Siewert, Frank [BESSY II, Helmholtz Zentrum Berlin, Institute for Nanometre Optics and Technology, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Spielmann-Jaeggi, Sibylle [Swiss Light Source at Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Takacs, Peter [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tomasset, Muriel [Synchrotron Soleil (France); Tonnessen, Tom [InSync Inc., 2511C Broadbent Parkway, Albuquerque, NM 87107 (United States); Vivo, Amparo [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Yashchuk, Valeriy [Advanced Light Source, Lawrence Berkeley National Laboratory, MS 15-R0317, 1 Cyclotron Road, Berkeley, CA 94720-8199 (United States)

    2016-04-20

    DABAM, an open-source database of X-ray mirrors metrology to be used with ray-tracing and wave-propagation codes for simulating the effect of the surface errors on the performance of a synchrotron radiation beamline. An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  6. Nuclear Technology. Course 27: Metrology. Module 27-2, Fixed Gages, Dividers, Calipers, and Micrometers.

    Science.gov (United States)

    Selleck, Ben; Espy, John

    This second in a series of eight modules for a course titled Metrology dscribes fixed gages, dividers, calipers, vernier and dial calipers, and micrometers. The module follows a typical format that includes the following sections: (l) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…

  7. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-05-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or "tophat" beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  8. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  9. Signal processing for order 10 pm accuracy displacement metrology in real-world scientific applications

    Science.gov (United States)

    Halverson, Peter G.; Loya, Frank M.

    2004-01-01

    This paper describes heterodyne displacement metrology gauge signal processing methods that achieve satisfactory robustness against low signal strength and spurious signals, and good long-term stability. We have a proven displacement-measuring approach that is useful not only to space-optical projects at JPL, but also to the wider field of distance measurements.

  10. IMPROVEMENT OF REFERENCE BASE IN THE FIELD OF METROLOGICAL ASSURANCE OF THREAD JOINTS

    Directory of Open Access Journals (Sweden)

    Y. G. Zakharenko

    2016-03-01

    Full Text Available We consider the main and essential legislative and applicative issues of metrological assurance of thread joints in the Russian Federation and international practice. Basic limitations of the existing measuring methods of the main thread gage parameter - the pitch diameter of thread - are represented. We give the description of the first echelon state working calibration standard for linear unit, placed in service in D.I. Mendeleyev Institute for Metrology (VNIIM, including the general field of applications and metrological characteristics according to the state verification schedule. The possibilities of etalon application in the field of measurements of thread gages parameters are shown. Technical solutions for reducing the components of uncertainty of measurements of the pitch diameter using the etalon are described: temperature stability; reducing of external vibration effects on measuring procedure; developing of the special software for minimizing human factor and increasing automation level of the measuring procedure. The solutions described have enabled to achieve expanded uncertainty value about 0.7-1.0 microns. As a result, we also propose further ways for development and improvement of the system of metrology assurance in the field of thread joints.

  11. Research on Double CCD Dimensional Metrology Applying in Large Forge Piece

    International Nuclear Information System (INIS)

    Hu, C H; Xiong, Z

    2006-01-01

    As development of computer vision, stereoscopic vision sensors have been used more and more widely, and double CCD vision sensor with its simplicity of operator, highaccuracy and high-efficiency has been used in many spheres. It can be used in dimensional metrology of large forge piece, which greatly improves the efficiency and accuracy of large forge piece measurement

  12. The role of metrology in mediating and mobilizing the language and culture of scientific facts

    Science.gov (United States)

    Fisher, W. P., Jr.; Stenner, A. J.

    2015-02-01

    The self-conscious awareness of language and its use is arguably nowhere more intense than in metrology. The careful and deliberate coordination and alignment of shared metrological frames of reference for theory, experiment, and practical application have been characteristics of scientific culture at least since the origins of the SI units in revolutionary France. Though close attention has been focused on the logical and analytical aspects of language use in science, little concern has been shown for understanding how the social and historical aspects of everyday language may have foreshadowed and influenced the development and character of metrological language, especially relative to the inevitably partial knowledge possessed by any given stakeholder participating in the scientific enterprise. Insight in this regard may be helpful in discerning how and if an analogous role for metrology might be created in psychology and the social sciences. It may be that the success of psychology as a science will depend less on taking physics as the relevant model than on attending to the interplay of concepts, models, and social organization that make any culture effective.

  13. Metrology as part and parcel of training programmes for science and engineering

    NARCIS (Netherlands)

    Regtien, Paulus P.L.

    2007-01-01

    At many universities and training institutes education in metrology or measurement science is in strong competition with upcoming disciplines. Its importance for science and engineering remains, however, evident. Advanced instruments make measuring almost a routine activity, but it is shown that a

  14. Metrological Traceability in the Social Sciences: A Model from Reading Measurement

    Science.gov (United States)

    Stenner, A. Jackson; Fisher, William P., Jr.

    2013-09-01

    The central importance of reading ability in learning makes it the natural place to start in formative and summative assessments in education. The Lexile Framework for Reading constitutes a commercial metrological traceability network linking books, test results, instructional materials, and students in elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia.

  15. High-throughput parallel SPM for metrology, defect and mask inspection

    NARCIS (Netherlands)

    Sadeghian Marnani, H.; Herfst, R.W.; Dool, T.C. van den; Crowcombe, W.E.; Winters, J.; Kramers, G.F.I.J.

    2014-01-01

    Scanning probe microscopy (SPM) is a promising candidate for accurate assessment of metrology and defects on wafers and masks, however it has traditionally been too slow for high-throughput applications, although recent developments have significantly pushed the speed of SPM [1,2]. In this paper we

  16. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    International Nuclear Information System (INIS)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  17. Metrological Traceability in the Social Sciences: A Model from Reading Measurement

    International Nuclear Information System (INIS)

    Stenner, A Jackson; Fisher, William P Jr

    2013-01-01

    The central importance of reading ability in learning makes it the natural place to start in formative and summative assessments in education. The Lexile Framework for Reading constitutes a commercial metrological traceability network linking books, test results, instructional materials, and students in elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia

  18. Metrological data and risk assessment in France during the Chernobyl accident (26 april 1986)

    International Nuclear Information System (INIS)

    Galle, P.; Paulin, R.; Coursaget, J.

    2005-01-01

    Three world famous radio biologists have presented in june 2003 a communication entitled ' metrological data and risk assessment in France during the Chernobyl accident. Historical statement'. This text is published at the tome 326, fsc. 8, page 699-715 at the 'Comptes Rendus de Biologie de l'Academie'. The digest is presented here. (N.C.)

  19. Multi Scale Micro and Nano Metrology for Advanced Precision Moulding Technologies

    DEFF Research Database (Denmark)

    Quagliotti, Danilo

    , as the technology progressed. The gap between the needs of the manufacturing industry and the well-organized structure of the dimensional and geometrical metrology appeared, above all, related to the methodologies and, also, to the instrumentation used to deal with the incessant scaling down of the critical...

  20. What metrology can do to improve the quality of your atmospheric ammonia measurements

    Science.gov (United States)

    Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.; Niederhauser, Bernhard

    2017-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation to ensure reliable ammonia measurements, namely in applicable analytical technology, maximum allowed uncertainty, quality assurance and quality control (QC/QA) procedures, as well as in the infrastructure to attain metrological traceability, i.e. that the results of measurements are traceable to SI-units through an unbroken chain of calibrations. In the framework of the European Metrology Research Programme (EMRP) project on the topic "Metrology for Ammonia in Ambient Air" (MetNH3), European national metrology institutes (NMI's) have joined to tackle the issue of generating SI-traceable reference material, i.e. generate reference gas mixtures containing known amount fractions of NH3.This requires special infrastructure and analytical techniques: Measurements of ambient ammonia are commonly carried out with diffusive samplers or by active sampling with denuders, but such techniques have not yet been extensively validated. Improvements in the metrological traceability may be achieved through the determination of NH3 diffusive sampling rates using ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at the National Physical Laboratory NPL and a controlled atmosphere test facility in combination with on-line monitoring with a cavity ring-down spectrometer. The Federal Institute of Metrology METAS has developed an infrastructure to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol (atmospheric concentrations) and with uncertainties UNH3 instruments in other laboratories and in the field. In addition, an SI-traceable dilution system based on a cascade of critical orifices has been

  1. Establishing an applied training session in metrology at an agricultural engineering school (CIRAD, Montpellier, France

    Directory of Open Access Journals (Sweden)

    Calchera G.

    2014-01-01

    Full Text Available As part of its training activities, SupAgro – Institut des Régions Chaudes (IRC, an agricultural engineering school in Montpellier, has introduced an applied training session in metrology for its students. This was undertaken by the CIRAD metrology platform in partnership with the agrifood technology platform of the Qualisud Joint Research Unit. The session comprises two hour workshops during which students can apply the basic notions required for metrological monitoring of the quantities “temperature” and “weight”. To that end, standard weights, a temperature calibration device comprising a thermostatically controlled calibration oil bath (uncertainty at k = 2 of 0.14 °C and a standard temperature probe with an accuracy of ±0.01 °C were made available to the technology platform by the CIRAD metrology platform. During practical work, these COFRAC calibrated instruments are used to check balances and, in particular, make students aware of the importance of parameters that might influence the temperature measurement of a thermostatically controlled bath (homogeneity, resolution and accuracy of the thermometers, measurement repeatability, etc.. To that end, the Qualisud team specifically adapted a water bath so as to be able to position several temperature probes at different places in the bath. Students have to acquire an approach that needs to take into account a particular measuring context. The teaching scenario of the training session is structured around these metrological checks proposed directly to the students. The training session takes place each year with 2nd year students on the SAADS 2/IAAS course “Sustainable Agriculture and Agrifood Systems in the South” at SupAgro in Montpellier.

  2. Advancements in Wind Energy Metrology - UPWIND 1A2.3

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Troels F.; Wagner, R.

    2011-02-15

    An overview of wind related metrology research made at Risoe DTU over the period of the UPWIND project is given. A main part of the overview is devoted to development of the Lidar technology with several sub-chapters considering different topics of the research. Technical problems are not rare for this new technology, and testing against a traditional met mast have shown to be efficient for gaining confidence with the ground based Lidar technology and for trust in accuracy of measurements. In principle, Lidar measurements could be traceable through the fundamental measurement principles, but at this stage of development it is not found feasible. Instead, traceability is secured through comparison with met masts that are traceable through wind tunnel calibrations of cup anemometers. The ground based Lidar measurement principle works almost acceptable in flat terrain. In complex terrain and close to woods the measurement volume is disturbed because the flow is no longer horizontally homogeneous. These conditions require special attention and correction methods. Due to the large measurement volume, ground based Lidars perform a spatial averaging which has the effect of a low pass filter on turbulence measurements. Theory and measurements seem to be in good agreement. Lidar measurements from a rotating spinner have been performed. The analysis show good perspectives for scanning the incoming wind, which may lead to better controlled wind turbines. Lidars have also been used to scan the wake of wind turbines. These measurements document the meandering wake pattern. The second part of the overview considers power performance measurements. A new investigation on the influence of wind shear points to a revision of the definition of a power curve. A new measurement method has been developed which has a good chance of being implemented in the present revision of the IEC performance standard. Also, a turbulence normalization method has been tested but not found efficient

  3. Contribution of thermal metrology to energy mastery; Apport de la metrologie thermique a la maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Degiovanni, A.; Remy, B. [Institut National Polytechnique de Lorraine, LEMTA - ENSEM, 54 - Vandoeuvre les Nancy (France)

    2005-07-01

    This paper defines, first, the field of thermal metrology, its history and recent advances (measurement of temperatures, of heat fluxes, of thermophysical data, at interfaces) and then uses several examples to show how thermal metrology can contribute to the conservation of energy: metrology of thermal diffusivities and conductivities of nuclear fuels, follow up of continuous steel casting, control of glass melters, combustion control in internal combustion engines, mass and heat transfers in fuel cells, forming of metal sheets, monitoring of heat flux in forest fires, characterization of insulating materials. (J.S.)

  4. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  5. Enabling CD SEM metrology for 5nm technology node and beyond

    Science.gov (United States)

    Lorusso, Gian Francesco; Ohashi, Takeyoshi; Yamaguchi, Astuko; Inoue, Osamu; Sutani, Takumichi; Horiguchi, Naoto; Bömmels, Jürgen; Wilson, Christopher J.; Briggs, Basoene; Tan, Chi Lim; Raymaekers, Tom; Delhougne, Romain; Van den Bosch, Geert; Di Piazza, Luca; Kar, Gouri Sankar; Furnémont, Arnaud; Fantini, Andrea; Donadio, Gabriele Luca; Souriau, Laurent; Crotti, Davide; Yasin, Farrukh; Appeltans, Raf; Rao, Siddharth; De Simone, Danilo; Rincon Delgadillo, Paulina; Leray, Philippe; Charley, Anne-Laure; Zhou, Daisy; Veloso, Anabela; Collaert, Nadine; Hasumi, Kazuhisa; Koshihara, Shunsuke; Ikota, Masami; Okagawa, Yutaka; Ishimoto, Toru

    2017-03-01

    The CD SEM (Critical Dimension Scanning Electron Microscope) is one of the main tools used to estimate Critical Dimension (CD) in semiconductor manufacturing nowadays, but, as all metrology tools, it will face considerable challenges to keep up with the requirements of the future technology nodes. The root causes of these challenges are not uniquely related to the shrinking CD values, as one might expect, but to the increase in complexity of the devices in terms of morphology and chemical composition as well. In fact, complicated threedimensional device architectures, high aspect ratio features, and wide variety of materials are some of the unavoidable characteristics of the future metrology nodes. This means that, beside an improvement in resolution, it is critical to develop a CD SEM metrology capable of satisfying the specific needs of the devices of the nodes to come, needs that sometimes will have to be addressed through dramatic changes in approach with respect to traditional CD SEM metrology. In this paper, we report on the development of advanced CD SEM metrology at imec on a variety of device platform and processes, for both logic and memories. We discuss newly developed approaches for standard, IIIV, and germanium FinFETs (Fin Field Effect Transistors), for lateral and vertical nanowires (NW), 3D NAND (three-dimensional NAND), STT-MRAM (Spin Transfer Magnetic Torque Random-Access Memory), and ReRAM (Resistive Random Access Memory). Applications for both front-end of line (FEOL) and back-end of line (BEOL) are developed. In terms of process, S/D Epi (Source Drain Epitaxy), SAQP (Self-Aligned Quadruple Patterning), DSA (Dynamic Self-Assembly), and EUVL (Extreme Ultraviolet Lithography) have been used. The work reported here has been performed on Hitachi CG5000, CG6300, and CV5000. In terms of logic, we discuss here the S/D epi defect classification, the metrology optimization for STI (Shallow Trench Isolation) Ge FinFETs, the defectivity of III-V STI Fin

  6. Metrology for the persevering production, distribution, and usage of energy; Metrologie fuer die nachhaltige Erzeugung, Verteilung und Nutzung von Energie

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Klaus-Dieter [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Abt. ' Chemische Physik und Explosionsschutz'

    2012-12-15

    The author describes the metrological challenges given by the necessarily effective production, transport, distribution, consumption, conservation, and storage of energy, the latter is considered in connection with mobility. Finally the activities of the PTB in this connection are listed. (HSI)

  7. Strain Sensor of Carbon Nanotubes in Microscale: From Model to Metrology

    Directory of Open Access Journals (Sweden)

    Wei Qiu

    2014-01-01

    Full Text Available A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.

  8. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-05-15

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  9. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sawhney, Kawal

    2016-01-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  10. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal

    2016-05-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  11. Photogrammetric Metrology for the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Nowak, Maria; Crane, Allen; Davila, Pam; Eichhorn, William; Gill, James; Herrera, Acey; Hill, Michael; Hylan, Jason; Jetten, Mark; Marsh, James; hide

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISM optical metering structure is a roughly 2.2x1.7x2.2m, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISIM structure must meet its requirements at the approximately 40K cryogenic operating temperature. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified. We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry. Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system. We also describe the data reduction algorithm planned to interpret cryogenic data from the Flight structure. Photogrammetry was

  12. Overcoming the Invisibility of Metrology: A Reading Measurement Network for Education and the Social Sciences

    Science.gov (United States)

    Fisher, William P., Jr.; Stenner, A. Jackson

    2013-09-01

    The public and researchers in psychology and the social sciences are largely unaware of the huge resources invested in metrology and standards in science and commerce, for understandable reasons, but with unfortunate consequences. Measurement quality varies widely in fields lacking uniform standards, making it impossible to coordinate local behaviours and decisions in tune with individually observed instrument readings. However, recent developments in reading measurement have effectively instituted metrological traceability methods within elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia. Given established patterns in the history of science, it may be reasonable to expect that widespread routine reproduction of controlled effects expressed in uniform units in the social sciences may lead to significant developments in theory and practice.

  13. Overcoming the Invisibility of Metrology: A Reading Measurement Network for Education and the Social Sciences

    International Nuclear Information System (INIS)

    Fisher, William P Jr; Stenner, A Jackson

    2013-01-01

    The public and researchers in psychology and the social sciences are largely unaware of the huge resources invested in metrology and standards in science and commerce, for understandable reasons, but with unfortunate consequences. Measurement quality varies widely in fields lacking uniform standards, making it impossible to coordinate local behaviours and decisions in tune with individually observed instrument readings. However, recent developments in reading measurement have effectively instituted metrological traceability methods within elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia. Given established patterns in the history of science, it may be reasonable to expect that widespread routine reproduction of controlled effects expressed in uniform units in the social sciences may lead to significant developments in theory and practice

  14. Metrological Array of Cyber-Physical Systems. Part 11. Remote Error Correction of Measuring Channel

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-09-01

    Full Text Available The multi-channel measuring instruments with both the classical structure and the isolated one is identified their errors major factors basing on general it metrological properties analysis. Limiting possibilities of the remote automatic method for additive and multiplicative errors correction of measuring instruments with help of code-control measures are studied. For on-site calibration of multi- channel measuring instruments, the portable voltage calibrators structures are suggested and their metrological properties while automatic errors adjusting are analysed. It was experimentally envisaged that unadjusted error value does not exceed ± 1 mV that satisfies most industrial applications. This has confirmed the main approval concerning the possibilities of remote errors self-adjustment as well multi- channel measuring instruments as calibration tools for proper verification.

  15. OBSERVATIONS ON THE PERFORMANCE OF X-RAY COMPUTED TOMOGRAPHY FOR DIMENSIONAL METROLOGY

    Directory of Open Access Journals (Sweden)

    H. C. Corcoran

    2016-06-01

    Full Text Available X-ray computed tomography (XCT is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  16. 3D-SEM Metrology for Coordinate Measurements at the Nanometer Scale

    DEFF Research Database (Denmark)

    Carli, Lorenzo

    The present work deals with a study concerning 3D-SEM metrology as a tool for coordinate measurements at the nanometer scale. The relevance of 3D-SEM, based on stereophotogrammetry technique, has been highlighted with respect to the other measuring instruments nowadays available and the main issues...... to be addressed concerning uncertainty evaluation have been discussed. Most recent developments in the field of micro and nano-metrology, in terms of measuring machines and techniques, are described pointing out advantages and limitations. The importance of multi-sensor and multi-orientation strategy....... In the last part of the work, the development and application of two novel multiplestep heights artefacts, intended for 3D-SEM calibration, is addressed. Experimental results of the different step-height values, measured from 3D-SEM reconstructions, are compared with the calibrated ones obtained from...

  17. Observations on the Performance of X-Ray Computed Tomography for Dimensional Metrology

    Science.gov (United States)

    Corcoran, H. C.; Brown, S. B.; Robson, S.; Speller, R. D.; McCarthy, M. B.

    2016-06-01

    X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  18. The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper)

    Science.gov (United States)

    Bongs, K.; Boyer, V.; Cruise, M. A.; Freise, A.; Holynski, M.; Hughes, J.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Perea-Ortiz, M.; Petrov, P.; Plant, S.; Singh, Y.; Stabrawa, A.; Paul, D. J.; Sorel, M.; Cumming, D. R. S.; Marsh, J. H.; Bowtell, R. W.; Bason, M. G.; Beardsley, R. P.; Campion, R. P.; Brookes, M. J.; Fernholz, T.; Fromhold, T. M.; Hackermuller, L.; Krüger, P.; Li, X.; Maclean, J. O.; Mellor, C. J.; Novikov, S. V.; Orucevic, F.; Rushforth, A. W.; Welch, N.; Benson, T. M.; Wildman, R. D.; Freegarde, T.; Himsworth, M.; Ruostekoski, J.; Smith, P.; Tropper, A.; Griffin, P. F.; Arnold, A. S.; Riis, E.; Hastie, J. E.; Paboeuf, D.; Parrotta, D. C.; Garraway, B. M.; Pasquazi, A.; Peccianti, M.; Hensinger, W.; Potter, E.; Nizamani, A. H.; Bostock, H.; Rodriguez Blanco, A.; Sinuco-Leon, G.; Hill, I. R.; Williams, R. A.; Gill, P.; Hempler, N.; Malcolm, G. P. A.; Cross, T.; Kock, B. O.; Maddox, S.; John, P.

    2016-04-01

    The UK National Quantum Technology Hub in Sensors and Metrology is one of four flagship initiatives in the UK National of Quantum Technology Program. As part of a 20-year vision it translates laboratory demonstrations to deployable practical devices, with game-changing miniaturized components and prototypes that transform the state-of-the-art for quantum sensors and metrology. It brings together experts from the Universities of Birmingham, Glasgow, Nottingham, Southampton, Strathclyde and Sussex, NPL and currently links to over 15 leading international academic institutions and over 70 companies to build the supply chains and routes to market needed to bring 10-1000x improvements in sensing applications. It seeks, and is open to, additional partners for new application development and creates a point of easy open access to the facilities and supply chains that it stimulates or nurtures.

  19. Physics colloquium: Single-electron counting in quantum metrology and in statistical mechanics

    CERN Multimedia

    Geneva University

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92olé   Lundi 17 octobre 2011 17h00 - Ecole de Physique, Auditoire Stueckelberg PHYSICS COLLOQUIUM « Single-electron counting in quantum metrology and in statistical mechanics » Prof. Jukka Pekola Low Temperature Laboratory, Aalto University Helsinki, Finland   First I discuss the basics of single-electron tunneling and its potential applications in metrology. My main focus is in developing an accurate source of single-electron current for the realization of the unit ampere. I discuss the principle and the present status of the so-called single- electron turnstile. Investigation of errors in transporting electrons one by one has revealed a wealth of observations on fundamental phenomena in mesoscopic superconductivity, including individual Andreev...

  20. Determination of the elementary charge and the quantum metrological triangle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Feltin, N.; Piquemal, F. [Laboratoire National de Metrologie et d' Essais (LNE), 78 - Trappes (France)

    2009-06-15

    The elementary charge e is of fundamental importance in physics. The determination of its value, which is closely linked to progress of the measurement techniques, started in the beginning of the twentieth century and is still on-going. Today, in the frame of the CODATA adjustment, the evaluation of the fundamental constant, e, is derived from a complex calculation and is no more related to a single experiment. But the development of single electron tunneling (SET) devices, started in the early nineties, has opened the path towards modern metrological systems as quantum current sources. Thus a new direct determination of e is possible by implementing an electron pump and the set-up of the quantum metrological triangle (QMT) in combination with the experiments linking mechanical and electrical units. Furthermore, we show how the QMT experiment can contribute to the establishment of a new system of units based on fundamental constants of physics. (authors)

  1. Strain Sensor of Carbon Nanotubes in Microscale: From Model to Metrology

    Science.gov (United States)

    Qiu, Wei; Li, Shi-Lei; Deng, Wei-lin; Gao, Di; Kang, Yi-Lan

    2014-01-01

    A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology. PMID:24683338

  2. A Laser Metrology/Viewing System for ITER In-Vessel Inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.; Slotwinski, A.

    1997-10-01

    This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10 7 Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway

  3. Metrology in the Bolivia-Brazil Pipeline; Medicao no gasoduro Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Palhares, Julio C.C.M.; Nunes, Ildemar Pinto [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    measurement guideline of TBG seeks to be always assisting to the customer's needs and aligned with the changes of the market of natural gas. In five years of existence, TBG attended the forming regulatory legislation and the establishment of the contract fiscal, important marks of the evolution of the market. This work presents the definitions that orientated the metrological issues of TBG, making use of efficient tools in the answers to each demand and seeking to satisfy its own needs, its customers' needs and all the new regulatory demands. This paper approaches, the calibration procedures, the qualification of suppliers, maintenance of the metrological reliability, the daily confirmation of the delivered volumes, the fail treatment, and the unaccounted gas monitoring in rigorous limits practiced in world class companies in foreigner countries. (author)

  4. Tests of operating conditions for metrological application of HTS Josephson arrays

    International Nuclear Information System (INIS)

    Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M

    2006-01-01

    We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array

  5. Study and operating conditions of HTS Josephson arrays for metrological application

    International Nuclear Information System (INIS)

    Sosso, A.; Lacquaniti, V.; Andreone, D.; Cerri, R.; Klushin, A.M.

    2006-01-01

    We report an experimental study of metrological properties of high-temperature superconductor arrays, made of shunted bicrystal YBCO Josephson junctions. The work is mainly based on a direct comparison against a low temperature array. Owing to the high sensitivity of the measurements, we observed at nanovolt level the changes in the HTS array voltage on a step. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results of low sensitivity techniques, confirming that our method is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was also applied in the derivation of the temperature dependence of the critical current, providing insights on the behavior of the HTS array

  6. Instrumentation, metrology, and standards: key elements for the future of nanomanufacturing

    Science.gov (United States)

    Postek, Michael T.; Lyons, Kevin

    2007-09-01

    Nanomanufacturing is the essential bridge between the discoveries of nanoscience and real world nanotech products and is the vehicle by which the Nation and the World will realize the promise of major technological innovation across a spectrum of products that will affect virtually every industrial sector. For nanotech products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, economical and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately assessed and handled, and liability issues are addressed. Critical to this realization of robust nanomanufacturing is the development of the necessary instrumentation, metrology, and standards. Integration of the instruments, their interoperability, and appropriate information management are also critical elements that must be considered for viable nanomanufacturing. Advanced instrumentation, metrology and standards will allow the physical dimensions, properties, functionality, and purity of the materials, processes, tools, systems, products, and emissions that will constitute nanomanufacturing to be measured and characterized. This will in turn enable production to be scaleable, controllable, predictable, and repeatable to meet market needs. If a nano-product cannot be measured it cannot be manufactured; additionally if that product cannot be made safely it should not be manufactured. This presentation introduces the Instrumentation, Metrology, and Standards for Nanomanufacturing Conference at the 2007 SPIE Optics and Photonics. This conference will become the leading forum for the exchange of foundational information and discussion of instrumentation, metrology and standards which are key elements for the success of nanomanufacturing.

  7. System for automatic gauge block length measurement optimized for secondary length metrology

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Šarbort, Martin; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Pikálek, Tomáš; Dvořáčková, Š.; Dvořáček, F.; Kůr, J.; Konečný, P.; Weigl, M.; Lazar, Josef; Číp, Ondřej

    2017-01-01

    Roč. 49, JULY (2017), s. 322-331 ISSN 0141-6359 R&D Projects: GA TA ČR(CZ) TA03010663; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : low-coherence interferometry * laser interferometry * Gauge block * metrology Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.237, year: 2016

  8. Metrological aspects in the estimate of the administered activity in nuclear medicine patients

    International Nuclear Information System (INIS)

    Ruzzarin, A.; Iwahara, A.; Tahuata, L.; Xavier, A.M.

    2014-01-01

    In order to investigate the performance quality of routine measurements of Nuclear Medicine Services (NMS), the National Metrology Laboratory of Ionizing Radiation/Institute of Radiation Protection and Dosimetry (LNMRI/IRD) has been conducting, since 1998, a program of comparison for activity measurements of radiopharmaceuticals administered to patients in nuclear medicine. Correction factors are determined from the result of performance analysis in order to determine with better accuracy the activity to be administered to the patients. (author)

  9. Evolution of 30 years of the International Vocabulary of Metrology (VIM)

    Science.gov (United States)

    Mari, Luca

    2015-02-01

    Since its first edition, published in 1984, the International Vocabulary of Metrology (VIM) has become a landmark for the language of measurement, and in its three editions it has evolved together with the evolution of measurement science and its applications. This paper discusses the fundamental features of the VIM as a concept system and proposes some highlights about the way in the VIM some basic and general concepts of measurement have changed their definitions in the last thirty years.

  10. Dimensional metrology for process and part quality control in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Tosello, Guido; Gasparin, Stefania

    2011-01-01

    dimensions are scaled down and geometrical complexity of objects is increased, the available measurement technologies appear not sufficient. New solutions for measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration are necessary if micro...... manufacturing is to develop into industrial manufacturing solutions. In this paper the application of dimensional precision metrology to both component and process quality control will be demonstrated. The parts investigated are micro injection moulded polymer parts, typical for the field of micro manufacturing....

  11. Metrology for γ-radiation spectrometry in a radiation monitoring system

    International Nuclear Information System (INIS)

    Khaikovich, I.M.; Shevrygin, O.N.; Fominykh, V.I.

    1993-01-01

    The rapid measurement of the characteristics of radionuclides is a priority when utilizing nuclear energy because of the needs of environmental conservation. This is particularly the case for long-lived nuclear-fuel fission products, 137,137 Cs, 144 Ce, 60 Co, etc., which as a rule are sources of high-energy γ-radiation. These can be measured by γ-ray spectrometry using scintillation or semiconductor devices. When choosing the metrological models, the starting points are the real characteristics of the distribution of the radionuclides in the soil (rock) and the need to estimate their surface activity and the reserves per unit area, i.e., the parameters from which one can estimate the influence of the radioactivity on nature and can decide the use of land areas. The methodology and the calculations presented show that a single metrological system for radiation monitoring can be constructed using multichannel geophysical radiometers (gamma spectrometers) while relying on a system of initial standard samples of small size. Such a metrological system at present provides all the necessary initial means for measuring the effective γ-radiation surface activity of 137,134 Cs and the mass fraction of the natural radioactive elements. Using these initial means of measurement, surveyed areas in the Leningrad and Tula provinces have been certified as State standard samples in terms of the eight parameters: the surface contamination activity of 137,134 Cs, the reserves of these per unit area, the mass fraction of the natural radioactive elements (potassium, uranium and thorium), the power of the equivalent (exposed) γ-radiation dose at a height of 1 m above the surface. It is intended to use the certified metrological surveyed areas to provide traceability and the required measurement accuracy when studying the contamination in European territories resulting from the accident at the Chernobyl nuclear power station

  12. Metrological Array of Cyber-Physical Systems. Part 10. Foundations of Objective Qualimetry

    Directory of Open Access Journals (Sweden)

    Svyatoslav YATSYSHYN

    2015-07-01

    Full Text Available Contemporary trend of Cyber-Physical Systems evolution considers as promising line the metrology science development ability for estimation the quality of final or intermediate product. The reliability and perfection of smart and flexible operation of mentioned systems could be permanently improved if determination of critical characteristics would be performed correctly, and particular coordinated assessment would be non-correlatively fulfilled. Last is guaranteed at applying thermodynamic principles of coordinates’ choice.

  13. An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard

    Science.gov (United States)

    Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.

    2017-11-01

    This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.

  14. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    Science.gov (United States)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  15. In-line height profiling metrology sensor for zero defect production control

    Science.gov (United States)

    Snel, Rob; Winters, Jasper; Liebig, Thomas; Jonker, Wouter

    2017-06-01

    Contemporary production systems of mechanical precision parts show challenges as increased complexity, tolerances shrinking to sub-microns and yield losses that must be mastered to the extreme. More advanced automation and process control is required to accomplish this task. Often a solution based on feedforward/feedback control is chosen requiring innovative and more advanced in line metrology. This article concentrates first on the context of in line metrology for process control and then on the development of a specific in line height profiling sensor. The novel sensor technology is based on full field time domain white light interferometry which is well know from the quality lab. The novel metrology system is to be mounted close to the production equipment, as required to minimize time delay in the control loop, and is thereby fully exposed to vibrations. This sensor is innovated to perform in line with an orders of magnitude faster throughput than laboratory instruments; it's robust to withstand the rigors of workshops and has a height resolution that is in the nanometer range.

  16. Automation of metrological operations on measuring apparatuses of radiation monitoring system

    International Nuclear Information System (INIS)

    Kulich, V.; Studeny, J.

    1995-01-01

    (J.K.)In this paper the measuring apparatuses of ionizing radiation for the radiation monitoring of NPP Dukovany operation is described. The increase of metrological operations number has been made possible only by a timely reconstruction of the laboratory and by computerization of the measuring procedure and of administrative work which consists mainly of recording of a great number information pieces about the observed measuring apparatuses. There are three working places in the laboratory: 1) irradiation gamma stand with cesium-137 sources; 2) irradiation stand with plutonium-beryllium neutron sources; 3) spectrometric working place. With the regard to the uniqueness of the laboratory operation, all the works in the sphere of hardware as well as software has been implemented by own forces. The equipment of the laboratory makes possible to test metrologically all the radiation monitoring apparatuses used in NPP Dukovany. The quantity of operation of he laboratory of ionizing metrology qualifies the proper functioning of the radiation monitoring system, which directly influences the ensurance of nuclear safety of NPP Dukovany

  17. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform

    Science.gov (United States)

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-01-01

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722

  18. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    Science.gov (United States)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  19. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  20. DABAM: an open-source database of X-ray mirrors metrology.

    Science.gov (United States)

    Sanchez Del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-05-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  1. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

    Science.gov (United States)

    Pang, Shengshi; Jordan, Andrew N.

    2017-01-01

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428

  2. DABAM: an open-source database of X-ray mirrors metrology

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-04-20

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  3. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform.

    Science.gov (United States)

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-11-18

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  4. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    Science.gov (United States)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  5. Staging Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    In recent years, the social sciences have taken a “mobilities turn.” There has been a developing realisation that mobilities do not “just happen.” Mobilities are carefully and meticulously designed, planned and staged (from above). However, they are equally importantly acted out, performed and li......, the book asks: what are the physical, social, technical, and cultural conditions to the staging of contemporary urban mobilities?...... that mobility is more than movement between point A and B. It explores how the movement of people, goods, information, and signs influences human understandings of self, other and the built environment. Moving towards a new understanding of the relationship between movement, interaction and environments...

  6. In-situ virtual metrology for the silicon-dioxide etch rate by using optical emission spectroscopy data

    International Nuclear Information System (INIS)

    Kim, Boomsoo; Hong, Sangjeen

    2014-01-01

    As a useful tool for process control in a high volume semiconductor manufacturing environment, virtual metrology for the etch rate in a plasma etch process is investigated using optical emission spectroscopy (OES) data. Virtual metrology is a surrogate measurement taken from the process instead of from direct measurement, and it can provide in-situ metrology of a wafer's geometry from a predictive model. A statistical regression model that correlates the selected wavelengths of the optical emission spectra to the etch rate is established using the OES data collected over 20 experimental runs. In addition, an argon actinometry study is employed to quantify the OES data, and it provides valuable insight into the analysis of the OES data. The established virtual metrology model is further verified with an additional 20 runs of data. As a result, the virtual metrology model with both process recipe tool data and in-situ data shows higher prediction accuracy by as much as 56% compared with either the process recipe tool data or the in-situ data alone.

  7. Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maas, D. J., E-mail: diederik.maas@tno.nl; Herfst, R.; Veldhoven, E. van [Netherlands Organization for Applied Scientific Research, TNO, Stieltjesweg 1, 2628CK Delft (Netherlands); Fliervoet, T.; Meessen, J.; Vaenkatesan, V. [ASML, de Run 6665, 5504DR Veldhoven (Netherlands); Sadeghian, H. [Netherlands Organization for Applied Scientific Research, TNO, Stieltjesweg 1, 2628CK Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-10-15

    With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.

  8. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    Science.gov (United States)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  9. A risk analysis approach applied to field surveillance in utility meters in legal metrology

    Science.gov (United States)

    Rodrigues Filho, B. A.; Nonato, N. S.; Carvalho, A. D.

    2018-03-01

    Field surveillance represents the level of control in metrological supervision responsible for checking the conformity of measuring instruments in-service. Utility meters represent the majority of measuring instruments produced by notified bodies due to self-verification in Brazil. They play a major role in the economy once electricity, gas and water are the main inputs to industries in their production processes. Then, to optimize the resources allocated to control these devices, the present study applied a risk analysis in order to identify among the 11 manufacturers notified to self-verification, the instruments that demand field surveillance.

  10. Magnetic properties comparison of mass standards among seventeen national metrology institutes

    CSIR Research Space (South Africa)

    Becerra, LO

    2006-09-01

    Full Text Available ?7 [3] Muller J 1995 Possible advantages of a robust evaluation of comparisons Rapport BIPM-95/2 P 7 Reprinted with minor changes in 2000 J. Res. Natl Inst. Stand. Technol. 105 551?5 [4] ISO 1995 Guide to the Expression of Uncertainty in Measurement.... Louis, France) [6] Davis R S 1996 Magnetic properties of samples 1E and 2J (EUROMET Project 324) Rapport BIPM-96/4 [7] International Organization of Legal Metrology 2005 International Recommendation 111.1?Weights of classes E1,E2,F1,F2,M1,M1-2,M2,M2...

  11. The coming of age of the first hybrid metrology software platform dedicated to nanotechnologies (Conference Presentation)

    Science.gov (United States)

    Foucher, Johann; Labrosse, Aurelien; Dervillé, Alexandre; Zimmermann, Yann; Bernard, Guilhem; Martinez, Sergio; Grönqvist, Hanna; Baderot, Julien; Pinzan, Florian

    2017-03-01

    The development and integration of new materials and structures at the nanoscale require multiple parallel characterizations in order to control mostly physico-chemical properties as a function of applications. Among all properties, we can list physical properties such as: size, shape, specific surface area, aspect ratio, agglomeration/aggregation state, size distribution, surface morphology/topography, structure (including crystallinity and defect structure), solubility and chemical properties such as: structural formula/molecular structure, composition (including degree of purity, known impurities or additives), phase identity, surface chemistry (composition, charge, tension, reactive sites, physical structure, photocatalytic properties, zeta potential), hydrophilicity/lipophilicity. Depending on the final material formulation (aerosol, powder, nanostructuration…) and the industrial application (semiconductor, cosmetics, chemistry, automotive…), a fleet of complementary characterization equipments must be used in synergy for accurate process tuning and high production yield. The synergy between equipment so-called hybrid metrology consists in using the strength of each technique in order to reduce the global uncertainty for better and faster process control. The only way to succeed doing this exercise is to use data fusion methodology. In this paper, we will introduce the work that has been done to create the first generic hybrid metrology software platform dedicated to nanotechnologies process control. The first part will be dedicated to process flow modeling that is related to a fleet of metrology tools. The second part will introduce the concept of entity model which describes the various parameters that have to be extracted. The entity model is fed with data analysis as a function of the application (automatic analysis or semi-automated analysis). The final part will introduce two ways of doing data fusion on real data coming from imaging (SEM, TEM, AFM

  12. Measurement range of phase retrieval in optical surface and wavefront metrology

    International Nuclear Information System (INIS)

    Brady, Gregory R.; Fienup, James R.

    2009-01-01

    Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates

  13. Mounting for Fabrication, Metrology, and Assembly of Full Shell Grazing Incidence Optics

    Science.gov (United States)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Kolodziejczak, Jeffery; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-01-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.

  14. Metrological Array of Cyber-Physical Systems. Part 12. Study of Quantum Unit of Temperature

    Directory of Open Access Journals (Sweden)

    Svyatoslav YATSYSHYN

    2015-09-01

    Full Text Available The reference measure of temperature may be embedded in appropriate unit of Cyber-Physical System. Whereas this measure made on the basis of fundamental constants of matter would be installed in such System, the latter will get an extra precision. It is shown that metrologically correct Kelvin redefinition which would be changed by CODATA to 2018 is insufficient to create a Temperature Standard on the basis of fundamental constants of matter. New approach to the mentioned Standard and firstly to the Quantum Unit of Temperature is developed.

  15. Metrological Array of Cyber-Physical Systems. Part 3. Smart Energy-Efficient House

    Directory of Open Access Journals (Sweden)

    Ihor HNES

    2015-04-01

    Full Text Available Smart energy-efficient houses as the components of Cyber-Physical Systems are developed intensively. The main stream of progress consists in the research of Smart houses’ energy supply. By this option the mentioned objects are advancing from passive houses through net-zero energy houses to active houses that are capable of sharing their own accumulated energy with other components of Cyber-Physical Systems. We consider the problems of studying the metrology models and measuring the heat dissipation in such houses trying to apply network and software achievements as well as the new types of devices with improved characteristics.

  16. Validation of virtual instrument for data analysis in metrology of time and frequency

    International Nuclear Information System (INIS)

    Jordao, Bruno; Quaresma, Daniel; Rocha, Pedro; Carvalho, Ricardo; Peixoto, Jose Guilherme

    2016-01-01

    Commercial Software (CS) for collection, analysis and plot time and frequency data plots are being increasingly used in reference laboratories worldwide. With this, it has greatly improved the results of calculations of uncertainty for these values. We propose the creation of a collection of software and data analysis using Virtual Instruments (VI) developed the Primary Laboratory Time and frequency of the National Observatory - ON and validation of this instrument. To validate the instrument developed, it made a comparative analysis between the results obtained (VI) with the results obtained by (CS) widely used in many metrology laboratories. From these results we can conclude that there was equivalence between the analyzed data. (author)

  17. Non-contact metrology of aspheric surfaces based on MWLI technology

    Science.gov (United States)

    Berger, G.; Petter, J.

    2013-09-01

    A non-contact optical scanning metrology solution measuring aspheric surfaces is presented, which is based on multi wavelength interferometry (MWLI). The technology yields high density 3D data in short measurement times (including set up time) and provides high, reproducible form measurement accuracy. It measures any asphere without restrictions in terms of spherical departures. In addition, measurement of a large variety of special optics is enabled, such as annular lenses, segmented optics, optics with diffractive steps, ground optics, optics made of opaque and transparent materials, and small and thin optics (e.g. smart phone lenses). The measurement instrument can be used under production conditions.

  18. Metrologically useful states of spin-1 Bose condensates with macroscopic magnetization

    Science.gov (United States)

    Kajtoch, Dariusz; Pawłowski, Krzysztof; Witkowska, Emilia

    2018-02-01

    We study theoretically the usefulness of spin-1 Bose condensates with macroscopic magnetization in a homogeneous magnetic field for quantum metrology. We demonstrate Heisenberg scaling of the quantum Fisher information for states in thermal equilibrium. The scaling applies to both antiferromagnetic and ferromagnetic interactions. The effect preserves as long as fluctuations of magnetization are sufficiently small. Scaling of the quantum Fisher information with the total particle number is derived within the mean-field approach in the zero-temperature limit and exactly in the high-magnetic-field limit for any temperature. The precision gain is intuitively explained owing to subtle features of the quasidistribution function in the phase space.

  19. The comparative metrological estimation of methods of emission spectral analysis for wear products in aviation oils

    Energy Technology Data Exchange (ETDEWEB)

    Alchimov, A.B.; Drobot, S.I.; Drokov, V.G.; Zarubin, V.P.; Kazmirov, A.D.; Skodaev, Y.D.; Podrezov, A.M. [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)

    1997-12-31

    The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.

  20. New reference object for metrological performance testing of industrial CT systems

    DEFF Research Database (Denmark)

    Müller, Pavel; Hiller, Jochen; Cantatore, Angela

    2012-01-01

    This paper presents a new reference object, so called “CT ball plate”, used for metrological performance testing of industrial CT systems, and discusses both the calibration procedure using a tactile coordinate measuring machine and the first results carried out using an industrial CT scanner....... This artefact can be used to determine several characteristics of the CT system like, probing errors of spheres, length measuring errors between sphere centers, measurement errors in the whole CT volume and effects in connection with image artefacts....

  1. TDCR and CIEMAT/NIST liquid scintillation methods applied to the radionuclide metrology

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Paulo A.L. da; Silva, Carlos J. da; Iwahara, Akira; Loureiro, Jamir S.; Oliveira, Antonio E. de; Tauhata, Luiz, E-mail: palcruz@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Lopes, Ricardo T. [Coordenacao de Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    In this work are presented TDCR and CIEMAT/NIST methods of liquid scintillation implemented in National Institutes of Metrology for activity standardization of radionuclides which decay by beta emission and electron capture. The computer codes to calculate the detection efficiency take into account: decay schemes, beta decay theory, quenching parameter evaluation, Poisson statistic model and Monte Carlo simulation for photon and particle interactions in the detection system. Measurements were performed for {sup 3}H, {sup 14}C, {sup 99}Tc pure beta emitters in a large energy range, and {sup 68}Ge/{sup 68}Ga which decay by electron capture and positron emission, with uncertainties smaller than 1% (k = 1). (author)

  2. The metrology of polar measurement experiments: Application to positioning of DEMON Experimental Arrangement

    International Nuclear Information System (INIS)

    Beunard, Remy

    1998-05-01

    A modular neutron detector, named DEMON, was developed by four laboratories (from Caen, Strasbourg, Brussels and Louvain) to determine accurately the energy and direction of emission of the neutrons. The 99 constituent detectors are formed of liquid scintillator tanks 'viewed' by photomultipliers. The objective of this work was to establish a methodology of detector positioning based on the three-dimensional metrology polar measurements by means of an electronic tacheometer located at the level of the target position. The first part of the paper deals with the geometrical positioning of the detection system while the second part describes the concept of different functions of the programme

  3. Infrared differential interference contrast microscopy for 3D interconnect overlay metrology.

    Science.gov (United States)

    Ku, Yi-sha; Shyu, Deh-Ming; Lin, Yeou-Sung; Cho, Chia-Hung

    2013-08-12

    One of the main challenges for 3D interconnect metrology of bonded wafers is measuring through opaque silicon wafers using conventional optical microscopy. We demonstrate here the use infrared microscopy, enhanced by implementing the differential interference contrast (DIC) technique, to measure the wafer bonding overlay. A pair of two dimensional symmetric overlay marks were processed at both the front and back sides of thinned wafers to evaluate the bonding overlay. A self-developed analysis algorithm and theoretical fitting model was used to map the overlay error between the bonded wafers and the interconnect structures. The measurement accuracy was found to be better than 1.0 micron.

  4. Performance-based gear metrology kinematic, transmission, error computation and diagnosis

    CERN Document Server

    Mark, William D

    2012-01-01

    A mathematically rigorous explanation of how manufacturing deviations and damage on the working surfaces of gear teeth cause transmission-error contributions to vibration excitations Some gear-tooth working-surface manufacturing deviations of significant amplitude cause negligible vibration excitation and noise, yet others of minuscule amplitude are a source of significant vibration excitation and noise.   Presently available computer-numerically-controlled dedicated gear metrology equipment can measure such error patterns on a gear in a few hours in sufficient detail to enable

  5. Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition

    International Nuclear Information System (INIS)

    Ribeiro, A Silva; Costa, A Campos; Candeias, P; Martins, L Lages; Martins, A C Freitas; Ferreira, A C; Sousa, J Alves e

    2016-01-01

    Seismic testing and analysis using large infrastructures, such as shaking tables and reaction walls, is performed worldwide requiring the use of complex instrumentation systems. To assure the accuracy of these systems, conformity assessment is needed to verify the compliance with standards and applications, and the Quality Management Systems (QMS) is being increasingly applied to domains where risk analysis is critical as a way to provide a formal recognition. This paper describes an approach to the assessment of the metrological performance of seismic shake tables as part of a QMS recognition, with the analysis of a case study of LNEC Seismic shake table. (paper)

  6. Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition

    Science.gov (United States)

    Silva Ribeiro, A.; Campos Costa, A.; Candeias, P.; Sousa, J. Alves e.; Lages Martins, L.; Freitas Martins, A. C.; Ferreira, A. C.

    2016-11-01

    Seismic testing and analysis using large infrastructures, such as shaking tables and reaction walls, is performed worldwide requiring the use of complex instrumentation systems. To assure the accuracy of these systems, conformity assessment is needed to verify the compliance with standards and applications, and the Quality Management Systems (QMS) is being increasingly applied to domains where risk analysis is critical as a way to provide a formal recognition. This paper describes an approach to the assessment of the metrological performance of seismic shake tables as part of a QMS recognition, with the analysis of a case study of LNEC Seismic shake table.

  7. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of new light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area

  8. Metrology to enable high temperature erosion testing - A new european initiative

    DEFF Research Database (Denmark)

    Fry, A.T.; Gee, M.G.; Clausen, Sønnik

    2014-01-01

    an additional emission of 250,000 tonnes of CO2 over the lifetime of the plant [1]. The cause and type of solid particle erosion varies across different industries and locations in plant, for instance the particles could be volcanic ash in aero-engines, fly ash in boilers, exfoliated scale in steam turbines...... is required. However, limitations in current measurement capability within this form of test prevent the advancement. A new European initiative, METROSION, on the development of high temperature solid particle erosion testing has a primary aim to develop this metrological framework. Several key parameters...

  9. Metrological infrastructure development in the province of La Rioja (Argentina). A university cooperation experience for local development and technology transfer

    Science.gov (United States)

    Sismondi, P.; Perez, A.; Viel, J.; Rodríguez, G.

    2012-04-01

    We describe the experience of development for human resources and materials needed for the performance of calibration services, technical assessment and metrological management support for industries in the province of La Rioja (Argentine Republic). The objectives inherent to the laboratory implementation with regard to the building equipment and infrastructure destined to control the environmental variables were carried out. The metrological equipment was chosen, producing specifications and documents, completing the acquisition process which was jointly financed by the UNLaR and the project for the Improvement of Teaching of Engineering - PROMEI - promoted by the Education Ministry. This experience formed part of a project called "Network of Universities for the Development of Metrological Capabilities and Quality in their Laboratories" promoted by the Education Ministry and the Secretariat of University Policies (SPU) during the years 2009-2011. Its aim was to share the model with other universities within our country and Latin America.

  10. Editorial: 3DIM-DS 2015: Optical image processing in the context of 3D imaging, metrology, and data security

    Science.gov (United States)

    Alfalou, Ayman

    2017-02-01

    Following the first International Symposium on 3D Imaging, Metrology, and Data Security (3DIM-DS) held in Shenzhen during september 2015, this special issue gathers a series of articles dealing with the main topics discussed during this symposium. These topics highlighted the importance of studying complex data treatment systems and intensive calculations designed for high dimensional imaging and metrology for which high image quality and high transmission speed become critical issues in a number of technological applications. A second purpose was to celebrate the International Year of Light by emphasizing the important role of optics in actual information processing systems.

  11. Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications

    DEFF Research Database (Denmark)

    Hiller, Jochen; Maisl, Michael; Reindl, Leonard M

    2012-01-01

    components of a CT scanner, i.e. the x-ray tube and the flat-panel detector, are characterized. The contrast and noise transfer property of the scanner is obtained using image-processing methods based on linear systems theory. A long-term temperature measurement in the scanner cabinet has been carried out......This paper presents physical and metrological characterization measurements conducted for an industrial x-ray micro-computed tomography (CT) system. As is well known in CT metrology, many factors, e.g., in the scanning and reconstruction process, the image processing, and the 3D data evaluation...

  12. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    Science.gov (United States)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  13. Albuquerque Regional Training: The Third Seminar on Surface Metrology for the Americas May 12-13 2014

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Sophie M [Florida State Univ., Tallahassee, FL (United States); Tran, Hy D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    The Third Seminar on Surface Metrology for the Americas (SSMA) took place in Albuquerque, New Mexico May 12-13, 2014. The conference was at the Marriott Hotel, in the heart of Albuquerque Uptown, within walking distance of many fantastic restaurants. Why surface metrology? Ask Professor Chris Brown of Worcester Polytechnic Institute (WPI), the chair of the first two SSMAs in 2011 and 2012 and the chair of the ASME B46 committee on classification and designation of surface qualities, and Professor Brown responds: “Because surfaces cover everything.”

  14. Precise 3D dimensional metrology using high-resolution x-ray computed tomography (μCT)

    Science.gov (United States)

    Brunke, Oliver; Santillan, Javier; Suppes, Alexander

    2010-09-01

    Over the past decade computed tomography (CT) with conventional x-ray sources has evolved from an imaging method in medicine to a well established technology for industrial applications in fields such as material science, light metals and plastics processing, microelectronics and geology. By using modern microfocus and nanofocus X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is a technology increasingly used for metrology applications in the automotive industry. CT offers big advantages compared with conventional tactile or optical coordinate measuring machines (CMMs). This is of greater importance if complex parts with hidden or difficult accessible surfaces have to be measured. In these cases, CT offers the advantage of a high density of measurement points and a non-destructive and fast capturing of the sample's complete geometry. When using this growing technology the question arises how precise a μCT based CMM can measure as compared to conventional and established methods for coordinate measurements. For characterizing the metrological capabilities of a tactile or optical CMM, internationally standardized parameters like length measurement error and probing error are defined and used. To increase the acceptance of CT as a metrological method, our work seeks to clarify the definition and usage of parameters used in the field of metrology as these apply to CT. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. For the potential user of CT as 3D metrology tool it is important to show the measurement accuracy and repeatability on realistic samples. Following a discussion of CT metrology techniques, two samples are discussed. The first compares a measured CT Data set to CAD data using CMM data as a standard for comparison of results. The second data second realistic data set will compare the results of applying both the CMM method of

  15. Forum metrology 2009: control of optics, targets and optical analyzers; Forum metrologie 2009: controle des optiques, cibles et analyseurs optiques

    Energy Technology Data Exchange (ETDEWEB)

    Desenne, D.; Andre, R.

    2010-07-01

    The 1. 'Forum Metrologie' of the CEA/DAM has been held in the 'Institut Laser et Plasma' on the December 9, 2009, close to the 'Centre d'etudes Scientifiques et Techniques d'Aquitaine'. It has been set up by the 'Departement Lasers de Puissance'. The chosen thematic was the metrology around laser experiments, with a special focus on the metrology of the dedicated optics, targets and optical analysers. The talks have shown the progress and difficulties in each of these fields. (authors)

  16. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Czech Academy of Sciences Publication Activity Database

    Řeřucha, Šimon; Yacoot, A.; Pham, Minh Tuan; Čížek, Martin; Hucl, Václav; Lazar, Josef; Číp, Ondřej

    2017-01-01

    Roč. 28, č. 4 (2017), s. 1-11, č. článku 045204. ISSN 0957-0233 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : optical metrology * DBR laser diode * frequency stabilization * laser interferometry * dimensional metrology * iodine stabilization * displacement measurement Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.585, year: 2016

  17. Design, development and metrological characterization of a low capacity precision industrial force transducer.

    Science.gov (United States)

    Kumar, Harish; Sharma, Chitra; Kumar, Anil; Arora, P K; Kumar, S

    2015-09-01

    The paper discusses the development of the ring shaped force transducers for measurement of force in lower capacity to meet the industrial requirements with the increasing technological developments. A 50 N ring shaped force transducer for tension mode has been developed by studying the analytical and computational methods. The force transducer developed has been metrologically studied according to the calibration procedure based on the standard ISO 376 and uncertainty of measurement of the force transducer is found to be±0.10% (k=2), while taking into account the relative uncertainty contribution due to necessary factors like repeatability, reproducibility, zero offset, interpolation, resolution and reversibility. The force transducer developed may further be studied for improvement of metrological performance and may suitably be developed for other lower capacities like 10 N, 20 N etc. The force transducer developed offers very economical alternative of complex shaped force transducers with simple design and manufacturing features. The force transducer developed may be proved very helpful in providing traceability to the user industries and calibration laboratories in the lower range of force measurement and serve as force transfer standard. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. SEM metrology on bit patterned media nanoimprint template: issues and improvements

    Science.gov (United States)

    Hwu, Justin J.; Babin, Sergey; Yushmanov, Peter

    2012-03-01

    Critical dimension measurement is the most essential metrology needed in nanofabrication processes and the practice is most commonly executed using SEMs for its flexibility in sampling, imaging, and data processing. In bit patterned media process development, nanoimprint lithography (NIL) is used for template replication and media fabrication. SEM imaging on templates provide not only individual dot size, but also information for dot size distribution, the location of dots, pitch and array alignment quality, etc. It is very important to know the SEM measurement limit since the feature nominal size is less than 20 nm and the dot feature size and other metrics will relate to the final media performance. In our work an analytical SEM was used. We performed and compared two imaging analysis approaches for metrology information. The SEM beam was characterized using BEAMETR test sample and software for proper beam condition setup. A series of images obtained on a 27 nm nominal pitch dot array patterns were analyzed by conventional brightness intensity threshold method and physical model based analysis using myCD software. Through comparison we identified the issues with threshold method and the strength of using model based analysis for its improvement in feature size and pitch measurement uncertainty and accuracy. TEM cross sections were performed as accuracy reference for better understanding the source of measurement accuracy deviation.

  19. Metrological challenges for measurements of key climatological observables, Part 4: Atmospheric relative humidity

    Science.gov (United States)

    Lovell-Smith, J W; Feistel, R; Harvey, A H; Hellmuth, O; Bell, S A; Heinonen, M; Cooper, J R

    2016-01-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest “greenhouse” gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, (BIPM), in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for this long standing metrological problem, such as are suggested here. PMID:26877551

  20. On Building Materials and Metrology of Khazar-Alan Fortified Sites in the Don River Basin

    Directory of Open Access Journals (Sweden)

    Afanasiev Gennady Ye.

    2012-06-01

    Full Text Available The question related to the origins of the of the Saltovo-Mayaki culture architectural traditions embodied in the Khazar-Alan fortresses of the Don basin is raised in the article. According to the author, the emergence of brick architecture in Khazaria is connected with the activity of the masters from Byzantine Cherson (Chersonese and Asian Bosporus. The study of the parameters of the bricks from the wall ruins of the Mayaki fortified settlement site makes it possible to conclude that the fortress had been built by specialists who were well acquainted with Byzantine metrology and Byzantine architectural traditions. Metrological and chronological characteristics of Khazar-Alan fortified settlement sites gives grounds to associate their construction with the information from Byzantine sources on the construction of Sarkel fortress by Byzantine specialists. It corresponded to the interests of both Byzantium and Khazaria in connection with the general political situation between the Khazar Khaganate, the Byzantine Empire, Alania, Old Rus and the Arab Caliphate in 30-50s of the 9th century.

  1. Metrological challenges for measurements of key climatological observables. Part 3: seawater pH

    Science.gov (United States)

    Dickson, A. G.; Camões, M. F.; Spitzer, P.; Fisicaro, P.; Stoica, D.; Pawlowicz, R.; Feistel, R.

    2016-02-01

    Water dissolves many substances with which it comes into contact, leading to a variety of aqueous solutions ranging from simple and dilute to complex and highly concentrated. Of the multiple chemical species present in these solutions, the hydrogen ion, H+, stands out in importance due to its relevance to a variety of chemical reactions and equilibria that take place in aquatic systems. This importance, and the fact that its presence can be assessed by reliable and inexpensive procedures, are the reasons why pH is perhaps the most measured chemical parameter. In this paper, while examining climatologically relevant ocean pH, we note fundamental problems in the definition of this key observable, and its lack of secure foundation on the International System of Units, the SI. The metrological history of seawater pH is reviewed, difficulties arising from its current definition and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent TEOS-10 seawater standard. It is concluded that the International Bureau of Weights and Measures (BIPM), in cooperation with the International Association for the Properties of Water and Steam (IAPWS), along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems.

  2. Metrological legal frame in the field of the photon dosimetry of radiotherapy in Cuba

    International Nuclear Information System (INIS)

    Walwyn S, G.; Gutierrez L, S.; Gonzalez R, N.

    2006-01-01

    The Clinical Dosimetry in the planning of the doses to administer to patients under radiant treatment is of great importance. At the moment the clinical dosemeters its are manufactured with a high technology but errors of production or manipulation cannot be discarded that lead to errors in this planning. It also exists, a group of metrological and of operation parameters that are not checked in a routine calibration, and for those that are checked, legal base that restricts its use in cases of bad operation doesn't exist. This motivated to the Cuban standard elaboration NC 352:2005, for the verification of reference dosemeters of radiotherapy, process that trafficked for an exhaustive search and study of standards and international technical reports, selecting as base document, the standard IEC 60731:1997, for essays of approval of model of clinical dosemeters used in radiotherapy. The present article shows the main technical aspects considered and the requirements and verification methods for the declaration of aptitude of the dosemeters. This document constitutes the scientific base for the implementation from a verification service to national level and an important contribution to the standardization of the metrology of ionizing radiations of Cuba. (Author)

  3. Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Baker, Michael Sean; Crowson, Douglas A.; Mitchell, John Anthony; Moore, Nathan W.

    2009-10-01

    Progress in MEMS fabrication has enabled a wide variety of force and displacement sensing devices to be constructed. One device under intense development at Sandia is a passive shock switch, described elsewhere (Mitchell 2008). A goal of all MEMS devices, including the shock switch, is to achieve a high degree of reliability. This, in turn, requires systematic methods for validating device performance during each iteration of design. Once a design is finalized, suitable tools are needed to provide quality assurance for manufactured devices. To ensure device performance, measurements on these devices must be traceable to NIST standards. In addition, accurate metrology of MEMS components is needed to validate mechanical models that are used to design devices to accelerate development and meet emerging needs. Progress towards a NIST-traceable calibration method is described for a next-generation, 2D Interfacial Force Microscope (IFM) for applications in MEMS metrology and qualification. Discussed are the results of screening several suitable calibration methods and the known sources of uncertainty in each method.

  4. Metrology and quality assurance for European XFEL long flat mirrors installation

    Science.gov (United States)

    Freijo Martín, Idoia; Vannoni, Maurizio; Sinn, Harald

    2017-06-01

    The European XFEL is a large-scale user facility under construction in Hamburg, Germany. It will provide a transversally fully coherent X-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 milliseconds long pulse train at 10Hz), short wavelength (down to 0.05 nm), short pulses (in the femtoseconds scale) and high average brilliance (1.6x1025 photons / s / mm2 / mrad2/ 0.1% bandwidth)1. Due to the short wavelength and high pulse energies, mirrors need to have a high-quality surface, have to be very long (1 m), and at the same time an effective cooling system has to be implemented. Matching these tight specifications and assessing them with high precision optical measurements is very challenging. The mirrors go through a complicated and long process, starting from classical polishing to deterministic polishing, ending with a special coating and a final metrology assessment inside their mechanical mounts just before the installation. The installation itself is also difficult for such big mirrors and needs special care. In this contribution we will explain how we implemented the installation process, how we used the metrology information to optimize the installation procedure and we will show some preliminary results with the first mirrors installed in the European XFEL beam transport.

  5. Mathematical modelling of the complete metrology of the PROBA-3/ASPIICS formation flying solar coronagraph

    Science.gov (United States)

    Stathopoulos, F.; Vives, S.; Damé, L.; Tsinganos, K.

    2017-11-01

    Formation flying, with ESA's mission PROBA-3, is providing the chance of creating a giant solar coronagraph in Space. The scientific payload, the solar coronagraph ASPIICS, has been selected in January 2009 [1]. The advantages of formation flying are: 1) larger dimensions for the coronagraph, which leads to better spatial resolution and lower straylight level and 2) possibility of continuous observations of the inner corona. The PROBA-3/ASPIICS mission is composed of two spacecrafts (S/Cs) at 150 meters distance, the Occulter-S/C (O-S/C) which holds the external occulter, and the Coronagraph-S/C (C-S/C) which holds the main instrument, i.e. the telescope. In addition of the scientific capabilities of the instrument, it will continuously monitor the exact position and pointing of both S/Cs in 3D space, via two additional metrology units: the Shadow Position Sensor (SPS) and the Occulter Position Sensor (OPS). In this paper we are presenting the metrology of this formation flying mission combining the outputs of the above mentioned sensors, SPS and OPS. This study has been conducted in the framework of an ESA "STARTIGER" initiative, a novel approach aimed at demonstrating the feasibility of a new and promising technology concept (in our case formation flying applied to solar coronagraphy, cf. [2, 3]) on a short time scale (six months study).

  6. Performance study of dimensionality reduction methods for metrology of nonrigid mechanical parts

    Directory of Open Access Journals (Sweden)

    Radvar-Esfahlan H.

    2013-01-01

    Full Text Available The geometric measurement of parts using a coordinate measuring machine (CMM has been generally adapted to the advanced automotive and aerospace industries. However, for the geometric inspection of deformable free-form parts, special inspection fixtures, in combination with CMM’s and/or optical data acquisition devices (scanners, are used. As a result, the geometric inspection of flexible parts is a consuming process in terms of time and money. The general procedure to eliminate the use of inspection fixtures based on distance preserving nonlinear dimensionality reduction (NLDR technique was developed in our previous works. We sought out geometric properties that are invariant to inelastic deformations. In this paper we will only present a systematic comparison of some well-known dimensionality reduction techniques in order to evaluate their accuracy and potential for non-rigid metrology. We will demonstrate that even though these techniques may provide acceptable results through artificial data on certain fields like pattern recognition and machine learning, this performance cannot be extended to all real engineering metrology problems where high accuracy is needed.

  7. Metrologically Traceable Determination of the Water Content in Biopolymers: INRiM Activity

    Science.gov (United States)

    Rolle, F.; Beltramino, G.; Fernicola, V.; Sega, M.; Verdoja, A.

    2017-03-01

    Water content in materials is a key factor affecting many chemical and physical properties. In polymers of biological origin, it influences their stability and mechanical properties as well as their biodegradability. The present work describes the activity carried out at INRiM on the determination of water content in samples of a commercial starch-derived biopolymer widely used in shopping bags (Mater-Bi^{circledR }). Its water content, together with temperature, is the most influencing parameter affecting its biodegradability, because of the considerable impact on the microbial activity which is responsible for the biopolymer degradation in the environment. The main scope of the work was the establishment of a metrologically traceable procedure for the determination of water content by using two electrochemical methods, namely coulometric Karl Fischer (cKF) titration and evolved water vapour (EWV) analysis. The obtained results are presented. The most significant operational parameters were considered, and a particular attention was devoted to the establishment of metrological traceability of the measurement results by using appropriate calibration procedures, calibrated standards and suitable certified reference materials. Sample homogeneity and oven-drying temperature were found to be the most important influence quantities in the whole water content measurement process. The results of the two methods were in agreement within the stated uncertainties. Further development is foreseen for the application of cKF and EWV to other polymers.

  8. Metrology of the radon in air volume activity at the italian radon reference chamber

    International Nuclear Information System (INIS)

    Sciocchetti, G.; Cotellessa, G.; Soldano, E.; Pagliari, M.

    2006-01-01

    The approach of the Italian National Institute of Ionising Radiations (I.N.M.R.I.-ENEA) on radon metrology has been based on a complete and integrated system which can be used to calibrate the main types of 222 Rn in air measuring instruments with international traceability. The Italian radon reference chamber is a research and calibration facility developed at the Casaccia Research Center in Roma. This facility has an inner volume of one m 3 . The wall is a cylindrical stainless steel vessel coupled with an automated climate apparatus operated both at steady and dynamic conditions. The control and data acquisition equipment is based on Radotron system, developed to automate the multitasking management of different sets of radon monitors and climatic sensors. A novel approach for testing passive radon monitors with an alpha track detector exposure standard has been developed. It is based on the direct measurement of radon exposure with a set of passive integrating monitors based on the new ENEA piston radon exposure meter. This paper describes the methodological approach on radon metrology, the status-of-art of experimental apparatus and the standardization procedures. (authors)

  9. Hybrid metrology co-optimization of critical dimension scanning electron microscope and optical critical dimension

    Science.gov (United States)

    Vaid, Alok; Osorio, Carmen; Tsai, Jamie; Bozdog, Cornel; Sendelbach, Matthew; Grubner, Eyal; Koret, Roy; Wolfling, Shay

    2014-10-01

    Work using the concept of a co-optimization-based metrology hybridization is presented. Hybrid co-optimization involves the combination of data from two or more metrology tools such that the output of each tool is improved by the output of the other tool. Here, the image analysis parameters from a critical dimension scanning electron microscope (CD-SEM) are modulated by the profile information from optical critical dimension (OCD, or scatterometry), while the OCD-extracted profile is concurrently optimized through addition of the CD-SEM CD results. The test vehicle utilized is the 14-nm technology node-based FinFET high-k/interfacial layer (HK/IL) structure. When compared with the nonhybrid approach, the correlation to reference measurements of the HK layer thickness measurement using hybrid co-optimization resulted in an improvement in relative accuracy of about 40% and in R2 from 0.81 to 0.91. The measurement of the IL thickness also shows an improvement with hybrid co-optimization: better matching to the expected conditions as well as data that contain less noise.

  10. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    Science.gov (United States)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  11. Lightweight UAV with on-board photogrammetry and single-frequency GPS positioning for metrology applications

    Science.gov (United States)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.; Martin, O.

    2017-05-01

    This article presents a coupled system consisting of a single-frequency GPS receiver and a light photogrammetric quality camera embedded in an Unmanned Aerial Vehicle (UAV). The aim is to produce high quality data that can be used in metrology applications. The issue of Integrated Sensor Orientation (ISO) of camera poses using only GPS measurements is presented and discussed. The accuracy reached by our system based on sensors developed at the French Mapping Agency (IGN) Opto-Electronics, Instrumentation and Metrology Laboratory (LOEMI) is qualified. These sensors are specially designed for close-range aerial image acquisition with a UAV. Lever-arm calibration and time synchronization are explained and performed to reach maximum accuracy. All processing steps are detailed from data acquisition to quality control of final products. We show that an accuracy of a few centimeters can be reached with this system which uses low-cost UAV and GPS module coupled with the IGN-LOEMI home-made camera.

  12. Metrology test object for dimensional verification in additive manufacturing of metals for biomedical applications.

    Science.gov (United States)

    Teeter, Matthew G; Kopacz, Alexander J; Nikolov, Hristo N; Holdsworth, David W

    2015-01-01

    Additive manufacturing continues to increase in popularity and is being used in applications such as biomaterial ingrowth that requires sub-millimeter dimensional accuracy. The purpose of this study was to design a metrology test object for determining the capabilities of additive manufacturing systems to produce common objects, with a focus on those relevant to medical applications. The test object was designed with a variety of features of varying dimensions, including holes, cylinders, rectangles, gaps, and lattices. The object was built using selective laser melting, and the produced dimensions were compared to the target dimensions. Location of the test objects on the build plate did not affect dimensions. Features with dimensions less than 0.300 mm did not build or were overbuilt to a minimum of 0.300 mm. The mean difference between target and measured dimensions was less than 0.100 mm in all cases. The test object is applicable to multiple systems and materials, tests the effect of location on the build, uses a minimum of material, and can be measured with a variety of efficient metrology tools (including measuring microscopes and micro-CT). Investigators can use this test object to determine the limits of systems and adjust build parameters to achieve maximum accuracy. © IMechE 2014.

  13. Process and system - A dual definition, revisited with consequences in metrology

    Science.gov (United States)

    Ruhm, K. H.

    2010-07-01

    Lets assert that metrology life could be easier scientifically as well as technologically, if we, intentionally, would make an explicit distinction between two outstanding domains, namely the given, really existent domain of processes and the just virtually existent domain of systems, the latter of which is designed and used by the human mind. The abstract domain of models, by which we map the manifold reality of processes, is itself part of the domain of systems. Models support comprehension and communication, although they are normally extreme simplifications of properties and behaviour of a concrete reality. So, systems and signals represent processes and quantities, which are described by means of Signal and System Theory as well as by Stochastics and Statistics. The following presentation of this new, demanding and somehow irritating definition of the terms process and system as a dual pair is unusual indeed, but it opens the door widely to a better and more consistent discussion and understanding of manifold scientific tools in many areas. Metrology [4] is one of the important fields of concern due to many reasons: One group of the soft and hard links between the domain of processes and the domain of systems is realised by concepts of measurement science on the one hand and by instrumental tools of measurement technology on the other hand.

  14. Metrological challenges for measurements of key climatological observables. Part 4: atmospheric relative humidity

    Science.gov (United States)

    Lovell-Smith, J. W.; Feistel, R.; Harvey, A. H.; Hellmuth, O.; Bell, S. A.; Heinonen, M.; Cooper, J. R.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures (BIPM), in cooperation with the International Association for the Properties of Water and Steam (IAPWS), along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions, such as are suggested here, for what are long-standing metrological problems.

  15. Complex metrology on 3D structures using multi-channel OCD

    Science.gov (United States)

    Kagalwala, Taher; Mahendrakar, Sridhar; Vaid, Alok; Isbester, Paul K.; Cepler, Aron; Kang, Charles; Yellai, Naren; Sendelbach, Matthew; Ko, Mihael; Ilgayev, Ovadia; Katz, Yinon; Tamam, Lilach; Osherov, Ilya

    2017-03-01

    Device scaling has not only driven the use of measurements on more complex structures, in terms of geometry, materials, and tighter ground rules, but also the need to move away from non-patterned measurement sites to patterned ones. This is especially of concern for very thin film layers that have a high thickness dependence on structure geometry or wafer pattern factor. Although 2-dimensional (2D) sites are often found to be sufficient for process monitoring and control of very thin films, sometimes 3D sites are required to further simulate structures within the device. The measurement of film thicknesses only a few atoms thick on complex 3D sites, however, are very challenging. Apart from measuring thin films on 3D sites, there is also a critical need to measure parameters on 3D sites, which are weak and less sensitive for OCD (Optical Critical Dimension) metrology, with high accuracy and precision. Thus, state-ofthe-art methods are needed to address such metrology challenges. This work introduces the concept of Enhanced OCD which uses various methods to improve the sensitivity and reduce correlations for weak parameters in a complex measurement. This work also describes how more channels of information, when used correctly, can improve the precision and accuracy of weak, non-sensitive or complex parameters of interest.

  16. Mass metrology

    CERN Document Server

    Gupta, S V

    2012-01-01

    This book presents the practical aspects of mass measurements. Concepts of gravitational, inertial and conventional mass and details of the variation of acceleration of gravity are described. The Metric Convention and International Prototype Kilogram and BIPM standards are described. The effect of change of gravity on the indication of electronic balances is derived with respect of latitude, altitude and earth topography. The classification of weights by OIML is discussed. Maximum permissible errors in different categories of weights prescribed by national and international organizations are p

  17. Optical metrology

    CERN Document Server

    Gåsvik, Kjell J

    2003-01-01

    New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bibre-Bragg sensors, and temporal phase unwrapping.* New introductory sections to all chapters.* Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry.* Thorough coverage of the CCD camera.

  18. X-diffraction technique applied for nano system metrology; Tecnica de difracao de raios X aplicada na metrologia de nanossistemas

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A., E-mail: okuznetsov@inmetro.gov.b [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMAT/INMETRO), Duque de Caxias, RJ (Brazil). Div. de Metrologia de Materiais

    2009-07-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  19. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  20. Characterization and analysis of micro channels and sub-micron surface roughness of injection moulded microfluidic systems using optical metrology

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2012-01-01

    Precision injection moulding of miniaturized products with micro features such as channels for microfluidic applications poses the greatest challenges in terms of tooling technology and process optimization. The injection moulding process window of polypropylene was validated using a metrological...... temperature, injection speed)....

  1. High-reflection microprismatic material as a base for passive reference marks in machine vision metrology applications

    NARCIS (Netherlands)

    Trushkina, Anna V.; Vasilev, Aleksandr S.; Serikova, Mariya G.; Anisimov, A.; Beyerer, J.; Puente León, F.

    2017-01-01

    © 2017 SPIE. In this work it is shown that high-intensity microprismatic tapes have a potential to be used as a good substrate for bright and cheap fiducial marks in machine vision metrology applications. The drawback of the tapes is that they have technological netting pattern distributed across

  2. Nuclear Technology. Course 27: Metrology. Module 27-4, Angle Measurement Instruments, Optical Projections and Surface Texture Gages.

    Science.gov (United States)

    Selleck, Ben; Espy, John

    This fourth in a series of eight modules for a course titled Metrology describes the universal bevel protractor and the sine bar, the engineering microscope and optical projector, and several types of surface texture gages. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…

  3. Nondestructive testing of PWR type fuel rods by eddy currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1985-02-01

    The Saclay Reactor Department has developed a nondestructive test bench, now installed above channel 1 of the OSIRIS reactor. As part of investigations into the dynamics of PWR fuel degradation, a number of fuel rods underwent metrological and eddy current inspection, after irradiation [fr

  4. Phase characterization of the reflection on an extreme UV multilayer: comparison between attosecond metrology and standing wave measurements

    NARCIS (Netherlands)

    Loch, R. A.; Dubrouil, A.; Sobierajski, R.; Descamps, D.; Fabre, B.; Lidon, P.; van de Kruijs, R. W. E.; Boekhout, F.; Gullikson, E.; Gaudin, J.; E. Louis,; F. Bijkerk,; Mevel, E.; Petit, S.; Constant, E.; Mairesse, Y.

    2011-01-01

    We characterize the phase shift induced by reflection on a multilayer mirror in the extreme UV range (80-93 eV) using two techniques: one based on high order harmonic generation and attosecond metrology (reconstruction of attosecond beating by interference of two-photon transitions), and a second

  5. Understanding cancer staging

    Science.gov (United States)

    ... detailed information about the cancer stage. TNM Staging System The most common system for staging cancer in the form of solid tumor is the TNM system. Most providers and cancer centers use it to stage ...

  6. The dissemination in France of the units used in ionizing radiation metrology

    International Nuclear Information System (INIS)

    Guiho, J.P.; Simoen, J.P.

    1978-01-01

    After reviewing the system of metrology in France the authors describe the working of the ionizing radiation calibration chain. Emphasis is laid on the procedures used for the transfer of the units of exposure and absorbed dose. Such transfers are carried out either by direct comparison with a standard kept at the calibration centre, or by special procedures involving the use of transfer dose meters or of radioactive sources calibrated and supplied by the primary laboratory or the calibration centre. An analysis of the steps and of the accumulation of errors is presented for each dosimetric quantity considered. The authors make a preliminary assessment of the operation of the French ionizing radiation calibration chain. (author)

  7. Alignment of in-vessel components by metrology defined adaptive machining

    International Nuclear Information System (INIS)

    Wilson, David; Bernard, Nathanaël; Mariani, Antony

    2015-01-01

    Highlights: • Advanced metrology techniques developed for large volume high density in-vessel surveys. • Virtual alignment process employed to optimize the alignment of 440 blanket modules. • Auto-geometry construct, from survey data, using CAD proximity detection and orientation logic. • HMI developed to relocate blanket modules if customization limits on interfaces are exceeded. • Data export format derived for Catia parametric models, defining customization requirements. - Abstract: The assembly of ITER will involve the precise and accurate alignment of a large number of components and assemblies in areas where access will often be severely constrained and where process efficiency will be critical. One such area is the inside of the vacuum vessel where several thousand components shall be custom machined to provide the alignment references for in-vessel systems. The paper gives an overview of the process that will be employed; to survey the interfaces for approximately 3500 components then define and execute the customization process.

  8. Alignment of in-vessel components by metrology defined adaptive machining

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David [ITER Organization, Route de Vinon sur Verdon, CS90 046, St Paul-lez-Durance (France); Bernard, Nathanaël [G2Métric, Launaguet 31140 (France); Mariani, Antony [Spatial Alignment Ltd., Witney (United Kingdom)

    2015-10-15

    Highlights: • Advanced metrology techniques developed for large volume high density in-vessel surveys. • Virtual alignment process employed to optimize the alignment of 440 blanket modules. • Auto-geometry construct, from survey data, using CAD proximity detection and orientation logic. • HMI developed to relocate blanket modules if customization limits on interfaces are exceeded. • Data export format derived for Catia parametric models, defining customization requirements. - Abstract: The assembly of ITER will involve the precise and accurate alignment of a large number of components and assemblies in areas where access will often be severely constrained and where process efficiency will be critical. One such area is the inside of the vacuum vessel where several thousand components shall be custom machined to provide the alignment references for in-vessel systems. The paper gives an overview of the process that will be employed; to survey the interfaces for approximately 3500 components then define and execute the customization process.

  9. Development of a CMOS Route for Electron Pumps to Be Used in Quantum Metrology

    Directory of Open Access Journals (Sweden)

    Sylvain Barraud

    2016-03-01

    Full Text Available The definition of the ampere will change in the next few years. This electrical base unit of the S.I. will be redefined by fixing the value of the charge quantum, i.e., the electron charge e. As a result electron pumps will become the natural device for the mise en pratique of this new ampere. In the last years semiconductor electron pumps have emerged as the most advanced systems, both in terms of speed and precision. Another figure of merit for a metrological device would be its ability to be predictible and shared. For that reason a mature fabrication process would certainly be an advantage. In this article we present electron pumps made within a CMOS (Complementary Metal Oxide Semiconductor research facility on 300 mm silicon-on-insulator wafers, using advanced microelectronics tools and processes. We give an overview of the whole integration scheme and emphasize the fabrication steps which differ from the normal CMOS route.

  10. Quantum metrology in open systems: dissipative Cramér-Rao bound.

    Science.gov (United States)

    Alipour, S; Mehboudi, M; Rezakhani, A T

    2014-03-28

    Estimation of parameters is a pivotal task throughout science and technology. The quantum Cramér-Rao bound provides a fundamental limit of precision allowed to be achieved under quantum theory. For closed quantum systems, it has been shown how the estimation precision depends on the underlying dynamics. Here, we propose a general formulation for metrology scenarios in open quantum systems, aiming to relate the precision more directly to properties of the underlying dynamics. This feature may be employed to enhance an estimation precision, e.g., by quantum control techniques. Specifically, we derive a Cramér-Rao bound for a fairly large class of open system dynamics, which is governed by a (time-dependent) dynamical semigroup map. We illustrate the utility of this scenario through three examples.

  11. Research on rapid agile metrology for manufacturing based on real-time multitask operating system

    Science.gov (United States)

    Chen, Jihong; Song, Zhen; Yang, Daoshan; Zhou, Ji; Buckley, Shawn

    1996-10-01

    Rapid agile metrology for manufacturing (RAMM) using multiple non-contact sensors is likely to remain a growing trend in manufacturing. High speed inspecting systems for manufacturing is characterized by multitasks implemented in parallel and real-time events which occur simultaneously. In this paper, we introduce a real-time operating system into RAMM research. A general task model of a class-based object- oriented technology is proposed. A general multitask frame of a typical RAMM system using OPNet is discussed. Finally, an application example of a machine which inspects parts held on a carrier strip is described. With RTOS and OPNet, this machine can measure two dimensions of the contacts at 300 parts/second.

  12. Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Purwins, Hendrik; Barak, Bernd; Nagi, Ahmed

    2014-01-01

    predictive variable alone, the 3 most predictive variables, an expert selection, and full set. The following regression methods are compared: Simple Linear Regression, Multiple Linear Regression, Partial Least Square Regression, and Ridge Linear Regression utilizing the Partial Least Square Estimate......The quality of wafer production in semiconductor manufacturing cannot always be monitored by a costly physical measurement. Instead of measuring a quantity directly, it can be predicted by a regression method (Virtual Metrology). In this paper, a survey on regression methods is given to predict...... algorithm, and Support Vector Regression (SVR). On a test set, SVR outperforms the other methods by a large margin, being more robust towards changes in the production conditions. The method performs better on high-dimensional multivariate input data than on the most predictive variables alone. Process...

  13. Metrology for the development of high-energy x-ray optics

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Speegle, Chet; Smithers, Martin

    2005-08-01

    We are developing grazing-incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The instrument will have 200 cm2 effective collecting area at 40 keV and an angular resolution goal of 15 arcsec. The HERO mirror shells are fabricated using electroformed-nickel replication off super-polished cylindrical mandrels. The angular resolution goal puts stringent requirements on the quality of the x-ray mirrors and, hence, on mandrel quality. We used metrology in an iterative approach to monitor and refine the x-ray mirror fabrication process. Comparison of axial slope measurements of the mandrel and the shells will be presented together with results from x-ray tests.

  14. Metrology for the Development of High Energy X-Ray Optics

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Dpeegle, Chet

    2005-01-01

    We are developing grazing incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The instrument will have 200 sq cm effective collecting area at 40 keV and an angular resolution goal of 15 arcsec. The HERO mirror shells are fabricated using electroform-nickel replication off super-polished cylindrical mandrels. The angular resolution goal puts stringent requirements on the quality of x-ray mirrors and, hence, on mandrel quality. We used metrology in an iterative approach to monitor and refine the x- ray mirror fabrication process. Comparison of surface figure and microroughness measurements of the mandrel and the shells will be presented together with results from x-ray tests.

  15. The Measuring Position Designed to Determine the Metrological Properties of air Gauges

    Directory of Open Access Journals (Sweden)

    Michał Jakubowicz

    2017-12-01

    Full Text Available This article describes the measurement system designed in order to determine the metrological properties of air gauges. The said scientific study makes it possible to determine the static pk = f(s and flow qv = f(s characteristics. It consists of three modules: a mechanical module, a control and register data module and a special software module. Apart from the possibility of determining the static and flow characteristics, the presented study makes it possible to measure the temperature in the duct that supplies the compressed air to the transducer as well as in the measuring chamber. The above-mentioned measurement system makes it possible to determine the pressure applied on the surface measured by an air stream coming from the nozzle. Apart from a detailed description of a test station and the software, the article also contains sample results of tests performed on air gauges.

  16. Metrological Characterization of the Vickers Hardness Primary Standard Machine Established at CSIR-NPL

    Science.gov (United States)

    Titus, S. Seelakumar; Vikram; Girish; Jain, Sushil Kumar

    2017-05-01

    CSIR-National Physical Laboratory (CSIR-NPL) is the National Metrological Institute (NMI) of India, which has the mandate for the realization of SI units of measurements and dissemination of the same to the user organizations. CSIR-NPL has established a hardness standardizing machine for realizing the Vickers hardness scale as per ISO 6507-3 standard for providing national traceability in hardness measurement. Direct verification of the machine has been carried out by measuring the uncertainty in the generated force, the indenter geometry and the indentation measuring system. From these measurements, it is found that the machine exhibits a calibration and measurement capability (CMC) of ±1.5% for HV1-HV3 scales and ±1.0% for HV5-HV50 scales and ±0.8% for HV100 scale.

  17. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of square) and height error of scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  18. Metrology and modulation in mosques: an approach through four cases from Córdoba

    Directory of Open Access Journals (Sweden)

    Carmen González Gutiérrez

    2017-12-01

    Full Text Available In this paper we suggest an approach to the structure and architectural design of mosques in Córdoba through the metrological and modulation analysis of some of them, excavated in the former capital of al- Andalus. Through a careful study of courtyards and prayer rooms’ dimensions, we sought to determine the metric units applied in the design and execution of these buildings, how they were constructed, or if there were general proportions that regulated the design of each of its parts. The application of this methodology to specific examples has allowed us to recognize a typology for caliphal mosques in Córdoba, which confirms the chronology of certain buildings and suggests details regarding their internal organization. It is also related to the constructive rhythms detected in the major mosque, and allows hypotheses of reconstruction of some complexes that were not fully excavated.

  19. Proficiency testing in the light of a new rationale in metrology

    DEFF Research Database (Denmark)

    Heydorn, Kaj

    2008-01-01

    The novel proposed definition of measurement result in the international metrology vocabulary requires a revision of standards and guidelines for proficiency testing (PT), and a new approach to processing proficiency data is needed to test the ability of laboratories to present not only unbiased...... quantity values, but reliable estimates of their uncertainty. Hence, an accepted reference value with the smallest possible uncertainty is needed to ascertain the proficiency of laboratories reporting results with lower than average uncertainty. A strategy based on the T-statistic is proposed leading...... to an accepted reference value that fully reflects the uncertainties reported by participants in a PT scheme and permits calculation of En-numbers to distinguish whether or not measurement results are consistent with the accepted definition of the measurand. The strategy is applied to PT data from a recent...

  20. Design and implementation of a prototype for metrology with UVED and photodiodes

    International Nuclear Information System (INIS)

    Hidalgo Padilla, Rodney Ernesto

    2013-01-01

    A test system was developed for measuring radiant flux produced by a UVED, using photodiodes with the aim of improving metrology systems used in LAFTLA (Laboratorio de Fotonica y Tecnologia Laser, Universidad de Costa Rica). The system has been used to calibrate three teams of measurement. The calibration procedure has been to measure the radiation of UVED using the devices. Each device has repeated the measurement process, with a pattern, comparing the values obtained and taking into account the differences between areas of the sensors. Problems with the maximum capacity of measuring equipment were solved, in some cases this capacity was less than the required. Some sources of error have been identified, for example, the differences between the theoretical and actual values of the specifications. (author) [es

  1. UPWIND Metrology, Deliverable D 1A2.1, List of measurement Parameters

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    uncertainty analysis methods. This report presents a state of the art assessment to identify all relevant measurands. The re-quired accuracies and required sampling frequencies are stated from the perspective of the users of the data (the other work packages in UPWIND). The interaction with the other work......The development of wind energy is hindered by measurement problems: in particular the fluctu-ating wind speed introduces large uncertainties. For example: to confirm a theoretical improve-ment of around 5% in production of a new design by field experiments is very hard to almost impossible. As long...... as convincing field tests have not confirmed the actual improvement, the industry will not invest much to change the turbine design. This is an example that clarifies why the development of wind energy is hindered by metrology problems (measurement problems). Other examples are in the fields of: - Warranty...

  2. Achieving the Heisenberg limit in quantum metrology using quantum error correction.

    Science.gov (United States)

    Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang

    2018-01-08

    Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

  3. Metrological certification of aerosol and iodine channels in instrumentation for radiation monitoring at nuclear power plants

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Ivanova, A.P.

    1988-01-01

    The method for converting the value of a volume activity unit of radioactive aerosols using the state special standard for operating measurement devices by means of aerosol sources is suggested. The sources are aerosol samples selected for a filter by means of the proper type of a detection unit or a radiometer and, thus, providing full coincidence of measurement geometry of aerosol sample activity during radiation monitoring. Application of aerosol samples permits to solve the problem of metrological certification and verification of aerosol and iodine channels of radiation safety monitoring systems under operating conditions without their dismantling and to establish the unity and correctness in the field of measurement of volume activity of 131 I aerosols at NPP

  4. Metrological data and risk assessment in France during the Chernobyl accident. Historical statement

    International Nuclear Information System (INIS)

    Galle, P.; Paulin, R.; Coursaget, J.

    2003-01-01

    Metrological data and risk assessment in France during the Chernobyl accident. Historical statement. The authors indicate the origin of the data used by the French Public Health Authority in 1986 to estimate the risk of the radioactive fall out following the Chernobyl accident. The technical means developed in order to establish this data, and the precedent experience gained, are described. The principal results are given. The terms of the 28 May 1986 note to the Academy of Sciences by R. Latarjet, which concluded that the low level of this fallout did not justify any countermeasure, except the control of the imported food, are confirmed. Rational dispositions are required in order to improve the information of the population, referring to the Swedish model, which involves the intervention of the medical staff specialized in radio-toxicology, radio-pathology, nuclear medicine, and especially trained. To cite this article: P. Galle et al., C. R. Biologies 326 (2003). (authors)

  5. [Metrology research on biomedical engineering publications from China in recent years].

    Science.gov (United States)

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland.

  6. Metrological Characterisation of a Fast Digital Integrator for Magnetic Measurements at CERN

    CERN Document Server

    Arpaia, P; Masi, A; Spiezia, G

    2007-01-01

    A Fast Digital Integrator (FDI) was designed to satisfy new more demanding requirements of dynamic accuracy and trigger frequency in magnetic measurements based on rotating coil systems for analyzing superconducting magnets in particle accelerators. In particular, in flux measurement, a bandwidth up to 50-100 kHz and a dynamic accuracy of 10 ppm are targeted. In this paper, results of static and dynamic metrological characterization of the FDI prototype and of the Portable Digital Integrator (PDI), heavely used at CERN and in many sub-nuclear laboratories, are compared. Preliminary results show how the initial prototype of FDI is already capable of both overcoming dynamic performance of PDI and covering operating regions inaccessible before.

  7. 2008 activity report of the French metrology - Ionising radiation; Rapport d'activite 2008 de la metrologie francaise - Rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-07-01

    The activities of this section are entrusted to the Henry Becquerel national laboratory (LNE-LNHB), the national laboratory of metrology of the CEA-Saclay, and to the laboratory of dose metrology (LMDN) under the management of IRSN-Cadarache. They treat of ionizing radiations metrology in the domains of activity, photons and charged particles dosimetry, and basic data. This article summarizes the 2008 works carried out at both laboratories: international actions and comparisons, instrumentation improvements, establishment of national references. (J.S.)

  8. Surface accuracy of a large-scale compact antenna test range considering mechanism, metrology and alignment

    International Nuclear Information System (INIS)

    Zhou, Guofeng; Li, Xiaoxing; Li, Dongsheng; Luan, Jingdong; Zhao, Jinze

    2014-01-01

    A large compact range (CR) having a width of 23 m and height of 16 m that will generate a Φ15 m quiet zone is presented. The antenna consists of 30 blocks and 76 serrated reflectors. Its mechanical accuracy is reflected in two aspects: surface precision and gap precision. In addition, the root-mean-square (RMS) surface accuracy should be less than or equal to 0.075 mm for achieving the highest operating frequency of 40 GHz, and the gaps between two segments should be controlled strictly to the tolerance of 0.4 ± 0.2 mm for avoiding gap diffraction and compensating for inter-block interference due to thermal deformation. The surface accuracy in terms of mechanical structure, metrology and alignment approach is very tight. First, a high-accuracy honeycomb sandwich panel, anisotropic back structure and spatial parallel adjustment mechanism are introduced, and the error contributions of these three mechanisms are 0.03 mm, 0.01 mm and 0.005 mm, respectively. Second, a measurement network based on laser tracker metrology was established, and the RMS error of the measurement system is controlled to 0.025 mm through the optimization of the measuring stations and weighted coordinate regression. Third, an original alignment approach that divides the entire assembly into three key phases by marked point edge-constrained surface is proposed. By performing a few iterations of onsite adjustment, the reflectors were aligned in the prescribed positions, and the gap quality was controlled effectively. Finally, the on-site alignment of the large CR is introduced. The final antenna surface RMS accuracy was up to 0.054 mm, and the gaps achieved the desired design index. (paper)

  9. Opportunities for scientists to influence policy: When does radiation metrology matter in development of national policy?

    International Nuclear Information System (INIS)

    Coursey, Bert M.

    2014-01-01

    Accurate measurements of radiation and radioactivity rarely rise to the level of national policy. The things that matter most to ordinary citizens do not normally include questions of science and technology. Citizens are more often concerned with issues close to home relating to commerce, health, safety, security and the environment. When questions of confidence in measurements arise, they are first directed to the ministry that has responsibilities in that area. When the required uncertainty in field measurements challenges the capability of the regulatory authorities, the National Metrology Institute may be asked to develop transfer standards to enhance the capabilities of the ministry with the mission lead. In this paper, we will consider eight instances over the past nine decades in which questions in radiation and radionuclide metrology in the US did rise to the level that they influenced decisions on national policy. These eight examples share some common threads. Radioactivity and ionizing radiation are useful tools in many disciplines, but can often represent potential or perceived threats to health and public safety. When unforeseen applications of radiation arise, or when environmental radioactivity from natural and man-made sources presents a possible health hazard, the radiation metrologists may be called upon to provide the technical underpinning for policy development. - Highlights: • We review instances in which accurate measurements of radiation influence policy. • Heads of state rely on senior science advisors to frame policy decisions. • Metrologists support federal agencies that have mission leads in different fields. • Metrologists are called on when other agencies lack requisite expertise. • Radionuclide metrologists must recognize and accept challenges

  10. Metrology for hydrogen energy applications: a project to address normative requirements

    Science.gov (United States)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  11. PREFACE: 14th International Conference on Metrology and Properties of Engineering Surfaces (Met & Props 2013)

    Science.gov (United States)

    Fu, Wei-En

    2014-03-01

    hospitality. It is my privilege and pleasure to welcome you all to the 14th International Conference on Metrology and Properties of Engineering Surfaces here in Taipei. Tom Thomas Halmstad, 1st June 2013 Greetings from Chairman of Local Organizing CommitteeVictor Lin It is the great honor of Center for Measurement Standards (CMS), metrology group of Industrial Technology Research Institute (ITRI), to host the 14th International Conference on Metrology and Properties of Engineering Surfaces (Met & Props 2013) from 17-21 June, 2013, in Taipei, Taiwan. In collaboration with four local universities, National Taiwan University (NTU), National Cheng-Kung University (NCKU), National Taiwan University of Science and Technology (NTST) and National Tsing-Hua University (NTHU), we have spent more than one year to prepare this Conference since the approval by the International Programme Committee (IPC). With the guidance from the IPC, we are able to go through the laborious, but important, process of paper selection and review from more than 100 submissions, and also to maintain the tradition in gathering the high quality and state-of-the-art papers. Finally, more than 65 full papers are collected in the programme (oral and poster), and over 120 surface metrologists from 17 countries (or economies) will attend the Conference. As stated in the preface by Professor Thomas, this series of conferences were founded by Tom and late Professor Ken Stout in the United Kingdom more than thirty years ago. I was lucky to join Ken's research group in Birmingham, and to start my journey over surface metrology in 1989, under the financial support from ITRI. With the encouragement from Professor Liam Blunt and endeavors of my colleagues, we are able to hold the Conference first time in emerging Asia, and to ''carry on the heritage and pave the way to the future'' (a Chinese proverb) in surface metrology. Taiwan is also known as Formosa, from Portuguese Ilha Formosa, which means ''Beautiful Island

  12. Picometre and nanoradian heterodyne interferometry and its application in dilatometry and surface metrology

    International Nuclear Information System (INIS)

    Schuldt, T; Kögel, H; Spannagel, R; Braxmaier, C; Gohlke, M; Peters, A; Johann, U; Weise, D

    2012-01-01

    A high-sensitivity heterodyne interferometer implementing differential wavefront sensing for tilt measurement was developed over the last few years. With this setup, using an aluminium breadboard and compact optical mounts with a beam height of 2 cm, noise levels less than 5 pm Hz −1/2 in translation and less than 10 nrad Hz −1/2 in tilt measurement, both for frequencies above 10 −2 Hz, have been demonstrated. Here, a new, compact and ruggedized interferometer setup utilizing a baseplate made of Zerodur, a thermally and mechanically highly stable glass ceramic with a coefficient of thermal expansion (CTE) of 2 × 10 −8 K −1 , is presented. The optical components are fixed to the baseplate using a specifically developed, easy-to-handle, assembly-integration technology based on a space-qualified two-component epoxy. While developed as a prototype for future applications aboard satellite space missions (such as Laser Interferometer Space Antenna), the interferometer is used in laboratory experiments for dilatometry and surface metrology. A first dilatometer setup with a demonstrated accuracy of 10 −7 K −1 in CTE measurement was realized. As it was seen that the accuracy is limited by the dimensional stability of the sample tube support, a new setup was developed utilizing Zerodur as structural material for the sample tube support. In another activity, the interferometer is used for characterization of high-quality mirror surfaces at the picometre level and for high-accuracy two-dimensional surface characterization in a prototype for industrial applications. In this paper, the corresponding designs, their realizations and first measurements of both applications in dilatometry and surface metrology are presented

  13. Dimensional Metrology of Non-rigid Parts Without Specialized Inspection Fixtures =

    Science.gov (United States)

    Sabri, Vahid

    Quality control is an important factor for manufacturing companies looking to prosper in an era of globalization, market pressures and technological advances. Functionality and product quality cannot be guaranteed without this important aspect. Manufactured parts have deviations from their nominal (CAD) shape caused by the manufacturing process. Thus, geometric inspection is a very important element in the quality control of mechanical parts. We will focus here on the geometric inspection of non-rigid (flexible) parts which are widely used in the aeronautic and automotive industries. Non-rigid parts can have different forms in a free-state condition compared with their nominal models due to residual stress and gravity loads. To solve this problem, dedicated inspection fixtures are generally used in industry to compensate for the displacement of such parts for simulating the use state in order to perform geometric inspections. These fixtures and the installation and inspection processes are expensive and time-consuming. Our aim in this thesis is therefore to develop an inspection method which eliminates the need for specialized fixtures. This is done by acquiring a point cloud from the part in a free-state condition using a contactless measuring device such as optical scanning and comparing it with the CAD model for the deviation identification. Using a non-rigid registration method and finite element analysis, we numerically inspect the profile of a non-rigid part. To do so, a simulated displacement is performed using an improved definition of displacement boundary conditions for simulating unfixed parts. In addition, we propose a numerical method for dimensional metrology of non-rigid parts in a free-state condition based on the arc length measurement by calculating the geodesic distance using the Fast Marching Method (FMM). In this thesis, we apply our developed methods on industrial non-rigid parts with free-form surfaces simulated with different types of

  14. Neutron Metrology in the United States-Where We've Been, Where We Are Now and What We Need to Do Moving Forward.

    Science.gov (United States)

    Schauer, David A

    2017-11-01

    Neutron metrology in the United States must be based on traceability to standards maintained by the National Institute of Standards and Technology (NIST). This article reviews the history of NIST's neutron-metrology efforts, the loss of those capabilities, and attempts to restore them. Recommendations are made to ensure that neutron dosimetry performed in the United States meets the requirements set forth by the International Standards Organization and other international and national authorities.

  15. The use of Monte Carlo codes in metrology of ionizing radiations; Utilisation de codes de Monte Carlo en metrologie des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Bathe, J.; Gouriou, J.; Daures, J.; Ostrowsky, A.; Bordy, J.M. [CEA Saclay, Dir. de la Recherche Technologique (DRT/DIMRI - LNHB), 91 - Gif sur Yvette (France)

    2003-07-01

    The use of Monte Carlo codes allows to get corrective values more exact or inaccessible by traditional methods. Here are presented several results got in te frame of dose metrology (influence of vacuum interstices in a calorimeter, influence of walls in a chemical dosemeter) as well as in this one of radioactivity metrology ( efficiency and spectra of energy deposition in a detector, spectra in energy of thick sources). (N.C.)

  16. FOREWORD: CCM Second International Seminar: Pressure Metrology from 1 kPa to 1 GPa

    Science.gov (United States)

    Molinar, G. F.

    1994-01-01

    The Comité Consultatif pour la Masse et les Grandeurs Apparentées (CCM), through its High Pressure and Medium Pressure Working Groups, organized this Second International Seminar on Pressure Metrology from 1 kPa to 1 GPa, which was held at the Laboratoire National d'Essais (LNE), Paris, France, from 2 to 4 June 1993. The scope of the seminar was to review the state of the art of pressure measurements in the 1 kPa to I GPa pressure range and to present innovative contributions by standards laboratories, universities and industry. The seminar was organized in six sessions: liquid-column manometers; piston gauge pressure standards; properties of liquids and gases relevant to pressure metrology; pressure transducers and transfer standards; pressure standard comparison (methods and results); dynamic pressure measurements. Each session opened with the presentation of a review paper on major requirements in that field and, at the end of the seminar, a general discussion was organized on the actual limits of accuracy of static and dynamic pressure measurements in fluid media, and the fundamental problems in pressure metrology between 1 kPa and 1 GPa. The seminar was attended by sixty scientists from twenty-four countries, all working in the field of pressure measurements. Forty-nine papers were presented. The participation of scientists from so many countries indicates the importance of pressure metrology from the scientific and industrial points of view. Most papers were presented by scientists from national standards laboratories, with eight papers from universities and four from industry. Eleven papers reported the results of cooperative work involving metrological institutions dealing with high pressure, generally national standards laboratories, an indication that scientific links are already well established at this level. Links are also strengthening between industry and standards laboratories. Although industrial participation at the seminar was relatively small

  17. Modified Statistical Dynamical Diffraction Theory: A Novel Metrological Analysis Method for Partially Relaxed and Defective Carbon-doped Silicon and Silicon Germanium Heterostructures

    Science.gov (United States)

    Shreeman, Paul K.

    The statistical dynamical diffraction theory, which has been initially developed by late Kato remained in obscurity for many years due to intense and difficult mathematical treatment that proved to be quite challenging to implement and apply. With assistance of many authors in past (including Bushuev, Pavlov, Pungeov, and among the others), it became possible to implement this unique x-ray diffraction theory that combines the kinematical (ideally imperfect) and dynamical (the characteristically perfect diffraction) into a single system of equations controlled by two factors determined by long range order and correlation function within the structure. The first stage is completed by the publication (Shreeman and Matyi, J. Appl. Cryst., 43, 550 (2010)) demonstrating the functionality of this theory with new modifications hence called modified statistical dynamical diffraction theory (mSDDT). The foundation of the theory is also incorporated into this dissertation, and the next stage of testing the model against several ion-implanted SiGe materials has been published: (Shreeman and Matyi, physica status solidi (a)208(11), 2533-2538, 2011). The dissertation with all the previous results summarized, dives into comprehensive analysis of HRXRD analyses complete with several different types of reflections (symmetrical, asymmetrical and skewed geometry). The dynamical results (with almost no defects) are compared with well-known commercial software. The defective materials, to which commercially available modeling software falls short, is then characterized and discussed in depth. The results will exemplify the power of the novel approach in the modified statistical dynamical diffraction theory: Ability to detect and measure defective structures qualitatively and quantitatively. The analysis will be compared alongside with TEM data analysis for verification and confirmation. The application of this theory will accelerate the ability to quickly characterize the relaxed

  18. Prostate cancer staging

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000397.htm Prostate cancer staging To use the sharing features on this ... trials you may be able to join How Prostate Cancer Staging is Done Initial staging is based on ...

  19. Optimized Biasing of Pump Laser Diodes in a Highly Reliable Metrology Source for Long-Duration Space Missions

    Science.gov (United States)

    Poberezhskiy, Ilya Y; Chang, Daniel H.; Erlig, Herman

    2011-01-01

    Optical metrology system reliability during a prolonged space mission is often limited by the reliability of pump laser diodes. We developed a metrology laser pump module architecture that meets NASA SIM Lite instrument optical power and reliability requirements by combining the outputs of multiple single-mode pump diodes in a low-loss, high port count fiber coupler. We describe Monte-Carlo simulations used to calculate the reliability of the laser pump module and introduce a combined laser farm aging parameter that serves as a load-sharing optimization metric. Employing these tools, we select pump module architecture, operating conditions, biasing approach and perform parameter sensitivity studies to investigate the robustness of the obtained solution.

  20. Metrology for the radiological early warning system in Europe. The ''MetroERM'' project

    International Nuclear Information System (INIS)

    In the European radiological early warning system about 5500 stationary sensors are actually implemented that measure continuously the local dose rate. Alongside several hundred air dust collecting systems attribute to the measurement of airborne radioactivity. The local dose rates are transmitted hourly to a central data base that is operated on behalf of the EU commission. In significantly larger time intervals the measured data of the airborne radioactivity are transmitted. In case of a cross-border radiological accident these data are the basis for recommendations given by the EU commission to the member states for national counter measures. The focus of the project ''Metrology for radiological early warning networks in Europe'' is an improvement of the metrological quality and harmonization these data and the development of improved measuring systems and evaluation methods.

  1. The metrological approach: a major key factor for the accreditation and continuous improvement of the wood preservation laboratory of Cirad

    Directory of Open Access Journals (Sweden)

    Martin L.

    2013-01-01

    Full Text Available Since 2006, the wood preservation laboratory of Cirad is accredited by COFRAC (French accreditation committee – accreditation No. 1-1686 for tests on the durability of wood and wood-based products and on protective efficacy of wood preservatives and termite control products. The metrological approach adopted by the wood preservation laboratory is a key factor on the continuous improvement of practices. Tests to determine the resistance against wood-destroying biological agents are the most difficult of all wood analysis tests. They are aimed at assessing and quantifying the impact of living organism, such as fungi and termites, on a lignocellulosic material. The extent of variability of this impact, which in turn is linked with the diversity of these organisms and of the material, can be readily determined. The validity and reliability of the findings therefore depend directly on the quality of the metrological process, including the choice of measurement devices, their management and compliance with international standards.

  2. PREFACE: Advanced Metrology for Ultrasound in Medicine12-14 May 2010

    Science.gov (United States)

    Shaw, Adam

    2011-02-01

    Conference logo AMUM 2010 is the successor to the first AMUM conference held in 2004, which was the conference featured in the very first issue of the Journal of Physics: Conference Series (http://iopscience.iop.org/1742-6596/1/1). Like its predecessor, AMUM 2010 proved to be very successful and provided a fantastic opportunity for the world's ultrasound experts from medicine, industry and academia to explore the measurement challenges presented by new and emerging clinical ultrasound equipment. 2010 was a very difficult year economically for much of the world, and then air travel over Europe was thrown into chaos by prolonged ash clouds from the Icelandic volcano Eyjafjallajökull in April. So it was something of a relief to see such good attendance; this is a clear indication of the need for this conference with its focus on metrology in medical ultrasound. There were a total of 70 attendees: of these 34 were from the UK, 16 from the rest of Europe, and 20 from outside Europe. National Metrology Institutes from no fewer than nine different countries were represented, some of them very new to the field, some with a recent growth of interest in ultrasound, and others with a well-established reputation. I was particularly pleased to see younger researchers from those NMIs new to ultrasound attend and have the chance to mix with such a wide grouping of their peers and present their work. There was also a strong attendance by industry including the major imaging companies such as GE Healthcare, Siemens, Philips Healthcare, Hitachi Medical, Aloka, Medison and the newer Supersonic Imagine; and more specialist companies such as Imasonic, Onda Corporation, Unisyn Medical Technologies, and Polytec and Precision Acoustics, our partner in organizing the event. The conference was spread over 3 days with plenty of time for discussions over coffee; the afternoon of the 3rd day was dedicated to laboratory visits within NPL. We were fortunate to have some excellent Keynote

  3. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    Science.gov (United States)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard

  4. Non destructive testing of PWR type fuel pencils by Foucault currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    Marchand, L.

    1984-09-01

    The device presented in this paper, has been developed to satisfy, first, the requirements of nondestructive examinations of irradiated fuel pencils. The technics used allow the acquisition of reliable and detailed information on the state of cans. The computerized data exploitation allows to integrate quickly any improvement factor while allowing to carry out the researches on the automatic diagnostic of Eddy current signals. Now, the equipments of the bench allow visual, metrological and Foucault current simultaneous examinations [fr

  5. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as 31P qNMR standards

    OpenAIRE

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2014-01-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that 1H qNMR can be performed with high accuracy leading to measurement uncertainties below 1?% relative. It was even demonstrated that the combination of 1H qNMR with metrological weighing can lead to measurement uncertainties below 0....

  6. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    OpenAIRE

    Yuan, Sheng Sam

    2010-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry currently under development at the ALS.

  7. Metrology of a mirror at the Advanced Photon Source : comparison between optical and x-ray measurements

    International Nuclear Information System (INIS)

    Assoufid, L.

    1998-01-01

    This paper describes metrology of a vertically focusing mirror on the bending magnet beamline in sector-1 of the Advanced Photon Source, Argonne National Laboratory. The mirror was evaluated using measurements from both an optical long trace profiler and x-rays. Slope error profiles obtained with the two methods were compared and were found to be in a good agreement. Further comparisons were made between x-ray measurements and results from the SHADOW ray-tracing code

  8. Comparison of surface detection methods to evaluate cone beam computed tomography data for three dimensional metrology

    International Nuclear Information System (INIS)

    Heinzl, Ch.; Kastner, J.; Georgi, B.; Lettenbauer, H.

    2007-01-01

    X-ray computed tomography (CT) is a well established method for non-destructive testing. In recent years the application of CT for three dimensional measurements and variance comparison became more and more important, since CT can measure both outer and inner geometries within a rather short time. Because of the much higher measurement speed and thus lower costs especially cone beam CT is an important issue of research in the field of dimensional metrology. One of the biggest challenges for the application of CT for metrology is the accurate detection of the surface between material and air or the interface between two different materials. By using a test-body various algorithms and data evaluation methods are compared and discussed within this paper. The investigated methods are: 1. Common methods: Otsu global threshold and an empirically determined best iso-surface. 2. Pipeline model: The pipeline model uses common 3D image processing filters and consists of three major steps: a.) an edge preserving diffusion filter to reduce noise without blurring the edges of the specimen. b.) A watershed segmentation filter is applied to the gradient image of the dataset to extract a fully connected binary volume. c.) The object surface is constructed using elastic surface nets. 3. Calypso R : Evaluation of inspection features by introduction of additional geometry information. The geometrical value is directly derived from the volume data without extracting a surface model, supposing a predefined geometry of a feature. For this purpose the commercial software Calypso R was used. By defining a geometrical feature e.g. a diameter or a distance optimised algorithms evaluate the CT - volume data to get the geometrical feature without a transformation to surface data. Common methods usually lead to no satisfactory results. The achieved accuracy is rather low, if the material thickness in the sample changes. The pipeline model and CT- Calypso R lead to much better results. Using

  9. Means to verify the accuracy of CT systems for metrology applications (In the Absence of Established International Standards)

    International Nuclear Information System (INIS)

    Lettenbauer, H.; Georgi, B.; Weib, D.

    2007-01-01

    X-ray computed tomography (CT) reconstructs an unknown object from X-ray projections and has long been used for qualitative investigation of internal structures in industrial applications. Recently there has been increased interest in applying X-ray cone beam CT to the task of high-precision dimensional measurements of machined parts, since it is a relatively fast method of measuring both inner and outer geometries of arbitrary complexity. The important information for the user in dimensional metrology is if measured elements of a machined part are within the defined tolerances or not. In order to qualify cone beam CT as an established measurement technology, it must be qualified in the same manner as established measurement technologies such as coordinate measurement machines (CMMs) with tactile or optical sensors. In international standards artefacts are defined that are calibrated by certified institutions. These artefacts are defined by certain geometrical elements. CT measurements are performed on the reconstructed object volume, either directly or using an intermediate surface-extraction step. The results of these measurements have to be compared to the values of the calibrated elements; the level of agreement of the results defines the accuracy of the measurements. By using established methods to define measurement uncertainty a very high level of acceptance in dimensional metrology can be reached for the user. Only if results are comparable to standards of the established technologies the barriers of entry into metrology will be removed and all benefits of this technology will be available for the user. (authors)

  10. CONFERENCE NOTE: European Optical Society, Topical Meeting Optical Metrology and Nanotechnology, Engelberg, Switzerland, 27 30 March 1994

    Science.gov (United States)

    1993-01-01

    This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.

  11. Advanced in-line optical metrology of sub-10nm structures for gate all around devices (GAA)

    Science.gov (United States)

    Muthinti, Raja; Loubet, Nicolas; Chao, Robin; Ott, John; Guillorn, Michael; Felix, Nelson; Gaudiello, John; Lund, Parker; Cepler, Aron; Sendelbach, Matthew; Cohen, Oded; Wolfling, Shay; Bozdog, Cornel; Klare, Mark

    2016-03-01

    Gate-all-around (GAA) nanowire (NW) devices have long been acknowledged as the ultimate device from an electrostatic scaling point of view. The GAA architecture offers improved short channel effect (SCE) immunity compared to single and double gate planar, FinFET, and trigate structures. One attractive proposal for making GAA devices involves the use of a multilayer fin-like structure consisting of layers of Si and SiGe. However, such structures pose various metrology challenges, both geometrical and material. Optical Scatterometry, also called optical critical dimension (OCD) is a fast, accurate and non-destructive in-line metrology technique well suited for GAA integration challenges. In this work, OCD is used as an enabler for the process development of nanowire devices, extending its abilities to learn new material and process aspects specific to this novel device integration. The specific metrology challenges from multiple key steps in the process flow are detailed, along with the corresponding OCD solutions and results. In addition, Low Energy X-Ray Fluorescence (LE-XRF) is applied to process steps before and after the removal of the SiGe layers in order to quantify the amount of Ge present at each step. These results are correlated to OCD measurements of the Ge content, demonstrating that both OCD and LE-XRF are sensitive to Ge content for these applications.

  12. Between Stage and Screen

    NARCIS (Netherlands)

    Tornqvist, Egil

    1996-01-01

    Ingmar Bergman is worldwide known as a film and stage director. Yet no-one has attempted to compare his stage and screen activities. In Between stage and screen Egil Tornqvist examines formal and thematical correspondences and differences between a number of Bergman's stage, screen, and radio

  13. Engineered diamond nanopillars as mobile probes for high sensitivity metrology in fluid

    Science.gov (United States)

    Andrich, P.; de Las Casas, C. F.; Heremans, F. J.; Awschalom, D. D.; Aleman, B. J.; Ohno, K.; Lee, J. C.; Hu, E. L.

    2015-03-01

    The nitrogen-vacancy (NV) center`s optical addressability and exceptional spin coherence properties at room temperature, along with diamond`s biocompatibility, has put this defect at the frontier of metrology applications in biological environments. To push the spatial resolution to the nanoscale, extensive research efforts focus on using NV centers embedded in nanodiamonds (NDs). However, this approach has been hindered by degraded spin coherence properties in NDs and the lack of a platform for spatial control of the nanoparticles in fluid. In this work, we combine the use of high quality diamond membranes with a top-down patterning technique to fabricate diamond nanoparticles with engineered and highly reproducible shape, size, and NV center density. We obtain NDs, easily releasable from the substrate into a water suspension, which contain single NV centers exhibiting consistently long spin coherence times (up to 700 μs). Additionally, we demonstrate highly stable, three-dimensional optical trapping of the nanoparticles within a microfluidic circuit. This level of control enables a bulk-like DC magnetic sensitivity and gives access to dynamical decoupling techniques on contactless, miniaturized diamond probes. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  14. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  15. Two-Photon Polymerization Metrology: Characterization Methods of Mechanisms and Microstructures

    Directory of Open Access Journals (Sweden)

    Christopher N. LaFratta

    2017-03-01

    Full Text Available The ability to create complex three-dimensional microstructures has reached an unprecedented level of sophistication in the last 15 years. For the most part, this is the result of a steady development of the additive manufacturing technique named two-photon polymerization (TPP. In a short amount of time, TPP has gone from being a microfabrication novelty employed largely by laser specialists to a useful tool in the hands of scientists and engineers working in a wide range of research fields including microfluidics. When used in combination with traditional microfabrication processes, TPP can be employed to add unique three-dimensional components to planar platforms, thus enabling the realization of lab-on-a-chip solutions otherwise impossible to create. To take full advantage of TPP, an in-depth understanding is required of the materials photochemistry and the fabricated microstructures’ mechanical and chemical properties. Thus, we review methods developed so far to investigate the underling mechanism involved during TPP and analytical methods employed to characterize TPP microstructures. Furthermore, we will discuss potential opportunities for using optofluidics and lab-on-a-chip systems for TPP metrology.

  16. Geodesy and metrology at CERN a source of economy for the SPS programme

    International Nuclear Information System (INIS)

    Gervaise, J.

    1976-01-01

    This report gives a broad description of the major options adopted at the start of the project in order to meet the three challenges imposed on the geodesists engaged in survey work for the CERN 400 GeV proton synchrotron (SPS). The methods and means used are dealt with in a general manner. In the conclusion a critical study is made of the results obtained. From a different aspect, a description of the Survey Group's responsibilities highlights the extent of the savings that can be made by a well-trained group carrying out high-precision measurements. The physical dimensions of the project and the complexity of the work involved in building a second-generation accelerator demand high standards of precision since these condition the proper operation of the machine. Only by making extensive preliminary studies and precise survey work above and below ground-level over a number of years, was it possible to ensure that the final geodetic and metrological measurements would be completed at high speed and low cost. (Auth.)

  17. Small-angle X-ray scattering (SAXS) for metrological size determination of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, Gudrun; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie; Mueller, Peter [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Hoell, Armin [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2011-07-01

    To measure the size of nanoparticles, different measurement methods are available but their results are often not compatible. In the framework of an European metrology project we use Small-Angle X-ray Scattering (SAXS) to determine the size and size distribution of nanoparticles in aqueous solution, where the special challange is the traceability of the results. The experiments were performed at the Four-Crystal Monochromator (FCM) beamline in the laboratory of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II using the SAXS setup of the Helmholtz-Zentrum Berlin (HZB). We measured different particles made of PMMA and gold in a diameter range of 200 nm down to about 10 nm. The aspects of traceability can be classified in two parts: the first is the experimental part with the uncertainties of distances, angles, and wavelength, the second is the part of analysis, with the uncertainty of the choice of the model used for fitting the data. In this talk we want to show the degree of uncertainty, which we reached in this work yet.

  18. CDF central detector installation. An efficient merge of digital photogrammetry and laser tracker metrology

    International Nuclear Information System (INIS)

    Greenwood, John A.; Wojcik, George J.

    2003-01-01

    Metrology for Run II at the Collider Detector at Fermilab (CDF) required a very complex geodetic survey. The Collision Hall network, surveyed with a Laser Tracker and digital level, provides a constraining network for the positioning of the Central Detector (CD). A part-based Laser Tracker network, which surrounded the 2,000-ton CD, was used as control for assembly. Subassembly surveys of the Detector's major components were measured as independent networks using Laser Tracker, V-STARS/S (Video-Simultaneous Triangulation And Resection System/Single camera) digital photogrammetry system, and BETS (Brunson Electronic Theodolite System) theodolite triangulation system. Each subassembly survey was transformed into and constrained by the part-based network. For roll-in, the CD part-based network was transformed into the Collision Hall network coordinate system. The CD was positioned in the Collision Hall using two Laser Trackers in 'stakeout mode.' This paper discusses the survey, adjustment, transformation, and precision of the various networks. (author)

  19. Integrated calibration of a 3D attitude sensor in large-scale metrology

    International Nuclear Information System (INIS)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui; Muelaner, Jody; Keogh, Patrick

    2017-01-01

    A novel calibration method is presented for a multi-sensor fusion system in large-scale metrology, which improves the calibration efficiency and reliability. The attitude sensor is composed of a pinhole prism, a converging lens, an area-array camera and a biaxial inclinometer. A mathematical model is established to determine its 3D attitude relative to a cooperative total station by using two vector observations from the imaging system and the inclinometer. There are two areas of unknown parameters in the measurement model that should be calibrated: the intrinsic parameters of the imaging model, and the transformation matrix between the camera and the inclinometer. An integrated calibration method using a three-axis rotary table and a total station is proposed. A single mounting position of the attitude sensor on the rotary table is sufficient to solve for all parameters of the measurement model. A correction technique for the reference laser beam of the total station is also presented to remove the need for accurate positioning of the sensor on the rotary table. Experimental verification has proved the practicality and accuracy of this calibration method. Results show that the mean deviations of attitude angles using the proposed method are less than 0.01°. (paper)

  20. Investigation of metrological parameters of measuring system for small temperature changes

    Directory of Open Access Journals (Sweden)

    Samynina M. G.

    2014-02-01

    Full Text Available Metrological parameters of the non-standard contact device were investigated to characterize its performance in temperature change measurements in the specified temperature range. Several series thermistors with a negative temperature coefficient of resistance connected into a linearization circuit were used as the sensing element of the semiconductor device. Increasing the number of thermistors leads to improved circuitry resolving power and reduced dispersion of this parameter. However, there is the question of optimal ratio of the number of thermistors and implemented temperature resolution, due to the nonlinear resolution dependence of the number of series-connected thermoelements. An example of scheme of four similar thermistors as the primary sensor and of a standard measuring instrument, which is working in ohmmeter mode, shows the ability to measure temperature changes at the level of hundredth of a Celsius degree. In this case, a quantization error, which is determined by a resolution of the measuring system, and the ohmmeter accuracy make the main contribution to the overall accuracy of measuring small temperature changes.

  1. Flexible optical metrology strategies for the control and quality assurance of small series production

    Science.gov (United States)

    Schmitt, R.; Pavim, A.

    2009-06-01

    The demand for achieving smaller and more flexible production series with a considerable diversity of products complicates the control of the manufacturing tasks, leading to big challenges for the quality assurance systems. The quality assurance strategy that is nowadays used for mass production is unable to cope with the inspection flexibility needed among automated small series production, because the measuring strategy is totally dependent on the fixed features of the few manufactured object variants and on process parameters that can be controlled/compensated during production time. The major challenge faced by a quality assurance system applied to small series production facilities is to guarantee the needed quality level already at the first run, and therefore, the quality assurance system has to adapt itself constantly to the new manufacturing conditions. The small series production culture requires a change of paradigms, because its strategies are totally different from mass production. This work discusses the tight inspection requirements of small series production and presents flexible metrology strategies based on optical sensor data fusion techniques, agent-based systems as well as cognitive and self-optimised systems for assuring the needed quality level of flexible small series. Examples of application scenarios are provided among the automated assembly of solid state lasers and the flexible inspection of automotive headlights.

  2. Design, conception, and metrology of Extreme Ultraviolet multilayers mirrors resistant environments of space and EUV sources

    International Nuclear Information System (INIS)

    Hecquet, Ch.

    2009-03-01

    The Extreme Ultraviolet Spectrum (EUV) wavelengths, which range between 13 nm and 40 nm, have many applications in science and technology. These have been developed for example in plasma physics (high order harmonics sources, X ray lasers). The work presented is about the design, the fabrication and the metrology of periodic multilayer mirrors. The main motivation of this study is to establish a cycle of development taking into account both the optical properties of reflective coatings (reflectivity, spectral selectivity, attenuation) and their behaviour under various environments. To improve the spectral selectivity, new multilayer periodic structures have been developed. They are characterized by a bimodal reflectance profile with adjustable attenuation. The effect of environment on the stability of performance is especially critical for the optical collection. The addition of material barriers has stabilized the performance of the peak reflectivity for over 200 h at 400 C deg. and it reduces the influence of other factors of instability on the reflectance. In addition, all structures have been fabricated successfully and evaluated in severe environments. (author)

  3. Providing reference standards and metrology for the few photon-photon counting community

    Science.gov (United States)

    Beaumont, Andrew R.; Cheung, Jessica Y.; Chunnilall, Christopher J.; Ireland, Jane; White, Malcolm G.

    2009-10-01

    The main drivers for developing few-photon metrological techniques are the rapidly progressing field of quantum information processing, which requires the development of high-efficiency photon-counting detectors, and the wider use of photon-counting technology in biology, medical physics and nuclear physics. This paper will focus on the provision of standards for the few photon community and the development of techniques for the characterisation of photon-counting detectors. At the high-power end, microwatts, we are developing a low-power absolute radiometer as a primary standard that will be used to provide traceability over a much broader spectral range. At the few photon-photon-counting level we are developing a conventional calibration technique, which is traceable to the primary standard through a reference trap detector. This method can be used in both analogue and photon-counting modes and provides a convenient route for providing customer calibration at few-photon levels across the optical spectrum. At the photon-counting/single-photon level we are developing a technique based on correlated photons. These are produced via parametric downconversion and can be used to measure directly the detection efficiency of photon-counting detectors. A cross-validation of the correlated photon and conventional technique is reported. Finally we discuss this work in the context of an EU project, that is aimed at establishing the route towards the re-definition of the candela, the SI unit for optical radiation.

  4. An Active Pre-Alignment System and Metrology Network for CLIC

    CERN Document Server

    Becker, F; Pittin, R; Wilson, Ian H

    2003-01-01

    The pre-alignment tolerance on the transverse positions of the components of the CLIC linacs is typically ten microns over distances of 200 m. Such tight tolerances cannot be obtained by a static one-time alignment because normal seismic ground movement and cultural noise associated with human and industrial activity quickly creates significant errors. It is therefore foreseen to maintain the components in place using an active-alignment system which will be linked to a permanent metrology and geodetic network. This report describes the overall philosophy and implementation of such a system and proposes one possible solution for active-alignment which uses stepping-motors to move components and stretched-wires as reference lines. Special sensors have been developed to measure the position of the components with respect to the reference lines, and to measure local tilt and relative vertical position. An in-depth analysis has been made of the repercussions on the alignment system of perturbing effects due to th...

  5. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors.

    Science.gov (United States)

    Chiavaioli, Francesco; Gouveia, Carlos A J; Jorge, Pedro A S; Baldini, Francesco

    2017-06-21

    A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance.

  6. Procedure and reference standard to determine the structural resolution in coordinate metrology

    Science.gov (United States)

    Illemann, Jens; Bartscher, Markus; Jusko, Otto; Härtig, Frank; Neuschaefer-Rube, Ulrich; Wendt, Klaus

    2014-06-01

    A new procedure and reference standards for specifying the structural resolution in coordinate metrology traceable to the SI unit the metre are proposed. With the definition of the structural resolution, a significant gap will be closed to complete ‘acceptance and verification tests’ of the coordinate measuring systems (CMSs) which are specified in the ISO 10360 series dealing with tactile sensors, optical sensors, and x-ray computed tomography measurement systems (CTs). The proposed new procedure uses reference standards with circular rounded edges. The idea is to measure the radius of curvature on a calibrated round edge structure. From the deviation between the measured and the calibrated radius, an analogue Gaussian broadening of the measurement system is determined. This value is a well-defined and easy-to-apply measure to define the structural resolution for dimensional measurements. It is applicable to CMSs which are based on different sensing principles, e.g. tactile, optical and CT systems. On the other hand, it has a physical meaning similar to the classical optical point-spread function. It makes it possible to predict which smallest details the CMS is capable of measuring reliably for an arbitrary object shape. The theoretical background of the new procedure is given, an appropriate reference standard is described and comparative, quantitative measurement data of CMSs featuring different sensors are shown.

  7. Computer-assisted generation of individual training concepts for advanced education in manufacturing metrology

    International Nuclear Information System (INIS)

    Werner, Teresa; Weckenmann, Albert

    2010-01-01

    Due to increasing requirements on the accuracy and reproducibility of measurement results together with a rapid development of novel technologies for the execution of measurements, there is a high demand for adequately qualified metrologists. Accordingly, a variety of training offers are provided by machine manufacturers, universities and other institutions. Yet, for an interested learner it is very difficult to define an optimal training schedule for his/her individual demands. Therefore, a computer-based assistance tool is developed to support a demand-responsive scheduling of training. Based on the difference between the actual and intended competence profile and under consideration of amending requirements, an optimally customized qualification concept is derived. For this, available training offers are categorized according to different dimensions: regarding contents of the course, but also intended target groups, focus of the imparted competences, implemented methods of learning and teaching, expected constraints for learning and necessary preknowledge. After completing a course, the achieved competences and the transferability of gathered knowledge are evaluated. Based on the results, recommendations for amending measures of learning are provided. Thus, a customized qualification for manufacturing metrology is facilitated, adapted to the specific needs and constraints of each individual learner

  8. Metrology to enable high temperature erosion testing - A new european initiative

    DEFF Research Database (Denmark)

    Fry, A.T.; Gee, M.G.; Clausen, Sønnik

    2014-01-01

    The efficiency of high temperature energy generation plant and aero-engines is critically impacted by solid particle erosion, particularly at elevated temperatures. This damage process can reduce the efficiency of turbines by as much as 7 to 10%, and in the case of a large power plant cause an ad...... focus on the techniques to be used for in-situ temperature, velocity and 3D shape/size measurements. Copyright © 2014 Electric Power Research Institute, Inc. Distributed by ASM International®. All rights reserved....... or mineral matter in oil excavation. In all cases the performance of materials can be improved through better surface engineering and coatings, but the development of these is restricted due to lack of generic models, well controlled and instrumented tests and international standards. A framework is required...... is required. However, limitations in current measurement capability within this form of test prevent the advancement. A new European initiative, METROSION, on the development of high temperature solid particle erosion testing has a primary aim to develop this metrological framework. Several key parameters...

  9. Definition of a reference metrology network for the positioning of a large linear accelerator

    International Nuclear Information System (INIS)

    Becker, F.

    2003-12-01

    This thesis is a study of the Compact Linear Collider (CLIC) alignment system, a project of linear accelerator of about 30 km long of the European Organization for Nuclear Research (CERN). The pre-alignment tolerance on the transverse positions of the components of the CLIC linacs is typically ten microns over distances of 200 m. This research is a consequence of 10 years work, where several sets of special sensors dedicated to metrology have been adapted for the CLIC project. Most of these sensors deliver measurements linked to geometric references sensitive to gravity fluctuation. An important part of this work is therefore dedicated to study the gravity disruptions as a high level of accuracy is required. The parameters to take into account in the use of the hydrostatic leveling have thus been highlighted. A proposal of configuration of the system alignment based on a selection of sensors has also been given in this research. Computer models of different possible configurations have been presented. As the existing computing software was inappropriate, a new object oriented software package has been developed, to ensure future upgrades. An optimized configuration of the network has been defined from a set of simulations. Finally, due to problems in the use of hydrostatic leveling systems, a solution based on the use of a long laser beam as an alternative solution is discussed. (author)

  10. Frontiers of More than Moore in Bioelectronics and the Required Metrology Needs

    Science.gov (United States)

    Guiseppi-Elie, Anthony; Kotanen, Christian; Wilson, A. Nolan

    2011-11-01

    Silicon's intersection with biology is a premise inherent in Moore's prediction. Distinct from biologically inspired molecular logic and storage devices (more Moore) are the integration of solid state electronic devices with the soft condensed state of the body (more than Moore). Developments in biomolecular recognition events per sq. cm parallel those of Moore's Law. However, challenges continue in the area of "More than Moore". Two grand challenge problems must be addressed—the biocompatibility of synthetic materials with the myriad of tissue types within the human body and the interfacing of solid state micro- and nano-electronic devices with the electronics of biological systems. Electroconductive hydrogels have been developed as soft, condensed, biomimetic but otherwise inherently electronically conductive materials to address the challenge of interfacing solid state devices with the electronics of the body, which is predominantly ionic. Nano-templated interfaces via the oriented immobilization of single walled carbon nanotubes (SWCNTs) onto metallic electrodes have engendered reagentless, direct electron transfer between biological redox enzymes and solid state electrodes. In addressing these challenges, metrology needs and opportunities are found in such widely diverse areas as single molecule counting and addressing, sustainable power requirements such as the development of implantable biofuel cells for the deployment of implantable biochips, and new manufacturing paradigms to address plura-biology needs on solid state devices.

  11. Metrological analysis of constancy tests in conventional medical X-ray equipment

    International Nuclear Information System (INIS)

    Alvarenga, Frederico L.; Oliveira, Paulo Marcio C.; Squair, Peterson L.; Soares, Carlos M.; Silva, Teogenes A. da

    2005-01-01

    Constancy tests in x-ray diagnostic machines should follow performance requirements with the aim to verify their safety and quality and to protect workers, patients and public members that are or may be exposed to ionizing radiation risks. In the Brazilian state of Minas Gerais, from 1999 to 2004, 110 radiometric and evaluation reports of x-ray machines were issued by accredited professionals. Most of the reports did not provide the estimation of the measurement uncertainty that should be part of the results; it means that there is a lack of metrological care in such reports which may cause difficulties to get a conclusive analysis. In this work, relevant sources of uncertainties were identified and estimated for the following tests carried out in a conventional x-ray machine: high voltage accuracy and reproducibility, air kerma rate repeatability and linearity and half-value layer determination. This work gives details on the methodology and the expanded and combined uncertainty values for each measuring procedure, which may be adopted as representative values for analysis of radiometric report. (author)

  12. Computed tomography: a powerful imaging technique in the fields of dimensional metrology and quality control

    Science.gov (United States)

    Probst, Gabriel; Boeckmans, Bart; Dewulf, Wim; Kruth, Jean-Pierre

    2016-05-01

    X-ray computed tomography (CT) is slowly conquering its space in the manufacturing industry for dimensional metrology and quality control purposes. The main advantage is its non-invasive and non-destructive character. Currently, CT is the only measurement technique that allows full 3D visualization of both inner and outer features of an object through a contactless probing system. Using hundreds of radiographs, acquired while rotating the object, a 3D representation is generated and dimensions can be verified. In this research, this non-contact technique was used for the inspection of assembled components. A dental cast model with 8 implants, connected by a screwed retained bar made of titanium. The retained bar includes a mating interface connection that should ensure a perfect fitting without residual stresses when the connection is fixed with screws. CT was used to inspect the mating interfaces between these two components. Gaps at the connections can lead to bacterial growth and potential inconvenience for the patient who would have to face a new surgery to replace his/hers prosthesis. With the aid of CT, flaws in the design or manufacturing process that could lead to gaps at the connections could be assessed.

  13. Certified sediment reference materials for trace element analysis from the National Metrology Institute of Japan (NMIJ).

    Science.gov (United States)

    Inagaki, Kazumi; Takatsu, Akiko; Kuroiwa, Takayoshi; Nakama, Atsuko; Eyama, Sakae; Chiba, Koichi; Okamoto, Kensaku

    2004-03-01

    Two types of sediment reference material (NMIJ 7302-a and 7303-a) for trace elements analysis have been prepared and certified by the National Metrology Institute of Japan in the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). The original materials were collected from a bay near industrial activity in Kyushu (NMIJ CRM 7302-a; marine sediment) and from Lake Biwa (NMIJ CRM 7303-a; lake sediment). The sediment materials were air-dried, sieved, homogenized, packaged in 1000 glass bottles (60 g each), and radiation sterilized. Certification of these CRM for trace elements was conducted by NMIJ, where each element was determined by at least two independent analytical techniques. Isotope-dilution inductively coupled plasma mass spectrometry (ICP-MS) was applied for certification of all the elements except mono-nuclide elements such as As and Co. Other techniques such as ICP-MS with quadrupole mass spectrometry and sector-field mass spectrometry, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS), were also used. Certified values have been provided for 14 elements (Sb, As, Cd, Cr, Co, Cu, Pb, Hg, Mo, Ni, Se, Ag, Sn, and Zn) in both CRM.

  14. Design-based metrology: beyond CD/EPE metrics to evaluate printability performance

    Science.gov (United States)

    Halder, Sandip; Mailfert, Julien; Leray, Philippe; Rio, David; Peng, Yi-Hsing; Laenens, Bart

    2016-03-01

    Process-window (PW) evaluation is critical to assess the lithography process quality and limitations. Usual CD-based PW gives only a partial answer. Simulations such as Tachyon LMC (Lithography Manufacturability Check) can efficiently overcome this limitation by analyzing the entire predicted resist contours. But so far experimental measurements did not allow such flexibility. This paper shows an innovative experimental flow, which allows the user to directly validate LMC results across PW for a select group of reference patterns, thereby overcoming the limitations found in the traditional CD-based PW analysis. To evaluate the process window on wafer more accurately, we take advantage of design based metrology and extract experimental contours from the CD-SEM measurements. Then we implement an area metric to quantify the area coverage of the experimental contours with respect to the intended ones, using a defined "sectorization" for the logic structures. This `sectorization' aims to differentiate specific areas on the logic structures being analyzed, such as corners, line-ends, short and long lines. This way, a complete evaluation of the information contained in each CD-SEM picture is performed, without having to discard any information. This solution doesn't look at the area coverage of an entire feature, but uses a `sectorization' to differentiate specific feature areas such as corners, line-ends, short and long lines, and thus look at those area coverages. An assessment of resist model/OPC quality/process quality at sub nm-level accuracy is rendered possible.

  15. Estimation of the convergence order of rigorous coupled-wave analysis for OCD metrology

    Science.gov (United States)

    Ma, Yuan; Liu, Shiyuan; Chen, Xiuguo; Zhang, Chuanwei

    2011-12-01

    In most cases of optical critical dimension (OCD) metrology, when applying rigorous coupled-wave analysis (RCWA) to optical modeling, a high order of Fourier harmonics is usually set up to guarantee the convergence of the final results. However, the total number of floating point operations grows dramatically as the truncation order increases. Therefore, it is critical to choose an appropriate order to obtain high computational efficiency without losing much accuracy in the meantime. In this paper, the convergence order associated with the structural and optical parameters has been estimated through simulation. The results indicate that the convergence order is linear with the period of the sample when fixing the other parameters, both for planar diffraction and conical diffraction. The illuminated wavelength also affects the convergence of a final result. With further investigations concentrated on the ratio of illuminated wavelength to period, it is discovered that the convergence order decreases with the growth of the ratio, and when the ratio is fixed, convergence order jumps slightly, especially in a specific range of wavelength. This characteristic could be applied to estimate the optimum convergence order of given samples to obtain high computational efficiency.

  16. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    Science.gov (United States)

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

  17. EMRP JRP MetNH3: Towards a Consistent Metrological Infrastructure for Ammonia Measurements in Ambient Air

    Science.gov (United States)

    Leuenberger, Daiana; Balslev-Harder, David; Braban, Christine F.; Ebert, Volker; Ferracci, Valerio; Gieseking, Bjoern; Hieta, Tuomas; Martin, Nicholas A.; Pascale, Céline; Pogány, Andrea; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. In addition to its acidifying effect on natural waters and soils and to the additional nitrogen input to ecosystems, ammonia is an important precursor for secondary aerosol formation in the atmosphere. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation regarding certified reference material (CRM), applicable analytical methods, measurement uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. As shown in a key comparison in 2007, there are even discrepancies between reference materials provided by European National Metrology Institutes (NMIs) at amount fraction levels up to three orders of magnitude higher than ambient air levels. MetNH3 (Metrology for ammonia in ambient air), a three-year project that started in June 2014 in the framework of the European Metrology Research Programme (EMRP), aims to reduce the gap between requirements set by the European emission regulations and state-of-the-art of analytical methods and reference materials. The overarching objective of the JRP is to achieve metrological traceability for ammonia measurements in ambient air from primary certified reference material CRM and instrumental standards to the field level. This requires the successful completion of the three main goals, which have been assigned to three technical work packages: To develop improved reference gas mixtures by static and dynamic gravimetric generation methods Realisation and characterisation of traceable preparative calibration standards (in pressurised cylinders as well as mobile generators) of ammonia amount fractions similar to those in ambient air based on existing methods for other reactive analytes. The

  18. Improved Metrological Traceability of Particle Size Values Measured with Line-Start Incremental Centrifugal Liquid Sedimentation.

    Science.gov (United States)

    Kestens, Vikram; Coleman, Victoria A; De Temmerman, Pieter-Jan; Minelli, Caterina; Woehlecke, Holger; Roebben, Gert

    2017-08-22

    Line-start incremental centrifugal liquid sedimentation (disc-CLS) is a powerful method to determine particle size based on the principles of Stokes' law. Because several of the input quantities of the Stokes equation cannot be easily determined for this case of a rotating disc, the disc-CLS approach relies on calibrating the sedimentation time scale with reference particles. To use these calibrant particles for establishing metrological traceability, they must fulfill the same requirements as those imposed on a certified reference material, i.e., their certified Stokes diameter and density value must come with a realistic measurement uncertainty and with a traceability statement. As is the case for several other techniques, the calibrants do not always come with uncertainties for the assigned modal diameter and effective particle density. The lack of such information and the absence of a traceability statement make it difficult for the end-user to estimate the uncertainty of the measurement results and to compare them with results obtained by others. We present the results of a collaborative study that aimed at demonstrating the traceability of particle size results obtained with disc-CLS. For this purpose, the particle size and effective particle density of polyvinyl chloride calibrants were measured using different validated methods, and measurement uncertainties were estimated according to the Guide to the Expression of Uncertainty in Measurement. The results indicate that the modal Stokes diameter and effective particle density that are assigned to the calibrants are accurate within 5% and 3.5%, respectively, and that they can be used to establish traceability of particle size results obtained with disc-CLS. This conclusion has a great impact on the traceability statement of certified particle size reference materials, for which the traceability is limited to the size and density values of the calibrant particles.

  19. Metrological aspects in estimating of radiation dose in patients of nuclear medicine

    International Nuclear Information System (INIS)

    Ruzzarin, Anelise

    2015-01-01

    In order to investigate the performance of routine measurements in nuclear medicine services, LNMRI/IRD has been conducting, since 1998, a comparison program of activity measurements of radiopharmaceuticals administered to patients in nuclear medicine. Correction factors are determined from the result of performance analysis in order to determine with better accuracy the activity to be administered to the patients. The present study shows how the correction factor is determined by the ratio between the measurement of the activity at the nuclear medicine center and the activity determined by the LNMRI, which is adopted as reference. It is essential that the dose calibrator be calibrated with standards traceable to national metrology laboratories, so that the activity administered to the patient is neither greater nor smaller than the appropriate value. The corrected values of the activities can be used to calculate with greater accuracy the effective doses received by the patients as well as the risk of cancer. Information related to radiopharmaceuticals and administered activities, type of exams and patient data of three Brazilian hospitals were collected for 1496 adults and 134 children submitted to diagnostic exams employing 99m Tc and 131 I. Results showed up to a considerable difference between the administered activity and the corrected activity until 30% and 13% above the reference value, respectively, for the 131 I and 99m Tc was detected. The consequences of these differences were not very critical in this study since the activity measured in dose calibrator before administration was lower than the corrected activity, thus causing a lower effective dose in patients. However, this reduction in activity may result in problems in obtaining the image and consequently, failure diagnosis, delaying correct diagnosis. On the other hand, the overestimation would be worse, mainly in therapeutic applications, because an unnecessarily high absorbed dose would be

  20. INFLUENCE OF SCATTERED NEUTRON RADIATION ON METROLOGICAL CHARACTERISTICS OF АТ140 NEUTRON CALIBRATION FACILITY

    Directory of Open Access Journals (Sweden)

    D. I. Komar

    2017-01-01

    Full Text Available Today facilities with collimated radiation field are widely used as reference in metrological support of devices for neutron radiation measurement. Neutron fields formed by radionuclide neutron sources. The aim of this research was to study characteristics of experimentally realized neutron fields geometries on АТ140 Neutron Calibration Facility using Monte Carlo method.For calibration, we put a device into neutron field with known flux density or ambient equivalent dose rate. We can form neutron beam from radionuclide fast-neutron source in different geometries. In containercollimator of АТ140 Neutron Calibration Facility we can install special inserts to gather fast-neutron geometry or thermal-neutron geometry. We need to consider neutron scattering from air and room’s walls. We can conduct measurements of neutron field characteristics in several points and get the other using Monte Carlo method.Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. From found relationship between full neutron flux and distance to neutron source we see that inverse square law is violated. Scattered radiation contribution into total flux increases when we are moving away from neutron source and significantly influences neutron fields characteristics. While source is exposed in shadow-cone geometry neutron specter has pronounced thermal component from wall scattering.In this work, we examined main geometry types used to acquire reference neutron radiation using radionuclide sources. We developed Monte Carlo model for 238Pu-Be neutron source and АТ140 Neutron Calibration Facility’s container-collimator. We have shown the most significant neutron energy distribution factor to be scattered radiation from room’s walls. It leads to significant changes of neutron radiation specter at a distance from the source. When planning location, and installing the facility we should consider

  1. Impact of shrinking measurement error budgets on qualification metrology sampling and cost

    Science.gov (United States)

    Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Vaid, Alok; Osorio, Carmen; Archie, Chas

    2014-04-01

    When designing an experiment to assess the accuracy of a tool as compared to a reference tool, semiconductor metrologists are often confronted with the situation that they must decide on the sampling strategy before the measurements begin. This decision is usually based largely on the previous experience of the metrologist and the available resources, and not on the statistics that are needed to achieve acceptable confidence limits on the final result. This paper shows a solution to this problem, called inverse TMU analysis, by presenting statistically-based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk vs. reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope (CD-SEM) tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions before the start of the experiment, and then to reveal why low sampling can lead to unstable and misleading results. A model is developed that can help an experimenter minimize the costs associated both with increased sampling and with making wrong decisions caused by insufficient sampling. A second cost model is described that reveals the inadequacy of current TEM (Transmission Electron Microscopy) sampling practices and the enormous costs associated with TEM sampling that is needed to provide reasonable levels of certainty in the result. These high costs reach into the tens of millions of dollars for TEM reference metrology as the measurement error budgets reach angstrom levels. The paper concludes with strategies on how to manage and mitigate these costs.

  2. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  3. Breast cancer staging

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000911.htm Breast cancer staging To use the sharing features on this ... Once your health care team knows you have breast cancer , they will do more tests to stage it. ...

  4. Seven Stages of Alzheimer's

    Science.gov (United States)

    ... Dementias . Learn more: Daily Care and Behaviors Severe Alzheimer's disease (late-stage) Get support Late-stage care decisions can be some of the hardest families face. Connect with other caregivers who have been through the process on our ...

  5. Stages of Adolescence

    Science.gov (United States)

    ... Español Text Size Email Print Share Stages of Adolescence Page Content Article Body Adolescence, these years from puberty to adulthood, may be roughly divided into three stages: early adolescence, generally ages eleven to fourteen; middle adolescence, ages ...

  6. Beyond Erikson's Eight Stages.

    Science.gov (United States)

    Whitney, Ruth

    1979-01-01

    Erik Erikson has described eight stages of the healthy personality. This essay offers a revised version of the eight stages. Although most individuals develop through the eight stages, each is personally unique because patterns of fluctuation between safety and growth differ from one individual to another. (Author)

  7. Cervical Cancer Stage IIIA

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IIIA Add to My Pictures View /Download : ... 1275x1275 View Download Large: 2550x2550 View Download Title: Cervical Cancer Stage IIIA Description: Stage IIIA cervical cancer; drawing ...

  8. Cervical Cancer Stage IVA

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IVA Add to My Pictures View /Download : ... 1575x1200 View Download Large: 3150x2400 View Download Title: Cervical Cancer Stage IVA Description: Stage IVA cervical cancer; drawing ...

  9. Cervical Cancer Stage IVB

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IVB Add to My Pictures View /Download : ... 1200x1305 View Download Large: 2400x2610 View Download Title: Cervical Cancer Stage IVB Description: Stage IVB cervical cancer; drawing ...

  10. Cervical Cancer Stage IIIB

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IIIB Add to My Pictures View /Download : ... 1425x1326 View Download Large: 2850x2651 View Download Title: Cervical Cancer Stage IIIB Description: Stage IIIB cervical cancer; drawing ...

  11. Cervical Cancer Stage IB

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IB Add to My Pictures View /Download : ... 1613x1200 View Download Large: 3225x2400 View Download Title: Cervical Cancer Stage IB Description: Stage IB1 and IB2 cervical ...

  12. Cervical Cancer Stage IA

    Science.gov (United States)

    ... historical Searches are case-insensitive Cervical Cancer Stage IA Add to My Pictures View /Download : Small: 720x576 ... Large: 3000x2400 View Download Title: Cervical Cancer Stage IA Description: Stage IA1 and IA2 cervical cancer; drawing ...

  13. Characterization of an extrapolation chamber and radiochromic films for verifying the metrological coherence among beta radiation fields

    International Nuclear Information System (INIS)

    Castillo, Jhonny Antonio Benavente

    2011-01-01

    The metrological coherence among standard systems is a requirement for assuring the reliability of dosimetric quantities measurements in ionizing radiation field. Scientific and technologic improvements happened in beta radiation metrology with the installment of the new beta secondary standard BSS2 in Brazil and with the adoption of the internationally recommended beta reference radiations. The Dosimeter Calibration Laboratory of the Development Center for Nuclear Technology (LCD/CDTN), in Belo Horizonte, implemented the BSS2 and methodologies are investigated for characterizing the beta radiation fields by determining the field homogeneity, the accuracy and uncertainties in the absorbed dose in air measurements. In this work, a methodology to be used for verifying the metrological coherence among beta radiation fields in standard systems was investigated; an extrapolation chamber and radiochromic films were used and measurements were done in terms of absorbed dose in air. The reliability of both the extrapolation chamber and the radiochromic film was confirmed and their calibrations were done in the LCD/CDTN in 90 Sr/ 90 Y, 85 Kr and 147 Pm beta radiation fields. The angular coefficients of the extrapolation curves were determined with the chamber; the field mapping and homogeneity were obtained from dose profiles and isodose with the radiochromic films. A preliminary comparison between the LCD/CDTN and the Instrument Calibration Laboratory of the Nuclear and Energy Research Institute / Sao Paulo (LCI/IPEN) was carried out. Results with the extrapolation chamber measurements showed in terms of absorbed dose in air rates showed differences between both laboratories up to de -I % e 3%, for 90 Sr/ 90 Y, 85 Kr and 147 Pm beta radiation fields, respectively. Results with the EBT radiochromic films for 0.1, 0.3 and 0.15 Gy absorbed dose in air, for the same beta radiation fields, showed differences up to 3%, -9% and -53%. The beta radiation field mappings with

  14. Social profit in the context of the activities at Fluids Measurement Sector in Legal Metrology Department - Inmetro

    Science.gov (United States)

    Cinelli, L. R.; Silva, L. G.; Junior, E. A.; Almeida, R. O.

    2018-03-01

    This article was prepared in the context of the work of the Fluids Measurement Sector (Seflu) of the Legal Metrology Department of Inmetro (Dimel) in order to try to answer the following question: What is the magnitude of Social Profit generated for brazilian society from the existence of legal control of measuring instruments within the scope of this sector? In this sense, some examples of a case study containing the main measurement instruments related to the evaluation process of models performed at the Seflu are presented.

  15. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors.

  16. Static Metrological Characterization of a Ferrimagnetic Resonance Transducer for Real-Time Magnetic Field Markers in Particle Accelerators

    CERN Document Server

    Arpaia, P; Caspers, F; Golluccio, G; Petrone, C

    2011-01-01

    The metrological characterization of a magnetic field transducer based on ferrimagnetic resonance for real-time markers in particle accelerators is reported. The transducer is designed to measure the magnetic field with an uncertainty of ± 10-5 T. A case study on the new real-time field monitoring system for the CERN accelerators highlighting the performance improvement achieved through the new ferrimagnetic transducer is described. Preliminary experimental results of the characterization for static and dynamic fields are discussed.

  17. Metrological Characterization of an Improved DSP-Based On-line Integrator for Magnetic Measurements at CERN

    CERN Document Server

    Arpaia, Pasquale; Spiezia, Giovanni

    2007-01-01

    An improved on-line version of the self-calibrating digital instrument for flux measurements on superconductive magnets for particle accelerators, prototyped at the European Organization for Nuclear Research (CERN) in cooperation with the University of Sannio, is proposed. The instrument acquires voltage arising from rotating coils transducers. Then, the samples are online integrated and suitably processed in order to achieve flux analysis time down to 2.0 ìs, with resolution of 50 ns. Details about hardware and firmware conception, on-line measurement principle, and preliminary results of metrological characterization of the prototype are provided.

  18. Reconstruction of mechanically recorded sound from an edison cylinder using three dimensional non-contact optical surface metrology

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.

    2004-04-20

    Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.

  19. Cetuximab, Cisplatin, and Radiation Therapy in Treating Patients With Stage IB, Stage II, Stage III, or Stage IVA Cervical Cancer

    Science.gov (United States)

    2014-12-29

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  20. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Craig, W.W.; Hailey, C.J.

    2000-01-01

    We fabricated x-ray mirrors for hard x-ray (greater than or equal to 10 keV) telescopes using multilayer coatings and an improved epoxy-replicated aluminum foil (ERAF) nonvacuum technology. The ERAF optics have similar to1 arcmin axial figure half-power diameter (HPD) and passed environmental...... telescope HPD, we designed a figure metrology system and a new mounting technique. We describe a cylindrical metrology system built for fast axial and roundness figure measurement of hard x-ray conical optics. These developments lower cost and improve the optics performance of the HEFT (high-energy focusing...