WorldWideScience

Sample records for stage embryos electronic

  1. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  2. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  3. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  4. 4D atlas of the mouse embryo for precise morphological staging.

    Science.gov (United States)

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  5. Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio : a consideration of the structural and functional relationships with respect to cryoprotectant penetration

    NARCIS (Netherlands)

    Rawson, DM; Zhang, T; Kalicharan, D; Jongebloed, WL

    The structure of the chorion and plasma membranes of gastrula-stage zebrafish Brachydanio rerio embryos were studied using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). These studies confirm the outer chorion membrane complex to be 1.5-2.5 mu m in

  6. The effect of flurbiprofen on the development of anencephaly in early stage chicken embryos.

    Science.gov (United States)

    Özeren, Ersin; Er, Uygur; Güvenç, Yahya; Demirci, Adnan; Arıkök, Ata Türker; Şenveli, Engin; Ergün, Rüçhan Behzat

    2015-04-01

    The study investigated the effect of flurbiprofen on the development of anencephaly in early stage chicken embryos. We looked at four groups with a total of 36 embryos. There was a control group, a normal saline group, a normal-dose group and a high-dose group with ten, ten, eight and eight eggs with embryo respectively. Two embryos in the control group, studied with light microscopy at 48 h, were consistent with 28-29 hours' incubation in the Hamburger-Hamilton System. They had open neural tubes. The other embryos in this group were considered normal. One embryo in the normal saline group was on the occlusion stage at 48 h. One embryo showed an open neural tube. They were compatible with 28-29 hours' incubation in the Hamburger-Hamilton system. The remaining eight embryos showed normal development. In the normal dose group, one embryo showed underdevelopment of the embryonic disc and the embryo was dead. In four embryos, the neural tubes were open. One cranial malformation was found that was complicated with anencephaly in one embryo. In two embryos the neural tubes were closed, as they showed normal development, and they reached their expected stages according to the Hamburger-Hamilton classification. There was no malformation or growth retardation. Four experimental embryos were anencephalic in the high dose group, and three embryos had open neural tubes. One embryo exhibited both anencephaly and a neural tube closure defect. None of the embryos in this group showed normal development. Even the usual therapeutic doses of flurbiprofen increased the risk of neural tube defect. Flurbiprofen was found to significantly increase the risk of anencephaly. The provision of improved technical materials and studies with larger sample sizes will reveal the stage of morphological disruption during the development of embryos.

  7. Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos

    DEFF Research Database (Denmark)

    Smith, Steven D.; Soloy, Eva; Kanka, Jiri

    1996-01-01

    Nucleus transfer for the production of multiple embryos derived from a donor embryo relies upon the reprogramming of the donor nucleus so that it behaves similar to a zygotic nucleus. One indication of nucleus reprogramming is the RNA synthetic activity. In normal bovine embryogenesis, the embryo....... NTE were produced using either a MII phase (nonactivated) cytoplasts at 32 hr of maturation or S-phase (activated) cytoplasts activated with calcium ionophore A23187 and cycloheximide treatment approximately 8 hr prior to fusion with a blastomere from an in-vitro-produced morula stage embryo at 32 hr...... of maturation. Control in-vitro-produced embryos were 3H-uridine-labelled and fixed at the 2-, 4-, early 8-, and late 8-cell stages. NTE were similarly prepared at 1, 3, and 20 hr postfusion and at the 2-, 4-, and 8-cell stages. In the control embryos, RNA synthesis was absent in the 2-, 4-, and early 8-cell...

  8. Optimal developmental stage for vitrification of parthenogenetically activated porcine embryos

    DEFF Research Database (Denmark)

    Li, Rong; Li, Juan; Kragh, Peter

    2012-01-01

    The objective of this experiment was to determine the optimal developmental stage to vitrify in-vitro cultured porcine parthenogenetically activated (PA) embryos. Embryos were vitrified by Cryotop on Day 4, 5 or 6 after oocyte activation (Day 0), and immediately after warming they were either time...

  9. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    Directory of Open Access Journals (Sweden)

    STANCA CLAUDIA

    2007-01-01

    Full Text Available In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989, but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass, it will be possible to obtain germline chimera animals. To generate ES cells↔ cleavage stage host embryo chimeras, we used (CD-1 mice as donors of hostembryos as well as recipients of manipulated embryos. For chimera production, weused fluorescent-labeled ES cell line (CD1/EGFP, because in this case we canfollow the fate of ES cells during the embryonic development. We produced thechimers using “aggregation chimera technique”. 8 cells stage zona pellucida free,mouse embryos were aggregated in an aggregation plates, with a clump of ES cells(10 – 15 cells. The chimera embryos were cultivated for 24 hours in the incubator(at 37 °C, 5% CO2 in air. The chimera blastocysts resulted after cultivation, weretransferred to the uterus of the 2.5-dpc pseudo pregnant females.

  10. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    Directory of Open Access Journals (Sweden)

    CLAUDIA STANCA

    2007-05-01

    Full Text Available In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989, but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass, it will be possible to obtain germline chimera animals. To generate ES cells↔ cleavage stage host embryo chimeras, we used (CD-1 mice as donors of hostembryos as well as recipients of manipulated embryos. For chimera production, weused fluorescent-labeled ES cell line (CD1/EGFP, because in this case we canfollow the fate of ES cells during the embryonic development. We produced thechimers using “aggregation chimera technique”. 8 cells stage zona pellucida free,mouse embryos were aggregated in an aggregation plates, with a clump of ES cells(10 – 15 cells. The chimera embryos were cultivated for 24 hours in the incubator(at 37 °C, 5% CO2 in air. The chimera blastocysts resulted after cultivation, weretransferred to the uterus of the 2.5-dpc pseudo pregnant females.

  11. Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.

    Science.gov (United States)

    Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing

    2013-03-15

    Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Syntheses of nucleic acid and protein in somatic embryos of Fritillaria ussuriensis maxim in different development stages

    International Nuclear Information System (INIS)

    Wang Shuyu; Tang Wei; Wang Hui

    1993-09-01

    After developing a procedure for somatic embryogenesis in Fritillaria ussuriensis, dynamics on the syntheses of DNA, RNA, and protein during globular, heart-shaped, torpedo-shaped, cotyledonary, and mature somatic embryo stages was demonstrated by both autoradiography and scintillation counting. The rates of syntheses of DNA, RNA, and protein gradually increase between the globular and cotyledonary somatic embryos stages. DNA, RNA, and protein synthesis rates are in peak at the cotyledonary later stage, precotyledonary stage, and cotyledonary stage, respectively. It appears that more DNA, RNA, and protein are synthesized in the cotyledonary somatic embryo stage than in other stages. All these results indicate that an increased syntheses of DNA, RNA, and protein is associated with the differentiation of embryogenic cells and organogenesis in somatic embryos

  13. Cryotop vitrification for in vitro produced bovine and buffalo (Bubalus bubalis embryos at different stages of development

    Directory of Open Access Journals (Sweden)

    B. Gasparrini

    2010-02-01

    Full Text Available The aim of this study was to evaluate the possibility to vitrify in vitro produced (IVP buffalo and bovine embryos at different stages of development by an advanced version of the “minimal volume approaches”: the Cryotop method. In both experiments, the embryos were vitrified at the tight morula (TM, early blastocyst (eBl, blastocyst (Bl, expanded blastocyst (xBl and, only for buffalo, at the hatched blastocyst (hBl stage. After warming, the embryos were cultured in vitro for 24 hours. Stage of development affected the freezability of IVP embryos of both species with the highest embryo survival rates at advanced stages (xBl=76% and hBl=75% for buffalos and xBl=75% for bovine. These results suggest that Cryotop vitrification is an efficient method for buffalo and bovine IVP embryo cryopreservation.

  14. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    International Nuclear Information System (INIS)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen

    2016-01-01

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  15. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen, E-mail: sodmergn@pku.edu.cn

    2016-05-27

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  16. Optimized ex-ovo culturing of chick embryos to advanced stages of development.

    Science.gov (United States)

    Cloney, Kellie; Franz-Odendaal, Tamara Anne

    2015-01-24

    Research in anatomy, embryology, and developmental biology has largely relied on the use of model organisms. In order to study development in live embryos model organisms, such as the chicken, are often used. The chicken is an excellent model organism due to its low cost and minimal maintenance, however they present observational challenges because they are enclosed in an opaque eggshell. In order to properly view the embryo as it develops, the shell must be windowed or removed. Both windowing and ex ovo techniques have been developed to assist researchers in the study of embryonic development. However, each of the methods has limitations and challenges. Here, we present a simple, optimized ex ovo culture technique for chicken embryos that enables the observation of embryonic development from stage HH 19 into late stages of development (HH 40), when many organs have developed. This technique is easy to adopt in both undergraduate classes and more advanced research laboratories where embryo manipulations are conducted.

  17. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    International Nuclear Information System (INIS)

    Xu, Ting; Zhao, Jing; Hu, Ping; Dong, Zhangji; Li, Jingyun; Zhang, Hongchang; Yin, Daqiang; Zhao, Qingshun

    2014-01-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  18. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Zhao, Jing [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092 (China); Hu, Ping [Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061 (China); State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029 (China); Dong, Zhangji; Li, Jingyun [Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061 (China); Zhang, Hongchang [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092 (China); Yin, Daqiang, E-mail: yindq@tongji.edu.cn [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092 (China); Zhao, Qingshun, E-mail: qingshun@nju.edu.cn [Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061 (China)

    2014-06-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  19. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy.

    Science.gov (United States)

    Flores, Luis E; Hildebrandt, Thomas B; Kühl, Anja A; Drews, Barbara

    2014-05-10

    Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9-11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert's membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart

  20. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    Science.gov (United States)

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Biopsy of human morula-stage embryos: outcome of 215 IVF/ICSI cycles with PGS.

    Directory of Open Access Journals (Sweden)

    Elena E Zakharova

    Full Text Available Preimplantation genetic diagnosis (PGD is commonly performed on biopsies from 6-8-cell-stage embryos or blastocyst trophectoderm obtained on day 3 or 5, respectively. Day 4 human embryos at the morula stage were successfully biopsied. Biopsy was performed on 709 morulae from 215 ICSI cycles with preimplantation genetic screening (PGS, and 3-7 cells were obtained from each embryo. The most common vital aneuploidies (chromosomes X/Y, 21 were screened by fluorescence in situ hybridization (FISH. No aneuploidy was observed in 72.7% of embryos, 91% of those developed to blastocysts. Embryos were transferred on days 5-6. Clinical pregnancy was obtained in 32.8% of cases, and 60 babies were born. Patients who underwent ICSI/PGS treatment were compared with those who underwent standard ICSI treatment by examining the percentage of blastocysts, pregnancy rate, gestational length, birth height and weight. No significant differences in these parameters were observed between the groups. Day 4 biopsy procedure does not adversely affect embryo development in vitro or in vivo. The increased number of cells obtained by biopsy of morulae might facilitate diagnostic screening. There is enough time after biopsy to obtain PGD results for embryo transfer on day 5-6 in the current IVF cycle.

  2. Use of infrared imaging to predict the developmental stages and differences in chicken embryos exposed to different photoperiods

    Science.gov (United States)

    Frederick, Rebecca A.; Hsieh, Sheng-Jen; Palomares, Benjamin Giron

    2012-06-01

    Monitoring development of chicken embryos allows determination of when an egg is not developing and when eggs are close to hatching for more efficient production. Research has been conducted on the effects of temperature fluctuations and light exposure on embryo development; similarities between chicken and mammal embryos; and the use of MRI, tomography, and ultrasound to view specific areas and processes within the embryo. However, there has been little exploration of the use of infrared imaging as a non-destructive method for analyzing and predicting embryonic development. In this study, we built an automated loading system for image acquisition. Pilot experiments were conducted to determine the overall scanning time and scanning frequency. A batch of fertilized eggs was scanned each day as the embryos continued to grow. The captured images were analyzed and categorized into three stages: Stage 1 (days 1 to 7), Stage 2 (days 8 to 14), and Stage 3 (days 15 to 21). The temperature data abstracted from the captured images were divided into two groups. Group 1, consisting of two-thirds of the data, was used to construct a model. Group 2, consisting of one-third of the data, was used to evaluate the predictive accuracy of the model. A three-layer artificial neural network model was developed to predict embryo development stage given a temperature profile. Results suggest that the neural network model is sufficient to predict embryo development stage with good accuracy of 75%. Accuracy can likely be improved if more data sets for each development stage are available.

  3. Birth of normal infants after transfer of embryos that were twice vitrified/warmed at cleavage stages: report of two cases.

    Science.gov (United States)

    Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo

    2012-12-01

    The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Regulation of somatic embryo development in Norway spruce (Picea abies). A molecular approach to the characterization of specific developmental stages

    Energy Technology Data Exchange (ETDEWEB)

    Sabala, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics

    1998-12-31

    Embryo development is a complex process involving a set of strictly regulated events. The regulation of these events is poorly understood especially during the early stages of embryo development. Somatic embryos go through the same developmental stages as zygotic embryos making them an ideal model system for studying the regulation of embryo development. We have used embryogenic cultures of Picea abies to study some aspects of the regulation of embryo development in gymnosperms. The bottle neck during somatic embryogenesis is the switch from the proliferation stage to the maturation stage. This switch is initiated by giving somatic embryos a maturation treatment i.e. the embryos are treated with abscisic acid (ABA). Somatic embryos which respond to ABA by forming mature somatic embryos were stimulated to secret a 70 kDa protein, AF70. The af70 gene was isolated and characterised. The expression of the af70 gene was constitutive in embryos but was highly ABA-induced in seedlings. Moreover, expression of this gene was stimulated during cold acclimation of Picea abies seedlings. A full length Picea abies cDNA clone Pa18, encoding a protein with the characteristics of plant lipid transfer proteins (LTPs), was isolated and characterised. The Pa18 gene is constitutively expressed in embryogenic cultures of Picea abies representing different stages of development as well as in nonembryogenic callus and seedlings. In situ hybridization showed that Pa18 gene is expressed in all embryonic cells of proliferating somatic embryos but the expression of the gene in mature somatic and zygotic embryos is restricted to the outer cell layer. Southern blot analysis at different stringencies was consistent with a single gene. An alteration in expression of Pa18 causes disturbance in the formation of the proper outer cell layer in the maturing somatic embryos. In addition to its influence on embryo development the Pa18 gene product also inhibits growth of Agrobacterium tumefaciens 195

  5. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  6. Monozygotic Triplets and Dizygotic Twins following Transfer of Three Poor-Quality Cleavage Stage Embryos

    Directory of Open Access Journals (Sweden)

    Reshef Tal

    2012-01-01

    Full Text Available Background. Assisted reproductive technology has been linked to the increased incidence of monozygotic twinning. It is of clinical importance due to the increased risk of complications in multiple pregnancies in general and in monozygotic twins in particular. Case. A 29-year-old female, nulligravida underwent her first IVF cycle. Three poor-quality cleavage stage embryos were transferred resulting in monochorionic triamniotic triplets and dichorionic diamniotic twins. Selective embryo reduction was performed at 12 weeks leaving dichorionic twins. The patient underwent emergency cesarean section due to preterm labor and nonreassuring fetal heart tracing at 30 weeks of gestation. Conclusion. Our case emphasizes that even embryos with significant morphological abnormalities should be considered viable and the possibility of simultaneous spontaneous embryo splitting must be factored into determining number of embryos to transfer.

  7. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling

    2008-01-01

    and dispered gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere......- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe...

  8. Ultrastructural studies of Biomphalaria glabrata (Say, 1818) embryo

    International Nuclear Information System (INIS)

    Kikuchi, O.K.; Okazaki, K.; Kawano, T.; Ribeiro, A.A.G.F.C.

    1988-09-01

    Ultrastructural studies of Biomphalaria glabrata embryos (MOllusca: Gastropoda), and important snail vector of schistosomiasis has not been explored. In the present work it was evaluated a suitable electron microscopical technique for embryos processing. Promising results was obtained with double fixation in 1% glutaraldehyde plus 1% osmium tetroxide in 0.05 M cacodylate buffer (pH 7.4), preliminary staining overnight in 1% uranyl acetate and embedding in EPON or Polylite under vacuum. It was used embryos at young trochophore stage wich is characterized by active organogenesis. Some ultrastructural aspects of B. glabrata embryos cells are presented. (author) [pt

  9. Four stages of hepatic hematopoiesis in human embryos and fetuses.

    Science.gov (United States)

    Fanni, D; Angotzi, F; Lai, F; Gerosa, C; Senes, G; Fanos, V; Faa, G

    2018-03-01

    The liver is a major hematopoietic organ during embryonic and fetal development in humans. Its hematopoietic activity starts during the first weeks of gestation and continues until birth. During this period the liver is colonized by undifferentiated hematopoietic stem cells (HSCs) that gradually differentiate and once mature, enter the circulatory system through the hepatic sinusoids, this process is called hepatic hematopoiesis. The morphology of hepatic hematopoiesis, has been studied in humans through the years, and led to a characterization of all the cell types that make up these phenomena. Studies on murine models also helped to describe the extent of hepatic hematopoiesis at different gestational ages. Using this knowledge, we attempted to describe how hepatic hematopoiesis morphologically evolves as gestation progresses, in human embryos and fetuses. Thus, we observed a total of 32 tissue specimens obtained from the livers of embryos and fetuses at different gestational ages. Basing our observations on the four stages of liver hematopoiesis identified by Sasaki and Sonoda in mice, we also described four consecutive stages of liver hematopoiesis in humans, which resulted to be highly similar to those described in murine models.

  10. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients

    Directory of Open Access Journals (Sweden)

    Tong Guo

    2012-10-01

    Full Text Available Abstract Objectives This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. Study design We compared the clinical results of embryo transfer on the 3rd (cleavage stage or 5th (blastocyst stage day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Results Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05 and implantation rate (31.8% vs 31.2%, p>0.05 in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05. Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8% and implantation rate (47% compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively. For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p Conclusions In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients.

  11. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients.

    Science.gov (United States)

    Tong, Guo Qing; Cao, Shan Ren; Wu, Xun; Zhang, Jun Qiang; Cui, Ji; Heng, Boon Chin; Ling, Xiu Feng

    2012-10-05

    This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. We compared the clinical results of embryo transfer on the 3rd (cleavage stage) or 5th (blastocyst stage) day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05) and implantation rate (31.8% vs 31.2%, p>0.05) in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05). Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8%) and implantation rate (47%) compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively). For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p<0.05). However, the cumulative multiple pregnancy rates showed no significant difference between the two groups. In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients.

  12. Nuclear and cellular expression data from the whole 16-cell stage Arabidopsis thaliana embryo and a cell type-specific expression atlas of the early Arabidopsis embryo

    NARCIS (Netherlands)

    Palovaara, J.P.J.

    2017-01-01

    SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA

  13. Lipofection of siRNA into bovine 8-16-cell stage embryos using zona removal and the well-of-the-well culture system.

    Science.gov (United States)

    Ikeda, Shuntaro; Sugimoto, Miki; Kume, Shinichi

    2018-04-13

    Bovine preimplantation embryos exhibit dramatic biological changes between before and after the 8-16-cell stage. Here we report a simple lipofection method to transfect siRNA into bovine 8-16-cell stage embryos using zona removal and the well-of-the-well (WOW) culture system. Bovine one-cell embryos produced in vitro were freed from the zona pellucida and cultured up to the 8-16-cell stage in WOW dishes. The 8-16-cell embryos were lipofected with siRNA and the transfection efficiency was assessed at 48 h of transfection. Lipofection with a red fluorescent non-targeting siRNA revealed the importance of zona removal for transfection of siRNA into embryos. Using this method, we knocked down the methionine adenosyltransferase 2A (MAT2A) gene, achieving a significant reduction in MAT2A expression (P lipofection', may be useful to analyze gene functions in bovine preimplantation embryos without expensive equipment and skill-intensive techniques.

  14. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars.

    Science.gov (United States)

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-10-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

  15. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    Science.gov (United States)

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.

  16. Effect of vitamin E on preovulatory stage irradiated female mouse expressed as chromosomal abnormalities in generated embryos

    International Nuclear Information System (INIS)

    Salimi, M.; Mozdarani, H.

    2006-01-01

    The present study has been carried out to investigate the effects of preovulatory stage gamma-irradiation of female mice in the absence or presence of vitamin E on numerical chromosome abnormalities in 8-cell embryos after mating with non- irradiated males. Materials and Methods: The 8-11 weeks adult female NMRl mice were whole body irradiated at preovulatory stage (post PMSG injection and about 12-18 hours before Injecting HCG) with 4 Gy gamma-rays generated from a cobalt-60 source alone or in combination with 200 IU/kg vitamin E, intraperitoneally administered one hour prior to irradiation. Soon after HCG injection super ovulated irradiated females were mated with non-irradiated males. About 68-h post coitus (p.c), 8-cell embryos were flushed from the oviducts of pregnant mice and were fixed on slides using standard methods in order to screen for metaphase spreads and numerical chromosome abnormalities. Results: In control embryos, 8% of metaphase plates were aneuploidy whereas in preovulatory stage irradiated female mice, about 50% of metaphase plates of embryos showed numerical chromosome aberrations (P nd meiotic division. Reduction of the frequency of chromosome aberrations in the presence of vitamin E is probably due to antioxidant effects of this vitamin, and scavenging free radicals induced by gamma-rays in mice oocytes' environment

  17. Obstetric and neonatal outcomes in blastocyst-stage biopsy with frozen embryo transfer and cleavage-stage biopsy with fresh embryo transfer after preimplantation genetic diagnosis/screening.

    Science.gov (United States)

    Jing, Shuang; Luo, Keli; He, Hui; Lu, Changfu; Zhang, Shuoping; Tan, Yueqiu; Gong, Fei; Lu, Guangxiu; Lin, Ge

    2016-07-01

    To study whether embryo biopsy for preimplantation genetic diagnosis/preimplantation genetic screening (PGD/PGS) can influence pregnancy complications and neonatal outcomes. Retrospective analysis. University-affiliated center. This study included data from women and their neonates born after PGD/PGS (n = 317). Questionnaires were designed to obtain information relating to pregnancy complications and neonatal outcomes. Two major strategies for PGD/PGS were evaluated. Blastocyst-stage biopsy and frozen embryo transfer (BB-FET) was carried out in 166 patients, and cleavage-stage biopsy and fresh embryo transfer (CB-ET) was carried out in 129 patients. The incidence of gestational hypertension was significantly higher in BB-FET compared with in CB-ET (9.0% vs. 2.3%, adjusted odds ratio [OR] and 95% confidence interval [CI], 4.85 [1.34, 17.56]). In twins, the birthweight (median [range], 2.70 kg [1.55-3.60 kg] vs. 2.50 kg [1.23-3.75 kg]) was higher in BB-FET than in CB-ET and the gestational age was longer in BB-FET than in CB-ET (median [range], 36.71 weeks [31.14-39.29 weeks] vs. 35.57 weeks [30.57-38.43 weeks]). There was no difference in the incidence of singleton births between the two groups except in the incidence of preterm births (28-37 weeks; 5.3% vs. 16.5% in CB-ET and BB-FET). No significant differences were detected in the incidence of perinatal deaths, birth defects, gender of neonates, and large for gestational age in both singletons and twins, although the numbers of some events were small. BB-FET is associated with a higher incidence of gestational hypertension but better neonatal outcomes compared with CB-ET, especially in twins. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment.

    Science.gov (United States)

    Pribenszky, Csaba; Losonczi, Eszter; Molnár, Miklós; Lang, Zsolt; Mátyás, Szabolcs; Rajczy, Klára; Molnár, Katalin; Kovács, Péter; Nagy, Péter; Conceicao, Jason; Vajta, Gábor

    2010-03-01

    Single blastocyst transfer is regarded as an efficient way to achieve high pregnancy rates and to avoid multiple pregnancies. Risk of cancellation of transfer due to a lack of available embryos may be reduced by early prediction of blastocyst development. Time-lapse investigation of mouse embryos shows that the time of the first and second cleavage (to the 2- and 3-cell stages, respectively) has a strong predictive value for further development in vitro, while cleavage from the 3-cell to the 4-cell stage has no predictive value. In humans, embryo fragmentation during preimplantation development has been associated with lower pregnancy rates and a higher incidence of developmental abnormalities. Analysis of time-lapse records shows that most fragmentation is reversible in the mouse and is resorbed in an average of 9 h. Daily or bi-daily microscopic checks of embryo development, applied routinely in human IVF laboratories, would fail to detect 36 or 72% of these fragmentations, respectively. Fragmentation occurring in a defined time frame has a strong predictive value for in-vitro embryo development. The practical compact system used in the present trial, based on the 'one camera per patient' principle, has eliminated the usual disadvantages of time-lapse investigations and is applicable for the routine follow-up of in-vitro embryo development. Copyright 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. [Analysis of clinical outcomes of different embryo stage biopsy in array comparative genomic hybridization based preimplantation genetic diagnosis and screening].

    Science.gov (United States)

    Shen, J D; Wu, W; Shu, L; Cai, L L; Xie, J Z; Ma, L; Sun, X P; Cui, Y G; Liu, J Y

    2017-12-25

    Objective: To evaluate the efficiency of the application of array comparative genomic hybridization (array-CGH) in preimplantation genetic diagnosis or screening (PGD/PGS), and compare the clinical outcomes of different stage embryo biopsy. Methods: The outcomes of 381 PGD/PGS cycles referred in the First Affiliated Hospital of Nanjing Medical University from July 2011 to August 2015 were retrospectively analyzed. There were 320 PGD cycles with 156 cleavage-stage-biopsy cycles and 164 trophectoderm-biopsy cycles, 61 PGS cycles with 23 cleavage-stage-biopsy cycles and 38 trophectoderm-biopsy cycles. Chromosomal analysis was performed by array-CGH technology combined with whole genome amplification. Single embryo transfer was performed in all transfer cycles. Live birth rate was calculated as the main clinical outcomes. Results: The embryo diagnosis rate of PGD/PGS by array-CGH were 96.9%-99.1%. In PGD biopsy cycles, the live birth rate per embryo transfer cycle and live birth rate per embryo biopsy cycle were 50.0%(58/116) and 37.2%(58/156) in cleavage-stage-biopsy group, 67.5%(85/126) and 51.8%(85/164) in trophectoderm-biopsy group (both P 0.05). Conclusions: High diagnosis rate and idea live birth rate are achieved in PGD/PGS cycles based on array-CGH technology. The live birth rate of trophectoderm-biopsy group is significantly higher than that of cleavage-stage-biopsy group in PGD cycles; the efficiency of trophectoderm-biopsy is better.

  20. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope.

    Science.gov (United States)

    Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav

    2018-05-18

    Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The Digestive Tract and Derived Primordia Differentiate by Following a Precise Timeline in Human Embryos Between Carnegie Stages 11 and 13.

    Science.gov (United States)

    Ueno, Saki; Yamada, Shigehito; Uwabe, Chigako; Männer, Jörg; Shiraki, Naoto; Takakuwa, Tetsuya

    2016-04-01

    The precise mechanisms through which the digestive tract develops during the somite stage remain undefined. In this study, we examined the morphology and precise timeline of differentiation of digestive tract-derived primordia in human somite-stage embryos. We selected 37 human embryos at Carnegie Stage (CS) 11-CS13 (28-33 days after fertilization) and three-dimensionally analyzed the morphology and positioning of the digestive tract and derived primordia in all samples, using images reconstructed from histological serial sections. The digestive tract was initially formed by a narrowing of the yolk sac, and then several derived primordia such as the pharynx, lung, stomach, liver, and dorsal pancreas primordia differentiated during CS12 (21-29 somites) and CS13 (≥ 30 somites). The differentiation of four pairs of pharyngeal pouches was complete in all CS13 embryos. The respiratory primordium was recognized in ≥ 26-somite embryos and it flattened and then branched at CS13. The trachea formed and then elongated in ≥ 35-somite embryos. The stomach adopted a spindle shape in all ≥ 34-somite embryos, and the liver bud was recognized in ≥ 27-somite embryos. The dorsal pancreas appeared as definitive buddings in all but three CS13 embryos, and around these buddings, the small intestine bent in ≥ 33-somite embryos. In ≥ 35-somite embryos, the small intestine rotated around the cranial-caudal axis and had begun to form a primitive intestinal loop, which led to umbilical herniation. These data indicate that the digestive tract and derived primordia differentiate by following a precise timeline and exhibit limited individual variations. © 2016 Wiley Periodicals, Inc.

  2. Survival of embryo irradiated with gamma rays by embryo culture in Brassica pekinensis Rupr

    International Nuclear Information System (INIS)

    Moue, T.

    1984-01-01

    The effect of irradiation on the survival rates and embryonic development of Brassica pekinensis RUPR. (Varieties; Kashin, Kohai 65 nichi and kairyochitose) was investigated. The purpose of this study was to seek ways of increasing the survival rates of embryos such as B.oleracea obtained through embryo culture techniques after irradiation doses affecting seed fertility and germination, for the purpose of increasing mutation rates. Embryos at different developmental stages ranging from the globular to the early heart stages were irradiated with 20 KR of gamma rays at the daily rate 0L 20 KR or 10 KR (Fig.1 and Table 1). The embryos were excised from ovules 4 to 10 days after irradiation and cultured on White's medium. The shooting and rooting rates on the 34th day of culture were higher at the dose of 10 KR/day than 20 KR/day and were lower when the materials were irradiated at the young embryonic stage (Table 3). Varietal differences in the shooting and rooting rates were also observed. The irradiated embryos survived mainly in the state of callus. It was concluded that the embryo culture technique was successful when applied to irradiated embryos excised at the young embryonic stage and that the technique affected B.pekinensis less than B.oleracea

  3. Live births after polar body biopsy and frozen-thawed cleavage stage embryo transfer: case report.

    Science.gov (United States)

    Guimarães, Fernando; Roque, Matheus; Valle, Marcello; Kostolias, Alessandra; Azevedo, Rodrigo A de; Martinhago, Ciro D; Sampaio, Marcos; Geber, Selmo

    2016-12-01

    Pre-implantation genetic diagnosis (PGD) or screening (PGS) technology, has emerged and developed in the past few years, benefiting couples as it allows the selection and transfer of healthy embryos during IVF treatments. These techniques can be performed in oocytes (polar-body biopsy) or embryos (blastomere or trophectoderm biopsy). In this case report, we describe the first two live births to be published in Brazil after a polar-body (PB) biopsy. In case 1, a 42-year-old was submitted to PB biopsy with PGS due to advanced maternal age and poor ovarian reserve. Five MII oocytes underwent first and second polar body biopsy and four cleavage embryos were cryopreserved. The PGS analysis resulted in two euploid embryos (next generation sequence). A frozen-thawed embryo transfer (FET) was performed after endometrial priming and a healthy baby was delivered after a cesarean section (37 weeks, female, 3390g, 47.5 cm). In case 2, a 40-year old patient with balanced translocation and poor ovarian response was submitted to PB biopsy. Two MII oocytes underwent first and second polar body biopsy and two embryos were cryopreserved in cleavage stage. The analysis resulted in one euploid embryo that was transferred after endometrial priming. A preterm healthy baby (34 weeks, female, 2100g, 40 cm) was delivered via cesarean section. In conclusion, although the blastocyst biopsy is the norm when performing PGS/PGD during IVF treatments, other alternatives (as PB biopsy) should be considered in some specific situations.

  4. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation

    DEFF Research Database (Denmark)

    Vejlsted, Morten; Offenberg, Hanne Kjær; Thorup, Flemming

    2006-01-01

    was selectively observed in the epiblast. A prominent crescent-shaped thickening at the posterior region of the embryonic disk marked the first polarization within this structure reflecting incipient cell ingression. Following differentiation of the epiblast, clearance of OCT4 from the three germ layers......In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around...... gastrulation, days 8-17 postinsemination, introducing a steromicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency...

  6. Ultrastructural and autoradiographic studies of nucleolar development and rDNA transcription in preimplantation mouse embryos

    Energy Technology Data Exchange (ETDEWEB)

    Geuskens, M.; Alexandre, H. (Universite Libre de Bruxelles (Belgium). Dep. de Biologie Moleculaire)

    1984-06-01

    The development of the nucleoli and the sites of rDNA transcription have been studies by high-resolution autoradiography during the cleavage stages of mouse embryos. The appearance of fibrillar centres at the periphery of the fibrillar primary nucleoli has been observed at the 4-cell stage. Several fibrillar centres interconnected by electron-dense fibrillar strands, form a reticulated region around the fibrillar mass at the 6- to 8-cell stage. After a 10 min pulse with (/sup 3/H)uridine, only this peripheral network is labelled. At the late morula and at the blastocyst stage, the fibrillar component (nucleolonema) of the reticulated nucleoli is labelled after 10 min (/sup 3/H)uridine incorporation. When the embryos are reincubated for 2 h in cold medium, the label is localized mainly in the granular component. Fibrillar centres are not labelled. Autoradiograms of in vitro developed embryos pulsed for 2 h with (/sup 3/H)uridine confirm that the central fibrillar core of the nucleoli of 6- to 8-cell embryos is never labelled. Thus, the fibrillar constituent of this core is not homologous to the fibrillar component of the nucleoli of later stage embryos, which is the site of active rDNA transcription. An interpretation of nucleologenesis during early mouse embryogenesis is proposed.

  7. Ultrastructural and autoradiographic studies of nucleolar development and rDNA transcription in preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Geuskens, M.; Alexandre, H.

    1984-01-01

    The development of the nucleoli and the sites of rDNA transcription have been studies by high-resolution autoradiography during the cleavage stages of mouse embryos. The appearance of fibrillar centres at the periphery of the fibrillar primary nucleoli has been observed at the 4-cell stage. Several fibrillar centres interconnected by electron-dense fibrillar strands, form a reticulated region around the fibrillar mass at the 6- to 8-cell stage. After a 10 min pulse with ( 3 H)uridine, only this peripheral network is labelled. At the late morula and at the blastocyst stage, the fibrillar component (nucleolonema) of the reticulated nucleoli is labelled after 10 min ( 3 H)uridine incorporation. When the embryos are reincubated for 2 h in cold medium, the label is localized mainly in the granular component. Fibrillar centres are not labelled. Autoradiograms of in vitro developed embryos pulsed for 2 h with ( 3 H)uridine confirm that the central fibrillar core of the nucleoli of 6- to 8-cell embryos is never labelled. Thus, the fibrillar constituent of this core is not homologous to the fibrillar component of the nucleoli of later stage embryos, which is the site of active rDNA transcription. An interpretation of nucleologenesis during early mouse embryogenesis is proposed. (author)

  8. Effects of UV-C irradiation on development of goldfish embryos

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu; Zhang Fengqiu; Lu Lei

    2005-01-01

    Goldfish embryos at five different developmental stages, from fertilized eggs to heat beating stage, were irradiated by UV rays, and hatching rate, darkly pigmented eye rate and abnormal embryo rate of the irradiated embryos were investigated. Being subjected to very low amount (≤3 min.) of the UV irradiation, the embryos earlier than gastrula stage showed hormesis. However, the embryos at gastrula or heart beating stage were very sensitive to UV irradiation, showing just damage effect, which was very strong even at very low amount of the UV irradiation. The results also showed that development of the gastrula embryos irradiated by the UV rays stopped before darkly pigmented eye state, whereas embryos irradiated at heart beating stage by the UV rays could develop to the darkly pigmented eye stage, though they could not hatch out. (authors)

  9. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy.

    Science.gov (United States)

    Wong, Christopher Yee; Mills, James K

    2017-03-01

    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  10. AFSC/RACE/SAP/Foy: Effects of ocean acidification on embryo stages of Tanner crab: Kodiak Island, Alaska.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To study the effects of ocean acidification we examined the effects of ocean acidification on the embryo stages of the economically important southern Tanner crab,...

  11. Manipulating early pig embryos.

    Science.gov (United States)

    Niemann, H; Reichelt, B

    1993-01-01

    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  12. Introduction of exogenous DNA into gonads of chick embryos by lipofection and electroporation of stage X blastoderms in vivo.

    Science.gov (United States)

    Sano, A; Tagami, T; Harumi, T; Matsubara, Y; Naito, M

    2003-03-01

    1. In order to introduce exogenous DNA into gonads of chick embryos, stage X blastoderms of freshly laid and unincubated eggs were transfected by lipofection and electroporation in vivo. 2. The introduced DNA, green fluorescence protein (GFP) gene, was efficiently expressed in the blastoderms incubated for 24 h (78.8%, 78/99). 3. The GFP gene was present in most of the embryonic bodies and extra-embryonic membranes died by d 10 of incubation, when analysed by polymerase chain reaction. On d 16 to 20 of incubation, the GFP gene was detected in 7.0 to 20.9% of embryos in the heart, liver, stomach and brain, but not in the sartorius muscle. For the gonads, the GFP gene was detected in 22.2% (6/27) of the testes and 6.3% (1/18) of the ovaries examined. 4. These results suggest that it is possible to introduce exogenous DNA into gonads of chick embryos by lipofection and electroporation of stage X blastoderms in vivo.

  13. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel Lepe-Soltero

    2017-12-01

    Full Text Available The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana, ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  14. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana.

    Science.gov (United States)

    Lepe-Soltero, Daniel; Armenta-Medina, Alma; Xiang, Daoquan; Datla, Raju; Gillmor, C Stewart; Abreu-Goodger, Cei

    2017-12-01

    The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana , ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  15. A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture.

    Science.gov (United States)

    Zhang, Cindy X; Danberry, Tracy; Jacobs, Mary Ann; Augustine-Rauch, Karen

    2010-12-01

    The rodent whole embryo culture (WEC) system is a well-established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis-stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage-specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure-specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ-selective effects. This study describes a distinct morphological score system called the "Dysmorphology Score System (DMS system)" that has been developed for assessing gestation day 11 (approximately 20-26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. The DMS system enhances capabilities to rank-order compounds based upon teratogenic potency, conduct structure- relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. © 2010 Wiley-Liss, Inc.

  16. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos.

    Science.gov (United States)

    El Husseini, Nazem; Schlisser, Ava E; Hales, Barbara F

    2016-08-01

    Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Akagi

    Full Text Available Zebrafish (Danio rerio has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP. The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.

  18. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.

    2009-01-01

    displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT-MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT-HM1 embryos, both......Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...... ofmouse embryonic fibroblast (MEF) and mouse HM1 emryonic stem cells (HM1), were processed for autoradiography following 3H-uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF...

  19. Semiautomated analysis of embryoscope images: Using localized variance of image intensity to detect embryo developmental stages.

    Science.gov (United States)

    Mölder, Anna; Drury, Sarah; Costen, Nicholas; Hartshorne, Geraldine M; Czanner, Silvester

    2015-02-01

    Embryo selection in in vitro fertilization (IVF) treatment has traditionally been done manually using microscopy at intermittent time points during embryo development. Novel technique has made it possible to monitor embryos using time lapse for long periods of time and together with the reduced cost of data storage, this has opened the door to long-term time-lapse monitoring, and large amounts of image material is now routinely gathered. However, the analysis is still to a large extent performed manually, and images are mostly used as qualitative reference. To make full use of the increased amount of microscopic image material, (semi)automated computer-aided tools are needed. An additional benefit of automation is the establishment of standardization tools for embryo selection and transfer, making decisions more transparent and less subjective. Another is the possibility to gather and analyze data in a high-throughput manner, gathering data from multiple clinics and increasing our knowledge of early human embryo development. In this study, the extraction of data to automatically select and track spatio-temporal events and features from sets of embryo images has been achieved using localized variance based on the distribution of image grey scale levels. A retrospective cohort study was performed using time-lapse imaging data derived from 39 human embryos from seven couples, covering the time from fertilization up to 6.3 days. The profile of localized variance has been used to characterize syngamy, mitotic division and stages of cleavage, compaction, and blastocoel formation. Prior to analysis, focal plane and embryo location were automatically detected, limiting precomputational user interaction to a calibration step and usable for automatic detection of region of interest (ROI) regardless of the method of analysis. The results were validated against the opinion of clinical experts. © 2015 International Society for Advancement of Cytometry. © 2015 International

  20. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03210h

  1. Expression of Aquaporins in Human Embryos and Potential Role of AQP3 and AQP7 in Preimplantation Mouse Embryo Development

    Directory of Open Access Journals (Sweden)

    Yun Xiong

    2013-05-01

    Full Text Available Background/Aims: Water channels, also named aquaporins (AQPs, play crucial roles in cellular water homeostasis. Methods: RT-PCR indicated the mRNA expression of AQPs 1-5, 7, 9, and 11-12, but not AQPs 0, 6, 8, and 10 in the 2∼8-cell stage human embryos. AQP3 and AQP7 were further analyzed for their mRNA expression and protein expression in the oocyte, zygote, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst from both human and mouse using RT-PCR and immunofluorescence, respectively. Results: AQP3 and AQP7 were detected in all these stages. Knockdown of either AQP3 or AQP7 by targeted siRNA injection into 2-cell mouse embryos significantly inhibited preimplantation embryo development. However, knockdown of AQP3 in JAr spheroid did not affect its attachment to Ishikawa cells. Conclusion: These data demonstrate that multiple aquaporins are expressed in the early stage human embryos and that AQP3 and AQP7 may play a role in preimplantation mouse embryo development.

  2. The First Human Cloned Embryo.

    Science.gov (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  3. The effects of MRI on mouse embryos during fetal stage

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Sakazaki, Takahiko; Itokawa, Yuka [Suzuka University of Medical Science, Koriyama (Japan)] (and others)

    2006-06-15

    The effects of Magnetic Resonance Imaging (MRI) on mouse embryos at the early stage of organogenesis were investigated. Pregnant ICR mice were exposed on day 8 of gestation to MRI at 0.5 T for 0.5 hour to 3 hours. The mortality rates of embryos or fetuses, the incidence of external malformations, fetal body weight and sex ratio were observed at day 18 of gestation. A significant increase in embryonic mortality was observed after exposure to either 0.5 T MRI for 0.5 hour or 2 hours. However, the exposure to MRI for 1 hour or 3 hours did not induce any significant increase in embryonic mortality when compared with control. External malformations such as exencephaly, cleft palate and anomalies of tail were observed in all experimental groups exposed to each MRI. A statistically significant increase of external malformations was observed in all groups treated with 0.5 T MRI for 0.5 hour and 3 hours. The incidence of external malformations in the mice group exposed to 0.5 T MRI for 0.5-hour was found to be higher than those of mice group exposed to 0.5 T MRI for 2 hours. The effects of MRI on the external malformations might not to be dose-dependent. There was no statistically significant difference in fetal body weight and sex ratio among each MRI exposure groups.

  4. Laboratory techniques for human embryos.

    Science.gov (United States)

    Geber, Selmo; Sales, Liana; Sampaio, Marcos A C

    2002-01-01

    This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.

  5. A 3D reconstruction of pancreas development in the human embryos during embryonic period (Carnegie stages 15-23).

    Science.gov (United States)

    Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D

    2010-01-01

    The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.

  6. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

    1988-01-01

    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos

  7. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo.

    Science.gov (United States)

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng

    2012-07-01

    To determine the optimal volume or density of embryos for the well-of-the-well (WOW) system in order to track the development of individual embryos and to determine whether the WOW system can reverse the negative impact of culturing embryos singly. (1) Mouse embryos (groups of nine at the 2-cell stage) were cultured in 6.25 μl, 12.50 μl, 25.00 μl and 50.00 μl of droplets of culture medium under paraffin oil; (2) Groups of three, six, nine and twelve embryos at the 2-cell stage were cultured in 50 μl of droplet of culture medium under paraffin oil; (3) Groups of nine embryos at the 2-cell stage were cultured in 50 μl of droplet under paraffin oil with or without nine micro-wells made on the bottom of the Petri dish into each of which were placed one of the nine embryos (WOW system). Also single 2-cell stage embryos was cultured individually in 5.5 μl of droplet of culture medium under paraffin oil with or without a single micro-well made on the bottom of the Petri dish (WOW system for single culture). At the end of culture, the percentages of blastocyst development, hatching and hatched blastocysts were compared in each group. The blastocysts were fixed for differential staining. The blastocyst development was significantly higher (P WOW system. The blastocyst development was not improved when single embryo cultured individually in a micro-well was compared to single embryo cultured individually without micro-well. The total cell numbers of blastocysts were significantly higher in group embryo culture than single embryo culture regardless of whether the WOW system was used. In addition, the total cell numbers of blastocysts were significantly higher (P WOW system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced

  8. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro.

    Directory of Open Access Journals (Sweden)

    Dessie Salilew-Wondim

    Full Text Available Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY, 4-cell (4C or 16-cell (16C were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP. Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic

  9. A new stage of nuclear electronics-particle electronics

    International Nuclear Information System (INIS)

    Xi Deming

    1987-01-01

    The rapid development of high energy physics experiments has pushed the nuclear electronics to a new stage, i.e. the particle electronics. In this paper the background, main features and recent trends of the particle electronics are expounded

  10. Nucleolar ultrastructure in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Kanka, J; Smith, S D; Soloy, E

    1999-01-01

    in nuclear morphology as a transformation of the nucleolus precursor body into a functional rRNA synthesising nucleolus with a characteristic ultrastructure. We examined nucleolar ultrastructure in bovine in vitro produced (control) embryos and in nuclear transfer embryos reconstructed from a MII phase...... at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary...... time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear...

  11. Glassfrog embryos hatch early after parental desertion.

    Science.gov (United States)

    Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-06-22

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations.

  12. Glassfrog embryos hatch early after parental desertion

    Science.gov (United States)

    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-01-01

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  13. Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development.

    Science.gov (United States)

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1984-11-01

    The sequence of events in the development of the brain in staged human embryos was investigated in much greater detail than in previous studies by listing 100 features in 165 embryos of the first 5 weeks. Using a computerized bubble-sort algorithm, individual embryos were ranked in ascending order of the features present. This procedure made feasible an appreciation of the slight variation found in the developmental features. The vast majority of features appeared during either one or two stages (about 2 or 3 days). In general, the soundness of the Carnegie system of embryonic staging was amply confirmed. The rhombencephalon was found to show increasing complexity around stage 13, and the postoptic portion of the diencephalon underwent considerable differentiation by stage 15. The need for similar investigations of other systems of the body is emphasized, and the importance of such studies in assessing the timing of congenital malformations and in clarifying syndromic clusters is suggested.

  14. Analysis of compaction initiation in human embryos by using time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Yumoto, Keitaro; Sugishima, Minako; Mizoguchi, Chizuru; Kai, Yoshiteru; Iba, Yumiko; Mio, Yasuyuki

    2014-04-01

    To analyze the initiation of compaction in human embryos in vitro by using time-lapse cinematography (TLC), with the goal of determining the precise timing of compaction and clarifying the morphological changes underlying the compaction process. One hundred and fifteen embryos donated by couples with no further need for embryo-transfer were used in this study. Donated embryos were thawed and processed, and then their morphological behavior during the initiation of compaction was dynamically observed via time-lapse cinematography (TLC) for 5 days. Although the initiation of compaction occurred throughout the period from the 4-cell to 16-cell stage, 99 (86.1 %) embryos initiated compaction at the 8-cell stage or later, with initiation at the 8-cell stage being most frequent (22.6 %). Of these 99 embryos, 49.5 % developed into good-quality blastocysts. In contrast, of the 16 (13.9 %) embryos that initiated compaction prior to the 8-cell stage, only 18.8 % developed into good-quality blastocysts. Embryos that initiated compaction before the 8-cell stage showed significantly higher numbers of multinucleated blastomeres, due to asynchronism in nuclear division at the third mitotic division resulting from cytokinetic failure. The initiation of compaction primarily occurs at the third mitotic division or later in human embryos. Embryos that initiate compaction before the 8-cell stage are usually associated with aberrant embryonic development (i.e., cytokinetic failure accompanied by karyokinesis).

  15. Changes in the dielectric properties of medaka fish embryos during development, studied by electrorotation

    Energy Technology Data Exchange (ETDEWEB)

    Shirakashi, Ryo, E-mail: aa21150@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); Mischke, Miriam [Lehrstuhl fuer Biotechnologie und Biophysik, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Fischer, Peter [Physiologische Chemie, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Memmel, Simon [Lehrstuhl fuer Biotechnologie und Biophysik, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Krohne, Georg [Abteilung fuer Elektronenmikroskopie, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Fuhr, Guenter R. [Lehrstuhl fuer Biotechnologie und Medizintechnik, Universitaet des Saarlandes, Saarbruecken (Germany); Zimmermann, Heiko [Lehrstuhl fuer Molekulare und Zellulaere Biotechnologie, Universitaet des Saarlandes, Saarbruecken (Germany); Sukhorukov, Vladimir L., E-mail: sukhorukov@biozentrum.uni-wuerzburg.de [Lehrstuhl fuer Biotechnologie und Biophysik, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. Black-Right-Pointing-Pointer The three-shell dielectric model matches the rotation spectra of medaka eggs. Black-Right-Pointing-Pointer The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz-MHz frequency range. During development from blastula to early somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos' viability/conditions in basic research and industrial aquaculture.

  16. A cutin fluorescence pattern in developing embryos of some angiosperms

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2014-01-01

    Full Text Available A cuticle visualized by auramine O fluorescence appears on the developing embryos of 9 species belonging to Cruciferae, Caryophyllaceae, Plantaginaceae, Linaceae and Papilionaceae. In the investigated species the formation and extent of fluorescing and non-fluorescing embryonic areas follow a similar pattern. At first the cutin fluorescing layer is formed on the apical part of the proembryo without delimited protoderm. This layer extends and at the late globular stage envelops the embryo proper, except for a cell adjoining the suspensor. Fluorescing cutin persists during the heart stage but disappears from the torpedo embryo. During these stages there is no cutine fluorescence on suspensorial cells. Continuous cutin fluorescence appears again on the surface of the whole embryo by the late torpedo stage. Then fluorescence disappears from the radicular part of U-shaped embryos, but persists on the shoot apex, cotyledons and at least on the upper part of hypocotyl. It is assumed that polarization and nutrition of the embryo may be influenced by cuticular changes.

  17. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos.

    Science.gov (United States)

    Li, Shui-gen; Li, Wan-feng; Han, Su-ying; Yang, Wen-hua; Qi, Li-wang

    2013-06-15

    Polar auxin transport provides a developmental signal for cell fate specification during somatic embryogenesis. Some members of the HD-ZIP III transcription factors participate in regulation of auxin transport, but little is known about this regulation in somatic embryogenesis. Here, four HD-ZIP III homologues from Larix leptolepis were identified and designated LaHDZ31, 32, 33 and 34. The occurrence of a miR165/166 target sequence in all four cDNA sequences indicated that they might be targets of miR165/166. Identification of the cleavage products of LaHDZ31 and LaHDZ32 in vivo confirmed that they were regulated by miRNA. Their mRNA accumulation patterns during somatic embryogenesis and the effects of 1-N-naphthylphthalamic acid (NPA) on their transcript levels and somatic embryo maturation were investigated. The results showed that the four genes had higher transcript levels at mature stages than at the proliferation stage, and that NPA treatment down-regulated the mRNA abundance of LaHDZ31, 32 and 33 at cotyledonary embryo stages, but had no effect on the mRNA abundance of LaHDZ34. We concluded that these four members of Larix HD-ZIP III family might participate in polar auxin transport and the development of somatic embryos, providing new insights into the regulatory mechanisms of somatic embryogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The Early Stages of Heart Development: Insights from Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Johannes G. Wittig

    2016-04-01

    Full Text Available The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.

  19. Peptone and tomato extract induced early stage of embryo development of Dendrobium phalaenopsis Orchid

    Directory of Open Access Journals (Sweden)

    Nintya Setiari

    2017-04-01

    Full Text Available Germination and growth of orchid seeds can be accelerated by the addition of organic supplement and plant extract in culture medium. The objective of this study was to determine the effect of peptone and tomato extract on early stage of embryo development of Dendrobium phalaenopsis orchids. Orchid seeds were sown on NP and VW medium with addition of 10% of CW (NPCW and VWCW.  Five weeks after seed germination, about 58.03% seed germination was observed on VWCW medium, and only 37.45% seed germination on NPCW. Tomato extract and peptone were added in VWCW, resulting VWCWTP medium. After 4-8 weeks on VWCWTP, 94.42% seeds was germinated into plantlet, but only 67.30% germinated seeds on VWCW. To get optimal growth and development of  D.  phalaenopsis orchids embryos in the in vitro condition, supplement of 100 ml.L-1 coconut water, 100 mg.L-1 tomato extract and 2 mg.L-1 peptone into VW basic medium is required.

  20. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae).

    Science.gov (United States)

    Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia

    2017-12-01

    In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic

  1. Moving and fusion of the pancreatic buds in the rat embryos during the embryonic period (carnegie stages 13-17) by a three-dimensional computer-assisted reconstruction.

    Science.gov (United States)

    Godlewski, Guilhem; Gaubert, Jacques; Cristol-Gaubert, Renée; Radi, Maïada; Baecker, Volker; Travo, Pierre; Prudhomme, Michel; Prat-Pradal, Dominique

    2011-10-01

    The purpose of the present study was to illustrate the modality of rotation of ventral and dorsal pancreatic buds by three-dimensional (3D) reconstructions in the rat embryos, during the Carnegie stages 13-17. Serial sections of thirty rat embryos stages 13-17, were observed. The embryos were fixed in Bouin's solution, dehydrated, and paraffin embedded. The sections, 7 μm thick, were cut in longitudinal or transverse planes and were stained alternately by hematoxylin-eosin or Heindenhain' azan. The images were digitalized by Canon Camera 350 EOS D. The 3D reconstruction was performed by computer using Cell Image Analyser software. The two pancreatic buds ventral and dorsal, were clearly identified at stage 13, in anterior and posterior position, respectively, in relation to the duodenum. In stage 15, the duodenum started its rotation of 90° clockwise. The ventral bud moved 90° from the midline to the right. In stage 16, the ventral pancreas continued its rotation until 180° in posterior position behind the duodenum. In stage 17, the two pancreatic buds were related closely to the ventral part of the portal vein. The two buds began to merge. The anterior face of the pancreas's head was arising from the dorsal pancreatic bud. The rest of the head including the omental tuberosity and the uncinate process emanated from the ventral pancreatic bud. The use of 3D reconstruction of the pancreas of rat embryos illustrates the modality of the two pancreatic buds rotation and fusion. This method explains the final position of the pancreas.

  2. Action of uranium on pre implanted mouse embryos

    International Nuclear Information System (INIS)

    Kundt, Miriam S.

    2001-01-01

    The cultured preimplantation embryos are normally employed to evaluate the effects of environmental pollutants specially metals. Embryos were obtained from hybrid females CBA x C57 Bl following induction of super ovulation. They were incubated from 1 cell stage during 120 hs. in M16 cultured medium. Three different experiments were carried out: A, B and C using uranyl nitrate UO 2 (NO 3 ) 2 6H 2 O as source of uranium. In experiment 'A' the embryos were cultivated in the same culture dish containing final U concentrations of 13, 26, 52, 104 and 208 μgU/ml. In experiment 'B' embryos in a one cell stage were placed in culture medium with uranyl nitrate with final U concentrations of 26, 52, 104 μgU/ml. After 24 hours those embryos which had reached the two-cell stage were transferred to another culture dish to which fresh solutions of uranyl nitrate were added, maintaining the same concentrations of the previous one. In experiment 'C' the embryos were cultivated containing final U concentrations of 26, 52 and 104 μgU/ml and they were transferred to another culture dish every day to which fresh solutions of uranyl nitrate were added. Different embryos parameters were analyzed: 1) Development grade; 2) Number of cell per embryo and metaphases index; and 3) Embryo ploidy. 1) Embryos were observed each 24 hs. to evaluate development grade: 2, 4 and 8 cell stage, morula, early -expanded- hatched blastocysts and atresic embryos. No significant differences were observed in the proportion of embryos arrested either in the one-cell or in the two cell stages in control culture medium regarding different concentrations of U, in a total of 4388 embryos analyzed. From 2 cell stage, moment that the embryo begins to synthesize its own ARNm, the delay in embryonic development increased dose dependent. On the other hand, the toxicological effects in the same concentration are increase from 'A' treatment to 'C' treatment. Embriotoxicology effects are evidenced by an increment in

  3. Radiation effects on cultured mouse embryos in relation to cell division cycle

    International Nuclear Information System (INIS)

    Domon, M.

    1982-01-01

    The authors have worked with mouse embryos in vitro asking first, what are the suitable parameters to define the radiation sensitivity of embryos, and second what is a major factor determining it. The LD 50 was adopted as a parameter of the radiation sensitivity of a population in a mouse embryo system in culture. The fertilized ova were collected into Whitten's medium at various times during the pronuclear and 2-cell stages of development. They were irradiated in chambers with X-rays at doses of 0 to 800 rads. After the embryos were cultured, a set of the lethal fractions for various X-ray doses were obtained. Regarding the radiation sensitivity variation of the embryos, the LD 50 varied from 100 to 200 rads during the pronuclear stage and from 100 to 600 rads during the 2-cell stage. The embryos during the pronuclear stage were most radioresistant at early G 2 phase, followed by an increase in the sensitivity. The embryos during the 2-cell stage were also most radioresistant at early G 2 phase and were more sensitive when they got close to either the first or the second cleavage division. Furthermore, it seems that the factor 6 of the large variation was due to the extremely long G 2 period, 14 hrs for the 2-cell embryos. That is, the pooled 2-cell embryos were in a relative sense well synchronized with G 2 phase. In contrast, the synchrony was poor during the pronuclear stage, which led to less variation of the LD 50 for the pronuclear embryos. It is concluded that during the early cleavage stages of mice, radiosensitivity is mainly governed by the content of cells of various cell cycle ages in the embryo. (Namekawa, K.)

  4. Human developmental anatomy: microscopic magnetic resonance imaging (μMRI) of four human embryos (from Carnegie Stage 10 to 20).

    Science.gov (United States)

    Lhuaire, Martin; Martinez, Agathe; Kaplan, Hervé; Nuzillard, Jean-Marc; Renard, Yohann; Tonnelet, Romain; Braun, Marc; Avisse, Claude; Labrousse, Marc

    2014-12-01

    Technological advances in the field of biological imaging now allow multi-modal studies of human embryo anatomy. The aim of this study was to assess the high magnetic field μMRI feasibility in the study of small human embryos (less than 21mm crown-rump) as a new tool for the study of human descriptive embryology and to determine better sequence characteristics to obtain higher spatial resolution and higher signal/noise ratio. Morphological study of four human embryos belonging to the historical collection of the Department of Anatomy in the Faculty of Medicine of Reims was undertaken by μMRI. These embryos had, successively, crown-rump lengths of 3mm (Carnegie Stage, CS 10), 12mm (CS 16), 17mm (CS 18) and 21mm (CS 20). Acquisition of images was performed using a vertical nuclear magnetic resonance spectrometer, a Bruker Avance III, 500MHz, 11.7T equipped for imaging. All images were acquired using 2D (transverse, sagittal and coronal) and 3D sequences, either T1-weighted or T2-weighted. Spatial resolution between 24 and 70μm/pixel allowed clear visualization of all anatomical structures of the embryos. The study of human embryos μMRI has already been reported in the literature and a few atlases exist for educational purposes. However, to our knowledge, descriptive or morphological studies of human developmental anatomy based on data collected these few μMRI studies of human embryos are rare. This morphological noninvasive imaging method coupled with other techniques already reported seems to offer new perspectives to descriptive studies of human embryology.

  5. Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from Carnegie stage 14 to 23).

    Science.gov (United States)

    Lhuaire, Martin; Tonnelet, Romain; Renard, Yohann; Piardi, Tullio; Sommacale, Daniele; Duparc, Fabrice; Braun, Marc; Labrousse, Marc

    2015-07-01

    Some aspects of human embryogenesis and organogenesis remain unclear, especially concerning the development of the liver and its vasculature. The purpose of this study was to investigate, from a descriptive standpoint, the evolutionary morphogenesis of the human liver and its vasculature by computerized three-dimensional reconstructions of human embryos. Serial histological sections of four human embryos at successive stages of development belonging to three prestigious French historical collections were digitized and reconstructed in 3D using software commonly used in medical radiology. Manual segmentation of the hepatic anatomical regions of interest was performed section by section. In this study, human liver organogenesis was examined at Carnegie stages 14, 18, 21 and 23. Using a descriptive and an analytical method, we showed that these stages correspond to the implementation of the large hepatic vascular patterns (the portal system, the hepatic artery and the hepatic venous system) and the biliary system. To our knowledge, our work is the first descriptive morphological study using 3D computerized reconstructions from serial histological sections of the embryonic development of the human liver between Carnegie stages 14 and 23. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Cosmetic micromanipulation of vitrified-warmed cleavage stage embryos does not improve ART outcomes: An ultrastructural study of fragments.

    Science.gov (United States)

    Safari, Somayyeh; Khalili, Mohammad Ali; Barekati, Zeinab; Halvaei, Iman; Anvari, Morteza; Nottola, Stefania A

    2017-09-01

    The aim was to study the ultrastructure of cytoplasmic fragments along with the effect of cosmetic micromanipulation (CM) on the morphology and development of vitrified-warmed embryos as well as assisted reproductive technology (ART) outcomes. A total of 96 frozen embryo transfer (FET) cycles were included in this prospective randomized study. They were divided into three groups of CM (n=32), sham (n=32) and control (n=32). In the CM group, the vitrified- warmed embryos were subjected to fragments and coarse granules removal (cosmetic micromanipulation) after laser assisted zona hatching (LAH); sham group subjected only to LAH and no intervention was taken for the control group. Fragmented embryo was evaluated by transmission electron microscopy (TEM). Significant improvement was observed in the morphological parameters, such as fragmentation degrees, evenness of the blastomeres and embryo grade during the subsequent development, after applying cosmetic micromanipulation, when compared to sham or control groups (P=0.00001). However, there were no differences in the clinical outcomes amongst the three studied groups e.g. the rates of clinical, ongoing and multiple pregnancies, implantation, delivery and live birth. In fine structure view, fragments exhibited uniform cytoplasmic texture containing majority of organelles that were observed in normal blastomeres including mitochondria. In conclusion, application of cosmetic micromanipulation in low-grade vitrified-warmed embryos showed significant improvement on embryo morphology parameters; however, did not result in noticeable improvements in clinical outcomes of the patients undergoing ART program. In addition, embryo vitrification had no adverse effects on fine structure of the fragments. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  8. Changes in protein synthetic activity in early Drosophila embryos mutant for the segmentation gene Krueppel

    International Nuclear Information System (INIS)

    Bedian, V.; Summers, M.C.; Kauffman, S.A.

    1988-01-01

    We have identified early embryo proteins related to the segmentation gene Krueppel by [35S]methionine pulse labelling and two-dimensional gel electrophoresis. Protein synthesis differences shared by homozygous embryos of two Krueppel alleles when compared to heterozygous and wild-type embryos are reported. The study was extended to syncytial blastoderm stages by pulse labelling and gel analysis of single embryos, using Krueppel-specific proteins from gastrula stages as molecular markers for identifying homozygous Krueppel embryos. Localized expression of interesting proteins was examined in embryo fragments. The earliest differences detected at nuclear migration stages showed unregulated synthesis in mutant embryos of two proteins that have stage specific synthesis in normal embryos. At the cellular blastoderm stage one protein was not synthesized and two proteins showed apparent shifts in isoelectric point in mutant embryos. Differences observed in older embryos included additional proteins with shifted isoelectric points and a number of qualitative and quantitative changes in protein synthesis. Five of the proteins with altered rates of synthesis in mutant embryos showed localized synthesis in normal embryos. The early effects observed are consistent with the hypothesis that the Krueppel product can be a negative or positive regulator of expression of other loci, while blastoderm and gastrula stage shifts in isoelectric point indicate that a secondary effect of Krueppel function may involve post-translational modification of proteins

  9. Two-stage free electron laser research

    Science.gov (United States)

    Segall, S. B.

    1984-10-01

    KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.

  10. Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development.

    Science.gov (United States)

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1987-09-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.

  11. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    Science.gov (United States)

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all Pembryo group were significantly higher than those in classⅡ frozen embryo group (both Pembryos of the better quality embryo are higher.

  12. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae).

    Science.gov (United States)

    Ituarte, Romina Belén; Lignot, Jehan-Hervé; Charmantier, Guy; Spivak, Eduardo; Lorin-Nebel, Catherine

    2016-06-01

    The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.

  13. Changes in the dielectric properties of medaka fish embryos during development, studied by electrorotation

    International Nuclear Information System (INIS)

    Shirakashi, Ryo; Mischke, Miriam; Fischer, Peter; Memmel, Simon; Krohne, Georg; Fuhr, Günter R.; Zimmermann, Heiko; Sukhorukov, Vladimir L.

    2012-01-01

    Highlights: ► Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. ► The three-shell dielectric model matches the rotation spectra of medaka eggs. ► The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz–MHz frequency range. During development from blastula to early somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos’ viability/conditions in basic research and industrial aquaculture.

  14. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    Science.gov (United States)

    Majidi Gharenaz, Nasrin; Movahedin, Mansoureh; Mazaheri, Zohreh; Pour beiranvand, Shahram

    2016-01-01

    Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240) were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80), vitrified at 8 cell stage (n=80), vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80). Embryos were vitrified by using cryolock, (open system) described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03). In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004), however expression of Bax and Bcl-2 (apoptotic) genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003), but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage. PMID:27679826

  15. Radiosensitivity of Bombyx mori embryos and its modification by thermal shock

    International Nuclear Information System (INIS)

    Agaev, F.A.; Zakrzhevskaya, D.T.; Yusifov, N.I.; Gaziev, A.I.; AN Azerbajdzhanskoj SSR, Baku

    1991-01-01

    Radiosensitivity of Bombyx mori embryos on days 3-4 of their development is more than 10 times higher than that of 7-9 day embryos. The rate of DNA synthesis in the embryos correlates with their radiosensitivity. Heat treatment (40 deg C, 60 min) of embryos just before γ-irradiation increases their radioresistance (DMF=+1.6), whereas such a treatment immediately after irradiation reduces the survival rate of embryos as compared to the controls irradiated without heat treatment (DMA=-1.5). The radiomodifying effect of the thermal shock on the Bombyx mori embryos is the same with exposure at both the radioresistant and the radiosensitive stage of their development. However, it is more pronounced at the radiosensitive stage

  16. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos.

    Science.gov (United States)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-11-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.

  17. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    International Nuclear Information System (INIS)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-01-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  18. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong [University of South China, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, Hengyang, Hunan Province (China)

    2016-11-15

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  19. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  20. Characterization of the onset of embryonic control and early development in the bovine embryo

    International Nuclear Information System (INIS)

    Barnes, F.L.

    1988-01-01

    Bovine embryos were used to determine if morphological and molecular features of early development are similar to in vivo recovered bovine embryos and to determine at what level early bovine development is regulated. Radiolabeling of IVP embryos and in vivo recovered embryos with 35 S-methionine for SDS-polyacrylamide gel electrophoresis reveals that these embryos are equivalent. Few differences in protein profiles are observed between 1- and early 4-cell embryos. A change in protein profiles begins at the mid 4-cell stage and continues into the 8-cell stage. Few differences in protein profiles are observed between 1- and early 4-cell embryos. A change in protein profiles begins at the mid 4-cell stage and continues into the 8-cell stage. Few differences in protein profiles are observed between late 8-cells and morulae. This transition is α-amanitin sensitive therefore due to de novo embryonic transcription. Embryonic transcription is partially responsible for terminating the post-transcriptionally regulated period of early bovine development. Argentophillic nucleolar organizing regions (Ag-NORs) indicate onset of nucleolar activation. Ag-NORs were absent in 2- and 4-cell IVP embryos and rarely occurred in 8-cell IVP embryos cultured in vitro. IVP 1- and 2-cell embryos cultured to blastocysts in sheep oviducts demonstrated Ag-NORs. Thus the lack of nucleolar activation of IVP embryos cultured in vitro is culture induced between the 2- and 8-cell stage

  1. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    Directory of Open Access Journals (Sweden)

    Nasrin Majidi Gharenaz

    2016-08-01

    Full Text Available Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240 were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80, vitrified at 8 cell stage (n=80, vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80. Embryos were vitrified by using cryolock, (open system described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03. In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004, however expression of Bax and Bcl-2 (apoptotic genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003, but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage

  2. Preimplantation diagnosis of repeated miscarriage due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4- to 6-cell-stage embryos.

    Science.gov (United States)

    Tanaka, Atsushi; Nagayoshi, Motoi; Awata, Shoichiro; Mawatari, Yoshifumi; Tanaka, Izumi; Kusunoki, Hiroshi

    2004-01-01

    To evaluate the safety and accuracy of karyotyping the blastomere chromosomes at metaphase in the natural cell cycle for preimplantation diagnosis. A pilot study. A private infertility clinic and a university laboratory. Eleven patients undergoing IVF and preimplantation diagnosis. Intact human embryos at the 4- to 6-cell stage and human-mouse heterokaryons were cultured and checked hourly for disappearance of the nuclear envelope. After it disappeared, the metaphase chromosomes were analyzed by fluorescence in situ hybridization. Percentage of analyzable metaphase plates and safety and accuracy of the method. The success rate of electrofusion to form human-mouse heterokaryons was 87.1% (27/31), and analyzable chromosomes were obtained from 77.4% (24/31) of the heterokaryons. On the other hand, disappearance of the nuclear envelope occurred in 89.5% (17/19) of the human embryos and it began earlier than that in the heterokaryons. Analyzable chromosomes were obtained and their translocation sites were identified in all blastomeres biopsied from the 17 embryos. After the biopsy, 67.0% of the embryos could develop to the blastocyst stage. The natural cell cycle method reported herein requires frequent observation, but it is safe, with no artificial effects on the chromosomes and without loss of or damage to blastomeres, which occurred with the electrofusion method. Using the natural cell cycle method, we could perform preimplantation diagnosis with nearly 100% accuracy.

  3. Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium

    Science.gov (United States)

    Smith, D. L.; Krikorian, A. D.

    1989-01-01

    Excised zygotic embryos, mericarps ("seeds") and hypocotyls of seedlings of cultivated carrot Daucus carota cv. Scarlet Nantes were evaluated for their ability to generate somatic embryos on a semisolid hormone-free nutrient medium. Neither intact zygotic embryos nor hypocotyls ever produced somatic embryos. However, mericarps and broken zygotic embryos were excellent sources for somatic embryo production (response levels as high as 86%). Somatic embryo formation was highest from cotyledons, but was also observed on isolated hypocotyls and root tips of mature zygotic embryos. On media containing unreduced nitrogen, somatic embryo formation led to the generation of vigorous cultures comprised entirely of somatic embryos at various stages of development which in turn proliferated still other somatic embryos. However, a medium was devised which when 1-5 mM NH4+ was the sole nitrogen source, led only to a proliferation of globular proembryos. Sustained subculturing of these proembryos at 2-3 week intervals enabled establishment of highly uniform cultures in which no further development into more mature stages of embryonic development occurred. These have been maintained, without decline, as morphogenetically competent proembryonic globules for over ten months. A basal medium containing from 1-5 mM NH4+ as the sole nitrogen source appears not to be inductive to somatic proembryo formation. Instead, such a medium is best thought of as permissive to the expression of embryogenically determined cells within zygotic embryos. By excising and breaking or wounding zygotic embryos, constituent cells are probably released from positional or chemical restraints and thus are able to express their innate embryogenic potential. Once a proembryonic culture is established, this medium containing 1-5 mM NH4+ as the sole nitrogen source provides a nonpermissive environment to the development and growth of later embryonic stages, but it does allow the continued formation and

  4. Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development.

    Science.gov (United States)

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1988-08-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-17, is here continued for stages 18 and 19. With the aid of a computerized bubble-sort algorithm, 58 individual embryos were ranked in ascending order of the features present. The increasing structural complexity provided 40 new features in these two stages. The chief characteristics of stage 18 (approximately 44 postovulatory days) are rapidly growing basal nuclei; appearance of the extraventricular bulge of the cerebellum (flocculus), of the superior cerebellar peduncle, and of follicles in the epiphysis cerebri; and the presence of vomeronasal organ and ganglion, of the bucconasal membrane, and of isolated semicircular ducts. The main features of stage 19 (approximately 48 days) are the cochlear nuclei, the ganglion of the nervus terminalis, nuclei of the prosencephalic septum, the appearance of the subcommissural organ, the presence of villi in the choroid plexuses of the fourth and lateral ventricles, and the stria medullaris thalami.

  5. Long-distance transportation of primate embryos developing in culture: a preliminary study.

    Science.gov (United States)

    Nichols, Stephanie; Harvey, Alexandra; Gierbolini, Lynette; Gonzalez-Martinez, Janis; Brenner, Carol; Bavister, Barry

    2010-03-01

    Non-human primate embryos are invaluable for conducting research relevant to human infertility and stem cells, but their availability is restricted. In this preliminary study, rhesus monkey embryos were produced by IVF at the Caribbean Primate Research Centre and shipped in tubes of gassed culture medium within a battery-powered transport incubator by overnight courier to Wayne State University in Michigan. Upon arrival, the embryos were incubated in fresh culture medium to evaluate further development. In 11 shipments comprising 98 cleavage-stage embryos developing from oocytes that were mature (MII) upon collection, 51 (52%) reached advanced preimplantation stages (morula to hatched blastocyst) during prolonged culture following transportation. However, most embryos produced from oocytes that were immature (MI) at collection arrested and only 5/51 (10%) reached advanced stages of development. This study demonstrates that non-cryopreserved primate embryos can be routinely transported between distant sites without loss of developmental ability. In this way, the processes of production and study of non-cryopreserved primate embryos need not be restricted to the same or nearby laboratories. This will expand the use of these embryos for research and facilitate generation of translationally relevant information. Published by Elsevier Ltd.

  6. Closure of the vertebral canal in human embryos and fetuses

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S. Eleonore; Lamers, Wouter H.

    2017-01-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10weeks of

  7. Regional localization of suspensor mRNAs during early embryo development.

    Science.gov (United States)

    Weterings, K; Apuya, N R; Bi, Y; Fischer, R L; Harada, J J; Goldberg, R B

    2001-11-01

    We investigated gene activity within the giant embryos of the scarlet runner bean (Phaseolus coccineus) to gain understanding of the processes by which the apical and basal cells become specified to follow different developmental pathways after division of the zygote. We identified two mRNAs, designated G564 and C541, that accumulate specifically within the suspensor of globular-stage embryos. G564 mRNA accumulates uniformly throughout the suspensor, whereas C541 mRNA accumulates to a higher level within the large basal cells of the suspensor that anchor the embryo to the surrounding seed tissue. Both G564 and C541 mRNAs begin to accumulate shortly after fertilization and are present within the two basal cells of embryos at the four-cell stage. In contrast, at the same stage, these mRNAs are not detectable within the two descendants of the apical cell. Nor are they detectable within cells of the embryo sac before fertilization, including the egg cell. We used a G564/beta-glucuronidase reporter gene to show that the G564 promoter is activated specifically within the basal region and suspensor of preglobular tobacco embryos. Analysis of the G564 promoter identified a sequence domain required for transcription within the suspensor that contains several copies of a conserved motif. These results show that derivatives of the apical and basal cells transcribe different genes as early as the four-cell stage of embryo development and suggest that the apical and basal cells are specified at the molecular level after division of the zygote.

  8. Regional Localization of Suspensor mRNAs during Early Embryo Development

    Science.gov (United States)

    Weterings, Koen; Apuya, Nestor R.; Bi, Yuping; Fischer, Robert L.; Harada, John J.; Goldberg, Robert B.

    2001-01-01

    We investigated gene activity within the giant embryos of the scarlet runner bean (Phaseolus coccineus) to gain understanding of the processes by which the apical and basal cells become specified to follow different developmental pathways after division of the zygote. We identified two mRNAs, designated G564 and C541, that accumulate specifically within the suspensor of globular-stage embryos. G564 mRNA accumulates uniformly throughout the suspensor, whereas C541 mRNA accumulates to a higher level within the large basal cells of the suspensor that anchor the embryo to the surrounding seed tissue. Both G564 and C541 mRNAs begin to accumulate shortly after fertilization and are present within the two basal cells of embryos at the four-cell stage. In contrast, at the same stage, these mRNAs are not detectable within the two descendants of the apical cell. Nor are they detectable within cells of the embryo sac before fertilization, including the egg cell. We used a G564/β-glucuronidase reporter gene to show that the G564 promoter is activated specifically within the basal region and suspensor of preglobular tobacco embryos. Analysis of the G564 promoter identified a sequence domain required for transcription within the suspensor that contains several copies of a conserved motif. These results show that derivatives of the apical and basal cells transcribe different genes as early as the four-cell stage of embryo development and suggest that the apical and basal cells are specified at the molecular level after division of the zygote. PMID:11701878

  9. Development of the embryonic heat shock response and the impact of repeated thermal stress in early stage lake whitefish (Coregonus clupeaformis) embryos.

    Science.gov (United States)

    Whitehouse, Lindy M; McDougall, Chance S; Stefanovic, Daniel I; Boreham, Douglas R; Somers, Christopher M; Wilson, Joanna Y; Manzon, Richard G

    2017-10-01

    Lake whitefish (Coregonus clupeaformis) embryos were exposed to thermal stress (TS) at different developmental stages to determine when the heat shock response (HSR) can be initiated and if it is altered by exposure to repeated TS. First, embryos were subject to one of three different TS temperatures (6, 9, or 12°C above control) at 4 points in development (21, 38, 60 and 70 days post-fertilisation (dpf)) for 2h followed by a 2h recovery to understand the ontogeny of the HSR. A second experiment explored the effects of repeated TS on the HSR in embryos from 15 to 75 dpf. Embryos were subjected to one of two TS regimes; +6°C TS for 1h every 6 days or +9°C TS for 1h every 6 days. Following a 2h recovery, a subset of embryos was sampled. Our results show that embryos could initiate a HSR via upregulation of heat shock protein 70 (hsp70) mRNA at all developmental ages studied, but that this response varied with age and was only observed with a TS of +9 or +12°C. In comparison, when embryos received multiple TS treatments, hsp70 was not induced in response to the 1h TS and 2h recovery, and a downregulation was observed at 39 dpf. Downregulation of hsp47 and hsp90α mRNA was also observed in early age embryos. Collectively, these data suggest that embryos are capable of initiating a HSR at early age and throughout embryogenesis, but that repeated TS can alter the HSR, and may result in either reduced responsiveness or a downregulation of inducible hsps. Our findings warrant further investigation into both the short- and long-term effects of repeated TS on lake whitefish development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Early aberrations in chromatin dynamics in embryos produced under In vitro conditions

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Strejcek, Frantisek

    2012-01-01

    standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin-nuclear envelope interactions at the two-cell stage, delayed chromatin...... decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar...

  11. Estádios de desenvolvimento embrionário e localização do embrião zigótico em sementes de citros Embryo development stage and the location of embryo zygotic in the seed of citrine

    Directory of Open Access Journals (Sweden)

    Valtemir Gonçalves Ribeiro

    1999-08-01

    Full Text Available Objetivou-se estudar o comportamento de embriões zigóticos e nucelares aos 120, 130, 140 e 150 dias após serem efetuadas hibridações controladas entre a laranjeira 'Natal' (Citrus sinensis Osb. e o parental masculino Poncirus trifoliata (L. Raf. Em cada data, as sementes foram removidas, e os embriões excisados foram caracterizados em estádios de desenvolvimento (globular, cordiforme, torpedo e cotiledonar; coloração (clorofilado ou não; e localização na semente (próximo à micrópila ou mais interiormente. A partir dessas características, foram construídas tabelas de contingência para testar hipóteses de independência entre elas, mediante o teste exato de Fisher e chi² (qui-quadrado. Relações de dependência foram verificadas entre as características: estádios de desenvolvimento embrionário com a localização na semente; estádios de desenvolvimento embrionário com a natureza da plântula (zigótica ou nucelar; e entre natureza da plântula com a localização do embrião na semente. Verificou-se que os embriões zigóticos excisados de frutos com 130 a 150 dias da hibridação controlada, localizam-se, em grande maioria, próximos à região micropilar da semente, em estádio globular e cordiforme de desenvolvimento.Controlled hybridizations between 'Natal' orange variety (Citrus sinensis Osb. and male parent Poncirus trifoliata (L. Raf. were performed in order to study zygotic and nucellar embryos behaviour at 120, 130, 140 and 150 days. At very date the seeds were removed and the embryos excised to characterize: development stage (globular, cordiform, torpedo and cotyledonal; colour (with or without chlorophyll; and location in the seed (close to the micropyle or more internal in the seed. From these characteristics contingency tables were evaluated to test independency hypothesis through Fisher test and chi² (chi-square. Dependence relationships were observed between the following characteristics: stages of the

  12. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data

    DEFF Research Database (Denmark)

    Wennerholm, U-B; Söderström-Anttila, V; Bergh, C

    2009-01-01

    embryos, blastocysts and oocytes. METHODS: A systematic review was performed. We searched the PubMed, Cochrane and Embase databases from 1984 to September 2008. Inclusion criteria for slow freezing of early cleavage stage embryos were controlled studies reporting perinatal or child outcomes. For slow...... freezing and vitrification of blastocysts and oocytes, and vitrification of early cleavage stage embryos, case reports on perinatal or child outcomes were also included. Three reviewers independently read and evaluated all selected studies. RESULTS: For early cleavage embryos, data from controlled studies...... of blastocysts and for vitrification of early cleavage stage embryos, blastocysts and oocytes, limited neonatal data was reported. We found no long-term child follow-up data for any cryopreservation technique. CONCLUSION: Data concerning infant outcome after slow freezing of embryos was reassuring. Properly...

  13. Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos.

    Science.gov (United States)

    Browning, Lauren M; Lee, Kerry J; Nallathamby, Prakash D; Xu, Xiao-Hong Nancy

    2013-10-21

    Nanomaterials possess distinctive physicochemical properties and promise a wide range of applications, from advanced technology to leading-edge medicine. However, their effects on living organisms remain largely unknown. Here we report that the purified silver nanoparticles (Ag NPs) (97 ± 13 nm) incite specific developmental stage embryonic phenotypes and nanotoxicity in a dose-dependent manner, upon acute exposure of given stage embryos to the NPs (0-24 pM) for only 2 h. The critical concentrations of the NPs that cause 50% of embryos to develop normally for cleavage, early gastrula, early segmentation, late segmentation, and hatching stage zebrafish embryos are 3.5, 4, 6, 6, and 8 pM, respectively, showing that the earlier developmental stage embryos are much more sensitive to the effects of the NPs than the later stage embryos. Interestingly, distinctive phenotypes (head abnormality and no eyes) are observed only in cleavage and early gastrula stage embryos treated with the NPs, showing the stage-specific effects of the NPs. By comparing these Ag NPs with smaller Ag NPs (13.1 ± 2.5 nm), we found that the embryonic phenotypes strikingly depend upon the sizes of Ag NPs and embryonic developmental stages. These notable findings suggest that the Ag NPs are unlike any conventional chemicals or ions. They can potentially enable target-specific study and therapy for early embryonic development in size-, stage-, dose-, and exposure duration-dependent manners.

  14. Experimental analysis of control mechanisms in somite segmentation in avian embryos. II. Reduction of material in the gastrula stages of the chick.

    Science.gov (United States)

    Bellairs, R; Veini, M

    1984-02-01

    A new theory of control of somite segmentation in chick embryos is proposed. This supposses that tiny clusters of already programmed cells are present throughout the presumptive somite area at stage 4, but that in order to fulfill their destiny they probably depend on the addition of further cells from the primitive streak. Evidence is based on the two groups of experiments: a) Experiments involving transection across the primitive streak at various stages, (which results in a 'tail' which possesses mesodermal derivatives) and across the segmental plate (which results in a 'tail' lacking mesodermal derivatives). b) Experiments in which parts of embryos have been explanted with or without their primitive streak. It is suggested that the initial clusters of pre-programmed cells move further and further posteriorly, developing into somitomeres (the precursors of true somites) only as they receive re-inforcements from the primitive streak or, ultimately, from the tail bud.

  15. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    Science.gov (United States)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  16. Lethality of radioisotopes in early mouse embryos

    International Nuclear Information System (INIS)

    Macqueen, H.A.

    1979-01-01

    The development of pre-implantation mouse embryos was found to be prevented by exposure of the embryos to [ 35 S]methionine, but not to [ 3 H]methionine. Such embryos have also been shown to be highly sensitive to [ 3 H]thymidine. These observations are discussed with reference to the path lengths and energies of electrons emitted from the different radioisotopes. (author)

  17. Live embryo imaging to follow cell cycle and chromosomes stability after nuclear transfer.

    Science.gov (United States)

    Balbach, Sebastian T; Boiani, Michele

    2015-01-01

    Nuclear transfer (NT) into mouse oocytes yields a transcriptionally and functionally heterogeneous population of cloned embryos. Most studies of NT embryos consider only embryos at predefined key stages (e.g., morula or blastocyst), that is, after the bulk of reprogramming has taken place. These retrospective approaches are of limited use to elucidate mechanisms of reprogramming and to predict developmental success. Observing cloned embryo development using live embryo cinematography has the potential to reveal otherwise undetectable embryo features. However, light exposure necessary for live cell cinematography is highly toxic to cloned embryos. Here we describe a protocol for combined bright-field and fluorescence live-cell imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This protocol, which can be adapted to observe other reporters such as Oct4-GFP or Nanog-GFP, allowed us to quantitatively analyze cleavage kinetics of cloned embryos.

  18. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    Science.gov (United States)

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  19. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Danilo Cimadomo

    2016-01-01

    Full Text Available Preimplantation Genetic Diagnosis and Screening (PGD/PGS for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential.

  20. Dose estimation in embryo or fetus in external fields

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.

    2001-01-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation

  1. Immunoelectron microscopy in embryos.

    Science.gov (United States)

    Sierralta, W D

    2001-05-01

    Immunogold labeling of proteins in sections of embryos embedded in acrylate media provides an important analytical tool when the resolving power of the electron microscope is required to define sites of protein function. The protocol presented here was established to analyze the role and dynamics of the activated protein kinase C/Rack1 regulatory system in the patterning and outgrowth of limb bud mesenchyme. With minor changes, especially in the composition of the fixative solution, the protocol should be easily adaptable for the postembedding immunogold labeling of any other antigen in tissues of embryos of diverse species. Quantification of the labeling can be achieved by using electron microscope systems capable of supporting digital image analysis. Copyright 2001 Academic Press.

  2. Is it time for a paradigm shift in understanding embryo selection?

    Science.gov (United States)

    Gleicher, Norbert; Kushnir, Vitaly A; Barad, David H

    2015-01-11

    Embryo selection has been an integral feature of in vitro fertilization (IVF) almost since its inception. Since the advent of extended blastocyst stage embryo culture, and especially with increasing popularity of elective single embryo transfer (eSET), the concept of embryo selection has increasingly become a mainstay of routine IVF. We here, however, argue that embryo selection via blastocyst stage embryo transfer (BSET), as currently practiced, at best improves IVF outcomes only for a small minority of patients undergoing IVF cycles. For a large majority BSET is either ineffective or, indeed, may actually be harmful by decreasing IVF pregnancy chances. Overall, only a small minority of patients, thus, benefit from prolonged embryo culture, while BSET, as a tool to enhance IVF outcomes, is increasingly utilized as routine care in IVF for all patients. Since newer methods of embryo selection, like preimplantation genetic screening (PGS) and closed system embryo incubation with time-lapse photography are practically dependent on BSET, these concepts of embryo selection, currently increasingly adopted in mainstream IVF, require reconsideration. They, automatically, transfer the downsides of BSET, including decreases in IVF pregnancy chances in some patients, to these new procedures, and in addition raise serious questions about cost-effectiveness.

  3. Developmental competence of porcine chimeric embryos produced by aggregation

    DEFF Research Database (Denmark)

    Li, Juan; Jakobsen, Jannik E.; Xiong, Qiang

    2015-01-01

    The purpose of our study was to compare the developmental competence and blastomere allocation of porcine chimeric embryos formed by micro-well aggregation. Chimeras were created by aggregating either two blastomeres originating from 2-cell embryos or two whole embryos, where embryos were produced...... either by parthenogenetic activation (PA) or handmade cloning (HMC). Results showed that the developmental competence of chimeric embryos, evaluated based on their blastocyst rate and total cell number per blastocyst, was increased when two whole 2-cell stage embryos (PA or HMC) were aggregated....... In comparison, when two blastomeres were aggregated, the developmental competence of the chimeric embryos decreased if the blastomeres were either from PA or from HMC embryos, but not if they were from different sources, i.e. one PA and one HMC blastomere. To evaluate the cell contribution in embryo formation...

  4. Xenopus laevis embryos and tadpoles as models for testing for ...

    African Journals Online (AJOL)

    The toxicity of bio available Zn, Cu, Pb, and Cd on the life stages of Xenopus laevis embryos and tadpoles was investigated. Cu and Cd were found to affect the hatching success of the embryos, with a strong negative relationship existing between the increase in Cu concentrations and the hatching of the embryos.

  5. In vitro embryo culture of rarely endangered musella lasiocarpa (musaceae) with embryo dormancy

    International Nuclear Information System (INIS)

    Anjun, T.

    2014-01-01

    Musella lasiocarpa (Musaceae) is an ornamental annually producing many viable seeds, but seldom recruited by seeds in the wild. One mature Musella seed has a small mushroom-shaped embryo without discernible organ differentiation. Therefore, freshly-harvested mature seeds are dormant. When the seeds gradually finished differentiation during warm stratification at 23 degree C, they germinated to 82%. Besides, extracted embryos from fresh seeds did not germinate on the basal medium of Murshige and Skoog medium (MS) supplemented with 3% sucrose and 0.8% agar, but they were induced to form calli and root by media. The optimum medium for inducing calli was MS + 1.0 mg/L 6-BA + 0.05 mg/L NAA + 100 mg/L Vc with the highest proliferation coefficient (7.3) in 35 days. Moreover, the embryos from the 6-month warm stratified seeds could proliferate on the suitable medium. The optimal medium for rooting was MS + 0.5 mg/L 2, 4-D + Vitamin C 100 mg/L. The results confirmed that both the embryo developmental stage and appropriate combination of chemicals significantly affected seed germination and In vitro embryo culture of this species. (author)

  6. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    Directory of Open Access Journals (Sweden)

    Miguel A. Ibeas

    2017-12-01

    Full Text Available Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds.

  7. Impact of motorboats on fish embryos depends on engine type.

    Science.gov (United States)

    Jain-Schlaepfer, Sofia; Fakan, Eric; Rummer, Jodie L; Simpson, Stephen D; McCormick, Mark I

    2018-01-01

    Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite embryo health being critical to larval survival and recruitment. Here, we used a novel setup to monitor heart rates of embryos from the staghorn damselfish ( Amblyglyphidodon curacao ) in shallow reef conditions, allowing us to examine the effects of in situ boat noise in context with real-world exposure. We found that the heart rate of embryos increased in the presence of boat noise, which can be associated with the stress response. Additionally, we found 2-stroke outboard-powered boats had more than twice the effect on embryo heart rates than did 4-stroke powered boats, showing an increase in mean individual heart rate of 1.9% and 4.6%, respectively. To our knowledge this is the first evidence suggesting boat noise elicits a stress response in fish embryo and highlights the need to explore the ecological ramifications of boat noise stress during the embryo stage. Also, knowing the response of marine organisms caused by the sound emissions of particular engine types provides an important tool for reef managers to mitigate noise pollution.

  8. High dose progesterone effects the growth of early chick embryo

    International Nuclear Information System (INIS)

    Iqbal, I.; Qamar, K.

    2014-01-01

    Objective: To find out the effect of high dose progesterone on the development of early chick embryo. Study Design: Lab based randomized controlled trial. Place and Duration of study: This study was carried out in Army Medical College and Post Graduate Institute of Poultry Sciences, Rawalpindi from June 2010 - December 2010. Material and Methods: Forty five specific pathogen free, fertile, eggs of Fyoumi species of chick were selected at zero hour of incubation. They were incubated at 37.5oC and 75% relative humidity for 26 hrs until the embryos reached stage 8 of the development. Then on stage 8 the eggs were divided into three groups consisting of 15 eggs per group. The first group (GI) was incubated without any operation. The second (G2) and third groups (G3) were injected with two and twenty times more than physiologic does of progesterone respectively. After 48 hours of incvbation, all embryos were examined for their development under light microscopy. Results: All the embryos of G1 and G2 showed normal development according to their stage of development, while 4 out of 11 embryos of G3 were under developed and their survival rate was also less. Conclusion: Exogenous progesterone at levels twenty times above its physiologic range effects the development of chick embryos. Further studies are needed to explain the mechanisms of this effect. (author)

  9. MORPHOLOGICAL CHANGES DURING THE DEVELOPMENT OF SOMATIC EMBRYOS OF SAGO (Metroxylon sagu Rottb.

    Directory of Open Access Journals (Sweden)

    Pauline D. Kasi

    2016-10-01

    Full Text Available Development of somatic embryos of sago (Metroxylon sagu Rottb. on agar-solidified medium are highly varied producing heterogeneous seedlings. Understanding of this phenomenon may help in improving the cultural procedures and conditions of sagosomatic embryogenesis to obtain uniform seedlings in a large scale. This experiment was conducted at the laboratory for plant cell culture and micropropagation, Indonesian Biotechnology Research Institute for Estate Crops from January to March 2006 to examine morphological changes i.e. color and development stages of sago during their somatic embryo development on an agar-solidified medium. Twenty single globular somatic embryos of sago with specific color (yellowish, greenish, and reddish were cultured in a Petri dish supplemented with a solid medium. The medium was a micronutrients-modified MS (MMS with half strength of macronutrients containing 0.01 mg l-1 ABA, 2 mg l-1 kinetin, 20 g l-1 sucrose, 0.5 g l-1 activated charcoal, and 2 g l-1 gelrite. Parameter observed was the percentage of embryo’s number based on color and developmental stage. The result showed that at the end of 6-week culture passage, most originally greenish (80.8% and reddish (95.8% embryos remained unchanged in their colors, whereas almost half of the originally yellowish embryos turned to greenish and only 30%remained yellowish. At the same time, single globular embryos have changed gradually into the next developmental stages, although not all of the embryos were germinated. The initial color of embryo affected the rate of the developmental stage changes. Yellowish and greenish globular embryos developed more rapidly into cotyledon or germinant stages at 58% and 55% respectively, in 6 weeks than the reddish ones (41%. Therefore, the yellowish and greenish embryos are the best sources of material for in vitro mass propagation and synthetic seed production of sago.

  10. Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine Fertilized Embryo Development

    Directory of Open Access Journals (Sweden)

    Brendan Mulligan

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-α (PFT-α, on preimplantation porcine in vitro fertilized (IVF embryo development in culture. Treatment of PFT-α was administered at both early (0 to 48 hpi, and later stages (48 to 168 hpi of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3, was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-α, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-α treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-α administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-α treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-α may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-α as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

  11. Parent-of-origin dependent gene-specific knock down in mouse embryos

    International Nuclear Information System (INIS)

    Iqbal, Khursheed; Kues, Wilfried A.; Niemann, Heiner

    2007-01-01

    In mice hemizygous for the Oct4-GFP transgene, the F1 embryos show parent-of-origin dependent expression of the marker gene. F1 embryos with a maternally derived OG2 allele (OG2 mat /-) express GFP in the oocyte and during preimplantation development until the blastocyst stage indicating a maternal and embryonic expression pattern. F1-embryos with a paternally inherited OG2 allele (OG2 pat /-) express GFP from the 4- to 8-cell stage onwards showing only embryonic expression. This allows to study allele specific knock down of GFP expression. RNA interference (RNAi) was highly efficient in embryos with the paternally inherited GFP allele, whereas embryos with the maternally inherited GFP allele showed a delayed and less stringent suppression, indicating that the initial levels of the target transcript and the half life of the protein affect RNAi efficacy. RT-PCR analysis revealed only minimum of GFP mRNA. These results have implications for studies of gene silencing in mammalian embryos

  12. Effect of early addition of bone morphogenetic protein 5 (BMP5) to embryo culture medium on in vitro development and expression of developmentally important genes in bovine preimplantation embryos.

    Science.gov (United States)

    García, Elina V; Miceli, Dora C; Rizo, Gabriela; Valdecantos, Pablo A; Barrera, Antonio D

    2015-09-01

    Previous studies have reported that bone morphogenetic protein 5 (BMP5) is differentially expressed in the isthmus of bovine oviducts and it is present in the oviductal fluid. However, the specific action of this factor is unknown. To evaluate whether BMP5 exerts some effect during early bovine embryo development, gene expression of BMP5, BMP receptors, and the effect of exogenous BMP5 on in vitro development and expression of developmentally important genes were assessed. In experiment 1, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from in vitro fertilization, were collected for analysis of BMP5 and BMP receptors (BMPR1A, BMPR1B, and BMPR2) messenger RNA (mRNA) expression. On the basis of previous results, in experiment 2, presumptive zygotes were cultured for the first 48 hours after insemination in CR1aa medium assaying three different treatments: (1) control (CR1aa); (2) vehicle control (CR1aa + 0.04 mM HCl), and (3) BMP5 treatment (CR1aa + 100 ng/mL of BMP5). The cleavage rate was evaluated 48 hours after insemination (Day 2), and then, embryos were transferred to CR1aa + 10% fetal bovine serum. The blastocyst rate was determined on Day 7. In experiment 3, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from control and BMP5-treated groups, were collected for analysis of ID2 (BMP target gene), OCT4, NANOG, and SOX2 (pluripotency genes) mRNA expression. BMP5 transcripts were not detectable in any of the embryonic stages examined, whereas the relative mRNA abundance of the three BMP receptors analyzed was greater in early embryo development stages before maternal-embryonic transition, raising the possibility of a direct effect of exogenous BMPs on the embryo during the first developmental period. Although early addition of 100 ng/mL of BMP5 to the embryo culture medium had no effect on the cleavage rate, a significantly higher proportion of cleaved embryos developed to the

  13. Effects of heat stress on bovine preimplantation embryos produced in vitro.

    Science.gov (United States)

    Sakatani, Miki

    2017-08-19

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.

  14. A Review of the Teratogenic Factors Effect on Embryo

    Directory of Open Access Journals (Sweden)

    Manzarbanoo Shojaei fard

    2017-02-01

    Full Text Available Background & Objectives: Teratology is a branch of embryology science that studies causes, mechanisms and abnormal pattern development. Embryo growth traumatic factors during pregnancy are called teratogens that some teratogens pass the placental barrier and cause adverse effect during development stages and malformation, however a drug may improve general health of the mother, but it might be poisonous for embryo and cause diverse malformation. Since study of embryo health and risk factor in this stage is important, the aim of this review article was the investigation of some types of teratosgens (such as radiation, infectious agents, heat disorders, maternal conditions and particularly the effect of teratogenic drugs on embryo including some legal drugs (such as acetaminophen, thalidomide, acyclovir, sedatives and anticonvulsants and illegal drugs (such as nicotine, alcohol, cocaine and marijuana. Conclusion: In general, teratogens depending on the type and duration of exposure in pregnancyperiod, adversely affect embryo and cause various disorders. A better understanding of these teratogens can contribute to prevent these defects, since many other drugs with similar effects and lower teratogenicity can be used to improve mothers’ health.

  15. Blastocyst Morphology Holds Clues Concerning The Chromosomal Status of The Embryo

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Savio Figueira

    2015-07-01

    Full Text Available Background: Embryo morphology has been proposed as an alternative marker of chromosomal status. The objective of this retrospective cohort study was to investigate the association between the chromosomal status on day 3 of embryo development and blastocyst morphology. Materials and Methods: A total of 596 embryos obtained from 106 cycles of intracytoplasmic sperm injection (ICSI followed by preimplantation genetic aneuploidy screening (PGS were included in this retrospective study. We evaluated the relationship between blastocyst morphological features and embryonic chromosomal alteration. Results: Of the 564 embryos with fluorescent in situ hybridization (FISH results, 200 reached the blastocyst stage on day 5 of development. There was a significantly higher proportion of euploid embryos in those that achieved the blastocyst stage (59.0% compared to embryos that did not develop to blastocysts (41.2% on day 5 (P<0.001. Regarding blastocyst morphology, we observed that all embryos that had an abnormal inner cell mass (ICM were aneuploid. Embryos with morphologically normal ICM had a significantly higher euploidy rate (62.1%, P<0.001. As regards to the trophectoderm (TE morphology, an increased rate of euploidy was observed in embryos that had normal TE (65.8% compared to embryos with abnormal TE (37.5%, P<0.001. Finally, we observed a two-fold increase in the euploidy rate in high-quality blastocysts with both high-quality ICM and TE (70.4% compared to that found in low-quality blastocysts (31.0%, P<0.001. Conclusion: Chromosomal abnormalities do not impair embryo development as aneuploidy is frequently observed in embryos that reach the blastocyst stage. A high-quality blastocyst does not represent euploidy of chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y. However, aneuploidy is associated with abnormalities in the ICM morphology. Further studies are necessary to confirm whether or not the transfer of blastocysts with low-quality ICM should be

  16. Day 4 good morula embryo transfer provided compatible live birth rate with day 5 blastocyst embryo in fresh IVF/ET cycles.

    Science.gov (United States)

    Li, Ryh-Sheng; Hwu, Yuh-Ming; Lee, Robert Kuo-Kuang; Li, Sheng-Hsiang; Lin, Ming-Huei

    2018-02-01

    Embryo transfers during cleavage stage (day 2 or day 3) and blastocyst stages (day 5 or day 6) are common in current daily practice in fresh IVF/ET cycles. Data regarding transferring day 4 embryos, morula/compact stage, is still restricted and the grading system is also inconsistent, as between IVF clinics. This study provided a new detailed classification system for morula/compact stage embryos and compared successes rates between day 4 and day 5 ET. This was a retrospective study. A review of medical records from January 1st, 2013, to December 31st 2015, performed for all conventional insemination and ICSI cycles with a GnRH-antagonist protocol at the Infertility Division of MacKay Memorial Hospital in Taipei City, Taiwan. There were 427 cycles included in our study, 107 in study group (day 4 MET) and 320 in control group (day 5 BET). Pregnancy rates and live birth rate were compatible, as between morula embryo transfer (MET) and blastocyst embryo transfer (BET). The implantation rate (36.3% vs. 39.6%, respectively, p = 0.500), clinical pregnancy rate (49.5% vs. 51.9%, respectively, p = 0.737), and live birth rate (42.1% vs. 45.6%, respectively, p = 0.574) were statistically insignificant between groups. The term birth rate was statistically higher in the MET group than in the BET group (95.7% vs. 79.5%, respectively, p = 0.006). When the clinical outcomes between day 4 good MET and day 5 good BET were compared, the results were compatible. The implantation rate (48.8% vs. 41.1%, respectively, p = 0.335), clinical pregnancy rate (55.0% vs. 53.2%, respectively, p = 0.867), and live birth rate (47.5% vs. 47.1%, respectively, p = 1.000) showed no significant difference. The term birth rate was also higher in day 4 good MET group than in day 5 good BET group (100% vs. 78.3%, respectively, p = 0.025). In this study, we performed day 4 MET avoid BET on Sunday. The grading system we provided was more detailed for embryo selection and it was easier to

  17. Silver Nanoparticles Incite Size and Dose-Dependent Developmental Phenotypes and Nanotoxicity in Zebrafish Embryos

    Science.gov (United States)

    Browning, Lauren M.; Lee, Kerry J.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2013-01-01

    Nanomaterials possess distinctive physicochemical properties and promise a wide range of applications, from advanced technology to leading-edge medicine. However, their effects on living organisms remain largely unknown. Here we report that the purified silver nanoparticles (Ag NPs, 97 ± 13 nm) incite specific developmental stage embryonic phenotypes and nanotoxicity in a dose-dependent manner, upon acute exposure of given-stage embryos to the NPs (0–24 pM) for only 2 h. The critical concentrations of the NPs that cause 50% of embryos develop normally for cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stage zebrafish embryos are 3.5, 4, 6, 6, and 8 pM, respectively, showing that the earlier developmental stage embryos are much more sensitive to the effects of the NPs than the later stage. Interestingly, distinctive phenotypes (head abnormality and no eyes) are observed only in cleavage and early-gastrula stage embryos treated with the NPs, showing the stage-specific effects of the NPs. By comparing with our study of the smaller Ag NPs (13.1 ± 2.5 nm), we found that the embryonic phenotypes strikingly depend upon the sizes of Ag NPs and embryonic developmental stages. These notable findings suggest that the Ag NPs are unlike any conventional chemicals or ions. They can potentially enable target specific study and therapy for early embryonic development in size, stage, dose, and exposure-duration dependent manners. PMID:24024906

  18. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-01-01

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  19. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  20. In vitro development rate of preimplantation rabbit embryos cultured with different levels of melatonin.

    Science.gov (United States)

    Mehaisen, Gamal Mohamed Kamel; Saeed, Ayman Moustafa

    2015-02-01

    This study aimed to investigate the effect of melatonin supplementation at different levels in culture medium on embryo development in rabbits. Embryos of 2-4 cells, 8-16 cells and morula stages were recovered from nulliparous Red Baladi rabbit does by laparotomy technique 24, 48 and 72 h post-insemination, respectively. Normal embryos from each stage were cultured to hatched blastocyst stages in either control culture medium (TCM-199 + 20% fetal bovine serum) or control supplemented with melatonin at 10(-3) M, 10(-6) M or 10(-9) M. No effect of melatonin was found on development of embryos recovered at 24 h post-insemination. The high level of melatonin at 10(-3) M adversely affected the in vitro development rates of embryos recovered at 48 h post-insemination (52 versus 86, 87 and 80% blastocyst rate; 28 versus 66, 78 and 59% hatchability rate for 10(-3) M versus 10(-9) M, 10(-6) M and control, respectively, P< 0.05). At the morula stage, melatonin at 10-3 M significantly increased the in vitro development of embryos (92% for 10(-3) M versus 76% for control, P < 0.05), while the hatchability rate of these embryos was not improved by melatonin (16-30% versus 52% for melatonin groups versus control, P < 0.05). Results show that a moderate level of melatonin (10(-6) M) may improve the development and hatchability rates of preimplantation rabbit embryos. The addition of melatonin at a 10-3 M concentration enhances the development of rabbit morulae but may negatively affect the development of earlier embryos. More studies are needed to optimize the use of melatonin in in vitro embryo culture in rabbits.

  1. Development and quality of porcine parthenogenetically activated embryos after removal of zona pellucida

    DEFF Research Database (Denmark)

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard

    2013-01-01

    at all developmental stages, but the difference was only significant at the five-cell stage. When compared with development of zona-intact embryos, ZP removal decreased the overall blastocyst percentage (83.9 ± 2.0 vs. 72.5 ± 2.9, respectively) and especially the percentage of good morphology (grades 1......, the developmental percentages, the frequency of apoptosis, and robustness after removal of the ZP by pronase. Three experiments were made between zona-free PA embryos and zona-intact embryos: (1) determination of the timing of developmental stages using time-lapse observations for 6 days; (2) determination...

  2. Fruit, seed and embryo development of different cassava (Manihot ...

    African Journals Online (AJOL)

    Fruit, seed and embryo developments of different cassava (Manihot esculenta Crantz) genotypes, as well as embryo rescue, were investigated. The fruits of three genotypes after uncontrolled open pollination presented the same progressive development with similar sizes at different stages. There are large differences in ...

  3. Preimplantation development of embryos in women of advanced maternal age

    Directory of Open Access Journals (Sweden)

    O. V. Chaplia

    2014-04-01

    Full Text Available In order to reveal the influence of genetic component on the early embryo development, the retrospective study of morphokinetic characteristics of 717 embryos subjected to preimplantation genetic testing was conducted. Blastomere biopsy for FISH-based preimplantation genetic screening of 7 chromosomes was performed on the third day of culture, while embryo developmental potential and morphological features at the cleavage and blastulation stage were studied regarding maternal age particularly in the group of younger women and patients older than 36. Results of genetic testing revealed that euploid embryos rate gradually decreased with maternal age comprising 39.9% in young women group and 25.3% of specimen belonging to elder patients. At the cleavage stage, morphological characteristics of aneuploid and euploid embryos didn’t differ significantly regardless of the age of patients that could be accounted for the transcriptional silence of embryo genome till the third day of its development. However, in case of prolonged culture chromosomally balanced embryos rarely faced developmental arrest (in 7.9% and formed blastocysts half more frequently compared to aberrant embryos (respectively 75.6 versus 49.8%. Nevertheless, no substantial difference was found between blastocyst formation rate among embryos with similar genetic component regardless of the maternal age. Taking into consideration high rate of chromosomally unbalanced embryos specific to patients of advanced maternal age, the relative proportion of aneuplouid blastocysts was significantly higher in this group of embryos. Thus, without genetic screening there is a possibility of inaccurate selection of embryos for women of advanced reproductive age for transfer procedure even in case of prolonged culture. Consequently, increase of aneuploid embryos frequency associated with permanent preimplantation natural selection effectiveness along with the postimplantation natural selection failure

  4. Effects of 60Co gamma radiation on Biomphalaria glabrata (Say, 1818) Embryo, I. Mortality

    International Nuclear Information System (INIS)

    Okazaki, K.; Kawano, T.

    1990-01-01

    A study was conducted on the radiosensitivity of Biomphalaria glabrata embryos submitted to doses of 5, 10,15,20 and 25 Gy of 60 Co during the cleavage, blastula, gastrula, young trochophore and trochophore stages. Mortality was the parameter used to evaluated the damage induced by ionizing radiation. Susceptibility decreased with increasing embryo age and with decreased radiation dose. Estimated LD 50 values (15 days) showed that the cleavage stage (4.3 Gy) was approximately four times more radiosensitive than the trochophore stage (17.0 Gy). The survival curves obtained for each embryo stage are discussed on the basis of the multitarget theory. (author) [pt

  5. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Xue; Kang, Jin-Dan; Li, Suo; Jin, Long; Zhu, Hai-Ying; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2015-01-02

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming.

  6. Effects of N, N-dimethylglycine on the development of in vitro produced bovine embryos.

    Science.gov (United States)

    Takahashi, Toshikiyo; Itoh, Ryu; Nagai, Takashi

    2009-06-01

    This study investigated the effects of N, N-Dimethylglycine (DMG) on the development of in vitro produced (IVP) bovine embryos. IVP embryos were obtained by in vitro fertilization of in vitro matured oocytes for 6 h. In Experiment 1, IVP embryos were cultured in mSOFaa supplemented with bovine serum albumin but without glucose (SOF1) for 4 days, transferred to mSOFaa (with 5% fetal bovine serum and 1.5 mM glucose; SOF2) supplemented with 0 (control), 0.1,1 or 10 microM DMG and cultured for an additional 7 days (11 days in total) to assess their development in vitro. When cultured in the medium with 0.1 microM DMG, a significantly higher number of IVP embryos developed to the blastocyst and hatched blastocyst stages (40.3 and 40.8%, respectively) compared with the other groups (18.7-31.0% and 15.0-28.7%, respectively; PDMG for 4 days, transferred to SOF2 with or without 0.1 microM DMG and further cultured as in Experiment 1; DMG was added to either SOF1 or SOF2 and to both of them to assess its exposure effects on embryo development. When cultured continuously with DMG for 11 days, significantly higher rates of IVP embryos developed into blastocyst and hatched blastocyst stages (39.0 and 47.7%, respectively) compared with the other groups (31.0-32.2% and 29.5-31.0%, respectively; PDMG to IVC medium after 7 days of IVC. When DMG was added to IVC medium, the ratio of embryos developed to advanced developmental stages (No. of embryos developed to the blastocyst and expanded blastocyst stages/No. of embryos developed to the morula stage) was 28.7% (86/3) and 7 times higher than that of those cultured without DMG, 4.0% (52/13). These results suggest that addition of 0.1 microM DMG to mSOFaa during IVC of IVP bovine embryos has a promoting effect on their development.

  7. Testing the embryo, testing the fetus.

    Science.gov (United States)

    Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund

    2007-12-01

    This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of 'affected' embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo's and fetus's moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero).

  8. In vivo and in vitro development of Tibetan antelope (Pantholops hodgsonii interspecific cloned embryos

    Directory of Open Access Journals (Sweden)

    Guanghua SU,Lei CHENG,Yu GAO,Kun LIU,Zhuying WEI,Chunling BAI,Fengxia YIN,Li GAO,Guangpeng LI,Shorgan BOU

    2014-02-01

    Full Text Available The Tibetan antelope is endemic to the Tibetan Plateau, China, and is now considered an endangered species. As a possible rescue strategy, the development of embryos constructed by interspecies somatic cell nuclear transfer (iSCNT was examined. Tibetan antelope fibroblast cells were transferred into enucleated bovine, ovine and caprine oocytes. These cloned embryos were then cultured in vitro or in the oviducts of intermediate animals. Less than 0.5% of the reconstructed antelope-bovine embryos cultured in vitro developed to the blastocyst stage. However, when the cloned antelope-bovine embryos were transferred to caprine oviducts, about 1.6% of the embryos developed to the blastocyst stage. In contrast, only 0.7% of the antelope-ovine embryos developed to the morula stage and none developed to blastocysts in ovine oviducts. The treatment of donor cells and bovine oocytes with trichostatin A did not improve the embryo development even when cultured in the oviducts of ovine and caprine. When the antelope-bovine embryos, constructed from oocytes treated with roscovitine or trichostatin A, were cultured in rabbit oviducts 2.3% and 14.3% developed to blastocysts, respectively. It is concluded that although some success was achieved with the protocols used, interspecies cloning of Tibetan antelope presents difficulties still to be overcome. The mechanisms resulting in the low embryo development need investigation and progress might require a deeper understanding of cellular reprogramming.

  9. Effects of Co60 gamma radiation on Biomphalaria glabrata (Say, 1818) Embryo. II. Malformations

    International Nuclear Information System (INIS)

    Okazaki, K.; Kawano, T.

    1990-01-01

    The morphogenetic effects of ionizing radiation were investigated in Biomphalaria glabrata embryos irradiated in the cleavage, blastula, gastrula, young trochophore and trochophore stages with 5 to 25 Gy doses of 60 CO gamma radiation. The number of malformed embryos rapidly increased with increasing radiation dose, reaching a maximum between 5th to 8th day after irradiation in all stages analyzed. Susceptibility to malformation induction was higher the younger than the age of the irradiated embryo. However, for the cleavage stage the frequency of malformed embryos was inversely proportional to radiation dose for the same radiation dose. Several types of morphogenetic malformations were obtained, among then cephalic malformations, exogastrula, shell malformations and embryos with everted stomodeum, unspecific malformations being the most frequent. The results show that the types of malformation induced by radiation probably are not radiation-specific and do not depend on the dose applied [pt

  10. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S; Zhakhbazyan, A K; Nadtochenko, V A [N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Ryabova, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-31

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)

  11. EVALUATION OF ETHINYLESTRADIOL (EE2 EFFECT ON EMBRYO DEVELOPMENT IN COMMON CARP (CYPRINUS CARPIO

    Directory of Open Access Journals (Sweden)

    GABI DUMITRESCU

    2009-10-01

    Full Text Available Worldwide, the scientific researches performed during the last years are focused on the determination of the negative effects caused by natural and antropogeneous chemical compounds on aquatic species; these species are more exposed to most pollutants than the land species, for the simple reason that the aquatic environment is the last destination for most residues. Our research team proposed to test the toxic effect caused by ethinylestradiol on embryo development in common carp (Cyprinus carpio. Common carp embryos were purchased from the fish farm S.C. Acva Prod S.R.L. Cefa, Bihor County these were obtained by artificial reproduction. After taking and selection, the fecundated spawns were introduced in 10 Nunk culture plates of 45 ml, where we introduced 40 ml water, too. We created 3 batches, with two replications, namely: batch 1 – control, batch 2 – in water, we added ethinylestradiol (EE2 in concentration of 1.5 ng L-1 and batch 3 – we added in water a concentration of 7 ng L-1 EE2. During the incubation, the Nunk plates were kept in breeding aquariums, at a temperature of 24°C. Successive to the supervision of embryos in batch 3, 48 hours post-fecundation, we could observe evolution stagnations, 70% of them being in the stage of 40 somites of the segmentation period. At the same age, 100% of the control batch- embryos entered the stage of advanced faringula, and in batch 2 all embryos were in the stage of incipient faringula. 60-72 hours post-fecundation, all embryos in the batch 3 died, 90% in the 40 somite stage of the segmentation period and 10% in the stage of incipient faringula. 85 hours post-fecundation, all embryos belonging to the control batch were in the larva stage, while in batch 2, 90% were in the larva stage and 10% died in the stage of advanced faringula.

  12. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm and testa

    Directory of Open Access Journals (Sweden)

    Traud eWinkelmann

    2015-08-01

    Full Text Available Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified.Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.

  13. Nucleoli from two-cell embryos support the development of enucleolated germinal vesicle oocytes in the pig.

    Science.gov (United States)

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi

    2012-11-01

    Recent research has shown that nucleoli of oocytes at the germinal vesicle (GV) stage (GV nucleoli) are not necessary for oocyte maturation but are essential for early embryonic development. Nucleoli of 2-cell embryos (2-cell nucleoli) have morphology similar to that of nucleoli in oocytes at the GV stage. In this study, we examined the ability of 2-cell nucleoli to substitute for GV nucleoli in terms of supporting early embryonic development by nucleolus aspiration (enucleolation) and transfer into metaphase II (MII) oocytes or 2-cell embryos that were derived from enucleolated oocytes at the GV stage in the pig. When 2-cell embryos were centrifuged to move the lipid droplets to one side of the blastomere, multiple nucleoli in the nucleus fused into a single nucleolus. The nucleoli were then aspirated from the 2-cell embryos by micromanipulation. The injection of 2-cell nucleoli to GV enucleolated oocytes at the MII stage rescued the embryos from the early embryonic arrest, and the resulting oocytes developed to blastocysts. However, the injection of 2-cell and GV nucleoli to 2-cell embryos derived from GV enucleolated oocytes rarely restored the development to blastocysts. These results indicate that 2-cell nucleoli support early embryonic development as GV nucleoli and that the presence of nucleoli is essential for pig embryos before the 2-cell stage.

  14. A shell-less chick embryo culturing technique, reproduced successfully under local circumstances

    International Nuclear Information System (INIS)

    Zareen, N.; Khan, Y.

    2008-01-01

    The goal of this project was to demonstrate shell-less chick embryo culturing as a potential experimental model in the field of developmental anatomy. Freshly laid, fertilized chicken eggs of Egyptian Fayoumi breed were obtained from Poultry Research Institute Punjab, Rawalpindi. The fertilized chicken eggs were preincubated for 33 hours under standard conditions of 37.5 degree C and 65-75% humidity, to bring them to stage 9 (29-33 hours embryo, 7 somites) of Hamburger and Hamilton staging system. After this period, the eggs were taken out of the incubator, placed horizontally, wiped with 70% ethanol and permitted to air-dry for 10 minutes to reduce contamination from the egg surface and also to ensure that the embryo was properly positioned. The eggs contents were then transferred into the culture containers by cracking the undersides against an edge. The formation and growth of the embryonic membranes, the central nervous system - beginning from the vesicle stage, the circulatory system - including the heart, the eyes, beak, limbs, skin, feathers, wings and folding of the body were directly observed. Repeated successful culturing was attempted, tracing the developmental process of the embryo upto the 15th day of embryonic life at least after which the survivability period varied in different embryo cultures. The most advanced age reached in this project was day 19 of the embryonic life, which in researchers understanding is the latest developmental stage in shellless environment described as yet. The normal hatching time of this breed is 21-22 days. The size of these embryos was smaller as compared to the embryos of the same age that carried out their development inside their shells. (author)

  15. EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate

    Directory of Open Access Journals (Sweden)

    Har-Vardi Iris

    2007-01-01

    Full Text Available Abstract Background Embryo implantation plays a major role in embryogenesis and the outcome of pregnancy. Plasminogen activators (PAs have been implicated in mammalian fertilization, early stages of development and embryo implantation. As in-vitro developing embryos resulted in lower implantation rate than those developed in-vivo we assume that a reduced PAs activity may be involved. In the present work we studied the effect of EGF on PAs activity, quantity and embryo implantation. Methods Zygotes were flushed from rat oviducts on day one of pregnancy and grown in-vitro in R1ECM supplemented with EGF (10 ng/ml and were grown up to the blastocyst stage. The control groups were grown in the same medium without EGF. The distribution and quantity of the PAs were examined using fluorescence immunohistochemistry followed by measurement of PAs activity using the chromogenic assay. Implantation rate was studied using the embryo donation model. Results PAs distribution in the embryos was the same in EGF treated and untreated embryos. Both PAs were localized in the blastocysts' trophectoderm, supporting the assumption that PAs play a role in the implantation process in rats. EGF increased the quantity of uPA at all stages studied but the 8-cell stage as compared with controls. The tissue type PA (tPA content was unaffected except the 8-cell stage, which was increased. The activity of uPA increased gradually towards the blastocyst stage and more so due to the presence of EGF. The activity of tPA did not vary with the advancing developmental stages although it was also increased by EGF. The presence of EGF during the preimplantation development doubled the rate of implantation of the treated group as compared with controls.

  16. Classification of embryo sacs in the Eragrostis curvula Complex

    Directory of Open Access Journals (Sweden)

    T. B. Vorster

    1984-12-01

    Full Text Available At each of 17 collecting points between Johannesburg and Brits in the Transvaal, three plants which belong to the  Eragrostis curvula Complex were collected and studied. A total o f 3 902 embryo sacs was examined in this sample. Of the embryo sacs examined, 3 306 were apomictic by means of diplospory, whereas 99 were sexual monosporic Polygonum-type embryo sacs. One hundred and nineteen embryo sacs were abnormal or divergent, and 378 were degenerated. There are indications that seasonal climatic fluctuations may be responsible for embryo sacs developing abnormally or degenerating. Simple and multiple correlations confirmed that sexual embryo sacs usually do not develop abnormally or degenerate during the later developmental stages. This finding lends credence to both the system of classification of individual embryo sacs and to the validity of the estimate of the proportion of sexuality of the plants sampled at each sampling point.

  17. Human embryo research and the 14-day rule.

    Science.gov (United States)

    Pera, Martin F

    2017-06-01

    In many jurisdictions, restrictions prohibit the culture of human embryos beyond 14 days of development. However, recent reports describing the successful maintenance of embryos in vitro to this stage have prompted many in the field to question whether the rule is still appropriate. This Spotlight article looks at the original rationale behind the 14-day rule and its relevance today in light of advances in human embryo culture and in the derivation of embryonic-like structures from human pluripotent stem cells. © 2017. Published by The Company of Biologists Ltd.

  18. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo.

    Science.gov (United States)

    Maeda, R; Kobayashi, A; Sekine, R; Lin, J J; Kung, H; Maéno, M

    1997-07-01

    This study analyzes the expression and the function of Xenopus msx-1 (Xmsx-1) in embryos, in relation to the ventralizing activity of bone morphogenetic protein-4 (BMP-4). Expression of Xmsx-1 was increased in UV-treated ventralized embryos and decreased in LiCl-treated dorsalized embryos at the neurula stage (stage 14). Whole-mount in situ hybridization analysis showed that Xmsx-1 is expressed in marginal zone and animal pole areas, laterally and ventrally, but not dorsally, at mid-gastrula (stage 11) and late-gastrula (stage 13) stages. Injection of BMP-4 RNA, but not activin RNA, induced Xmsx-1 expression in the dorsal marginal zone at the early gastrula stage (stage 10+), and introduction of a dominant negative form of BMP-4 receptor RNA suppressed Xmsx-1 expression in animal cap and ventral marginal zone explants at stage 14. Thus, Xmsx-1 is a target gene specifically regulated by BMP-4 signaling. Embryos injected with Xmsx-1 RNA in dorsal blastomeres at the 4-cell stage exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Histological observation and immunostaining revealed that these embryos had a large block of muscle tissue in the dorsal mesodermal area instead of notochord. On the basis of molecular marker analysis, however, the injection of Xmsx-1 RNA did not induce the expression of alpha-globin, nor reduce cardiac alpha-actin in dorsal marginal zone explants. Furthermore, a significant amount of alpha-actin was induced and alpha-globin was turned off in the ventral marginal zone explants injected with Xmsx-1. These results indicated that Xmsx-1 is a target gene of BMP-4 signaling, but possesses a distinct activity on dorsal-ventral patterning of mesodermal tissues.

  19. Nickel affects gill and muscle development in oriental fire-bellied toad (Bombina orientalis) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Jin; Song, Sang Ha; Kim, Dae Han; Gye, Myung Chan, E-mail: mcgye@hanyang.ac.kr

    2017-01-15

    Highlights: • Nickel inhibited the development of external gill in B. orientalis embryos. • The 168 h LC{sub 50} and EC{sub 50} values of nickel were 33.8 and 5.4 μM, respectively, in embryos. • Nickel induced abnormal tail development of embryos. • NF stage 26–31 was the most sensitive window for embryos to nickel exposure. • Nickel affected the calcium-dependent myogenic gene expression in embryos. - Abstract: The developmental toxicity of nickel was examined in the embryos of Bombina orientalis, a common amphibian in Korea. Based on a standard frog embryo teratogenesis assay, the LC{sub 50} and EC{sub 50} for malformation of nickel after 168 h of treatment were 33.8 μM and 5.4 μM, respectively. At a lethal concentration (100 μM), nickel treatment decreased the space between gill filaments and caused epithelial swelling and abnormal fusion of gill filaments. These findings suggest that nickel affects the functional development of gills, leading to embryonic death. At sublethal concentrations (1–10 μM), nickel produced multiple embryonic abnormalities, including bent tail and tail dysplasia. At 10 μM, nickel significantly decreased tail length and tail muscle fiber density in tadpoles, indicating inhibition of myogenic differentiation. Before hatching, the pre-muscular response to muscular response stages (stages 26–31) were the most sensitive period to nickel with respect to tail muscle development. During these stages, MyoD mRNA was upregulated, whereas myogenic regulatory factor 4 mRNA was downregulated by 0.1 μM nickel. Calcium-dependent kinase activities in muscular response stage embryos were significantly decreased by nickel, whereas these activities were restored by exogenous calcium. In tadpoles, 10 μM nickel significantly decreased the expression of the myosin heavy chain and the 12/101 muscle marker protein in the tail. Expression was restored by exogenous calcium. Our results indicate that nickel affects muscle development by

  20. Killing of preimplantation mouse embryos by main ingredients of cleansers AS and LAS

    International Nuclear Information System (INIS)

    Nomura, T.; Hata, S.; Shibata, K.; Kusafuka, T.

    1987-01-01

    When main ingredients of cleansers, alcohol sulfate (AS) and linear alkylbenzene sulfonate (LAS), were applied to the dorsal skin of pregnant JCL:ICR mice during preimplantation period, significant numbers of embryos collected from the oviducts and uteri on day 3 showed severe deformity or remained at the morula stage. Most of abnormal embryos were fragmented or remained at the 1-8 cell stages, and they were either dead or dying. Similar results were observed with commercially obtained kitchen detergent and hair shampoo. Fertilized eggs may be specifically sensitive to synthetic detergents. Very low doses of X-rays also induced significant yields of abnormal embryos. Major difference between X-rays and detergents was that X-ray-induced abnormality appeared at the morula or blastocyst stage, while detergent-induced one did at the earlier stages. (Auth.)

  1. Rape embryogenesis. III. Embryo development in time

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2014-01-01

    Full Text Available It was found that the growth curve of the rape embryo axis is of triple sigmoid type. Embryo growth occurs in 3 phases corresponding to 3 different periods of development. Phase I includes growth of the apical cell up to it's division into two layers of octants. Phase II comprises the increase of the spherical proembryo to the change of its symmetry from radial to bilateral. Phase III includes, growth of the embryo from the heart stage up to the end of embryogenesis. In each phase the relative growth rate increases drastically and then diminishes. The differences in growth intensity during the same phase are several-fold. The growth intensity maximum of the embryo axis occurs in phase II. The phasic growth intensity maxima occur: in phase I during apical cell elongation, :before its division, and in phases II and III in the periods of cell division ;growth in globular and torpedo-shaped -shaped embryos.

  2. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  3. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0...

  4. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos.

    Science.gov (United States)

    Sutton-McDowall, Melanie L; Feil, Deanne; Robker, Rebecca L; Thompson, Jeremy G; Dunning, Kylie R

    2012-05-01

    Although current embryo culture media are based on carbohydrate metabolism of embryos, little is known about metabolism of endogenous lipids. L-carnitine is a β-oxidation cofactor absent in most culture media. The objective was to investigate the influence of L-carnitine supplementation on bovine embryo development. Abattoir-derived bovine cumulus oocyte complexes were cultured and fertilized. Post-fertilization, presumptive zygotes were transferred into a basic cleavage medium ± carbohydrates (glucose, lactate and pyruvate) ± 5 mm L-carnitine and cultured for 4 days in vitro. In the absence of carbohydrates during culture, embryos arrested at the 2- and 4-cell stages. Remarkably, +L-carnitine increased development to the morula stage compared to +carbohydrates alone (P levels were higher and ATP: ADP ratio were 1.9-fold lower (main effect, P < 0.05) compared to embryos cultured in -L-carnitine. Therefore, we inferred that +L-carnitine embryos were more metabolically active, with higher rates of ATP-ADP conversion. In conclusion, L-carnitine supplementation supported precompaction embryo development and there was an additive effect of +L-carnitine +carbohydrates on early embryo development, most likely through increased β-oxidation within embryos. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. Study of embryonic ploidy: a probable embryo model

    Energy Technology Data Exchange (ETDEWEB)

    Kundt, Miriam S; Cabrini, Romulo L [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Radiobiologia

    2001-07-01

    The second polar body (PB) studies in preimplantation mouse embryos were carried out to evaluate the possibility as reference cell to analyze ploidy. For that purpose embryos in a one cell stage [obtained by crossing hybrid females (CBAxC57BL) to NIH males] were cultured in vitro during 72 hs, individually fixed at morula stage and stained with Feulgen. The DNA content of 263 individual nucleus was evaluated cytophotometrically corresponding to 22 compact morulas of normal development. As haploid PB is present in all pre implanted stage, only embryos with one haploid nuclei were considered as normal. In 95.5% (n = 21) of the embryos the PB was present. DNA measurement of 21 PB was 1n {+-} 0.1. By the height sensibility of PB ploidy, the abnormalities were detected by the criterion of >4.1 n and <1.9 n. The results showed that one embryo was completely haploid (1n). The rest of the embryos (n = 20) 222 blastomeres and 20 PB were analyzed. The DNA measurement showed that 92,7% of the blastomeres (n = 206) are between 2 n and 4 n and 7.3% showed ploidy anomalies, regarding the value n of their PB. The period of the cellular cycle was studied in the normal cell ploidy. This study showed that 16.5% of the blastomeres (n = 34) were in the period G1, 70.39% (n =34) in the period S and 13.2% in the period G2 (n = 27). It is concluded that the PB study showed that it has properties as an excellent indicator of internal ploidia: it is present from the moment of the conception, easily recognizable in the perivitelin space in the embryo of one-two cells, remains in interface during the preimplantation development, it is haploid and digitalized pixel by pixel PB study showed the homogeneity of this type of cell, giving a reliable value of ploidy. The properties of the PB and the results showed that the PB could be an excellent indicator for embryonic ploidy studies on genotoxicity, maintaining its original ploidia during the preimplantation development while the blastomeres are

  6. Effect of the cryopreservation method used, the embryonic stage and the use of conjugated linoleic acid isomers on the cryotolerance of in vitro-produced bovine embryos

    Directory of Open Access Journals (Sweden)

    Luciana Simões Rafagnin Marinho

    2015-12-01

    Full Text Available Conjugated linoleic acid (CLA might be able to improve the cryotolerance of in vitro-produced (IVP embryos. The effect of two CLA isomers on the cryotolerance of bovine IVP embryos, as well as that of the stage of embryonic development and the method used for cryopreservation was evaluated by three experiments. In Experiment 1, oocytes (n = 3,917 were fertilized in vitro and cultured with 0, 50, 100, or 200 ?M trans-10, cis-12 (t10, c12 CLA. In Experiment 2, fertilized oocytes (n = 2,131 were cultured with 100 ?M t10, c12 or cis-9, trans-11 (c9, t11 CLA, or a combination of both isomers. The embryos were vitrified at the blastocyst (BL or the expanded blastocyst (EB stage. In Experiment 3, oocytes (n = 1,720 were fertilized and cultured with or without 100 ?M t10, c12 CLA, and the blastocysts were vitrified or frozen. Blastocyst development rate as well as the rates of re-expansion and hatching after thawing was recorded. Moreover, the mean cell number and mRNA expression of acetyl-CoA carboxylase (ACC1 and stearoyl-CoA desaturase (SCD1 as well as fatty acid synthase (FASN multienzyme complex were determined. In Experiment 1, the highest concentration of t10, c12 CLA that did not reduce blastocyst development rate was 100 ?M. In Experiment 2, the rates of re-expansion and hatching among the EBs obtained through IVP after supplementation with t10, c12 CLA (73.1% and 57.7%, with c9, t11 CLA (80.0% and 68.6%, with the combination (78.3% and 52.2%, and with the control group (85.4% and 58.3% were similar. At the BL stage, the rates of re-expansion and hatching were lower than those at the EB stage, and CLA combination allowed a hatching rate (8.0% lower than that observed in the control group (40.0%. In Experiment 3, the hatching rates for vitrified EBs (vitrified control; 67.4% and vitrified CLA EBs (65.8% were higher than those obtained for frozen EBs, exposed (13.3% or not exposed (28.6% to CLA. In addition, in Experiment 3, the hatching rate was

  7. HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death

    International Nuclear Information System (INIS)

    Wang, Yingying; Hai, Tang; Liu, Zichuan; Zhou, Shuya; Lv, Zhuo; Ding, Chenhui; Liu, Lei; Niu, Yuyu; Zhao, Xiaoyang; Tong, Man; Wang, Liu; Jouneau, Alice; Zhang, Xun; Ji, Weizhi; Zhou, Qi

    2010-01-01

    Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.

  8. Expression of nucleolar-related proteins in porcine preimplantation embryos produced in vivo and in vitro

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Wrenzycki, Christine; Strejcek, Frantisek

    2004-01-01

    The expression of nucleolar-related proteins was studied as an indirect marker of the ribosomal RNA (rRNA) gene activation in porcine embryos up to the blastocyst stage produced in vivo and in vitro. A group of the in vivo-developed embryos were cultured with alpha-amanitin to block the de novo...... proteins pRb and p130, which are involved in cell-cycle regulation, was assessed by semiquantitative RT-PCR up to the blastocyst stage. Toward the end of third cell cycle, the nuclei in non-alpha-amanitin-treated, in vivo-produced embryos displayed different stages of transformation of the nuclear...... was delayed in porcine embryos produced in vitro compared to the in vivo-derived counterparts with respect to mRNAs encoding PAF53 and UBF. Moreover, differences existed in the mRNA expression patterns of pRb between in vivo- and in vitro-developed embryos. These findings show, to our knowledge for the first...

  9. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster.

    Science.gov (United States)

    de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M

    2013-08-30

    It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in

  10. Transcriptome profiles of embryos before and after cleavage in Eriocheir sinensis: identification of developmental genes at the earliest stages

    Science.gov (United States)

    Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen

    2017-07-01

    In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `Wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.

  11. Radiation- and drug-induced DNA repair in mammalian oocytes and embryos

    International Nuclear Information System (INIS)

    Pedersen, R.A.; Brandriff, B.

    1979-01-01

    A review of studies showing ultraviolet- or drug-induced unscheduled DNA synthesis in mammalian oocytes and embryos suggests that the female gamete has an excision repair capacity from the earliest stages of oocyte growth. The oocyte's demonstrable excision repair capacity decreases at the time of meiotic maturation for unknown reasons, but the fully mature oocyte maintans a repair capacity, in contrast to the mature sperm, and contributes this to the zygote. Early embryo cells maintain relatively constant levels of excision repair until late fetal stages, when they lose their capacity for excision repair. These apparent changes in excision repair capacity do not have a simple relationship to known differences in radiation sensitivity of germ cells and embryos

  12. Ultrastructural observations of lethal yellow (A/sup y//A/sup y/) mouse embryos

    Energy Technology Data Exchange (ETDEWEB)

    Calarco, P G; Pedersen, R A

    1976-01-01

    A/sup y//A/sup y/ embryos were identified by the presence of large excluded blastomeres (Pedersen, 1974) and examined cytologically and ultrastructurally. Cell organelles, inclusions and junctions in the excluded blastomeres were compared with those of non-excluded cells of A/sup y//A/sup y/ embryos and control embryos. Excluded blastomeres always had the fine structural characteristics of earlier developmental stages and may have arrested at the 4- to 8-cell stage or slightly later. Interior cells (inner cell mass) were observed in all mutant blastocysts. Nonexcluded cells of A/sup y//A/sup y/ embryos were normal until degenerative changes appear in the late blastocyst stage. The mode of action of the +/sup A/sup y/ gene was not determined, but evidence from this study and others indicates that the effects of +/sup A/sup y/ gene action occur over a wide range of time in early cleavage and implantation.

  13. Selection of Norway spruce somatic embryos by computer vision

    Science.gov (United States)

    Hamalainen, Jari J.; Jokinen, Kari J.

    1993-05-01

    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  14. Functional analysis of lysosomes during mouse preimplantation embryo development.

    Science.gov (United States)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Ohta, Yuki; Wada, Ayako; Ishida, Yuka; Kito, Seiji; Nishikawa, Tetsu; Minami, Naojiro; Sato, Ken; Kokubo, Toshiaki

    2013-01-01

    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.

  15. Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata

    Science.gov (United States)

    Rakesh Minocha; Dale R. Smith; Cathie Reeves; Kevin D. Steele; Subhash C. Minocha

    1999-01-01

    Changes in the cellular content of three polyamines (putrescine, spermidine and spermine) were compared at different stages of development in zygotic and somatic embryos of Pinus radiata D. Don. During embryo development, both the zygotic and the somatic embryos showed a steady increase in spermidine content, with either a small decrease or no...

  16. Embryonic cardiac morphometry in Carnegie stages 15-23, from the Complutense University of Madrid Institute of Embryology Human Embryo Collection.

    Science.gov (United States)

    Arráez-Aybar, L A; Turrero-Nogués, A; Marantos-Gamarra, D G

    2008-01-01

    We performed a morphometric study of cardiac development on human embryos to complement the scarce data on human embryonic cardiac morphometry and to attempt to establish, from these, algorithms describing cardiac growth during the second month of gestation. Thirty human embryos from Carnegie stages 15-23 were included in the study. Shrinkage and compression effects from fixation and inclusion in paraffin were considered in our calculations. Growth of the cardiac (whole heart) volume and volume of ventricular myocardium through the Carnegie stages were analysed by ANOVA. Linear correlation was used to describe the relationship between the ventricular myocardium and cardiac volumes. Comparisons of models were carried out through the R2 statistic. The relationship volume of ventricular myocardium versus cardiac volume is expressed by the equation: cardiac volume = 0.6266 + 2.4778 volume of ventricular myocardium. The relationship cardiac volume versus crown-rump length is expressed by the equation: cardiac volume = 1.3 e(0.126 CR length), where e is the base of natural logarithms. At a clinical level, these results can contribute towards the establishment of a normogram for cardiac development, useful for the design of strategies for early diagnosis of congenital heart disease. They can also help in the study of embryogenesis, for example in the discussion of ventricular trabeculation. Copyright 2007 S. Karger AG, Basel.

  17. Extracellular Vesicles from BOEC in In Vitro Embryo Development and Quality.

    Directory of Open Access Journals (Sweden)

    Ricaurte Lopera-Vásquez

    Full Text Available To evaluate the effect of conditioned media (CM and Extracellular Vesicles (EVs derived from bovine oviduct epithelial cell (BOEC lines on the developmental capacity of bovine zygotes and the quality of embryos produced in vitro, presumptive zygotes were cultured under specific conditions. In experiment 1, zygotes were cultured either on monolayers from BOEC extended culture (E, together with fresh BOEC suspension cells, or with BOEC-CM from fresh or E-monolayers. In experiment 2, EVs were isolated from BOEC-CM and characterized (150-200 nm by Nanosight® and electron microscopy. Zygotes were cultured in the presence of 3x10(5 EVs/mL, 1.5x10(5 EVs/mL or 7.5x10(4 EVs/mL of fresh or frozen BOEC-EVs. In experiment 3, zygotes were cultured in absence of FCS but with EVs from BOEC-E that had been cultured in different culture media. In experiment 4, zygotes were cultured in SOF+5% normal-FCS, or EV-depleted-FCS. In all cases, cleavage rate (Day 2 and blastocyst development (Day 7-9 was assessed. Blastocysts on Days 7/8 were used for quality evaluation through differential cell count, cryotolerance and gene expression patterns. No differences were found among all FCS-containing groups in cleavage rate or blastocyst yield. However, embryos derived from BOEC-CM had more trophectoderm cells, while embryos derived from BOEC-EVs, both fresh and frozen, has more trophectoderm and total cells. More embryos survived vitrification in the BOEC-CM and BOEC-EV groups. In contrast, more embryos survived in the EV-depleted-FCS than in normal-FCS group. Gene expression patterns were modified for PAG1 for embryos cultured with EVs in the presence of FCS and for IFN-T, PLAC8, PAG1, CX43, and GAPDH in the absence of FCS. In conclusion, EVs from FCS have a deleterious effect on embryo quality. BOEC-CM and EVs during in vitro culture had a positive effect on the quality of in vitro produced bovine embryos, suggesting that EVs have functional communication between the

  18. Depletion of primordial germ cells (PGCs) by X-irradiation to extraembryonic region of chicken embryos and expression of xenotransplanted quail PGCs

    International Nuclear Information System (INIS)

    Atsumi, Y.; Yazawa, S.; Usui, F.; Nakamura, Y.; Yamamoto, Y.; Tagami, T.; Hiramatsu, K.; Kagami, H.; Ono, T.

    2009-01-01

    The generation of germline chimeras by the transfer of primordial germ cells (PGCs) requires incorporation of the PGCs of the donor into the gonadal tissue of the recipient embryo. We investigated the utility of soft x-irradiation with application of a lead (12 x 3 x 0.25 mm, - 0.1 g) shield to the embryo proper for the production of chicken-quail germline chimeras. Chicken embryos shielded during irradiation for 120s (- 7.2 Gy) at stages 13 to 17 showed a hatchability of 35% (106/301), whereas the hatchability of unshielded embryos was 26% (27/105). The relative population of gonadal PGCs at stage 30 for embryos irradiated at stage 13 with or without shielding was 13 and 5%, respectively, of the value for nonirradiated controls. Chicken embryos irradiated at stages 13 or 14 with or without shielding and transfused with quail embryonic blood containing PGCs each exhibited - 130 relative population of donor PGCs in the left gonad at stage 30. Xenotransplanted hatchlings exhibited donor-derived PGCs as detected by Southern hybridization and PCR. Exposure of chicken embryos to - 7.2 Gy of x-radiation at stage 13 with the application of a lead shield to the embryo proper is thus a feasible approach to depletion of endogenous germ cells and the production of chicken-quail germline chimeras

  19. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Directory of Open Access Journals (Sweden)

    Xiangyi Kong

    Full Text Available Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI treatment cycles, n = 799 were classified as follows: less than 5 cells (10C; n = 42. Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively. In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas 10C. In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  20. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro.

    Science.gov (United States)

    Hoelker, Michael; Rings, Franka; Lund, Qamaruddin; Ghanem, Nasser; Phatsara, Chirawath; Griese, Josef; Schellander, Karl; Tesfaye, Dawit

    2009-03-01

    The Well of the Well (WOW) system has been developed to culture embryos in small groups or to track the development of single embryos. In the present study, we aimed to examine the effects of the microenvironment provided by the WOW system and embryo density on developmental rates, embryo quality and preimplantative gene expression profile of the resulting embryos. Embryos cultured in a group of 16 reached the blastocyst stage at a significantly lower level than zygotes cultured in a group of 50 (22.2 vs 30.3%), whereas zygotes cultured in WOW were able to compensate against low embryo densities, reaching a blastocyst rate as high as embryos cultured in a group of 50 (31.3 vs 30.3%). Moreover, embryos derived from WOW culture did not differ in terms of differential cell counts and apoptotic cell index compared with controls. The gene expression analysis revealed 62 transcripts to be upregulated and 33 transcripts to be downregulated by WOW culture. Comparing the in vivo derived blastocysts with the blastocysts derived from WOW culture, and group culture, expression of ATP5A1, PLAC8 and KRT8 was more similar to the embryos derived from WOW culture, whereas expression of S100A10 and ZP3 genes was more similar to blastocysts cultured in a group. In conclusion, microenvironment as well as embryo density significantly affected developmental rates. While subsequent blastocysts did not differ in terms of differential cell counts and apoptotic cell index, significant differences were observed in terms of the relative abundance of transcripts in the resulting embryos.

  1. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis.

    Science.gov (United States)

    Roque, Matheus; Lattes, Karinna; Serra, Sandra; Solà, Ivan; Geber, Selmo; Carreras, Ramón; Checa, Miguel Angel

    2013-01-01

    To examine the available evidence to assess if cryopreservation of all embryos and subsequent frozen embryo transfer (FET) results in better outcomes compared with fresh transfer. Systematic review and meta-analysis. Centers for reproductive care. Infertility patient(s). An exhaustive electronic literature search in MEDLINE, EMBASE, and the Cochrane Library was performed through December 2011. We included randomized clinical trials comparing outcomes of IVF cycles between fresh and frozen embryo transfers. The outcomes of interest were ongoing pregnancy rate, clinical pregnancy rate, and miscarriage. We included three trials accounting for 633 cycles in women aged 27-33 years. Data analysis showed that FET resulted in significantly higher ongoing pregnancy rates and clinical pregnancy rates. Our results suggest that there is evidence that IVF outcomes may be improved by performing FET compared with fresh embryo transfer. This could be explained by a better embryo-endometrium synchrony achieved with endometrium preparation cycles. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. The effects of platelet lysate on maturation, fertilization and embryo development of NMRI mouse oocytes at germinal vesicle stage.

    Science.gov (United States)

    Pazoki, Hassan; Eimani, Hussein; Farokhi, Farah; Shahverdi, Abdol-Hossein; Tahaei, Leila Sadat

    2016-04-01

    Improving in vitro maturation could increase the rate of pregnancy from oocytes matured in vitro. Consequently, patients will be prevented from using gonadotropin with its related side effects. In this study, the maturation medium was enriched by platelet lysate (PL), then maturation and subsequent developments were monitored. Oocytes at germinal vesicle stage with cumulus cells (cumulus-oocyte complex) and without cumulus cells (denuded oocytes) were obtained from mature female mice. The maturation medium was enriched by 5 and 10 % PL and 5 % PL + 5 % fetal bovine serum (FBS) as experimental groups; the control groups' media consisted of 5 and 10 % FBS. After 18 h, the matured oocytes were collected and, after fertilization, subsequent development was monitored. The rates of maturation, fertilization and 2-cell embryo development for the denuded oocyte groups in experimental media 5 % PL and 5 % PL + 5 % FBS were significantly higher than those of the control groups ( P platelet lysate could improve the maturation rate in the absence of granulosa cells compared to media with FBS. This extract also had positive effects on fertilization and embryo development.

  3. Organ and Tissue-Specific Localisation of Selected Cell Wall Epitopes in the Zygotic Embryo of Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Alexander Betekhtin

    2018-03-01

    Full Text Available The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium. We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.

  4. Effects of embryo-derived exosomes on the development of bovine cloned embryos.

    Directory of Open Access Journals (Sweden)

    Pengxiang Qu

    Full Text Available The developmental competence of in vitro cultured (IVC embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE, as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development, but also following growth to term (in vivo development. Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.

  5. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Greeley Jr, Mark Stephen [ORNL; Elmore, Logan R [ORNL; McCracken, Kitty [ORNL

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the

  6. The effects of X-rays on chicken embryos

    International Nuclear Information System (INIS)

    Wendt, E.

    1981-01-01

    The radiosensitivity of the chickens embryo changes in the course of its 21 days of development. A period of relatively high resistance in the early stages of development (1. to 3. day of incubation), is followed by an increase of sensitivity from the 4. day onwards. In 1- to 3-day-old embryos, X-rays cause nonspecific malformations in those organs which are in a phenocritical period at the moment of irradiation. In mature embryos (4. to 20. day of incubation) characteristic biochemical changes in the metabolism of proteins and amino-acids as well as the nitrogen excretion can be observed as the predominant radiation effects. (orig.)

  7. Protein phosphorylation during coconut zygotic embryo development

    International Nuclear Information System (INIS)

    Islas-Flores, I.; Oropeza, C.; Hernandez-Sotomayor, S.M.T.

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [gamma-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species

  8. Beneficial effect of two culture systems with small groups of embryos on the development and quality of in vitro-produced bovine embryos.

    Science.gov (United States)

    Cebrian-Serrano, A; Salvador, I; Silvestre, M A

    2014-02-01

    Currently, in vitro-produced embryos derived by ovum pick up (OPU) and in vitro fertilization (IVF) technologies represent approximately one-third of the embryos worldwide in cattle. Nevertheless, the culture of small groups of embryos from an individual egg donor is an issue that OPU-IVF laboratories have to face. In this work, we tested whether the development and quality of the preimplantation embryos in vitro cultured in low numbers (five embryos) could be improved by the addition of epidermal growth factor, insulin, transferrin and selenium (EGF-ITS) or by the WOW system. With this aim, immature oocytes recovered from slaughtered heifers were in vitro matured and in vitro fertilized. Presumptive zygotes were then randomly cultured in four culture conditions: one large group (LG) (50 embryos/500 μl medium) and three smaller groups [five embryos/50 μl medium without (control) or with EGF-ITS (EGF-ITS) and five embryos per microwell in the WOW system (WOW)]. Embryos cultured in LG showed a greater ability to develop to blastocyst stage than embryos cultured in smaller groups, while the blastocyst rate of WOW group was significantly higher than in control. The number of cells/blastocyst in LG was higher than control or WOW, whereas the apoptosis rate per blastocyst was lower. On the other hand, the addition of EGF-ITS significantly improved both parameters compared to the control and resulted in similar embryo quality to LG. In conclusion, the WOW system improved embryo development, while the addition of EGF-ITS improved the embryo quality when smaller groups of embryos were cultured. © 2013 Blackwell Verlag GmbH.

  9. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  10. Evaluation of cell number and DNA content in mouse embryos cultivated with uranium

    International Nuclear Information System (INIS)

    Kundt, Mirian S.; Cabrini, Romulo L.

    2000-01-01

    The evaluation of the degree of development, the number of cells and the DNA content, were used to evaluate the embryotoxicity of uranium. Embryos at a one cell stage were cultured with uranyl nitrate hexahydrate (UN) at a final concentration of uranium (U) of 26, 52 and 104 μgU/ml. At 24 hs of culture, the embryos at the 2 cell stage, were put in new wells with the same concentrations of U as the previous day, until the end of the period of incubation at 72 hs. At 72 hs of culture, 87% of the original one cell embryos were at morula stage, and in those cultivated with uranium, the percentage decreased significantly to 77; 63.24 and 40.79% respectively for the different U concentrations. Those embryos that exhibited a normal morphology, were selected and fixed on slides. The number of cells per embryo was evaluated in Giemsa stained preparations. The DNA content was evaluated cytophotometrically in Feulgen stained nuclei. The number of cells decreased significantly from 20,3 ± 5.6 in the control to 19 ± 6; 14 ± 3 and 13.9 ± 5.6 for the different concentrations. All the embryos evaluated showed one easy recognizable polar body, which was used a haploid indicator (n). The content of DNA was measured in a total of 20 control embryos and 16 embryos cultivated with UN. In control embryos, 92,7% of the nuclei presented a normal ploidy from 2n to 4n, 2,9% nuclei were hypoploid and 4,4% were hyperploid. The percentage of hypoploid nuclei rose in a dose-dependent fashion to 3.45; 44.45 and 50.34% respectively for the embryos cultured at the different U concentrations. The results indicate that U is embryotoxic, that its effects are dose dependent at the concentrations used in this study and that even those embryos that show a normal morphology, can be genetically affected. We show that the model employed is extremely sensitive. It is possible to use the preimplantation embryos, as a model to test the effect of possibly mutagenic agents of the nuclear industry. (author)

  11. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses.

    Science.gov (United States)

    Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne

    2014-11-01

    Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.

  12. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  13. The Chromosomal Constitution of Embryos Arising from Monopronuclear Oocytes in Programmes of Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    Bernd Rosenbusch

    2014-01-01

    Full Text Available The assessment of oocytes showing only one pronucleus during assisted reproduction is associated with uncertainty. A compilation of data on the genetic constitution of different developmental stages shows that affected oocytes are able to develop into haploid, diploid, and mosaic embryos with more or less complex chromosomal compositions. In the majority of cases (~80%, haploidy appears to be caused by gynogenesis, whereas parthenogenesis or androgenesis is less common. Most of the diploid embryos result from a fertilization event involving asynchronous formation of the two pronuclei or pronuclear fusion at a very early stage. Uniparental diploidy may sometimes occur if one pronucleus fails to develop and the other pronucleus already contains a diploid genome or alternatively a haploid genome undergoes endoreduplication. In general, the chance of obtaining a biparental diploid embryo appears higher after conventional in vitro fertilization than after intracytoplasmic sperm injection. If a transfer of embryos obtained from monopronuclear oocytes is envisaged, it should be tried to culture them up to the blastocyst since most haploid embryos are not able to reach this stage. Comprehensive counselling of patients on potential risks is advisable before transfer and a preimplantation genetic diagnosis could be offered if available.

  14. Supplementation of fetal bovine serum alters histone modification H3R26me2 during preimplantation development of in vitro produced bovine embryos

    Directory of Open Access Journals (Sweden)

    Daniel R. Arnold

    2015-07-01

    Full Text Available Abstract In vitro production (IVP of bovine embryos is not only of great economic importance to the cattle industry, but is also an important model for studying embryo development. The aim of this study was to evaluate the histone modification, H3R26me2 during pre-implantation development of IVP bovine embryos cultured with or without serum supplementation and how these in vitro treatments compared to in vivo embryos at the morula stage. After in vitro maturation and fertilization, bovine embryos were cultured with either 0 or 2.5% fetal bovine serum (FBS. Development was evaluated and embryos were collected and fixed at different stages during development (2-, 4-, 8-, 16-cell, morula and blastocyst. Fixed embryos were then used for immunofluorescence utilizing an antibody for H3R26me2. Images of stained embryos were analyzed as a percentage of total DNA. Embryos cultured with 2.5% FBS developed to blastocysts at a greater rate than 0%FBS groups (34.85±5.43% vs. 23.38±2.93%; P<0.05. Levels of H3R26me2 changed for both groups over development. In the 0%FBS group, the greatest amount of H3R26me2 staining was at the 4-cell (P<0.05, 16-cell (P<0.05 and morula (P<0.05 stages. In the 2.5%FBS group, only 4-cell stage embryos were significantly higher than all other stages (P<0.01. Morula stage in vivo embryos had similar levels as the 0%FBS group, and both were significantly higher than the 2.5%FBS group. These results suggest that the histone modification H3R26me2 is regulated during development of pre-implantation bovine embryos, and that culture conditions greatly alter this regulation.

  15. Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.

    Science.gov (United States)

    Zacharia, Eleni; Bondesson, Maria; Riu, Anne; Ducharme, Nicole A; Gustafsson, Jan-Åke; Kakadiaris, Ioannis A

    2011-01-01

    Biological inferences about the toxicity of chemicals reached during experiments on the zebrafish Dharma embryo can be greatly affected by the analysis of the time-lapse microscopy images depicting the embryo. Among the stages of image analysis, automatic and accurate segmentation of the Dharma embryo is the most crucial and challenging. In this paper, an accurate and automatic segmentation approach for the segmentation of the Dharma embryo data obtained by fluorescent time-lapse microscopy is proposed. Experiments performed in four stacks of 3D images over time have shown promising results.

  16. The Well-of-the-Well system: an efficient approach to improve embryo development.

    Science.gov (United States)

    Vajta, Gábor; Korösi, Tamás; Du, Yutao; Nakata, Kumiko; Ieda, Shoko; Kuwayama, Masashige; Nagy, Zsolt Peter

    2008-07-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including an increased implantation rate and a decreased risk of multiple pregnancies; however, blastocyst culture requires an efficient and reliable in-vitro embryo culture system. In this study, the effect of the Well-of-the-Well (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species, including humans. The WOW system resulted in significant improvement when comparing the drops for culture of in-vitro-matured and parthenogenetically activated porcine oocytes, and in-vivo-derived mouse zygotes. In human embryos, using a sibling oocyte design, embryos cultured in WOW developed to the blastocyst stage in a significantly higher proportion than did embryos cultured traditionally (55% in WOW and 37% in conventional culture; P WOW system or in microdrops. Transferable quality blastocyst development (48.9% of cultured zygotes) was observed in the WOW system. Ninety-four blastocysts transferred to 45 patients resulted in clinical pregnancy rates of 48.9%, including nine twin pregnancies, seven single pregnancies, five miscarriages and one ectopic pregnancy. The results indicate that the WOW system provides a promising alternative for microdrop culture of mammalian embryos, including human embryos.

  17. Integrated toxic evaluation of sulfamethazine on zebrafish: Including two lifespan stages (embryo-larval and adult) and three exposure periods (exposure, post-exposure and re-exposure).

    Science.gov (United States)

    Yan, Zhengyu; Yang, Qiulian; Jiang, Weili; Lu, Jilai; Xiang, Zhongrun; Guo, Ruixin; Chen, Jianqiu

    2018-03-01

    Persistence of antibiotics in aquatic environment may pose a risk to the non-target aquatic organisms. This study provided an integrated evaluation to analyze the toxic stress of sulfamethazine (SMZ) on zebrafish in two lifespan stages (embryo-larval and adult) and three exposure periods (exposure, post-exposure and re-exposure). Zebrafish embryos and adult zebrafish were exposed to SMZ at 0.2, 20 and 2000 μg/L, respectively. The results showed that SMZ at any given concentration inhibited the hatching of embryos at 58-96 hpf (hours post-fertilization). Our result also indicated that two major kinds of the malformation, which was induced by the antibiotic, were edema and spinal curvature. Additionally, the antibiotic stimulated the heartbeat while reduced the body length of the embryo at 72 hpf. Superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents significantly increased at 120 hpf when the embryos were exposed to the lowest concentration (0.2 μg/L) of the antibiotic. On the other hand, the antibiotic induced SOD activities and MDA contents in adult zebrafish in the exposure and re-exposure periods. The MDA contents could recover while SOD activities still increased in 2 d after the exposure. Both SOD activities and MDA contents could recover in 7 d after the exposure. Levels of SOD and MDA in the re-exposure were higher than those in the first exposure. Our results suggested that SMZ had toxic effects on both embryos and adult zebrafish, and provided an integrated evaluation of the toxic effects of SMZ on zebrafish at a new perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.

    Science.gov (United States)

    Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle

    2009-04-01

    Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.

  19. Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille Yde; Alexopoulos, N.I.; Cooney, M.A.

    2008-01-01

    The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome...... (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively...... imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos...

  20. Neural network classification of sweet potato embryos

    Science.gov (United States)

    Molto, Enrique; Harrell, Roy C.

    1993-05-01

    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  1. /sup 31/P nuclear-magnetic-resonance studies an the developing embryos of Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Gadian, D G [Oxford Univ. (UK). Dept. of Biochemistry; Colman, A [Oxford Univ. (UK). Dept. of Zoology

    1976-01-01

    The concentrations of nucleoside triphosphate, inorganic phosphate and yolk proteins, phosvitin and lipovitellin, have been monitored in living embryos of Xenopus laevis by /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. The nucleoside triphosphate levels remain relatively constant at about 3.5 - 4.5 nmol/embryo at least until the 'spontaneous movement' stage of development. By the swimming tadpole stage an inorganic phosphate resonance representing about 30 nmol/embryo becomes evident in the NMR spectrum. Computer manipulation also shows such a resonance, although smaller, to be present at a somewhat earlier developmental stage; these findings are confirmed biochemically. The major contribution to the NMR spectrum of oocytes, unfertilized eggs and early embryos is the yolk phosphoprotein resonance. On isolation of the yolk from the embryos it is possible to quantify the contribution to the NMR spectrum from the lipid-phosphate and protein-phosphate moieties of the yolk proteins. During development, as the yolk is used up, it is found that the protein-phosphate resonance disappears at a greater rate than the lipid-phosphate peak. The total phosphorus content of the embryo (ca. 200 nmol/embryo) is shown biochemically to remain constant during development; however, the total amount of phosphorus observed by NMR decreases by about 40% during development. From the resonance positions of their ..cap alpha.., ..beta.. and ..gamma.. phosphate groups is is deduced that the nucleoside triphosphate molecules are liganded in vivo to a divalent cation which is not manganese, but could be either magnesium or calcium. From the position of the inorganic phosphate resonance it is deduced that the internal pH of embryos where this resonance is evident is 6.8 +- 0.2.

  2. Embryo development and corresponding factors affecting in vitro germination of Cymbidium faberi × C. sinense hybrid seeds

    Directory of Open Access Journals (Sweden)

    Li Fengtong

    2016-01-01

    Full Text Available A better understanding of embryo development would provide insights into seed quality and subsequent germination events in the interspecific hybridization of Cymbidium faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’. At the mature stage, 26.1% of the ovules were abnormal. Most of the hybrid embryos could develop normally. Abortions mainly occurred at the zygote (9.5% and 2-4-celled embryo (15.1% stages. No germination was observed at 90 and 105 days after pollination (DAP, when the embryo was at the early globular stage, with abundant organelles but no storage materials. During 110-130 DAP, the globular embryo was formed and the starch grains began to accumulate in plastids. The hybrid seeds collected at 120 DAP showed initiation of germination. Germination significantly increased at 135 DAP and was maximal at 150 DAP, during which period the hybrid embryos developed into the late globular stage. The storage materials, i.e. lipid and protein bodies, began to accumulate and the filamentary structures derived from suspensor cells still persisted. After the seeds matured (160 DAP, the germination percentage declined sharply. Safranin staining revealed that the outer seed coat was totally cuticularized and the inner seed coat appeared as a cuticle layer enclosing the embryo proper tightly, which may be the main factor inhibiting the subsequent germination of hybrid seeds. In conclusion, 150 DAP should be the opportune time for the in vitro germination of C. faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’ hybrid seeds.

  3. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    Science.gov (United States)

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  4. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    Science.gov (United States)

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as

  5. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-01-01

    Full Text Available Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germination and that makes its natural propagation difficult. The aim of this study was to establish a protocol of regeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculated on WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein or glutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D (22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed casein or glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture medium containing NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction (8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein and the development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promoted in WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containing hydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. During the maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages. The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histological studies.

  6. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812343Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germinationand that makes its natural propagation difficult. The aim of this study was to establish a protocol ofregeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculatedon WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein orglutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D(22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed caseinor glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture mediumcontaining NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction(8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein andthe development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promotedin WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containinghydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. Duringthe maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages.The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histologicalstudies.

  7. Feel, smell and see in an egg: emergence of perception and learning in an immature invertebrate, the cuttlefish embryo.

    Science.gov (United States)

    Romagny, Sébastien; Darmaillacq, Anne-Sophie; Guibé, Mathieu; Bellanger, Cécile; Dickel, Ludovic

    2012-12-01

    It is now well established that prenatal sensory experience affects development itself and has long-term consequences in terms of postnatal behavior. This study focused on the functionality of the sensory system in cuttlefish in ovo. Embryos of stage 23, 25 and 30 received a tactile, chemical or visual stimulus. An increase of mantle contraction rhythm was taken to indicate a behavioral response to the stimulus. We clearly demonstrated that tactile and chemical systems are functional from stage 23, whereas the visual system is functional only from stage 25. At stage 25 and 30, embryos were also exposed to a repeated light stimulus. Stage 30 embryos were capable of habituation, showing a progressive decrease in contractions across stimulations. This process was not due to fatigue as we observed response recovery after a dishabituation tactile stimulus. This study is the first to show that cuttlefish embryos behaviorally respond to stimuli of different modalities and that the visual system is the last to become functional during embryonic development, as in vertebrate embryos. It also provides new evidence that the memory system develops in ovo in cuttlefish.

  8. The Effects of Progesterone on Oocyte Maturation and Embryo Development

    Directory of Open Access Journals (Sweden)

    Saeed Zavareh

    2013-01-01

    Full Text Available Oocyte maturation and embryo development are controlled by intra-ovarian factors suchas steroid hormones. Progesterone (P4 exists in the follicular fluid that contributes tonormal mammalian ovarian function and has several critical functions during embryodevelopment and implantation, including endometrial receptivity, embryonic survivalduring gestation and transformation of the endometrial stromal cells to decidual cells.It is well known that the physiological effects of P4 during the pre-implantation stages ofsome mammal’s embryos are mediated by P4 receptors and their gene expression is determined.The effects of P4 on oocytes and embryo development have been assessed bysome investigations, with contradictory results. P4, a dominant steroid in follicular fluidat approximately 18 hours after the luteinizing hormone (LH surge may have a criticalrole in maturation of oocytes at the germinal stage. However, it has been shown that differentconcentrations of P4 could not improve in vitro maturation rates of germinal vesicles(GV in cumulus oocyte complexes (COCs and cumulus denuded oocytes (CDOs.Culture media supplemented with P4 significantly improved mouse embryo development.In addition, an in vivo experimental design has shown high blastocyst survival andimplantation rates in P4-treated mice.In this review we explain some of the findings that pertain to the effects of P4 onoocyte maturation and embryo development both in vitro and in vivo.

  9. Use of methanol as cryoprotectant and its effect on sox genes and proteins in chilled zebrafish embryos.

    Science.gov (United States)

    Desai, Kunjan; Spikings, Emma; Zhang, Tiantian

    2015-08-01

    Methanol is a widely used cryoprotectant (CPA) in cryopreservation of fish embryos, however little is known about its effect at the molecular level. This study investigated the effect of methanol on sox gene and protein expression in zebrafish embryos (50% epiboly) when they were chilled for 3 h and subsequently warmed and cultured to the hatching stages. Initial experiments were carried out to evaluate the chilling tolerance of 50% epiboly embryos which showed no significant differences in hatching rates for up to 6 h chilling in methanol (0.2-, 0.5- and 1 M). Subsequent experiments in embryos that had been chilled for 3 h in 1 M methanol and warmed and cultured up to the hatching stages found that sox2 and sox3 gene expression were increased significantly in hatched embryos that had been chilled compared to non-chilled controls. Sox19a gene expression also remained above control levels in the chilled embryos at all developmental stages tested. Whilst stable sox2 protein expression was observed between non-chilled controls and embryos chilled for 3 h with or without MeOH, a surge in sox19a protein expression was observed in embryos chilled for 3 h in the presence of 1 M MeOH compared to non-chilled controls and then returned to control levels by the hatching stage. The protective effect of MeOH was increased with increasing concentrations. Effect of methanol at molecular level during chilling was reported here first time which could add new parameter in selection of cryoprotectant while designing cryopreservation protocol. Copyright © 2015. Published by Elsevier Inc.

  10. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    recently demonstrated to occur from first cleavage cycle in mice using time-lapse microscopy, with the largest impact on the pre-compaction stages. However, embryonic development in mice differs in many aspects from human embryonic development. The objective of this retrospective, descriptive study...... was to evaluate the influence of oxygen tension on human pre-implantation development using time-lapse monitoring. Materials and methods: Human embryos were cultured to the blastocyst stage in a time-lapse incubator (EmbryoScope™) in 20% O2 (group 1), 20% O2 for 24 hours followed by culture in 5% O2 (group 2......) or in 5% O2 (group 3). Eligible were patients with age 8 oocytes retrieved. Group 1 consisted of 120 IVF/ICSI embryos from 26 patients recruited to a study conducted to evaluate the safety of the time-lapse incubator by randomising 1:1 embryos from a patient to culture...

  11. DNA apurinization and apyridinization in gamma-irradiated Bombyx mori embryos at various stages of development

    International Nuclear Information System (INIS)

    Agaev, F.A.; Vasil'ev, S.P.; Gaziev, A.I.

    1993-01-01

    A study was made of the formation and repair of apurine-apyridine sites in DNA of gamma-irradiated 3- and 7-day embryos of Bombix mori differing drastically in radiosensitivity. The kinetics of the postirradiation recovery of AP sites in DNA of 3- and 7-day Bombix mori embryos was heterogeneous and varied significantly

  12. Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos.

    Directory of Open Access Journals (Sweden)

    Anthony J Robertson

    Full Text Available The Runt homology domain (Runx defines a metazoan family of sequence-specific transcriptional regulatory proteins that are critical for animal development and causally associated with a variety of mammalian cancers. The sea urchin Runx gene SpRunt-1 is expressed throughout the blastula stage embryo, and is required globally during embryogenesis for cell survival and differentiation.Depletion of SpRunt-1 by morpholino antisense-mediated knockdown causes a blastula stage deficit in cell proliferation, as shown by bromodeoxyuridine (BrdU incorporation and direct cell counts. Reverse transcription coupled polymerase chain reaction (RT-PCR studies show that the cell proliferation deficit is presaged by a deficit in the expression of several zygotic wnt genes, including wnt8, a key regulator of endomesoderm development. In addition, SpRunt-1-depleted blastulae underexpress cyclinD, an effector of mitogenic Wnt signaling. Blastula stage cell proliferation is also impeded by knockdown of either wnt8 or cyclinD. Chromatin immunoprecipitation (ChIP indicates that Runx target sites within 5' sequences flanking cyclinD, wnt6 and wnt8 are directly bound by SpRunt-1 protein at late blastula stage. Furthermore, experiments using a green fluorescent protein (GFP reporter transgene show that the blastula-stage operation of a cis-regulatory module previously shown to be required for wnt8 expression (Minokawa et al., Dev. Biol. 288: 545-558, 2005 is dependent on its direct sequence-specific interaction with SpRunt-1. Finally, inhibitor studies and immunoblot analysis show that SpRunt-1 protein levels are negatively regulated by glycogen synthase kinase (GSK-3.These results suggest that Runx expression and Wnt signaling are mutually linked in a feedback circuit that controls cell proliferation during development.

  13. Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    Tiancheng Liu

    2015-01-01

    Full Text Available Evolutionary developmental biology (EVO-DEVO tries to decode evolutionary constraints on the stages of embryonic development. Two models—the “funnel-like” model and the “hourglass” model—have been proposed by investigators to illustrate the fluctuation of selective pressure on these stages. However, selective indices of stages corresponding to mammalian preimplantation embryonic development (PED were undetected in previous studies. Based on single cell RNA sequencing of stages during human PED, we used coexpression method to identify gene modules activated in each of these stages. Through measuring the evolutionary indices of gene modules belonging to each stage, we observed change pattern of selective constraints on PED for the first time. The selective pressure decreases from the zygote stage to the 4-cell stage and increases at the 8-cell stage and then decreases again from 8-cell stage to the late blastocyst stages. Previous EVO-DEVO studies concerning the whole embryo development neglected the fluctuation of selective pressure in these earlier stages, and the fluctuation was potentially correlated with events of earlier stages, such as zygote genome activation (ZGA. Such oscillation in an earlier stage would further affect models of the evolutionary constraints on whole embryo development. Therefore, these earlier stages should be measured intensively in future EVO-DEVO studies.

  14. Perkembangan Praimplantasi Embrio Mencit dengan Materi Genetik yang Berasal dari Parental, Maternal, dan Inti Sel Somatik (PRE-IMPLANTATION DEVELOPMENT OF MOUSE EMBRYO WITH GENETIC MATERIAL DERIVED FROM PARENTAL, MATERNAL AND SOMATIC CELL NUCLEUS

    Directory of Open Access Journals (Sweden)

    Harry Murti

    2014-05-01

    Full Text Available Cloned embryo and parthenogenetic embryo are a potential source of stem cells for regenerativemedicine. Stem cells derived from those embryos are expected to overcome the ethical issues to the use offertilization embryos for therapeutic purposes. The pre-implantation development is a critical step fordeveloping embryos reach the blastocyst stage. The objectives in vivo of this research are to produce mousecloned embryo, parthenogenetic embryo, and fertilized embryo and to study stages of  in vitro pre-implantation development culture. In vivo fertilized embryos, mouse oocytes, and cumulus cells were usedin this study. Treatment was performed on female mice superovulated with PMSG and hCG injections.Two-cell stage of in vivo fertilized embryos were collected on the second day post hCG injection. Clonedembryos were produced through Somatic Cell Nuclear Transfer (SCNT, which included enucleation, nucleartransfer and artificial activation. Parthenogenetic embryos were produced with artificial activationtechnique. The result of the research indicated that SCNT application was able to produce cloned embryos which could develop to blastocyst stage (3,2%. In addition, artificial activation of oocytes could produceparthenogenetic embryos which were able to develop up to the blastocyst stage (8,6%. In conclusion,efficiency level of parthenogenetic embryos that is able to reach the blastocyst stage was higher than in thecloned embryos. Fertilized embryos shows a better development and more efficient compared to in vitrocloned embryos and parthenogenetic embryos cultures.

  15. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.

    1987-01-01

    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  16. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions

    DEFF Research Database (Denmark)

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben

    2013-01-01

    produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos showed striking overlap in functional annotation of transcripts during the EGA, suggesting conserved basic mechanisms...... a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell...... from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos...

  17. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    International Nuclear Information System (INIS)

    Abian, J.; Gelpi, E.; Pages, M.

    1991-01-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-[ 14 C]LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. α- and γ-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed

  18. Deprenyl Enhances the Teratogenicity of Hydroxyurea in Organogenesis Stage Mouse Embryos

    Science.gov (United States)

    Schlisser, Ava E.; Hales, Barbara F.

    2013-01-01

    Hydroxyurea, an antineoplastic drug, is a model teratogen. The administration of hydroxyurea to CD1 mice on gestation day 9 induces oxidative stress, increasing the formation of 4-hydroxy-2-nonenal adducts to redox-sensitive proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the caudal region of the embryo. GAPDH catalytic activity is reduced, and its translocation into the nucleus is increased. Because the nuclear translocation of GAPDH is associated with oxidative stress–induced cell death, we hypothesized that this translocation plays a role in mediating the teratogenicity of hydroxyurea. Deprenyl (also known as selegiline), a drug used as a neuroprotectant in Parkinson’s disease, inhibits the nuclear translocation of GAPDH. Hence, timed pregnant CD1 mice were treated with deprenyl (10mg/kg) on gestation day 9 followed by the administration of hydroxyurea (400 or 600mg/kg). Deprenyl treatment significantly decreased the hydroxyurea-induced nuclear translocation of GAPDH in the caudal lumbosacral somites. Deprenyl enhanced hydroxyurea-mediated caudal malformations, inducing specifically limb reduction, digit anomalies, tail defects, and lumbosacral vertebral abnormalities. Deprenyl did not augment the hydroxyurea-induced inhibition of glycolysis or alter the ratio of oxidized to reduced glutathione. However, it did dramatically increase cleaved caspase-3 in embryos. These data suggest that nuclear GAPDH plays an important, region-specific, role in teratogen-exposed embryos. Deprenyl exacerbated the developmental outcome of hydroxyurea exposure by a mechanism that is independent of oxidative stress. Although the administration of deprenyl alone did not affect pregnancy outcome, this drug may have adverse consequences when combined with exposures that increase the risk of malformations. PMID:23696560

  19. Viability of bovine demi embryo after splitting of fresh and frozen thawed embryo derived from in vitro embryo production

    Directory of Open Access Journals (Sweden)

    M Imron

    2007-06-01

    Full Text Available In vivo embryo production was limited by number of donor, wide variability respond due to superovulation program and also immunoactifity of superovulation hormone (FSH. Splitting technology could be an alternative to increase the number of transferrable embryos into recipien cows. Splitting is done with cutting embryo becoming two equal pieces (called demi embrio base on ICM orientation. The objective of this research was to determine the viability of demi embryo obtained from embryo splitting of fresh and frozen thawed embryo. The results showed that demi embryos which performed blastocoel reexpansion 3 hours after embryo splitting using fresh and frozen thawed embryos were 76.9 and 76.2% respectively. Base on existention of inner cell mass (ICM, the number of demi embryos developed with ICM from fresh and frozen thawed embryos were not significantly different (90.6 and 85.7% respectively. The cell number of demi embryo from fresh embryos splitting was not different compared with those from frozen thawed embryos (36.1 and 35.9 respectively. These finding indicated that embryo splitting can be applied to frozen thawed embryos with certain condition as well as fresh embryos.

  20. Birth of rats following nuclear exchange at the 2-cell stage.

    Science.gov (United States)

    Roh, Sangho; Guo, Jitong; Malakooti, Nakisa; Morrison, John R; Trounson, Alan O; Du, Zhong Tao

    2003-11-01

    We report full-term development of nuclear transfer embryos following nuclear exchange at the 2-cell stage. Nuclei from 2-cell rat embryos were transferred into enucleated 2-cell embryos and developed to term after transfer to recipients (NT2). Pronuclear exchange in zygotes was used for comparison (NT1). Zygotes and 2-cell embryos were harvested from 4-week-old female Sprague-Dawley rats. Nuclear transfer was performed by transferring the pronuclei or karyoplasts into the perivitelline space of recipient embryos followed by electrofusion to reconstruct embryos. Fused couplets were cultured for 4 or 24 h before being transferred into day 1 pseudopregnant recipients (Hooded Wistar) at the 1- or 2-cell stage. In vitro culture was also carried out to check the developmental competence of the embryos. In vitro development to the blastocyst stage was not significantly different between the two groups (NT1, 34.3%; NT2, 45.0%). Two of three recipients from NT1 and two of five recipients from NT2 became pregnant. Six pups (3 from NT1, 3 from NT2) were delivered from the four foster mothers. Three female pups survived; 2 from NT1 and 1 from NT2. At 2 months of age these pups appeared healthy, and were mated with Sprague-Dawley males. One rat derived from NT1 delivered 15 pups (5 males, 10 females) as did the rat from NT2 (7 males, 8 females). Our results show that by using karyoplasts from 2-cell stage embryos as nuclear donors and reconstructing them with enucleated 2-cell embryos, healthy rats can be produced.

  1. Multi-stage autoacceleration of an intense relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, K; Hasegawa, D; Igarashi, H; Kusunoki, T; Lee, C Y; Koguchi, H; Ando, R; Masuzaki, M [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Two-stage autoacceleration was accomplished by using different length cavities. Two cavities were located with the distance longer than the beam duration. The electron kinetic energy increased from 500 to 700 keV at the first stage and from 700 to 900 keV at the second, while the beam duration decreased 10 to 5 ns at the first stage and 5 to 2.5 ns at the second. (author). 7 figs., 7 refs.

  2. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    -points for each cell division and blastocyst stages were registered until 120 hours after oocyte retrieval. Only 2PN embryos completing the first cleavage were evaluated. The groups were compared using one-way ANOVA or Kruskall-Wallis test. Estimates are reported as medians with 95% confidence intervals. Time......Introduction: Data from a number of studies indicate -but not unequivocally- that culture of embryos in 5% O2 compared to 20% O2 improves blastocyst formation in humans and various animal species and may yield better pregnancy rates in IVF. The detrimental effects of atmospheric oxygen were...... was to evaluate the influence of oxygen tension on human pre-implantation development using time-lapse monitoring. Materials and methods: Human embryos were cultured to the blastocyst stage in a time-lapse incubator (EmbryoScope™) in 20% O2 (group 1), 20% O2 for 24 hours followed by culture in 5% O2 (group 2...

  3. Thermal effect on heart rate and hemodynamics in vitelline arteries of stage 18 chicken embryos.

    Science.gov (United States)

    Lee, Jung Yeop; Lee, Sang Joon

    2010-12-01

    We investigated the thermal effects on heart rate, hemodynamics, and response of vitelline arteries of stage-18 chicken embryos. Heart rate was monitored by a high-speed imaging method, while hemodynamic quantities were evaluated using a particle image velocimetry (PIV) technique. Experiments were carried out at seven different temperatures (36-42 °C with 1 °C interval) after 1h of incubation to stabilize the heart rate. The heart rate increased in a linear manner (r = 0.992). Due to the increased cardiac output (or heart rate), the hemodynamic quantities such as mean velocity (U(mean)), velocity fluctuation (U(fluc)), and peak velocity (U(peak)) also increased with respect to the Womersley number (Ω) in the manner r = 0.599, 0.693, and 0.725, respectively. This indicates that the mechanical force exerting on the vessel walls increases. However, the active response (or regulation) of the vitelline arteries was not observed in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos.

    Science.gov (United States)

    Masaki, Hideki; Kato-Itoh, Megumi; Takahashi, Yusuke; Umino, Ayumi; Sato, Hideyuki; Ito, Keiichi; Yanagida, Ayaka; Nishimura, Toshinobu; Yamaguchi, Tomoyuki; Hirabayashi, Masumi; Era, Takumi; Loh, Kyle M; Wu, Sean M; Weissman, Irving L; Nakauchi, Hiromitsu

    2016-11-03

    Cell types more advanced in development than embryonic stem cells, such as EpiSCs, fail to contribute to chimeras when injected into pre-implantation-stage blastocysts, apparently because the injected cells undergo apoptosis. Here we show that transient promotion of cell survival through expression of the anti-apoptotic gene BCL2 enables EpiSCs and Sox17 + endoderm progenitors to integrate into blastocysts and contribute to chimeric embryos. Upon injection into blastocyst, BCL2-expressing EpiSCs contributed to all bodily tissues in chimeric animals while Sox17 + endoderm progenitors specifically contributed in a region-specific fashion to endodermal tissues. In addition, BCL2 expression enabled rat EpiSCs to contribute to mouse embryonic chimeras, thereby forming interspecies chimeras that could survive to adulthood. Our system therefore provides a method to overcome cellular compatibility issues that typically restrict chimera formation. Application of this type of approach could broaden the use of embryonic chimeras, including region-specific chimeras, for basic developmental biology research and regenerative medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Design of an electron injector for multi-stages laser wakefield acceleration

    International Nuclear Information System (INIS)

    Audet, T.

    2016-01-01

    Laser wakefield acceleration (LWFA) is a particle acceleration process relying on the interaction between high intensity laser pulses, of the order of 10 18 W/cm 2 and a plasma. The plasma wave generated in the laser wake sustain high amplitude electric fields (1- 100 GV/m). Those electric fields are 3 orders of magnitude higher than maximum electric fields in radio frequency cavities and represent the main benefit of LWFA, allowing more compact acceleration. However improvements of the LWFA-produced electron bunches properties, stability and repetition rate are mandatory for LWFA to be usable for applications. A scheme to improve electron bunches properties and to potentially increase the repetition rate is multi-stage LWFA. The laser plasma electron source, called the injector, has to produce relatively low energy (50 - 100 MeV), but high charge, small size and low divergence electron bunches. Produced electron bunches then have to be transported and injected into a second stage to increase electron kinetic energy. The subject of this thesis is to study and design a laser wakefield electron injector for multistage LWFA. In the frame of CILEX and the two-stages LWFA program, a prototype of the injector was built : ELISA consisting in a variable length gas cell. The plasma electronic density, which is a critical parameter for the control of the electron bunches properties, was characterized both experimentally and numerically. ELISA was used at 2 different laser facilities and physical mechanisms linked to electron bunches properties were studied in function of experimental parameters. A range of experimental parameters suitable for a laser wakefield injector was determined. A magnetic transport and diagnostic line was also built, implemented and tested at the UHI100 laser facility of the CEA Saclay. It allowed a more precise characterization of electron bunches generated with ELISA as well as an estimation of the quality of transported electron bunches for their

  6. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    Directory of Open Access Journals (Sweden)

    Lisa Shaw

    Full Text Available Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  7. Expression of microRNAs in bovine and human pre-implantation embryo culture media

    Science.gov (United States)

    Kropp, Jenna; Salih, Sana M.; Khatib, Hasan

    2014-01-01

    MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy. PMID:24795753

  8. Biomolecule screening for efficient attachment of biofunctionalized microparticles to the zona pellucida of mammalian oocytes and embryos.

    Science.gov (United States)

    Novo, Sergio; Ibáñez, Elena; Barrios, Leonardo; Castell, Onofre; Nogués, Carme

    2013-10-01

    Individual tagging of oocytes and embryos through the attachment of micrometer-sized polysilicon barcodes to their zona pellucida (ZP) is a promising approach to ensure their correct identification and traceability in human assisted reproduction and in animal production programs. To provide barcodes with the capacity of binding to the ZP, they must be first biofunctionalized with a biomolecule capable of binding to the ZP of both oocytes and embryos. The aim of this work was to select, among an anti-ZP2 antibody and the two lectins wheat germ agglutinin (WGA) and phytohemagglutinin-L, the most optimal biomolecule for the eventual biofunctionalization of barcodes, using mouse oocytes and embryos and commercially available microspheres as a model. Despite the anti-ZP2 antibody showed the highest number of binding sites onto the ZP surface, as determined by field emission scanning electron microscopy, the binding of anti-ZP2-biofunctionalized microspheres to the ZP of cultured oocytes and embryos was less robust and less stable than the binding of lectin-biofunctionalized ones. WGA proved to be, among the three candidates tested, the most appropriate biomolecule to biofunctionalize microparticles with the aim to attach them to the ZP of both oocytes and embryos and to maintain them attached through oocyte activation (zona reaction) and in vitro culture up to the blastocyst stage. As saccharides recognized by WGA are highly abundant in the ZP of most mammalian species, WGA-biofuncionalized microparticles would be able to attach to the ZP of oocytes/embryos of species other than the mouse, such as humans and farm animals.

  9. Cucumber (Cucumis sativus L.) embryo development in situ after pollination with irradiated pollen

    International Nuclear Information System (INIS)

    Faris, N.M.; Niemirowicz-Szczytt, K.

    1999-01-01

    Embryological studies were undertaken to compare the normal development of cucumber endosperm and embryo with that observed after pollination with gamma-irradiated pollen (0.1 and 0.3 kGy). Delayed penetration of the pollen tube occurred at both irradiation doses. Endosperm and embryo development was also delayed, but was initiated within 6 days after pollination in 100% of embryo sacs at 0.1 kGy and in 70-80% at 0.3 kGy. Various abnormalities in endosperm and embryo cell structure confirmed progressive degeneration, which occurred earlier with the higher dose of irradiation. Degeneration increased dramatically; only 30-40% of the embryos reached the globular stage 15 days after pollination. (author)

  10. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    Science.gov (United States)

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  11. [Assisted reproductive technologies and the embryo status].

    Science.gov (United States)

    Englert, Y

    The status of the human embryo has always be a subject of philosophical and theological thoughts with major social consequences, but, until the 19th century, it has been mainly an abstraction. The arrival of the human embryo in vitro, materialized by Louise Brown's birth in 1978 and above all by the supernumerary embryos produced by the Australian team of Trounson and Wood following the introduction of ovarian stimulation, will turn theoretical thoughts into a reality. Nobody may ignore the hidden intentions behind the debate, as to recognise a status to a few days old embryo will immediately have a major impact on the status of a few weeks old foetus and therefore on the abortion rights. We will see that the embryo status, essentially based as well on a vision on the good and evil as on social order, cannot be based on a scientific analysis of the reproduction process but comes from a society's choice, by essence " arbitrary " and always disputable. This does not preclude the collectivity right and legitimacy to give a precise status and it is remarkable to observe the law is careful not to specify which status to give to the human embryo. It is more thru handling procedures and functioning rules that the law designed the embryo position, neither with a status of a person, nor of a thing. It nevertheless remains true that there is a constant risk that the legislation gives the embryo a status that would call into question it's unique characteristic of early reproductive stage, jeopardizing at once the hard-won reproductive freedom (reproductive choice) as well as freedom of research on embryonic stem cells, one of the most promising field of medical research.

  12. Fossil embryos from the Middle and Late Cambrian period of Hunan, south China.

    Science.gov (United States)

    Dong, Xi-Ping; Donoghue, Philip C J; Cheng, Hong; Liu, Jian-Bo

    2004-01-15

    Comparative embryology is integral to uncovering the pattern and process of metazoan phylogeny, but it relies on the assumption that life histories of living taxa are representative of their antecedents. Fossil embryos provide a crucial test of this assumption and, potentially, insight into the evolution of development, but because discoveries so far lack phylogenetic constraint, their significance is moot. Here we describe a collection of embryos from the Middle and Late Cambrian period (500 million years ago) of Hunan, south China, that preserves stages of development from cleavage to the pre-hatching embryo of a direct-developing animal comparable to living Scalidophora (phyla Priapulida, Kinorhyncha, Loricifera). The latest-stage embryos show affinity to the Lower Cambrian embryo Markuelia, whose life-history strategy contrasts both with the primitive condition inferred for metazoan phyla and with many proposed hypotheses of affinity, all of which prescribe indirect development. Phylogenetic tests based on these embryological data suggest a stem Scalidophora affinity. These discoveries corroborate, rather than contradict, the predictions of comparative embryology, providing direct historical support for the view that the life-history strategies of living taxa are representative of their stem lineages.

  13. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development

    Directory of Open Access Journals (Sweden)

    Yawei Gao

    2017-12-01

    Full Text Available Pre-implantation embryo development is an intricate and precisely regulated process orchestrated by maternally inherited proteins and newly synthesized proteins following zygotic genome activation. Although genomic and transcriptomic studies have enriched our understanding of the genetic programs underlying this process, the protein expression landscape remains unexplored. Using quantitative mass spectrometry, we identified nearly 5,000 proteins from 8,000 mouse embryos of each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst. We found that protein expression in zygotes, morulas, and blastocysts is distinct from 2- to 8-cell embryos. Analysis of protein phosphorylation identified critical kinases and signal transduction pathways. We highlight key factors and their important roles in embryo development. Combined analysis of transcriptomic and proteomic data reveals coordinated control of RNA degradation, transcription, and translation and identifies previously undefined exon-junction-derived peptides. Our study provides an invaluable resource for further mechanistic studies and suggests core factors regulating pre-implantation embryo development.

  14. Do donor oocyte cycles comply with ASRM/SART embryo transfer guidelines? An analysis of 13,393 donor cycles from the SART registry.

    Science.gov (United States)

    Acharya, Kelly S; Keyhan, Sanaz; Acharya, Chaitanya R; Yeh, Jason S; Provost, Meredith P; Goldfarb, James M; Muasher, Suheil J

    2016-09-01

    To analyze donor oocyte cycles in the Society for Assisted Reproductive Technology (SART) registry to determine: 1) how many cycles complied with the 2009 American Society for Reproductive Medicine/SART embryo transfer guidelines; and 2) cycle outcomes according to the number of embryos transferred. For donor oocyte IVF with donor age cycles from 2011 to 2012. Embryos transferred in donor IVF cycles. Percentage of compliant cycles, multiple pregnancy rate. There were 3,157 donor cleavage-stage transfers and 10,236 donor blastocyst transfers. In the cleavage-stage cycles, 88% met compliance criteria. The multiple pregnancy rate (MPR) was significantly higher in the noncompliant cycles. In a subanalysis of compliant cleavage-stage cycles, 91% transferred two embryos and only 9% single embryos. In those patients transferring two embryos, the MPR was significantly higher (33% vs. 1%). In blastocyst transfers, only 28% of the cycles met compliance criteria. The MPR was significantly higher in the noncompliant blastocyst cohort at 53% (compared with 2% in compliant cycles). The majority of donor cleavage-stage transfers are compliant with current guidelines, but the transfer of two embryos results in a significantly higher MPR compared with single-embryo transfer. The majority of donor blastocyst cycles are noncompliant, which appears to be driving an unacceptably high MPR in these cycles. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. A Thermoelectric Generation System and Its Power Electronics Stage

    DEFF Research Database (Denmark)

    Gao, Junling; Sun, Kai; Ni, Longxian

    2012-01-01

    stage and signal-conditioning circuits of the load, including DC–DC conversion, the maximum power point tracking (MPPT) controller, and other power management controllers. In this paper, a survey of existing power electronics designs for TEG systems is presented first. Second, a flat, wall-like TEG...... system consisting of 32 modules is experimentally optimized, and the improved power parameters are tested. Power-conditioning circuitry based on an interleaved boost DC–DC converter is then developed for the TEG system in terms of the tested power specification. The power electronics design features...... a combined control scheme with an MPPT and a constant output voltage as well as the low-voltage and high-current output characteristics of the TEG system. The experimental results of the TEG system with the power electronics stage and with purely resistive loads are compared. The comparisons verify...

  16. Embryo density and medium volume effects on early murine embryo development.

    Science.gov (United States)

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C

    1992-10-01

    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  17. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos.

    Science.gov (United States)

    Bolnick, Alan; Abdulhasan, Mohammed; Kilburn, Brian; Xie, Yufen; Howard, Mindie; Andresen, Paul; Shamir, Alexandra M; Dai, Jing; Puscheck, Elizabeth E; Rappolee, Daniel A

    2016-08-01

    The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development. The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts. Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50-85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60-90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively. These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.

  18. Movement of the external ear in human embryo.

    Science.gov (United States)

    Kagurasho, Miho; Yamada, Shigehito; Uwabe, Chigako; Kose, Katsumi; Takakuwa, Tetsuya

    2012-02-01

    External ears, one of the major face components, show an interesting movement during craniofacial morphogenesis in human embryo. The present study was performed to see if movement of the external ears in a human embryo could be explained by differential growth. In all, 171 samples between Carnegie stage (CS) 17 and CS 23 were selected from MR image datasets of human embryos obtained from the Kyoto Collection of Human Embryos. The three-dimensional absolute position of 13 representative anatomical landmarks, including external and internal ears, from MRI data was traced to evaluate the movement between the different stages with identical magnification. Two different sets of reference axes were selected for evaluation and comparison of the movements. When the pituitary gland and the first cervical vertebra were selected as a reference axis, the 13 anatomical landmarks of the face spread out within the same region as the embryo enlarged and changed shape. The external ear did move mainly laterally, but not cranially. The distance between the external and internal ear stayed approximately constant. Three-dimensionally, the external ear located in the caudal ventral parts of the internal ear in CS 17, moved mainly laterally until CS 23. When surface landmarks eyes and mouth were selected as a reference axis, external ears moved from the caudal lateral ventral region to the position between eyes and mouth during development. The results indicate that movement of all anatomical landmarks, including external and internal ears, can be explained by differential growth. Also, when the external ear is recognized as one of the facial landmarks and having a relative position to other landmarks such as the eyes and mouth, the external ears seem to move cranially. © 2012 Kagurasho et al; licensee BioMed Central Ltd.

  19. Formation and reparation of the AP-sites into DNA from the gamma-irradiated embryo of bombyx mori

    International Nuclear Information System (INIS)

    Agaev, F.A.; Gaziyev, A.I.

    2002-01-01

    Full text: It is well known that radiosensitivity of an organism is in dependence on the DNA reparation systems functioning into cells. Sharp difference in the radioresistance of silkworm embryo at different stage of growth showed by us earlier (Agaev F.A. et al, 1991) can provide to suggest that DNA reparation system into cells of 3-daily embryo (more radiosensitive stage) and 7-daily embryo (more radioresistance stage) may be functioning with various efficiency. It was shown that quantity of the AP-sites (i.e. apurine and apirimidine sites) registered into DNA of 3-daily embryo is 1,2 - 1,4 time more, that into DNA of 7-daily embryo g-irradiated at the same dozes. The increasing of the difference between the registered AP-sites into DNA of 3- and 7-daily embryo has been observed also at the increasing of the radiation doze. At the postradiation incubation of the 3- and 7- daily embryo the lowering of AP-sites quantity into DNA was observed. This fact allowed to testify that the reparation system of damages, such as DNA-apurinization and apirimidinization are functioned into these embryo cells. At the same time the rate of the AP-sites reparation into embryo cells is varied. For example, the remanent quantity of AP-sites into DNA of 7-daily embryo after 45 min of postradiation period consists of 30% those registered immediately after embryo irradiation. The remanent quantity of AP-sites into DNA of 3-daily embryo is lowered on 50%. The difference in the rate of cells reparation is keeping at the constant level irrespective of g-irradiation doze. The binding reaction between the /14 centigrade/-methoxyamine and AP-sites in DNA in vitro has been showed that the reparation time of the 50% AP-sites for 3-daily embryo is 45 min and for 7-daily embryo is 30 min in respective to registered value at once after 100 Gy irradiation doze. In spite of essential difference in the both AP-sites formation into DNA of 3- and 7-daily embryo at once after irradiation and the

  20. Intra- and interobserver analysis in the morphological assessment of early stage embryos during an IVF procedure: a multicentre study

    Directory of Open Access Journals (Sweden)

    Devroe Johanna

    2011-09-01

    Full Text Available Abstract Background Quality control programs are necessary to maintain good clinical practice. Embryo grading has been described as one of the external quality assurance schemes. Although the evaluation of embryos is based on the assessment of morphological characteristics, considerable intra- and inter-observer variability has been described. In this multicentre study, the variability in the embryo evaluation has been evaluated using morphological characteristics on day 1, day 2 and day 3 of embryo development. Methods Five embryologists of four different IVF centers participated in this study. Multilevel images of embryos were presented on a website at different time points to evaluate intra-and inter-observer agreement in the assessment of embryo morphology. The embryos were evaluated on day 1, day 2 and day 3 of their development and each embryologist had to decide if the embryo had to be transferred, cryopreserved or discarded. Results Both intra-observer agreement and inter-observer agreement were good to excellent for the position of the pronuclei on day 1, the number of blastomeres on day 2 and day 3 and the clinical decision (transfer, cryopreservation, discard. For all other characteristics (size of pronuclei, presence of cytoplasomic halo, degree of fragmentation and size of blastomeres the intra- and inter-observer agreement was moderate to very poor. Conclusions Mono- or multicentre quality control on embryo scoring by morphological assessment can easily be performed through the design of a simple website. In the future the website design can be adapted to generate statistical feedback upon scoring and can even include a training module.

  1. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure.

    Science.gov (United States)

    Jeon, Yubyeol; Nam, Yeong-Hee; Cheong, Seung-A; Kwak, Seong-Sung; Lee, Eunsong; Hyun, Sang-Hwan

    2016-08-25

    Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.

  2. Dose estimation in embryo or fetus in external fields; Estimacion de dosis en embrion o feto

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, Beatriz N [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation.

  3. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis

    Directory of Open Access Journals (Sweden)

    RICARDO I TEJOS

    2010-01-01

    Full Text Available The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  4. Description of Phaseolus vulgaris L. aborting embryos from ethyl methanesulfonate (EMS mutagenized plants

    Directory of Open Access Journals (Sweden)

    Silué, S.

    2013-01-01

    Full Text Available The aim of this study was to describe the embryos abortion process and the inheritance of the embryos abortion trait in Phaseolus vulgaris plants deficient in seed development. These plants were isolated within the second generation of an ethyl methanesulfonate (EMS TILLING population of P. vulgaris cv. 'BAT93'. Mutant embryos show abnormalities mainly in suspensors, shoot apical meristem (SAM and cotyledons from the globular to the cotyledon stages and abort before maturity compared to those observed in wild-type samples. Mutant embryos show also hyperhydricity and contain low amount of chlorophyll. Genetic analyses of F1, F2 and F3 populations from the crosses carried out between the mutagenized plants with aborting embryos and the wild-type plants indicated that the embryo abortion phenotype is maternally inherited and controlled by a single recessive gene. These Phaseolus mutant plants with aborting embryos constitute a valuable material for plant embryogenesis studies.

  5. Autoradiographic study of protein synthesis recovery in root cells of Zea mays embryos during early stages of germination

    International Nuclear Information System (INIS)

    Deltour, Roger

    1977-01-01

    Recovery of protein synthesis was studied in primary root of germinating Zea mays embryos. [H 3 ] leucine or [H 3 ] lysine was provided for two hours at 16 0 C to embryos excised from kernels at various times after the beginning of germination. Protein synthesis (probably dependent on long-lived mRNA stocked in dormant embryo root cells) resumed during the first two hours of seed imbibition [fr

  6. Autoradiographic study of protein synthesis recovery in root cells of Zea mays embryos during early stages of germination

    Energy Technology Data Exchange (ETDEWEB)

    Deltour, R [Liege Univ. (Belgium)

    1977-05-02

    Recovery of protein synthesis was studied in primary root of germinating Zea mays embryos. (H/sup 3/) leucine or (H/sup 3/) lysine was provided for two hours at 16/sup 0/C to embryos excised from kernels at various times after the beginning of germination. Protein synthesis (probably dependent on long-lived mRNA stocked in dormant embryo root cells) resumed during the first two hours of seed imbibition.

  7. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    Science.gov (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  8. Environmental exposure of Atlantic horseshoe crab (Limulus polyphemus) early life stages to essential trace elements.

    Science.gov (United States)

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2016-12-01

    This study investigated the accumulation Co, Cu, Fe, Mn, Ni, Se, and Zn in Atlantic horseshoe crab (Limulus polyphemus) early life stages (egg, embryo and larvae) and compared the concentrations to the concentration of each element in sediment, pore water and overlying water for 5 sites across Long Island, NY. For the majority of the sites, all essential trace elements accumulated in the embryos and larvae. However, many of the embryos and larvae at specific sites presented different concentration patterns which had no apparent relationship with the local habitat sediment and water values. Generally, Cu, Fe, and Se sequentially increased from egg stage through larval stages for the majority of sites, while Co, Mn, and Ni only did for a few sites. Zinc also showed an increase across sites from embryo to larval stage, however was the only one to show a decrease in concentration from egg to embryo stage at all sites. Interestingly, Mn at Manhasset Bay presented embryo and larval stages to be 50 fold greater than all other sites while the egg stage showed similar values to other sites; this high degree of uptake could be due to a high concentration in the overlying water. All essential trace elements can be accumulated from the environment but greater concentrations may be influenced by abiotic factors and the predominant uptake route (aqueous versus diet) at each life stage. Future laboratory experiments are required to investigate factors that influence essential trace element accumulation and loss in horseshoe crab early life stages. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Early Cambrian pentamerous cubozoan embryos from South China.

    Directory of Open Access Journals (Sweden)

    Jian Han

    Full Text Available BACKGROUND: Extant cubozoans are voracious predators characterized by their square shape, four evenly spaced outstretched tentacles and well-developed eyes. A few cubozoan fossils are known from the Middle Cambrian Marjum Formation of Utah and the well-known Carboniferous Mazon Creek Formation of Illinois. Undisputed cubozoan fossils were previously unknown from the early Cambrian; by that time probably all representatives of the living marine phyla, especially those of basal animals, should have evolved. METHODS: Microscopic fossils were recovered from a phosphatic limestone in the Lower Cambrian Kuanchuanpu Formation of South China using traditional acetic-acid maceration. Seven of the pre-hatched pentamerous cubozoan embryos, each of which bears five pairs of subumbrellar tentacle buds, were analyzed in detail through computed microtomography (Micro-CT and scanning electron microscopy (SEM without coating. RESULTS: The figured microscopic fossils are unequivocal pre-hatching embryos based on their spherical fertilization envelope and the enclosed soft-tissue that has preserved key anatomical features arranged in perfect pentaradial symmetry, allowing detailed comparison with modern cnidarians, especially medusozoans. A combination of features, such as the claustrum, gonad-lamella, suspensorium and velarium suspended by the frenula, occur exclusively in the gastrovascular system of extant cubozoans, indicating a cubozoan affinity for these fossils. Additionally, the interior anatomy of these embryonic cubozoan fossils unprecedentedly exhibits the development of many new septum-derived lamellae and well-partitioned gastric pockets unknown in living cubozoans, implying that ancestral cubozoans had already evolved highly specialized structures displaying unexpected complexity at the dawn of the Cambrian. The well-developed endodermic lamellae and gastric pockets developed in the late embryonic stages of these cubozoan fossils are comparable with

  10. Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    Full Text Available Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF failure due to poor embryo quality.

  11. Efficiency of assisted hatching of the cryopreserved–melted embryos

    Directory of Open Access Journals (Sweden)

    V. A. Pitko

    2018-04-01

    Full Text Available Purpose. To measure outcomes of clinical research of efficiency of assisted hatching of cryopreserved embryos. Materials and methods. Patients who had un successful cycles IVF/ICSI with transfer of fresh embryos have been selected for participation in the research between 2014 and 2016 years. Patients were distributed in a random way for participation in the experiment and control groups. Results of embryos transfer of one or two cryopreserved and melted embryos were considered only. Embryos were cryopreserved at a stage of blastocyst, 5 days after extraction of oocytes by method of vitrification. Melting procedure was conducted in the morning of a day of embryos transfer following the instructions of the vitrification medium producer Cryotech (Japan. Assisted hatching was conducted with use of micropipettes of Holding Pipette Cook Medical (Australia and Assisted Hatching/Zona Drilling Pipette Cook Medical (Australia. The treated embryos were cultivated up to a repeated estimation of morphology of embryos before transfer. Transfer of embryos has been conducted by a standard method with the use of catheter for non-invasive transfer of embryo Sydney IVF Cook Medical (Australia. The quantity of the transferred embryos varied from one to two. Results. 100 cryopreserved embryos were transferred which have been distributed in a random way either to the group with the assisted hatching or to the control group (without assisted hatching. A number of parameters of patients from both groups was analyzed, i.e. age of the patient at the time of melting of embryos, duration of infertility, causes of infertility, quantity of previous unsuccessful cycles IVF/ICSI. Any essential differences between patients within two groups based on the aforementioned parameters were not revealed. Also, there were no essential differences in number of the melted embryos, survival rate of embryos, quantity of the embryos transferred to patients. However, at the same time

  12. Phospholipid transfer activities in toad oocytes and developing embryos

    International Nuclear Information System (INIS)

    Rusinol, A.; Salomon, R.A.; Bloj, B.

    1987-01-01

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing 14 C-labeled phospholipids and 3 H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily after fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth

  13. Post-hatching development of the porcine and bovine embryo-defining criteria for expected development in vivo and in vitro

    DEFF Research Database (Denmark)

    Vejlsted, Morten; Du, Yutao; Vajta, Gábor

    2006-01-01

    ) Somite stage(s) where paraxial mesoderm gradually condensates to form somites. Post-hatching development of bovine embryos in vitro is compromised and although hatching occurs and elongation can be physically provoked by culture in agarose tunnels, the embryonic disk characterizing the pre-streak stage 1......Particular attention has been paid to the pre-hatching period of embryonic development although blastocyst development is a poor indicator of embryo viability. Post-hatching embryonic dev elopment in vitro would allow for establishment of more accurate tools for evaluating developmental potential...... without the need for transfer to recipient animals. Such a system would require (1) definition of milestones of expected post-hatching embryonic development in vivo; and (2) development of adequate culture systems. We propose a stereomicroscopical staging system for post-hatching embryos defining...

  14. A novel embryo culture media supplement that improves pregnancy rates in mice.

    Science.gov (United States)

    Highet, A R; Bianco-Miotto, T; Pringle, K G; Peura, A; Bent, S; Zhang, J; Nottle, M B; Thompson, J G; Roberts, C T

    2017-03-01

    The preimplantation embryo in vivo is exposed to numerous growth factors in the female reproductive tract, which are not recapitulated in embryo culture media in vitro The IGF2 and plasminogen activator systems facilitate blastocyst development. We hypothesized that the addition of IGF2 in combination with urokinase plasminogen activator (uPA) and plasminogen could improve rates of blastocyst hatching and implantation in mice. B6BcF1 and CBAB6F2 mouse embryos were divided into one of four supplemented culture media treatment groups: (1) control (media only); (2) 12.5 nM IGF2; (3) 10 µg/mL uPA and 5 µg/mL plasminogen; or (4) a combination of IGF2, uPA and plasminogen treatments. Embryo development to blastocyst stage and hatching were assessed before transfer to pseudopregnant recipient females and implantation, pregnancy rates and postnatal growth were assessed. After 90.5 h of culture, IGF2 + U + P treatment increased the percentage of B6BcF1 embryos that were hatching/hatched and percentage developing to blastocyst stage compared with controls (P culture, IGF2, uPA and plasminogen supplementation of culture media can improve pregnancy success, but the effect of treatment is dependent on the mouse strain. © 2017 Society for Reproduction and Fertility.

  15. The effect of unilateral ovariectomy on early embryonic survival and embryo development in rabbits

    Directory of Open Access Journals (Sweden)

    R. Peiró

    2014-06-01

    Full Text Available Unilateral ovariectomy can be used to study uterine capacity in rabbits because an overcrowding of the functional uterine horn is produced. Due to the uterus duplex, the rabbit is the ideal model for such studies. However, this technique may affect embryo survival. The aim of this work is to study the effect of unilateral ovariectomy on early embryo survival and development in rabbit. A total of 101 unilateral ovariectomised females and 52 intact females were compared after slaughter at 30 h post-mating. Early embryo survival was estimated as the ratio between number of embryo recovered and ovulation rate. No differences were found between intact and unilaterally ovariectomised females in this trait. Unilateral ovariectomy did not change embryo development, measured as the number of embryo cells. Variability of embryo development was not affected either. At 30 h post-mating, the majority of embryos (86.2% were 4-cell stage. Embryo quality was evaluated according to morphological criteria. No difference in embryo quality between intact and unilaterally ovariectomised females was found. Therefore, unilateral ovariectomy performed before puberty in rabbit does not modify early embryo survival and development.

  16. The effect of hepatocyte growth factor on mouse oocyte in vitro maturation and subsequent fertilization and embryo development

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bahadori

    2011-05-01

    Full Text Available Background: Oocyte invitro maturation is an enormously promising technology for the treatment of infertility, yet its clinical application remains limited owing to poor success rates. Therefore, this study was devised to evaluate the effect of hepatocyte growth factor (HGF on in vitro maturation of immature mouse oocytes and resulting embryos development. Materials and Method: Cumulus – oocyte complex and germinal vesicle were obtained from eighteen 6-8 weeks-old female NMRI mice 46-48 hours after administration of an injection of 5 IU PMSG (Pregnant Mares’ Serum Gonadotrophin. Oocytes were culture in TCM199 (Tissue culture medium-199 supplemented with dosages of 0, 10, 20, 50 and 100 ng/ml of HGF. After 24 hours, metaphase ІІ oocytes were co-incubated with sperms for 4-6 hours in T6 medium. Following isolation of two pronucleus embryos, cleavage of embryos was assessed in the same medium till blastocyst stage. The number of oocytes and embryos was recorded under an invert microscope and the rate of oocyte maturation, fertilization and embryos cleavage until blastocyst stage compared using of student χ2 test. Results: In all compared groups, oocytes growth and embryos development rate in the 20 ng/ml of HGF treatment group was significantly higher (p<0.05 than the control group (p<0.05.Conclusion: 20 ng/ml of HGF improved the nuclear maturation and embryo development up to blastocyst stage during culture condition

  17. Establishing some Correlations between Certain Morphometric Parameters and Embryo Quality

    Directory of Open Access Journals (Sweden)

    Nicolae Păcală

    2011-05-01

    Full Text Available The aim of this paper was to establish some correlations between certain morphometric parameters and embryo quality. The morphometric parameters taken into consideration were: zona pellucida thickness, outer and inner diameter, and outer and inner perimeter. For experiments we used embryos recovered at 24 hours from mouse females superovulated with gonadotrope hormones (eCG and hCG. The embryos recovered were cultivated in KSOM media, supplemented with amino acids, and during the in vitro cultivation they were measured at different time intervals for establishing morphometric parameters. The data obtained were statistically analyzed using Minitab 15, using Fitted Line Plot regression that allows testing of the linear and polynomial regression of one variable. After statistical analyze of the data we found that the thickness of the zona pellucida can constitute a morphometric parameter that can be used as an indicator of subsequent development of the 2 cell embryos to morula and blastocyst stage respectively. The other morphometric parameters studied (outer and inner diameter, and outer and inner perimeter cannot be used as indicators of the embryo development.

  18. Developmental toxicity of cartap on zebrafish embryos.

    Science.gov (United States)

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  19. Algorithms for automatic segmentation of bovine embryos produced in vitro

    International Nuclear Information System (INIS)

    Melo, D H; Oliveira, D L; Nascimento, M Z; Neves, L A; Annes, K

    2014-01-01

    In vitro production has been employed in bovine embryos and quantification of lipids is fundamental to understand the metabolism of these embryos. This paper presents a unsupervised segmentation method for histological images of bovine embryos. In this method, the anisotropic filter was used in the differents RGB components. After pre-processing step, the thresholding technique based on maximum entropy was applied to separate lipid droplets in the histological slides in different stages: early cleavage, morula and blastocyst. In the postprocessing step, false positives are removed using the connected components technique that identify regions with excess of dye near pellucid zone. The proposed segmentation method was applied in 30 histological images of bovine embryos. Experiments were performed with the images and statistical measures of sensitivity, specificity and accuracy were calculated based on reference images (gold standard). The value of accuracy of the proposed method was 96% with standard deviation of 3%

  20. Differential expression of parental alleles of BRCA1 in human preimplantation embryos

    Science.gov (United States)

    Tulay, Pinar; Doshi, Alpesh; Serhal, Paul; SenGupta, Sioban B

    2017-01-01

    Gene expression from both parental genomes is required for completion of embryogenesis. Differential methylation of each parental genome has been observed in mouse and human preimplantation embryos. It is possible that these differences in methylation affect the level of gene transcripts from each parental genome in early developing embryos. The aim of this study was to investigate if there is a parent-specific pattern of BRCA1 expression in human embryos and to examine if this affects embryo development when the embryo carries a BRCA1 or BRCA2 pathogenic mutation. Differential parental expression of ACTB, SNRPN, H19 and BRCA1 was semi-quantitatively analysed by minisequencing in 95 human preimplantation embryos obtained from 15 couples undergoing preimplantation genetic diagnosis. BRCA1 was shown to be differentially expressed favouring the paternal transcript in early developing embryos. Methylation-specific PCR showed a variable methylation profile of BRCA1 promoter region at different stages of embryonic development. Embryos carrying paternally inherited BRCA1 or 2 pathogenic variants were shown to develop more slowly compared with the embryos with maternally inherited BRCA1 or 2 pathogenic mutations. This study suggests that differential demethylation of the parental genomes can influence the early development of preimplantation embryos. Expression of maternal and paternal genes is required for the completion of embryogenesis. PMID:27677417

  1. Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos.

    Directory of Open Access Journals (Sweden)

    Celine Hebras

    Full Text Available Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner and INCENP (a vertebrate AURKB partner and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody

  2. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    Science.gov (United States)

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  3. Synthetic profiles of polypeptides of human oocytes and normal and abnormal preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1999-09-01

    There is considerable variation in the rate of development in vitro of individual preimplantation human embryos. The relationship between the rate of development and patterns of polypeptide synthesis in individual embryos was examined using SDS-PAGE and autoradiography. After incubation in [35S]methionine, 19 polypeptide bands were identified that change between fertilization and the morula stage. Although changes in two of the bands occurred in embryos that were developing normally and in ageing oocytes, and are thus independent of fertilization, the changes identified in the remaining 17 bands occurred only after fertilization. In embryos that were developing abnormally, as assessed by delayed cleavage, cleavage arrest or extensive fragmentation, the alteration in polypeptide synthetic profiles increased with increasing abnormality.

  4. Influencing factors of embryo rescue in seedless grape

    International Nuclear Information System (INIS)

    Guo, X.; Chen, W.; Liu, Z.; Li, K.

    2015-01-01

    In this study, we investigated the impact of inoculating stage, medium type and concentration of plant growth regulators on embryo rescue effectiveness by L25(5)6 orthogonal design using selfed ovules of Venus Seedless as the testing material. The main results were as follows. The most important factor influencing ovule germination was inoculating stage. Ovule germinating rate gradually increased as inoculating being postponed. The highest germinating rate appeared when inoculation was done 55d after flowering. Other influencing factors were IBA concentration, exogenous amino acid, 6-BA concentration, GA3 concentration and medium type in descending order. The best embryo rescue result was based on Nitsch medium including 1.0 mg/L IBA, 0.1 mg/L GA3, 0.7 mg /L 6-BA and 2.0 mmol/L glutamine using ovules inoculated 55d after flowering. The highest germinating rate reached 41.25%, and a batch of seedlings was also obtained. (author)

  5. Effects of helium ions of an early embryo on postembryonic leaf development in Brassica napus L.

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Noboru [Tokyo Metropolitan Industrial Technology Research Institute, Tokyo (Japan); Minami, Harufumi [Tokyo Metropolitan Agricultural Experiment Station, Tachikawa, Tokyo (Japan); Shikazono, Naoya; Tanaka, Atsushi; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-12-01

    We examined postembryonic effects after helium ion and gamma ray irradiation of an isolated whole flower (a flower with pedicel) of Brassica napus through a flower organ culture, and estimated the effects of irradiation on embryogenesis in sexual reproductive stages. The whole flowers were irradiated with 30 Gy of helium ions and gamma rays in the early globular embryo and/or torpedo embryo stages. The helium ion and gamma ray irradiation of early globular embryos caused some drastic malformations in the first true leaves. Those malformations were classified into four types: cup-shaped, funnel-shaped, shrunk and the other varied leaves. The types were observed in 40% of plants that developed first true leaves. Both cup-shaped and funnel-shaped types were observed in over 15%. On the other hand, the irradiation of gamma rays of torpedo embryos caused sectors lacking chlorophyll in first true leaves. (author)

  6. Cryopreservation of green fluorescent protein (GFP)-labeled primordial germ cells with GFP fused to the 3' untranslated region of the nanos gene by vitrification of Japanese eel (Anguilla japonica) somite stage embryos.

    Science.gov (United States)

    Kawakami, Y; Ishihara, M; Saito, T; Fujimoto, T; Adachi, S; Arai, K; Yamaha, E

    2012-12-01

    Primordial germ cells (PGC) are the only cell type in developing embryos with the potential to transmit genetic information to the next generation. In this study, PGC of Japanese eel (Anguilla japonica) were visualized by injection of mRNA synthesized from a construct carrying the green fluorescent protein (GFP) gene fused to the 3' untranslated region of the Japanese eel nanos gene. We investigated the feasibility of cryopreserving Japanese eel PGC by vitrification of dechorionated whole somite stage embryos. The GFP-labeled PGC were rapidly cooled using liquid nitrogen after exposure to a pretreatment solution containing 1.5 M cryoprotectant (methanol, dimethyl sulfoxide, and glycerol for 10 min and ethylene glycol for 10, 20, and 30 min) and a vitrification solution containing 3 M cryoprotectant and 0.5 M sucrose for 1, 5, and 10 min. Ethylene glycerol is an effective cryoprotectant for embryonic cells and shows no evidence of ice formation after thawing. Vitrified and thawed PGC were transplanted into blastula stage embryos from zebrafish (Danio rerio). The GFP-labeled PGC migrated toward the host gonadal ridge, suggesting maintenance of their normal migration motility. These techniques may assist in achieving inter- and intraspecies germ-line chimers using donor Japanese eel PGC.

  7. The effect of vitrification on embryo development and subsequently postnatal health using a mouse model

    OpenAIRE

    Raja Khalif, Raja

    2016-01-01

    Animal models have shown that vitrification impairs ultrastructure and developmental potential of the oocyte, embryo survival rate, pregnancy rate and results in low birth weight of offspring but any long term effects on offspring are still unknown. In this study, embryos were vitrified at the 8-cell stage and kept in LN2. The first experiment investigated the effect of vitrification on numbers of surviving cells (comparing vitrified and non-vitrified embryos). The blastocysts developed from ...

  8. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    Science.gov (United States)

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  9. Effect of CO2 on somatic embryos development Coffea arabica L. cv. ‘Caturra rojo’ and Clematis tangutica K.

    Directory of Open Access Journals (Sweden)

    Raúl Barbon

    2016-07-01

    Full Text Available Studies to optimize somatic embryogenesis have traditionally focused on the components of the culture medium but little other in vitro environment factors have been analyzed such as the composition of the gaseous atmosphere. The objective of this work was to determine the influence of CO2 on the development of the somatic embryo during the transition from the globular to the torpedo stage. The research was carried out on two model species for somatic embryogenesis that they are developed in different climatic zones: Coffea arabica L. cv. ‘Caturra rojo’ and Clematis tangutica K. Three CO2 concentrations (2.5, 5.0 and 10.0% combined with 21% O2 and two controls (passive exchange and forced ventilation were used. The effect of CO2 on the differentiation of somatic embryos from globular to torpedo stage in coffee and clematis was demonstrated, since in the treatments with passive exchange, where there was accumulation of CO2, the differentiation of somatic embryos was superior to treatments with forced ventilation. With 5.0% CO2 the process of differentiation of the embryos in the globular stage was stimulated, because in the treatment with this concentration of CO2 for coffee and clematis the highest proportion of embryos in torpedo stages and low levels of malformation were obtained.   Keywords: carbon dioxide, differentiation, in vitro environment, somatic embryogenesis

  10. The notochord curvature in medaka (Oryzias latipes) embryos as a response to ultraviolet A irradiation.

    Science.gov (United States)

    Sayed, Alaa El-Din Hamid; Mitani, Hiroshi

    2016-11-01

    In the present work, the destructive effects of ultraviolet A (UVA; 366nm) irradiation on the developmental stages of Japanese medaka (Oryzias latipes) are revealed in terms of hatching success, mortality rate, and morphological malformations (yolk sac edema, body curvature, fin blistering, and dwarfism). Fertilized eggs in stage 4 were exposed to 15, 30, and 60min/day UVA for 3days in replicates. Fish were staged and aged following the stages established by Iwamatsu [1]. We observed and recorded the hatching time and deformed and dead embryos continuously. The hatching time was prolonged and the deformed and dead embryos numbers were increased by UVA dose increase. At stage 40, samples from each group were fixed to investigate their morphology and histopathology. Some morphological malformations were recorded after UVA exposure in both strains. Histopathological changes were represented as different shapes of curvature in notochord with collapse. The degree of collapsation was depended on the dose and time of UVA exposure. Our findings show that exposure to UVA irradiation caused less vertebral column curvature in medaka fry. Moreover, p53-deficient embryos were more tolerant than those of wild-type (Hd-rR) Japanese medaka. This study indicated the dangerous effects of the UVA on medaka. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sample Preparation and Mounting of Drosophila Embryos for Multiview Light Sheet Microscopy.

    Science.gov (United States)

    Schmied, Christopher; Tomancak, Pavel

    2016-01-01

    Light sheet fluorescent microscopy (LSFM), and in particular its most widespread flavor Selective Plane Illumination Microscopy (SPIM), promises to provide unprecedented insights into developmental dynamics of entire living systems. By combining minimal photo-damage with high imaging speed and sample mounting tailored toward the needs of the specimen, it enables in toto imaging of embryogenesis with high spatial and temporal resolution. Drosophila embryos are particularly well suited for SPIM imaging because the volume of the embryo does not change from the single cell embryo to the hatching larva. SPIM microscopes can therefore image Drosophila embryos embedded in rigid media, such as agarose, from multiple angles every few minutes from the blastoderm stage until hatching. Here, we describe sample mounting strategies to achieve such a recording. We also provide detailed protocols to realize multiview, long-term, time-lapse recording of Drosophila embryos expressing fluorescent markers on the commercially available Zeiss Lightsheet Z.1 microscope and the OpenSPIM.

  12. Novel embryo selection techniques to increase embryo implantation in IVF attempts.

    Science.gov (United States)

    Sigalos, George Α; Triantafyllidou, Olga; Vlahos, Nikos F

    2016-11-01

    The final success of an IVF attempt depends on several steps and decisions taken during the ovarian stimulation, the oocyte retrieval, the embryo culture and the embryo transfer. The final selection of the embryos most likely to implant is the final step in this process and the responsibility of the lab. Apart from strict morphologic criteria that historically have been used in embryo selection, additional information on genetic, metabolomic and morphokinetic characteristics of the embryo is recently combined to morphology to select the embryo most likely to produce a pregnancy. In this manuscript, we review the most recent information on the current methods used for embryo selection presenting the predictive capability of each one. A literature search was performed on Pubmed, Medline and Cochrane Database of Systematic Reviews for published studies using appropriate key words and phrases with no limits placed on time. It seems that the combination of morphologic criteria in conjunction to embryo kinetics as documented by time-lapse technology provides the most reliable information on embryo quality. Blastocyst biopsy with subsequent comprehensive chromosome analysis allows the selection of the euploid embryos with the higher implantation potential. Embryo time-lapse imaging and blastocyst biopsy combined to comprehensive chromosome analysis are the most promising technologies to increase pregnancy rates and reduce the possibility of multiple pregnancies. However, further studies will demonstrate the capability of routinely using these technologies to significantly improve IVF outcomes.

  13. Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study.

    Science.gov (United States)

    Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida

    2007-05-01

    We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.

  14. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    Science.gov (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  15. Role of melatonin in embryo fetal development.

    Science.gov (United States)

    Voiculescu, S E; Zygouropoulos, N; Zahiu, C D; Zagrean, A M

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal melatonin provided transplacentally. Melatonin appears to be involved in the normal outcome of pregnancy beginning with the oocyte quality and finishing with the parturition. Its pregnancy night-time concentrations increase after 24 weeks of gestation, with significantly high levels after 32 weeks. Melatonin receptors are widespread in the embryo and fetus since early stages. There is solid evidence that melatonin is neuroprotective and has a positive effect on the outcome of the compromised pregnancies. In addition, chronodisruption leads to a reproductive dysfunction. Thus, the influence of melatonin on the developing human fetus may not be limited to the entertaining of circadian rhythmicity, but further studies are needed.

  16. Effect of Calcium Chloride on the Permeation of the Cryoprotectant Dimethyl Sulfoxide to Japanese Whiting Sillago japonica Embryos

    Science.gov (United States)

    Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu

    Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.

  17. Electron microscope study of the genesis of strain-induced martensite embryos

    International Nuclear Information System (INIS)

    Staudhammer, K.P.; Hecker, S.S.; Murr, L.E.

    1984-01-01

    Previous work of Olson and Cohen and Murr, et al., is used to describe the genesis of martensite embryos which form at the intersection of microscopic shear bands in deformed type 304 stainless steel. It is shown that the intersection volume included within intersecting shear bands contains irregular and smaller dispersed volume segments forming α' martensite (bcc). These correspond to the satisfaction of specific intersections of stacking faults or partial dislocations on approximately every second (111)/sub fcc/ plane in one direction, and every third (111)/sub fcc/ plane in the other (conjugate) direction. The requisite stacking fault or partial dislocation arrangements are produced in an irregular fashion resulting in α' martensite embryos nucleating in an incomplete and irregular fashion within the intersection volume. 9 references, 2 figures

  18. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial.

    Science.gov (United States)

    Kieslinger, Dorit C; Hao, Zhenxia; Vergouw, Carlijn G; Kostelijk, Elisabeth H; Lambalk, Cornelis B; Le Gac, Séverine

    2015-03-01

    To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Prospective randomized controlled trial. In vitro fertilization laboratory. One hundred eighteen donated frozen-thawed human day-4 embryos. Random allocation of embryos that fulfilled the inclusion criteria to single-embryo culture in a microfluidics device (n = 58) or standard microdrop dish (n = 60). Blastocyst formation rate and quality after 24, 28, 48, and 72 hours of culture. The percentage of frozen-thawed day-4 embryos that developed to the blastocyst stage did not differ significantly in the standard microdrop dishes and microfluidic devices after 28 hours of culture (53.3% vs. 58.6%) or at any of the other time points. The proportion of embryos that would have been suitable for embryo transfer was comparable after 28 hours of culture in the control dishes and microfluidic devices (90.0% vs. 93.1%). Furthermore, blastocyst quality was similar in the two study groups. This study shows that a microfluidic device can successfully support human blastocyst development in vitro under static culture conditions. Future studies need to clarify whether earlier stage embryos will benefit from the culture in microfluidic devices more than the tested day-4 embryos because many important steps in the development of human embryos already take place before day 4. Further improvements of the microfluidic device will include parallel culture of single embryos, application of medium refreshment, and built-in sensors. NTR3867. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Growth regulators and darkness increase efficiency in in vitro culture of immature embryos from peppers

    Directory of Open Access Journals (Sweden)

    Juan Pablo Manzur

    2014-12-01

    Full Text Available Common pepper (Capsicum annuum L. is one of the most important vegetables in the world, and extensive breeding efforts are being made to develop new improved strains of this species. In this regard, in vitro culture of immature embryos may help breeders accelerate breeding cycles and overcome interspecific barriers, among other applications. In this study, we have optimized a protocol for in vitro culture of immature embryos of C. annuum. Levels of indole-3-acetic acid (IAA and zeatin have been tested to improve the efficiency (germination rates of this technique in C. annuum embryos at the four main immature stages (i.e. globular, heart, torpedo, and early cotyledonary from four varietal types of this species (California Wonder, Piquillo, Guindilla, and Bola. The effect of 5-day initial incubation in the dark was also tested on the most efficient hormone formulation. On average, relatively low levels of both IAA and zeatin (0.01 mg L−¹ each (M1 provided the highest germination rates, particularly in the advanced stages (torpedo and cotyledonary. To a lesser extent, the lack of these growth regulators (M0 or high IAA (0.2 mg L−¹/low zeatin (0.01 mg L−¹ (M2 combination also had a positive response. On the contrary, high zeatin levels (0.2 mg L−¹ produced very low germination rates or callus development (efficiency 0-7 %. Different responses were also found between genotypes. Thus, considering the best media (M0, M1, M2, Bola embryos had the highest rates. M1 plus 5-days of initial dark incubation (M1-D improved the efficiency rates at all embryo stages, particularly in the earliest (globular embryos which increased from 3 % to > 20 %.

  20. Maturation and germination of somatic embryos of Sorghum bicolor (L. Moench cultivar 'CIAP 132R-05'

    Directory of Open Access Journals (Sweden)

    Silvio de J Martínez

    2017-03-01

    Full Text Available In sorghum [Sorghum bicolor (L. Moench], developed protocols for plant regeneration via somatic embryogenesis do not include maturation stage. The present work was carried out with the aim of achieving the maturation and germination of sorghum somatic embryos in cultivar 'CIAP 132R-05'. It were studied four concentrations of sucrose (30, 50, 70 and 90 g l-1, two of abscisic acid (0.25 and 0.5 μM and a control without this growth regulator. Germination initiation (days and number of somatic embryos with complete germination were evaluated in three periods (1 - 7, 8 - 14 and 15 - 21 days of culture. In addition, the effect of 6-BAP (8.9, 17.8 and 26.6 μM on somatic embryo germination was determined. The germination start time (days and after 21 days the number of somatic embryos with complete germination and plants with malformations were determined. The addition of 70 g l-1 sucrose in the culture medium without abscisic acid increased the germination of the somatic embryos to 37.2 plants per embryo group (0.5 g of fresh mass. The highest number of somatic embryos germinated was obtained with 17.78 μM 6-BAP in the germination culture medium. It was demonstrated the need of a maturation stage in the sorghum somatic embryogenesis to increase the germination percentage.   Keywords: somatic embryogenesis, sorghum, sucrose, 6-BAP

  1. A multicenter prospective study to assess the effect of early cleavage on embryo quality, implantation, and live-birth rate.

    Science.gov (United States)

    de los Santos, Maria José; Arroyo, Gemma; Busquet, Ana; Calderón, Gloria; Cuadros, Jorge; Hurtado de Mendoza, Maria Victoria; Moragas, Marta; Herrer, Raquel; Ortiz, Agueda; Pons, Carme; Ten, Jorge; Vilches, Miguel Angel; Figueroa, Maria José

    2014-04-01

    To investigate the impact of early cleavage (EC) on embryo quality, implantation, and live-birth rates. Prospective cross-sectional study. Multicenter study. Seven hundred embryo transfers and 1,028 early-stage human embryos. None. Implantation according to the presence of EC and embryo quality. The presence of EC is associated with embryo quality, especially in cycles with autologous oocytes. However, the use of EC as an additional criterion for selecting an embryo for transfer does not appear to significantly improve likelihood of implantation. Furthermore, embryos that presented EC had live-birth rates per implanted embryo similar to those that did not show any sign of cleavage. At least for conventional embryo culture and morphologic evaluations, the additional evaluation of EC in embryos may not be valuable to improve embryo implantation. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. New data about the suspensor of succulent angiosperms: Ultrastructure and cytochemical study of the embryo-suspensor of Sempervivum arachnoideum L. and Jovibarba sobolifera (Sims) Opiz.

    Science.gov (United States)

    Kozieradzka-Kiszkurno, Małgorzata; Płachno, Bartosz Jan; Bohdanowicz, Jerzy

    2012-07-01

    The development of the suspensor in two species - Sempervivum arachnoideum and Jovibarba sobolifera - was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species - S. arachnoideum and J. sobolifera - the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper.

  3. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    Science.gov (United States)

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  4. Organophosphorus pesticides effect on early stages of the axolotl Ambystoma mexicanum (Amphibia: Caudata).

    Science.gov (United States)

    Robles-Mendoza, C; García-Basilio, C; Cram-Heydrich, S; Hernández-Quiroz, M; Vanegas-Pérez, C

    2009-02-01

    Ambystoma mexicanum is an endemic salamander of Xochimilco, a wetland of the basin of Mexico valley. Nowadays, axolotl populations are decreasing due environmental stressors. Particularly, studies about organophosphorus pesticides (OPPs; i.e. chlorpyrifos and malathion) toxicity are of great importance due to their intensive use in agricultural activities in Xochimilco. Thus, the aim of this study was to evaluate under controlled conditions the toxicity of chlorpyrifos (CPF) and malathion (MLT) on embryos and larvae (stage 44 and 54) of A. mexicanum. Embryos and larvae were exposure 96h from 0.5 to 3mg CPFL(-1) and from 10 to 30mg MLTL(-1) in independent tests. Embryos at the end of this period were maintained 9d without pesticide in order to identify possible recuperation. Differences obtained in mortality, hatching success, development, morphological abnormalities, behaviour and activity, suggest that toxicity of CPF and MLT differs in embryos and larval stages. Embryos were less sensitive to OPPs acute exposure than axolotl larvae; additionally, toxicity of CPF in larval stages was greater than MLT. On the other hand, data obtained in axolotl embryos during the period of recuperation to CPF in particular as delay and inhibition of development, malformations and success of hatching, indicated that these responses turned out more sensitive than mortality. This study allowed to identify the toxicological potential of OPPs on early developmental stages of A. mexicanum and it is a valuable contribution for the future management of the axolotl wild population.

  5. Ontogeny of salinity tolerance and hyper-osmoregulation by embryos of the intertidal crabs Hemigrapsus edwardsii and Hemigrapsus crenulatus (Decapoda, Grapsidae): survival of acute hyposaline exposure.

    Science.gov (United States)

    Taylor, H H; Seneviratna, Deepani

    2005-04-01

    The adults of Hemigrapsus edwardsii and Hemigrapsus crenulatus are euryhaline crabs and strong hyper-osmoregulators. Their embryos are carried externally attached to the abdominal pleopods of female crabs, where they are exposed to temporal and spatial changes in salinity associated with their intertidal and estuarine habitats. Although embryos lack the branchial and excretory organs responsible for adult osmoregulation, post-gastrula embryos were highly tolerant of exposure to hypo-osmotic sea water. Detached eggs (embryos+envelopes), of both species, at all developmental stages between gastrulation and hatching, exhibited 80-100% survival for periods up to 96 h in sea water (osmolality, 1050 mmol kg(-1)) and in dilutions to 50%, 10%, and 1%. Cleavage stages were less tolerant of dilution; H. edwardsii, <50% survived 24 h in 10% sea water; H. crenulatus <50% survived 6 h in 10% sea water. Post-gastrulation stages strongly hyper-osmoregulated but cleavage stages were hyper-osmoconformers (maintaining internal osmolality approximately 150 mmol kg(-1) above external). Osmoregulatory capacity was reduced just prior hatching, particularly in H. crenulatus, although salinity tolerance remained high. Gastrulation therefore marks a critical stage in the ontogeny of osmoregulation and salinity tolerance. Total Na+/K(+)-ATPase activity increased greatly during embryogenesis of H. crenulatus (undetectable in blastulae; gastrulae 0.31+/-0.05 pmol P(i) embryo(-1) min(-1); pre-hatching 16.4+/-1.0 pmol P(i) embryo(-1) min(-1)). Na+/K(+)-ATPase activity increased in embryos exposed to dilute sea water for 24 h implicating regulation of this transporter in a short-term acclimation response.

  6. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  7. The rat whole embryo culture assay using the Dysmorphology Score system.

    Science.gov (United States)

    Zhang, Cindy; Panzica-Kelly, Julie; Augustine-Rauch, Karen

    2013-01-01

    The rat whole embryo culture (WEC) system has been used extensively for characterizing teratogenic properties of test chemicals. In this chapter, we describe the methodology for culturing rat embryos as well as a new morphological score system, the Dysmorphology Score (DMS) system for assessing morphology of mid gestation (gestational day 11) rat embryos. In contrast to the developmental stage focused scoring associated with the Brown and Fabro score system, this new score system assesses the respective degree of severity of dysmorphology, which delineates normal from abnormal morphology of specific embryonic structures and organ systems. This score system generates an approach that allows rapid identification and quantification of adverse developmental findings, making it conducive for characterization of compounds for teratogenic properties and screening activities.

  8. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer.

    Science.gov (United States)

    Srirattana, Kanokwan; St John, Justin C

    2018-05-08

    We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.

  9. Graphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collection.

    Science.gov (United States)

    Yamada, Shigehito; Uwabe, Chigako; Nakatsu-Komatsu, Tomoko; Minekura, Yutaka; Iwakura, Masaji; Motoki, Tamaki; Nishimiya, Kazuhiko; Iiyama, Masaaki; Kakusho, Koh; Minoh, Michihiko; Mizuta, Shinobu; Matsuda, Tetsuya; Matsuda, Yoshimasa; Haishi, Tomoyuki; Kose, Katsumi; Fujii, Shingo; Shiota, Kohei

    2006-02-01

    Morphogenesis in the developing embryo takes place in three dimensions, and in addition, the dimension of time is another important factor in development. Therefore, the presentation of sequential morphological changes occurring in the embryo (4D visualization) is essential for understanding the complex morphogenetic events and the underlying mechanisms. Until recently, 3D visualization of embryonic structures was possible only by reconstruction from serial histological sections, which was tedious and time-consuming. During the past two decades, 3D imaging techniques have made significant advances thanks to the progress in imaging and computer technologies, computer graphics, and other related techniques. Such novel tools have enabled precise visualization of the 3D topology of embryonic structures and to demonstrate spatiotemporal 4D sequences of organogenesis. Here, we describe a project in which staged human embryos are imaged by the magnetic resonance (MR) microscope, and 3D images of embryos and their organs at each developmental stage were reconstructed based on the MR data, with the aid of computer graphics techniques. On the basis of the 3D models of staged human embryos, we constructed a data set of 3D images of human embryos and made movies to illustrate the sequential process of human morphogenesis. Furthermore, a computer-based self-learning program of human embryology is being developed for educational purposes, using the photographs, histological sections, MR images, and 3D models of staged human embryos. Copyright 2005 Wiley-Liss, Inc.

  10. Quantitation of chordin in developing Huso huso embryos and larvae by radioimmunoassay

    International Nuclear Information System (INIS)

    Preobrazhensky, A.A.; Glinka, A.V.

    1985-01-01

    Chordin is a protein discovered in the notochord cells of the representatives of Acipenseridae; giant sturgeon, stellate sturgeon and sterlet. Some characteristics of the purified chordin preparation which justify its use in radioimmunoassay are described. A sensitive competitive-binding double-antibody radioimmunoassay for chordin is described by which its content in the extracts from giant sturgeon embryos and larvae has been measured. It is shown that chordin biosynthesis started in the embryos from stage 32. (Auth.)

  11. Caspase activity and expression of cell death genes during development of human preimplantation embryos.

    Science.gov (United States)

    Spanos, S; Rice, S; Karagiannis, P; Taylor, D; Becker, D L; Winston, R M L; Hardy, K

    2002-09-01

    It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.

  12. Control of the heart rate of rat embryos during the organogenic period

    Directory of Open Access Journals (Sweden)

    Ritchie HE

    2016-11-01

    Full Text Available Helen E Ritchie,1 Carolina Ragnerstam,2 Elin Gustafsson,2 Johanna M Jonsson,2 William S Webster2 1Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Lidcombe, 2Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia Abstract: The aim of this study was to gain insight into whether the first trimester embryo could control its own heart rate (HR in response to hypoxia. The gestational day 13 rat embryo is a good model for the human embryo at 5–6 weeks gestation, as the heart is comparable in development and, like the human embryo, has no functional autonomic nerve supply at this stage. Utilizing a whole-embryo culture technique, we examined the effects of different pharmacological agents on HR under normoxic (95% oxygen and hypoxic (20% oxygen conditions. Oxygen concentrations ≤60% caused a concentration-dependent decrease in HR from normal levels of ~210 bpm. An adenosine agonist, AMP-activated protein kinase (AMPK activator and KATP channel opener all caused bradycardia in normoxic conditions; however, putative antagonists for these systems failed to prevent or ameliorate hypoxia-induced bradycardia. This suggests that the activation of one or more of these systems is not the primary cause of the observed hypoxia-induced bradycardia. Inhibition of oxidative phosphorylation also decreased HR in normoxic conditions, highlighting the importance of ATP levels. The β-blocker metoprolol caused a concentration-dependent reduction in HR supporting reports that β1-adrenergic receptors are present in the early rat embryonic heart. The cAMP inducer colforsin induced a positive chronotropic effect in both normoxic and hypoxic conditions. Overall, the embryonic HR at this stage of development is responsive to the level of oxygenation, probably as a consequence of its influence on ATP production. Keywords: embryonic heart rate, embryo, bradycardia, in vitro, ATP, hypoxia

  13. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos

    Science.gov (United States)

    Lei, Yong; Xiao, Qi; Huang, Shan; Xu, Wansu; Zhang, Zhe; He, Zhike; Liu, Yi; Deng, Fengjiao

    2011-12-01

    Due to their unique fluorescent characteristics, quantum dots (QDs) have been successfully applied in the fields of biotechnology and medicine, but there is very limited information regarding their biodistribution and chronic toxicity in vivo. In this article, the biological behavior and toxic effects of mercaptoacetic acid-CdSe/ZnS QDs (MAA-QDs) in developing zebrafish embryos were investigated by in vivo tests. The MAA-QDs were introduced into zebrafish through microinjection at early stage. The results showed that the MAA-QDs at certain concentrations influenced the survival of zebrafish embryos, but treated embryos without developmental defects were also observed. MAA-QDs injected into the cytoplasm at the one-cell stage were allocated to progeny blastoderm cells during proliferation and almost never entered the yolk. The formation of notochord and primordial germ cells with normal morphologies was detected in the treated embryos by whole-mount in situ hybridization. Furthermore, traces of the element cadmium were mainly discovered in the tissue of liver and kidney of 3-month-old-treated zebrafish by quantitative assessment with inductively coupled plasma mass spectrometry. Thus, we hypothesized that low concentration MAA-QDs have chronic toxicities when they were delivered into zebrafish organs.

  14. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos

    International Nuclear Information System (INIS)

    Lei Yong; Xiao Qi; Huang Shan; Xu Wansu; Zhang Zhe; He Zhike; Liu Yi; Den, Fengjiao

    2011-01-01

    Due to their unique fluorescent characteristics, quantum dots (QDs) have been successfully applied in the fields of biotechnology and medicine, but there is very limited information regarding their biodistribution and chronic toxicity in vivo. In this article, the biological behavior and toxic effects of mercaptoacetic acid-CdSe/ZnS QDs (MAA-QDs) in developing zebrafish embryos were investigated by in vivo tests. The MAA-QDs were introduced into zebrafish through microinjection at early stage. The results showed that the MAA-QDs at certain concentrations influenced the survival of zebrafish embryos, but treated embryos without developmental defects were also observed. MAA-QDs injected into the cytoplasm at the one-cell stage were allocated to progeny blastoderm cells during proliferation and almost never entered the yolk. The formation of notochord and primordial germ cells with normal morphologies was detected in the treated embryos by whole-mount in situ hybridization. Furthermore, traces of the element cadmium were mainly discovered in the tissue of liver and kidney of 3-month-old-treated zebrafish by quantitative assessment with inductively coupled plasma mass spectrometry. Thus, we hypothesized that low concentration MAA-QDs have chronic toxicities when they were delivered into zebrafish organs.

  15. Network analysis reveals stage-specific changes in zebrafish embryo development using time course whole transcriptome profiling and prior biological knowledge.

    Science.gov (United States)

    Zhang, Yuji

    2015-01-01

    Molecular networks act as the backbone of molecular activities within cells, offering a unique opportunity to better understand the mechanism of diseases. While network data usually constitute only static network maps, integrating them with time course gene expression information can provide clues to the dynamic features of these networks and unravel the mechanistic driver genes characterizing cellular responses. Time course gene expression data allow us to broadly "watch" the dynamics of the system. However, one challenge in the analysis of such data is to establish and characterize the interplay among genes that are altered at different time points in the context of a biological process or functional category. Integrative analysis of these data sources will lead us a more complete understanding of how biological entities (e.g., genes and proteins) coordinately perform their biological functions in biological systems. In this paper, we introduced a novel network-based approach to extract functional knowledge from time-dependent biological processes at a system level using time course mRNA sequencing data in zebrafish embryo development. The proposed method was applied to investigate 1α, 25(OH)2D3-altered mechanisms in zebrafish embryo development. We applied the proposed method to a public zebrafish time course mRNA-Seq dataset, containing two different treatments along four time points. We constructed networks between gene ontology biological process categories, which were enriched in differential expressed genes between consecutive time points and different conditions. The temporal propagation of 1α, 25-Dihydroxyvitamin D3-altered transcriptional changes started from a few genes that were altered initially at earlier stage, to large groups of biological coherent genes at later stages. The most notable biological processes included neuronal and retinal development and generalized stress response. In addition, we also investigated the relationship among

  16. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex

    DEFF Research Database (Denmark)

    Holm, Peter; Shukri, Naseer Mahmoud; Vajta, Gabor

    1998-01-01

    The development of bovine IVP-embryos was observed in a time-lapse culture system to determine cell cycle lengths of 1) embryos that developed into compact morulae (CM) or blastocysts (BL) within 174 h after insemination (viable), 2) embryos that arrested during earlier stages (nonviable) and 3......) male and female embryos. In 4 replicates, inseminated oocytes were cultured on a microscope stage in 3 to 4 groups on a granulosa cell monolayer in supplemented TCM 199. Images were sequentially recorded and stored at 30-min intervals. All embryos that could be identified throughout the culture period...... were included (n=392), and the times of cleavage events noted. After culture, 100 CM or BL were randomly selected for sexing by PCR. BL developed equally well in the time-lapse and control culture systems (36 vs 38. The respective lengths of the first 4 cell cycles of viable embryos were 32.0 + 3.9, g...

  17. Small Molecule Injection into Single-Cell C. elegans Embryos via Carbon-Reinforced Nanopipettes

    Science.gov (United States)

    Morton, Diane G.; Fellman, Shanna M.; Chung, SueYeon; Soltani, Mohammad; Kevek, Joshua W.; McEuen, Paul M.; Kemphues, Kenneth J.; Wang, Michelle D.

    2013-01-01

    The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C. elegans embryos with high temporal control. The use of CRNPs allows for cellular manipulation to occur just subsequent to meiosis II with minimal damage to the embryo. We have used our technique to replicate classical experiments using latrunculin A to inhibit microfilaments and assess its effects on early polarity establishment. Our injections of latrunculin A confirm the necessity of microfilaments in establishing anterior-posterior polarity at this early stage, even when microtubules remain intact. Further, we find that latrunculin A treatment does not prevent association of PAR-2 or PAR-6 with the cell cortex. Our experiments demonstrate the application of carbon-reinforced nanopipettes to the study of one temporally-confined developmental event. The use of CRNPs to introduce molecules into the embryo should be applicable to investigations at later developmental stages as well as other cells with tough outer coverings. PMID:24086620

  18. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Pan Huichin; Lin Yujun; Li Mengwei [Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan (China); Chuang Hanni; Chou Chengchung, E-mail: bioccc@ccu.edu.tw, E-mail: hp29@csmu.edu.tw [Department of Life Science, National Chung Cheng University, Min-Hsiung, 62102 Taiwan (China)

    2011-07-06

    Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 {mu}g/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertilization (hpf). Incubation of embryos in 1% F-68 did not induce overt abnormal phenotype as compared to the wild-type; neither did it cause significant mortality during the exposure period. Generally, there was a slight developmental delay in larvae treated with SWCNTs of 5 {mu}g/ml or above. Only larvae exposed to {>=} 5 {mu}g/ml SWCNTs showed significantly reduced survival rates. About 50% of the embryos exposed to 5 {mu}g/ml showed abnormal phenotypes at 24 hpf as compared to the control group. As development proceeds to 120 hpf, more embryos displayed defective morphology. A slight hatching delay was observed in embryos exposed to concentrations above 5 {mu}g/ml. There was a general reduction of body axes, including narrowed somite and shortened yolk stalk. In addition, pigmentation in the ventral trunk area was less than that observed in control group. The body lengths of the exposed embryos were decreased significantly at 48 hpf (3.11 mm in control vs. 3.00 mm in SWCNTs-exposed embryos). However, exposure to SWCNTs did not affect the number of somites. Other features that were noticed in the SWCNTs-exposed embryos included edema and shrinkage and blebbling of the epidermal lining. Most of these observed phenotypes persisted from 48 hpf through 120 hpf. Overall, the aforementioned results indicate that soluble amide-functionalized SWCNTs are toxic to zebrafish embryos at a minimum concentration of 5 {mu}g/ml.

  19. Rape embryogenesis. IV. Appearance and disappearance of starch during embryo development

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2014-01-01

    Full Text Available Starch appears first in the suspensor of the proembryo with two-cell apical part. It is observed in the embryo proper from the octant stage. At first it is visible in all the embryo cells in the form of minute transient grains which disappear during cell divisions. But the columella mother cells and their derivatives have persistent large grains. When the embryo turns green in the heart stage a gradual accumulation of storage starch begins and lasts to the end of embryogenesis. Storage starch grains appear first in the auter cortex layers of the hypocotyl where the largest grains are to be found later, and afterwards in all the other tissues. Starch is usually absent in the frequently dividing cells, but even there it appears in the form of minute grains after the end of cell divisions. Disappearance of starch starts when the intensive green colour of the seed coat begins to fade. The first to disappear are the smallest granules in the regions where they were noted latest. In the embryo axis the starch grains remain deposited longest in dermatogen and cortex cells in the lower hypocotyl part. They are visible there, still when the seed turns brown. In black seeds starch may be only found in the columella the cells of which throughout embryogenesis contain amyloplasts filled with starch. These grains disappear completely at the time when the seeds become dry.

  20. EMBRYO DEVELOPMENT OF YELLOWFIN TUNA (Thunnus albacares AT DIFFERENT INCUBATION TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Jhon Harianto Hutapea

    2007-12-01

    Full Text Available The experiment was conducted in order to figure out the effect of incubation temperature on embryonic development of yellowfin tuna, Thunnus albacares eggs. Five different incubation temperatures were applied as treatments, i.e.: 24°C, 26°C, 28°C, 30°C, and 32°C with 3 replicate each. Ten micro plates with lid (IWAKI, Japan were used; each has 6 well and 10 mL volumes. Five micro plates were used for experiment and five for balance on shaker. Three well of each micro plate were filled with 8 mL ultra violet sterilized sea water and 50 fertilized eggs. Temperature was set using Multi Thermo Incubator which has 5 level racks. Temperatures were set from the lowest to the highest on bottom to upper rack order. To maintain eggs dispersed in the medium, shaker on each rack was operated at 150 RPM. The embryo was monitored every 30-60 minutes depends on embryonic stage development using Microscope which was connected to Digital Camera DXM 1200F. Image analyses by Image Analyzer Program. The results showed, incubation temperature was significantly affect (P<0.05 embryonic development and hatching time of yellowfin tuna (Thunnus albacares eggs. Optimum incubation temperature for embryo development and hatching was 28°C. Decreased on incubation temperature slows down embryo development at all stages, and vice versa, increased on incubation temperature accelerates embryo development.

  1. [How can we nowadays select the best embryo to transfer?].

    Science.gov (United States)

    Alter, L; Boitrelle, F; Sifer, C

    2014-01-01

    Multiple pregnancies stand as the most common adverse outcome of assisted reproduction technologies (ART) and the dangers associated with those pregnancies have been reduced by doing elective single embryo transfers (e-SET). Many studies have shown that e-SET is compatible with a continuously high pregnancy rate per embryo transfer. Yet, it still becomes necessary to improve the selection process in order to define the quality of individual embryos - so that the ones we choose for transfer are more likely to implant. First, analysis of embryo morphology has greatly helped in this identification and remains the most relevant criterion for choosing the embryo. The introduction of time-lapse imaging provides new criteria predictive of implantation potential, but the real contribution of this system - including the benefit/cost ratio - seems to be not yet properly established. In this context, extended culture until blastocyst stage is an essential practice but it appears wise to keep it for a population showing a good prognosis. Then, the failure of aneuploid embryos to implant properly led to achieve preimplantation genetic screening (PGS) in order to increase pregnancy and delivery rates after ART. However, PGS by fluorescence in situ hybridization (FISH) at day 3 is a useless process - and may even be harmful. Another solution involves using comparative genomic hybridisation (CGH) and moving to blastocyst biopsy. Finally, it is envisaged that morphology will also be significantly aided by non-invasive analysis of biomarkers in the culture media that give a better reflection of whole-embryo physiology and function. Copyright © 2014. Published by Elsevier SAS.

  2. Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins.

    Science.gov (United States)

    Xu, N; Coulter, K M; Derek Bewley, J

    1990-10-01

    Developing seeds of alfalfa (Medicago sativa L.) acquire the ability to germinate during the latter stages of development, the maturation drying phase. Isolated embryos placed on Murashige and Skoog medium germinate well during early and late development, but poorly during mid-development; however, when placed on water they germinate well only during the latter stage of development. Germination of isolated embryos is very slow and poor when they are incubated in the presence of surrounding seed structures (the endosperm or seed coat) taken from the mid-development stages. This inhibitory effect is also achieved by incubating embryos in 10(-5) M abscisic acid (ABA). Endogenous ABA attains a high level during mid-development, especially in the endosperm. Seeds developing in pods treated with fluridone (1-methyl-3-phenyl-5[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone) contain low levels of ABA during mid-development, and the endosperm and seed coat only weakly inhibit the germination of isolated embryos. However, intact seeds from fluridone-treated pods do not germinate viviparously, which is indicative that ABA alone is not responsible for maintaining seeds in a developing state. Application of osmoticum (e.g. 0.35 M sucrose) to isolated developing embryos prevents their germination. Also, in the developing seed in situ the osmotic potential is high. Thus internal levels of osmoticum may play a role in preventing germination of the embryo and maintaining development. Abscisic acid and osmoticum impart distinctly different metabolic responses on developing embryos, as demonstrated by their protein-synthetic capacity. Only in the presence of osmoticum do embryos synthesize proteins which are distinctly recognizable as those synthesized by developing embryos in situ, i.e. when inside the pod. Abscisic acid induces the synthesis of a few unique proteins, but these arise even in mature embryos treated with ABA. Thus while both osmoticum and ABA prevent precocious

  3. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos

    DEFF Research Database (Denmark)

    Lin, Lin; Luo, Yonglun; Sørensen, Peter

    2014-01-01

    derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P

  4. Expression analysis of some genes regulated by retinoic acid in controls and triadimefon-exposed embryos: is the amphibian Xenopus laevis a suitable model for gene-based comparative teratology?

    Science.gov (United States)

    Di Renzo, Francesca; Rossi, Federica; Bacchetta, Renato; Prati, Mariangela; Giavini, Erminio; Menegola, Elena

    2011-06-01

    The use of nonmammal models in teratological studies is a matter of debate and seems to be justified if the embryotoxic mechanism involves conserved processes. Published data on mammals and Xenopus laevis suggest that azoles are teratogenic by altering the endogenous concentration of retinoic acid (RA). The expression of some genes (Shh, Ptch-1, Gsc, and Msx2) controlled by retinoic acid is downregulated in rat embryos exposed at the phylotypic stage to the triazole triadimefon (FON). In order to propose X. laevis as a model for gene-based comparative teratology, this work evaluates the expression of Shh, Ptch-1, Gsc, and Msx2 in FON-exposed X. laevis embryos. Embryos, exposed to a high concentration level (500 µM) of FON from stage 13 till 17, were examined at stages 17, 27, and 47. Stage 17 and 27 embryos were processed to perform quantitative RT-PCR. The developmental rate was never affected by FON at any considered stage. FON-exposed stage 47 larvae showed the typical craniofacial malformations. A significant downregulation of Gsc was observed in FON-exposed stage 17 embryos. Shh, Ptch-1, Msx2 showed a high fluctuation of expression both in control and in FON-exposed samples both at stages 17 and 27. The downregulation of Gsc mimics the effects of FON on rat embryos, showing for this gene a common effect of FON in the two vertebrate classes. The high fluctuation observed in the gene expression of the other genes, however, suggests that X. laevis at this stage has limited utility for gene-based comparative teratology. © 2011 Wiley-Liss, Inc.

  5. Ethanol impedes embryo transport and impairs oviduct epithelium

    International Nuclear Information System (INIS)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-01-01

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50 ± 6 mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy.

  6. Ethanol impedes embryo transport and impairs oviduct epithelium.

    Science.gov (United States)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-05-16

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50±6mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Expression of the CTCF gene in bovine oocytes and preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Álvaro F.L. Rios

    2007-01-01

    Full Text Available The CCCTC - binding factor (CTCF is a protein involved in repression, activation, hormone-inducible gene silencing, functional reading of imprinted genes and X-chromosome inactivation. We analyzed CTCF gene expression in bovine peripheral blood, oocytes and in different cellular stages (2-4 cells, 8-16 cells, 16-32 cells, morulae, and blastocysts of in vitro fertilized embryos. This is the first report of CTCF expression in oocytes and preimplantation bovine embryos and has implications for the production of embryonic stem cells and the development of novel medical technologies for humans.

  8. Lessons from Embryos: Haeckel's Embryo Drawings, Evolution, and Secondary Biology Textbooks

    Science.gov (United States)

    Wellner, Karen L.

    2014-01-01

    In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work "noncredible". "Science" soon published "Haeckel's Embryos: Fraud Rediscovered," and Richardson's comments further reinvigorated criticism of Haeckel by…

  9. Germination response of coconut (Cocos nucifera L.) zygotic embryo ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study investigated the effects of liquid and solid media in the propagation of coconut (Cocos nucifera) zygotic embryos at initiation stage. Eeuwen's medium supplemented with growth hormones naphthalene acetic acid ( NAA) and indole butyric acid (IBA) at different concentrations (0.5, 1.0, 1.5, 2.0 and ...

  10. Progress towards initiation of somatic embryogenesis from differentiated tissues of radiata pine (Pinus radiata D. Don) using cotyledonary embryos

    DEFF Research Database (Denmark)

    Find, Jens Iver; Hargreaves, Cathy L.; Reeves, Catherine B.

    2014-01-01

    of dissected embryos and a modified Litvay medium, Glitz, was best. This combination gave the highest rate of initiation, and it was possible to initiate somatic embryogenesis (SE) from differentiated cells in the epicotyledonary region of postcotyledonary zygotic embryos from the two tested families...... with an average initiation rate of approximately 24% and 7% from stage five and six embryos, respectively. This is different from established initiation protocols of embryogenic cultures in radiata pine, which has traditionally been based on embryo rescue and continued proliferation of immature zygotic embryos....... A further implication of initiation of SE from excised post-cotyledonary embryos was that the period of initiation of embryogenic cultures was extended from 4 to 12 wk....

  11. Closure of the vertebral canal in human embryos and fetuses.

    Science.gov (United States)

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  12. Noninvasive embryo assessment technique based on buoyancy and its association with embryo survival after cryopreservation.

    Science.gov (United States)

    Wessels, Cara; Penrose, Lindsay; Ahmad, Khaliq; Prien, Samuel

    2017-11-01

    Embryo cryopreservation offers many benefits by allowing genetic preservation, genetic screening, cost reduction, global embryo transport and single embryo transfer. However, freezing of embryos decreases embryo viability, as intracellular ice crystal formation often damages embryos. Success rates of frozen embryo transfer are expected to be 15-20% less than fresh embryo transfer. We have developed a noninvasive embryo assessment technique (NEAT) which enables us to predict embryo viability based on buoyancy. The purpose of this research was twofold. First was to determine if a NEAT, through a specific gravity device can detect embryo survival of cryopreservation. Second, it was to relate embryo buoyancy to embryo viability for establishing pregnancies in sheep. Blastocysts descent times were measured on one-hundred sixty-nine mice blastocysts before cryopreservation, according to standard protocol and post-thawing blastocysts descent times were measured again. There was a significant difference in blastocyst post-thaw descent times with NEAT in those blastocysts which demonstrated viability from those that did not (P embryos. Further studies on a larger scale commercial setting will evaluate the efficacy of NEAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.

    Science.gov (United States)

    Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Mitchell, Timothy S; Bodensteiner, Brooke L; Holden, Kaitlyn G; Mitchell, Sarah M; Polich, Rebecca L; Janzen, Fredric J

    2016-07-01

    Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching.

  14. Factors that affect the reproductive efficiency of the recipient within a bovine embryo transfer program

    Directory of Open Access Journals (Sweden)

    Arturo Duica A.

    2007-12-01

    Full Text Available The embryo transfer is a biotechnological technique that allows increasing the descendant of animals with high genetic value. The positive results, represented in pregnancy after the application of this technique, are affected by some factors that are inherent to the donor, the embryo, the technique, and the recipients which receive a strange embryo in the uterus allowing pregnancy. This review describes some factors affecting the reproductive efficiency of the recipients of bovine embryos within a program of embryo transfer. Its important to evaluate the parameters in this kind of recipients, as race, age, physiological status, health status, weight, reproductive tract integrity and management, and also too monitoring the ovarian structures while the estrus synchronization, and within previous and posterior stages in embryo transfer procedure. Therefore an optimum follicular development will be determinant to corpus luteum formation which generates enough serum progesterone concentrations to offer a right uterine environment allowing the optimum embryo development. Controlling the factors that affect the efficiency of the embryo transfer, it will obtain an increasing of positive results represented in pregnancies and births of individuals come from animals with high genetic value.

  15. Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish.

    Science.gov (United States)

    Lehner, Adam; Kaszas, Zita; Murber, Akos; Rigo, Janos; Urbancsek, Janos; Fancsovits, Peter

    2017-08-01

    Culturing embryos in groups is a common practice in mammalian embryology. Since the introduction of different microwell dishes, it is possible to identify oocytes or embryos individually. As embryo density (embryo-to-volume ratio) may affect the development and viability of the embryos, the purpose of this study was to assess the effect of different embryo densities on embryo quality. Data of 1337 embryos from 228 in vitro fertilization treatment cycles were retrospectively analyzed. Embryos were cultured in a 25 μl microdrop in a microwell group culture dish containing 9 microwells. Three density groups were defined: Group 1 with 2-4 (6.3-12.5 μl/embryo), Group 2 with 5-6 (4.2-5.0 μl/embryo), and Group 3 with 7-9 (2.8-3.6 μl/embryo) embryos. Proportion of good quality embryos was higher in Group 2 on both days (D2: 18.9 vs. 31.5 vs. 24.7%; p Culturing 5-6 embryos together in a culture volume of 25 μl may benefit embryo quality. As low egg number, position, and distance of the embryos may influence embryo quality, results should be interpreted with caution.

  16. High-power free-electron laser amplifier using a scalloped electron beam and a two-stage wiggler

    Directory of Open Access Journals (Sweden)

    D. C. Nguyen

    2006-05-01

    Full Text Available High-power free-electron laser (FEL amplifiers present many practical design and construction problems. One such problem is possible damage to any optical beam control elements beyond the wiggler. The ability to increase the optical beam’s divergence angle after the wiggler, thereby reducing the intensity on the first optical element, is important to minimize such damage. One proposal to accomplish this optical beam spreading is to pinch the electron beam thereby focusing the radiation as well. In this paper, we analyze an approach that relies on the natural betatron motion to pinch the electron beam near the end of the wiggler. We also consider a step-tapered, two-stage wiggler to enhance the efficiency. The combination of a pinched electron beam and step-taper wiggler leads to additional optical guiding of the optical beam. This novel configuration is studied in simulation using the MEDUSA code. For a representative set of beam and wiggler parameters, we discuss (i the effect of the scalloped beam on the interaction in the FEL and on the focusing and propagation of the radiation, and (ii the efficiency enhancement in the two-stage wiggler.

  17. [Limitations and controversies in determining the predictive value of oocyte and embryo morphology criteria].

    Science.gov (United States)

    Figueira, Rita de Cássia Savio; Aoki, Tsutomu; Borges Junior, Edson

    2015-11-01

    In order to increase the success rate of in vitro fertilization cycles, several studies have focused on the identification of the embryo with higher implantation potential. Despite recent advances in the reproductive medicine, based on the OMICs technology, routinely applicable methodologies are still needed. Thus, in most fertilization centers embryo selection for transfer is still based on morphological parameters evaluated under light microscopy. Several morphological parameters may be evaluated, ranging from the pronuclear to blastocyst stage. In general, despite the day of transfer, some criteria are suggested to present a predictive value for embryo viability when analyzed independently or combined. However, the subjectivity of morphological evaluation, as well as the wide diversity of embryo classification systems used by different fertilization centers shows contrasting results, making the implementation of a consensus regarding different morphological criteria and their predictive value a difficult task. The optimization of embryo selection represents a large potential to increase treatment success rates, allowing the transfer of a reduced number of embryos and minimizing the risks of multiple pregnancy.

  18. Transmission electron microscope studies of the nuclear envelope in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Cohen, Merav; Tzur, Yonatan B; Neufeld, Esther; Feinstein, Naomi; Delannoy, Michael R; Wilson, Katherine L; Gruenbaum, Yosef

    2002-01-01

    Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.

  19. Developmental Toxicity of Dextromethorphan in Zebrafish Embryos/Larvae

    Science.gov (United States)

    Xu, Zheng; Williams, Frederick E.; Liu, Ming-Cheh

    2012-01-01

    Dextromethorphan is widely used in over-the-counter cough and cold medications. Its efficacy and safety for infants and young children remains to be clarified. The present study was designed to use the zebrafish as a model to investigate the potential toxicity of dextromethorphan during the embryonic and larval development. Three sets of zebrafish embryos/larvae were exposed to dextromethorphan at 24 hours post fertilization (hpf), 48 hpf, and 72 hpf, respectively, during the embryonic/larval development. Compared with the 48 and 72 hpf exposure sets, the embryos/larvae in the 24 hpf exposure set showed much higher mortality rates which increased in a dose-dependent manner. Bradycardia and reduced blood flow were observed for the embryos/larvae treated with increasing concentrations of dextromethorphan. Morphological effects of dextromethorphan exposure, including yolk sac and cardiac edema, craniofacial malformation, lordosis, non-inflated swim bladder, and missing gill, were also more frequent and severe among zebrafish embryos/larvae exposed to dextromethorphan at 24 hpf. Whether the more frequent and severe developmental toxicity of dextromethorphan observed among the embryos/larvae in the 24 hpf exposure set, as compared with the 48 and 72 hpf exposure sets, is due to the developmental expression of the Phase I and Phase II enzymes involved in the metabolism of dextromethorphan remains to be clarified. A reverse transcription-polymerase chain reaction (RT-PCR) analysis, nevertheless, revealed developmental stage-dependent expression of mRNAs encoding SULT3 ST1 and SULT3 ST3, two enzymes previously shown to be capable of sulfating dextrorphan, an active metabolite of dextromethorphan. PMID:20737414

  20. Polypeptide profiles of human oocytes and preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  1. Use of alpha-amanitin as a transcriptional blocking agent in mouse embryos: a cautionary note

    International Nuclear Information System (INIS)

    Kidder, G.M.; Green, A.F.; McLachlin, J.R.

    1985-01-01

    We have tested the effect of alpha-amanitin at 10, 50 and 100 micrograms/ml, on precursor uptake and incorporation into poly(A)+ RNA and poly(A)- RNA of mouse embryos on days 2, 3 and 4 of gestation. Embryos were pretreated with the inhibitor for 2 hr, then labeled for 2 hr in its continued presence. RNA fractions were separated by affinity chromatography on oligo(dT)-cellulose. alpha-Amanitin did not suppress uptake of RNA precursors at any of the concentrations tested in any stage. At 10 micrograms/ml, we could not detect any effect on incorporation into either RNA fraction in any stage. Only the highest concentration tested, 100 micrograms/ml, was effective in all stages in substantially suppressing incorporation into poly(A)+ RNA within 2 hr. Longer treatments increased the level of suppression to a maximum of about 80%. Incorporation into poly(A)- RNA was suppressed to roughly the same extent. Despite previously reported data, it cannot be assumed that alpha-amanitin at concentrations less than 100 micrograms/ml brings about a quick interruption of mRNA synthesis in preimplantation mouse embryos

  2. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified.

    Science.gov (United States)

    Hammond, Elizabeth R; McGillivray, Brent C; Wicker, Sophie M; Peek, John C; Shelling, Andrew N; Stone, Peter; Chamley, Larry W; Cree, Lynsey M

    2017-01-01

    To characterize nuclear and mitochondrial DNA (mtDNA) in spent culture media from normally developing blastocysts to determine whether it could be used for noninvasive genetic assessment. Prospective embryo cohort study. Academic center and private in vitro fertilization (IVF) clinic. Seventy patients undergoing intracytoplasmic sperm injection (ICSI) and 227 blastocysts. Culture media assessment, artificial blastocoele fluid collapse and DNA analysis using digital polymerase chain reaction (dPCR), long-range PCR, quantitative PCR (qPCR), and DNA fingerprinting. Presence of nuclear and mtDNA in three different commercial culture media from Vitrolife and Irvine Scientific, spent embryo media assessment at the cleavage and blastocyst stages of development, and analysis of the internal media controls for each patient that had been exposed to identical conditions as embryo media but did not come into contact with embryos. Higher levels of nuclear and mtDNA were observed in the culture media that had been exposed to embryos compared with the internal media controls. Nuclear DNA (∼4 copies) and mtDNA (∼600 copies) could be detected in spent media, and the levels increased at the blastocyst stage. No increase in DNA was detected after artificial blastocoele fluid collapse. Mixed sex chromosome DNA was detected. This originated from contamination in the culture media and from maternal (cumulus) cells. Due to the limited amount of template, the presence of embryonic nuclear DNA could not be confirmed by DNA fingerprinting analysis. Currently DNA from culture media cannot be used for genetic assessment because embryo-associated structures release DNA into the culture medium and the DNA is of mixed origin. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Gene expression of bovine embryos developing at the air-liquid interface on oviductal epithelial cells (ALI-BOEC).

    Science.gov (United States)

    van der Weijden, Vera A; Chen, Shuai; Bauersachs, Stefan; Ulbrich, Susanne E; Schoen, Jennifer

    2017-11-25

    We recently developed an air-liquid interface long-term culture of differentiated bovine oviductal epithelial cells (ALI-BOEC). This ex vivo oviduct epithelium is capable of supporting embryo development in co-culture up to the blastocyst stage without addition of embryo culture medium. However, blastocyst rates in co-culture were markedly lower than in conventional in vitro embryo production procedures. In the present study, we assessed target gene expression of ALI-BOEC derived embryos to test their similarity to embryos from conventional in vitro embryo culture. We screened previously published data from developing bovine embryos and selected 41 genes which are either differentially expressed during embryo development, or reflect differences between various in vitro culture conditions or in vitro and in vivo embryos. Target gene expression was measured in 8-cell embryos and blastocysts using a 48.48 Dynamic Array™ on a Biomark HD instrument. For comparison with the ALI-BOEC system, we generated embryos by two different standard IVP protocols. The culture conditions lead to differential gene expression in both 8-cell embryos and blastocysts. Across the expression of all target genes the embryos developing on ALI-BOEC did not depart from conventional IVP embryos. These first results prove that gene expression in ALI-BOEC embryos is not largely aberrant. However, there was no clear indication for a more in vivo-like target gene expression of these embryos. This calls for further optimization of the ALI-BOEC system to increase its efficiency both quantitatively and qualitatively.

  4. Mercury levels in eggs, embryos, and neonates of Trachemys callirostris (Testudines, Emydidae)

    International Nuclear Information System (INIS)

    Rendon Valencia, Beatriz; Zapata, Lina M; Bock, Brian C; Paez, Vivian P; Palacio, Jaime A.

    2014-01-01

    We quantified total mercury concentrations in eggshells, egg yolks, and embryos from 16 nests of the Colombian slider (Trachemys callirostris). Nests were collected in different stages of development, but estimated time of incubation in natural substrates was not correlated with mercury levels in the eggs, suggesting that mercury was not absorbed from the substrate, but more likely passed on to the embryos during folliculogenesis by the reproductive females who had bioaccumulated the mercury from environmental sources. Mean mercury concentrations were higher in embryos than in eggshells or egg yolks, indicating that embryos also bioaccumulate mercury present in other egg tissues. Intra-clutch variation in egg yolk mercury concentrations was relatively high. Egg yolk mercury concentrations were not associated with any of the fitness proxies we quantified for the nests (hatching success rates, initial neonate sizes and first-month juvenile growth rates). After five months of captive rearing in a mercury-free laboratory environment, 86 % of the juveniles had eliminated the mercury from their tissues.

  5. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations

    International Nuclear Information System (INIS)

    Roepke, Troy A.; Snyder, Mark J.; Cherr, Gary N.

    2005-01-01

    Environmental endocrine disrupting compounds (EDCs) are a wide variety of chemicals that typically exert effects, either directly or indirectly, through receptor-mediated processes, thus mimicking endogenous hormones and/or inhibiting normal hormone activities and metabolism. Little is known about the effects of EDCs on echinoderm physiology, reproduction and development. We exposed developing sea urchin embryos (Strongylocentrotus purpuratus and Lytechinus anamesus) to two known EDCs (4-octylphenol (OCT), bisphenol A (BisA)) and to natural and synthetic reproductive hormones (17β-estradiol (E 2 ), estrone (E 1 ), estriol (E 3 ), progesterone (P 4 ) and 17α-ethynylestradiol (EE 2 )). In addition, we studied two non-estrogenic EDCs, tributyltin (TBT) and o,p-DDD. Successful development to the pluteus larval stage (96 h post-fertilization) was used to define EDC concentration-response relationships. The order of compound potency based on EC 50 values for a reduction in normal development was as follows: TBT L.anamesus > OCT > TBT S. p urpuratus >> E 2 > EE 2 > DDD >> BisA > P 4 > E 1 >> E 3 . The effect of TBT was pronounced even at concentrations substantially lower than those commonly reported in heavily contaminated areas, but the response was significantly different in the two model species. Sea urchin embryos were generally more sensitive to estrogenic EDCs and TBT than most other invertebrate larvae. Stage-specific exposure experiments were conducted to determine the most sensitive developmental periods using blastula, gastrula and post-gastrula (pluteus) stages. The stage most sensitive to E 2 , OCT and TBT was the blastula stage with less overall sensitivity in the gastrula stage, regardless of concentration. Selective estrogen receptor modulators (SERMs) were added to the experiments individually and in combination with estrogenic EDCs to interfere with potential receptor-mediated actions. Tamoxifen, a partial ER agonist, alone inhibited development at

  6. Methods for conducting bioassays using embryos and larvae of Pacific herring, Clupea pallasi.

    Science.gov (United States)

    Dinnel, Paul A; Middaugh, Douglas P; Schwarck, Nathan T; Farren, Heather M; Haley, Richard K; Hoover, Richard A; Elphick, James; Tobiason, Karen; Marshall, Randall R

    2011-02-01

    The rapid decrease of several stocks of Pacific herring, Clupea pallasi, in Puget Sound, Washington, has led to concerns about the effects of industrial and nonpoint source contamination on the embryo and larval stages of this and related forage fish species. To address these concerns, the state of Washington and several industries have funded efforts to develop embryo and larval bioassay protocols that can be used by commercial laboratories for routine effluent testing. This article presents the results of research to develop herring embryo and larval bioassay protocols. Factors evaluated during protocol development included temperature, salinity, dissolved oxygen (DO), light intensity, photoperiod, larval feeding regimes, use of brine and artificial sea salts, gonad sources, collection methods, and egg quality.

  7. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  8. Germination response of coconut ( Cocos nucifera L.) zygotic embryo

    African Journals Online (AJOL)

    The study investigated the effects of liquid and solid media in the propagation of coconut (Cocos nucifera) zygotic embryos at initiation stage. Eeuwen's medium supplemented with growth hormones naphthalene acetic acid ( NAA) and indole butyric acid (IBA) at different concentrations (0.5, 1.0, 1.5, 2.0 and 2.5mg/l) were ...

  9. Chromosome segregation analysis in human embryos obtained from couples involving male carriers of reciprocal or Robertsonian translocation.

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    Full Text Available The objective of this study was to investigate the frequency and type of chromosome segregation patterns in cleavage stage embryos obtained from male carriers of Robertsonian (ROB and reciprocal (REC translocations undergoing preimplantation genetic diagnosis (PGD at our reproductive center. We used FISH to analyze chromosome segregation in 308 day 3 cleavage stage embryos obtained from 26 patients. The percentage of embryos consistent with normal or balanced segregation (55.1% vs. 27.1% and clinical pregnancy (62.5% vs. 19.2% rates were higher in ROB than the REC translocation carriers. Involvement of non-acrocentric chromosome(s or terminal breakpoint(s in reciprocal translocations was associated with an increase in the percent of embryos consistent with adjacent 1 but with a decrease in 3∶1 segregation. Similar results were obtained in the analysis of nontransferred embryos donated for research. 3∶1 segregation was the most frequent segregation type in both day 3 (31% and spare (35% embryos obtained from carriers of t(11;22(q23;q11, the only non-random REC with the same breakpoint reported in a large number of unrelated families mainly identified by the birth of a child with derivative chromosome 22. These results suggest that chromosome segregation patterns in day 3 and nontransferred embryos obtained from male translocation carriers vary with the type of translocation and involvement of acrocentric chromosome(s or terminal breakpoint(s. These results should be helpful in estimating reproductive success in translocation carriers undergoing PGD.

  10. Cytological-cytogenetic analyses of winter flounder embryos collected from the Benthos at the barge North Cape oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J B [Milford Laboratory, CT (United States). Northeast Fisheries Science Center

    1999-01-01

    The oil barge North Cape ran aground on Moonstone Beach in Rhode Island on January 19, 1996, spilling 828 000 gallons (US) of a combination of diesel and home heating oils. Samples of winter flounder embryos were collected from salt ponds in the area of the spill using an epibenthic sled. An examination of the field-sampled embryos based on gross morphology, levels of moribund embryos, mitotic index, and chromosomal anomalies found that a significant number exhibited high levels of one or more of these conditions when compared with flounder embryos raised under laboratory-controlled conditions. No chorion damage was noted in embryos collected from the field nor were there any significant findings of lordosis or scoliosis. The cumulative impact on winter flounder embryos of North Cape oil exposure was an estimated 51% reduction in the number of embryos surviving to the larval stage. (author)

  11. In situ fatigue loading stage inside scanning electron microscope

    Science.gov (United States)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  12. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    Science.gov (United States)

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  13. The impact of food intake and social habits on embryo quality and the likelihood of blastocyst formation.

    Science.gov (United States)

    Braga, Daniela Paes Almeida Ferreira; Halpern, Gabriela; Setti, Amanda S; Figueira, Rita Cássia S; Iaconelli, Assumpto; Borges, Edson

    2015-07-01

    The aim of this study was to evaluate the influence of patients' lifestyle factors and eating habits on embryo development. A total of 2659 embryos recovered from 269 patients undergoing intracytoplasmic sperm injection cycles were included. The frequency of intake of food items and social habits were registered and its influences on embryo development evaluated. The consumption of cereals, vegetables and fruits positively influenced the embryo quality at the cleavage stage. The quality of the embryo at the cleavage stage was also negatively correlated with the consumption of alcoholic drinks and smoking habits. The consumption of fruits influenced the likelihood of blastocyst formation, which was also positively affected by the consumption of fish. Being on a weight-loss diet and consumption of red meat had a negative influence on the likelihood of blastocyst formation. The likelihood of blastocyst formation was also negatively influenced by the consumption of alcoholic drinks and by smoking habits. The consumption of red meat and body mass index had a negative effect on the implantation rate and the likelihood of pregnancy. In addition, being on a weight-loss diet had a negative influence on implantation rate. Our evidence suggests a possible relationship between environmental factors and ovary biology. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. [Association of human chorionic gonadotropin level in embryo culture media with early embryo development].

    Science.gov (United States)

    Wang, Haiying; Zhang, Renli; Han, Dong; Liu, Caixia; Cai, Jiajie; Bi, Yanling; Wen, Anmin; Quan, Song

    2014-06-01

    To investigate the association of human chorionic gonadotropin (HCG) level on day 3 of embryo culture with embryo development. Spent culture media were collected from individually cultured embryos on day 3 of in vitro fertilization and embryo transfer (IVF-ET) cycles. HCG concentration in the culture media was measured using an ELISA kit and its association with embryo development was assessed. In the 163 samples of embryo culture media from 60 patients, HCG was positive in 153 sample (93.8%) with a mean level of 0.85 ± 0.43 mIU/ml. The concentration of hCG in the culture media increased gradually as the number of blastomeres increased (F=2.273, P=0.03), and decreased as the morphological grade of the embryo was lowered (F=3.900, P=0.02). ELISA is capable of detecting HCG levels in spent culture media of embryos on day 3 of in vitro culture. The concentration of HCG in spent culture media is positively correlated with the status of early embryo development and implantation rate and thus serves as a useful marker for embryo selection in IVF-ET procedure.

  15. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Van Zeveren Alex

    2005-12-01

    Full Text Available Abstract Background Real-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the succesful application of real-time PCR is careful assay design, reaction optimization and validation to maximize sensitivity and accuracy. In most of the studies published GAPD, ACTB or 18S rRNA have been used as a single reference gene without prior verification of their expression stability. Normalization of the data using unstable controls can result in erroneous conclusions, especially when only one reference gene is used. Results In this study the transcription levels of 8 commonly used reference genes (ACTB, GAPD, Histone H2A, TBP, HPRT1, SDHA, YWHAZ and 18S rRNA were determined at different preimplantation stages (2-cell, 8-cell, blastocyst and hatched blastocyst in order to select the most stable genes to normalize quantitative data within different preimplantation embryo stages. Conclusion Using the geNorm application YWHAZ, GAPD and SDHA were found to be the most stable genes across the examined embryonic stages, while the commonly used ACTB was shown to be highly regulated. We recommend the use of the geometric mean of those 3 reference genes as an accurate normalization factor, which allows small expression differences to be reliably measured.

  16. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research.

    Science.gov (United States)

    Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2017-03-01

    Embryo splitting or twinning has been widely used in veterinary medicine over 20 years to generate monozygotic twins with desirable genetic characteristics. The first human embryo splitting, reported in 1993, triggered fierce ethical debate on human embryo cloning. Since Dolly the sheep was born in 1997, the international community has acknowledged the complexity of the moral arguments related to this research and has expressed concerns about the potential for reproductive cloning in humans. A number of countries have formulated bans either through laws, decrees or official statements. However, in general, these laws specifically define cloning as an embryo that is generated via nuclear transfer (NT) and do not mention embryo splitting. Only the UK includes under cloning both embryo splitting and NT in the same legislation. On the contrary, the Ethics Committee of the American Society for Reproductive Medicine does not have a major ethical objection to transferring two or more artificially created embryos with the same genome with the aim of producing a single pregnancy, stating that 'since embryo splitting has the potential to improve the efficacy of IVF treatments for infertility, research to investigate the technique is ethically acceptable'. Embryo splitting has been introduced successfully to the veterinary medicine several decades ago and today is a part of standard practice. We present here an overview of embryo splitting experiments in humans and non-human primates and discuss the potential of this technology in assisted reproduction and research. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies on embryo splitting in humans and non-human primates. 'Embryo splitting' and 'embryo twinning' were used as the keywords, alone or in combination with other search phrases relevant to the topics of biology of preimplantation embryos. A very limited number of studies have been conducted in humans and non

  17. Preliminary Trials on Embryo Production and Collection in the Somba Cow

    Directory of Open Access Journals (Sweden)

    F. Cristofori

    2001-03-01

    Full Text Available Trials were conducted to collect embryos in a herd of trypanotolerant Somba cows. The trial period covered four superovulation cycles induced during various seasons. A progestagen (Norgestomet, Crestar® Intervet and gonadotropins (p-FSH Pluset® Serono, or Folltropin® Vetrepharm were used at various doses according to the animal weight. The donors were then fertilized twice at 12-hour interval, either by natural or artificial insemination, the semen of three bulls having been previously collected and frozen in straw on the site. The overall superovulation response rate was 72%. The embryos were collected at 6.5 days at the stage of compacted morula or young blastocyst. Of the 30 flushings performed, 87 embryos were recovered. Among them, 39 (45% belonged to categories Q1 and Q2, and could be cryopreserved, 19 (22% belonged to category Q3, and the remaining 29 (33% belonged to category Q4 (non-viable. The average production of viable embryos (1.9 per donor was not significantly affected by the type of gonadotropin used. However, the rate of embryos that could be selected for cryopreservation was higher in the cool rainy season than in the hot rainy season (59 vs 38%, respectively.

  18. Chronology of early embryonic development and embryo uterine migration in alpacas.

    Science.gov (United States)

    Picha, Y; Tibary, A; Memon, M; Kasimanickam, R; Sumar, J

    2013-03-01

    The objectives were to: (1) describe the chronology of early embryonic development from ovulation to entry into the uterus; and (2) to determine the timing of embryo migration to the left uterine horn when ovulation occurred from the right ovary. The experiment was conducted in Peru. Females (n = 132) were randomly assigned to 15 experimental groups. All females were mated to an intact male, given 50 μg GnRH im (Cystorelin) and ovulation time determined by transrectal ultrasonography, conducted every 6 hours, starting 24 hours postmating. Animals were slaughtered at a specific intervals postovulation and reproductive tracts were recovered and subjected to oviductal and uterine flushing for females slaughtered between 1 and 6 days postovulation (dpo; Day 0 = ovulation) and uterine flushing for females slaughtered from 7 to 15 dpo for recovery of oocytes/embryos. Season of mating did not influence the interval from mating to ovulation (winter: 29 ± 6 hours vs. summer: 30 ± 6 hours; P = 0.49). Ovulation rates for females mated during winter and summer were 92% versus 100%, respectively (P = 0.05). Fertilization rates for winter and summer mated females were 72% and 82% (P = 0.29). Unfertilized ova were not retained in the uterine tube. All embryos collected were in the uterine tube ipsilateral to the side of ovulation between 1 and 5 dpo. Embryos reached the uterus on 6 dpo. Embryos began to elongate on 9 dpo; at this time, 83% of embryos derived from right-ovary ovulations were collected from the left uterine horn. Embryos occupied the entire uterine cavity by 10 dpo. In conclusion, we characterized early embryo development and location of embryo during its early developmental stages in alpaca. This was apparently the first report regarding chronology of embryo development and migration to the left horn in alpaca which merits further investigation regarding its role in maternal recognition of pregnancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Protein degradation in preimplantation mouse embryos and the lethality of tritiated amino acids

    International Nuclear Information System (INIS)

    Wielbold, J.L.

    1982-01-01

    The role of protein degradation in preimplantation development in the mouse was studied. Proteins of morulae and blastocysts (M and B) cultured in vitro after labeling for 1 hour (h) in 3 H-leucine exhibit a mean half-life (t 1 / 2 ) of 8.1 h. The t 1 / 2 tends to increase (9.5 h) when 10% fetal calf serum is added to the chase medium. This decrease in protein degradation in the presence of serum is associated with an increase in the percentage of B that are hatching (P 3 H-leucine in their proteins than did Day 4 embryos remaining in culture (P<0.02), while Day 4 embryos in a Day 3 uterus retained the same amount of radioactivity as did Day 4 embryos in culture. This differential effect of uterine environment was also seen when Day 4 embryos were transferred to recipients. More fetuses developed to term when the recipient was in Day 3 of PSP (50.8%) than when the recipient was in Day 4 PSP (25.9%, P<0.001), regardless of the age of the recipient. Age of the recipient does affect the percentage of transferred embryos developing to term. Thus, protein degradation may vary with the stage of embryo development and the conditions to which the embryos are exposed. However, even low levels of incorporated tritiated leucine can have lethal effects on the embryos and compromise the validity of the protein half-lives determined

  20. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu; Wyrobek, Andrew J

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cell embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.

  1. A continuous culture system of direct somatic embryogenesis in microspore-derived embryos of Brassica juncea.

    Science.gov (United States)

    Prabhudesai, V; Bhaskaran, S

    1993-03-01

    An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.

  2. l-Ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression.

    Science.gov (United States)

    Mishra, A; Reddy, I J; Dhali, A; Javvaji, P K

    2018-04-02

    SummaryThe objective of the study was to investigate the effect of l-ergothioneine (l-erg) (5 mM or 10 mM) supplementation in maturation medium on the developmental potential and OCTN1-dependant l-erg-mediated (10 mM) change in mRNA abundance of apoptotic (Bcl2, Bax, Casp3 and PCNA) and antioxidant (GPx, SOD1, SOD2 and CAT) genes in sheep oocytes and developmental stages of embryos produced in vitro. Oocytes matured with l-erg (10 mM) reduced their embryo toxicity by decreasing intracellular ROS and increasing intracellular GSH in matured oocytes that in turn improved developmental potential, resulting in significantly (P l-erg without change in maturation rate. l-Erg (10 mM) treatment did not influence the mRNA abundance of the majority of apoptotic and antioxidant genes studied in the matured oocytes and developmental stages of embryo. A gene expression study found that the SLC22A4 gene that encodes OCTN1, an integral membrane protein and specific transporter of l-erg was not expressed in oocytes and developmental stages of embryos. Therefore it was concluded from the study that although there was improvement in the developmental potential of sheep embryos by l-erg supplementation in maturation medium, there was no change in the expression of the majority of the genes studied due to the absence of the SLC22A4 gene in oocytes and embryos that encode OCTN1, which is responsible for transportation of l-erg across the membrane to alter gene expression.

  3. The p66(Shc adaptor protein controls oxidative stress response in early bovine embryos.

    Directory of Open Access Journals (Sweden)

    Dean H Betts

    Full Text Available The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  4. Pentachlorophenol (PCP) bioaccumulation and effect on heat production on salmon eggs at different stages of development

    Energy Technology Data Exchange (ETDEWEB)

    Maeenpaeae, Kimmo A.; Penttinen, Olli-Pekka; Kukkonen, Jussi V.K

    2004-05-28

    In this study, pentachlorophenol (PCP) bioaccumulation and its effect on heat dissipation was studied in eggs of the lake salmon (Salmo salar m. sebago). In bioaccumulation studies, the eggs were exposed to low concentrations (0.051-0.056 {mu}mol/l, 13.583-14.915) of waterborne [{sup 14}C]-labeled PCP at two developmental stages: (1) 3 weeks after fertilization, and (2) just before hatching. The effect of PCP on egg heat dissipation was measured by a microcalorimeter after exposing the eggs to gradual concentrations (0-0.992 {mu}mol/l) of PCP for 48 h. After both the bioaccumulation and heat dissipation experiments, the eggs were dissected and the concentrations of PCP in tissue were determined separately for eggshell, yolk and embryo. The bioaccumulation studies showed that PCP accumulates more in the eggs at the late developmental stage. Bioconcentration factors (BCF) for different tissues were 3-42 times higher for the eggs at the late developmental stage compared with the eggs that were incubated only for 3 weeks. In early developmental stage, the eggshell adsorbs a large portion of the chemical. In late developmental stage, the actual embryo accumulated both proportionately and totally more than other dissected tissues in the beginning of the exposure, but eventually the yolk accumulated highest total amount of the chemical. A probable reason for the higher PCP body burden in the late developmental stage is that the respiration rate and metabolic activity of the embryo increases as it grows. The salmon eggs responded to an exposure to PCP with an elevated rate of heat dissipation. The threshold concentration above which the embryo heat dissipation was amplified was 29.64 {mu}mol/kg embryo wet weight (ww) or 0.28 {mu}mol/l. The highest embryo heat production was measured at the exposure concentration of 0.992 {mu}mol/l. At higher exposure concentrations the heat dissipation decreased. The basic findings of the study are that PCP accumulates in growing embryonic

  5. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos

    Directory of Open Access Journals (Sweden)

    Hartung Odelya

    2007-12-01

    Full Text Available Abstract Background The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR. Results We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression. Conclusion This paper describes the first example of multiplex RT-LATE-PCR and its utility, when

  6. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    Science.gov (United States)

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  7. A Simple Method for Transportation of Mouse Embryos Using Microtubes and a Warm Box.

    Directory of Open Access Journals (Sweden)

    Mikiko Tokoro

    Full Text Available Generally, transportation of preimplantation embryos without freezing requires incubators that can maintain an optimal culture environment with a suitable gas phase, temperature, and humidity. Such incubators are expensive to transport. We reported previously that normal offspring were obtained when the gas phase and temperature could be maintained during transportation. However, that system used plastic dishes for embryo culture and is unsuitable for long-distance transport of live embryos. Here, we developed a simple low-cost embryo transportation system. Instead of plastic dishes, several types of microtubes-usually used for molecular analysis-were tested for embryo culture. When they were washed and attached to a gas-permeable film, the rate of embryo development from the 1-cell to blastocyst stage was more than 90%. The quality of these blastocysts and the rate of full-term development after embryo transfer to recipient female mice were similar to those of a dish-cultured control group. Next, we developed a small warm box powered by a battery instead of mains power, which could maintain an optimal temperature for embryo development during transport. When 1-cell embryos derived from BDF1, C57BL/6, C3H/He and ICR mouse strains were transported by a parcel-delivery service over 3 days using microtubes and the box, they developed to blastocysts with rates similar to controls. After the embryos had been transferred into recipient female mice, healthy offspring were obtained without any losses except for the C3H/He strain. Thus, transport of mouse embryos is possible using this very simple method, which might prove useful in the field of reproductive medicine.

  8. NASAwide electronic publishing system: Electronic printing and duplicating, stage-2 evaluation report (GSFC)

    Science.gov (United States)

    Tuey, Richard C.; Lane, Robert; Hart, Susan V.

    1995-01-01

    The NASA Scientific and Technical Information Office was assigned the responsibility to continue with the expansion of the NASAwide networked electronic duplicating effort by including the Goddard Space Flight Center (GSFC) as an additional node to the existing configuration of networked electronic duplicating systems within NASA. The subject of this report is the evaluation of a networked electronic duplicating system which meets the duplicating requirements and expands electronic publishing capabilities without increasing current operating costs. This report continues the evaluation reported in 'NASA Electronic Publishing System - Electronic Printing and Duplicating Evaluation Report' (NASA TM-106242) and 'NASA Electronic Publishing System - Stage 1 Evaluation Report' (NASA TM-106510). This report differs from the previous reports through the inclusion of an external networked desktop editing, archival, and publishing functionality which did not exist with the previous networked electronic duplicating system. Additionally, a two-phase approach to the evaluation was undertaken; the first was a paper study justifying a 90-day, on-site evaluation, and the second phase was to validate, during the 90-day evaluation, the cost benefits and productivity increases that could be achieved in an operational mode. A benchmark of the functionality of the networked electronic publishing system and external networked desktop editing, archival, and publishing system was performed under a simulated daily production environment. This report can be used to guide others in determining the most cost effective duplicating/publishing alternative through the use of cost/benefit analysis and return on investment techniques. A treatise on the use of these techniques can be found by referring to 'NASA Electronic Publishing System -Cost/Benefit Methodology' (NASA TM-106662).

  9. Effect of organically bound tritium (OBT) on pre-implantation mouse embryos in vitro

    International Nuclear Information System (INIS)

    Yamada, Takeshi; Ohyama, Harumi

    1989-01-01

    Effect of organically bound tritium (OBT), such as tritiated thymidine and tritium-labeled amino acids, on mouse preimplantation embryos was examined in vitro. Mouse zygotes fertilized in vitro (BC3F 1 eggs x ICR sperm) were cultured in the media containing OBT in various concentrations up to the blastocyst stage. The LD 50 in terms of tritium concentrations in the culture medium were determined by measuring tritium concentrations in the medium to inhibit 50 % of embryos to form blastocyst in vitro. Tritium activities in the embryos were measured at various times during culture of embryos at LD 50 concentration in order to estimate absorbed radiation dose in embryonic cells. The LD 50 values obtained indicate that OBT could inhibit the embryonic development 1000 times more effectively that tritiated water (HTO). However, differences in LD 50 values in terms of absorbed radiation dose between OBT and HTO is not so essential, and might be explained by localized spatial distribution of OBT within the cell. (author)

  10. Embryos, individuals, and persons: an argument against embryo creation and research.

    Science.gov (United States)

    Tollefsen, C

    2001-01-01

    One strategy for arguing that it should be legally permissible to create human embryos, or to use spare human embryos, for scientific research purposes involves the claim that such embryos cannot be persons because they are not human individuals while twinning may yet take place. Being a human individual is considered to be by most people a necessary condition for being a human person. I argue first that such an argument against the personhood of embryos must be rationally conclusive if their destruction in public places such as laboratories is to be countenanced. I base this argument on a popular understanding of the role that the notion of privacy plays in abortion laws. I then argue that such arguments against personhood are not rationally conclusive. The claim that the early embryos is not a human individual is not nearly as obvious as some assert.

  11. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes.

    Science.gov (United States)

    Kyogoku, Hirohisa; Fulka, Josef; Wakayama, Teruhiko; Miyano, Takashi

    2014-06-01

    The large, compact oocyte nucleoli, sometimes referred to as nucleolus precursor bodies (NPBs), are essential for embryonic development in mammals; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygote or embryo, leading to developmental failure. It has been convincingly documented that zygotes inherit the oocyte nucleolar material and form NPBs again in pronuclei. It is commonly accepted that during early embryonic development, the original compact zygote NPBs gradually transform into reticulated nucleoli of somatic cells. Here, we show that zygote NPBs are not required for embryonic and full-term development in the mouse. When NPBs were removed from late-stage zygotes by micromanipulation, the enucleolated zygotes developed to the blastocyst stage and, after transfer to recipients, live pups were obtained. We also describe de novo formation of nucleoli in developing embryos. After removal of NPBs from zygotes, they formed new nucleoli after several divisions. These results indicate that the zygote NPBs are not used in embryonic development and that the nucleoli in developing embryos originate from de novo synthesized materials. © 2014. Published by The Company of Biologists Ltd.

  12. Single-embryo transfer versus multiple-embryo transfer.

    Science.gov (United States)

    Gerris, Jan

    2009-01-01

    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  13. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  14. Effect of progesterone supplementation in the first week post conception on embryo survival in beef heifers.

    Science.gov (United States)

    Beltman, M E; Lonergan, P; Diskin, M G; Roche, J F; Crowe, M A

    2009-04-15

    Progesterone is essential for establishment and maintenance of pregnancy in mammals. The objective of this study was to examine the effect of elevating progesterone during the different physiological stages of early embryo development on embryo survival. Estrus was synchronized in cross-bred beef heifers (n=197, approximately 2-years old) and they were inseminated 12-18h after estrus onset (=Day 0). Inseminated heifers were randomly assigned to 1 of 3 treatments: (1) Control, n=69; (2) progesterone supplementation using a Controlled Internal Drug Release Device (CIDR) from Day 3 to 6.5, n=64; or (3) progesterone supplementation using a CIDR from Day 4.5 to 8, n=64. Body condition (BCS) and locomotion scores (scale of 1-5) were recorded for all animals. Animals with a locomotion score >/=4 (very lame) were excluded. Embryo survival rate was determined at slaughter on Day 25. Conceptus length and weight were recorded and the corpus luteum (CL) of all pregnant animals was dissected and weighed. Supplementation with exogenous progesterone increased (Prate compared with controls. Mean CL weight, conceptus length and conceptus weight were not different between treatments. There was a positive relationship (Prate in treated heifers and a similar trend existed between the increase from Days 4.5 to 8 (Prate in treated heifers. A direct correlation was seen between locomotion score and embryo survival rate, with higher (Prates in heifers with a lower locomotion score. In conclusion, supplementation with progesterone at different stages of early embryo development increased peripheral progesterone concentration and resulted in a positive association between changes in progesterone concentration during the early luteal phase and embryo survival rate. Supplementation with progesterone had no effect on either CL weight or conceptus size in pregnant animals. Lameness had a significant negative effect on early embryo survival.

  15. Regulation of membrane fusion and secretory events in the sea urchin embryo

    International Nuclear Information System (INIS)

    Roe, J.L.

    1990-01-01

    Membrane fusion and secretory events play a key role in fertilization and early development in the sea urchin embryo. To investigate the mechanism of membrane fusion, the effect of inhibitors of metalloendoprotease activity was studied on two model systems of cell fusion; fertilization and spiculogenesis by primary mesenchyme cells in the embryo. Both the zinc chelator, 1,10-phenanthroline, and peptide metalloprotease substrates were found to inhibit both fertilization and gamete fusion, while peptides that are not substrates of metalloproteases did not affect either process. Primary mesenchyme cells form the larval skeleton in the embryo by deposition of mineral and an organic matrix into a syncytial cavity formed by fusion of filopodia of these cells. Metalloprotease inhibitors were found to inhibit spiculogenesis both in vivo and in cultures of isolated primary mesenchyme cells, and the activity of a metalloprotease of the appropriate specificity was found in the primary mesenchyme cells. These two studies implicate the activity of a metalloprotease in a necessary step in membrane fusion. Following fertilization, exocytosis of the cortical granules results in the formation of the fertilization envelope and the hyaline layer, that surround the developing embryo. The hatching enzyme is secreted by the blastula stage sea urchin embryo, which proteolyzes the fertilization envelope surrounding the embryo, allowing the embryo to hatch. Using an assay that measures 125 I-fertilization envelope degradation, the hatching enzyme was identified as a 33 kDa metalloprotease, and was purified by ion-exchange and affinity chromatography from the hatching media of Strongylocentrotus purpuratus embryos. The hatching enzyme showed a substrate preference for only a minor subset of fertilization envelope proteins

  16. Ultrastructure of endothelium in ovules of Penstemon gentianoides Poir. (Scrophulariaceae) at mature embryo sac phase.

    Science.gov (United States)

    Dane, Feruzan; Olgun, Göksel; Ekici, Nuran

    2007-06-01

    In this study ultrastructural differences between endothelial cells of different location in Penstemon gentianoides have been examined with electron microscope at mature embryo sac phase. Embryo sac is of the Polygonum type and surrounded by endothelium except the micropylar region. The cuticle is located primarily around the chalazal three-fourths of the embryo sac. Endothelium cells around the chalaza and toward the micropylar region are rich in cytoplasmic organelles. The cytoplasm of endothelial cells near the central cell has large vacuoles and few organelles. There are also plasmodesmas on the anticlinal walls of endothelial cells. The endothelium and the micropylar integumentary cells play a role in transport of metabolites into the embryo sac.

  17. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Roepke, Troy A. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States); Snyder, Mark J. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States); Cherr, Gary N. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States) and Departments of Environmental Toxicology and Nutrition, One Shields Avenue, University of California, Davis, CA 95616 (United States)]. E-mail: gncherr@ucdavis.edu

    2005-01-26

    Environmental endocrine disrupting compounds (EDCs) are a wide variety of chemicals that typically exert effects, either directly or indirectly, through receptor-mediated processes, thus mimicking endogenous hormones and/or inhibiting normal hormone activities and metabolism. Little is known about the effects of EDCs on echinoderm physiology, reproduction and development. We exposed developing sea urchin embryos (Strongylocentrotus purpuratus and Lytechinus anamesus) to two known EDCs (4-octylphenol (OCT), bisphenol A (BisA)) and to natural and synthetic reproductive hormones (17{beta}-estradiol (E{sub 2}), estrone (E{sub 1}), estriol (E{sub 3}), progesterone (P{sub 4}) and 17{alpha}-ethynylestradiol (EE{sub 2})). In addition, we studied two non-estrogenic EDCs, tributyltin (TBT) and o,p-DDD. Successful development to the pluteus larval stage (96 h post-fertilization) was used to define EDC concentration-response relationships. The order of compound potency based on EC{sub 50} values for a reduction in normal development was as follows: TBT {sub L.anamesus} > OCT > TBT {sub S.{sub p}}{sub urpuratus} >> E{sub 2} > EE{sub 2} > DDD >> BisA > P{sub 4} > E{sub 1} >> E{sub 3}. The effect of TBT was pronounced even at concentrations substantially lower than those commonly reported in heavily contaminated areas, but the response was significantly different in the two model species. Sea urchin embryos were generally more sensitive to estrogenic EDCs and TBT than most other invertebrate larvae. Stage-specific exposure experiments were conducted to determine the most sensitive developmental periods using blastula, gastrula and post-gastrula (pluteus) stages. The stage most sensitive to E{sub 2}, OCT and TBT was the blastula stage with less overall sensitivity in the gastrula stage, regardless of concentration. Selective estrogen receptor modulators (SERMs) were added to the experiments individually and in combination with estrogenic EDCs to interfere with potential receptor

  18. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M. J.; Wong, K. M.; van Montfoort, A. P. A.; de Jong, M.; Breit, T. M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation embryos than the culture medium or

  19. Gas exchange of the ostrich embryo during peak metabolism in ...

    African Journals Online (AJOL)

    Oxygen (O2) consumption and carbon dioxide (CO2) excretion of ostrich embryos were studied on 45 ostrich eggs in various stages of development. A closed respirometry system was used for eggs subjected to ????10 days of incubation, while an open flow system was used for older eggs. A total of 102 measurements ...

  20. Effect of Intracytoplasmic Sperm Injection (ICSI on Mouse Embryos Preimplantational Development

    Directory of Open Access Journals (Sweden)

    Claudia Cârstea

    2012-05-01

    Full Text Available It is known that the in vitro culture (IVC of preimplantation embryos is associated with changes in gene expression. It is however, not known if the method of fertilization affects the global pattern of gene expression. We compared the development of mouse blastocysts produced by intracytoplasmic sperm injection (ICSI versus blastocysts fertilized in vivo and cultured in vitro from the zygote stage (IVC. At the end of cultivation (96 hrs for blastocyst stage embryos, expanded blastocysts of each group were randomly selected, and ICM and total cells number were differentially stained. The total cell number of blastocysts was estimated by counting the total number of nuclei using DAPI staining. Cell number for inner cell mass (ICM was estimated by counting the OCT4 (POU5FL positive cells. Digitally recombined, composite images were analyzed using the Zeiss Axion Vision software and Zeiss Apotome. All 5–10 optical sections were divided using a standard grid over each layer to count all. Comparing the total cells and the ICM cells number, it appears that each method of fertilization has a unique pattern development. The developmental rate and the total cell number of the blastocyst were significantly lower in ICSI versus in vivo fertilized embryos which affect the embryonic developmental rate and the total cell number of blastocysts.

  1. Restricted mobility of Dnmt1 in preimplantation embryos: implications for epigenetic reprogramming

    Science.gov (United States)

    Grohmann, Maik; Spada, Fabio; Schermelleh, Lothar; Alenina, Natalia; Bader, Michael; Cardoso, M Cristina; Leonhardt, Heinrich

    2005-01-01

    Background Mouse preimplantation development is characterized by both active and passive genomic demethylation. A short isoform of the prevalent maintenance DNA methyltransferase (Dnmt1S) is found in the cytoplasm of preimplantation embryos and transiently enters the nucleus only at the 8-cell stage. Results Using GFP fusions we show that both the long and short isoforms of Dnmt1 localize to the nucleus of somatic cells and the cytoplasm of preimplantation embryos and that these subcellular localization properties are independent of phosphorylation. Importantly, photobleaching techniques and salt extraction revealed that Dnmt1S has a very restricted mobility in the cytoplasm, while it is highly mobile in the nucleus of preimplantation embryos. Conclusion The restricted mobility of Dnmt1S limits its access to DNA and likely contributes to passive demethylation and epigenetic reprogramming during preimplantationdevelopment. PMID:16120212

  2. Endogenous electric fields in embryos during development, regeneration and wound healing

    International Nuclear Information System (INIS)

    Nuccitelli, R.

    2003-01-01

    All embryos that have been investigated drive ionic currents through themselves and these currents will generate internal electric fields. Here, those examples in which such fields have been measured directly are discussed. The first such measurements were made in chick embryos and about 20 mV mm -1 was measured near the posterier intestinal portal in 2-4-day-old embryos. This electric field is important for the development of tail structures because reducing its magnitude results in abnormal tail development. The second embryonic electric field measured directly was in the axolotl, where a rostral-caudal field of about the same magnitude was detected. Modification of this field during neurulation but not gastrulation caused developmental abnormalities. Most recently, the development of left-right asymmetry in frog and chick embryos was found to require a voltage difference between blastomeres at a very early developmental stage. This field was measured in the chick embryo to be 10-20 mV mm -1 across the primitive streak. Mammalian skin wounds generate 150 mV mm -1 fields lateral to the wound and corneal epidermal wounds exhibit lateral fields of 40 mV mm -1 . The presence of these endogenous fields would suggest that exposures to external electric fields should be limited to magnitudes of less than 0.1 V m -1 . (author)

  3. Endogenous electric fields in embryos during development, regeneration and wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Nuccitelli, R

    2003-07-01

    All embryos that have been investigated drive ionic currents through themselves and these currents will generate internal electric fields. Here, those examples in which such fields have been measured directly are discussed. The first such measurements were made in chick embryos and about 20 mV mm-1 was measured near the posterier intestinal portal in 2-4-day-old embryos. This electric field is important for the development of tail structures because reducing its magnitude results in abnormal tail development. The second embryonic electric field measured directly was in the axolotl, where a rostral-caudal field of about the same magnitude was detected. Modification of this field during neurulation but not gastrulation caused developmental abnormalities. Most recently, the development of left-right asymmetry in frog and chick embryos was found to require a voltage difference between blastomeres at a very early developmental stage. This field was measured in the chick embryo to be 10-20 mV mm-1 across the primitive streak. Mammalian skin wounds generate 150 mV mm-1 fields lateral to the wound and corneal epidermal wounds exhibit lateral fields of 40 mV mm-1. The presence of these endogenous fields would suggest that exposures to external electric fields should be limited to magnitudes of less than 0.1 V m-1. (author)

  4. Changes in Sperm Motility and Capacitation Induce Chromosomal Aberration of the Bovine Embryo following Intracytoplasmic Sperm Injection.

    Directory of Open Access Journals (Sweden)

    Yoku Kato

    Full Text Available Intracytoplasmic sperm injection (ICSI has become the method of choice to treat human male infertility. One of the outstanding problems associated with this technique is our current lack of knowledge concerning the effect of sperm capacitation and motility upon the subsequent development of oocytes following ICSI. In the present study, we first examined the capacitation state of sperm exhibiting normal motility, along with sperm that had been activated, and examined the effect of reactive oxygen species (ROS produced by these sperm types upon embryogenesis following bovine in vitro fertilization (IVF and ICSI. Data showed that activated sperm reduced the chromosomal integrity of IVF/ICSI embryos at the blastocyst stage, while capacitated sperm produced ROS in capacitation media. Secondly, we treated sperm with carbonyl cyanide m-chlorophenyl hydrazine (CCCP, a chemical known to uncouple cell respiration within the mitochondria, and investigated the effect of this treatment upon blastocyst formation and chromosomal integrity at the blastocyst stage. Activated sperm in which the mitochondria had been treated with CCCP reduced levels of chromosomal aberration at the blastocyst stage following ICSI, by reducing mitochondrial activity in activated sperm. In conclusion, these findings suggest that capacitated sperm exhibiting activated motility induced chromosomal aberration during development to the blastocyst stage following ICSI. The injection of sperm exhibiting normal motility, or activated sperm in which mitochondrial activity had been reduced, improved the quality of ICSI-derived embryos. Therefore, the selection of sperm exhibiting progressive motility may not always be better for early embryo development and fetal growth following human ICSI, and that the use of a bovine model may contribute to a deeper understanding of sperm selection for human ICSI embryo development.

  5. The Teratogenic Effects of Antiepileptic Drug, Topiramate, on the Development of Chick Embryos

    Directory of Open Access Journals (Sweden)

    Jantima Roongruangchai

    2017-05-01

    Full Text Available Background: Anti-epileptic drugs are known to be the risk of teratogenicity. Topiramate (TPM is a new kind of such drug, for which no research has confirmed the incidence of producing congenital abnormalities. Objective: This study was conducted to study the teratogenic effects of TPM by using chick embryos as an animal model and the results can be compared to the human embryo of the same stage. Methods: Fertilized Leghorn hen eggs were injected in ovo with two concentrations of TPM, which were 10mg, and 20mg, in NSS at a volume of 0.1 ml into the yolk sac at 21 hrs of incubation and repeated injections at 72 hrs at a volume of 0.05 ml. The chick embryos on day 3, 6 and 11 of incubation were sacrificed and all living embryos were processed for total mount and serial section. Results: The mortality rate increased corresponding to the concentrations of TPM, and the embryonic stage. The total mount of day 3 showed major abnormalities of the eye and heart, such as microphthalmia and looser of heart looping. The serial section of day 3 showed opening of the anterior neuropore, ectopia viscerae and multiple malformations of the eye and heart. Day 6 chick embryos showed ectopia cordis and ectopia viscerae. Moreover, there were retardation and abnormalities of several organs such as eye, heart, liver, mesonephros and gonads. Day 11 chick embryos showed ectopia viscerae and several growth retardations, retardation of ossification of both limb bones and skull bones. Conclusion: This study showed that TPM might cause embryonic death, growth retardation and abnormalities of the eye, heart, an opening of the anterior neuropore and ectopia viscerae. This might indicate abnormalities to the baby born from mother with gestational epilepsy who was taking this drug continuously, and it might lead to spontaneous abortion or congenital anomalies of the fetus.

  6. Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer.

    Science.gov (United States)

    Belva, F; Bonduelle, M; Roelants, M; Verheyen, G; Van Landuyt, L

    2016-07-01

    transfer. Data were analysed by multiple linear and logistic regression, adjusted for treatment variables and maternal characteristics. Mothers to infants in the vitrified group were on average slightly older and more often suffering from pregnancy-related hypertensive disorders than mothers to infants in the fresh transfer group. Singletons born after vitrification showed a higher birthweight standard deviation score (SDS) (-0.4 versus -0.7; 95% confidence interval (CI): 0.0-0.3, P = 0.001) and a lower small-for-gestational age rate (AOR: 0.55; 95% CI: 0.34-0.90) in comparison with peers born after fresh embryo transfer. Preterm birth rate and perinatal death rate were comparable between the two groups (AOR: 0.91; 95% CI: 0.57-1.43 and AOR: 0.97; 95% CI: 0.40-2.36). In twins, neonatal outcomes including birthweight SDS, small-for-gestational age and prematurity rates were comparable in the vitrified and the fresh groups, when adjusted for confounders. Furthermore, the rate of major congenital malformations in live borns was comparable between the vitrified group and the fresh group, both in singletons (2.6 versus 2.8%; AOR: 0.91; 95% CI: 0.47-1.78) and in twins (2.4 versus 2.7%; AOR: 0.51; 95% CI: 0.05-5.72). Also, the total malformation rate in the vitrified group (3.4%; 95% CI: 2.4-4.8) did not differ from the rate in the fresh embryo group (3.9%; 95% CI: 3.1-5.0). The embryonic stage at vitrification or fresh transfer (cleavage-stage embryo or blastocyst) did not influence the birth characteristics or malformation rate. The main limitation of this study is the rather small twin group. Therefore, the outcome results for twins should be interpreted cautiously. This study provides evidence that transfer of vitrified Day 3 and Day 5 embryos does not adversely affect the neonatal health of the offspring in comparison with transfer of fresh embryos. Furthermore, neonatal outcomes were not different after transfer of vitrified blastocysts compared with transfer of vitrified

  7. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  8. The effect of adriamycin exposure on the notochord of mouse embryos.

    Science.gov (United States)

    Hajduk, Piotr; May, Alison; Puri, Prem; Murphy, Paula

    2012-04-01

    The notochord has important structural and signaling properties during vertebrate development with key roles in patterning surrounding tissues, including the foregut. The adriamycin mouse model is an established model of foregut anomalies where exposure of embryos in utero to the drug adriamycin leads to malformations including oesophageal atresia and tracheoesophageal fistula. In addition to foregut abnormalities, treatment also causes branching, displacement, and hypertrophy of the notochord. Here, we explore the hypothesis that the notochord may be a primary target of disruption leading to abnormal patterning of the foregut by examining notochord position and structure in early embryos following adriamycin exposure. Treated (n = 46) and control (n = 30) embryos were examined during the crucial period when the notochord normally delaminates away from the foregut endoderm (6-28 somite pairs). Transverse sections were derived from the anterior foregut and analyzed by confocal microscopy following immunodetection of extracellular matrix markers E-cadherin and Laminin. In adriamycin-treated embryos across all stages, the notochord was abnormally displaced ventrally with prolonged attachment to the foregut endoderm. While E-cadherin was normally detected in the foregut endoderm with no expression in the notochord of control embryos, treated embryos up to 24 somites showed ectopic notochordal expression indicating a change in characteristics of the tissue; specifically an increase in intracellular adhesiveness, which may be instrumental in structural changes, affecting mechanical and signaling properties. This is consistent with disruption of the notochord leading to altered signaling to the foregut causing abnormal patterning and congenital foregut malformations. © 2012 Wiley Periodicals, Inc.

  9. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    International Nuclear Information System (INIS)

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-01-01

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

  10. PEP activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Dmitry eKremnev

    2014-08-01

    Full Text Available Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP and a nuclear-encoded phage-type RNA polymerase (NEP, which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PRIN2 and CSP41b, two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.

  11. Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojia; Lin, Douglas N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Liu, Beibei [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: xzhang47@ucsc.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-12-10

    According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} > 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.

  12. SEM and x-ray microanalysis of cellular differentiation in Sea Urchin Embryos: a frozen hydrated study

    Energy Technology Data Exchange (ETDEWEB)

    Klein, S.B.

    1985-12-01

    Quantitative studies of major chemical element distribution among individual differentiating cells were attempted using scanning electron microscopy. Frozen hydrated embryos of the sea urchin Strongelocentrotus purpuratus were examined at three stages: blastula, mesenchyme blastula, and early gastrula. The blastocoel matrix contained large beads of approximately 1 ..mu..m diameter. The cells of the archenteron lacked well defined cell boundaries. Characteristic levels of beam damage and charging provided structural information. The primary mesenchyme cells within the blastocoel were particularly susceptible to both effects. Damaging effects were noted in material stored in liquid nitrogen longer than three months. Ice crystal growth, shrinkage, elemental shift, density changes and charge accumulation may take place in these stored specimens. 151 refs., 50 figs., 3 tabs.

  13. SEM and x-ray microanalysis of cellular differentiation in Sea Urchin Embryos: a frozen hydrated study

    International Nuclear Information System (INIS)

    Klein, S.B.

    1985-12-01

    Quantitative studies of major chemical element distribution among individual differentiating cells were attempted using scanning electron microscopy. Frozen hydrated embryos of the sea urchin Strongelocentrotus purpuratus were examined at three stages: blastula, mesenchyme blastula, and early gastrula. The blastocoel matrix contained large beads of approximately 1 μm diameter. The cells of the archenteron lacked well defined cell boundaries. Characteristic levels of beam damage and charging provided structural information. The primary mesenchyme cells within the blastocoel were particularly susceptible to both effects. Damaging effects were noted in material stored in liquid nitrogen longer than three months. Ice crystal growth, shrinkage, elemental shift, density changes and charge accumulation may take place in these stored specimens. 151 refs., 50 figs., 3 tabs

  14. Who abandons embryos after IVF?

    LENUS (Irish Health Repository)

    Walsh, A P H

    2010-04-01

    This investigation describes features of in vitro fertilisation (IVF) patients who never returned to claim their embryos following cryopreservation. Frozen embryo data were reviewed to establish communication patterns between patient and clinic; embryos were considered abandoned when 1) an IVF patient with frozen embryo\\/s stored at our facility failed to make contact with our clinic for > 2 yrs and 2) the patient could not be located after a multi-modal outreach effort was undertaken. For these patients, telephone numbers had been disconnected and no forwarding address was available. Patient, spouse and emergency family contact\\/s all escaped detection efforts despite an exhaustive public database search including death records and Internet directory portals. From 3244 IVF cycles completed from 2000 to 2008, > or = 1 embryo was frozen in 1159 cases (35.7%). Those without correspondence for > 2 yrs accounted for 292 (25.2%) patients with frozen embryos; 281 were contacted by methods including registered (signature involving abandoned embryos did not differ substantially from other patients. The goal of having a baby was achieved by 10\\/11 patients either by spontaneous conception, adoption or IVF. One patient moved away with conception status unconfirmed. The overall rate of embryo abandonment was 11\\/1159 (< 1%) in this IVF population. Pre-IVF counselling minimises, but does not totally eliminate, the problem of abandoned embryos. As the number of abandoned embryos from IVF accumulates, their fate urgently requires clarification. We propose that clinicians develop a policy consistent with relevant Irish Constitutional provisions to address this medical dilemma.

  15. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization.

    Science.gov (United States)

    Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A

    2014-07-17

    The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.

  16. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    Science.gov (United States)

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  17. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and 'OMICS': is looking good still important?

    Science.gov (United States)

    Gardner, David K; Balaban, Basak

    2016-10-01

    With the worldwide move towards single embryo transfer there has been a renewed focus on the requirement for reliable means of assessing embryo viability. In an era of 'OMICS' technologies, and algorithms created through the use of time-lapse microscopy, the actual appearance of the human embryo as it progresses through each successive developmental stage to the blastocyst appears to have been somewhat neglected in recent years. Here we review the key features of the human preimplantation embryo and consider the relationship between morphological characteristics and developmental potential. Further, the impact of the culture environment on morphological traits, how key morphological qualities reflect aspects of embryo physiology, and how computer-assisted analysis of embryo morphology may facilitate a more quantitative approach to selection are discussed. The clinical introduction of time-lapse systems has reopened our eyes and given us a new vantage point from which to view the beauty of the initial stages of human life. Rather than a future in which the morphology of the embryo is deemed irrelevant, we propose that key features, such as multinucleation, cell size and blastocyst differentiation should be included in future iterations of selection/deselection algorithms. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.

  18. Entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos

    International Nuclear Information System (INIS)

    Kao, K.R.; Elinson, R.P.

    1988-01-01

    The body plan of Xenopus laevis can be respecified by briefly exposing early cleavage stage embryos to lithium. Such embryos develop exaggerated dorsoanterior structures such as a radial eye and cement gland. In this paper, we demonstrate that the enhanced dorsoanterior phenotype results from an overcommitment of mesoderm to dorsoanterior mesoderm. Histological and immunohistochemical observations reveal that the embryos have a greatly enlarged notochord with very little muscle tissue. In addition, they develop a radial, beating heart, suggesting that lithium also specifies anterior mesoderm and pharyngeal endoderm. Randomly oriented diametrically opposed marginal zone grafts from lithium-treated embryos, when transplanted into ultraviolet (uv)-irradiated axis-deficient hosts, rescue dorsal axial structures. These transplantation experiments demonstrate that the entire marginal zone of the early gastrula consists of presumptive dorsal mesoderm. Vital dye marking experiments also indicate that the entire marginal zone maps to the prominent proboscis that is composed of chordamesoderm and represents the long axis of the embryo. These results suggest that lithium respecifies the mesoderm of Xenopus laevis embryos so that it differentiates into the Spemann organizer. We suggest that the origin of the dorsoanterior enhanced phenotypes generated by lithium and the dorsoanterior deficient phenotypes generated by uv irradiation are due to relative quantities of organizer. Our evidence demonstrates the existence of a continuum of body plan phenotypes based on this premise

  19. Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    Jun'an Cui; Zhiyong Zhang; Wei Bai; Ligang Zhang; Xiao He; Yuhui Ma; Yan Liu; Zhifang Chai

    2012-01-01

    In recent years,with the wide applications and mineral exploitation of rare earth elements,their potential environmental and health effects have caused increasing public concern.Effect of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos were studied.The embryos were exposed to La3+ or Yb3+ at 0,0.01,0.1,0.3,0.5 and 1.0 mmol/L,respectively.Early life stage parameters such as egg and embryo mortality,gastrula development,tail detachment,eyes,somite formation,circulatory system,pigmentation,malformations,hatching rate,length of larvae and mortality were investigated.The results showed La3+ and Yb3+ delayed zebrafish embryo and larval development,decreased survival and hatching rates,and caused tail malformation in a concentration-dependent way.Moreover,heavy rare-earth ytterbium led to more severe acute toxicity of zebrafish embryo than light rare-earth lanthanum.

  20. Biological response of zebrafish embryos after short-term exposure to thifluzamide

    Science.gov (United States)

    Yang, Yang; Liu, Wenxian; Mu, Xiyan; Qi, Suzhen; Fu, Bin; Wang, Chengju

    2016-12-01

    Thifluzamide is a new amide fungicide, and its extensive application may have toxic effects on zebrafish. To better understand the underlying mechanism, we investigated in detail the potential toxic effects of thifluzamide on zebrafish embryos. In the present study, embryos were exposed to 0, 0.19, 1.90, and 2.85 mg/L thifluzamide for 4 days. Obvious pathological changes were found upon a histological exam, and negative changes in mitochondrial structure were observed under Transmission Electron Microscopy (TEM), which qualitatively noted the toxic effects of thifluzamide on embryos. Moreover, we quantitatively evaluated the enzyme activities [succinate dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspases], the contents of malonaldehyde (MDA) and interleukin-8 (IL-8) and the expression levels of the related genes. This study suggests that the negative changes in mitochondrial structure and SDH activity might be responsible for oxidative damage, cell apoptosis and inflammation, which would facilitate the action of these factors in cell death and might play a crucial role during toxic events. In addition to providing the first description of the mechanism of the toxic effects of thifluzamide on embryos, this study also represents a step towards using embryos to assess mitochondrial metabolism and disease.

  1. Interpretation of recovery stage III in gold. [Electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, A.; Frank, W. (Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany, F.R.). Inst. fuer Physik; Stuttgart Univ. (Germany, F.R.). Inst. fuer Theoretische und Angewandte Physik)

    1983-05-01

    The paper compares a recent investigation of Stage-III recovery on electron-irradiated gold by Sonnenberg and Dedek with earlier work on cold-worked or quenched gold. The experimental results of Sonnenberg and Dedek are found to be in excellent agreement with those of Schuele, Seeger, Schumacher, and King, who showed that in Au Stage III is due to the migration of an elementary intrinsic point defect with migration enthalpy Hsup(III) = (0.71 +- 0.02)eV. Since the monovacancy migration enthalpy Hsub(IVsup(M)) = (0.83 +- 0.02)eV obtained by Schuele et al. has been confirmed by other workers and independent techniques, it is concluded that Hsup(III) represents the migration enthalpy of isolated self-interstitials.

  2. Aberrant behavior of mouse embryo development after blastomere biopsy as observed through time-lapse cinematography.

    Science.gov (United States)

    Ugajin, Tomohisa; Terada, Yukihiro; Hasegawa, Hisataka; Velayo, Clarissa L; Nabeshima, Hiroshi; Yaegashi, Nobuo

    2010-05-15

    To analyze whether blastomere biopsy affects early embryonal growth as observed through time-lapse cinematography. Comparative prospective study between embryos in which a blastomere was removed and embryos in which a blastomere was not removed. An experimental laboratory of the university. We calculated the time between blastocele formation and the end of hatching, the time between the start and end of hatching, the number of contractions and expansions between blastocyst formation and the end of hatching, and the maximum diameter of the expanded blastocyst. In blastomere removal embryos, compaction began at the six-cell stage instead of at the eight-cell stage. We also found that hatching was delayed in these embryos as compared with matched controls. Moreover, the frequency of contraction and expansion movements after blastocyst formation was significantly higher in the blastomere removal group as compared with the control group. Finally, the maximum diameter of the expanded blastocyst just before hatching was not significantly different between both groups. These findings suggested that blastomere removal has an adverse effect on embryonic development around the time of hatching. Thus, future developments in preimplantation genetic diagnosis and screening should involve further consideration and caution in light of the influence of blastomere biopsy on embryonal growth. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Embryo developmental events and the egg case of the Aleutian skate Bathyraja aleutica (Gilbert) and the Alaska skate Bathyraja parmifera (Bean).

    Science.gov (United States)

    Hoff, G R

    2009-02-01

    Embryo development events were correlated with egg-case changes for the Aleutian skate Bathyraja aleutica and the Alaska skate Bathyraja parmifera. Yolk absorption underwent two phases: that of steady absorption during early development and that of rapid yolk absorption during the final development stages. Total length (L(T)) for 50% of the pre-hatching embryos egg-case jelly disappearance was 92.04 mm (range 81-102 mm) and 99.36 mm (range 81-100 mm) for B. aleutica and B. parmifera, respectively, allowing the inner chamber to open to seawater flow. The tail filament underwent three phases of growth: rapid elongation during early development (70 mm L(T) for both species and the sex ratio was 1:1 well before hatching. Egg cases that were devoid of an ova or developing embryo were c. 5.0 and 6.5% of the egg cases examined for B. aleutica and B. parmifera, respectively. Measurements showed that egg cases containing only egg jelly were smaller in both width and length than those possessing an ova. Embryo stages were punctuated with distinct events that correlated with egg case changes controlling the internal environment of the developing embryo.

  4. RETROSPECTIVE ANALYSIS: REPRODUCIBILITY OF INTERBLASTOMERE DIFFERENCES OF mRNA EXPRESSION IN 2-CELL STAGE MOUSE EMBRYOS IS REMARKABLY POOR DUE TO COMBINATORIAL MECHANISMS OF BLASTOMERE DIVERSIFICATION.

    Science.gov (United States)

    Casser, E; Israel, S; Schlatt, S; Nordhoff, V; Boiani, M

    2018-05-09

    What is the prevalence, reproducibility and biological significance of transcriptomic differences between sister blastomeres of the mouse 2-cell embryo? Sister 2-cell stage blastomeres are distinguishable from each other by mRNA analysis, attesting to the fact that differentiation starts mostly early in the mouse embryo; however, the interblastomere differences are poorly reproducible and invoke the combinatorial effects of known and new mechanisms of blastomere diversification. Transcriptomic datasets for single blastomeres in mice have been available for years but have never been systematically analysed together, although such an analysis may shed light onto some unclarified topics of early mammalian development. Two unknowns that remain are at which stage embryonic blastomeres start to diversify from each other and what is the molecular origin of that difference. At the earliest postzygotic stage, the 2-cell stage, opinions differ regarding the answer to these questions; one group claims that the first zygotic division yields two equal blastomeres capable of forming a full organism (totipotency) and another group claims evidence for interblastomere differences reminiscent of the prepatterning found in embryos of lower taxa. Regarding the molecular origin of interblastomere differences, there are four prevalent models which invoke 1) oocyte anisotropy, 2) sperm entry point, 3) partition errors of the transcript pool, and 4) asynchronous embryonic genome activation in the two blastomeres. Seven transcriptomic studies published between 2011 and 2017 were eligible for retrospective analysis, since both blastomeres of the mouse 2-cell embryo had been analysed individually regarding the original pair associations and since the datasets were made available in public repositories. Five of these studies, encompassing a total of 43 pairs of sister blastomeres, were selected for further analyses based on high interblastomere correlations of mRNA levels. A double cut

  5. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  6. Estimated neutron dose to embryo and foetus during commercial flight

    International Nuclear Information System (INIS)

    Chen, J.; Lewis, B. J.; Bennett, L. G. I.; Green, A. R.; Tracy, B. L.

    2005-01-01

    A study has been carried out to assess the radiation exposure from cosmic-ray neutrons to the embryo and foetus of pregnant aircrew and air travellers in consideration of the radiation exposure from cosmic-ray neutrons to the embryo and foetus. A Monte Carlo analysis was performed to determine the equivalent dose from neutrons to the brain and body of an embryo at 8 weeks and to the foetus at the 3, 6 and 9 month periods. Neutron fluence-to-absorbed dose conversion coefficients for the foetal brain and for the entire foetal body (isotropic irradiation geometry) have been determined at the four developmental stages. The equivalent dose rate to the foetus during commercial flights has been further evaluated considering the fluence-to-absorbed dose conversion coefficients, a neutron spectrum measured at an altitude of 11.3 km and an ICRP-92 radiation-weighting factor for neutrons. This study indicates that the foetus can exceed the annual dose limit of 1 mSv for the general public after, for example, 15 round trips on commercial trans-Atlantic flights. (authors)

  7. Morphogenesis of the rhea (Rhea americana respiratory system in different embryonic and foetal stages

    Directory of Open Access Journals (Sweden)

    Renata P. Sousa

    Full Text Available ABSTRACT: The rhea (Rhea americana is an important wild species that has been highlighted in national and international livestock. This research aims to analyse embryo-foetal development in different phases of the respiratory system of rheas. Twenty-three embryos and foetuses were euthanized, fixed and dissected. Fragments of the respiratory system, including the nasal cavity, larynx, trachea, syrinx, bronchi and lungs, were collected and processed for studies using light and scanning electron microscopy. The nasal cavity presented cubic epithelium in the early stages of development. The larynx exhibited typical respiratory epithelium between 27 and 31 days. The trachea showed early formation of hyaline cartilage after 15 days. Syrinx in the mucous membrane of 18-day foetuses consisted of ciliated epithelium in the bronchial region. The main bronchi had ciliated epithelium with goblet cells in the syringeal region. In the lung, the parabronchial stage presented numerous parabronchi between 15 and 21 days. This study allowed the identification of normal events that occur during the development of the rhea respiratory system, an important model that has not previously been described. The information generated here will be useful for the diagnosis of pathologies that affect this organic system, aimed at improving captive production systems.

  8. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate?

    Directory of Open Access Journals (Sweden)

    Paternot Goedele

    2012-09-01

    Full Text Available Abstract Background Cell-cell communication and adhesion are essential for the compaction process of early stage embryos. The aim of this study was to develop a non-invasive objective calculation system of embryo compaction in order to test the hypothesis that embryos with a larger mean contact surface result in a higher live birth rate compared to embryos with a lower mean contact surface. Methods Multilevel images of 474 embryos transferred on day 3 were evaluated by the Cellify software. This software calculates the contact surfaces between the blastomeres. The primary outcome of this study was live birth. An ideal range of contact surface was determined and the positive and negative predictive value, the sensitivity, the specificity and the area under the curve for this new characteristic were calculated. Results In total, 115 (24% transferred embryos resulted in a live birth. Selection of an embryo for transfer on its mean contact surface could predict live birth with a high sensitivity (80% and high negative predicting value (83% but with a low positive predictive value (27%, a low specificity (31% and low area under the ROC curve (0.56. The mean contact surface of embryos cultured in a single medium was significantly higher compared to the mean contact surface of embryos cultured in a sequential medium (p = 0.0003. Conclusions Neither the mean contact surface nor the number of contact surfaces of a day 3 embryo had an additional value in the prediction of live birth. The type of culture medium, however, had an impact on the contact surface of an embryo. Embryos cultured in a single medium had a significant larger contact surface compared to embryos cultured in the sequential medium.

  9. Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster.

    Science.gov (United States)

    Lockwood, B L; Gupta, T; Scavotto, R

    2018-02-01

    Many terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioural thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. We further report that embryos live closer to their upper thermal limits than adults - that is, thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting the dominance of heat-tolerant alleles. Together, our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages to better predict adaptive limits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Frozen-Thawed Embryo Transfer Cycles Have a Lower Incidence of Ectopic Pregnancy Compared With Fresh Embryo Transfer Cycles.

    Science.gov (United States)

    Zhang, Xinyu; Ma, Caihong; Wu, Zhangxin; Tao, Liyuan; Li, Rong; Liu, Ping; Qiao, Jie

    2017-01-01

    To evaluate the risk of ectopic pregnancy of embryo transfer. A retrospective cohort study on the incidence of ectopic pregnancy in fresh and frozen-thawed embryo transfer cycles from January 1 st , 2010, to January 1 st , 2015. Infertile women undergoing frozen-thawed transfer cycles or fresh transfer cycles. In-vitro fertilization, fresh embryo transfer, frozen-thawed embryo transfer, ectopic pregnancy. Ectopic pregnancy rate and clinical pregnancy rate. A total of 69 756 in vitro fertilization-embryo transfer cycles from 2010 to 2015 were analyzed, including 45 960 (65.9%) fresh and 23 796 (34.1%) frozen-thawed embryo transfer cycles. The clinical pregnancy rate per embryo transfer was slightly lower in fresh embryo transfer cycles compared with frozen-thawed embryo transfer cycles (40.8% vs 43.1%, P cycles, blastocyst transfer shows a significantly lower incidence of ectopic pregnancy (0.8% vs 1.8%, P = .002) in comparison with day 3 cleavage embryo transfer. The risk of ectopic pregnancy is lower in frozen-thawed embryo transfer cycles than fresh embryo transfer cycles, and blastocyst transfer could further decrease the ectopic pregnancy rate in frozen-thawed embryo transfer cycles.

  11. Modification of mitochondrial function, cytoplasmic lipid content and cryosensitivity of bovine embryos by resveratrol.

    Science.gov (United States)

    Abe, Takahito; Kawahara-Miki, Ryouka; Hara, Tomotaka; Noguchi, Tatsuo; Hayashi, Takeshi; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2017-10-18

    Resveratrol is a potent activator of NAD-dependent deacetyltransferase sirtuin-1 (SIRT1) and affects lipid metabolism and ATP generation in somatic cells. In the present study, the effects of supplementing culture medium with resveratrol on lipid metabolism, ATP generation, and cryosensitivity of bovine in vitro produced embryos were investigated. Bovine early cleaved-stage embryos were cultured in medium containing 0 or 0.5 µM resveratrol for 1 or 5 days. Resveratrol treatment for both 1 day and 5 days increased the expression levels of SIRT1 and phosphorylated AMP-activated protein kinase (pAMPK) in the embryos. Furthermore, resveratrol treatment was effective to increase ATP generation and reduce lipid content of the embryos. The effects of resveratrol treatment were diminished by the SIRT1 inhibitor "EX527", and the reduced lipid content was reversed by treatment with etomoxir (a potent inhibitor of beta-oxidation). Blastocysts developed after resveratrol treatment showed low levels reactive oxygen species and increased cryotolerance. These results demonstrate that resveratrol improves in vitro development of bovine embryos, while reducing cytoplasmic lipid content through activation of beta-oxidation, thereby effective for production of bovine blastocysts with enhanced cryotolerance.

  12. Soluble CD146, an innovative and non-invasive biomarker of embryo selection for in vitro fertilization.

    Directory of Open Access Journals (Sweden)

    Sylvie Bouvier

    Full Text Available Although progress was made in in vitro fertilization (IVF techniques, the majority of embryos transferred fail to implant. Morphology embryo scoring is the standard procedure for most of IVF centres for choosing the best embryo, but remains limited since even the embryos classified as "top quality" may not implant. As it has been shown that i CD146 is involved in embryo implantation and ii membrane form is shed to generate soluble CD146 (sCD146, we propose that sCD146 in embryo supernatants may constitute a new biomarker of embryo selection. Immunocytochemical staining showed expression of CD146 in early embryo stages and sCD146 was detected by ELISA and Western-blot in embryo supernatants from D2. We retrospectively studied 126 couples who underwent IVF attempt. The embryo culture medium from each transferred embryo (n = 222 was collected for measurement of sCD146 by ELISA. Significantly higher sCD146 concentrations were present in embryo supernatants that did not implant (n = 185 as compared to those that successfully implanted (n = 37 (1310 +/- 1152 pg.mL-1 vs. 845+/- 1173 pg.mL-1, p = 0.024. Sensitivity analysis performed on single embryo transfers (n = 71 confirmed this association (p = 0.0054. The computed ROC curve established that the optimal sCD146 concentration for embryo implantation is under 1164 pg.mL-1 (sensitivity: 76%, specificity: 48%, PPV: 25% and NPV: 92%. Over this sCD146 threshold, the implantation rate was significantly lower (9% with sCD146 levels >1164 pg.ml-1 vs. 22% with sCD146 levels ≤ 1164 pg.mL-1, p = 0.01. Among the embryos preselected by morphologic scoring, sCD146 determination could allow a better selection of the embryo(s, thus improving the success of elective single embryo transfer. This study establishes the proof of concept for the use of sCD146 as a biomarker for IVF by excluding the embryo with the highest sCD146 level. A multicentre prospective study will now be necessary to further establish its use in

  13. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.

    Science.gov (United States)

    Tarkowski, Andrzej K; Suwińska, Aneta; Czołowska, Renata; Ożdżeński, Wacław

    2010-12-15

    Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    Science.gov (United States)

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  15. Toxicity of weathered Deepwater Horizon oil to bay anchovy (Anchoa mitchilli) embryos.

    Science.gov (United States)

    O'Shaughnessy, Kathryn A; Forth, Heather; Takeshita, Ryan; Chesney, Edward J

    2018-02-01

    The BP-contracted Deepwater Horizon Macondo well blowout occurred on 20 April 2010 and lasted nearly three months. The well released millions of barrels of crude oil into the northern Gulf of Mexico, causing extensive impacts on pelagic, benthic, and estuarine fish species. The bay anchovy (Anchoa mitchilli) is an important zooplanktivore in the Gulf, serving as an ecological link between lower trophic levels and pelagic predatory fish species. Bay anchovy spawn from May through November in shallow inshore and estuarine waters throughout the Gulf. Because their buoyant embryos are a dominant part of the inshore ichthyoplankton throughout the summer, it is likely bay anchovy embryos encountered oil in coastal estuaries during the summer and fall of 2010. Bay anchovy embryos were exposed to a range of concentrations of two field-collected Deepwater Horizon oils as high-energy and low-energy water accommodated fractions (HEWAFs and LEWAFs, respectively) for 48h. The median lethal concentrations (LC 50 ) were lower in exposures with the more weathered oil (HEWAF, 1.48µg/L TPAH50; LEWAF, 1.58µg/L TPAH50) compared to the less weathered oil (HEWAF, 3.87µg/L TPAH50; LEWAF, 4.28µg/L TPAH50). To measure delayed mortality and life stage sensitivity between embryos and larvae, an additional 24h acute HEWAF exposure using the more weathered oil was run followed by a 24h grow-out period. Here the LC 50 was 9.71µg/L TPAH50 after the grow-out phase, suggesting a toxic effect of oil at the embryonic or hatching stage. We also found that exposures prepared with the more weathered Slick B oil produced lower LC 50 values compared to the exposures prepared with Slick A oil. Our results demonstrate that even relatively acute environmental exposure times can have a detrimental effect on bay anchovy embryos. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. 77 FR 23193 - Medicare and Medicaid Programs; Electronic Health Record Incentive Program-Stage 2; Corrections

    Science.gov (United States)

    2012-04-18

    ..., 413, and 495 [CMS-0044-CN] RIN 0938-AQ84 Medicare and Medicaid Programs; Electronic Health Record... proposed rule entitled ``Medicare and Medicaid Programs; Electronic Health Record Incentive Program--Stage... (77 FR 13698), the proposed rule entitled ``Medicare and Medicaid Programs; Electronic Health Record...

  17. Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos.

    Science.gov (United States)

    Gao, Lin-Rui; Li, Shuai; Zhang, Jing; Liang, Chang; Chen, En-Ni; Zhang, Shi-Yao; Chuai, Manli; Bao, Yong-Ping; Wang, Guang; Yang, Xuesong

    2016-11-30

    As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.

  18. Cytogenetic and genetic studies of radiation-induced chromosome damage in mouse oocytes. Part 1. Numerical and structural chromosome anomalies in metaphase II oocytes, pre- and post-implantation embryos

    International Nuclear Information System (INIS)

    Tease, Charles; Fisher, Graham

    1996-01-01

    The incidences of X-ray induced numerical and structural chromosome anomalies were screened in a range of developmental stages from metaphase II oocytes through to post-implantation embryos. Following 1 Gy of acute X-rays to immediately preovulatory stage oocytes, the rate of hyperploidy (chromosome gain) was found to be elevated over levels in unirradiated controls, at metaphase II, in 1-cell and 3.5 day pre-implantation embryos but not in 8.5 day post-implantation foetuses. In the latter, however, the frequency of mosaicism was significantly increased. A similar response of an increase in mosaicism but not in hyperploidy in 8.5 day post-implantation embryos was also found after irradiation of dictyate stage oocytes with 4 Gy of acute X-rays. Significantly elevated frequencies of structural chromosome anomalies were present in metaphase II oocytes and pre-implantation embryonic stages, but could not be detected in block-stained chromosome preparations from 8.5 day post-implantation foetuses. However, analysis of chromosome preparations after G-banding showed that almost 14% of 14.5 day foetuses carried a chromosome rearrangement after 1 Gy of X-rays to immediately preovulatory stage oocytes. Overall, our data indicate that the presence of radiation-induced chromosome gains are incompatible with embryonic survival but that a proportion of embryos with structural chromosome damage develop past mid-gestation. These latter embryos are therefore potentially capable of contributing to the genetic burden of the next generation

  19. Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development

    Directory of Open Access Journals (Sweden)

    Yandell Brian S

    2010-01-01

    Full Text Available Abstract Background Early embryonic loss is a large contributor to infertility in cattle. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. The objective of this study was to identify genes differentially expressed between blastocysts and degenerative embryos at early stages of development. Results Using microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development. Conclusions This study presents the first direct and comprehensive comparison of transcriptomes between IVF blastocysts and degenerative embryos, providing important information for potential genes and pathways associated with early embryonic development.

  20. Embryonic death, dwarfism and fetal malformations after irradiation of embryos at the zygote stage. Studies on two mouse strains

    International Nuclear Information System (INIS)

    Jacquet, P.; Saint-Georges, L. de; Baugnet-Mahieu, L.; Vankerkom, J.

    1995-01-01

    Female mice of the BALB/c and CF1 strains were mated and irradiated with various doses of X-rays 7 h after presumed fertilization. 18 days later, females were killed and their uteri examined for prenatal mortality at the different stages of development. Living fetuses were weighed and examined for the presence of external malformations. A number of them were also examined for skeletal anomalies. Radiation induced mainly a dose-dependent increase of the preimplantation loss in the BALB/c strain and of the early postimplantation loss in the CF1 strain. Embryos of the BALB/c strain were refractory to the induction of teratogenic effects after such preimplantation irradiation. In CF1 mice, the frequency of malformed fetuses increased regularly after irradiation, the difference with controls being significant for the doses of 10, 50 and 100 cGy. Dwarfism occurrence also appeared to be increased by irradiation in this strain, although the importance of this effect varied depending on the criterion chosen for the assessment of dwarfs. With the definition proposed in the present paper, the increase in the frequency of dwarfs paralleled that of malformed fetuses, being significant after doses of 50 and 100 cGy. Irradiation did not increase the frequency of skeletal anomalies. A careful examination of the various data obtained to date led us to conclude that radiation may possibly be teratogenic in several mouse strains, when administered as early as during the one-cell stage and, to a lesser extent, during the following preimplantation stages. However, early prenatal mortality will remain by far the greatest risk associated with an exposure to radiation during this period. Moreover, the relativity of the risk of abnormality due to such irradiation should be considered in the context of the high prevalence of developmental defects spontaneously occurring during human pregnancy

  1. Embryonic death, dwarfism and fetal malformations after irradiation of embryos at the zygote stage. Studies on two mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.; Saint-Georges, L. de; Baugnet-Mahieu, L. [Laboratory of Radiobiology, Department of Radioprotection, CEN/SCK, Mol (Belgium); Vankerkom, J. [Division of Environmental Research, VITO, Mol (Belgium)

    1995-11-01

    Female mice of the BALB/c and CF1 strains were mated and irradiated with various doses of X-rays 7 h after presumed fertilization. 18 days later, females were killed and their uteri examined for prenatal mortality at the different stages of development. Living fetuses were weighed and examined for the presence of external malformations. A number of them were also examined for skeletal anomalies. Radiation induced mainly a dose-dependent increase of the preimplantation loss in the BALB/c strain and of the early postimplantation loss in the CF1 strain. Embryos of the BALB/c strain were refractory to the induction of teratogenic effects after such preimplantation irradiation. In CF1 mice, the frequency of malformed fetuses increased regularly after irradiation, the difference with controls being significant for the doses of 10, 50 and 100 cGy. Dwarfism occurrence also appeared to be increased by irradiation in this strain, although the importance of this effect varied depending on the criterion chosen for the assessment of dwarfs. With the definition proposed in the present paper, the increase in the frequency of dwarfs paralleled that of malformed fetuses, being significant after doses of 50 and 100 cGy. Irradiation did not increase the frequency of skeletal anomalies. A careful examination of the various data obtained to date led us to conclude that radiation may possibly be teratogenic in several mouse strains, when administered as early as during the one-cell stage and, to a lesser extent, during the following preimplantation stages. However, early prenatal mortality will remain by far the greatest risk associated with an exposure to radiation during this period. Moreover, the relativity of the risk of abnormality due to such irradiation should be considered in the context of the high prevalence of developmental defects spontaneously occurring during human pregnancy.

  2. Maternal SENP7 programs meiosis architecture and embryo survival in mouse.

    Science.gov (United States)

    Huang, Chun-Jie; Wu, Di; Jiao, Xiao-Fei; Khan, Faheem Ahmed; Xiong, Cheng-Liang; Liu, Xiao-Ming; Yang, Jing; Yin, Tai-Lang; Huo, Li-Jun

    2017-07-01

    Understanding the mechanisms underlying abnormal egg production and pregnancy loss is significant for human fertility. SENP7, a SUMO poly-chain editing enzyme, has been regarded as a mitotic regulator of heterochromatin integrity and DNA repair. Herein, we report the roles of SENP7 in mammalian reproductive scenario. Mouse oocytes deficient in SENP7 experienced meiotic arrest at prophase I and metaphase I stages, causing a substantial decrease of mature eggs. Hyperaceylation and hypomethylation of histone H3 and up-regulation of Cdc14B/C accompanied by down-regulation of CyclinB1 and CyclinB2 were further recognized as contributors to defective M-phase entry and spindle assembly in oocytes. The spindle assembly checkpoint activated by defective spindle morphogenesis, which was also caused by mislocalization and ubiquitylation-mediated proteasomal degradation of γ-tubulin, blocked oocytes at meiosis I stage. SENP7-depleted embryos exhibited severely defective maternal-zygotic transition and progressive degeneration, resulting in nearly no blastocyst production. The disrupted epigenetic landscape on histone H3 restricted Rad51C loading onto DNA lesions due to elevated HP1α euchromatic deposition, and reduced DNA 5hmC challenged the permissive status for zygotic DNA repair, which induce embryo death. Our study pinpoints SENP7 as a novel determinant in epigenetic programming and major pathways that govern oocyte and embryo development programs in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The prevalence of embryonic remnants following the recovery of post-hatching bovine embryos produced in vitro or by somatic cell nuclear transfer.

    Science.gov (United States)

    Alexopoulos, Natalie I; French, Andrew J

    2009-08-01

    The reliable collection of peri-implantation embryos in the bovine has important ramifications to post-transfer consequences, particularly in the elucidation of mechanisms associated with post-hatching embryo development and to perturbations in developmental growth following transfer. This study analyzed both in vitro produced (IVP) and somatic cell nuclear transfer (SCNT) embryo-like structures (ELS) recovered at Day (D) 14 and D21. The recovered ELS were subsequently processed for histological examination. At D14 and D21, many of the embryos recovered in the IVP group conformed to the appropriate stage of development. However, a significant number of anomalies were present in the SCNT groups when examined in more detail. Histological examination revealed that irrespective of whether these embryos had undergone trophoblast expansion to an ovoid, tubular or filamentous morphology, many had a degenerated hypoblast layer and a large proportion did not possess an epiblast and therefore could not differentiate into any of the three germ layers as would be expected at the neural groove or somite stage. The prevalence of this developmental pattern was random and did not correlate with treatment (IVP or SCNT) or with types of structures recovered. The rapid embryo elongation period also coincides with the time of greatest embryonic loss and these observations could have important implications for assessing the recovery of embryos post-transfer where incorrect morphological assessment could lead to false implantation and pregnancy determination rates. The implementation of additional methodology is required to adequately characterize the quality of IVP and SCNT-derived embryos collected post-transfer.

  4. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period

    Energy Technology Data Exchange (ETDEWEB)

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Shin, Chong Hyun; Fahrni, Christoph J.

    2016-01-01

    Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.

  5. Radiotoxicity and incorporation of methyl-tritiated-thymidine on preimplantation mouse embryo. In vitro fertilization and culture

    International Nuclear Information System (INIS)

    Kikuchi, O.K.; Ohyama, H.; Yamada, T.

    1993-04-01

    In the present work different concentrations of methyl- 3 H-thymidine was added to the culture medium micro drops containing the mouse zygotes at pro nuclear stage and the embryos were cultured in vitro at 37 0 C in a humidified atmosphere with 5% of CO 2 for four days up to the expanded blastocyst stage, the established end point to calculate the L D 50 lethal dose. The blastocyst formation rate decreased with increasing concentration of tritium in medium and a value of 2.4 X 10 3 Bq/ml for L D 50 was obtained. The 3 H-Td R incorporation by the embryo during the preimplantation period was low at the beginning and increased quickly during the morula and the blastocyst development. (author)

  6. Pre- and Peri-/Post-Compaction Follistatin Treatment Increases In Vitro Production of Cattle Embryos.

    Directory of Open Access Journals (Sweden)

    Guo Zhenhua

    Full Text Available Our previous studies demonstrated that maternal (oocyte derived follistatin (FST expression is positively associated with bovine oocyte competence and exogenous follistatin treatment during the pre-compaction period of development (d 1-3 post insemination is stimulatory to bovine early embryogenesis in vitro [blastocyst rates and cell numbers/allocation to trophectoderm (TE]. In the present study, bovine embryos were treated with exogenous follistatin during d 1-3, d 4-7 and d 1-7 post insemination to test the hypothesis that embryotropic effects of exogenous follistatin are specific to the pre-compaction period (d 1-3 of early embryogenesis. Follistatin treatment during d 4-7 (peri-/post-compaction period of embryo culture increased proportion of embryos reaching blastocyst and expanded blastocyst stage and total cell numbers compared to controls, but blastocyst rates and total cell numbers were lower than observed following d 1-3 (pre-compaction follistatin treatment. Follistatin supplementation during d 1-7 of embryo culture increased development to blastocyst and expanded blastocyst stages and blastocyst total cell numbers compared to d 1-3 and d 4-7 follistatin treatment and untreated controls. A similar increase in blastocyst CDX2 mRNA and protein (TE cell marker was observed in response to d 1-3, d 4-7 and d 1-7 follistatin treatment. However, an elevation in blastocyst BMP4 protein (TE cell regulator was observed in response to d 1-3 and d 1-7, but not d 4-7 (peri-/post-compaction follistatin treatment. In summary, our study revealed the potential utility of follistatin treatment for increasing the success rate of in vitro embryo production in cattle. Such results also expand our understanding of the embryotropic actions of follistatin and demonstrate that follistatin actions on blastocyst development and cell allocation to the TE layer are not specific to the pre-compaction period.

  7. EXPOSURE TO A P13KINASE INHIBITOR PRODUCED DYSMORPHOGENESIS IN NEURULATION-STAGED MOUSE EMBRYOS IN CULTURE

    Science.gov (United States)

    The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids alter embryonic development when mouse conceptuses are directly exposed to these xenobiotics in whole embryo culture. C...

  8. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  9. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    Science.gov (United States)

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Photoreactivation rescue and dark repair demonstrated in UV-irradiated embryos of the self-fertilizing fish Rivulus ocellatus marmoratus (Teleostei; Aplocheilidae)

    International Nuclear Information System (INIS)

    Park, E.-H.; Yi, A.-K.

    1989-01-01

    The effects of photoreactivation (PR) rescue and dark repair on the survival of UV-irradiated embryos of the hermaphroditic fish (Rivulus ocellatus marmoratus) are reported. When UV-irradiated embryos were illuminated by photoreactivating light (PRL) from fluorescent lamps, survival at the hatching stage was markedly increased. The maximum recovery to UV damage was shown by embryos that were exposed to PRL for at least 6 h after UV irradiation. The effect of PRL decreased 30 min after UV irradiation and not PR rescue ws detected beyond 96 h. Treatment with 2 mM caffeine for 48 h after UV irradiation increased the sensitivity of the embryos in the dark. The above results demonstrate that Rivulus embryos have an efficient PR system and a caffeine-sensitive dark repair capacity. (author). 31 refs.; 5 figs

  11. Inhibition of dye-coupling in Patella (mollusca) embryos by microinjection of antiserum against Nephrops (arthropoda) gap junctions

    NARCIS (Netherlands)

    Serras, F.; Buultjens, T.E.J.; Finbow, M.E.

    1988-01-01

    Antiserum raised against Nephrops gap junctions was injected into single cells of the 2-, 4-, 8-, 16-, and 32-cell stage of the Patella vulgata embryos. The pattern of junctional communication by iontophoresis of Lucifer Yellow CH was tested at the 32-cell stage. The results show that the normal

  12. Surgical manipulation of mammalian embryos in vitro.

    Science.gov (United States)

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  13. Human oocyte oolemma characteristic is positively related to embryo developmental competence after ICSI procedure

    Directory of Open Access Journals (Sweden)

    Mohamed A. Danfour

    2010-10-01

    Conclusion: The current study provides evidence that preselection at a very early stage based on oolemma behavior may be helpful to identify a subgroup of preimplantation embryos with good prognostic to form blastocyst and consequently to implant and to give pregnancy.

  14. Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage

    Science.gov (United States)

    The zebrafish (Danio rerio) embryo has been increasingly used as a model to evaluate toxicity of manufactured nanomaterials. Many studies indicate that the embryo chorion may protect animals from toxic effects of nanomaterials, suggesting that post-hatch life stages may be more s...

  15. Multiple ovulation and embryo transfer (MOET in camels: An overview

    Directory of Open Access Journals (Sweden)

    Binoy S. Vettical

    2016-04-01

    Full Text Available Unlike in other domestic animal species like cattle, reproductive biotechnologies like Artificial Insemination (AI and Embryo Transfer (ET are not well developed and thus are not being used as routine breeding procedures in camels. One of the important objectives of this manuscript is to focus on analyzing the present status of Multiple Ovulation and Embryo Transfer (MOET in camels and its future perspectives. Camels are induced ovulators, thus require hormonal treatment to induce ovulation and control the follicular cycles, which is the main reason why protocols used in other domestic animal species cannot be directly used in this species. The review suggests that the best method for super stimulation of ovaries in camels is use of a combination of Equine Chorionic Gonadotropin (eCG and Follicle Stimulating Hormone (FSH at any stage after elimination of dominant follicle if any or at the early stage of the follicular wave and ovulation of the developed multiple follicles can be achieved by mating donors. The review highlights that a better pregnancy rate is achieved with recipients who ovulate 24 h after the donor.

  16. Self-field effects on small-signal gain in two-stage free-electron lasers

    Indian Academy of Sciences (India)

    Self-field effects, induced by charge and current densities of the electron beam, on gain in two-stage free-electron laser with nonuniform guide magnetic field is presented. The gain equation for small-signal has been derived analytically. The results of numerical calculations show a gain decrement for group I orbits and a ...

  17. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3

    Science.gov (United States)

    Petersen, Bjørn Molt; Boel, Mikkel; Montag, Markus; Gardner, David K.

    2016-01-01

    curve (AUC) to establish the predictive strength of the algorithm. MAIN RESULTS AND THE ROLE OF CHANCE By applying the here developed algorithm (KIDScore), which was based on six annotations (the number of pronuclei equals 2 at the 1-cell stage, time from insemination to pronuclei fading at the 1-cell stage, time from insemination to the 2-cell stage, time from insemination to the 3-cell stage, time from insemination to the 5-cell stage and time from insemination to the 8-cell stage) and ranking the embryos in five groups, the implantation potential of the embryos was predicted with an AUC of 0.650. On Day 3 the KIDScore algorithm was capable of predicting blastocyst development with an AUC of 0.745 and blastocyst quality with an AUC of 0.679. In a comparison of blastocyst prediction including six other published algorithms and KIDScore, only KIDScore and one more algorithm surpassed an algorithm constructed on conventional Alpha/ESHRE consensus timings in terms of predictive power. LIMITATIONS, REASONS FOR CAUTION Some morphological assessments were not available and consequently three of the algorithms in the comparison were not used in full and may therefore have been put at a disadvantage. Algorithms based on implantation data from Day 3 embryo transfers require adjustments to be capable of predicting the implantation potential of Day 5 embryo transfers. The current study is restricted by its retrospective nature and absence of live birth information. Prospective Randomized Controlled Trials should be used in future studies to establish the value of time-lapse technology and morphokinetic evaluation. WIDER IMPLICATIONS OF THE FINDINGS Algorithms applicable to different culture conditions can be developed if based on large data sets of heterogeneous origin. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Vitrolife A/S, Denmark and Vitrolife AB, Sweden. B.M.P.’s company BMP Analytics is performing consultancy for Vitrolife A/S. M.B. is employed at

  18. The PEP [positron-electron-proton] electron-positron ring: PEP Stage I

    International Nuclear Information System (INIS)

    Rees, J.R.

    1974-01-01

    The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e/sup /plus//e/sup /minus// ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus around the interaction regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup /minus/2/s/sup/minus/1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described. 7 refs., 8 figs., 3 tabs

  19. Piglets produced by transfer of vitrified porcine embryos after stepwise dilution of cryoprotectants.

    Science.gov (United States)

    Kobayashi, S; Takei, M; Kano, M; Tomita, M; Leibo, S P

    1998-02-01

    A total of 498 porcine embryos at various stages of development collected from superovulated gilts was used to investigate cryopreservation. First, blastocysts (BL), expanded blastocysts (ExB), and hatched blastocysts (HB) were used to determine the effect of exposure to concentrated solutions of ethylene glycol as cryoprotective additives (CPAs) on embryo survival. Then, survival of other embryos after vitrification by rapid cooling was determined. Based on their development after 48 h in culture, embryos were not injured by being exposed to 2.0 M ethylene glycol (EG) for 15 min or to 2.0 M EG for 5 min and then to a solution of 8.0 M EG in 7% polyvinylpyrrolidone (PVP) for 1 min. The CPAs were removed from the embryos by diluting them with 1.7 M galactose. To vitrify the embryos, they were exposed to 2.0 M EG for 5 min and then were pipetted directly into short columns of 8.0 M EG-PVP contained within (1.25-ml plastic straws and separated from long columns of 1.7 M galactose by an air bubble. The straws were plunged directly into LN2. After the straws were warmed rapidly in a 25 degrees C water bath, the embryos were immediately mixed with galactose within the straws by shaking them vigorously to mix the contents. In sequential experiments, three methods were used to dilute the CPA solutions. Method 1: Embryos in the EG-PVP-galactose mixture were expelled from the straws and rinsed and cultured in modified CZB medium (mCZB). Method II: Embryos in the mixture were placed briefly into 1.5 M EG and then rinsed and cultured in mCZB. Method III: Embryos in the mixture were rinsed in 1.0 M EG and then in 0.5 M EG and finally rinsed with mCZB and cultured. After 48 h in culture, the respective percentages of survival of embryos vitrified as BL, ExB, or HB were: Method I, 21, 32, and 13%; Method II, 9, 40, and 24%; Method III, 35, 85, and 71%. Of 20 additional ExB vitrified embryos diluted by Method III and transferred into a recipient, four developed into live piglets

  20. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.

    Science.gov (United States)

    Simmet, Kilian; Reichenbach, Myriam; Reichenbach, Horst-Dieter; Wolf, Eckhard

    2015-12-01

    Multiplication of bovine embryos by the production of aggregation chimeras is based on the concept that few blastomeres of a donor embryo form the inner cell mass (ICM) and thus the embryo proper, whereas cells of a host embryo preferentially contribute to the trophectoderm (TE), the progenitor cells of the embryonic part of the placenta. We aggregated two fluorescent blastomeres from enhanced green fluorescent protein (eGFP) transgenic Day 5 morulae with two Day 4 embryos that did not complete their first cleavage until 27 hours after IVF and tested the effect of phytohemagglutinin-L (PHA) on chimeric embryo formation. The resulting blastocysts were characterized by differential staining of cell lineages using the TE-specific factor CDX2 and confocal laser scanning microscopy to facilitate the precise localization of eGFP-positive cells. The proportions of blastocyst development of sandwich aggregates with (n = 99) and without PHA (n = 46) were 85.9% and 54.3% (P chimeric blastocysts analyzed by confocal laser scanning microscopy, nine had eGFP-positive cells (three of them in the ICM, three in the TE, and three in both lineages). When integration in the ICM occurred, the number of eGFP-positive cells in this compartment was 8.3 ± 2.3 (mean ± standard error of the mean). We conclude that PHA is advantageous for the formation of aggregation chimeras, but the approach tested in the present study with only two donor blastomeres and two host embryos did not result in multiplication of genetically valuable donor embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Perturbation of the Developmental Potential of Preimplantation Mouse Embryos by Hydroxyurea

    Directory of Open Access Journals (Sweden)

    Edward R. Hills

    2010-04-01

    Experiments 2 and 3, (N = 10/Experiment folliculogenesis and ovulation were induced in untreated mice followed by mating. Recovered embryos were either exposed continuously (Experiment 2 or intermittently (Experiment 3 to bioavailable HU (18 μg HU/mL of WM + CZBt or WM + CZBt only (control. Treated mice sustained decreased ovarian wt, ovulation rate and circulating E2 compared with controls (P < 0.05. Fewer embryos retrieved from HU-treated mice developed to blastocyst stage (32% compared with those from controls (60%; P < 0.05. Furthermore, continuous or intermittent in vitro exposures of embryos to HU also resulted in reduced development to blastocyst stage (continuous HU, 9 vs. control, 63%; P < 0.05; intermittent HU, 20 vs. control, 62%; P < 0.05 with embryos exposed continuously to HU in vitro fairing worse. Even though HU is well tolerated, our data suggest that it compromises folliculogenesis and the ability of generated embryos to develop. Therefore, designed studies with larger numbers of patients receiving HU during pregnancy, with longer follow-up of exposed children and more careful assessment of embryo/fetotoxic effects, are required before this agent can be promoted as safe in pregnancy.

  2. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s

    International Nuclear Information System (INIS)

    Geraci, Fabiana; Pinsino, Annalisa; Turturici, Guiseppina; Savona, Rosalia; Giudice, Giovanni; Sconzo, Gabriella

    2004-01-01

    Treatment with heavy metals, such as nickel, lead or cadmium, elicits different cellular stress responses according to the metal used and the length of treatment. In Paracentrotus lividus embryos the inducible forms of HSP70 (HSP70/72) are different in molecular mass from the constitutively expressed HSP75, and they can be used as markers of cellular stress. Even a short treatment with each metal induces the synthesis of HSP70/72 which remain stable for at least 20 h and differ little in their isoelectric points. Continuous treatment from fertilization with nickel or lead produces late irregular pluteus embryos, with peak HSP70/72 synthesis at blastula followed by the arrest of synthesis by pluteus. On the contrary, the same treatment with cadmium induces continuous HSP70/72 synthesis and produces irregular gastrula embryos which then degenerate. Moreover, a long treatment induces over control embryos a slight increase in the amount of constitutive HSP75 during development while lead treatment depresses constitutive HSP75 at early stages and doubles its quantity at late stages

  3. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  4. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    Science.gov (United States)

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  5. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: A tool for conservation?

    Science.gov (United States)

    Cox, B.S.; Dux, A.M.; Quist, M.C.; Guy, C.S.

    2012-01-01

    The detrimental impacts of nonnative lake trout Salvelinus namaycush in the western USA have prompted natural resource management agencies in several states to implement lake trout suppression programs. Currently, these programs rely on mechanical removal methods (i.e., gill nets, trap nets, and angling) to capture subadult and adult lake trout. We conducted a study to explore the potential for using high-intensity sound from a relatively small (655.5 cm3 [40 in3]) seismic air gun to reduce survival of lake trout embryos. Lake trout embryos at multiple stages of development were exposed to a single discharge of the seismic air gun at two depths (5 and 15 m) and at two distances from the air gun (0.1 and 2.7 m). Control groups for each developmental stage, distance, and depth were treated identically except that the air gun was not discharged. Mortality in lake trout embryos treated at 0.1 m from the air gun was 100% at 74 daily temperature units in degrees Celsius (TU°C) at both depths. Median mortality in lake trout embryos treated at 0.1 m from the air gun at 207 TU°C (93%) and 267 °C (78%) appeared to be higher than that of controls (49% and 48%, respectively) at 15-m depth. Among the four lake trout developmental stages, exposure to the air gun at 0.1 m resulted in acute mortality up to 60% greater than that of controls. Mortality at a distance of 2.7 m did not appear to differ from that of controls at any developmental stage or at either depth. Our results indicate that seismic air guns have potential as an alternative tool for controlling nonnative lake trout, but further investigation is warranted.

  6. Micropropagation of nucellar embryos and their histological comparative study for regeneration ability with other explants of kinnow mandarin (Citrus reticulata Blanco)

    International Nuclear Information System (INIS)

    Kazmi, S.K.; Khan, S.; Kabir, N.

    2018-01-01

    Polyembryony is the most beneficial and distinct character in citrus seeds. This characteristic can be beneficial in citrus improvement programs. Nucellar embryos developed from nucellar wall in citrus seeds along with zygotic embryo are found to have high plants regeneration ability in comparison to zygotic embryos. Under In vitro culture conditions, nucellar embryos were detected and multiplied on MT media with 0.5ml of coconut water along with 50g/L sucrose. These nucellar embryonic tissues were also regenerated on MT media upplemented with 0.5 mg/L BAP and 0.5 mg/L kinetin. Many shoots were regenerated from nucellar embryonic tissue; these shoots were rooted on MT media supplemented with IBA 0.5mg/L and NAA 0.1 mg/L in addition to activated charcoal 0.5gm/L. The resulting plantlets were acclimatized in the green house. After micropropagation, histological studies of nucellar embryonic tissues were carried out under fluorescence microscope to examine their high regeneration ability in comparison with usual plant parts, like seeds, shoots as well as with tissue culture stages including embryogenic and non-embryogenic callus. It was found that nucellar embryos have more regeneration ability as compared to usual plant parts and other tissue culture stages. (author)

  7. NASAwide electronic publishing system: Prototype STI electronic document distribution, stage-4 evaluation report

    Science.gov (United States)

    Tuey, Richard C.; Collins, Mary; Caswell, Pamela; Haynes, Bob; Nelson, Michael L.; Holm, Jeanne; Buquo, Lynn; Tingle, Annette; Cooper, Bill; Stiltner, Roy

    1996-01-01

    This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual frame work, functional description, and technical report server of the STI Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center's post processing publication processes. Chapter 3 documents each center's STI software, hardware, and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices, which arc contained in Part 2 of this document, consist of (1) STI EDD Project Plan, (2) Team members, (3) Phasing Schedules, (4) Accessing On-line Reports, and (5) Creating an HTML File and Setting Up an xTRS. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desktop publishing systems, and technical report servers to be able to provide to NASA's engineers, researchers, scientists, and external users the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.

  8. Measuring the electric activity of chick embryos heart through 16 bit audio card monitored by the Goldwavetm software

    Science.gov (United States)

    Silva, Dilson; Cortez, Celia Martins

    2015-12-01

    In the present work we used a high-resolution, low-cost apparatus capable of detecting waves fit inside the sound bandwidth, and the software package GoldwaveTM for graphical display, processing and monitoring the signals, to study aspects of the electric heart activity of early avian embryos, specifically at the 18th Hamburger & Hamilton stage of the embryo development. The species used was the domestic chick (Gallus gallus), and we carried out 23 experiments in which cardiographic spectra of QRS complex waves representing the propagation of depolarization waves through ventricles was recorded using microprobes and reference electrodes directly on the embryos. The results show that technique using 16 bit audio card monitored by the GoldwaveTM software was efficient to study signal aspects of heart electric activity of early avian embryos.

  9. Embryo production in the sponge-dwelling snapping shrimp Synalpheus apioceros (Decapoda, Alpheidae from Bocas del Toro, Panama

    Directory of Open Access Journals (Sweden)

    Adriana Rebolledo

    2014-11-01

    Full Text Available Caridean shrimps of the genus Synalpheus are abundant and widely distributed in tropical and subtropical regions, but knowledge of their reproductive biology remains scarce. We report reproductive traits of Synalpheus apioceros from Bocas del Toro, Panama, based on collections in August 2011. The 46 ovigerous females that were analyzed ranged in size from 3.8 to 7.4 mm in carapace length. Fecundity varied between 8 and 310 embryos and increased with female size. Females invested 18.6 ± 10.3% of their body weight in Embryo production. Embryo volume increased considerably (77.2% during embryogenesis, likely representing water uptake near the end of incubation period. Compared to Synalpheus species with abbreviated or direct development, S. apioceros produced substantially smaller embryos; however, S. apioceros seems to have a prolonged larval phase with at least five zoeal stages, which may explain the combination of relatively small and numerous embryos. We did not find nonviable, minute, chalky embryos, previously reported for S. apioceros specimens obtained from the northwestern Gulf of Mexico, which supports the hypothesis that the production of this type of embryos may be a physiological response of this warm-water species to the temperature decrease near to its latitudinal range limit.

  10. NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency.

    Science.gov (United States)

    Campos, Vinicius Farias; de Leon, Priscila Marques Moura; Komninou, Eliza Rossi; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago

    2011-11-01

    The objectives were to investigate whether: 1) nanotransfectants are more effective than other common transfection methods for SMGT; 2) NanoSMGT is able to transmit exogenous DNA molecules to bovine embryos; and 3) halloysite clay nanotubes (HCNs) can be used as a transfection reagent to improve transgene transmission. Four transfection systems were used: naked DNA (without transfectant), lipofection, nanopolymer, and halloysite clay nanotubes. Plasmid uptake by sperm and its transfer to embryos were quantified by conventional and real-time PCR, as well as EGFP expression by fluorescence microscopy. Furthermore, sperm motility and viability, and embryo development were investigated. Mean number of plasmids taken up was affected (P < 0.05) by transfection procedure, with the nanopolymer being the most effective transfectant (∼ 153 plasmids per spermatozoon). None of the treatments affected sperm motility or viability. The mean number of plasmids transmitted to four-cell stage embryos was higher (P < 0.05) in nanopolymer and HCNs than liposomes and naked DNA groups. The number of embryos carrying the transgene increased from 8-10% using naked DNA or liposomes to 40-45% using nanopolymer or HCN as transfectants (P < 0.05). There were no significant differences among transfection procedures regarding blastocyst formation rate of resulting embryos. However, no EGFP-expressing embryo was identified in any treatment. Therefore, nanotransfectants improved transgene transmission in bovine embryos without deleterious effects on embryo development. To our knowledge, this was the first time that bovine embryos carrying a transgene were produced by NanoSMGT. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Production of bovine hand-made cloned embryos by zygote-oocyte cytoplasmic hemi-complementation.

    Science.gov (United States)

    Mezzalira, Joana Claudia; Ohlweiler, Lain Uriel; da Costa Gerger, Renato Pereira; Casali, Renata; Vieira, Fabiano Koerich; Ambrósio, Carlos Eduardo; Miglino, Maria Angélica; Rodrigues, José Luiz; Mezzalira, Alceu; Bertolini, Marcelo

    2011-02-01

    The aim of this study was to evaluate the effect of the cytoplast type and activation process on development of cloned embryos. Bovine oocytes (MII) or zygotes at the one-cell stage (IVF) were manually bisected and segregated in MII or IVF hemi-cytoplasts or hemi-karyoplasts. Adult skin cells from a bovine female were used as nucleus donors (SC). Experimental groups were composed of IVF embryos; parthenogenetic embryos; hand-made cloned (HMC) embryos; and reconstructed HMC embryos using IVF hemi-cytoplast + MII hemi-cytoplast + SC (G-I); IVF hemi-cytoplast + IVF hemi-cytoplast + SC (G-II); MII hemi-cytoplast + IVF hemi-karyoplast (G-III); and IVF hemi-cytoplast + IVF hemi-karyoplast (G-IV). Embryos from G-I to G-IV were allocated to subgroups as sperm-activated (SA) or were further chemically activated (SA + CA). Embryos from all groups and subgroups were in vitro cultured in the WOW system. Blastocyst development in subgroup G-I SA (28.2%) was similar to IVF (27.0%) and HMC (31.4%) controls, perhaps due to a to a more suitable activation process and/or better complementation of cytoplasmic reprogramming factors, with the other groups and subgroups having lower levels of development. No blastocyst development was observed when using IVF hemi-karyoplasts (G-III and G-IV), possibly due to the manipulation process during a sensitive biological period. In summary, the presence of cytoplasmic factors from MII hemi-oocytes and the sperm activation process from hemi-zygotes appear to be necessary for adequate in vitro development, as only the zygote-oocyte hemi-complementation was as efficient as controls for the generation of bovine cloned blastocysts.

  12. In vitro development of embryos from experimentally Kerack-addicted Mice

    Directory of Open Access Journals (Sweden)

    Elham Mohammadzadeh

    2017-08-01

    Full Text Available Background: Prenatal drug exposure, as a common public health concern, is associated with an increased risk of adverse effects on early embryo development. Objective: To investigate the in vitro development of - embryo from experimentally Kerack-addicted mice. Materials and Methods: Twenty-five female mice were studied in five groups: control, vehicle, and three experimental groups of Kerack-dependent mice (I, II, and III which received different doses of Kerack for 14 days. After the establishment of addiction model (7 days, experimental groups I, II, and III were given Kerack intraperitoneally at the doses of 5, 35, and 70 mg/kg, twice a day for a period of 7 days, respectively. The vehicle group received normal saline and lemon juice whilst the control group just received water and food. Morulae were obtained through oviduct flashing. The survived embryos were cultured in T6+ 5mg/ml bovine serum albumin. The developmental rates up to hatched stage daily and embryo quality (differential staining and Tunnel staining were also assessed Results: The developmental potential of embryos obtained from the addicted mother was significantly decreased in comparison with control group. There was a significant reduction in the rate of blastocyst formation in the high dose Kerack dependent group. However, in addicted mice there was reduction in the total cell number (40.92% vs. 65.08% in control and, inner cell mass percentage (17.17% vs. 26.15% in control while apoptotic cells numbers were increased (7.17 vs. 1.46 in control (p<0.05. Conclusion: The Kerack addiction during pregnancy retards preimplantation development and induces apoptosis.

  13. Differential Effect of Medium on the Ratio of ICM/TE of Bovine Embryos in a Co-culture System

    Directory of Open Access Journals (Sweden)

    Mohsen Forouzanfar

    2010-01-01

    Full Text Available Background: This study was undertaken to investigate the efficiency of two differentembryo somatic cell co-culture conditions, tissue culture medium 199 (TCM199–vero cellsand Menezo B2 (B2-vero cells, for the in vitro developmental quantity and quality of bovineembryos.Materials and Methods: Bovine oocytes were allowed to mature and subsequently undergofertilization in vitro. Their presumptive zygotes were cultured in either TCM199 or B2 culturemedia in conjunction with vero cells for up to nine days. The culture media were refreshedevery two days and the proportion of embryos that cleaved and further developed to themorula and blastocyst (early, expand and hatched stages were recorded. Hatched blastocystsunderwent differential staining in order to determine the numbers of inner cell mass (ICMand tropho ectoderm (TE and total cell number (TCN.Results: Of the two groups, no significant difference was seen between the proportions ofthe presumptive zygotes cleaved, those which developed to 8-16 cells, morula and reacheddays 7or 8 blastocyst stage or hatched. However, the values for TCN and TE of the TCM199-vero embryos were significantly greater than those of B2-vero embryos. The values for ICM/TCN and ICM/TE were significantly greater in the B2-vero group versus the TCM199-verogroup.Conclusion: Both TCM199 and B2 culture media in conjunction with vero cells were ofthe same efficiency when used for in vitro development of bovine presumptive zygotes.However, TCM199 was superior in providing embryos with more embryo cell numbers,whereas B2 medium was superior in providing embryos with greater ICM/TE and ICM/TCN ratios.

  14. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos.

    Science.gov (United States)

    McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H

    2018-04-24

    Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.

  15. The Well of the Well (WOW) system: an efficient approach to improve embryo development

    DEFF Research Database (Denmark)

    Vajta, G; Korösi, T; Du, Y

    2008-01-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including the increased implantation rates and decreased risks of multiple pregnancies, however, it requires an efficient and reliable in vitro embryo culture system. In our study, the effect of the Well of the Well...... (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species including humans. The WOW system has resulted in significant improvement compared the drops for culture of in vitro matured and parthenogenetically activated porcine oocytes or in vivo...

  16. Desempenho de diferentes estádios embrionários no cultivo in vitro de embriões de 'Pêra Rio' x 'Poncã' Perfomance of different embryo stage of sweet orange x mandarin cultivated in vitro

    Directory of Open Access Journals (Sweden)

    Edvan Alves Chagas

    2003-12-01

    Full Text Available Objetivou-se verificar qual o melhor estádio embrionário para o cultivo de embriões imaturos oriundos de frutos provenientes de hibridação entre 'Pêra Rio' x 'Poncã' , bem como o efeito de diferentes concentrações do meio de cultura MT. Os embriões em diferentes estádios de desenvolvimento (globulares, torpedo e cordiforme foram excisados e inoculados em tubos de ensaio contendo 15 mL do meio MT com diferentes concentrações (0; 50; 100 e 150% da composição original e acrescido de 50 g.L-1 de sacarose. Após a inoculação, os embriões foram incubados à 27±1ºC, fotoperíodo de 16 horas e irradiância de 32 mmol.m-2.s-1. Após 90 dias, avaliou-se o comprimento da parte aérea e do sistema radicular, massa fresca e número de folhas das plântulas. Melhor desenvolvimento dos embriões imaturos foi obtido em estádio cotiledonar e com a concentração de 150% do meio MT.Embryos obtained from Citrus sinensis Osbeck 'Pêra Rio' x Citrus reticulata Blanco 'Poncã' crossings were excised in diverse phases of development and cultivated in different medium concentrations. Embryos in globular, torped and cotiledonary stage were excised and inoculated individually in test tubes with 15 mL in distinct MT medium concentrations (0; 50; 100 and 150% of original composition and added sucrose (50 g.L-1. After inoculation, the embryos were maintained in growth room at 27±1ºC, 16 hour photoperiod and 32 umol.m-2.s-1 irradiance. After 90 days, the length of the aerial part and roots system, fresh mass and number of leaves, were evaluated. The best results were obtained by incubating embryos in the cotiledonary stage, in MT medium with concentrations of 150%.

  17. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.; Schultz, R.M. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.

  18. Embryo-maternal communication

    DEFF Research Database (Denmark)

    Østrup, Esben; Hyttel, Poul; Østrup, Olga

    2011-01-01

    Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms dire...... directing the placentation. An increasing knowledge of the embryo-maternal communication might not only help to improve the fertility of our farm animals but also our understanding of human health and reproduction.......Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms...

  19. Ethanol exposure affects cell movement during gastrulation and induces split axes in zebrafish embryos.

    Science.gov (United States)

    Zhang, Ying; Shao, Ming; Wang, Lifeng; Liu, Zhongzhen; Gao, Ming; Liu, Chao; Zhang, Hongwei

    2010-06-01

    To explore the toxic effects of ethanol on axis formation during embryogenesis, zebrafish embryos at different developmental stages were treated with 3% ethanol for 3h. The effects of ethanol exposure appeared to be stage-dependent. The dome stage embryo was most sensible to form posterior split axes upon ethanol exposure. Morphological and histological observations and whole-mount in situ hybridization results showed that ethanol exposure at this stage caused a general gastrulation delay, and induced double notochords, double neural tubes and two sets of somites in the posterior trunk. Mechanistically, no ectopic organizer was found by examining the expression patterns of dorsoventral markers including goosecoid, chordin and eve1 at the onset of gastrulation. However, radial intercalation, epiboly and convergence extension were inhibited by ethanol exposure as revealed by cell labeling, phenotypic observation and the expression patterns of axial or paraxial markers. Further investigation showed that the cell aggregation might be affected by ethanol exposure, as indicated by the much more scattered expression pattern of chordin, eve1 and wnt11 at the early gastrula stage, and the discontinuous gsc positive cells during migration. These results imply that ethanol might affect cell movement before and during gastrulation and as a consequence, induces a split axes phenotype. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. In Vitro Maturation and Embryo Development to blastocyst Mouse Germinal Vesicle Oocytes after Vitrification

    Directory of Open Access Journals (Sweden)

    M Nikseresht

    2013-05-01

    Full Text Available Abstract Background & aim: Vitrification is a simple and ultra rapid technique for the conservation of fertility. Improving pregnancy rate associate with the use of cryopreserved oocytes would be an important advanced in human assisted reproductive technology (ART. The purpose of this study was to evaluate survival, oocytes maturation and embryo development to the blastocyst stage after vitrification of oocytes germinal vesicle-stage and multi stage Methods: In the present experimental study, germinal vesicle oocytes with or without cumulus cells were transferred to vitrification solution containing 30% (v/v ethylene glycol, 18% (w/v Ficoll-70, and 0.3 M sucrose, either by single step or in a step-wise way. After vitrification and storage in liquid nitrogen, the oocytes were thawed and washed twice in culture medium TCM119, and then subjected to in vitro maturation, fertilization, and culture. Data analysis was performed by using One-way variance and Tukey tests. Results: Oocytes survival, metaphase 2 stage oocyte maturation, fertilization and embryo formed blastocyst in vitrification methods multistage were significantly higher than the single step procedure (P<0/05 Conclusion: The Germinal vesicle stage oocytes vitrified with cumulus cells and stepwise procedure had positive effect on the survival, maturation and developmental rate on blastocyst compared to oocytes without cumulus cell and single step procedure. Key words: Germinal Vesicle Oocyte, Blastocyst, Vitrification, Ethylene glycol

  1. The effects of pollutants on osmotic and ionic regulation of herring (Clupea harengus L. ) embryos and larvae

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, N.C. (Aberdeen Univ. (United Kingdom))

    1991-01-01

    This thesis looks at how osmoregulatory processes function during early ontogeny of herring (Clupea harengus L.) and how these can be affected by pollutants. First, during embryo osmoregulatory ontogeny, two distinct stages occur. Until the completion of epiboly and closure of the yolk plug, the embryo must rely wholly on passive osmoregulation. From epiboly to hatching, the embryo is able to regulate its osmolality and increases its water content through a drinking mechanism similar to that of the adult fish. Increased water content is paralleled by increased levels of solutes. The protein level thereafter decreases with subsequent increased ninhydrin positive substances. Excess salts are excreted through cells thought to be classical chloride cells. During the [open quotes]active[close quotes] osmoregulatory stage, the embryo has developed true osmotic homeostasis, providing continuity until the development of gills, skin, gut, kidney of the adult. Second, exposing embryos and larvae to a number of different pollutants affected parameters important for osmotic and ionic homeostasis. The most consistent response is an increased whole body electrolyte content and decreased water content, resulting in elevated osmolality. Exposure to drilling muds containing high levels of petrogenic components causes water loss from the larvae associated with a decreased drinking rate. Subsequent exposure to individual oil constituents at sublethal levels cause changes resulting in higher whole body electrolyte concentrations. In larvae exposed in vivo to metal levels below the Environmental Quality Standard, changes occurred in epithelial permeability. Effects on electrolyte concentrations also occurred in embryos but the mechanism was unclear. The mixture of heavy metals exposed in vitro resulted in a lower concentration required to cause a 50% reduction in whole body homogenate Na[sup +]K[sup +]-ATPase activity than for any individual metal.

  2. N, N-Dimethylglycine decreases oxidative stress and improves in vitro development of bovine embryos.

    Science.gov (United States)

    Takahashi, Toshikiyo; Sasaki, Kouya; Somfai, Tamas; Nagai, Takashi; Manabe, Noboru; Edashige, Keisuke

    2016-04-22

    The antioxidant effect of N, N-dimethylglycine (DMG) on in vitro-produced (IVP) bovine embryos was examined. After in vitro fertilization, presumptive zygotes were cultured with or without 0.1 μM DMG under different oxygen tensions. The percentage of embryos developing to the blastocyst stage was lowest under a 20% oxygen concentration without DMG, and it was significantly increased (P DMG significantly improved blastocyst development, which was nearly equal to that achieved under 5% oxygen without DMG. Furthermore, a tendentious increase (P = 0.06) in blastocyst cell numbers was observed when DMG was applied. In the second experiment, addition of H2O2 (0.5 mM) to the culture medium significantly (P DMG supplementation prevented this reduction. In conclusion, DMG enhanced the invitro development of IVP bovine embryos by acting as an antioxidant.

  3. Poor prognosis with in vitro fertilization in Indian women compared to Caucasian women despite similar embryo quality.

    Directory of Open Access Journals (Sweden)

    Lora K Shahine

    Full Text Available BACKGROUND: Disease prevalence and response to medical therapy may differ among patients of diverse ethnicities. Poor outcomes with in vitro fertilization (IVF treatment have been previously shown in Indian women compared to Caucasian women, and some evidence suggests that poor embryo quality may be a cause for the discrepancy. In our center, only patients with the highest quality cleavage stage embryos are considered eligible for extending embryo culture to the blastocyst stage. We compared live birth rates (LBR between Indian and Caucasian women after blastocyst transfer to investigate whether differences in IVF outcomes between these ethnicities would persist in patients who transferred similar quality embryos. METHODOLOGY/PRINCIPAL FINDINGS: In this retrospective cohort analysis, we compared IVF outcome between 145 Caucasians and 80 Indians who had a blastocyst transfer between January 1, 2005 and June 31, 2007 in our university center. Indians were younger than Caucasians by 2.7 years (34.03 vs. 36.71, P = 0.03, were more likely to have an agonist down regulation protocol (68% vs. 43%, P<0.01, and were more likely to have polycystic ovarian syndrome (PCOS, although not significant, (24% vs. 14%, P = 0.06. Sixty eight percent of Indian patients had the highest quality embryos (4AB blastocyst or better transferred compared to 71% of the Caucasians (P = 0.2. LBR was significantly lower in the Indians compared to the Caucasians (24% vs. 41%, P<0.01 with an odds ratio of 0.63, (95%CI 0.46-0.86. Controlling for age, stimulation protocol and PCOS showed persistently lower LBR with an adjusted odds ratio of 0.56, (95%CI 0.40-0.79 in the multivariate analysis. CONCLUSIONS/SIGNIFICANCE: Despite younger age and similar embryo quality, Indians had a significantly lower LBR than Caucasians. In this preliminary study, poor prognosis after IVF for Indian ethnicity persisted despite limiting analysis to patients with high quality embryos transferred

  4. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Building the giant planet cores by convergent migration of pebble-accreting embryos

    Science.gov (United States)

    Chrenko, Ondrej; Broz, Miroslav

    2016-10-01

    An explanation of the accretion buildup of giant planet cores on rather short (~Myr) time scales remains a long-standing challenge for scenarios of planetary system formation. One of the recently proposed processes that can take part during this evolutionary stage is the convergent Type I migration of Earth-sized embryos towards the zero-torque radius, occurring at an opacity transition within the dusty-gaseous protoplanetary disk (e.g. Pierens et al. 2013). Inconveniently, simulations show that such groups of embryos do not merge easily because they often get locked in mutual mean-motion resonances and consequently form an inward-migrating convoy.We revise this possibility of merging embryos while taking into account their ongoing growth by pebble accretion. Our aim is to check whether the rapid changes of masses combined with the migration of embryos through the feeding zone can break the resonant chain and allow for the giant planet core formation.The environment of the protoplanetary disk is modeled with the 2D FARGO code (Masset 2000), which we modified in order to perform non-isothermal hydrodynamic simulations, assuming flux-limited radiative diffusion (Levermore & Pomraning 1981). The embedded massive bodies are evolved simultaneously in 3D using the hybrid Wisdom-Holman/Gauss-Radau integrator from the Rebound package (Rein & Spiegel 2015). A semi-analytic method is used to evolve the masses of embryos by pebble accretion (e.g. Levison et al. 2015).

  6. ABC transporters and xenobiotic defense systems in early life stages of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Kropf, Christian; Segner, Helmut; Fent, Karl

    2016-01-01

    Embryos of oviparous fish, in contrast to (ovo) viviparous species, develop in the aquatic environment, and therefore need solute transport systems at their body surfaces for maintaining internal homeostasis and defending against potentially harmful substances. We hypothesized that solute transporters undergo changes in tissue distribution from the embryo to the larval stage. We therefore studied the mRNA profiles of eight ABC transporters (abcb1a, abcb1b, abcc1, abcc2, abcc3, abcc4, abcc5, abcg2) and three solute carriers (oatp1d, putative oatp2 putative, mate1) in different body regions (head, yolk sac epithelium, abdominal viscera, skin/muscles) of developing rainbow trout. Additionally, we investigated mRNA levels of phase I (cyp1a, cyp3a) and phase II (gstp, putative ugt1, putative ugt2) biotransformation enzymes. The study covered the developmental period from the eleuthero-embryo stage to the first-feeding larval stage (1-20days post-hatch, dph). At 1dph, transcripts of abcc2, abcc4, abcg2, cyp3a, gstp, putative mate1, and putative oatp2 occurred primarily in the yolk sac epithelium, whereas at later stages expression of these genes was predominantly observed in the abdominal viscera. The functional activity of ABC transporters in fish early life stages was assessed by rhodamine B accumulation assays. Finally, we investigated the potential impact of xenobiotics (clotrimazole, clofibric acid) on the ABC and biotransformation systems of trout early life stages. While clofibric acid had no effect, clotrimazole lead to an increased rhodamine B accumulation. The results provide evidence that the transition from the eleuthero-embryo to the larval stage is accompanied by a major alteration in tissue expression of ABC transporters. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments.

    Science.gov (United States)

    Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D

    2010-10-01

    To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.

  8. Depletion of Primordial Germ Cells (PGCs) by X-irradiation to Extraembryonic Region of Chicken Embryos and Expression of Xenotransplanted Quail PGCs

    OpenAIRE

    Atsumi, Yusuke; Yazawa, Shigenobu; Usui, Fumitake; Nakamura, Yoshiaki; Yamamoto, Yasuhiro; Tagami, Takahiro; Hiramatsu, Kohzy; Kagami, Hiroshi; Ono, Tamao

    2009-01-01

    The generation of germline chimeras by the transfer of primordial germ cells (PGCs) requires incorporation of the PGCs of the donor into the gonadal tissue of the recipient embryo. We investigated the utility of soft x-irradiation with application of a lead (12-3 x 0.25 mm, similar to 0.1 g) shield to the embryo proper for the production of chicken-quail germline chimeras. Chicken embryos shielded during irradiation for 120 s (similar to 7.2 Gy) at stages 13 to 17 showed a hatchability of 35%...

  9. Cortisol levels and expression of selected stress- and apoptosis-related genes in the embryos of Atlantic cod, Gadus morhua following short-term exposure to air

    DEFF Research Database (Denmark)

    Marlowe, Christopher; Caipang, A.; Fagutao, Ferdinand F.

    2015-01-01

    Embryos (morula stage) of Atlantic cod, Gadus morhua L., were collected and subjected to air exposure for 2 min. followed by recovery at ambient conditions in the rearing container. Total immunoreactive cortisol and transcription of selected stress- and apoptosis-related genes of the embryos were...

  10. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings

    Energy Technology Data Exchange (ETDEWEB)

    Van Meter, Robin J [School of Environmental Science, Engineering, and Policy and Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Spotila, James R [School of Environmental Science, Engineering, and Policy and Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Avery, Harold W [School of Environmental Science, Engineering, and Policy and Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)

    2006-08-15

    Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds found in the John Heinz National Wildlife Refuge in Philadelphia, Pennsylvania. We assessed the impact of PAHs and crude oil on snapping turtle development and behavior by exposing snapping turtle eggs from the Refuge and from three clean reference sites to individual PAHs or a crude oil mixture at stage 9 of embryonic development. Exposure to PAHs had a significant effect on survival rates in embryos from one clean reference site, but not in embryos from the other sites. There was a positive linear relationship between level of exposure to PAHs and severity of deformities in embryos collected from two of the clean reference sites. Neither righting response nor upper temperature tolerance (critical thermal maximum, CTM) of snapping turtle hatchlings with no or minor deformities was significantly affected by exposure to PAHs. - Exposure to polycyclic aromatic hydrocarbons on the egg reduces survival of snapping turtle embryos and causes developmental abnormalities.

  11. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings

    International Nuclear Information System (INIS)

    Van Meter, Robin J.; Spotila, James R.; Avery, Harold W.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds found in the John Heinz National Wildlife Refuge in Philadelphia, Pennsylvania. We assessed the impact of PAHs and crude oil on snapping turtle development and behavior by exposing snapping turtle eggs from the Refuge and from three clean reference sites to individual PAHs or a crude oil mixture at stage 9 of embryonic development. Exposure to PAHs had a significant effect on survival rates in embryos from one clean reference site, but not in embryos from the other sites. There was a positive linear relationship between level of exposure to PAHs and severity of deformities in embryos collected from two of the clean reference sites. Neither righting response nor upper temperature tolerance (critical thermal maximum, CTM) of snapping turtle hatchlings with no or minor deformities was significantly affected by exposure to PAHs. - Exposure to polycyclic aromatic hydrocarbons on the egg reduces survival of snapping turtle embryos and causes developmental abnormalities

  12. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo.

    Science.gov (United States)

    Capmany, G; Taylor, A; Braude, P R; Bolton, V N

    1996-05-01

    The timing of pronuclear formation and breakdown, DNA synthesis and cleavage during the first cell cycle of human embryogenesis are described. Pronuclei formed between 3 and 10 h post-insemination (hpi; median 8 hpi). S-phase commenced between 8 and 14 hpi, and was completed between 10 and 18 hpi. M-phase was observed between 22 and 31 hpi (median duration 3 h), and cleavage to the 2-cell stage took place between 25 and 33 hpi. The timing of the same events was determined in 1-cell embryos derived from re-inseminated human oocytes that had failed to fertilize during therapeutic in-vitro fertilization (IVF). In these embryos, pronuclei formed between 3 and 8 h post-re-insemination (hpr-i), coinciding with the beginning of S-phase. While S-phase was completed as early as 10 hpr-i in some embryos, it extended until at least 16 hpr-i in others. Pronuclear breakdown and cleavage occurred from 23 and 26 hpr-i respectively; however, they did not occur in some embryos until after 46 hpr-i. The results demonstrate a markedly greater degree of variation in the timing of these events in embryos derived from re-inseminated oocytes compared with embryos derived from conventional IVF, and thus throw into question the validity of using the former as models for studies of the first cell cycle of human embryogenesis.

  13. Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos.

    Science.gov (United States)

    Zhang, Ting; Zhou, Xin-Ying; Ma, Xu-Fa; Liu, Jing-Xia

    2015-10-01

    Cadmium-caused head and eye hypoplasia and hypopigmentation has been recognized for a long time, but knowledge of the underlying mechanisms is limited. In this study, we found that high mortality occurred in exposed embryos after 24 hpf, when cadmium (Cd) dosage was above 17.8 μM. Using high-throughput in situ hybridization screening, we found that genes labelling the neural crest and its derivative pigment cells exhibited obviously reduced expression in Cd-exposed embryos from 24 hpf, 2 days earlier than head and eye hypoplasia and hypopigmentation occurred. Moreover, based on expression of crestin, a neural crest marker, we found that embryos before the gastrula stage were more sensitive to cadmium toxicity and that damage caused by Cd on embryogenesis was dosage dependent. In addition, by phenotype observation and detection of neural crest and pigment cell markers, we found that BIO and retinoic acid (RA) could neutralize the toxic effects of Cd on zebrafish embryogenesis. In this study, we first determined that Cd blocked the formation of the neural crest and inhibited specification of pigment cells, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in Cd-exposed embryos. Moreover, we found that compounds BIO or RA could neutralize the toxic effects of Cd. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Acute toxicity of chlorpyrifos to embryo and larvae of banded gourami Trichogaster fasciata

    NARCIS (Netherlands)

    Sumon, Kizar Ahmed; Saha, Sampa; Brink, van den Paul J.; Peeters, Edwin T.H.M.; Bosma, Roel H.; Rashid, Harunur

    2017-01-01

    This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10

  15. Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo.

    Science.gov (United States)

    Anello, Letizia; Cavalieri, Vincenzo; Di Bernardo, Maria

    2018-01-01

    The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. RESEARCHES REGARDING THE INFLUENCE OF RECOVERY MEDIA ON THE IN VITRO DEVELOPMENT CAPACITY OF THE PREIMPLANTATIONAL MOUSE EMBRYO

    Directory of Open Access Journals (Sweden)

    ADA CEAN

    2009-05-01

    Full Text Available Phosphate Bufered Saline with 0.4% BSA and M2 medium are one of the most common media used in embryorecovery. The aim of our paper was to investigate if the recovery media used for the recovery of the mouseembryo is influencing in vitro developmental capacity. As biological material we used 10 used were mousefemales, age 2 months superovulated with 5UI PMSG (Pregnant Mare Serum Gonadotropine and 5 UI hCG(human Corionic Gonadotropine. The embryos used were recovered, by oviduct flushing, at 24 hours from theidentification of the vaginal plug. The majority of the embryos (78.3% were in two cells stage. A total of 123, 2cells embryos were cultivated in M16 medium. The evolution of the embryos was examined at 24, 48 and 72hours interval. The proportion of hatched blastocyst was higher at the embryos recovered with M2 (53.7%compared with the embryos recovered with PBS 0.4% BSA. The difference is statistically very significant(p<0.001. Embryos recovered in M2 media have a higher in vitro developmental capacity compared with theembryos recovered in PBS media supplemented with 0,4% BSA, possibly because of the sodium bicarbonate andlactate used in M2 media for pH regulation.

  17. Generation of single-copy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation

    Directory of Open Access Journals (Sweden)

    Zhao Roong

    2001-12-01

    Full Text Available Abstract Background Transgenic mice have been used extensively to analyze gene function. Unfortunately, traditional transgenic procedures have only limited use in analyzing alleles that cause lethality because lines of founder mice cannot be established. This is frustrating given that such alleles often reveal crucial aspects of gene function. For this reason techniques that facilitate the generation of embryos expressing such alleles would be of enormous benefit. Although the transient generation of transgenic embryos has allowed limited analysis of lethal alleles, it is expensive, time consuming and technically challenging. Moreover a fundamental limitation with this approach is that each embryo generated is unique and transgene expression is highly variable due to the integration of different transgene copy numbers at random genomic sites. Results Here we describe an alternative method that allows the generation of clonal mouse embryos harboring a single-copy transgene at a defined genomic location. This was facilitated through the production of Hprt negative embryonic stem cells that allow the derivation of embryos by tetraploid embryo complementation. We show that targeting transgenes to the hprt locus in these ES cells by homologous recombination can be efficiently selected by growth in HAT medium. Moreover, embryos derived solely from targeted ES cells containing a single copy LacZ transgene under the control of the α-myosin heavy chain promoter exhibited the expected cardiac specific expression pattern. Conclusion Our results demonstrate that tetraploid embryo complementation by F3 hprt negative ES cells facilitates the generation of transgenic mouse embryos containing a single copy gene at a defined genomic locus. This approach is simple, extremely efficient and bypasses any requirement to generate chimeric mice. Moreover embryos generated by this procedure are clonal in that they are all derived from a single ES cell lines. This

  18. Tiger, Bengal and Domestic Cat Embryos Produced by Homospecific and Interspecific Zona-Free Nuclear Transfer.

    Science.gov (United States)

    Moro, L N; Jarazo, J; Buemo, C; Hiriart, M I; Sestelo, A; Salamone, D F

    2015-10-01

    The aim of this study was to evaluate three different cloning strategies in the domestic cat (Felis silvestris) and to use the most efficient to generate wild felid embryos by interspecific cloning (iSCNT) using Bengal (a hybrid formed by the cross of Felis silvestris and Prionailurus bengalensis) and tiger (Panthera tigris) donor cells. In experiment 1, zona-free (ZP-free) cloning resulted in higher fusion and expanded blastocyst rates with respect to zona included cloning techniques that involved fusion or injection of the donor cell. In experiment 2, ZP-free iSCNT and embryo aggregation (2X) were assessed. Division velocity and blastocyst rates were increased by embryo aggregation in the three species. Despite fewer tiger embryos than Bengal and cat embryos reached the blastocyst stage, Tiger 2X group increased the percentage of blastocysts with respect to Tiger 1X group (3.2% vs 12.1%, respectively). Moreover, blastocyst cell number was almost duplicated in aggregated embryos with respect to non-aggregated ones within Bengal and tiger groups (278.3 ± 61.9 vs 516.8 ± 103.6 for Bengal 1X and Bengal 2X groups, respectively; 41 vs 220 ± 60 for Tiger 1X and Tiger 2X groups, respectively). OCT4 analysis also revealed that tiger blastocysts had higher proportion of OCT4-positive cells with respect to Bengal blastocysts and cat intracytoplasmic sperm injection blastocysts. In conclusion, ZP-free cloning has improved the quality of cat embryos with respect to the other cloning techniques evaluated and was successfully applied in iSCNT complemented with embryo aggregation. © 2015 Blackwell Verlag GmbH.

  19. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos.

    Science.gov (United States)

    Sussarellu, Rossana; Lebreton, Morgane; Rouxel, Julien; Akcha, Farida; Rivière, Guillaume

    2018-03-01

    Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L -1 Cu 2+ ) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L -1 , while significant genotoxic effects were detected at 1 μg L -1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such

  20. Numerical calculations for diffusion effects in the well-of-the-well culture system for mammalian embryos.

    Science.gov (United States)

    Matsuura, Koji

    2014-06-01

    Recent studies suggest that the microenvironment and embryo density used during embryo culture considerably affect development to the blastocyst stage. High embryo density allows for autocrine secretions to diffuse to neighbouring embryos during group culture, with a positive effect on further development. A variation of group culture is the well-of-the-well (WOW) culture system, allowing for individual identification of embryos cultured in small holes in a microdroplet. Bovine blastocyst development is higher in the WOW culture system than in conventional group culture. To compare the concentration of chemical factors between conventional and WOW culture, a model was constructed to calculate the concentration of secreted factors based on Fick's second law of diffusion using spreadsheet software. Furthermore, model was used to determine the concentration of growth factors and waste materials adjacent to the embryo periphery. The results of these calculations suggest that the highest difference in the concentration of secreted small molecules and macromolecules was at the most two- to threefold, with the concentrations reduced more and diffusion kinetics facilitated to a greater extent in the WOW culture system. The average ratio of the concentration of secreted macromolecules (10nm diameter) around the embryos was also compared between systems with well widths of 0.1 and 0.3mm. The concentration of secreted materials surrounding embryos increased in a narrow tapered well. The findings suggest that the WOW culture system is better than conventional group culture because of the increased final concentration of autocrine factors and higher diffusion kinetics of waste materials.

  1. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-01-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group)

  2. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    International Nuclear Information System (INIS)

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F.

    1989-01-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of [125I]insulin and [125I]IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of [125I]insulin and [125I] IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both [125I]insulin and [125I]IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain

  3. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Sawosz, Filip; Pineda, Lane Manalili; Hotowy, Anna

    2013-01-01

    It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces...... broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases...

  4. Eighteen-Year Cryopreservation Does Not Negatively Affect the Pluripotency of Human Embryos: Evidence from Embryonic Stem Cell Derivation

    Science.gov (United States)

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan

    2012-01-01

    Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952

  5. Radionuclide transfer from mother to embryo

    International Nuclear Information System (INIS)

    Toader, M.; Vasilache, R.A.; Scridon, R.; Toader, M.L.

    1998-01-01

    The transfer of radionuclides from mother to embryo is still a matter of high interest. Therefore, the relation was investigated between the amount of radionuclides in the embryo and the dietary intake of the mother, this for two scenarios: a recurrent intake of variable amounts of radionuclides, and a long-term intake of a relatively constant amount of radionuclides, the radionuclide being 137 Cs. In the first case, the amount of radionuclides present in the embryo increases with the age of the embryo and with the intake of the mother. In the second case, no correlation could be found between the age of the embryo and its radioactive content; only the correlation between the intake of the mother and the radionuclide content of the embryo remained. (A.K.)

  6. Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos

    International Nuclear Information System (INIS)

    Sakamoto, Youhei; Hara, Kenshiro; Kanai-Azuma, Masami; Matsui, Toshiyasu; Miura, Yutaroh; Tsunekawa, Naoki; Kurohmaru, Masamichi; Saijoh, Yukio; Koopman, Peter; Kanai, Yoshiakira

    2007-01-01

    Sox7, -17 and -18 constitute the Sox subgroup F (SoxF) of HMG box transcription factor genes, which all are co-expressed in developing vascular endothelial cells in mice. Here we characterized cardiovascular phenotypes of Sox17/Sox18-double and Sox17-single null embryos during early-somite stages. Whole-mount PECAM staining demonstrated the aberrant heart looping, enlarged cardinal vein and mild defects in anterior dorsal aorta formation in Sox17 single-null embryos. The Sox17/Sox18 double-null embryos showed more severe defects in formation of anterior dorsal aorta and head/cervical microvasculature, and in some cases, aberrant differentiation of endocardial cells and defective fusion of the endocardial tube. However, the posterior dorsal aorta and allantoic microvasculature was properly formed in all of the Sox17/Sox18 double-null embryos. The anomalies in both anterior dorsal aorta and head/cervical vasculature corresponded with the weak Sox7 expression sites. This suggests the region-specific redundant activities of three SoxF members along the anteroposterior axis of embryonic vascular network

  7. The sensitivity and reproducibility of the zebrafish (Danio rerio) embryo test for the screening of waste water quality and for testing the toxicity of chemicals.

    Science.gov (United States)

    Lahnsteiner, Franz

    2008-07-01

    The sensitivity of the zebrafish embryo test, a test proposed for routine waste water control, was compared with the acute fish toxicity test, in the determination of six types of waste water and ten different chemicals. The waste water was sampled from the following industrial processes: paper and cardboard production, hide tanning, metal galvanisation, carcass treatment and utilisation, and sewage treatment. The chemicals tested were: dimethylacetamide, dimethylsulphoxide, cadmium chloride, cyclohexane, hydroquinone, mercuric chloride, nickel chloride, nonylphenol, resmethrin and sodium nitrite. For many of the test substances, the zebrafish embryo test and the acute fish toxicity test results showed high correlations. However, there were certain environmentally-relevant substances for which the results of the zebrafish embryo test and the acute fish toxicity test differed significantly, up to 10,000-fold (Hg(2+) > 150-fold difference; NO(2)(-) > 300-fold; Cd(2+) > 200-fold; resmethrin > 10,000-fold). For the investigated waste water samples and chemicals, the survival rate of the zebrafish embryos showed high variations between different egg samples, within the range of the EC50 concentration. Subsequently, 5-6 parallel assays were deemed to be the appropriate number necessary for the precise evaluation of the toxicity of the test substances. Also, it was found that the sensitivities of different ontogenetic stages to chemical exposure differed greatly. During the first 12 hours after fertilisation (4-cell stage to the 5-somite stage), the embryos reacted most sensitively to test substance exposure, whereas the later ontogenetic stages showed only slight or no response, indicating that the test is most sensitive during the first 24 hours post-fertilisation.

  8. Accurate and noninvasive embryos screening during in vitro fertilization (IVF) assisted by Raman analysis of embryos culture medium Accurate and noninvasive embryos screening during IVF

    Science.gov (United States)

    Shen, A. G.; Peng, J.; Zhao, Q. H.; Su, L.; Wang, X. H.; Hu, J. M.; Yang, J.

    2012-04-01

    In combination with morphological evaluation tests, we employ Raman spectroscopy to select higher potential reproductive embryos during in vitro fertilization (IVF) based on chemical composition of embryos culture medium. In this study, 57 Raman spectra are acquired from both higher and lower quality embryos culture medium (ECM) from 10 patients which have been preliminarily confirmed by clinical assay. Data are fit by using a linear combination model of least squares method in which 12 basis spectra represent the chemical features of ECM. The final fitting coefficients provide insight into the chemical compositions of culture medium samples and are subsequently used as criterion to evaluate the quality of embryos. The relative fitting coefficients ratios of sodium pyruvate/albumin and phenylalanine/albumin seem act as key roles in the embryo screening, attaining 85.7% accuracy in comparison with clinical pregnancy. The good results demonstrate that Raman spectroscopy therefore is an important candidate for an accurate and noninvasive screening of higher quality embryos, which potentially decrease the time-consuming clinical trials during IVF.

  9. Evaluation of cell number and DNA content in mouse embryos cultivated with uranium; Evaluacion del numero de celulas y el contenido de DNA en embriones murinos cultivados con uranio

    Energy Technology Data Exchange (ETDEWEB)

    Kundt, Mirian S; Cabrini, Romulo L [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiobiologia

    2000-07-01

    The evaluation of the degree of development, the number of cells and the DNA content, were used to evaluate the embryotoxicity of uranium. Embryos at a one cell stage were cultured with uranyl nitrate hexahydrate (UN) at a final concentration of uranium (U) of 26, 52 and 104 {mu}gU/ml. At 24 hs of culture, the embryos at the 2 cell stage, were put in new wells with the same concentrations of U as the previous day, until the end of the period of incubation at 72 hs. At 72 hs of culture, 87% of the original one cell embryos were at morula stage, and in those cultivated with uranium, the percentage decreased significantly to 77; 63.24 and 40.79% respectively for the different U concentrations. Those embryos that exhibited a normal morphology, were selected and fixed on slides. The number of cells per embryo was evaluated in Giemsa stained preparations. The DNA content was evaluated cytophotometrically in Feulgen stained nuclei. The number of cells decreased significantly from 20,3 {+-} 5.6 in the control to 19 {+-} 6; 14 {+-} 3 and 13.9 {+-} 5.6 for the different concentrations. All the embryos evaluated showed one easy recognizable polar body, which was used a haploid indicator (n). The content of DNA was measured in a total of 20 control embryos and 16 embryos cultivated with UN. In control embryos, 92,7% of the nuclei presented a normal ploidy from 2n to 4n, 2,9% nuclei were hypoploid and 4,4% were hyperploid. The percentage of hypoploid nuclei rose in a dose-dependent fashion to 3.45; 44.45 and 50.34% respectively for the embryos cultured at the different U concentrations. The results indicate that U is embryotoxic, that its effects are dose dependent at the concentrations used in this study and that even those embryos that show a normal morphology, can be genetically affected. We show that the model employed is extremely sensitive. It is possible to use the preimplantation embryos, as a model to test the effect of possibly mutagenic agents of the nuclear industry

  10. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen.

    Science.gov (United States)

    Sullivan, Kelly G; Levin, Michael

    2016-10-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, results are reported from a loss- and gain-of-function survey, using pharmacological modulators of several neurotransmitter pathways to examine possible roles for these pathways in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations, including craniofacial defects, hyperpigmentation, muscle mispatterning and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. © 2016 Anatomical Society.

  11. What Drives Embryo Development? Chromosomal Normality or Mitochondria?

    Directory of Open Access Journals (Sweden)

    A. Bayram

    2017-01-01

    Full Text Available Objective. To report the arrest of euploid embryos with high mtDNA content. Design. A report of 2 cases. Setting. Private fertility clinic. Patients. 2 patients, 45 and 40 years old undergoing IVF treatment. Interventions. Mature oocytes were collected and vitrified from two ovarian stimulations. Postthaw, survived mature oocytes underwent fertilization by intracytoplasmic sperm injection (ICSI. Preimplantation genetic screening (PGS and mitochondrial DNA (mtDNA copy number were done using next generation sequencing (NGS. The only normal embryo among the all-biopsied embryos had the highest “Mitoscore” value and was the only arrested embryo in both cases. Therefore, the embryo transfer was cancelled. Main Outcome Measures. Postthaw survival and fertilization rate, embryo euploidy, mtDNA copy number, and embryo development. Results. In both patients, after PGS only 1 embryo was euploid. Both embryos had the highest mtDNA copy number from all tested embryos and both embryos were arrested on further development. Conclusions. These cases clearly demonstrate the lack of correlation between mtDNA value (Mitoscore and chromosomal status of embryo.

  12. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek

    2016-01-01

    in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early......One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  13. Immunoprotection of gonads and genital tracts in human embryos and fetuses: immunohistochemical study.

    Science.gov (United States)

    Gurevich, A; Ben-Hur, H; Moldavsky, M; Szvalb, S; Berman, V; Zusman, I

    2001-12-01

    The immune protection of genital organs in embryogenesis has not been sufficiently studied. The purpose of this study was to investigate the development of the secretory immune system (SIS) in the gonads and genital tracts of human embryos and fetuses. Developing gonads at different stages and genital tracts from 18 embryos and 39 fetuses in the first to third trimester of gestation were analyzed for presence of different component of SIS: secretory component (SC), joining (J) chain. IgA, IgM, IgG, macrophages, and subsets of lymphocytes. The material was divided into two groups: cases not subjected to foreign antigenic effects (group I, n = 31) and those under antigenic attack (chorioamnionitis, group II, n = 26). In embryos and fetuses of group I, SC, J chain, and IgG were seen in the epithelium of mesonephric and paramesonephric ducts, proliferating coelomic epithelium, epithelium of the uterine tubes and uterus, epithelium of the vas deferens, epididymis, and rete testis. IgA and IgM appeared in 6-week-old embryos. J chain, IgA, IgM, and IgG, but not SC, were found in the primary oocytes and oogonia, spermatogonia. and interstitial cells. An abundance of macrophages was seen in 4-week-old embryos. T and B lymphocytes first appeared in 6-7-week-old embryos. In embryos and fetuses of group II, reactivity of immunoglobulins (Igs) decreased until they disappeared altogether. Components of SIS were seen in genital organs in 4-5-week-old embryos and were present during the whole intrauterine period. We suggest the presence of two forms of immune protection of fetal genital organs. One form contains SC, J chain, and Igs and is present in the genital tract epithelium. The second form contains only J chain and Igs and is present in germ cells of gonads. The loss of Igs in cases with chorioamnionitis reflects the functional participation of the SIS of genital organs in response to antigen attack.

  14. Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages.

    Science.gov (United States)

    Peterman, William; Brocato, Emily R; Semlitsch, Raymond D; Eggert, Lori S

    2016-01-01

    In population or landscape genetics studies, an unbiased sampling scheme is essential for generating accurate results, but logistics may lead to deviations from the sample design. Such deviations may come in the form of sampling multiple life stages. Presently, it is largely unknown what effect sampling different life stages can have on population or landscape genetic inference, or how mixing life stages can affect the parameters being measured. Additionally, the removal of siblings from a data set is considered best-practice, but direct comparisons of inferences made with and without siblings are limited. In this study, we sampled embryos, larvae, and adult Ambystoma maculatum from five ponds in Missouri, and analyzed them at 15 microsatellite loci. We calculated allelic richness, heterozygosity and effective population sizes for each life stage at each pond and tested for genetic differentiation (F ST and D C ) and isolation-by-distance (IBD) among ponds. We tested for differences in each of these measures between life stages, and in a pooled population of all life stages. All calculations were done with and without sibling pairs to assess the effect of sibling removal. We also assessed the effect of reducing the number of microsatellites used to make inference. No statistically significant differences were found among ponds or life stages for any of the population genetic measures, but patterns of IBD differed among life stages. There was significant IBD when using adult samples, but tests using embryos, larvae, or a combination of the three life stages were not significant. We found that increasing the ratio of larval or embryo samples in the analysis of genetic distance weakened the IBD relationship, and when using D C , the IBD was no longer significant when larvae and embryos exceeded 60% of the population sample. Further, power to detect an IBD relationship was reduced when fewer microsatellites were used in the analysis.

  15. Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages

    Directory of Open Access Journals (Sweden)

    William Peterman

    2016-03-01

    Full Text Available In population or landscape genetics studies, an unbiased sampling scheme is essential for generating accurate results, but logistics may lead to deviations from the sample design. Such deviations may come in the form of sampling multiple life stages. Presently, it is largely unknown what effect sampling different life stages can have on population or landscape genetic inference, or how mixing life stages can affect the parameters being measured. Additionally, the removal of siblings from a data set is considered best-practice, but direct comparisons of inferences made with and without siblings are limited. In this study, we sampled embryos, larvae, and adult Ambystoma maculatum from five ponds in Missouri, and analyzed them at 15 microsatellite loci. We calculated allelic richness, heterozygosity and effective population sizes for each life stage at each pond and tested for genetic differentiation (FST and DC and isolation-by-distance (IBD among ponds. We tested for differences in each of these measures between life stages, and in a pooled population of all life stages. All calculations were done with and without sibling pairs to assess the effect of sibling removal. We also assessed the effect of reducing the number of microsatellites used to make inference. No statistically significant differences were found among ponds or life stages for any of the population genetic measures, but patterns of IBD differed among life stages. There was significant IBD when using adult samples, but tests using embryos, larvae, or a combination of the three life stages were not significant. We found that increasing the ratio of larval or embryo samples in the analysis of genetic distance weakened the IBD relationship, and when using DC, the IBD was no longer significant when larvae and embryos exceeded 60% of the population sample. Further, power to detect an IBD relationship was reduced when fewer microsatellites were used in the analysis.

  16. Distribution of potato spindle tuber viroid in reproductive organs of petunia during its developmental stages.

    Science.gov (United States)

    Matsushita, Yosuke; Tsuda, Shinya

    2014-09-01

    Embryo infection is important for efficient seed transmission of viroids. To identify the major pattern of seed transmission of viroids, we used in situ hybridization to histochemically analyze the distribution of Potato spindle tuber viroid (PSTVd) in each developmental stage of petunia (flowering to mature seed stages). In floral organs, PSTVd was present in the reproductive tissues of infected female × infected male and infected female × healthy male but not of healthy female × infected male before embryogenesis. After pollination, PSTVd was detected in the developed embryo and endosperm in all three crosses. These findings indicate that PSTVd is indirectly delivered to the embryo through ovule or pollen during the development of reproductive tissues before embryogenesis but not directly through maternal tissues as cell-to-cell movement during embryogenesis.

  17. Theory about the Embryo Cryo-Treatment.

    Science.gov (United States)

    Vladimirov, Iavor K; Tacheva, Desislava; Diez, Antonio

    2017-04-01

    To create hypothesis, which can give a logical explanation related to the benefits of freezing/thawing embryos. Cryopreservation is not only a technology used for storing embryos, but also a method of embryo treatment that can potentially improve the success rate in infertile couples. From the analysis of multiple results in assisted reproductive technology, which have no satisfactory explanation to date, we found evidence to support a 'therapeutic' effect of the freezing/thawing of embryos on the process of recovery of the embryo and its subsequent implantation. Freezing/thawing is a way to activate the endogenous survival and repair responses in preimplantation embryos. Several molecular mechanisms can explain the higher success rate of ET using thawed embryos compared to fresh ET in women of advanced reproductive age, the higher miscarriage rate in cases of thawed blastocyst ET compared to thawed ET at early cleavage embryo, and the higher perinatal parameters of born children after thawed ET. Embryo thawing induces a stress. Controlled stress is not necessarily detrimental, because it generates a phenomenon that is counteracted by several known biological responses aimed to repair mitochondrial damage of membrane and protein misfolding. The term for favorable biological responses to low exposures to stress is called hormesis. This thesis will summarize the role of cryopreservation in the activation of a hormetic response, preserving the mitochondrial function, improving survival, and having an impact on the process of implantation, miscarriage, and the development of pregnancy.

  18. [The destiny of cryopreserved embryos].

    Science.gov (United States)

    Karpel, L; Achour-Frydman, N; Frydman, R; Flis-Trèves, M

    2007-12-01

    To know the psychological motivations of couples who keep their embryos so long (five years and more) and do not make a decision about them. We studied 84 couples refrained from making a decision on their cryopreserved embryos for at least five years. They were invited to fill out a questionnaire focusing on three points: the reasons of the indecision, their own representation of the cryopreserved embryos and their choice for the future: donation to another couple, to research, pregnancy or no solution for the moment. Mean (S.D.) women's and men's age were respectively, 38.8 (2.5)- and 41.3 (2.5)-years old. On average, three (1-9) embryos are preserved since 7.5 (5-12) years. Most of couples are parents. Four major reasons explain their attitudes: feeling of being too aged (25%), fear of a multiple pregnancy (45%), disagreement between members of couple (20%) and fear of failure (42.5%). Multiple choices were given to the future of the embryos: 25% wanted a pregnancy, 8% wanted to give them to infertile couples, 20% to research and 27.5% did not find any solution. Twenty percent were hesitating. The representation of those embryos is more symbolic than material. Most of the time, they see them like a potential child, a hope for the future or a brother or sister of their alive children. Those embryos are symbolized. They are a proof of fertility, a hope for another child. So, whatever the legal statement, couples will be in a dilemma because it is never easy for an infertile person to renounce to embryos, and the hope for children.

  19. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification.

    Science.gov (United States)

    Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M

    2016-07-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.

  20. Raman spectroscopy analysis of differences in composition of spent culture media of in vitro cultured preimplantation embryos isolated from normal and fat mice dams.

    Science.gov (United States)

    Fabian, Dušan; Kačmarová, Martina; Kubandová, Janka; Čikoš, Štefan; Koppel, Juraj

    2016-06-01

    The aim of the present study was to compare overall patterns of metabolic activity of in vitro cultured preimplantation embryos isolated from normal and fat mice dams by means of non-invasive profiling of spent culture media using Raman spectroscopy. To produce females with two different types of body condition (normal and fat), a previously established two-generation model was used, based on overfeeding of experimental mice during prenatal and early postnatal development. Embryos were isolated from spontaneously ovulating and naturally fertilized dams at the 2-cell stage of development and cultured to the blastocyst stage in synthetic oviductal medium KSOMaa. Embryos from fat mice (displaying significantly elevated body weight and fat) showed similar developmental capabilities in vitro as embryos isolated from normal control dams (displaying physiological body weight and fat). The results show that alterations in the composition of culture medium caused by the presence of developing mouse preimplantation embryos can be detected using Raman spectroscopy. Metabolic activity of embryos was reflected in evident changes in numerous band intensities in the 1620-1690cm(-1) (amide I) region and in the 1020-1140cm(-1) region of the Raman spectrum for KSOMaa. Moreover, multivariate analysis of spectral data proved that the composition of proteins and other organic compounds in spent samples obtained after the culture of embryos isolated from fat dams was different from that in spent samples obtained after the culture of embryos from control dams. This study demonstrates that metabolic activity of cultured preimplantation embryos might depend on the body condition of their donors. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Feminists on the inalienability of human embryos.

    Science.gov (United States)

    McLeod, Carolyn; Baylis, Francoise

    2006-01-01

    The feminist literature against the commodification of embryos in human embryo research includes an argument to the effect that embryos are "intimately connected" to persons, or morally inalienable from them. We explore why embryos might be inalienable to persons and why feminists might find this view appealing. But, ultimately, as feminists, we reject this view because it is inconsistent with full respect for women's reproductive autonomy and with a feminist conception of persons as relational, embodied beings. Overall, feminists should avoid claims about embryos' being inalienable to persons in arguments for or against the commodification of human embryos.

  2. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    Science.gov (United States)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  3. Insulin-like growth factor-1 protects preimplantation embryos from anti-developmental actions of menadione.

    Science.gov (United States)

    Moss, James I; Pontes, Eduardo; Hansen, Peter James

    2009-11-01

    Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 microM) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 muM can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.

  4. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    Science.gov (United States)

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  5. Alteration of development and gene expression induced by in ovo-nanoinjection of 3-hydroxybenzo[c]phenanthrene into Japanese medaka (Oryzias latipes) embryos.

    Science.gov (United States)

    Chen, Kun; Tsutsumi, Yuki; Yoshitake, Shuhei; Qiu, Xuchun; Xu, Hai; Hashiguchi, Yasuyuki; Honda, Masato; Tashiro, Kosuke; Nakayama, Kei; Hano, Takeshi; Suzuki, Nobuo; Hayakawa, Kazuichi; Shimasaki, Yohei; Oshima, Yuji

    2017-01-01

    Benzo[c]phenanthrene (BcP) is a highly toxic polycyclic aromatic hydrocarbon (PAHs) found throughout the environment. In fish, it is metabolized to 3-hydroxybenzo[c]phenanthrene (3-OHBcP). In the present study, we observed the effects of 1nM 3-OHBcP on the development and gene expression of Japanese medaka (Oryzias latipes) embryos. Embryos were nanoinjected with the chemical after fertilization. Survival, developmental stage, and heart rate of the embryos were observed, and gene expression differences were quantified by messenger RNA sequencing (mRNA-Seq). The exposure to 1nM 3-OHBcP accelerated the development of medaka embryos on the 1st, 4th, and 6th days post fertilization (dpf), and increased heart rates significantly on the 5th dpf. Physical development differences of exposed medaka embryos were consistent with the gene expression profiles of the mRNA-Seq results for the 3rd dpf, which show that the expression of 780 genes differed significantly between the solvent control and 1nM 3-OHBcP exposure groups. The obvious expression changes in the exposure group were found for genes involved in organ formation (eye, muscle, heart), energy supply (ATPase and ATP synthase), and stress-response (heat shock protein genes). The acceleration of development and increased heart rate, which were consistent with the changes in mRNA expression, suggested that 3-OHBcP affects the development of medaka embryos. The observation on the developmental stages and heart beat, in ovo-nanoinjection and mRNA-Seq may be efficient tools to evaluate the effects of chemicals on embryos. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Carryover effects of predation risk on postembryonic life-history stages in a freshwater shrimp.

    Science.gov (United States)

    Ituarte, Romina Belén; Vázquez, María Guadalupe; González-Sagrario, María de los Ángeles; Spivak, Eduardo Daniel

    2014-04-01

    For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: a transmission electron microscope study

    International Nuclear Information System (INIS)

    Staudhammer, K.P.; Hecker, S.S.; Murr, L.E.

    1983-01-01

    The deformation of type 304 stainless steel produces a preponderance of strain-induced /chi/ (b.c.c.) martensite, which nucleates as stable embryos at micro-shear band or twin-fault intersections as proposed by Olson and Cohen. The two intersecting micro-shear bands must have a specific defect (fault-displacement) structure, and for stable martensite embryos to form requires a minimal micro-shear band thickness ranging from 50-70 A. The critical nature of nucleation is influenced by the local temperature and strain. The structure, geometry, and morphology of strain-induced martensite embryos is essentially invariant regardless of the strain rate, strain state or temperature. Larger volume fractions of martensite evolve at large strains (greater than or equal to 20%) as a result of embryo coalescence to produce a blocky-type morphology. Martensite embryos and coalesced volume elements of /chi/ are frequently characterized by an irregular non-homogeneous distribution of smaller b.c.c. regimes which result from the irregular satisfaction of the necessary and specific fault-displacement requirements within a larger intersection volume

  8. Developmental Toxicity Assay for Food Additive Tartrazine Using Zebrafish ( Danio rerio) Embryo Cultures.

    Science.gov (United States)

    Joshi, Vani; Katti, Pancharatna

    Tartrazine (TTZ) is an azo dye used as a colorant in food products, drugs, and cosmetics. The present study evaluates the impacts of TTZ on embryonic development of zebrafish ( Danio rerio). Laboratory-raised D. rerio embryos (n = 20/concentration) were exposed to graded dilutions of TTZ (0, 0.1, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75, and 100 mM) from gastrulation stage (5.25 hours postfertilization [hpf]) until hatching and developmental trajectory was traced up to day 7. The no observed effect concentration (NOEC), median lethal concentration (LC 50 ), median effective concentration (EC 50 ), and teratogenic index (TI) were calculated. Exposure of embryos to effects; 20 to 30 mM TTZ caused tail bending, cardiac and yolk sac edema in 50% of larvae; in 30 to 50 mM TTZ-exposed embryos the heart rates declined along with the above mentioned deformities, causing mortality within 96 to 144 hpf; development ceased completely at 75 to 100 mM concentration. The NOEC and LC 50 were recorded at 5 and 29.4 mM dose, respectively. The EC 50 values for heart rate, cardiac edema, tail bending, and hatching success were at 59.60, 53.81, 98.28, and 58.97 mM with TI quotient 0.49, 0.54, 0.29, and 0.49, respectively. We conclude that TTZ is not embryo toxic/teratogenic for zebrafish embryos up to a dose level of 10 mM concentration.

  9. An economic assessment of embryo diagnostics (Dx) - the costs of introducing non-invasive embryo diagnostics into IVF standard treatment practices.

    Science.gov (United States)

    Fugel, Hans-Joerg; Connolly, Mark; Nuijten, Mark

    2014-10-09

    New techniques in assessing oocytes and embryo quality are currently explored to improve pregnancy and delivery rates per embryo transfer. While a better understanding of embryo quality could help optimize the existing "in vitro fertilization" (IVF) therapy schemes, it is essential to address the economic viability of such technologies in the healthcare setting. An Embryo-Dx economic model was constructed to assess the cost-effectiveness of 3 different IVF strategies from a payer's perspective; it compares Embryo-Dx with single embryo transfer (SET) to elective single embryo transfer (eSET) and to double embryo transfer (DET) treatment practices. The introduction of a new non-invasive embryo technology (Embryo-Dx) associated with a cost up to €460 is cost-effective compared to eSET and DET based on the cost per live birth. The model assumed that Embryo-Dx will improve ongoing pregnancy rate/realize an absolute improvement in live births of 9% in this case. This study shows that improved embryo diagnosis combined with SET may have the potential to reduce the cost per live birth per couple treated in IVF treatment practices. The results of this study are likely more sensitive to changes in the ongoing pregnancy rate and consequently the live birth rate than the diagnosis costs. The introduction of a validated Embryo-Dx technology will further support a move towards increased eSET procedures in IVF clinical practice and vice versa.

  10. Diseases of amphibian eggs and embryos

    Science.gov (United States)

    Green, D.E.; Converse, K.A.; Majumdar, S.K.; Huffman, J.E.; Brenner, F.J.; Panah, A.I.

    2005-01-01

    Amphibians generally are prolific egg producers. In tropical and semi-tropical regions, deposition of eggs may occur year-round or may coincide with rainy seasons, while in temperate regions, deposition of eggs usually occurs immediately after emergence from hibernation. Numbers of eggs produced by each species may vary from a few dozen to thousands. Accordingly, some eggs may be infertile and wastage of embryos is to be expected. Fertility, viability and decomposition of eggs and embryos must be considered before it is assumed that diseases are present. An important consideration in the evaluation of egg masses is the fact that some will contain infertile and non-viable eggs. These infertile and nonviable eggs will undergo decomposition and they may appear similar to eggs that are infected by a pathogen. Evaluation of egg masses and embryos for the presence of disease may require repeated observations in a given breeding season as well as continued monitoring of egg masses during their growth and development and over successive breeding seasons. Amphibian eggs rarely are subjected to a comprehensive health (diagnostic) examination; hence, there is scant literature on the diseases of this life stage. Indeed, the eggs of some North American amphibians have yet to be described. Much basic physiology and normal biomedical baseline data on amphibian eggs is lacking. For example, it is known that the aquatic eggs of some species of shrimp quickly are coated by a protective and commensal bacterium that effectively impedes invasion of the eggs by other environmental organisms and potential pathogens. In the absence of this bacterium, shrimp eggs are rapidly killed by other bacteria and fungi (Green, 2001). The possibility that amphibian eggs also have important symbiotic or commensal bacteria needs to be investigated. Furthermore, the quantity and types of chemicals in the normal gelatinous capsules of amphibian eggs have scarcely been examined. Abnormalities of the

  11. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos.

    Science.gov (United States)

    Noda, Takeshi

    2011-12-01

    I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media.

    Science.gov (United States)

    Kelley, Rebecca L; Gardner, David K

    2017-05-01

    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Non-invasive metabolomic profiling of embryo culture media and morphology grading to predict implantation outcome in frozen-thawed embryo transfer cycles.

    Science.gov (United States)

    Li, Xiong; Xu, Yan; Fu, Jing; Zhang, Wen-Bi; Liu, Su-Ying; Sun, Xiao-Xi

    2015-11-01

    Assessment of embryo viability is a crucial component of in vitro fertilization and currently relies largely on embryo morphology and cleavage rate. Because morphological assessment remains highly subjective, it can be unreliable in predicting embryo viability. This study investigated the metabolomic profiling of embryo culture media using near-infrared (NIR) spectroscopy for predicting the implantation potential of human embryos in frozen-thawed embryo transfer (FET) cycles. Spent embryo culture media was collected on day 4 after thawed embryo transfer (n = 621) and analysed using NIR spectroscopy. Viability scores were calculated using a predictive multivariate algorithm of fresh embryos with known pregnancy outcomes. The mean viability indices of embryos resulting in clinical pregnancy following FET were significantly higher than those of non-implanted embryos and differed between the 0, 50, and 100 % implantation groups. Notably, the 0 % group index was significantly lower than the 100 % implantation group index (-0.787 ± 0.382 vs. 1.064 ± 0.331, P  0.05). NIR metabolomic profiling of thawed embryo culture media is independent of morphology and correlates with embryo implantation potential in FET cycles. The viability score alone or in conjunction with morphologic grading is a more objective marker for implantation outcome in FET cycles than morphology alone.

  14. Embryo sac formation and early embryo development in Agave tequilana (Asparagaceae).

    Science.gov (United States)

    González-Gutiérrez, Alejandra G; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín

    2014-01-01

    Agave tequilana is an angiosperm species that belongs to the family Asparagaceae (formerly Agavaceae). Even though there is information regarding to some aspects related to the megagametogenesis of A. tequilana, this is the first report describing the complete process of megasporogenesis, megagametogenesis, the early embryo and endosperm development process in detail. The objective of this work was to study and characterize all the above processes and the distinctive morphological changes of the micropylar and chalazal extremes after fertilization in this species. The agave plant material for the present study was collected from commercial plantations in the state of Jalisco, Mexico. Ovules and immature seeds, previously fixed in FAA and kept in ethanol 70%, were stained based on a tissue clarification technique by using a Mayer's-Hematoxylin solution. The tissue clarification technique was successfully used for the characterization of the megasporogenesis, megagametogenesis, mature embryo sac formation, the early embryo and endosperm development processes by studying intact cells. The embryo sac of A. tequilana was confirmed to be of the monosporic Polygonum-type and an helobial endosperm formation. Also, the time-lapse of the developmental processes studied was recorded.

  15. Embryo quality and impact of specific embryo characteristics on ongoing implantation in unselected embryos derived from modified natural cycle in vitro fertilization

    NARCIS (Netherlands)

    Pelinck, Marie-Jose; Hoek, Annemieke; Simons, Arnold H. M.; Heineman, Maas Jan; van Echten-Arends, Janny; Arts, Eus G. J. M.

    Objective: To study the implantation potential of unselected embryos derived from modified natural cycle IVF according to their morphological characteristics. Design: Cohort study. Setting: Academic department of reproductive medicine. Patient(S): A series of 449 single embryo transfers derived from

  16. Triggering of final oocyte maturation with gonadotropin-releasing hormone agonist or human chorionic gonadotropin. Live birth after frozen-thawed embryo replacement cycles

    DEFF Research Database (Denmark)

    Griesinger, Georg; Kolibianakis, E M; Papanikolaou, E G

    2007-01-01

    OBJECTIVE: To report the outcome of frozen-thawed embryo replacement cycles after GnRH-agonist triggering of final oocyte maturation in the collecting cycle with GnRH-antagonist. DESIGN: Prospective, observational, multicentric clinical study. SETTING: Tertiary university-affiliated IVF centers...... a total of 228 participants. Surplus embryos or oocytes at the pronuclear stage were cryopreserved in 53 patients after hCG administration and 32 patients after GnRH-agonist administration on the basis of patient choice, pronuclear/embryo availability, and local laws. INTERVENTION(S): Transfer of frozen......-thawed embryos. MAIN OUTCOME MEASURE(S): Live birth rate. RESULT(S): Thirty-one and 23 patients after administration of hCG and GnRH-agonist, respectively, started a frozen-embryo replacement cycle by September 2005, with 25 and 16 patients eventually undergoing at least one frozen-thawed ET. Live birth rate per...

  17. Methanol as a cryoprotectant for equine embryos.

    Science.gov (United States)

    Bass, L D; Denniston, D J; Maclellan, L J; McCue, P M; Seidel, G E; Squires, E L

    2004-09-15

    Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.

  18. Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Adam Burton

    2013-11-01

    Full Text Available Cell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM and differentiated trophectoderm in the blastocyst. Here, we set out to identify and functionally characterize chromatin modifiers that define the transitions of potency and cell fate in the mouse embryo. Using a quantitative microfluidics approach in single cells, we show that developmental transitions are marked by distinctive combinatorial profiles of epigenetic modifiers. Pluripotent cells of the ICM are distinct from their differentiated trophectoderm counterparts. We show that PRDM14 is heterogeneously expressed in 4-cell-stage embryos. Forced expression of PRDM14 at the 2-cell stage leads to increased H3R26me2 and can induce a pluripotent ICM fate. Our results shed light on the epigenetic networks that govern cellular potency and identity in vivo.

  19. Trans-splicing of plastid rps12 transcripts, mediated by AtPPR4, is essential for embryo patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Tadini, Luca; Ferrari, Roberto; Lehniger, Marie-Kristin; Mizzotti, Chiara; Moratti, Fabio; Resentini, Francesca; Colombo, Monica; Costa, Alex; Masiero, Simona; Pesaresi, Paolo

    2018-04-23

    AtPPR4-mediated trans-splicing of plastid rps12 transcripts is essential for key embryo morphogenetic events such as development of cotyledons, determination of provascular tissue, and organization of the shoot apical meristem (SAM), but not for the formation of the protodermal layer. Members of the pentatricopeptide repeat (PPR) containing protein family have emerged as key regulators of the organelle post-transcriptional processing and to be essential for proper plant embryo development. In this study, we report the functional characterization of the AtPPR4 (At5g04810) gene encoding a plastid nucleoid PPR protein. In-situ hybridization analysis reveals the presence of AtPPR4 transcripts already at the transition stage of embryo development. As a consequence, embryos lacking the AtPPR4 protein arrest their development at the transition/early-heart stages and show defects in the determination of the provascular tissue and organization of SAM. This complex phenotype is due to the specific role of AtPPR4 in the trans-splicing of the plastid rps12 transcripts, as shown by northern and slot-blot hybridizations, and the consequent defect in 70S ribosome accumulation and plastid protein synthesis, in agreement with the role proposed for the maize orthologue, ZmPPR4.

  20. X-ray inactivation of Caenorhabditis elegans embryos or larvae

    Energy Technology Data Exchange (ETDEWEB)

    Ishi, N; Suzuki, K [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    1990-11-01

    The lethal effects of X-irradiation were examined in staged populations of Caenorhabditis elegans embryos or larvae. Radiation resistance decreased slightly throughout the first, proliferative phase of embryogenesis. This might be due to the increase in target size, since most cells in C. elegans are autonomously determined. Animals irradiated in the second half of embryogenesis were about 40-fold more resistant to the lethal effects of X-rays. This is probably due to the absence of cell divisions during this time. The radiation resistance increased still more with advancing larval stages. A radiation hypersensitive mutant, rad-1, irradiated in the first half of embryogenesis, is about 30-fold more sensitive than wild-type, but in the second half it is the same as wild-type. (author).