WorldWideScience

Sample records for stage coupling mechanism

  1. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    Science.gov (United States)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  2. Mechanical core coupling and reactors stability

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-01-01

    Structural parts of nuclear reactors are complex mechanical systems, able to vibrate with a set of proper frequencies when suitably excited. Cyclical variations in the strain state of the materials, including density perturbations, are produced. This periodic changes may affect reactor reactivity. But a variation in reactivity affects reactor thermal power, thus modifying the temperature field of the abovementiones materials. If the variation in temperature fields is fast enough, thermal-mechanical coupling may produce fast variations in strain states, and this, at its turn, modifies the reactivity, and so on. This coupling between mechanical vibrations of the structure and the materials of the core, with power oscillations of the reactor, not only may not be excluded a priori, but it seems that it has been present in some stage of the incidents or accidents that happened during the development of nuclear reactor technology. The purpose of the present communication is: (a) To review and generalize some mathematical models that were proposed in order to describe thermal-mechanical coupling in nuclear reactors. (b) To discuss some conditions in which significant instabilities could arise, including large amplitude power oscillations coupled with mechanical vibrations whose amplitudes are too small to be excluded by conventional criteria of mechanical design. Enough Certain aspects of thr physical safety of nuclear power reactors, that are objected by people that opposes to the renaissance of nucleoelectric generation, are discussed in the framework of the mathematical model proposed in this paper [es

  3. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan

    2016-01-01

    medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  4. 3-D Modelling of Electromagnetic, Thermal, Mechanical and Metallurgical Couplings in Metal Forming Processes

    International Nuclear Information System (INIS)

    Chenot, Jean-Loup; Bay, Francois

    2007-01-01

    The different stages of metal forming processes often involve - beyond the mechanical deformations processes - other physical coupled problems, such as heat transfer, electromagnetism or metallurgy. The purpose of this paper is to focus on problems involving electromagnetic couplings. After a brief recall on electromagnetic modeling, we shall then focus on induction heating processes and present some results regarding heat transfer, as well as mechanical couplings. A case showing coupling for metallurgic microstructure evolution will conclude this paper

  5. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    Science.gov (United States)

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  6. Mechanics of couple-stress fluid coatings

    Science.gov (United States)

    Waxman, A. M.

    1982-01-01

    The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.

  7. Synchronization and chaotic dynamics of coupled mechanical metronomes

    Science.gov (United States)

    Ulrichs, Henning; Mann, Andreas; Parlitz, Ulrich

    2009-12-01

    Synchronization scenarios of coupled mechanical metronomes are studied by means of numerical simulations showing the onset of synchronization for two, three, and 100 globally coupled metronomes in terms of Arnol'd tongues in parameter space and a Kuramoto transition as a function of coupling strength. Furthermore, we study the dynamics of metronomes where overturning is possible. In this case hyperchaotic dynamics associated with some diffusion process in configuration space is observed, indicating the potential complexity of metronome dynamics.

  8. Mechanical testing of PHWR components at different fabrication stages

    International Nuclear Information System (INIS)

    Saibaba, N.

    2007-01-01

    Zirconium alloys are extensively used for reactor structural and cladding components for PHWRs and BWRs due to their low neutron absorption cross-section, corrosion resistance to high temperature aqueous environments, adequate mechanical properties and resistance to radiation damage. The coolant tube fabrication route consists of a series of intermediate process steps. The working parameters of each process have a definite bearing on the final properties of these tubes. In order to ascertain the effect of these parameters, mechanical testing is carried out at intermediate stage of coolant tube fabrication. The mechanical properties of the products can be correlated with process parameters and reflect the quality of the product to a great extent. These properties at intermediate stages can serve as process controlling parameters. This paper discusses the correlation of mechanical properties of pressure tubes between the intermediate stage and final stage. The effect of process parameters like annealing temperature, honing, sand blasting pressure and eccentricity on the final mechanical properties was highlighted. (author)

  9. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  10. Coupling functions: Universal insights into dynamical interaction mechanisms

    Science.gov (United States)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta

    2017-10-01

    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  11. A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism

    Science.gov (United States)

    Shang, Jiangkun; Tian, Yanling; Li, Zheng; Wang, Fujun; Cai, Kunhai

    2015-09-01

    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking.

  12. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    Science.gov (United States)

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  13. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  14. A micro-coupling for micro mechanical systems

    Science.gov (United States)

    Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya

    2016-05-01

    The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and

  15. Mechanical coupling and liquid exchanges in the pleural space.

    Science.gov (United States)

    Agostoni, E; Zocchi, L

    1998-06-01

    The pleural space provides the mechanical coupling between lung and chest wall: two views about this coupling are reported and discussed. Information on volume, composition, thickness, and pressure of the pleural liquid under physiologic conditions in a few species is provided. The Starling pressures of the parietal pleura filtering liquid into pleural space, and those of the visceral pleura absorbing liquid from the space are considered along with the permeability of the mesothelium. Information on the lymphatic drainage through the parietal pleura and on the solute-coupled liquid absorption from the pleural space under physiologic conditions and with various kinds of hydrothorax are provided.

  16. Coupling between chemical degradation and mechanical behaviour of leached concrete

    International Nuclear Information System (INIS)

    Nguyen, V.H.

    2005-10-01

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  17. End-stage head and neck cancer coping mechanisms

    Directory of Open Access Journals (Sweden)

    Bogdan Popescu

    2017-10-01

    Full Text Available Coping mechanisms are patients’ means of adapting to stressful situations and involve psychological and physical changes in behavior. Patients adapt to head and neck cancer in a variety of ways. Head and neck cancers are extremely debilitating, especially in advanced stages of the disease or in end-of-life situations. While an oncology team needs to address the needs of all oncology patients, the advanced terminal patients require special attention. Most of these patients do not cope well with their situation and have a tendency to cease social interactions. Pain is the most frequentlyexperienced medical disability in patients having an end-stage illness experience, and thus an important medical endeavor is to afford dignity to the dying patient facingan incurable disease. In such cases, the medical community should never refuse therapy or to assist a dying patient.In some instances, the patient and family may derive benefit from their religious beliefs.

  18. Fluid coupling in a discrete model of cochlear mechanics.

    Science.gov (United States)

    Elliott, Stephen J; Lineton, Ben; Ni, Guangjian

    2011-09-01

    A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. © 2011 Acoustical Society of America

  19. Couple-Focused Group Intervention for Women With Early Stage Breast Cancer

    Science.gov (United States)

    Manne, Sharon L.; Ostroff, Jamie S.; Winkel, Gary; Fox, Kevin; Grana, Generosa; Miller, Eric; Ross, Stephanie; Frazier, Thomas

    2005-01-01

    This study examined the efficacy of a couple-focused group intervention on psychological adaptation of women with early stage breast cancer and evaluated whether perceived partner unsupportive behavior or patient functional impairment moderated intervention effects. Two hundred thirty-eight women were randomly assigned to receive either 6 sessions…

  20. Experimental study on synchronization of three coupled mechanical metronomes

    Science.gov (United States)

    Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan

    2013-03-01

    In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.

  1. Experimental study on synchronization of three coupled mechanical metronomes

    International Nuclear Information System (INIS)

    Hu Qiang; Yang Hujiang; Xiao Jinghua; Liu Weiqing; Qian Xiaolan

    2013-01-01

    In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory. (paper)

  2. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  3. Influence of oxygen on the chemical stage of radiobiological mechanism

    International Nuclear Information System (INIS)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-01-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too. - Highlights: • Creation of the mathematical model. • Realization of the model with the help of Continuous Petri nets. • Obtain the time dependence of changes in the concentration of radicals. • Influence of oxygen on the chemical stage of radiobiological mechanism.

  4. Mechanisms important to later stages of streamer system development

    Science.gov (United States)

    Lehtinen, N. G.; Carlson, B.; Kochkin, P.; Østgaard, N.

    2017-12-01

    Typical streamer modeling focuses on the propagation of the streamer head and thus neglects processes such as electron detachment, electron energy relaxation, and thermalization of the electron energy distribution. These mechanisms, however, may become important at later stages of streamer system development, in particular following streamer collisions. We present a model of a later-stage streamer system development which includes these processes. A linear analysis suggests that these processes under some conditions can lead to new effects, such as excitation of waves similar to striations in the positive column of a glow discharge. Such instabilities do not occur if these mechanisms are neglected under the same conditions, although previous modeling suggested existence of wave-like phenomena during the streamer propagation [Luque et al, 2016, doi:10.1002/2015JA022234]. In the sea-level pressure air, the obtained striation-like waves may manifest as very high frequency range (>10 MHz) oscillations in plasma parameters and may have been detected in the electrode current and electromagnetic radiation measurements during laboratory spark experiments. We discuss whether the longitudinal electric field in such waves can efficiently transfer energy to charged particles, because such a process may play a role in production of x-rays.

  5. Coupled Mechanical and Electrochemical Phenomena in Lithium-Ion Batteries

    Science.gov (United States)

    Cannarella, John

    Lithium-ion batteries are complee electro-chemo-mechanical systems owing to a number of coupled mechanical and electrochemical phenomena that occur during operation. In this thesis we explore these phenomena in the context of battery degradation, monitoring/diagnostics, and their application to novel energy systems. We begin by establishing the importance of bulk stress in lithium-ion batteries through the presentation of a two-year exploratory aging study which shows that bulk mechanical stress can significantly accelerate capacity fade. We then investigate the origins of this coupling between stress and performance by investigating the effects of stress in idealized systems. Mechanical stress is found to increase internal battery resistance through separator deformation, which we model by considering how deformation affects certain transport properties. When this deformation occurs in a spatially heterogeneous manner, local hot spots form, which accelerate aging and in some cases lead to local lithium plating. Because of the importance of separator deformation with respect to mechanically-coupled aging, we characterize the mechanical properties of battery separators in detail. We also demonstrate that the stress state of a lithium-ion battery cell can be used to measure the cell's state of health (SOH) and state of charge (SOC)--important operating parameters that are traditionally difficult to measure outside of a laboratory setting. The SOH is shown to be related to irreversible expansion that occurs with degradation and the SOC to the reversible strains characteristic of the cell's electrode materials. The expansion characteristics and mechanical properties of the constituent cell materials are characterized, and a phenomenological model for the relationship between stress and SOH/SOC is developed. This work forms the basis for the development of on-board monitoring of SOH/SOC based on mechanical measurements. Finally we study the coupling between mechanical

  6. A dynamic allocation mechanism of delivering capacity in coupled networks

    International Nuclear Information System (INIS)

    Du, Wen-Bo; Zhou, Xing-Lian; Zhu, Yan-Bo; Zheng, Zheng

    2015-01-01

    Traffic process is ubiquitous in many critical infrastructures. In this paper, we introduce a mechanism to dynamically allocate the delivering capacity into the data-packet traffic model on the coupled Internet autonomous-system-level network of South Korea and Japan, and focus on its effect on the transport efficiency. In this mechanism, the total delivering capacity is constant and the lowest-load node will give one unit delivering capacity to the highest-load node at each time step. It is found that the delivering capacity of busy nodes and non-busy nodes can be well balanced and the effective betweenness of busy nodes with interconnections is significantly reduced. Consequently, the transport efficiency such as average traveling time and packet arrival rate is remarkably improved. Our work may shed some light on the traffic dynamics in coupled networks.

  7. Coupled Flow and Mechanics in Porous and Fractured Media*

    Science.gov (United States)

    Martinez, M. J.; Newell, P.; Bishop, J.

    2012-12-01

    Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the

  8. DECOVALEX III PROJECT. Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. Report of Task 4

    International Nuclear Information System (INIS)

    Andersson, Johan

    2005-02-01

    A part (Task 4) of the International DECOVALEX III project on coupled thermo-hydro-mechanical (T-H-M) processes focuses on T-H-M modelling applications in safety and performance assessment of deep geological nuclear waste repositories. A previous phase, DECOVALEX II, saw a need to improve such modelling. In order to address this need Task 4 of DECOVALEX III has: Analysed two major T-H-M experiments (Task 1 and Task 2) and three different Bench Mark Tests (Task 3) set-up to explore the significance of T-H-M in some potentially important safety assessment applications. Compiled and evaluated the use of T-H-M modelling in safety assessments at the time of the year 2000. Organised a forum a forum of interchange between PA-analysts and THM modelers at each DECOVALEX III workshop. Based on this information the current report discusses the findings and strives for reaching recommendations as regards good practices in addressing coupled T-H-M issues in safety assessments. The full development of T-H-M modelling is still at an early stage and it is not evident whether current codes provide the information that is required. However, although the geosphere is a system of fully coupled processes, this does not directly imply that all existing coupled mechanisms must be represented numerically. Modelling is conducted for specific purposes and the required confidence level should be considered. It is necessary to match the confidence level with the modelling objective. Coupled THM modelling has to incorporate uncertainties. These uncertainties mainly concern uncertainties in the conceptual model and uncertainty in data. Assessing data uncertainty is important when judging the need to model coupled processes. Often data uncertainty is more significant than the coupled effects. The emphasis on the need for THM modelling differs among disciplines. For geological radioactive waste disposal in crystalline and other similar hard rock formations DECOVALEX III shows it is essential to

  9. DECOVALEX III PROJECT. Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. Report of Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-02-15

    A part (Task 4) of the International DECOVALEX III project on coupled thermo-hydro-mechanical (T-H-M) processes focuses on T-H-M modelling applications in safety and performance assessment of deep geological nuclear waste repositories. A previous phase, DECOVALEX II, saw a need to improve such modelling. In order to address this need Task 4 of DECOVALEX III has: Analysed two major T-H-M experiments (Task 1 and Task 2) and three different Bench Mark Tests (Task 3) set-up to explore the significance of T-H-M in some potentially important safety assessment applications. Compiled and evaluated the use of T-H-M modelling in safety assessments at the time of the year 2000. Organised a forum a forum of interchange between PA-analysts and THM modelers at each DECOVALEX III workshop. Based on this information the current report discusses the findings and strives for reaching recommendations as regards good practices in addressing coupled T-H-M issues in safety assessments. The full development of T-H-M modelling is still at an early stage and it is not evident whether current codes provide the information that is required. However, although the geosphere is a system of fully coupled processes, this does not directly imply that all existing coupled mechanisms must be represented numerically. Modelling is conducted for specific purposes and the required confidence level should be considered. It is necessary to match the confidence level with the modelling objective. Coupled THM modelling has to incorporate uncertainties. These uncertainties mainly concern uncertainties in the conceptual model and uncertainty in data. Assessing data uncertainty is important when judging the need to model coupled processes. Often data uncertainty is more significant than the coupled effects. The emphasis on the need for THM modelling differs among disciplines. For geological radioactive waste disposal in crystalline and other similar hard rock formations DECOVALEX III shows it is essential to

  10. Chemo-mechanical coupling behaviour of leached concrete

    International Nuclear Information System (INIS)

    Nguyen, V.H.; Nedjar, B.; Torrenti, J.M.

    2007-01-01

    The paper is concerned with a coupled chemo-mechanical model describing the interaction between the calcium leaching and the mechanical damage in concrete materials. On the one hand, the phenomenological chemistry is described by the nowadays well-known simplified calcium leaching approach. It is based on the dissolution-diffusion process together with the chemical equilibrium relating the calcium concentration of the solid's skeleton and the calcium in the pore solution. For concrete, a homogenization approach using asymptotic expansions is used to take into account the influence of the presence of the aggregates leading to an equivalent homogeneous medium. On the other hand, the continuum damage mechanics is used to describe the mechanical degradation of concrete. The modelling accounts for the fact that concrete becomes more and more ductile as the leaching process grows. The model also predicts the inelastic irreversible deformation as damage evolves. The growth of inelastic strains observed during the mechanical tests is described by means of an elastoplastic-like model. The coupled nonlinear problem at hand is addressed within the context of the finite element method. And finally, numerical simulations are compared with the experimental results of first part of this work

  11. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  12. Defect forces, defect couples and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-07-01

    In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr

  13. Directionality of coupling of physiological subsystems: age-related changes of cardiorespiratory interaction during different sleep stages in babies.

    Science.gov (United States)

    Mrowka, Ralf; Cimponeriu, Laura; Patzak, Andreas; Rosenblum, Michael G

    2003-12-01

    Activity of many physiological subsystems has a well-expressed rhythmic character. Often, a dependency between physiological rhythms is established due to interaction between the corresponding subsystems. Traditional methods of data analysis allow one to quantify the strength of interaction but not the causal interrelation that is indispensable for understanding the mechanisms of interaction. Here we present a recently developed method for quantification of coupling direction and apply it to an important problem. Namely, we study the mutual influence of respiratory and cardiovascular rhythms in healthy newborns within the first 6 mo of life in quiet and active sleep. We find an age-related change of the coupling direction: the interaction is nearly symmetric during the first days and becomes practically unidirectional (from respiration to heart rhythm) at the age of 6 mo. Next, we show that the direction of interaction is mainly determined by respiratory frequency. If the latter is less than approximately 0.6 Hz, the interaction occurs dominantly from respiration to heart. With higher respiratory frequencies that only occur at very young ages, the dominating direction is less pronounced or even abolished. The observed dependencies are not related to sleep stage, suggesting that the coupling direction is determined by system-inherent dynamical processes, rather than by functional modulations. The directional analysis may be applied to other interacting narrow band oscillatory systems, e.g., in the central nervous system. Thus it is an important step forward in revealing and understanding causal mechanisms of interactions.

  14. Qubit Coupled Mechanical Resonator in an Electromechanical System

    Science.gov (United States)

    Hao, Yu

    This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.

  15. Static and Dynamic Amplification Using Strong Mechanical Coupling

    KAUST Repository

    Ilyas, Saad

    2016-07-28

    Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100

  16. Chemo-mechanical coupling in kerogen gas adsorption/desorption.

    Science.gov (United States)

    Ho, Tuan Anh; Wang, Yifeng; Criscenti, Louise J

    2018-05-09

    Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH4 and CO2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.

  17. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    Science.gov (United States)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  18. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  20. Robust independent modal space control of a coupled nano-positioning piezo-stage

    Science.gov (United States)

    Zhu, Wei; Yang, Fufeng; Rui, Xiaoting

    2018-06-01

    In order to accurately control a coupled 3-DOF nano-positioning piezo-stage, this paper designs a hybrid controller. In this controller, a hysteresis observer based on a Bouc-Wen model is established to compensate the hysteresis nonlinearity of the piezoelectric actuator first. Compared to hysteresis compensations using Preisach model and Prandt-Ishlinskii model, the compensation method using the hysteresis observer is computationally lighter. Then, based on the proposed dynamics model, by constructing the modal filter, a robust H∞ independent modal space controller is designed and utilized to decouple the piezo-stage and deal with the unmodeled dynamics, disturbance, and hysteresis compensation error. The effectiveness of the proposed controller is demonstrated experimentally. The experimental results show that the proposed controller can significantly achieve the high-precision positioning.

  1. Hybrid Systems: Cold Atoms Coupled to Micro Mechanical Oscillators =

    Science.gov (United States)

    Montoya Monge, Cris A.

    Micro mechanical oscillators can serve as probes in precision measurements, as transducers to mediate photon-phonon interactions, and when functionalized with magnetic material, as tools to manipulate spins in quantum systems. This dissertation includes two projects where the interactions between cold atoms and mechanical oscillators are studied. In one of the experiments, we have manipulated the Zeeman state of magnetically trapped Rubidium atoms with a magnetic micro cantilever. The results show a spatially localized effect produced by the cantilever that agrees with Landau-Zener theory. In the future, such a scalable system with highly localized interactions and the potential for single-spin sensitivity could be useful for applications in quantum information science or quantum simulation. In a second experiment, work is in progress to couple a sample of optically trapped Rubidium atoms to a levitated nanosphere via an optical lattice. This coupling enables the cooling of the center-of-mass motion of the nanosphere by laser cooling the atoms. In this system, the atoms are trapped in the optical lattice while the sphere is levitated in a separate vacuum chamber by a single-beam optical tweezer. Theoretical analysis of such a system has determined that cooling the center-of-mass motion of the sphere to its quantum ground state is possible, even when starting at room temperature, due to the excellent environmental decoupling achievable in this setup. Nanospheres cooled to the quantum regime can provide new tests of quantum behavior at mesoscopic scales and have novel applications in precision sensing.

  2. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  3. The study on a gas-coupled two-stage stirling-type pulse tube cryocooler

    Science.gov (United States)

    Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.

  4. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  5. Quadrature squeezing of a mechanical resonator generated by the electromechanical coupling with two coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yan [Department of Physics, Huazhong Normal University, Wuhan (China); School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Zhu, Jia-pei [Department of Physics, Honghe University, Mengzi (China); Zhao, Shao-ming; Li, Gao-xiang [Department of Physics, Huazhong Normal University, Wuhan (China)

    2015-01-01

    The quadrature squeezing of a mechanical resonator (MR) coupled with two quantum dots (QDs) through the electromechanical coupling, where the QDs are driven by a strong and two weak laser fields is investigated. By tuning the gate voltage, the electron can be trapped in a quantum pure state. Under certain conditions, the discrepancies between the transition frequency and that of two weak fields are compensated by the phonons induced by the electromechanical coupling of the MR with QDs. In this case, some dissipative processes occur resonantly. The phonons created and (or) annihilated in these dissipative processes are correlated thus leading to the quadrature squeezing of the MR. A squeezed vacuum reservoir for the MR is built up. By tuning the gate voltage to control the energy structure of the QDs, the present squeezing scheme has strong resistance against the dephasing processes of the QDs in low temperature limit. The role of the temperature of the phonon reservoir is to damage squeezing of the MR. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization.

    Science.gov (United States)

    Wang, Xiao Fan

    2002-06-01

    We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can achieve synchronization with almost the minimum required coupling-speed ratio.

  7. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  8. Couples' Support-Related Communication, Psychological Distress, and Relationship Satisfaction among Women with Early Stage Breast Cancer

    Science.gov (United States)

    Manne, Sharon; Sherman, Marne; Ross, Stephanie; Ostroff, Jamie; Heyman, Richard E.; Fox, Kevin

    2004-01-01

    This study examined associations between couple communication about cancer and psychological distress and relationship satisfaction of women diagnosed with early stage breast cancer. One hundred forty-eight couples completed a videotaped discussion of a cancer-related issue and a general issue. Patients completed measures of psychological distress…

  9. Mechanics of adsorption-deformation coupling in porous media

    Science.gov (United States)

    Zhang, Yida

    2018-05-01

    This work extends Coussy's macroscale theory for porous materials interacting with adsorptive fluid mixtures. The solid-fluid interface is treated as an independent phase that obeys its own mass, momentum and energy balance laws. As a result, a surface strain energy term appears in the free energy balance equation of the solid phase, which further introduces the so-called adsorption stress in the constitutive equations of the porous skeleton. This establishes a fundamental link between the adsorption characteristics of the solid-fluid interface and the mechanical response of the porous media. The thermodynamic framework is quite general in that it recovers the coupled conduction laws, Gibbs isotherm and the Shuttleworth's equation for surface stress, and imposes no constraints on the magnitude of deformation and the functional form of the adsorption isotherms. A rich variety of coupling between adsorption and deformation is recovered as a result of combining different poroelastic models (isotropic vs. anisotropic, linear vs. nonlinear) and adsorption models (unary vs. mixture adsorption, uncoupled vs. stretch-dependent adsorption). These predictions are discussed against the backdrop of recent experimental data on coal swelling subjected to CO2 and CO2sbnd CH4 injections, showing the capability and versatility of the theory in capturing adsorption-induced deformation of porous materials.

  10. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  11. Nuclear-Mechanical Coupling: Small Amplitude Mechanical Vibrations and High Amplitude Power Oscillations in Nuclear Reactors

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2008-11-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively

  12. Coupling of the four design stages in the management of nuclear fuel

    International Nuclear Information System (INIS)

    Marinez R, R. L.

    2016-01-01

    In this work, the main characteristics of the system to solve the four stages of the nuclear fuel management are presented; the above for boiling water reactors (BWR). The novelty of the system is that a complete solution is obtained in a coupled way; the involved stages are fuel lattice design, fuel assembly design, fuel reload design and control rod pattern design. To do this, in each stage of the process some heuristics techniques are applied, and each stage has its own objective function. The used heuristic techniques are neural network and a hybrid between scatter search and path re linking for fuel lattice design; for fuel assembly design a simple local search was applied and finally, for both fuel reload and control rod pattern designs, the tabu search technique was used. The system have two loops, one external loop and one internal loop, the first one starts with fuel lattice design and concludes with control rod pattern design; on the other hand, the internal loop executes an iterative process between both fuel reload design and control rod pattern designs, to start this loop a seed fuel reload is required, which is obtained applying Haling principle. The internal loop is finished when four iterations were achieved, while the external loop is finished when two iterations were achieved, this number of iterations was fixed due to the great quantity of required computational resources. An 18- months equilibrium cycle was considered to have a reference value to compare against the obtained results with our system, this cycle have two fuel fresh batches with the same average uranium enrichment, but different gadolinia content. The above cycle achieved a 10,896 Mwd/Tu of energy and was divided into 12 burnup steps. The obtained results show the advantage to solve the complete problem in a coupled way, even though a great quantity of computational resources are used. It is necessary to note that the energy value was not achieved in all cases, only in some

  13. Emergency one-stage resection without mechanical bowel ...

    African Journals Online (AJOL)

    Of these, 21 had one-stage primary resection with no clinical anastomotic leak and only one wound infection and fascial dehiscence. The two deaths from this group were due to respiratory failure in a patient aged 100 years and overwhelming sepsis in a younger patient with bowel gangrene from ileosigmoid knotting.

  14. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    Science.gov (United States)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  15. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  16. A Hydrous Seismogenic Fault Rock Indicating A Coupled Lubrication Mechanism

    Science.gov (United States)

    Okamoto, S.; Kimura, G.; Takizawa, S.; Yamaguchi, H.

    2005-12-01

    In the seismogenic subduction zone, the predominant mechanisms have been considered to be fluid induced weakening mechanisms without frictional melting because the subduction zone is fundamentally quite hydrous under low temperature conditions. However, recently geological evidence of frictional melting has been increasingly reported from several ancient accretionary prisms uplifted from seismogenic depths of subduction zones (Ikesawa et al., 2003; Austrheim and Andersen, 2004; Rowe et al., 2004; Kitamura et al., 2005) but relationship between conflicting mechanisms; e.g. thermal pressurization of fluid and frictional melting is still unclear. We found a new exposure of pseudotachylyte from a fossilized out-of-sequence thrust (OOST) , Nobeoka thrust in the accretionary complex, Kyushu, southwest Japan. Hanging-wall and foot-wall are experienced heating up to maximum temperature of about 320/deg and about 250/deg, respectively. Hanging-wall rocks of the thrust are composed of shales and sandstones deformed plastically. Foot-wall rocks are composed of shale matrix melange with sandstone and basaltic blocks deformed in a brittle fashion (Kondo et al, 2005). The psudotachylyte was found from one of the subsidiary faults in the hanging wall at about 10 m above the fault core of the Nobeoka thrust. The fault is about 1mm in width, and planer rupture surface. The fault maintains only one-time slip event because several slip surfaces and overlapped slip textures are not identified. The fault shows three deformation stages: The first is plastic deformation of phyllitic host rocks; the second is asymmetric cracking formed especially in the foot-wall of the fault. The cracks are filled by implosion breccia hosted by fine carbonate minerals; the third is frictional melting producing pseudotachylyte. Implosion breccia with cracking suggests that thermal pressurization of fluid and hydro-fracturing proceeded frictional melting.

  17. Foot segmental motion and coupling in stage II and III tibialis posterior tendon dysfunction.

    Science.gov (United States)

    Van de Velde, Maarten; Matricali, Giovanni Arnoldo; Wuite, Sander; Roels, Charlotte; Staes, Filip; Deschamps, Kevin

    2017-06-01

    Classification systems developed in the field of posterior tibialis tendon dysfunction omit to include dynamic measurements. Since this may negatively affect the selection of the most appropriate treatment modality, studies on foot kinematics are highly recommended. Previous research characterised the foot kinematics in patients with posterior tibialis tendon dysfunction. However, none of the studies analysed foot segmental motion synchrony during stance phase, nor compared the kinematic behaviour of the foot in presence of different posterior tibialis tendon dysfunction stages. Therefore, we aimed at comparing foot segmental motion and coupling in patients with posterior tibialis tendon dysfunction grade 2 and 3 to those of asymptomatic subjects. Foot segmental motion of 11 patients suffering from posterior tibialis tendon dysfunction stage 2, 4 patients with posterior tibialis tendon dysfunction stage 3 and 15 asymptomatic subjects was objectively quantified with the Rizzoli foot model using an instrumented walkway and a 3D passive motion capture system. Dependent variables were the range of motion occurring at the different inter-segment angles during subphases of stance and swing phase as well as the cross-correlation coefficient between a number of segments. Significant differences in range of motion were predominantly found during the forefoot push off phase and swing phase. In general, both patient cohorts demonstrated a reduced range of motion compared to the control group. This hypomobility occurred predominantly in the rearfoot and midfoot (pfoot which should be considered in the decision making process since it may help explaining the success and failure of certain conservative and surgical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Electro-chemo-hydro-mechanical coupling in clayey media

    International Nuclear Information System (INIS)

    Lemaire, Th.

    2004-12-01

    The aim of this study is to understand coupled phenomena that occur in swelling porous materials like clays. Electro-chemo-hydro-mechanical contributions are taken into account to analyze transfers in such minerals. In a first part, a general discussion is proposed to introduce mineralogical and physico- chemical considerations of clayey media. An important objective of this chapter is to show the crucial role of the microstructure. In a second part is presented an imbibition test in a MX80 bentonite powder. The hydraulic diffusivity versus water content curve's decrease is explained thanks to a double porosity model that shows the progressive collapse of meso-pores due to swelling effects at the micro-scale. Thus a multi-scale analysis is necessary to well describe clayey media behaviour. The third chapter exposes such a multi-scale modelling (periodic homogenization). It is based on the double-layer theory and introduces an innovative concept of virtual electrolyte solution. First numerical results are given in a simple geometry (parallel platelets). In the next part are proposed numerical simulations of two kinds: response of the system to a chemical gradient and simulation of electro-osmosis. The end of this chapter puts into relief the necessity to integrate pH effects in the model. In the last part, chemical surface exchanges are incorporated in the modelling to understand pH and ionic force roles in electro-osmotic process. (author)

  19. Efficient solvers for coupled models in respiratory mechanics.

    Science.gov (United States)

    Verdugo, Francesc; Roth, Christian J; Yoshihara, Lena; Wall, Wolfgang A

    2017-02-01

    We present efficient preconditioners for one of the most physiologically relevant pulmonary models currently available. Our underlying motivation is to enable the efficient simulation of such a lung model on high-performance computing platforms in order to assess mechanical ventilation strategies and contributing to design more protective patient-specific ventilation treatments. The system of linear equations to be solved using the proposed preconditioners is essentially the monolithic system arising in fluid-structure interaction (FSI) extended by additional algebraic constraints. The introduction of these constraints leads to a saddle point problem that cannot be solved with usual FSI preconditioners available in the literature. The key ingredient in this work is to use the idea of the semi-implicit method for pressure-linked equations (SIMPLE) for getting rid of the saddle point structure, resulting in a standard FSI problem that can be treated with available techniques. The numerical examples show that the resulting preconditioners approach the optimal performance of multigrid methods, even though the lung model is a complex multiphysics problem. Moreover, the preconditioners are robust enough to deal with physiologically relevant simulations involving complex real-world patient-specific lung geometries. The same approach is applicable to other challenging biomedical applications where coupling between flow and tissue deformations is modeled with additional algebraic constraints. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  1. A dynamical mechanism for large volumes with consistent couplings

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Steven [IPPP, Durham University,Durham, DH1 3LE (United Kingdom)

    2016-11-14

    A mechanism for addressing the “decompactification problem” is proposed, which consists of balancing the vacuum energy in Scherk-Schwarzed theories against contributions coming from non-perturbative physics. Universality of threshold corrections ensures that, in such situations, the stable minimum will have consistent gauge couplings for any gauge group that shares the same N=2 beta function for the bulk excitations as the gauge group that takes part in the minimisation. Scherk-Schwarz compactification from 6D to 4D in heterotic strings is discussed explicitly, together with two alternative possibilities for the non-perturbative physics, namely metastable SQCD vacua and a single gaugino condensate. In the former case, it is shown that modular symmetries gives various consistency checks, and allow one to follow soft-terms, playing a similar role to R-symmetry in global SQCD. The latter case is particularly attractive when there is nett Bose-Fermi degeneracy in the massless sector. In such cases, because the original Casimir energy is generated entirely by excited and/or non-physical string modes, it is completely immune to the non-perturbative IR physics. Such a separation between UV and IR contributions to the potential greatly simplifies the analysis of stabilisation, and is a general possibility that has not been considered before.

  2. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu

    2016-06-11

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  3. Electro-mechanical coupling of rotating 3D beams

    Directory of Open Access Journals (Sweden)

    Stoykov S.

    2016-01-01

    Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.

  4. Two-Stage Fan I: Aerodynamic and Mechanical Design

    Science.gov (United States)

    Messenger, H. E.; Kennedy, E. E.

    1972-01-01

    A two-stage, highly-loaded fan was designed to deliver an overall pressure ratio of 2.8 with an adiabatic efficiency of 83.9 percent. At the first rotor inlet, design flow per unit annulus area is 42 lbm/sec/sq ft (205 kg/sec/sq m), hub/tip ratio is 0.4 with a tip diameter of 31 inches (0.787 m), and design tip speed is 1450 ft/sec (441.96 m/sec). Other features include use of multiple-circular-arc airfoils, resettable stators, and split casings over the rotor tip sections for casing treatment tests.

  5. Method and system for dual resolution translation stage

    Science.gov (United States)

    Halpin, John Michael

    2014-04-22

    A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.

  6. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    Science.gov (United States)

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bary, B.; Carpentier, O. [CEA Saclay, DEN/DPC/SCCME/LECBA, F-91191 Gif Sur Yvette, (France); Ranc, G. [CEA VALRHO, DEN/DTEC/L2EC/LCEC, F-30207 Bagnols Sur Ceze, (France); Durand, S. [CEA Saclay, DEN/DM2S/SEMT/LM2S, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    This study focuses on the concrete behavior subjected to moderate temperatures, with a particular emphasis on the transient thermo-hydric stage. A simplified coupled thermo-hydro-mechanical model is developed with the assumption that the gaseous phase is composed uniquely of vapor. Estimations of the mechanical parameters, Biot coefficient and permeability as a function of damage and saturation degree are provided by applying effective-medium approximation schemes. The isotherm adsorption curves are supposed to depend upon both temperature and crack-induced porosity. The effects of damage and parameters linked to transfer (in particular the adsorption curves) on the concrete structure response in the transient phase of heating are then investigated and evaluated. To this aim, the model is applied to the simulation of concrete cylinders with height and diameter of 0.80 m subjected to heating rates of 0.1 and 10 degrees C/min up to 160 degrees C. The numerical results are analyzed, commented and compared with experimental ones in terms of water mass loss, temperatures and gas pressures evolutions. A numerical study indicates that some parameters have a greater influence on the results than others, and that certain coupling terms in the mass conservation equation of water may be neglected. (authors)

  8. Pre-capacity building in loosely-coupled collaborations: Setting the stage for future initiatives

    Directory of Open Access Journals (Sweden)

    Cheryl A. Hyde

    2012-08-01

    Full Text Available This article examines the benefits and limitations of ‘loosely-coupled’ research collaborations between university faculty and 12 grassroots community-based organisations (CBOs. The authors assert that community-based research projects that develop the knowledge base within CBOs, and can be described as ‘pre-capacity building’ work, can be an important stepping stone to the subsequent development of more formal and strategic capacity-building partnership ventures. However, such projects must be approached carefully with a clear understanding of the ‘threshold dimensions’ that must be met before proceeding with any collaboration. Written as a cautionary tale, the authors identify some of the problems that arise when the threshold stage is poorly executed, and more generally speak to the dangers of initiating even loosely-coupled collaborations in the absence of an explicit and well-established campus commitment to and support for community engagement and partnerships. Keywords: Community capacity-building, community-university partnerships, community research, collaboration

  9. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  10. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  11. A coupling model for the two-stage core calculation method with subchannel analysis for boiling water reactors

    International Nuclear Information System (INIS)

    Mitsuyasu, Takeshi; Aoyama, Motoo; Yamamoto, Akio

    2017-01-01

    Highlights: • A coupling model of the two-stage core calculation with subchannel analysis. • BWR fuel assembly parameters are assumed and verified. • The model was evaluated for heterogeneous problems. - Abstract: The two-stage core analysis method is widely used for BWR core analysis. The purpose of this study is to develop a core analysis model coupled with subchannel analysis within the two-stage calculation scheme using an assembly-based thermal-hydraulics calculation in the core analysis. The model changes the 2D lattice physics scheme, and couples with 3D subchannel analysis which evaluates the thermal-hydraulics characteristics within the coolant flow area divided as some subchannel regions. In order to couple with these two analyses, some BWR fuel assembly parameters are assumed and verified. The developed model is evaluated for the heterogeneous problem with and without a control rod. The present model is especially effective for the control rod inserted condition. The present model can incorporate the subchannel effect into the current two-stage core calculation method.

  12. Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors

    International Nuclear Information System (INIS)

    Rolando, G; Nijhuis, A; Devred, A

    2014-01-01

    The numerical code JackPot-ACDC (van Lanen et al 2010 Cryogenics 50 139–48, van Lanen et al 2011 IEEE Trans. Appl. Supercond. 21 1926–9, van Lanen et al 2012 Supercond. Sci. Technol. 25 025012) allows fast parametric studies of the electro-magnetic performance of cable-in-conduit conductors (CICCs). In this paper the code is applied to the analysis of the relation between twist pitch length sequence and coupling loss in multi-stage ITER-type CICCs. The code shows that in the analysed conductors the coupling loss is at its minimum when the twist pitches of the successive cabling stages have a length ratio close to one. It is also predicted that by careful selection of the stage-to-stage twist pitch ratio, CICCs cabled according to long twist schemes in the initial stages can achieve lower coupling loss than conductors with shorter pitches. The result is validated by AC loss measurements performed on prototype conductors for the ITER Central Solenoid featuring different twist pitch sequences. (paper)

  13. Hydrodynamic and mechanical tests of a newly improved counter-current multi-stage centrifugal extractor

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Retegan, Teodora

    2003-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involves an extraction process usually carried out by means of a mixer-settler, pulse column or centrifugal contactor. This last, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. Similar apparatus was not found in the literature published to-date. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. Conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  14. 49 CFR 238.207 - Link between coupling mechanism and car body.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Link between coupling mechanism and car body. 238.207 Section 238.207 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Requirements for Tier I Passenger Equipment § 238.207 Link between coupling mechanism and car body. All...

  15. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  16. Coupling Effect between Mechanical Loading and Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Maršík, František

    2009-01-01

    Roč. 113, č. 44 (2009), s. 14689-14697 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : coupling * dynamic loading * reaction kinetics Subject RIV: FI - Traumatology, Orthopedics Impact factor: 3.471, year: 2009

  17. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    Science.gov (United States)

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.

  18. Construction accidents: identification of the main associations between causes, mechanisms and stages of the construction process.

    Science.gov (United States)

    Carrillo-Castrillo, Jesús A; Trillo-Cabello, Antonio F; Rubio-Romero, Juan C

    2017-06-01

    To identify the most frequent causes of accidents in the construction sector in order to help safety practitioners in the task of prioritizing preventive actions depending on the stage of construction. Official accident investigation reports are analysed. A causation pattern is identified with the proportion of causes in each of the different possible groups of causes. Significant associations of the types of causes with accident mechanisms and construction stages have been identified. Significant differences have been found in accident causation depending on the mechanism of the accident and the construction stage ongoing. These results should be used to prioritize preventive actions to combat the most likely causes for each accident mechanism and construction stage.

  19. A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics

    Science.gov (United States)

    Zhu, Wu-Le; Zhu, Zhiwei; Guo, Ping; Ju, Bing-Feng

    2018-01-01

    This paper reports the design, analysis and testing of a parallel two degree-of-freedom piezo-actuated compliant stage for XY nanopositioning by introducing an innovative hybrid actuation mechanism. It mainly features the combination of two Scott-Russell and a half-bridge mechanisms for double-stage displacement amplification as well as moving direction modulation. By adopting the leaf-type double parallelogram (LTDP) structures at both input and output ends of the hybrid mechanism, the lateral stiffness and dynamic characteristics are significantly improved while the parasitic motions are greatly eliminated. The XY nanopositioning stage is constructed with two orthogonally configured hybrid mechanisms along with the LTDP mechanisms for totally decoupled kinematics at both input and output ends. An analytical model was established to describe the complete elastic deformation behavior of the stage, with further verification through the finite element simulation. Finally, experiments were implemented to comprehensively evaluate both the static and dynamic performances of the proposed stage. Closed-loop control of the piezoelectric actuators (PEA) by integrating strain gauges was also conducted to effectively eliminate the nonlinear hysteresis of the stage.

  20. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    Science.gov (United States)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  1. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  2. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Outline report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Shiozaki, Isao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  3. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Result report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe 60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  4. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems

    International Nuclear Information System (INIS)

    Hart, R.D.

    1981-01-01

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited

  5. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...

  6. Strain coupling between nitrogen vacancy centers and the mechanical motion of a diamond optomechanical crystal resonator

    Science.gov (United States)

    Cady, J. V.; Lee, K. W.; Ovartchaiyapong, P.; Bleszynski Jayich, A. C.

    Several experiments have recently demonstrated coupling between nitrogen vacancy (NV) centers in diamond and mechanical resonators via crystal strain. In the strong coupling regime, such devices could realize applications critical to emerging quantum technologies, including phonon-mediated spin-spin interactions and mechanical cooling with the NV center1. An outstanding challenge for these devices is generating higher strain coupling in high frequency devices while maintaining the excellent coherence properties of the NV center and high mechanical quality factors. As a step toward these objectives, we demonstrate single-crystal diamond optomechanical crystal resonators with embedded NV centers. These devices host highly-confined GHz-scale mechanical modes that are isolated from mechanical clamping losses and generate strain profiles that allow for large strain coupling to NV centers far from noise-inducing surfaces.

  7. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Zhou Hongwei; Jiang Pengfei; Yang Chunhe

    2008-01-01

    High-level radioactive wastes (HLW) repository is a special deep underground engineering, and in the stages of site selection, designing, constructing ,the stability evaluation, lots of important rock mechanics problems need to be resolved. During the decay of nuclear waste, enormous thermal energy was released and temperature variation caused dynamic distribution of stress and deformation field of surrounding rock of repository. BeiShan region of Gansu province was selected to be the repository field in the future, it is of practical significance to do research on granite in this region. Based on the concept model of HLW repository, this thesis calculates temperature field, stress field and deformation field of HLW repository surrounding rock under the condition of TM coupled with applying the finite difference FLAC 3D . From this study, thermo-mechanical characteristic of granite is obtained primarily under given canister heat source and given decay law function. And these results show that the reasonable space between disposal hole is 8 m-12 m, and the peak temperature of the canister surface is 130 ℃, the centerline temperature between pits is about 40 ℃ which is maintained for about hundreds of years under given heating output at -500 m depth. (authors)

  8. Numerical modelling of levee stability based on coupled mechanical, thermal and hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Dwornik Maciej

    2016-01-01

    Full Text Available The numerical modelling of coupled mechanical, thermal and hydrogeological processes for a soil levee is presented in the paper. The modelling was performed for a real levee that was built in Poland as a part of the ISMOP project. Only four parameters were changed to build different flood waves: the water level, period of water increase, period of water decrease, and period of low water level after the experiment. Results of numerical modelling shows that it is possible and advisable to calculate simultaneously changes of thermal and hydro-mechanical fields. The presented results show that it is also possible to use thermal sensors in place of more expensive pore pressure sensors, with some limitations. The results of stability analysis show that the levee is less stable when the water level decreases, after which factor of safety decreases significantly. For all flooding wave parameters described in the paper, the levee is very stable and factor of safety variations for any particular stage were not very large.

  9. Static and Dynamic Amplification Using Strong Mechanical Coupling

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically

  10. A variationally coupled FE-BE method for elasticity and fracture mechanics

    Science.gov (United States)

    Lu, Y. Y.; Belytschko, T.; Liu, W. K.

    1991-01-01

    A new method for coupling finite element and boundary element subdomains in elasticity and fracture mechanics problems is described. The essential feature of this new method is that a single variational statement is obtained for the entire domain, and in this process the terms associated with tractions on the interfaces between the subdomains are eliminated. This provides the additional advantage that the ambiguities associated with the matching of discontinuous tractions are circumvented. The method leads to a direct procedure for obtaining the discrete equations for the coupled problem without any intermediate steps. In order to evaluate this method and compare it with previous methods, a patch test for coupled procedures has been devised. Evaluation of this variationally coupled method and other methods, such as stiffness coupling and constraint traction matching coupling, shows that this method is substantially superior. Solutions for a series of fracture mechanics problems are also reported to illustrate the effectiveness of this method.

  11. Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-01-01

    Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  12. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.

    Science.gov (United States)

    Armenise, Iole; Kustova, Elena

    2018-05-21

    A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.

  13. A Single-Stage High-Power-Factor Light-Emitting Diode (LED Driver with Coupled Inductors for Streetlight Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-02-01

    Full Text Available This paper presents and implements a single-stage high-power-factor light-emitting diode (LED driver with coupled inductors, suitable for streetlight applications. The presented LED driver integrates an interleaved buck-boost power factor correction (PFC converter with coupled inductors and a half-bridge-type series-resonant converter cascaded with a full-bridge rectifier into a single-stage power conversion circuit. Coupled inductors inside the interleaved buck-boost PFC converter sub-circuit are designed to operate in discontinuous conduction mode (DCM for achieving input-current shaping, and the half-bridge-type series resonant converter cascaded with a full-bridge rectifier is designed for obtaining zero-voltage switching (ZVS on two power switches to reduce their switching losses. Analysis of operational modes and design equations for the presented LED driver are described and included. In addition, the presented driver features a high power factor, low total harmonic distortion (THD of input current, and soft switching. Finally, a prototype driver is developed and implemented to supply a 165-W-rated LED streetlight module with utility-line input voltages ranging from 210 to 230 V. Experimental results demonstrate that high power factor (>0.99, low utility-line current THD (<7%, low-output voltage ripples (<1%, low-output current ripples (<10%, and high circuit efficiency (>90% are obtained in the presented single-stage driver for LED streetlight applications.

  14. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    International Nuclear Information System (INIS)

    Wanne, Toivo; Johansson, Erik; Potyondy, David

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  15. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wanne, Toivo; Johansson, Erik; Potyondy, David [Saanio and Riekkola Oy, Helsinki (Finland)

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  16. Astrocytes take the stage in a tale of signaling-metabolism coupling

    DEFF Research Database (Denmark)

    Bak, Lasse K

    2017-01-01

    Astrocytes are crucial cells in the brain that are intimately coupled with neuronal metabolism. A new paper from San Martín et al. provides evidence that physiological levels of the gaseous signal molecule NO can rapidly and reversibly increase astrocyte metabolism of glucose and production...... of lactate. A proposed neurological coupling-from the potential source of NO, endothelial cells, to the potential beneficiary from the lactate, neurons-prompts new questions regarding the controversial role of lactate in the brain....

  17. Mechanisms and effects of lightning current coupling to structures

    International Nuclear Information System (INIS)

    Foboda, Marek

    1999-01-01

    To evaluate the effects of a lightning discharge on a structure, it is necessary to know the modes of interaction of lightning electromagnetic field pulses to structures. The effects to these interactions are considered by means to the concept to equivalent collection areas. The equations to calculate the distance and equivalent collection areas due to lightning discharges are given in this article. Additionally, the possible modes of a direct lightning strike to the incoming line and the equations to calculate the resultant over voltages are also given. This article ends with the calculation of voltage drops due to direct and nearby lightning strike and induced voltages due to magnetic coupling. Several examples of calculations of the different mentioned cases are given

  18. Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating

    NARCIS (Netherlands)

    Bonnefond, M.; Jensen, O.

    2015-01-01

    Coupling between neural oscillations in different frequency bands has been proposed to coordinate neural processing. In particular, gamma power coupled to alpha phase is proposed to reflect gating of information in the visual system but the existence of such a mechanism remains untested. Here, we

  19. Mechanical Coupling between Muscle-Tendon Units Reduces Peak Stresses

    NARCIS (Netherlands)

    Maas, Huub; Finni, Taija

    2018-01-01

    The presence of mechanical linkages between synergistic muscles and their common tendons may distribute forces among the involved structures. We review studies, using humans and other animals, examining muscle and tendon interactions and discuss the hypothesis that connections between muscle bellies

  20. Tomato Yield and Water Use Efficiency - Coupling Effects between Growth Stage Specific Soil Water Deficits

    DEFF Research Database (Denmark)

    Chen, Si; Zhenjiang, Zhou; Andersen, Mathias Neumann

    2015-01-01

    To investigate the sensitivity of tomato yield and water use efficiency (WUE) to soil water content at different growth stages, the central composite rotatable design (CCRD) was employed in a five-factor-five-level pot experiment under regulated deficit irrigation. Two regression models concerning...... the effects of stage-specific soil water content on tomato yield and WUE were established. The results showed that the lowest available soil water (ASW) content (around 28%) during vegetative growth stage (here denoted θ1) resulted in high yield and WUE. Moderate (around 69% ASW) during blooming and fruit...... effects of ASW in two growth stages were between θ2 and θ5, θ3. In both cases a moderate θ2 was a precondition for maximum yield response to increasing θ5 and θ3. Sensitivity analysis revealed that yield was most sensitive to soil water content at fruit maturity (θ5). Numerical inspection...

  1. F-theory Yukawa couplings and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Oikonomou, V.K.

    2012-01-01

    The localized fermions on the intersection curve Σ of D7-branes, are connected to a N=2 supersymmetric quantum mechanics algebra. Due to this algebra the fields obey a global U(1) symmetry. This symmetry restricts the proton decay operators and the neutrino mass terms. Particularly, we find that several proton decay operators are forbidden and the Majorana mass term is the only one allowed in the theory. A special SUSY QM algebra is studied at the end of the paper. In addition we study the impact of a non-trivial holomorphic metric perturbation on the localized solutions along each matter curve. Moreover, we study the connection of the localized solutions to an N=2 supersymmetric quantum mechanics algebra when background fluxes are turned on.

  2. The influence of nonbilinear system-bath coupling on quantum-mechanical activated rate processes

    International Nuclear Information System (INIS)

    Navrotskaya, Irina; Geva, Eitan

    2006-01-01

    The dependence of quantum-mechanical activated rate processes on the system-bath coupling strength was investigated in the case of a double-well nonbilinearly coupled to a harmonic bath, where the system-bath coupling is linear in the bath coordinates and nonlinear in the reaction coordinate. Such nonbilinear coupling is known to give rise to a classical friction kernel which is explicitly dependent on the reaction coordinate. We show that it can also lead to quantum-mechanical barrier-crossing rates, whose dependence on the system-bath coupling strength is qualitatively different from that observed in the quantum-mechanical bilinear case and classical nonbilinear case. More specifically, it is shown that the quantum-mechanical barrier-crossing rate may monotonically increase as a function of the system-bath coupling strength, in cases where the classical barrier-crossing rate goes through a turnover, and that the rate of quantum-mechanical barrier-crossing can be lower than that of classical barrier-crossing. We show that those purely quantum-mechanical effects are of a thermodynamical, rather than dynamical, nature, and that they originate from the difference in friction between the barrier top and the reactant and product wells. Our conclusions are supported by results obtained via the CMD method, which were also found to be in very good agreement with numerically exact calculations based on the QUAPI method

  3. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  4. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems

    Science.gov (United States)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.

    2017-02-01

    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  5. Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium

    DEFF Research Database (Denmark)

    Becker, Hanka; Pantleon, Wolfgang

    2013-01-01

    Commercially pure titanium was tensile tested at different strain rates between 2.2×10−4s−1 and 6.7×10−1s−1 to characterize the strain rate dependence of plastic deformation and the dominating deformation mechanisms. From true stress-true plastic strain curves, three distinct work-hardening stages...... are identified. The work-hardening rate decreases linearly with increasing flow stress for all three stages and the work-hardening rate is the controlling factor for the transition between the different stages and mechanisms. During the initial stage (at lowest stresses) plastic deformation is carried mainly...... by dislocation slip, in the following stage (for moderate stresses), an abundance of 64.6∘〈1¯010〉 twin boundaries form indicating the dominance of {112¯2}〈1¯1¯23〉 compression twinning. During the last stage before the onset of necking, additional 84.8∘〈112¯0〉 twin boundaries are detected caused by {101...

  6. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    Directory of Open Access Journals (Sweden)

    Zhanghua Lian

    2015-03-01

    Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.

  7. Optical and mechanical design of beam-target coupling sensor

    International Nuclear Information System (INIS)

    Wang Liquan; Li Tian'en; Feng Bin; Xiang Yong; Li Keyu; Zhong Wei; Liu Guodong

    2012-01-01

    A sensor based on conjugate principle has been designed for matching the light beams and the target in inertial confinement fusion. It can avoid the direct illumination of the simulation collimating light on the target under test in targeting processes. This paper introduces the optical and mechanical design of the sensor, according to its design functions and working principle. The resolution of the optical images obtained in experiments reaches 6 μm and the beam-target matching accuracy is 8.8 μm. The sensor has been successfully applied to the Shenguang-Ⅲ facility. Statistical analyses of the four-hole CH target images derived with pinhole camera shows that the targeting accuracy of the facility is better than 25 μm, satisfying the design requirements. (authors)

  8. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues.

    Science.gov (United States)

    Panzetta, Valeria; Musella, Ida; Rapa, Ida; Volante, Marco; Netti, Paolo A; Fusco, Sabato

    2017-07-15

    The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  10. Effects of Mechanical Coupling Between Cardiomyocytes and Cardiac Fibroblasts on Myocardium

    Science.gov (United States)

    Zorlutuna, Pinar; Nguyen, Trung Dung; Nagarajan, Neerajha

    Cardiomyocytes show excitatory responses to stimulation solely by mechanical forces through their stretch-activated ion channels, and can fire action potentials upon mechanical stimulation through a pathway known as mechano-electric feedback. Furthermore, cardiomyocyte (CM) - cardiac fibroblasts (CF) can couple mechanically through cell-cell junctions. Here we investigated the effects of CM and CF mechanical coupling on myocardial physiology and pathology using a bio-nanoindentered coupled with fast calcium imaging and microelectrode arrays. In order to study mechanical signal transmission, we measured the contractile forces generated by CMs, as well as by CFs that were coupled to the CMs. We observed that CFs were beating with the same frequency but at smaller magnitude compared to CMs, and their contractility was dependent on the substrate stiffness. Our results showed that beating CMs actively stretched neighbouring CFs through the deformation of the substrate the cells were seeded on, which promoted the myocardial contractility through mechanical coupling. The results also revealed that CM contractility was propagated greater on soft substrates than stiff ones. Results of this study could help identify the role of the infarcted tissue stiffness and size on heart failure. This study is supported by NSF Grant No: 1530884.

  11. Coupling device of the control rod and of the drive mechanism

    International Nuclear Information System (INIS)

    Savary, F.

    1986-01-01

    The invention proposes a coupling device removable in which the connection between the upper head of the control rod and the drive mechanism is a real rigid fixing, in the mechanical sense of the term, suppressing longitudinal play and allowing to restrict the momenta occurring when locating the control rods [fr

  12. Coupling of single quantum emitters to plasmons propagating on mechanically etched wires

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, Alexander; Lu, Ying-Wei

    2013-01-01

    We demonstrate the coupling of a single nitrogen vacancy center in a nanodiamond to propagating plasmonic modes of mechanically etched silver nanowires. The mechanical etch is performed on single crystalline silver nanoplates by the tip of an atomic force microscope cantilever to produce wires...

  13. A novel flow sensor based on resonant sensing with two-stage microleverage mechanism

    Science.gov (United States)

    Yang, B.; Guo, X.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-04-01

    The design, simulation, fabrication, and experiments of a novel flow sensor based on resonant sensing with a two-stage microleverage mechanism are presented in this paper. Different from the conventional detection methods for flow sensors, two differential resonators are adopted to implement air flow rate transformation through two-stage leverage magnification. The proposed flow sensor has a high sensitivity since the adopted two-stage microleverage mechanism possesses a higher amplification factor than a single-stage microleverage mechanism. The modal distribution and geometric dimension of the two-stage leverage mechanism and hair are analyzed and optimized by Ansys simulation. A digital closed-loop driving technique with a phase frequency detector-based coordinate rotation digital computer algorithm is implemented for the detection and locking of resonance frequency. The sensor fabricated by the standard deep dry silicon on a glass process has a device dimension of 5100 μm (length) × 5100 μm (width) × 100 μm (height) with a hair diameter of 1000 μm. The preliminary experimental results demonstrate that the maximal mechanical sensitivity of the flow sensor is approximately 7.41 Hz/(m/s)2 at a resonant frequency of 22 kHz for the hair height of 9 mm and increases by 2.42 times as hair height extends from 3 mm to 9 mm. Simultaneously, a detection-limit of 3.23 mm/s air flow amplitude at 60 Hz is confirmed. The proposed flow sensor has great application prospects in the micro-autonomous system and technology, self-stabilizing micro-air vehicles, and environmental monitoring.

  14. Bone density does not reflect mechanical properties in early-stage arthrosis

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, CC; Hvid, I

    2001-01-01

    : medial arthrosis, lateral control, normal medial and normal lateral controls. The specimens were tested in compression to determine mechanical properties and then physical/compositional properties. Compared to the normal medial control, we found reductions in ultimate stress, Young's modulus, and failure...... cancellous bone and the 3 controls. None of the mechanical properties of arthrotic cancellous bone could be predicted by the physical/compositional properties measured. The increase in bone tissue in early-stage arthrotic cancellous bone did not make up for the loss of mechanical properties, which suggests...

  15. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    International Nuclear Information System (INIS)

    Min, Kibok

    2011-01-01

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  16. Reducing mechanical cross-coupling in phased array transducers using stop band material as backing

    Science.gov (United States)

    Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.

    2018-06-01

    Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.

  17. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  18. CO2-ECBM related coupled physical and mechanical transport processes

    Science.gov (United States)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  19. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  20. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  1. K -essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João [Departamento de Física, Universidade da Beira Interior, Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal); Morais, João [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); Zhuk, Alexander, E-mail: mbl@ubi.pt, E-mail: sravan@ubi.pt, E-mail: jmarto@ubi.pt, E-mail: jviegas001@ikasle.ehu.eus, E-mail: ai.zhuk2@gmail.com [Astronomical Observatory, Odessa National University, Street Dvoryanskaya 2, Odessa 65082 (Ukraine)

    2016-07-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K -essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K -essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K -essence models: (i) the pure kinetic K -essence field, (ii) a K -essence with a constant speed of sound and (iii) the K -essence model with the Lagrangian bX + cX {sup 2}− V (φ). We demonstrate that if the K -essence is coupled, all these K -essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.

  2. Coupled hygrothermal, electrochemical, and mechanical modelling for deterioration prediction in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Lepech, M.

    2017-01-01

    In this paper a coupled hygrothermal, electrochemical, and mechanical modelling approach for the deterioration prediction in cementitious materials is briefly outlined. Deterioration prediction is thereby based on coupled modelling of (i) chemical processes including among others transport of hea......, i.e. information, such as such as corrosion current density, damage state of concrete cover, etc., are constantly exchanged between the models....... and matter as well as phase assemblage on the nano and micro scale, (ii) corrosion of steel including electrochemical processes at the reinforcement surface, and (iii) material performance including corrosion- and load-induced damages on the meso and macro scale. The individual FEM models are fully coupled...

  3. Mechanical Design of a 4-Stage ADR for the PIPER mission

    Science.gov (United States)

    James, Bryan L.; Kimball, Mark O.; Shirron, Peter J.; Sampson, Michael A.; Letmate, Richard V.; Jackson, Michael L.

    2017-01-01

    The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.

  4. Mechanical design of ultraprecision weak-link stages for nanometer-scale x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D [APS Engineering Support Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Maser, J, E-mail: shu@aps.anl.go [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-09-01

    A nanopositioning diagnostic setup has been built to support the Argonne Center for Nanoscale Materials (CNM) nanoprobe instrument commissioning process at the APS. Its laser Doppler interferometer system provides subnanometer positioning diagnostic resolution with large dynamic range. A set of original APS designed ultraprecision PZT-driven weak-link stages with high-stiffness motor-driven stages has been tested with this diagnostic setup. In this paper we present a preliminary test result of the ultraprecision weak-link stage system developed for the CNM hard x-ray nanoprobe instrument at APS sector 26. A test result for a novel laminar weak-link mechanism with sub-centimeter travel range and sub-nanometer positioning resolution is also introduced in this paper as a future work.

  5. Higher order coupling between rigid-body and elastic motion in flexible mechanisms

    International Nuclear Information System (INIS)

    Esat, I.I.; Ianakiev, A.

    1995-01-01

    The paper presents an investigation of the influence of the higher order coupling terms between the rigid-body and elastic motion into flexible mechanism dynamics. The configuration of the mechanical system is obtained by using the so called hybrid coordinates. The kinematic description of the mechanism was obtained using the D-H 4 x 4 transformation matrices. The elastic deformation of each point of the mechanism is described by the finite element modeling (FEM) type interpolation scheme. The dynamic model of the flexible mechanism consists due to the hybrid coordinates of two groups of differential equations. The first group describes the manipulator transport motion and the second group describes the vibration. In this paper the authors evaluated the contribution of the coupling terms between the two groups of differential equations and selected only those with high contribution

  6. Role of temperature and composition on the thermal-hydro-mechanical coupling of concretes

    International Nuclear Information System (INIS)

    Brue, Flore

    2009-01-01

    The French project of the storage of nuclear wastes, which is managed by the Andra, needs some experimental data on the durability of the concrete. Loadings which are taken into account are the desaturation/re-saturation processes, the heat load and the mechanical evolution. Hence this study focuses on the coupling thermo-hydro-mechanical on concretes of the research program of Andra, made with CEM I and CEM V/A cement type. The water saturation degree and shrinkages of materials, which are subjected to desiccation or re-saturation, are dependent on the imposed thermal and hydrous conditions and on their microstructural characteristics. Moreover the study of the mechanical evolution is gone further at 20 C in function of the water saturation degree. Different short-term tests highlight a hydrous damage, which determine the mechanical behaviour. The long-term study of desiccation creep shows the coupling between the durability, the mechanical evolution and the desiccation. (author)

  7. Determination of Process Parameters in Multi-Stage Hydro-Mechanical Deep Drawing by FE Simulation

    Science.gov (United States)

    Kumar, D. Ravi; Manohar, M.

    2017-09-01

    In this work, analysis has been carried to simulate manufacturing of a near hemispherical bottom part with large depth by hydro-mechanical deep drawing with an aim to reduce the number of forming steps and to reduce the extent of thinning in the dome region. Inconel 718 has been considered as the material due to its importance in aerospace industry. It is a Ni-based super alloy and it is one of the most widely used of all super alloys primarily due to large-scale applications in aircraft engines. Using Finite Element Method (FEM), numerical simulations have been carried out for multi-stage hydro-mechanical deep drawing by using the same draw ratios and design parameters as in the case of conventional deep drawing in four stages. The results showed that the minimum thickness in the final part can be increased significantly when compared to conventional deep drawing. It has been found that the part could be deep drawn to the desired height (after trimming at the final stage) without any severe wrinkling. Blank holding force (BHF) and peak counter pressure have been found to have a strong influence on thinning in the component. Decreasing the coefficient of friction has marginally increased the minimum thickness in the final component. By increasing the draw ratio and optimizing BHF, counter pressure and die corner radius in the simulations, it has been found that it is possible to draw the final part in three stages. It has been found that thinning can be further reduced by decreasing the initial blank size without any reduction in the final height. This reduced the draw ratio at every stage and optimum combination of BHF and counter pressure have been found for the 3-stage process also.

  8. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    DEFF Research Database (Denmark)

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter

    2017-01-01

    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  9. Examination of a proposed phonon-coupling mechanism for cold fusion

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1992-01-01

    In this paper the proposed nuclear energy in an atomic lattice (NEAL) mechanism for nuclear fusion in a cathode during electrolysis of D 2 O is examined. In this mechanism, coupled harmonic motion of deuterons is supposed to lead to a reduction in the width of the Coulomb barrier for proton-deuteron (p-d) fusion in palladium, thereby substantially increasing the fusion rate. Instead, it is argued that deuteron-deuteron coupling does not have an important effect and that interaction with phonons does not enhance the p-d fusion rate

  10. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  11. Adaptive kanban control mechanism for a single-stage hybrid system

    Science.gov (United States)

    Korugan, Aybek; Gupta, Surendra M.

    2002-02-01

    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  12. Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment.

    Science.gov (United States)

    Levine, Audrey D; Raymer, Blake J; Jahn, Johna

    2004-01-01

    Hydrogen sulfide in groundwater can be oxidized by aerobic bacteria to form elemental sulfur and biomass. While this treatment approach is effective for conversion of hydrogen sulfide, it is important to have adequate control of the biomass exiting the biological treatment system to prevent release of elemental sulfur into the distribution system. Pilot scale tests were conducted on a Florida groundwater to evaluate the use of two-stage upflow filtration downstream of biological sulfur oxidation. The combined biological and filtration process was capable of excellent removal of hydrogen sulfide and associated turbidity. Additional benefits of this treatment approach include elimination of odor generation, reduction of chlorine demand, and improved stability of the finished water.

  13. Coupled thermo-mechanical creep analysis for boiling water reactor pressure vessel lower head

    International Nuclear Information System (INIS)

    Villanueva, Walter; Tran, Chi-Thanh; Kudinov, Pavel

    2012-01-01

    Highlights: ► We consider a severe accident in a BWR with melt pool formation in the lower head. ► We study the influence of pool depth on vessel failure mode with creep analysis. ► There are two modes of failure; ballooning of vessel bottom and a localized creep. ► External vessel cooling can suppress creep and subsequently prevent vessel failure. - Abstract: In this paper we consider a hypothetical severe accident in a Nordic-type boiling water reactor (BWR) at the stage of relocation of molten core materials to the lower head and subsequent debris bed and then melt pool formation. Nordic BWRs rely on reactor cavity flooding as a means for ex-vessel melt coolability and ultimate termination of the accident progression. However, different modes of vessel failure may result in different regimes of melt release from the vessel, which determine initial conditions for melt coolant interaction and eventually coolability of the debris bed. The goal of this study is to define if retention of decay-heated melt inside the reactor pressure vessel is possible and investigate modes of the vessel wall failure otherwise. The mode of failure is contingent upon the ultimate mechanical strength of the vessel structures under given mechanical and thermal loads and applied cooling measures. The influence of pool depth and respective transient thermal loads on the reactor vessel failure mode is studied with coupled thermo-mechanical creep analysis. Efficacy of control rod guide tube (CRGT) cooling and external vessel wall cooling as potential severe accident management measures is investigated. First, only CRGT cooling is considered in simulations revealing two different modes of vessel failure: (i) a ‘ballooning’ of the vessel bottom and (ii) a ‘localized creep’ concentrated within the vicinity of the top surface of the melt pool. Second, possibility of in-vessel retention with CRGT and external vessel cooling is investigated. We found that the external vessel

  14. Coupling Langevin Dynamics With Continuum Mechanics: Exposing the Role of Sarcomere Stretch Activation Mechanisms to Cardiac Function

    Directory of Open Access Journals (Sweden)

    Takumi Washio

    2018-04-01

    Full Text Available High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm and temporal (from 1 ns to 1 ms gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to

  15. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 4

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Sagawa, Hiroshi; Matsuoka, Fushiki; Chijimatsu, Masakazu; Amemiya, Kiyoshi

    2005-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu-3D·EL and PHREEQC, those are existing analysis code, is developed in this study. (1) We have introduced 8 nodes element for THAMES code in order to solve the coupled thermal, hydraulic and mechanical phenomena. Furthermore, in order to obtain the reliable resolution, each phenomenon is solved separately instead of full coupling. (2) In order to upgrade Dtransu-3D·EL model, we have introduced gas diffusion independent on aqueous element. (3) We have adopted surface site density for the bentonite depend on water content and CSH solid phase based on the ratio of C/S for cementitious material in the geochemistry module, and studied on the methodology of time mesh for kinetic model and separate method for pore water chemistry in the bentonite. (4) In order to develop THMC code, we have modified Multi p hreeqc to keep efficiency distributed processing for geochemical calculation and modified COUPLYS to calculate continuous treatment, and studied on the coupling module. After THAMES, Dtransu, PHREEQC and the hydraulic conductivity module were installed in COUPLYS, verification study was carried out to check basic function. (5) In order to ensure efficiency of analysis processor, we have developed supporting tool for graphic processor for THMC code and supporting tool of interpretation for geochemistry results. (author)

  16. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    Directory of Open Access Journals (Sweden)

    Wanlei Liu

    Full Text Available A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading. Keywords: Laser irradiation, Multiscale analysis, Bridge model, Thermal-mechanical

  17. Macroscopic Entangled State Generation with Optomechanical Coupling of Two Mechanical Modes

    Science.gov (United States)

    Weaver, Matthew; Luna, Fernando; Buters, Frank; Heeck, Kier; de Man, Sven; Bouwmeester, Dirk

    Mechanical resonators with a large quantum position uncertainty are an excellent test system for proposed decoherence mechanisms in massive systems. We present a scheme to optomechanically entangle two mechanical resonators with large frequency separation via two tone driving and single photon projection measurements. The quantum position uncertainty can be tuned with a variable optical pulse displacement operation, and independent single photon readout of the two resonators provides robust verification of the quantum states of the system. This scheme is currently experimentally feasible in a number of high mass opto- and electro-mechanical systems. We demonstrate one such system with two spatially and frequency separated Si3N4 trampoline resonators. We also show how the resonators can be coupled with two tone driving and the single photon optomechanical coupling rates can be tuned.

  18. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    Science.gov (United States)

    Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.

    2013-09-01

    Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.

  19. A new coupling mechanism between two graphene electron waveguides for ultrafast switching

    Science.gov (United States)

    Huang, Wei; Liang, Shi-Jun; Kyoseva, Elica; Ang, Lay Kee

    2018-03-01

    In this paper, we report a novel coupling between two graphene electron waveguides, in analogy the optical waveguides. The design is based on the coherent quantum mechanical tunneling of Rabi oscillation between the two graphene electron waveguides. Based on this coupling mechanism, we propose that it can be used as an ultrafast electronic switching device. Based on a modified coupled mode theory, we construct a theoretical model to analyze the device characteristics, and predict that the switching speed is faster than 1 ps and the on-off ratio exceeds 106. Due to the long mean free path of electrons in graphene at room temperature, the proposed design avoids the limitation of low temperature operation required in the traditional design by using semiconductor quantum-well structure. The layout of our design is similar to that of a standard complementary metal-oxide-semiconductor transistor that should be readily fabricated with current state-of-art nanotechnology.

  20. Thermal and Mechanical Performance of the First MICE Coupling Coil and the Fermilab Solenoid Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, Roger [Fermilab; Carcagno, Ruben [Fermilab; Caspi, Shlomo [LBNL, Berkeley; DeMello, Allan [LBNL, Berkeley; Kokoska, Lidija [Fermilab; Orris, D. [Fermilab; Pan, Heng [LBNL, Berkeley; Sylvester, Cosmore [Fermilab; Tartaglia, Michael

    2014-11-06

    The first coupling coil for the Muon Ionization Cooling Experiment (MICE) has been tested in a conduction-cooled environment at the Solenoid Test Facility at Fermilab. An overview of the thermal and mechanical performance of the magnet and the test stand during cool-down and power testing of the magnet is presented.

  1. Media as the mechanism behind structural coupling and the evolution of the mind

    DEFF Research Database (Denmark)

    Tække, Jesper

    Luhmann (2002, 275), in his introduction to the systems theory, explicitly writs, that language is the mechanism behind the structural coupling between psychic – and social systems. This paper, in its first part, provides an interpretative and selective presentation of Luhmann’s argumentation...

  2. High-performance coupled poro-hydro-mechanical models to resolve fluid escape pipes

    Science.gov (United States)

    Räss, Ludovic; Makhnenko, Roman; Podladchikov, Yury

    2017-04-01

    Field observations and laboratory experiments exhibit inelastic deformation features arising in many coupled settings relevant to geo-applications. These irreversible deformations and their specific patterns suggest a rather ductile or brittle mechanism, such as viscous creep or micro cracks, taking place on both geological (long) and human (short) timescales. In order to understand the underlying mechanisms responsible for these deformation features, there is a current need to accurately resolve the non-linearities inherent to strongly coupled physical processes. Among the large variety of modelling tools and softwares available nowadays in the community, very few are capable to efficiently solve coupled systems with high accuracy in both space and time and run efficiently on modern hardware. Here, we propose a robust framework to solve coupled multi-physics hydro-mechanical processes on very high spatial and temporal resolution in both two and three dimensions. Our software relies on the Finite-Difference Method and a pseudo-transient scheme is used to converge to the implicit solution of the system of poro-visco-elasto-plastic equations at each physical time step. The rheology including viscosity estimates for major reservoir rock types is inferred from novel lab experiments and confirms the ease of flow of sedimentary rocks. Our results propose a physical mechanism responsible for the generation of high permeability pathways in fluid saturated porous media and predict their propagation in rates observable on operational timescales. Finally, our software scales linearly on more than 5000 GPUs.

  3. Spread and Control of Mobile Benign Worm Based on Two-Stage Repairing Mechanism

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2014-01-01

    Full Text Available Both in traditional social network and in mobile network environment, the worm is a serious threat, and this threat is growing all the time. Mobile smartphones generally promote the development of mobile network. The traditional antivirus technologies have become powerless when facing mobile networks. The development of benign worms, especially active benign worms and passive benign worms, has become a new network security measure. In this paper, we focused on the spread of worm in mobile environment and proposed the benign worm control and repair mechanism. The control process of mobile benign worms is divided into two stages: the first stage is rapid repair control, which uses active benign worm to deal with malicious worm in the mobile network; when the network is relatively stable, it enters the second stage of postrepair and uses passive mode to optimize the environment for the purpose of controlling the mobile network. Considering whether the existence of benign worm, we simplified the model and analyzed the four situations. Finally, we use simulation to verify the model. This control mechanism for benign worm propagation is of guiding significance to control the network security.

  4. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  5. Revealing the Interface Structure and Bonding Mechanism of Coupling Agent Treated WPC

    Directory of Open Access Journals (Sweden)

    Jiuping Rao

    2018-03-01

    Full Text Available This paper presents the interfacial optimisation of wood plastic composites (WPC based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were investigated by Attenuated total reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR and Solid state 13C Nuclear Magnetic Resonance spectroscopy (NMR analyses. The results revealed the chemical reactions that occurred between the coupling agents and raw materials, which thus contributed to the enhancement of compatibility and interfacial adhesion between the constituents of WPC. NMR results also indicated that there existed the transformation of crystalline cellulose to an amorphous state during the coupling agent treatments, reflecting the inferior resonance of crystalline carbohydrates. Fluorescence Microscope (FM and Scanning Electron Microscope (SEM analyses showed the improvements of wood particle dispersion and wettability, compatibility of the constituents, and resin penetration, and impregnation of the composites after the coupling agent treatments. The optimised interface of the composites was attributed to interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking bonding mechanisms.

  6. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system.

    Science.gov (United States)

    Yeo, I; de Assis, P-L; Gloppe, A; Dupont-Ferrier, E; Verlot, P; Malik, N S; Dupuy, E; Claudon, J; Gérard, J-M; Auffèves, A; Nogues, G; Seidelin, S; Poizat, J-Ph; Arcizet, O; Richard, M

    2014-02-01

    Recent progress in nanotechnology has allowed the fabrication of new hybrid systems in which a single two-level system is coupled to a mechanical nanoresonator. In such systems the quantum nature of a macroscopic degree of freedom can be revealed and manipulated. This opens up appealing perspectives for quantum information technologies, and for the exploration of the quantum-classical boundary. Here we present the experimental realization of a monolithic solid-state hybrid system governed by material strain: a quantum dot is embedded within a nanowire that features discrete mechanical resonances corresponding to flexural vibration modes. Mechanical vibrations result in a time-varying strain field that modulates the quantum dot transition energy. This approach simultaneously offers a large light-extraction efficiency and a large exciton-phonon coupling strength g0. By means of optical and mechanical spectroscopy, we find that g0/2 π is nearly as large as the mechanical frequency, a criterion that defines the ultrastrong coupling regime.

  7. The coupling of mechanical dynamics and induced currents in plates and surfaces

    International Nuclear Information System (INIS)

    Weissenburger, D.W.; Bialek, J.M.

    1986-10-01

    Significant mechanical reactions and deflections may be produced when electrical eddy currents induced in a conducting structure by transformer-like electromotive forces interact with background magnetic fields. Additional eddy currents induced by structural motion through the background fields modify both the mechanical and electrical dynamic behavior of the system. The observed effects of these motional eddy currents are sometimes referred to as magnetic damping and magnetic stiffness. This paper addresses the coupled structural deformation and eddy currents in flat plates and simple two-dimensional surfaces in three-space. A coupled system of equations has been formulated using finite element techniques for the mechanical aspects and a mesh network method for the electrical aspects of the problem

  8. Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction

    International Nuclear Information System (INIS)

    Besser, Achim; Schwarz, Ulrich S

    2007-01-01

    Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here, we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings

  9. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  10. Effect Of Coupling Agent On Microstructure And Mechanical Properties Of Polipropene-Flour Maizena Composite

    International Nuclear Information System (INIS)

    Sudirman; Karo Karo, Aloma; Darwinto, Tri; Teguh, Yulius S.P.P.; Handayani, Ari; Iraman, Dian

    2001-01-01

    Synthesize of PoIipropilene-flour maizena composite with addition of coupling agent have been done. Polypropylene (PP') which containing of CH 3 functional group was choosen due to its good property of degradable compare to Polyethylene (PE). The experiment carried out by mixing thermoplastic polymer (polypropylene with variation of PP MF2 and PP MFIO) with natural polymer ,flour maizena) varied in the mixing temperature of 180 c . The mixing caused the decreased mechanical properties of the PI' as major component. In addition, PE has better Mechanical properties than PP. Therefore, coupling agent of 3-Aminoprophyl triethoxy silane was added into the composite having function to homogenize the composite, thus the mechanical properties of the composite could increased. The experimental result showed that by adding the coupling agent of 10 phr (per hundred polypmpilene) ioto the PP-Maizena composite (60:40) . of the PP MFIO type could increased a tensile strength from 150.11kg/cm 2 to 226.93 kg/cm 2 , but it decreased the elongation at break from 75.7% to be brittle. Oil the contrary. the addition of coupling agent of 10 phr into PP MF2 could decreased either the tensile strength from 172.05 kg/cm2 to 154.93 kg/cm 2 , or the elongation at break of the composite from 520 % to 425 %

  11. Target duality in N= 8 superconformal mechanics and the coupling of dual pairs

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Marcelo [Carrera de Física Universidad Autónoma Tomás Frías, Av. Del Maestro s/n, Casilla 36, Potosí (Bolivia, Plurinational State of); Khodaee, Sadi; Toppan, Francesco [TEO, CBPF Rua Dr. Xavier Sigaud 150 (Urca), Rio de Janeiro (RJ), cep 22290-180 (Brazil); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover (Germany); Centre for Quantum Engineering and Space-Time Research, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover (Germany)

    2013-07-15

    We couple dual pairs of N= 8 superconformal mechanics with conical targets of dimension d and 8−d. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The N= 4 analog, joining an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail.

  12. Early stages of the mechanical alloying of TiC–TiN powder mixtures

    International Nuclear Information System (INIS)

    Mura, Giovanna; Musu, Elodia; Delogu, Francesco

    2013-01-01

    The present work focuses on the alloying behavior of TiC–TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: ► Mechanically processed TiC–TiN powder mixtures form two solid solutions. ► An analytical model was developed to describe the mechanical alloying kinetics. ► The amount of powder alloyed at collision was indirectly estimated. ► A few nanomoles of material participate in the alloying process at each collision. ► The chemical composition of the solid solutions was shown to change discontinuously.

  13. Early stages of the mechanical alloying of TiC-TiN powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Giovanna [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Musu, Elodia [Industrial Telemicroscopy Laboratory, Sardegna Ricerche, Polaris, Technology Park of Sardinia, Edificio 3, Loc. Piscinamanna, 09010 Pula (Italy); Delogu, Francesco, E-mail: francesco.delogu@dimcm.unica.it [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Universita degli Studi di Cagliari, via Marengo 2, I-09123 Cagliari (Italy)

    2013-01-15

    The present work focuses on the alloying behavior of TiC-TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: Black-Right-Pointing-Pointer Mechanically processed TiC-TiN powder mixtures form two solid solutions. Black-Right-Pointing-Pointer An analytical model was developed to describe the mechanical alloying kinetics. Black-Right-Pointing-Pointer The amount of powder alloyed at collision was indirectly estimated. Black-Right-Pointing-Pointer A few nanomoles of material participate in the alloying process at each collision. Black-Right-Pointing-Pointer The chemical composition of the solid solutions was shown to change discontinuously.

  14. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Science.gov (United States)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  15. Vibroacoustic Modeling of Mechanically Coupled Structures: Artificial Spring Technique Applied to Light and Heavy Mediums

    Directory of Open Access Journals (Sweden)

    L. Cheng

    1996-01-01

    Full Text Available This article deals with the modeling of vibrating structures immersed in both light and heavy fluids, and possible applications to noise control problems and industrial vessels containing fluids. A theoretical approach, using artificial spring systems to characterize the mechanical coupling between substructures, is extended to include fluid loading. A structure consisting of a plate-ended cylindrical shell and its enclosed acoustic cavity is analyzed. After a brief description of the proposed technique, a number of numerical results are presented. The analysis addresses the following specific issues: the coupling between the plate and the shell; the coupling between the structure and the enclosure; the possibilities and difficulties regarding internal soundproofing through modifications of the joint connections; and the effects of fluid loading on the vibration of the structure.

  16. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100 0 C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced

  17. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, C.F.; Mangold, D.C. (eds.)

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  18. Process analysis and mechanism of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B.Q. [Chinese Academy of Science, Taiyuan (China). Inst. of Coal Chemistry, State Key Laboratory of Coal Conversion

    2002-07-01

    The mechanism of multi-stage hydropyrolysis of coal was probed through detailed analysis of products of hydropyrolysis with different holding methods. The results showed that the holding method significantly affects the product distributions, thus making an apparent difference in hydrogen utilization efficiency. The holding temperature should be about 350-500{degree}C during which more free radicals are produced rapidly. Pore-riched structures are formed at the holding stage at 350{degree}C due to the evolution of large amount of volatiles, which is favorable to the subsequent hydrogenation reaction. The holding at a low temperature favors the reaction of hydrogen with oxygen-containing groups, leading to the formation of phenol and avoiding the formation of water at a high temperature. The cleavage of chemical bonds in the char is mainly dependent-on the pyrolysis temperature. The effect of holding stage is to change the distribution and components of products via stabilizing the free radicals and hydrogenating the heavier products.

  19. Study on the mechanism of retinal ganglion cell apoptosis in early stage of diabetic rats

    Directory of Open Access Journals (Sweden)

    Rui-Dong Gu

    2014-03-01

    Full Text Available AIM: To investigate the mechanism of retinal ganglion cell apoptosis in early stage of streptozotocin(STZ-induced diabetic rats. METHODS: Sixty SD rats were randomly divided into two groups: control group(CONand diabetes mellitus group(DM. Diabetic rat model was produced by intraperitoneal injection of 1% STZ in 30 adult male SD rats. At 4, 8, 12wk,the rats were killed and eyeballs were enucleated for the HE staining, TUNEL staining, transmission electron microscopy detection respectively, and laser confocal microscope detection was used to detect the calcium ion concentration.RESULTS:At 8wk RGCs decreased gradually and appeared disordered arrangement and got worse at 12wk in DM group. In DM group, mitochondrial swelling was detected at 4wk., and became more obvious, more in number at 8wk with reduction in some cells' volume and the number of organelles decreased. In DM group, few TUNEL positive RGCs were seen at 4wk, and became more and more at 8 and 12wk. The apoptosis index was significantly higher in DM group compared with CON group in different time points(PPPCONCLUSION: The study suggested that RGCs apoptosis occurs in early stage of diabetes, the mechanism might be associated with increased intracellular calcium ion concentration.

  20. Study of gap conductance model for thermo mechanical fully coupled finite element model

    International Nuclear Information System (INIS)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2012-01-01

    A light water reactor (LWR) fuel rod consists of zirconium alloy cladding and uranium dioxide pellets, with a slight gap between them. Therefore, the mechanical integrity of zirconium alloy cladding is the most critical issue, as it is an important barrier for fission products released into the environment. To evaluate the stress and strain of the cladding during operation, fuel performance codes with a one-dimensional (1D) approach have been reported since the 1970s. However, it is difficult for a 1D model to simulate the stress and strain of the cladding accurately owing to a lack of degree of freedom. A LWR fuel performance code should include thermo-mechanical coupled model owing to the existence of the fuel-cladding gap. Generally, the gap that is filled with helium gas results in temperature drop along radius direction. The gap conductance that determines temperature gradient within the gap is very sensitive to gap thickness. For instance, once the gap size increases up to several microns in certain region, difference of surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Consequently, the Finite Element (FE) module, which can simulate a higher degree of freedom numerically, is an indispensable requirement to understand the thermomechanical behavior of cladding. FRAPCON-3, which is reliable performance code, has iterative loop for thermo-mechanical coupled calculation to solve 1D gap conductance model. In FEMAXI-III, 1D thermal analysis module and FE module for stress-strain analysis were separated. 1D thermal module includes iterative analysis between them. DIONISIO code focused on thermal contact model as function of surface roughness and contact pressure when the gap is closed. In previous works, gap conductance model has been developed only for 1D model or hybrid model (1D and FE). To simulate temperature, stress and strain

  1. Interference coupling mechanisms in Silicon Strip Detectors - CMS tracker "wings" A learned lesson for SLHC

    CERN Document Server

    Arteche, F; Rivetta, C

    2009-01-01

    The identification of coupling mechanisms between noise sources and sensitive areas of the front-end electronics (FEE) in the previous CMS tracker sub-system is critical to optimize the design and integration of integrated circuits, sensors and power distribution circuitry for the proposed SLHC Silicon Strip Tracker systems. This paper presents a validated model of the noise sensitivity observed in the Silicon Strip Detector-FEE of the CMS tracker that allows quantifying both the impact of the noise coupling mechanisms and the system immunity against electromagnetic interferences. This model has been validated based on simulations using finite element models and immunity tests conducted on prototypes of the Silicon Tracker End-Caps (TEC) and Outer Barrel (TOB) systems. The results of these studies show important recommendations and criteria to be applied in the design of future detectors to increase the immunity against electromagnetic noise.

  2. Coupled thermo-hydro-mechanical processes associated with a radioactive waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1988-01-01

    The performance assessment of a nuclear waste geologic repository presents a scientific and technical problem of a scope far beyond the evaluation of most civil and geologic constructions. First performance prediction must be made for tens of thousands of years, and a secondly, in calculating potential leakage rates from a repository to the biosphere the authors must determine not only the mean or average travel time but also the shorter travel times of low concentrations. These two criteria demand an understanding of all significant physical and chemical processes likely to occur around a nuclear waste repository. In particular, processes coupling thermal transfer fluid flow, mechanical deformation and chemical reactors, which may be slow in a laboratory time scale, may become very important. This paper gives a general survey on the subject, with specific examples of a number of relevant coupled thermo-hydro-mechanical processes associated with nuclear waste repository

  3. A multi-scale computational scheme for anisotropic hydro-mechanical couplings in saturated heterogeneous porous media

    NARCIS (Netherlands)

    Mercatoris, B.C.N.; Massart, T.J.; Sluys, L.J.

    2013-01-01

    This contribution discusses a coupled two-scale framework for hydro-mechanical problems in saturated heterogeneous porous geomaterials. The heterogeneous nature of such materials can lead to an anisotropy of the hydro-mechanical couplings and non-linear effects. Based on an assumed model of the

  4. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    Science.gov (United States)

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes...Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...Welding- Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c

  5. Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Penna, Vittorio

    2002-01-01

    We formulate the dynamics of three coupled Bose-Einstein condensates within a semiclassical scenario based on the standard boson coherent states. We compare such a picture with that of K. Nemoto et al. [Phys. Rev. A 63, 013604 (2001)] and show how our approach entails a simple formulation of the dimeric regime therein studied. This allows us to recognize the parameters that govern the bifurcation mechanism causing self-trapping, and paves the way to the construction of analytic solutions

  6. Fluid transportation mechanisms by a coupled system of elastic membranes and magnetic fluids

    International Nuclear Information System (INIS)

    Ido, Y.; Tanaka, K.; Sugiura, Y.

    2002-01-01

    The basic properties of the fluid transportation mechanism that is produced by the coupled waves propagating along a thin elastic membrane covering a magnetic fluid layer in a shallow and long rectangular vessel are investigated. It is shown that the progressive magnetic field induced by the rectangular pulses generates sinusoidal vibration of the displacement of elastic membrane and makes the system work more efficiently than the magnetic field induced by the pulse-width-modulation method

  7. Multiscale methods coupling atomistic and continuum mechanics: analysis of a simple case

    OpenAIRE

    Blanc , Xavier; Le Bris , Claude; Legoll , Frédéric

    2007-01-01

    International audience; The description and computation of fine scale localized phenomena arising in a material (during nanoindentation, for instance) is a challenging problem that has given birth to many multiscale methods. In this work, we propose an analysis of a simple one-dimensional method that couples two scales, the atomistic one and the continuum mechanics one. The method includes an adaptive criterion in order to split the computational domain into two subdomains, that are described...

  8. Coupling effects of chemical stresses and external mechanical stresses on diffusion

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2009-01-01

    Interaction between diffusion and stress fields has been investigated extensively in the past. However, most of the previous investigations were focused on the effect of chemical stress on diffusion due to the unbalanced mass transport. In this work, the coupling effects of external mechanical stress and chemical stress on diffusion are studied. A self-consistent diffusion equation including the chemical stress and external mechanical stress gradient is developed under the framework of the thermodynamic theory and Fick's law. For a thin plate subjected to unidirectional tensile stress fields, the external stress coupled diffusion equation is solved numerically with the help of the finite difference method for one-side and both-side charging processes. Results show that, for such two types of charging processes, the external stress gradient will accelerate the diffusion process and thus increase the value of concentration while reducing the magnitude of chemical stress when the direction of diffusion is identical to that of the stress gradient. In contrast, when the direction of diffusion is opposite to that of the stress gradient, the external stress gradient will obstruct the process of solute penetration by decreasing the value of concentration and increasing the magnitude of chemical stress. For both-side charging process, compared with that without the coupling effect of external stress, an asymmetric distribution of concentration is produced due to the asymmetric mechanical stress field feedback to diffusion.

  9. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei

    2016-01-04

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  10. The disconnection mechanism of coupled migration and shear at grain boundaries

    International Nuclear Information System (INIS)

    Khater, H.A.; Serra, A.; Pond, R.C.; Hirth, J.P.

    2012-01-01

    The mechanism of coupled migration and shear is studied in a range of [0 0 0 1] tilt boundaries in hexagonal close-packed metal using atomic-scale computer simulation. Symmetrical tilt boundaries spanning the low- and high-angle regimes and comprising regular arrays of grain boundary dislocations are simulated. For each misorientation, θ, the perfect boundary (pristine) is investigated as well as one containing a disconnection. Both types of structures are subjected to incremental applied strains to determine the stress that produces coupled migration and shear. The stress for motion in the pristine case, entailing nucleation, is higher than the Peierls stress for motion when disconnections are present. We conclude that the applied stresses in our simulations exert a Peach–Koehler force on pre-existing disconnections, thereby providing a feasible mechanism with a well-defined driving force that produces coupled migration and shear. This mechanism is feasible for the lower-angle boundaries studied, and facile for the high-angle cases.

  11. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan; Askari, Abe

    2016-01-01

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  12. Numerical modeling for hydro-mechanical coupled problems in the context of geo-materials

    International Nuclear Information System (INIS)

    Fernandes, R.

    2009-01-01

    The main technical purpose of this PhD Thesis is to build up and validate a regularisation method, able to remedy to the spurious mesh dependency of post localized computations, in order to make possible hydro-mechanical coupling studies for geo-materials. The proposed model is based on the framework of second gradient models and is called the micro-dilation model. It allows to predict robustly the hydro-mechanical coupled behaviors related to the degradation of natural soils and rocks. This modeling is a clear enhancement with respect to classical second gradient computations since it requires less degrees of freedom and consequently is less time consuming. Its efficiency is shown through hydro-mechanical coupled simulations of underground excavations. Finally, an algorithm to detect several solutions in the direction of singular modes associated with negative eigenvalues is presented. It allows us to deal with the non-linear nature of the irreversible behavior of soils and rocks. The scope of this bifurcation analysis is restricted to symmetrical operators. Through the simulations of homogeneous biaxial tests and underground excavations under drained conditions, it is shown that this algorithm is an efficient and robust tool not only to detect several solutions but also to overcome numerical instabilities near singular points or due to snap-back. (author)

  13. Computational implementation of the multi-mechanism deformation coupled fracture model for salt

    International Nuclear Information System (INIS)

    Koteras, J.R.; Munson, D.E.

    1996-01-01

    The Multi-Mechanism Deformation (M-D) model for creep in rock salt has been used in three-dimensional computations for the Waste Isolation Pilot Plant (WIPP), a potential waste, repository. These computational studies are relied upon to make key predictions about long-term behavior of the repository. Recently, the M-D model was extended to include creep-induced damage. The extended model, the Multi-Mechanism Deformation Coupled Fracture (MDCF) model, is considerably more complicated than the M-D model and required a different technology from that of the M-D model for a computational implementation

  14. An examination of adaptive cellular protective mechanisms using a multi-stage carcinogenesis model

    International Nuclear Information System (INIS)

    Schollnberger, H.; Stewart, R. D.; Mitchel, R. E. J.; Hofmann, W.

    2004-01-01

    A multi-stage cancer model that describes the putative rate-limiting steps in carcinogenesis was developed and used to investigate the potential impact on lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In this deterministic cancer model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired our unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model accounts for cell birth and death processes. Ita also includes a rate of malignant transformation and a lag period for tumour formation. Cellular defence mechanisms are incorporated into the model by postulating dose and dose rate dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. Sensitivity studies were conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose rate dependent cellular defence mechanisms are incorporated into a multi-stage cancer model. For lung cancer, both linear no-threshold (LNT) and non-LNT shaped responses can be obtained. The reported studied clearly show that it is critical to know whether or not and to what extent multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years). (Author) 11 refs

  15. A Lever Coupling Mechanism in Dual-Mass Micro-Gyroscopes for Improving the Shock Resistance along the Driving Direction

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2017-04-01

    Full Text Available This paper presents the design and application of a lever coupling mechanism to improve the shock resistance of a dual-mass silicon micro-gyroscope with drive mode coupled along the driving direction without sacrificing the mechanical sensitivity. Firstly, the mechanical sensitivity and the shock response of the micro-gyroscope are theoretically analyzed. In the mechanical design, a novel lever coupling mechanism is proposed to change the modal order and to improve the frequency separation. The micro-gyroscope with the lever coupling mechanism optimizes the drive mode order, increasing the in-phase mode frequency to be much larger than the anti-phase one. Shock analysis results show that the micro-gyroscope structure with the designed lever coupling mechanism can notably reduce the magnitudes of the shock response and cut down the stress produced in the shock process compared with the traditional elastic coupled one. Simulations reveal that the shock resistance along the drive direction is greatly increased. Consequently, the lever coupling mechanism can change the gyroscope’s modal order and improve the frequency separation by structurally offering a higher stiffness difference ratio. The shock resistance along the driving direction is tremendously enhanced without loss of the mechanical sensitivity.

  16. Research on evaluation of coupled thermo-hydro-mechanical phenomena in the near-field

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Imai, Hisashi; Fukutome, Kazuhito; Kayukawa, Koji; Sasaki, Hajime; Moro, Yoshiji

    2004-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task 1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task 3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks. Furthermore, technical investigations about the in-situ full-scale experiment (called Prototype Repository Project) in Aespoe HRL facility by SKB of Sweden were performed. In order to evaluate the coupled phenomena in the engineered barrier, we use the new swelling model based on the theoretical approach. In this paper, we introduce the modeling approach and applicability about the new model. (author)

  17. Fully-coupled hydro-mechanical modelling of the D-holes and validation drift inflow

    International Nuclear Information System (INIS)

    Monsen, K.; Barton, N.; Makurat, A.

    1992-02-01

    This report presents the results from fully-coupled hydro-mechanical modelling of the D-hole and drift inflows. Joints represented in Harwells stochastically generated 8m x 8m x 8m cubes were used to select two possible joint geometries for two-dimensional rock mechanics simulations of the 2.8 x 2.2m validation drift, and the rock mass response to its excavation. The joints intersecting the four end faces of these cubes were set up in distinct element UDEC-BB models and loaded with boundary stresses of 10 MPa vertically and 14 MPa horizontally. In numerical models 5 and 8, which were run first as mechanical response (M) models (TR 91-05), full H-M coupling was performed, with calculations of inflow. In general, response to excavation was a little stronger than in hte un-coupled mechanical response (M) modelling. In the D-hole simulations, however, channel development int he disturbed zone could not occur due to less displacement taking place in the rock mass. For this reason, the stress levels were also generally much more moderate, preventing the joints from closing as much as in the drift simulations. Consequently, the D-hole model had a much better radial connectivity. It was possible to observe that the radial inflow to the D-holes was significantly higher than the flow into the drift models. However, due to the extremely small joint apertures involved (<1μm), time steps and calculation times were very slow in the H-M models, and although mechanical behaviour appeared to have reached equilibrium, there was evidence of continued transients in some of the flow regions. The drift excavation caused nearly total closing of critical joints due to local normal stress inceases. Near-blockage of fluid transportation routes was demonstrated. (au)

  18. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, Steven R.; Woody, Shane C.; Ellis, Jonathan D.

    2016-01-01

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  19. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Woody, Shane C. [InSituTec Incorporated, 7140 Weddington Road, Concord, North Carolina 28027 (United States); Ellis, Jonathan D. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2016-06-15

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  20. Psychological defense mechanisms in patients with syphilis at different stages of the disease

    Directory of Open Access Journals (Sweden)

    Filonova A.V.

    2015-09-01

    Full Text Available Purpose: the study of psychological defense mechanisms in patients with syphilis at different stages of the disease. Material and methods. We used questionnaire Plutchik-Kellerman-Comte "life style Index". The study involved 257 people (118 women (46% and 139 men (54% aged 18 to 67 years (mean age — 23,5±8,9years. Results. In patients with primary syphilis primary mecha-protection scheme is "denying"; secondary syphilis of skin and mucus-purity membranes— "replacement"; syphilis latent early — "projection"; in patients with late syphilis — intellectualization. Thus, in patients with late forms of syphilis is dominated by more Mature mechanisms of protection (projection, rationalization. Patients with early forms use more primitive mechanisms (denial, substitution. Conclusion. The obtained data may be useful in the choice of methods of psychotherapy, the formation of patients more realistic (ADAP-tive installations for the treatment, restoration of family and other social relations, the prevention of distress and improving the quality of life of patients.

  1. Compact very low temperature scanning tunneling microscope with mechanically driven horizontal linear positioning stage.

    Science.gov (United States)

    Suderow, H; Guillamon, I; Vieira, S

    2011-03-01

    We describe a scanning tunneling microscope for operation in a dilution refrigerator with a sample stage which can be moved macroscopically in a range up to a cm and with an accuracy down to the tens of nm. The position of the tip over the sample as set at room temperature does not change more than a few micrometers when cooling down. This feature is particularly interesting for work on micrometer sized samples. Nanostructures can be also localized and studied, provided they are repeated over micrometer sized areas. The same stage can be used to approach a hard single crystalline sample to a knife and cleave it, or break it, in situ. In situ positioning is demonstrated with measurements at 0.1 K in nanofabricated samples. Atomic resolution down to 0.1 K and in magnetic fields of 8 T is demonstrated in NbSe(2). No heat dissipation nor an increase in mechanical noise has been observed at 0.1 K when operating the slider.

  2. Molecular Mechanism of the Early Stage of Amyloidogenic Hexapeptides (NFGAIL) Aggregation

    International Nuclear Information System (INIS)

    Shi Bi-Yun; Zhou Bo; Cai Zhuo-Wei; Yang Zai-Xing; Xiu Peng

    2013-01-01

    Peptides/proteins aggregation can give rise to pathological conditions of many human diseases. Small partially ordered oligomers formed in the early stage of aggregation, rather than mature fibrils, are thought to be the main toxicity agent for the living cell. Thus, understanding the pathway and the underlying physical mechanism in the early stage of aggregation is very important for prevention and treatment of these protein functional diseases. Herein we use all-atom molecular dynamics simulations to study the aggregation of four NFGAIL hexapeptides (NFGAIL peptide is a core segment of human islet amyloid polypeptide and exhibits similar aggregation kinetics as the full-length polypeptide). We observe that the peptide monomers in water mainly adopt non-structural coil configurations; the four peptides which are randomly placed in water aggregate spontaneously to partially ordered oligomer (β-sheets) through dimerization or trimerization, with the dimerization predominated. Both parallel and anti-parallel β-sheets are observed. The hydrophobic interactions drive the initial peptides associations, and the subsequent conformational fluctuations promote the formation of more hydrogen bonds between the dangling hydrogen sites in the main chains of peptides. (interdisciplinary physics and related areas of science and technology)

  3. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes.

    Science.gov (United States)

    Papa, Sergio; Capitanio, Giuseppe; Papa, Francesco

    2018-02-01

    The respiratory chain of mitochondria and bacteria is made up of a set of membrane-associated enzyme complexes which catalyse sequential, stepwise transfer of reducing equivalents from substrates to oxygen and convert redox energy into a transmembrane protonmotive force (PMF) by proton translocation from a negative (N) to a positive (P) aqueous phase separated by the coupling membrane. There are three basic mechanisms by which a membrane-associated redox enzyme can generate a PMF. These are membrane anisotropic arrangement of the primary redox catalysis with: (i) vectorial electron transfer by redox metal centres from the P to the N side of the membrane; (ii) hydrogen transfer by movement of quinones across the membrane, from a reduction site at the N side to an oxidation site at the P side; (iii) a different type of mechanism based on co-operative allosteric linkage between electron transfer at the metal redox centres and transmembrane electrogenic proton translocation by apoproteins. The results of advanced experimental and theoretical analyses and in particular X-ray crystallography show that these three mechanisms contribute differently to the protonmotive activity of cytochrome c oxidase, ubiquinone-cytochrome c oxidoreductase and NADH-ubiquinone oxidoreductase of the respiratory chain. This review considers the main features, recent experimental advances and still unresolved problems in the molecular/atomic mechanism of coupling between the transfer of reducing equivalents and proton translocation in these three protonmotive redox complexes. © 2017 Cambridge Philosophical Society.

  4. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  5. Two-stage DNA compaction induced by silver ions suggests a cooperative binding mechanism

    Science.gov (United States)

    Jiang, Wen-Yan; Ran, Shi-Yong

    2018-05-01

    The interaction between silver ions and DNA plays an important role in the therapeutic use of silver ions and in related technologies such as DNA sensors. However, the underlying mechanism has not been fully understood. In this study, the dynamics of Ag+-DNA interaction at a single-molecule level was studied using magnetic tweezers. AgNO3 solutions with concentrations ranging from 1 μM to 20 μM led to a 1.4-1.8 μm decrease in length of a single λ-DNA molecule, indicating that Ag+ has a strong binding with DNA, causing the DNA conformational change. The compaction process comprises one linear declining stage and another sigmoid-shaped stage, which can be attributed to the interaction mechanism. Considering the cooperative effect, the sigmoid trend was well explained using a phenomenological model. By contrast, addition of silver nanoparticle solution induced no detectable transition of DNA. The dependence of the interaction on ionic strength and DNA concentration was examined via morphology characterization and particle size distribution measurement. The size of the Ag+-DNA complex decreased with an increase in Ag+ ionic strength ranging from 1 μM to 1 mM. Morphology characterization confirmed that silver ions induced DNA to adopt a compacted globular conformation. At a fixed [AgNO3]:[DNA base pairs] ratio, increasing DNA concentration led to increased sizes of the complexes. Intermolecular interaction is believed to affect the Ag+-DNA complex formation to a large extent.

  6. Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that determine the Reliability and Operational Lifetimes for CPV Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dauskardt, Reinhold H. [Stanford Univ., CA (United States)

    2017-04-30

    This project sought to identify and characterize the coupled intrinsic photo-chemo-mechanical degradation mechanisms that determine the reliability and operational lifetimes for CPV technologies. Over a three year period, we have completed a highly successful program which has developed quantitative metrologies and detailed physics-based degradation models, providing new insight into the fundamental reliability physics necessary for improving materials, creating accelerated testing protocols, and producing more accurate lifetime predictions. The tasks for the program were separated into two focus areas shown in the figure below. Focus Area 1, led by Reinhold Dauskardt and Warren Cai with a primary collaboration with David Miller of NREL, studied the degradation mechanisms present in encapsulant materials. Focus Area 2, led by Reinhold Dauskardt and Ryan Brock with a primary collaboration with James Ermer and Peter Hebert of Spectrolab, studied stress development and degradation within internal CPV device interfaces. Each focus area was productive, leading to several publications, including findings on the degradation of silicone encapsulant under terrestrial UV, a model for photodegradation of silicone encapsulant adhesion, quantification and process tuning of antireflective layers on CPV, and discovery of a thermal cycling degradation mechanism present in metal gridline structures.

  7. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  8. Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution

    Science.gov (United States)

    Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.

    Air quality models (AQM) consist of many modules (meteorology, emission, chemistry, deposition), and in some conditions such as: vicinity of clouds or aerosols plumes, complex local circulations (mountains, sea breezes), fully coupled models (online method) are necessary. In order to study the impact of lumped chemical mechanisms in AQM simulations, we examine the ability of both different chemical mechanisms: (i) simplified: Condensed Version of the MOdèle de Chimie Atmosphérique 2.2 (CV-MOCA2.2), and (ii) reference: Regional Atmospheric Chemistry Model (RACM), which are coupled online with the Regional Atmospheric Modeling Systems (RAMS) model, on the distribution of pollutants. During the ESCOMPTE experiment (Expérience sur Site pour COntraindre les Modèles de Pollution et de Transport d'Emissions) conducted over Southern France (including urban and industrial zones), Intensive observation periods (IOP) characterized by various meteorological and mixed chemical conditions are simulated. For both configurations of modeling, numerical results are compared with surface measurements (75 stations) for primary (NO x) and secondary (O 3) species. We point out the impact of the two different chemical mechanisms on the production of species involved in the oxidizing capacity such as ozone and radicals within urban and industrial areas. We highlight that both chemical mechanisms produce very similar results for the main pollutants (NO x and O 3) in three-dimensional (3D) distribution, despite large discrepancies in 0D modeling. For ozone concentration, we found sometimes small differences (5-10 ppb) between the mechanisms under study according to the cases (polluted or not). The relative difference between the two mechanisms over the whole domain is only -7% for ozone from CV-MOCA 2.2 versus RACM. When the order of magnitude is needed rather than an accurate estimate, a reduced mechanism is satisfactory. It has the advantage of running faster (four times less than CPU

  9. Mechanically-induced osteogenesis in the cortical bone of pre- to peripubertal stage and peri- to postpubertal stage mice

    Directory of Open Access Journals (Sweden)

    Plochocki Jeffrey H

    2009-06-01

    Full Text Available Abstract Background Exercise during postnatal development plays a key role in determining adult bone mass and reducing the risk of fracture and osteoporosis later in life. However, the relationship between mechanically-induced osteogenesis and age is unclear. Elevated levels of estrogen during puberty may inhibit periosteal bone formation. Thus, magnitudes of mechanically-induced osteogenesis may be vary with pubertal state. Methods The present study uses a murine model to examine age-related changes in bone formation at the femoral midshaft with voluntary exercise. Pre- to peripubertal mice aged 3 weeks and peri- to postpubertal mice aged 7 weeks were randomly divided into sedentary and exercised groups and subjected to histomorphometric comparison after 4 weeks of treatment. Results Results of the experiment indicate that exercise significantly increased osteogenesis on the periosteal and endocortical surface of the mice in the older age group (P P Conclusion These findings suggest that the amount and location of mechanically-induced osteogenesis differs by age during skeletal development. Late adolescence may be the optimal time to accrue bone mass and maximize bone strength.

  10. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    Science.gov (United States)

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  11. Coupling Mechanism and Decoupled Suspension Control Model of a Half Car

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2016-01-01

    Full Text Available A structure decoupling control strategy of half-car suspension is proposed to fully decouple the system into independent front and rear quarter-car suspensions in this paper. The coupling mechanism of half-car suspension is firstly revealed and formulated with coupled damping force (CDF in a linear function. Moreover, a novel dual dampers-based controllable quarter-car suspension structure is proposed to realize the independent control of pitch and vertical motions of the half car, in which a newly added controllable damper is suggested to be installed between the lower control arm and connection rod in conventional quarter-car suspension structure. The suggested damper constantly regulates the half-car pitch motion posture in a smooth and steady operation condition meantime achieving the expected completely structure decoupled control of the half-car suspension, by compensating the evolved CDF.

  12. An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Mark [Department of Engineering, CERN, 1211 Geneva (Switzerland); Davino, Daniele, E-mail: davino@unisannio.it [Department of Engineering, University of Sannio, Benevento (Italy); Giustiniani, Alessandro; Masi, Alessandro [Department of Engineering, CERN, 1211 Geneva (Switzerland)

    2016-04-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  13. submitter An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    CERN Document Server

    Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro

    2016-01-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  14. A One-Structure-Based Multieffects Coupled Nanogenerator for Simultaneously Scavenging Thermal, Solar, and Mechanical Energies.

    Science.gov (United States)

    Ji, Yun; Zhang, Kewei; Yang, Ya

    2018-02-01

    Rapid advances in various energy harvesters impose the challenge on integrating them into one device structure with synergetic effects for full use of the available energies from the environment. Here, a multieffect coupled nanogenerator based on ferroelectric barium titanate is reported. It promotes the ability to simultaneously scavenging thermal, solar, and mechanical energies. By integration of a pyroelectric nanogenerator, a photovoltaic cell, and a triboelectric-piezoelectric nanogenerator in one structure with only two electrodes, multieffects interact with each other to alter the electric output, and a complementary power source with peak current of ≈1.5 µA, peak voltage of ≈7 V, and platform voltage of ≈6 V is successfully achieved. Compared with traditional hybridized nanogenerators with stacked architectures, the one-structure-based multieffects coupled nanogenerator is smaller, simpler, and less costly, showing prospective in practical applications and represents a new trend of all-in-one multiple energy scavenging.

  15. Modeling of the Reaction Mechanism of Enzymatic Radical C–C Coupling by Benzylsuccinate Synthase

    Directory of Open Access Journals (Sweden)

    Maciej Szaleniec

    2016-04-01

    Full Text Available Molecular modeling techniques and density functional theory calculations were performed to study the mechanism of enzymatic radical C–C coupling catalyzed by benzylsuccinate synthase (BSS. BSS has been identified as a glycyl radical enzyme that catalyzes the enantiospecific fumarate addition to toluene initiating its anaerobic metabolism in the denitrifying bacterium Thauera aromatica, and this reaction represents the general mechanism of toluene degradation in all known anaerobic degraders. In this work docking calculations, classical molecular dynamics (MD simulations, and DFT+D2 cluster modeling was employed to address the following questions: (i What mechanistic details of the BSS reaction yield the most probable molecular model? (ii What is the molecular basis of enantiospecificity of BSS? (iii Is the proposed mechanism consistent with experimental observations, such as an inversion of the stereochemistry of the benzylic protons, syn addition of toluene to fumarate, exclusive production of (R-benzylsuccinate as a product and a kinetic isotope effect (KIE ranging between 2 and 4? The quantum mechanics (QM modeling confirms that the previously proposed hypothetical mechanism is the most probable among several variants considered, although C–H activation and not C–C coupling turns out to be the rate limiting step. The enantiospecificity of the enzyme seems to be enforced by a thermodynamic preference for binding of fumarate in the pro(R orientation and reverse preference of benzyl radical attack on fumarate in pro(S pathway which results with prohibitively high energy barrier of the radical quenching. Finally, the proposed mechanism agrees with most of the experimental observations, although the calculated intrinsic KIE from the model (6.5 is still higher than the experimentally observed values (4.0 which suggests that both C–H activation and radical quenching may jointly be involved in the kinetic control of the reaction.

  16. Development of membrane mechanical function during terminal stages of primitive erythropoiesis in mice.

    Science.gov (United States)

    Waugh, Richard E; Huang, Yu-Shan; Arif, Binish J; Bauserman, Richard; Palis, James

    2013-04-01

    During murine embryogenesis, primitive erythroblasts enter the circulation as immature nucleated cells and progressively mature as a semisynchronous cohort, enucleating between E12.5 and E16.5. In this report, we examine the mechanical properties of these cells to determine how their mechanical development differs from that of definitive erythroid cells, which mature extravascularly in protected marrow microenvironments. Primitive erythroid cells acquire normal membrane deformability by E12.5 (i.e., as late stage erythroblasts) and maintain the same level of surface stiffness through E17.5. During this same period, the strength of association between the membrane bilayer and the underlying skeleton increases, as indicated by an approximate doubling of the energy required to separate bilayer from skeleton. At the same time, these cells undergo dramatic changes in surface area and volume, losing 35% of their surface area and 50% of their volume from E14.5 to E17.5. Interestingly, membrane remodeling proceeded regardless of whether the cells completed enucleation. These data suggest that in primitive erythroid cells, unlike their definitive counterparts, the critical maturational processes of membrane remodeling and enucleation are uncoupled. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  17. Comparative overview of primary sedimentation-based mechanical stage in some Romanian wastewater treatment systems

    Science.gov (United States)

    Zaharia, C.

    2017-08-01

    Nowadays, wastewater (WW) treatment facilities are considered significant exposure pathways for solid particles, and also significant concerns of any quality conscious manufacturer. Most solid particles have some forms of organic coating either used as active material or to suspend and/or stabilize different present solid materials, having increase in toxicity that must be reduced, or sometimes even totally eliminated, especially if effluent is either discharged directly to surface water, or distributed through industrial water supplies. Representatives providing innovative technologies, comprehensive supports and expertise in wastewater and sludge treatment field are known, each one using modern treatment technology and facilities. Mechanical treatment is indispensable in primary treatment steps of both municipal and industrial WW applications, its main goal being separation of floating, settling and suspended materials (especially into a primary sedimentation-based treatment step). The aim of this work is to present comparatively the performance in solids removal of conventional mechanical WW treatment stages, especially those based on primary sedimentation, or sedimentation-like operations applied for Romanian urban WW treatment plants (serving two towns with ca 18,000 inhabitants), industrial WW treatment plants (deserving industries of vegetal food processing and organic chemicals’ manufacturing) and additional information on valorisation of separated solid material and improvement possibilities.

  18. Developing strong concurrent multiphysics multiscale coupling to understand the impact of microstructural mechanisms on the structural scale

    Energy Technology Data Exchange (ETDEWEB)

    Foulk, James W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alleman, Coleman N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mota, Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bergel, Guy Leshem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Popova, Evdokia [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Montes de Oca Zapiain, David [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Kalidindi, Suryanarayana Raju [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Ernst, Corey [Elemental Technologies, Provo, UT (United States)

    2017-09-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of

  19. Theoretical and experimental investigations on the cooling capacity distributions at the stages in the thermally-coupled two-stage Stirling-type pulse tube cryocooler without external precooling

    Science.gov (United States)

    Tan, Jun; Dang, Haizheng

    2017-03-01

    The two-stage Stirling-type pulse tube cryocooler (SPTC) has advantages in simultaneously providing the cooling powers at two different temperatures, and the capacity in distributing these cooling capacities between the stages is significant to its practical applications. In this paper, a theoretical model of the thermally-coupled two-stage SPTC without external precooling is established based on the electric circuit analogy with considering real gas effects, and the simulations of both the cooling performances and PV power distribution between stages are conducted. The results indicate that the PV power is inversely proportional to the acoustic impedance of each stage, and the cooling capacity distribution is determined by the cold finger cooling efficiency and the PV power into each stage together. The design methods of the cold fingers to achieve both the desired PV power and the cooling capacity distribution between the stages are summarized. The two-stage SPTC is developed and tested based on the above theoretical investigations, and the experimental results show that it can simultaneously achieve 0.69 W at 30 K and 3.1 W at 85 K with an electric input power of 330 W and a reject temperature of 300 K. The consistency between the simulated and the experimental results is observed and the theoretical investigations are experimentally verified.

  20. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    International Nuclear Information System (INIS)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S

    2017-01-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling. (topical review)

  1. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    Science.gov (United States)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.

    2017-04-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

  2. On the use of effective stress in three-dimensional hydro-mechanical coupled model

    International Nuclear Information System (INIS)

    Arairo, W.; Prunier, F.; Djeran-Maigre, I.; Millard, A.

    2014-01-01

    In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress-strain behaviour and the effects of deformation on the soil-water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress-strain behaviour is considered. However, until now, few models predict the stress-strain and soil-water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour. (authors)

  3. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  4. Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks

    Directory of Open Access Journals (Sweden)

    M. Cacace

    2017-09-01

    Full Text Available Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture–solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton–Raphson or by free Jacobian inexact Newton–Krylow schemes on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres and temporal scales (from minutes to hundreds of years.

  5. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Science.gov (United States)

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  6. Rapid and sensitive detection of clenbuterol using a fluorescence nanosensor based on diazo coupling mechanism

    Science.gov (United States)

    Thanh Hop Tran, Thi; Huong Do, Thi Mai; Hoang, Mai Ha; Tuyen Nguyen, Duc; Le, Quang Tuan; Nghia Nguyen, Duc; Ngo, Trinh Tung

    2015-01-01

    In this paper, the fluorescence resonance energy transfer (FRET) effect has been used for fabrication of nanosensor for the detection of clenbuterol. In the nanosensor, the CdTe quantum dots (QDs) are the donors while the acceptor is the super-macromolecule formed by the diazoation coupling mechanism between diazo clenbuterol and naphthylethylene diamine. Changes in fluorescence intensities of nanosensor were used to determine the clenbuterol concentration. We have successfully fabricated a nanosensor for detection of clenbuterol sensible to clenbuterol concentration of 10-12 g ml-1.

  7. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  8. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  9. Effects of non-linearity of material properties on the coupled mechanical-hydraulic-thermal behavior in rock mass

    International Nuclear Information System (INIS)

    Kobayashi, Akira; Ohnishi, Yuzo

    1986-01-01

    The nonlinearity of material properties used in the coupled mechanical-hydraulic-thermal analysis is investigated from the past literatures. Some nonlinearity that is respectively effective for the system is introduced into our computer code for analysis such a coupling problem by using finite element method. And the effects of nonlinearity of each material property on the coupled behavior in rock mass are examined for simple model and Stripa project model with the computer code. (author)

  10. Tunable Coupling to a Mechanical Oscillator Circuit Using a Coherent Feedback Network

    Directory of Open Access Journals (Sweden)

    Joseph Kerckhoff

    2013-06-01

    Full Text Available We demonstrate a fully cryogenic microwave feedback network composed of modular superconducting devices connected by transmission lines and designed to control a mechanical oscillator that is coupled to one of the devices. The network features an electromechanical device and a tunable controller that coherently receives, processes, and feeds back continuous microwave signals that modify the dynamics and readout of the mechanical state. While previous electromechanical systems represent some compromise between efficient control and efficient readout of the mechanical state, as set by the electromagnetic decay rate, the tunable controller produces a closed-loop network that can be dynamically and continuously tuned between both extremes much faster than the mechanical response time. We demonstrate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than 10^{4} times the mechanical response rate. The system is easy to build and suggests that some useful functions may arise most naturally at the network level of modular, quantum electromagnetic devices.

  11. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenization model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.

  12. Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms.

    Science.gov (United States)

    Falisse, Elodie; Voisin, Anne-Sophie; Silvestre, Frédéric

    2017-08-01

    Triclosan (TCS) is a broad spectrum antibacterial agent widely used in personal care products and present in most aquatic ecosystems. This study investigated the occurrence of triclosan acclimation and the biological mechanisms underlying the stress response triggered in early-life stage of zebrafish. Zebrafish eggs were first exposed to four different sublethal concentrations of TCS (2, 20, 50 and 100μg/L) for 7days following fertilization and subsequently exposed to a lethal concentration of TCS (1000μg/L). During the time-to-death exposure (TTD), mortality was continuously recorded to evaluate if increased resistance occurred. Overall, larvae exposed to 50μg/L of TCS demonstrated higher sensitivity, with delayed hatching and increased mortality during the sub-lethal exposure and significant lower mean time-to-death (TTD) value compared to the other groups. Interestingly, fish exposed to the highest concentration of TCS (100μg/L) presented a similar mean TTD value as controls and a significantly better survival in comparison with embryos exposed to 50μg/L, suggesting that acclimation process has been triggered at this concentration. Proteomic and enzymatic analyses were conducted on 7days post fertilization (dpf) larvae exposed to 50μg/L and 100μg/L of TCS giving insights into the functional changes triggered at those specific concentrations. TCS seemed to affect proteins involved in cytoskeleton, stress response, eyes and neuronal development. This was endorsed by the enzymatic results, which suggest impairment in glutathione metabolism and acute neurotoxicity. A significant 2.5-fold and 3-fold increase of AChE activity was observed following TCS exposure. Moreover, GPx activity was significantly increased whereas a significant inhibition of GR activity was observed, suggesting that de novo synthesis of reduced GSH might occur in order to maintain the ratio between reduced and oxidized GSH. Proteomic results revealed possible candidate protein involved in

  13. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics

    Science.gov (United States)

    Zmurchok, Cole; Bhaskar, Dhananjay; Edelstein-Keshet, Leah

    2018-07-01

    Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal model (1 GTPase coupled to a Kelvin–Voigt element), we show that two-way feedback between signaling (‘RhoA’) and mechanical tension (stretching) leads to a spectrum of cell behaviors, including contracted or relaxed cells, and cells that oscillate between these extremes. When such ‘model cells’ are connected to one another in a row or in a 2D sheet (‘epithelium’), we observe waves of contraction/relaxation and GTPase activity sweeping through the tissue. The minimal model lends itself to full bifurcation analysis, and suggests a mechanism that explains behavior observed in the context of development and collective cell behavior.

  14. Dynamic Modeling and Control of Electromechanical Coupling for Mechanical Elastic Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available The structural scheme of mechanical elastic energy storage (MEES system served by permanent magnet synchronous motor (PMSM and bidirectional converters is designed. The aim of the research is to model and control the complex electromechanical system. The mechanical device of the complex system is considered as a node in generalized coordinate system, the terse nonlinear dynamic model of electromechanical coupling for the electromechanical system is constructed through Lagrange-Maxwell energy method, and the detailed deduction of the mathematical model is presented in the paper. The theory of direct feedback linearization (DFL is applied to decouple the nonlinear dynamic model and convert the developed model from nonlinear to linear. The optimal control theory is utilized to accomplish speed tracking control for the linearized system. The simulation results in three different cases show that the proposed nonlinear dynamic model of MEES system is correct; the designed algorithm has a better control performance in contrast with the conventional PI control.

  15. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    Science.gov (United States)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  16. Numerical modelling of ductile damage mechanics coupled with an unconventional plasticity model

    Directory of Open Access Journals (Sweden)

    R. Fincato

    2016-10-01

    Full Text Available Ductility in metals includes the material’s capability to tolerate plastic deformations before partial or total degradation of its mechanical properties. Modelling this parameter is important in structure and component design because it can be used to estimate material failure under a generic multi-axial stress state. Previous work has attempted to provide accurate descriptions of the mechanical property degradation resulting from the formation, growth, and coalescence of microvoids in the medium. Experimentally, ductile damage is inherently linked with the accumulation of plastic strain; therefore, coupling damage and elastoplasticity is necessary for describing this phenomenon accurately. In this paper, we combine the approach proposed by Lemaitre with the features of an unconventional plasticity model, the extended subloading surface model, to predict material fatigue even for loading conditions below the yield stress

  17. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  18. Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media

    International Nuclear Information System (INIS)

    Canamon Valera, I.

    2006-11-01

    This doctoral research was conducted as part of a joint France-Spain co-tutelage PhD thesis in the framework of a bilateral agreement between two universities, the Institut National Polytechnique de Toulouse (INPT) and the Universidad Politecnica de Madrid (UPM). It concerns a problem of common interest at the national and international levels, namely, the disposal of radioactive waste in deep geological repositories. The present work is devoted, more precisely, to near-field hydrogeological aspects involving mass and heat transport phenomena. The first part of the work is devoted to a specific data interpretation problem (pressures, relative humidities, temperatures) in a multi-barrier experimental system at the scale of a few meters - the 'Mock-Up Test' of the FEBEX project, conducted in Spain. Over 500 time series are characterized in terms of spatial, temporal, and/or frequency/scale-based statistical analysis techniques. The time evolution and coupling of physical phenomena during the experiment are analyzed, and conclusions are drawn concerning the behavior and reliability of the sensors. The second part of the thesis develops in more detail the 3-Dimensional (3D) modeling of coupled Thermo-Hydro-Mechanical phenomena in a fractured porous rock, this time at the scale of a hundred meters, based on the data of the 'In-Situ Test' of the FEBEX project conducted at the Grimsel Test Site in the Swiss Alps. As a first step, a reconstruction of the 3D fracture network is obtained by Monte Carlo simulation, taking into account through optimization the geomorphological data collected around the FEBEX gallery. The heterogeneous distribution of traces observed on the cylindrical wall of the tunnel is fairly well reproduced in the simulated network. In a second step, we develop a method to estimate the equivalent permeability of a many-fractured block by extending the superposition method of Ababou et al. [1994] to the case where the permeability of the rock matrix is not

  19. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  20. Role of atomic spin-mechanical coupling in the problem of a magnetic biocompass

    Science.gov (United States)

    Cao, Yunshan; Yan, Peng

    2018-04-01

    It is a well established notion that animals can detect the Earth's magnetic field, while the biophysical origin of such magnetoreception is still elusive. Recently, a magnetic receptor Drosophila CG8198 (MagR) with a rodlike protein complex is reported [S. Qin et al., Nat. Mater. 15, 217 (2016), 10.1038/nmat4484] to act like a compass needle to guide the magnetic orientation of animals. This view, however, is challenged [M. Meister, Elife 5, e17210 (2016), 10.7554/eLife.17210] by arguing that thermal fluctuations beat the Zeeman coupling of the proteins's magnetic moment with the rather weak geomagnetic field (˜25 -65 μ T ). In this work, we show that the spin-mechanical interaction at the atomic scale gives rise to a high blocking temperature which allows a good alignment of the protein's magnetic moment with the Earth's magnetic field at room temperature. Our results provide a promising route to resolve the debate on the thermal behaviors of MagR, and may stimulate a broad interest in spin-mechanical couplings down to atomistic levels.

  1. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    International Nuclear Information System (INIS)

    Sistaninia, M; Drezet, J-M; Rappaz, M; Phillion, A B

    2012-01-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  2. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  3. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  4. Coupled rolling motion: a student project in non-holonomic mechanics

    International Nuclear Information System (INIS)

    Janova, Jitka; Musilova, Jana; Bartos, JirI

    2009-01-01

    This paper presents an original undergraduate student project in theoretical mechanics: a demonstration of theory and experiment agreement inspired by a recently theoretically treated mechanical problem of coupled rolling motion of two cylinders. The problem of a mechanical system subjected to non-holonomic constraints is theoretically and numerically solved. Subsequently, the solution is quantitatively verified by a simple and inexpensive experiment, originally proposed and constructed by the authors. The comparison of results of the theoretical study with experimental output shows that there are instruments to directly verify rather abstract mathematical theories even on the undergraduate level. Moreover, combining the theoretical description of the problem with an appropriate laboratory experiment and computational procedures gives students a more complex view of the physical problem as a whole. This paper can be used by physics teachers on the undergraduate university level as an inspiration for an interesting student project. Moreover, the theoretical part of this paper itself can be used by interested intermediate students themselves as a good exercise in theoretical mechanics.

  5. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pignatelli, Rossella, E-mail: rossellapignatelli@gmail.com [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Lombardi Ingegneria S.r.l., Via Giotto 36, 20145 Milano (Italy); Comi, Claudia, E-mail: comi@stru.polimi.it [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.

  6. Modeling of excavation induced coupled hydraulic-mechanical processes in claystone

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, Jobst

    2009-07-01

    Concepts for the numerical modeling of excavation induced processes in claystone are investigated. The study has been motivated by the international discussion on the adequacy of claystone as a potential host rock for a final repository of radioactive waste. The processes, which could impact the safety of such a repository, are manifold and strongly interacting. Thus, a multiphysics approach is needed, regarding solid mechanics and fluid mechanics within a geological context. A coupled modeling concept is therefore indispensable. Based on observations and measurements at an argillaceous test site (the underground laboratory Tournemire, operated by the Institute of Radioprotection and Nuclear Safety, France) the modeling concept is developed. Two main processes constitute the basis of the applied model: deformation (linear elasticity considering damage) and fluid flow (unsaturated one-phase flow). Several coupling phenomena are considered: Terzaghi 's effective stress concept, mass conservation of the liquid in a deformable porous media, drying induced shrinkage, and a permeability which depends on deformation and damage. In addition, transversely isotropic material behavior is considered. The numerical simulations are done with the finite element code RockFlow, which is extended to include: an orthotropic non-linear shrinkage model, a continuum damage model, and an orthotropic permeability model. For these new methods the theory and a literature review are presented, followed by applications, which illustrate the capability to model excavation induced processes in principle. In a comprehensive case study, the modeling concept is used to simulate the response of the Tournemire argillite to excavation. The results are compared with observations and measurements of three different excavations (century old tunnel, two galleries excavated in 1996 and 2003). In summary, it can be concluded that the developed model concept provides a prediction of the excavation

  7. Modeling of excavation induced coupled hydraulic-mechanical processes in claystone

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, Jobst

    2009-07-01

    Concepts for the numerical modeling of excavation induced processes in claystone are investigated. The study has been motivated by the international discussion on the adequacy of claystone as a potential host rock for a final repository of radioactive waste. The processes, which could impact the safety of such a repository, are manifold and strongly interacting. Thus, a multiphysics approach is needed, regarding solid mechanics and fluid mechanics within a geological context. A coupled modeling concept is therefore indispensable. Based on observations and measurements at an argillaceous test site (the underground laboratory Tournemire, operated by the Institute of Radioprotection and Nuclear Safety, France) the modeling concept is developed. Two main processes constitute the basis of the applied model: deformation (linear elasticity considering damage) and fluid flow (unsaturated one-phase flow). Several coupling phenomena are considered: Terzaghi 's effective stress concept, mass conservation of the liquid in a deformable porous media, drying induced shrinkage, and a permeability which depends on deformation and damage. In addition, transversely isotropic material behavior is considered. The numerical simulations are done with the finite element code RockFlow, which is extended to include: an orthotropic non-linear shrinkage model, a continuum damage model, and an orthotropic permeability model. For these new methods the theory and a literature review are presented, followed by applications, which illustrate the capability to model excavation induced processes in principle. In a comprehensive case study, the modeling concept is used to simulate the response of the Tournemire argillite to excavation. The results are compared with observations and measurements of three different excavations (century old tunnel, two galleries excavated in 1996 and 2003). In summary, it can be concluded that the developed model concept provides a prediction of the excavation induced

  8. Modeling of excavation induced coupled hydraulic-mechanical processes in claystone

    International Nuclear Information System (INIS)

    Massmann, Jobst

    2009-01-01

    Concepts for the numerical modeling of excavation induced processes in claystone are investigated. The study has been motivated by the international discussion on the adequacy of claystone as a potential host rock for a final repository of radioactive waste. The processes, which could impact the safety of such a repository, are manifold and strongly interacting. Thus, a multiphysics approach is needed, regarding solid mechanics and fluid mechanics within a geological context. A coupled modeling concept is therefore indispensable. Based on observations and measurements at an argillaceous test site (the underground laboratory Tournemire, operated by the Institute of Radioprotection and Nuclear Safety, France) the modeling concept is developed. Two main processes constitute the basis of the applied model: deformation (linear elasticity considering damage) and fluid flow (unsaturated one-phase flow). Several coupling phenomena are considered: Terzaghi 's effective stress concept, mass conservation of the liquid in a deformable porous media, drying induced shrinkage, and a permeability which depends on deformation and damage. In addition, transversely isotropic material behavior is considered. The numerical simulations are done with the finite element code RockFlow, which is extended to include: an orthotropic non-linear shrinkage model, a continuum damage model, and an orthotropic permeability model. For these new methods the theory and a literature review are presented, followed by applications, which illustrate the capability to model excavation induced processes in principle. In a comprehensive case study, the modeling concept is used to simulate the response of the Tournemire argillite to excavation. The results are compared with observations and measurements of three different excavations (century old tunnel, two galleries excavated in 1996 and 2003). In summary, it can be concluded that the developed model concept provides a prediction of the excavation induced

  9. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)

    2016-09-07

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  10. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    International Nuclear Information System (INIS)

    Wei, Hong-Xing; Li, Yong-Dong; Xiong, Tao; Guan, Yong

    2016-01-01

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  11. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  12. Rock Mechanics Forsmark. Site descriptive modelling Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Fredriksson, Anders (Golder Associates AB (SE)); Roeshoff, Kennert; Karlsson, Johan (Berg Bygg Konsult AB (SE)); Hakami, Hossein (Itasca Geomekanik AB (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, Forsmark and Laxemar/Simpevarp, with the objective of siting a geological repository for spent nuclear fuel. The characterisation of a site is an integrated work carried out by several disciplines including geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry and surface systems. This report presents the rock mechanics model of the Forsmark site up to stage 2.2. The scope of work has included compilation and analysis of primary data of intact rock and fractures, estimation of the rock mass mechanical properties and estimation of the in situ state of stress at the Forsmark site. The laboratory results on intact rock and fractures in the target volume demonstrate a good quality rock mass that is strong, stiff and relatively homogeneous. The homogeneity is also supported by the lithological and the hydrogeological models. The properties of the rock mass have been initially estimated by two separate modelling approaches, one empirical and one theoretical. An overall final estimate of the rock mass properties were achieved by integrating the results from the two models via a process termed 'Harmonization'. Both the tensile tests, carried out perpendicular and parallel to the foliation, and the theoretical analyses of the rock mass properties in directions parallel and perpendicular to the major principal stress, result in parameter values almost independent of direction. This indicates that the rock mass in the target volume is isotropic. The rock mass quality in the target volume appears to be of high and uniform quality. Those portions with reduced rock mass quality that do exist are mainly related to sections with increased fracture frequency. Such sections are associated with deformation zones according to the geological description. The results of adjacent rock domains and fracture domains of the target

  13. Nonlinear mechanisms of two-dimensional wave-wave transformations in the initially coupled acoustic structure

    Science.gov (United States)

    Vorotnikov, K.; Starosvetsky, Y.

    2018-01-01

    The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.

  14. Multi-Stage Flotation for the Removal of Ash from Fine Graphite Using Mechanical and Centrifugal Forces

    OpenAIRE

    Xiangning Bu; Tuantuan Zhang; Yaoli Peng; Guangyuan Xie; Erdong Wu

    2018-01-01

    Graphite ore collected from Hunan province, south China was characterized by chemical analysis, X-ray diffraction, and optical microscopy. Rougher and multi-stage flotation tests using a mechanical flotation cell and a flotation column containing an additional centrifugal force field were carried out to promote its grade and economic value. In rougher flotation, both the mechanical flotation cell and flotation column reduced the ash content of the graphite ore from 15.43% to 10.8%, while the ...

  15. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Energy Technology Data Exchange (ETDEWEB)

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  16. Electrically and mechanically induced macroscopic body couple, a newly recognized phenomenon of electromechanical interaction

    International Nuclear Information System (INIS)

    Chen, P.J.

    1986-01-01

    Microscopically, when the molecules of certain materials are under the influence of external stimuli such as mechanical and electrical forces, several processes can happen. In particular, the centers of charge of the positive and negative ions of a molecule may displace with respect to each other. This notion leads to the macroscopic concept of polarization which has been exploited in the classical studies of piezoelectric and ferroelectric materials. In addition, the ions of the molecule may also rotate angularly relative to one another. Here an entirely new macroscopic concept of body couple which differs from the classical concept is introduced. It is shown that the simplest representations of the proposed constitutive relations lead to an equation within the context of the classical bending theory of thin plates whose solution is in remarkable agreement with recent experimental results concerning the bending of thin virgin ferroelectric ceramic discs under the action of small d.c. voltages. These experimental results cannot be explained by the classical notion of polarization. Therefore, the concept of macroscopic body couple introduced here is a fundamental feature which must be taken into account in the considerations of electromechanical interactions

  17. Reheating mechanism of the curvaton with nonminimal derivative coupling to gravity

    International Nuclear Information System (INIS)

    Qiu, Taotao; Feng, Kaixi

    2017-01-01

    In this paper, we continue our study of the curvaton model with nonminimal derivative coupling (NDC) to Einstein gravity proposed in our previous work (Feng in Phys Lett B 729:99, 2014; Feng and Qiu in Phys Rev D 90(12):123508, 2014), focusing on the reheating mechanism. We found that according to whether the curvaton has or has not dominated the background after the end of inflation, it will have two different behaviors of evolution, which should be the general property of the curvaton with nonminimal couplings. This will cause two different parts of reheating, which goes on via the parametric resonance process. The reheating temperature is estimated for both cases in which reheating completes before and after curvaton domination, and the constraints are quite loose compared to that of overproduction of gravitinos. Finally we investigated the evolution of curvature perturbation during reheating. We have shown both analytically and numerically that the curvature perturbation will not blow up during the resonance process. (orig.)

  18. Reheating mechanism of the curvaton with nonminimal derivative coupling to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and College of Physical Science and Technology, Wuhan (China); Feng, Kaixi [Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China)

    2017-10-15

    In this paper, we continue our study of the curvaton model with nonminimal derivative coupling (NDC) to Einstein gravity proposed in our previous work (Feng in Phys Lett B 729:99, 2014; Feng and Qiu in Phys Rev D 90(12):123508, 2014), focusing on the reheating mechanism. We found that according to whether the curvaton has or has not dominated the background after the end of inflation, it will have two different behaviors of evolution, which should be the general property of the curvaton with nonminimal couplings. This will cause two different parts of reheating, which goes on via the parametric resonance process. The reheating temperature is estimated for both cases in which reheating completes before and after curvaton domination, and the constraints are quite loose compared to that of overproduction of gravitinos. Finally we investigated the evolution of curvature perturbation during reheating. We have shown both analytically and numerically that the curvature perturbation will not blow up during the resonance process. (orig.)

  19. FE Analysis of Rock with Hydraulic-Mechanical Coupling Based on Continuum Damage Evolution

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2016-01-01

    Full Text Available A numerical finite element (FE analysis technology is presented for efficient and reliable solutions of rock with hydraulic-mechanical (HM coupling, researching the seepage characteristics and simulating the damage evolution of rock. To be in accord with the actual situation, the rock is naturally viewed as heterogeneous material, in which Young’s modulus, permeability, and strength property obey the typical Weibull distribution function. The classic Biot constitutive relation for rock as porous medium is introduced to establish a set of equations coupling with elastic solid deformation and seepage flow. The rock is subsequently developed into a novel conceptual and practical model considering the damage evolution of Young’s modulus and permeability, in which comprehensive utilization of several other auxiliary technologies, for example, the Drucker-Prager strength criterion, the statistical strength theory, and the continuum damage evolution, yields the damage variable calculating technology. To this end, an effective and reliable numerical FE analysis strategy is established. Numerical examples are given to show that the proposed method can establish heterogeneous rock model and be suitable for different load conditions and furthermore to demonstrate the effectiveness and reliability in the seepage and damage characteristics analysis for rock.

  20. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    Science.gov (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  1. THM-coupled modeling of selected processes in argillaceous rock relevant to rock mechanics

    International Nuclear Information System (INIS)

    Czaikowski, Oliver

    2012-01-01

    Scientific investigations in European countries other than Germany concentrate not only on granite formations (Switzerland, Sweden) but also on argillaceous rock formations (France, Switzerland, Belgium) to assess their suitability as host and barrier rock for the final storage of radioactive waste. In Germany, rock salt has been under thorough study as a host rock over the past few decades. According to a study by the German Federal Institute for Geosciences and Natural Resources, however, not only salt deposits but also argillaceous rock deposits are available at relevant depths and of extensions in space which make final storage of high-level radioactive waste basically possible in Germany. Equally qualified findings about the suitability/unsuitability of non-saline rock formations require fundamental studies to be conducted nationally because of the comparatively low level of knowledge. The article presents basic analyses of coupled mechanical and hydraulic properties of argillaceous rock formations as host rock for a repository. The interaction of various processes is explained on the basis of knowledge derived from laboratory studies, and open problems are deduced. For modeling coupled processes, a simplified analytical computation method is proposed and compared with the results of numerical simulations, and the limits to its application are outlined. (orig.)

  2. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  3. Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations.

    Science.gov (United States)

    Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2018-02-28

    The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.

  4. A coupled thermo-mechanical pseudo inverse approach for preform design in forging

    Science.gov (United States)

    Thomas, Anoop Ebey; Abbes, Boussad; Li, Yu Ming; Abbes, Fazilay; Guo, Ying-Qiao; Duval, Jean-Louis

    2017-10-01

    Hot forging is a process used to form difficult to form materials as well as to achieve complex geometries. This is possible due to the reduction of yield stress at high temperatures and a subsequent increase in formability. Numerical methods have been used to predict the material yield and the stress/strain states of the final product. Pseudo Inverse Approach (PIA) developed in the context of cold forming provides a quick estimate of the stress and strain fields in the final product for a given initial shape. In this paper, PIA is extended to include the thermal effects on the forging process. A Johnson-Cook thermo-viscoplastic material law is considered and a staggered scheme is employed for the coupling between the mechanical and thermal problems. The results are compared with available commercial codes to show the efficiency and the limitations of PIA.

  5. Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling

    International Nuclear Information System (INIS)

    Maitre, E.

    2008-11-01

    My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former

  6. Coupled hydrological-mechanical effects due to excavation of underground openings in unsaturated fractured rocks

    International Nuclear Information System (INIS)

    Montazer, P.

    1985-01-01

    One of the effects of excavating an underground opening in fractured rocks is a modification of the state of the stress in the rock mass in the vicinity of the opening. This effect causes changes in the geometry of the cross sections of the fracture planes, which in turn results in modification of the hydrologic properties of the fractures of the rock mass. The significance of the orientation of the fractures and their stiffness on the extent of the modification of the hydrologic properties as a result of excavation of underground openings is demonstrated. A conceptual model is presented to illustrate the complexity of the coupled hydrological-mechanical phenomena in the unsaturated zone. This conceptual model is used to develop an investigative program to assess the extent of the effect at a proposed repository site for storing high-level nuclear wastes

  7. Couplings in D(2,1;α) superconformal mechanics from the SU(2) perspective

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton [Laboratory of Mathematical Physics, Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-03-09

    Dynamical realizations of the most general N=4 superconformal group in one dimension D(2,1;α) are reconsidered from the perspective of the R-symmetry subgroup SU(2). It is shown that any realization of the R-symmetry subalgebra in some phase space can be extended to a representation of the Lie superalgebra corresponding to D(2,1;α). Novel couplings of arbitrary number of supermultiplets of the type (1,4,3) and (0,4,4) to a single supermultiplet of either the type (3,4,1), or (4,4,0) are constructed. D(2,1;α) superconformal mechanics describing superparticles propagating near the horizon of the extreme Reissner-Nordström-AdS-dS black hole in four and five dimensions is considered. The parameter α is linked to the cosmological constant.

  8. A coupled model of transport-reaction-mechanics with trapping. Part I - Small strain analysis

    Science.gov (United States)

    Salvadori, A.; McMeeking, R.; Grazioli, D.; Magri, M.

    2018-05-01

    A fully coupled model for mass and heat transport, mechanics, and chemical reactions with trapping is proposed. It is rooted in non-equilibrium rational thermodynamics and assumes that displacements and strains are small. Balance laws for mass, linear and angular momentum, energy, and entropy are stated. Thermodynamic restrictions are identified, based on an additive strain decomposition and on the definition of the Helmholtz free energy. Constitutive theory and chemical kinetics are studied in order to finally write the governing equations for the multi-physics problem. The field equations are solved numerically with the finite element method, stemming from a three-fields variational formulation. Three case-studies on vacancies redistribution in metals, hydrogen embrittlement, and the charge-discharge of active particles in Li-ion batteries demonstrate the features and the potential of the proposed model.

  9. Mechanisms of G Protein-Coupled Estrogen Receptor-Mediated Spinal Nociception

    DEFF Research Database (Denmark)

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.

    2012-01-01

    . Cytosolic calcium concentration elevates faster and with higher amplitude following G-1 intracellular microinjections compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium......Human and animal studies suggest that estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pronociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER......) activation. Membrane depolarization and increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological, and fluorescent imaging studies, we evaluated GPER involvement...

  10. A capacitively coupled dose-rate-dependent transient upset mechanism in a bipolar memory

    International Nuclear Information System (INIS)

    Turfler, R.M.; Pease, R.L.; Dinger, G.; Armstrong, B.

    1992-01-01

    This paper reports on a pattern sensitivity that was observed in the threshold dose rate response of a bipolar 16K PROM for radiation pulse widths of 20-100 ns. For the worst case pattern, the upset threshold was a factor of three lower than for the commonly used checkerboard pattern. The mechanism for this pattern sensitivity was found to be a capacitively coupled voltage transient on a sensitive node which caused a low-to-high transition at the output. A design fix was implemented to significantly alter the ratio of the two parasitic capacitances in a capacitive divider which reduced the amplitude of the voltage transient at the sensitive node. It was demonstrated that in the redesign, the pattern sensitivity was eliminated

  11. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  12. A coupled carbonation-rust formation mechanical damage model for steel corrosion in reinforced concrete

    International Nuclear Information System (INIS)

    Nguyen, Huyen; Bary, B.; L'Hostis, Valerie; DeLarrard, T.

    2014-01-01

    This paper aims at presenting a strategy to simulate the corrosion of steel reinforcement due to carbonation of concrete in atmospheric environment. We propose a model coupling drying, carbonation, diffusion of oxygen, formation of rust and mechanics to describe these phenomena. The rust layer is assumed to be composed of two sub-layers with different elastic modulus. An unstable layer with a low modulus (from 0.1 to 5 GPa) is located next to the transformed medium, and another more stable one with a higher modulus (from 100 to 150 GPa) at the interface with steel reinforcement. This model is applied to a numerical meso-structure composed of 4 phases: mortar matrix, randomly distributed aggregates, steel rebar and rust layers to underline the effect of aggregates on damage initiation and corresponding crack pattern of concrete cover. (authors)

  13. Coupling analysis of frictional heat of fluid film and thermal deformation of mechanical seal end faces

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Gu Boqin

    2007-01-01

    The heat transfer model of the rotating ring and the stationary ring of mechanical seal was built. The method to calculate the frictional heat that transferred by the rings was given. the coupling analysis of the frictional heat of fluid film and thermal deformation of end faces was carried out by using FEA and BP ANN, and the relationship among the rotational speed ω, the fluid film thickness h i on the inner diameter of sealing face and the radial separation angle β of deformed end faces was obtained. Corresponding to a given ω, h i and β can be obtained by the equilibrium condition between the closing force and the bearing force of fluid film. The relationship between the leakage rate and the closing force was analyzed, and the fundamental of controlling the leakage rate by regulating the closing force was also discussed. (authors)

  14. Interaction of ATP with acid-denatured cytochrome c via coupled folding-binding mechanism

    International Nuclear Information System (INIS)

    Ahluwalia, Unnati; Deep, Shashank

    2012-01-01

    Highlights: ► Interaction between ATP and cyt c takes place via coupled binding–folding mechanism. ► Binding of ATP to cyt c is endothermic. ► GTP and CTP induce similar level of helicity in acid-denatured cyt c as with ATP. ► Compactness induced by ATP is far greater than ADP or AMP. - Abstract: The non-native conformations of the cytochrome c (cyt c) are believed to play key roles in a number of physiological processes. Nucleotides are supposed to act as allosteric effectors in these processes by regulating structural transitions among different conformations of cyt c. To understand the interaction between acid denatured cytochrome c and nucleotides, spectroscopic and calorimetric techniques were utilized to observe the structural features of the induced conformation and the energetics of interaction of acid denatured cyt c with different nucleotides. Structure induction in the acid denatured cyt c was observed on the addition of the ∼1 mM nucleotide tri-phosphates (ATP/GTP/CTP) at 25 °C, however, not in the presence of 1 mM nucleotide mono and diphosphates. ATP-bound cyt c at pH 2.0 is likely to have a conformation that has intact α-helical domain. However, Met80-Fe(III) axial bond is still ruptured. Observed thermodynamics reflect interaction between nucleotide and cyt c via coupled binding–folding mechanism. DSC data suggest the preferential binding of the ATP to the folded conformation with respect to the acid denatured cyt c. ITC data indicate that the exothermic folding of cyt c was accompanied by endothermic binding of ATP to cyt c.

  15. A high performance data parallel tensor contraction framework: Application to coupled electro-mechanics

    Science.gov (United States)

    Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio

    2017-07-01

    The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.

  16. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  17. Express Control of the Mechanical Properties of High-Strength and Hard-to-Machine Materials at All Stages of the Technological Cycle of Producing Mechanical Engineering Products

    Science.gov (United States)

    Matyunin, V. M.; Marchenkov, A. Yu.; Demidov, A. N.; Karimbekov, M. A.

    2017-12-01

    It is shown that depth-sensing indentation can be used to perform express control of the mechanical properties of high-strength and hard-to-machine materials. This control can be performed at various stages of a technological cycle of processing materials and parts without preparing and testing tensile specimens, which will significantly reduce the consumption of materials, time, and labor.

  18. Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation

    Science.gov (United States)

    Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel

    2013-03-01

    Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747

  19. Sub-critical cohesive crack propagation with hydro-mechanical coupling and friction

    Directory of Open Access Journals (Sweden)

    S. Valente

    2016-01-01

    Full Text Available Looking at the long-time behaviour of a dam, it is necessary to assume that the water can penetrate a possible crack washing away some components of the concrete. This type of corrosion reduces the tensile strength and fracture energy of the concrete compared to the same parameters measured during a short-time laboratory test. This phenomenon causes the so called sub-critical crack propagation. That is the reason why the International Commission of Large Dams recommends to neglect the tensile strength of the joint between the dam and the foundation, which is the weakest point of a gravity dam. In these conditions a shear displacement discontinuity starts growing in a point, called Fictitious Crack Tip (shortened FCT, which is still subjected to a compression stress. In order to manage this problem, in this paper the cohesive crack model is re-formulated with the focus on the shear stress component. In this context, the classical Newton-Raphson method fails to converge to an equilibrium state. Therefore the approach used is based on two stages: (a a global one in which the FCT is moved ahead of one increment; (b a local one in which the non-linear conditions occurring in the Fracture Process Zone are taken into account. This two-stage approach, which is known in the literature as a Large Time Increment method, is able to model three different mechanical regimes occurring during the crack propagation between a dam and the foundation rock.

  20. Multi-Stage Flotation for the Removal of Ash from Fine Graphite Using Mechanical and Centrifugal Forces

    Directory of Open Access Journals (Sweden)

    Xiangning Bu

    2018-01-01

    Full Text Available Graphite ore collected from Hunan province, south China was characterized by chemical analysis, X-ray diffraction, and optical microscopy. Rougher and multi-stage flotation tests using a mechanical flotation cell and a flotation column containing an additional centrifugal force field were carried out to promote its grade and economic value. In rougher flotation, both the mechanical flotation cell and flotation column reduced the ash content of the graphite ore from 15.43% to 10.8%, while the yield of the flotation column (91.41% was much higher than that of the mechanical flotation cell (50%. In the presence of hydrophobic graphite, the seriously entrained gangue restricted further improvement in the quality and economic value of the graphite ore. Therefore, multi-stage flotation circuits were employed to diminish this entrainment. Multi-stage flotation circuits using the two flotation devices further decreased the ash content of the graphite ore to ~8%, while the yield when using the flotation column was much higher than that obtained from the mechanical flotation cell employed. On the other hand, the ash removal efficiency of the flotation column was 3.82-fold higher than that observed for the mechanical flotation cell. The Cleaner 3 flotation circuit using the flotation column decreased the ash content in graphite from 15.43% to 7.97% with a yield of 77.53%.

  1. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    Science.gov (United States)

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  3. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    OpenAIRE

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D.; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G.; Joyner, Michael J.; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBR...

  4. Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film

    Directory of Open Access Journals (Sweden)

    Md Ershad Ali

    2014-12-01

    Full Text Available The physico-mechanical properties of lignocellulosic kenaf fiber reinforced polyvinyl alcohol (PVA biocomposite films were investigated. To improve the properties of the biocomposite, kenaf fibers were chemically treated separately in a single stage (with Cr2(SO4312(H2O and double stages (with CrSO4 and NaHCO3 to improve the adhesion and compatibility between the kenaf fiber and PVA matrix. PVA was reinforced with various compositions of chemically treated kenaf fiber by using a solution casting technique. Microstructural analyses and mechanical tests were subsequently conducted. Scanning electron microscopic analysis indicated that chemical treatment improved the uniformity distribution of kenaf fiber within the PVA matrix. FTIR and XRD analyses confirmed the presence of chromium on the fiber surface. The tensile strength of PVA reinforced with chemical treated kenaf fiber was found to be higher than those reinforced with untreated kenaf. The Young’s modulus, flexural strength, and flexural modulus increased with fiber loading for both untreated and treated kenaf fiber reinforced PVA films. The double stage treated kenaf fiber showed better mechanical properties and lower moisture uptake than the single stage treated kenaf fiber.

  5. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth

    Science.gov (United States)

    Bedewy, Mostafa; Hart, A. John

    2013-03-01

    Aligned carbon nanotube (CNT) structures are promising for many applications; however, as-grown CNT "forests" synthesized by chemical vapor deposition (CVD) are typically low-density and mostly comprise tortuous defective CNTs. Here, we present evidence that the density and alignment of self-organized CNT growth is limited by mechanical coupling among CNTs in contact, in combination with their diameter-dependent growth rates. This study is enabled by comprehensive X-ray characterization of the spatially and temporally-varying internal morphology of CNT forests. Based on this data, we model the time evolution and diameter-dependent scaling of the ensuing mechanical forces on catalyst nanoparticles during CNT growth, which arise from the mismatch between the collective lengthening rate of the forest and the diameter-dependent growth rates of individual CNTs. In addition to enabling self-organization of CNTs into forests, time-varying forces between CNTs in contact dictate the hierarchical tortuous morphology of CNT forests, and may be sufficient to influence the structural quality of CNTs. These forces reach a maximum that is coincident with the maximum density observed in our growth process, and are proportional to CNT diameter. Therefore, we propose that improved manufacturing strategies for self-organized CNTs should consider both chemical and mechanical effects. This may be especially necessary to achieve high density CNT forests with low defect density, such as for improved thermal interfaces and high-permeability membranes.Aligned carbon nanotube (CNT) structures are promising for many applications; however, as-grown CNT "forests" synthesized by chemical vapor deposition (CVD) are typically low-density and mostly comprise tortuous defective CNTs. Here, we present evidence that the density and alignment of self-organized CNT growth is limited by mechanical coupling among CNTs in contact, in combination with their diameter-dependent growth rates. This study is

  6. Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Anders; Staub, Isabelle; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2004-02-01

    A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar.

  7. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton

    Science.gov (United States)

    Ezzell, R. M.; Goldmann, W. H.; Wang, N.; Parasharama, N.; Ingber, D. E.

    1997-01-01

    Mouse F9 embryonic carcinoma 5.51 cells that lack the cytoskeletal protein vinculin spread poorly on extracellular matrix compared with wild-type F9 cells or two vinculin-transfected clones (5.51Vin3 and Vin4; Samuels et al., 1993, J. Cell Biol. 121, 909-921). In the present study, we used this model system to determine how the presence of vinculin promotes cytoskeletal alterations and associated changes in cell shape. Microscopic analysis of cell spreading at early times, revealed that 5.51 cells retained the ability to form filopodia; however, they could not form lamellipodia, assemble stress fibers, or efficiently spread over the culture substrate. Detergent (Triton X-100) studies revealed that these major differences in cell morphology and cytoskeletal organization did not result from differences in levels of total polymerized or cross-linked actin. Biochemical studies showed that 5.51 cells, in addition to lacking vinculin, exhibited slightly reduced levels of alpha-actinin and paxillin in their detergent-insoluble cytoskeleton. The absence of vinculin correlated with a decrease in the mechanical stiffness of the integrin-cytoskeleton linkage, as measured using cell magnetometry. Furthermore, when vinculin was replaced by transfection in 5.51Vin3 and 5.51Vin4 cells, the levels of cytoskeletal-associated alpha-actinin and paxillin, the efficiency of transmembrane mechanical coupling, and the formation of actin stress fibers were all restored to near wild-type levels. These findings suggest that vinculin may promote cell spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, rather than by altering the total level of actin polymerization or cross-linking.

  8. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    Science.gov (United States)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  9. Multi-scale modelling of the physicochemical-mechanical coupling of fuel behaviour at high temperature in pressurized water reactors

    International Nuclear Information System (INIS)

    Julien, Jerome

    2008-01-01

    Within the frame of the problematic of pellet-sheath interaction in a nuclear fuel rod, a good description of the fuel thermo-mechanical behaviour is required. This research thesis reports the coupling of physics-chemistry (simulation of gas transfers between different cavities) and mechanics (assessment of fuel viscoplastic strains). A new micromechanical model is developed which uses a multi-scale approach to describe the evolution of the double population of cavities (cavities with two different scales) while taking internal pressures as well as the fuel macroscopic viscoplastic behaviour into account. The author finally describes how to couple this micromechanical mode to physics-chemistry models [fr

  10. Development of a finite element code to solve thermo-hydro-mechanical coupling and simulate induced seismicity.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús

    2015-04-01

    Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.

  11. Experimental evaluation of analyte excitation mechanisms in the inductively coupled plasma

    International Nuclear Information System (INIS)

    Lehn, Scott A.; Hieftje, Gary M.

    2003-01-01

    The inductively coupled plasma (ICP) is a justifiably popular source for atomic emission spectrometry. However, despite its popularity, the ICP is still only partially understood. Even the mechanisms of analyte excitation remain unclear; some energy levels are quite clearly populated by charge transfer while others might be populated by electron-ion recombination, by electron impact, or by Penning processes. Distinguishing among these alternatives is possible by means of a steady-state kinetics approach that examines correlations between the emission of a selected atom, ion, or level and the local number densities of species assumed to produce the excitation. In an earlier investigation, strong correlations were found between either calcium atom or ion emission and selected combinations of calcium atom or ion number densities and electron number densities in the plasma. However, all radially resolved data employed in the earlier study were produced from Abel inversion and from measurements that were crude by today's standards. Now, by means of tomographic imaging, laser-saturated atomic fluorescence, and Thomson and Rayleigh scattering, it is possible to measure the required radially resolved data without Abel inversion and with far greater fidelity. The correlations previously studied for calcium have been investigated with these more reliable data. Ion-electron recombination, either radiative or with argon as a third body, was determined to be the most likely excitation mechanism for calcium atom, while electron impact appeared to be the most important process to produce excite-state calcium ions. These results were consistent with the previous study. However, the present study suggests that collisional deactivation, rather than radiative decay, is the most likely mode of returning both calcium atoms and ions to the ground state

  12. Coupling between chemical degradation and mechanical behaviour of leached concrete; Couplage degradation chimique - comportement en compression du beton

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V H

    2005-10-15

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  13. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    Science.gov (United States)

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  14. Does quantum mechanics select out regularity and local mode behaviour in nonlinearly coupled vibrational systems?

    International Nuclear Information System (INIS)

    Yurtsever, E.; Brickmann, J.

    1990-01-01

    A two dimensional strongly nonharmonic vibrational system with nonlinear intermode coupling is studied both classically and quantum mechanically. The system was chosen such that there is a low lying transition (in energy) from a region where almost all trajectories move regularly to a region where chaotic dynamics strongly dominates. The corresponding quantum system is far away from the semiclassical limit. The eigenfunctions are calculated with high precision according to a linear variational scheme using conveniently chosen basis functions. It is the aim of this paper to check whether the prediction from semiclassical theory, namely that the measure of classically chaotic trajectories in phase space approaches the measure of irregular states in corresponding energy ranges, holds when the system is not close to the classical limit. It is also the aim to identify individual eigenfunctions with respect to regularity and to differentiate between local and normal vibrational states. It is found that there are quantitative and also qualitative differences between the quantum results and the semiclassical predictions. (orig./HK)

  15. A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhuang

    2014-01-01

    Full Text Available Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.

  16. Hydro-mechanical coupling in non-saturated medium with phase change. Application to desiccation shrinkage

    International Nuclear Information System (INIS)

    Lassabatere, Thierry

    1994-01-01

    The target of this research is to set up a unified and coherent working frame based upon the rigorous principles of thermodynamics and making it possible to model a large class of physical phenomena acting in unsaturated porous media, as well as the related interactions with the mechanical state of the structures. This class corresponds to reactive phenomena among which one finds the phase change (desiccation) for which the whole of its subsequent actions (creep but essentially shrinkage) is modelled and which will be treated as a specific application example. The first chapter recalls the bases of the adopted description of the porous medium as well as the global thermodynamical frame which underlays the whole modelling. Chapter II deals with the mainly new formulation and the identification of a non linear elastic constitutive law of the medium involved. Various reflexion elements related to the microscopic behaviours of the components and to experiments have orientated the model towards some more limitative hypotheses making it possible to have a complete and explicit determination of a law for the macroscopic behaviour. Chapter IV and V are examples of application: chapter IV studies the problem of shrinkage and creep in a coupled linear elastic behaviour. Chapter V is limited to the case of shrinkage treated by a numerical application of the whole non-linear elastic model. The results obtained are in good agreement with the corresponding experiments. (author) [fr

  17. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G. (Sanofi); (Michigan)

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  18. Full-scale test on coupled thermo-hydro-mechanical processes in engineered barrier system

    International Nuclear Information System (INIS)

    Moro, Yoshiji; Fujita, Tomoo; Kanno, Takeshi; Kobayashi, Akira.

    1994-01-01

    On dynamic behavior within artificial barrier in ground layer disposal of high level radioactive wastes, some phenomena such as exotherm from the wastes, penetration of groundwater from surrounding base rock, swelling pressure formation of buffer material due to penetration of groundwater, ground pressure change of the surrounding base rock, and so forth are supposed to affect each other. It is one of important problems from a viewpoint of elucidation of near field environment in the property evaluation study to evaluate such thermo-hydro-mechanical coupled phenomena. As results of the investigation from such reason and its application to actual test in accompany with execution of heating and water inserting test in the Big-Ben (Big-Bentonite facility), the following informations were obtained: (1) In heating and water inserting test, data on temperature distribution, water content ratio distribution and swelling pressure of each portion for 5 months could be obtained. (2) water migration due to water slope was divided to migrations due to steam and liquid water, of which models were made according to Fick and Darcy laws, respectively. (3) As a simulation of water migration, water diffusion coefficient due to temperature slope could be expressed almost by a model with nonlinearity to temperature. (G.K.)

  19. Migration of Gas in Water Saturated Clays by Coupled Hydraulic-Mechanical Model

    Directory of Open Access Journals (Sweden)

    Aliaksei Pazdniakou

    2018-01-01

    Full Text Available Understanding the gas migration in highly water saturated sedimentary rock formations is of great importance for safety of radioactive waste repositories which may use these host rocks as barrier. Recent experiments on drainage in argillite samples have demonstrated that they cannot be represented in terms of standard two-phase flow Darcy model. It has been suggested that gas flows along highly localized dilatant pathways. Due to very small pore size and the opacity of the material, it is not possible to observe this two-phase flow directly. In order to better understand the gas transport, a numerical coupled hydraulic-mechanical model at the pore scale is proposed. The model is formulated in terms of Smoothed Particle Hydrodynamics (SPH and is applied to simulate drainage within a sample reconstructed from the Focused Ion Beam (FIB images of Callovo-Oxfordian claystone. A damage model is incorporated to take into account the degradation of elastic solid properties due to local conditions, which may lead to formation of new pathways and thus to modifications of fluid transport. The influence of the damage model as well as the possible importance of rigid inclusions is demonstrated and discussed.

  20. Insights into the mechanism and catalysis of oxime coupling chemistry at physiological pH.

    Science.gov (United States)

    Wang, Shujiang; Gurav, Deepanjali; Oommen, Oommen P; Varghese, Oommen P

    2015-04-07

    The dynamic covalent-coupling reaction involving α-effect nucleophiles has revolutionized bioconjugation approaches, due to its ease and high efficiency. Key to its success is the discovery of aniline as a nucleophilic catalyst, which made this reaction feasible under physiological conditions. Aniline however, is not so effective for keto substrates. Here, we investigate the mechanism of aniline activation in the oxime reaction with aldehyde and keto substrates. We also present carboxylates as activating agents that can promote the oxime reaction with both aldehyde and keto substrates at physiological pH. This rate enhancement circumvents the influence of α-effect by forming H-bonds with the rate-limiting intermediate, which drives the reaction to completion. The combination of aniline and carboxylates had a synergistic effect, resulting in a ∼14-31-fold increase in reaction rate at pD 7.4 with keto substrates. The biocompatibility and efficiency of carboxylate as an activating agent is demonstrated by performing cell-surface oxime labeling at physiological pH using acetate, which showed promising results that were comparable with aniline. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal coupling and damage mechanisms of laser radiation on selected materials

    International Nuclear Information System (INIS)

    Schwirzke, F.; Jenkins, W.F.; Schmidt, W.R.

    1983-01-01

    High power laser beams interact with targets by a variety of thermal, impulse, and electrical effects. Energy coupling is considerably enhanced once surface electrical breakdown occurs. The laser heated plasma then causes surface damage via thermal evaporation, ion sputtering, and unipolar arcing. While the first two are purely thermal and mechanical effects, the last one, unipolar arcing, is an electrical plasma-surface interaction process which leads to crater formation, usually called laser-pitting, a process which was often observed but not well understood. Unipolar arcing occurs when a plasma of sufficiently high electron temperature interacts with a surface. Without an external voltage applied, many electrical micro-arcs burn between the surface and the plasma, driven by local variations of the sheath potential with the surface acting as both the cathode and anode. Laser induced unipolar arcing represents the most damaging and non-uniform plasma-surface interaction process since the energy available in the plasma concentrates towards the cathode spots. This causes cratering of the materials surface. The ejection of material in the form of small jets from the craters leads to ripples in the critical plasma density contour. This in turn contributes to the onset of plasma instabilities, small scale magnetic field generation and laser beam filamentation. The ejection of a plasma jet from the unipolar arc crater also causes highly localized shock waves to propagate into the target, softening it in the process. Thus, local surface erosion by unipolar arcing is much more severe than for uniform energy deposition

  2. Structure evolution and mechanical behavior of poly(ethylene terephthalate fibers drawn at different number of drawing stages

    Directory of Open Access Journals (Sweden)

    Haji Aminoddin

    2012-01-01

    Full Text Available In this work, the structure, mechanical and thermal properties of PET fiber obtained by hot multi-stage drawing have been investigated in terms of their dependence on the number of drawing steps at an equivalent total draw ratio. Differential scanning calorimetry, birefringence, wide-angle x-ray diffraction, FTIR spectroscopy, tensile properties, and taut-tie molecules were used to characterize the fine structure and physical properties of the fibers. Results have been explained in terms of a higher drawing residence time at an equivalent drawing speed. For single stage drawn fiber, a high tensile strength is obtained, whereas a high initial modulus is obtained for fiber drawn at three-stage drawing. According to the results, an important finding is that three-stage drawing process has the potential to produce high-modulus fibers. The enhanced fraction of taut-tie molecules is found in three-stage drawn fiber, which is believed to be one of the important factors leading to the high modulus achieved in fibers drawn in hot multistage.

  3. Effect of Fly Ash and Silica Fume on the Mechanical Properties of Cement Paste at Different Stages of Hydration

    Science.gov (United States)

    2015-08-10

    All materials were placed in a clean, labeled stainless steel mixing bowl and weighed to the nearest ten thousandth of a pound. The cement and fly...on the Mechanical Properties of Cement Paste at Different Stages of Hydration This thesis investigates the effect of fly ash and silica fume on... cement paste hydration. Percentages of each additive will replace the cement by volume to be studied at five ages. These percentages will be compared

  4. Antithrombin III is associated with acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support.

    Science.gov (United States)

    Hoefer, Judith; Ulmer, Hanno; Kilo, Juliane; Margreiter, Raimund; Grimm, Michael; Mair, Peter; Ruttmann, Elfriede

    2017-06-01

    There are few data on the role of liver dysfunction in patients with end-stage heart failure supported by mechanical circulatory support. The aim of our study was to investigate predictors for acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support. A consecutive 164 patients with heart failure with New York Heart Association class IV undergoing mechanical circulatory support were investigated for acute liver failure using the King's College criteria. Clinical characteristics of heart failure together with hemodynamic and laboratory values were analyzed by logistic regression. A total of 45 patients (27.4%) with heart failure developed subsequent acute liver failure with a hospital mortality of 88.9%. Duration of heart failure, cause, cardiopulmonary resuscitation, use of vasopressors, central venous pressure, pulmonary capillary wedge pressure, pulmonary pulsatility index, cardiac index, and transaminases were not significantly associated with acute liver failure. Repeated decompensation, atrial fibrillation (P failure in univariate analysis only. In multivariable analysis, decreased antithrombin III was the strongest single measurement indicating acute liver failure (relative risk per %, 0.84; 95% confidence interval, 0.77-0.93; P = .001) and remained an independent predictor when adjustment for the Model for End-Stage Liver Disease score was performed (relative risk per %, 0.89; 95% confidence interval, 0.80-0.99; P = .031). Antithrombin III less than 59.5% was identified as a cutoff value to predict acute liver failure with a corresponding sensitivity of 81% and specificity of 87%. In addition to the Model for End-Stage Liver Disease score, decreased antithrombin III activity tends to be superior in predicting acute liver failure compared with traditionally thought predictors. Antithrombin III measurement may help to identify patients more precisely who are developing acute liver failure during mechanical

  5. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 2. Result report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Tanaka, Yumiko

    2003-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code on the thermo-hydro-mechanical-chemical phenomena by THAMES, Dtransu and phreeqe60, which are existing analysis code, is developed in this study. And we carried out the case analysis on the thermo-hydro-mechanical-chemical phenomena by this code. (1) We have developed coupling analysis system to manage coupling analysis and to control coupling process automatically for THAMES (thermo-hydro-mechanical analysis code), Dtransu (mass transport analysis code) and phreeqe60 (geochemical analysis code). (2) Some supporting module, which includes transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), was prepared as a functional expansion. And in order to treat multi-chemical elements, we have codified mass transport analysis code. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqe60 and hydraulic conductivity module were installed in the COUPLYS, sensitivity analysis was carried out to check basic operation. (4) In order to confirm the applicability of the developed THMC analysis code, we have carried out case analysis on 1-dimensional and 3-dimensional model which including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  6. A study of the free vibration of suspension rod based on four-stage arm mechanism by using computer simulation

    Directory of Open Access Journals (Sweden)

    Melnychuk S.V.

    2016-08-01

    Full Text Available We analyze the current state of the prospects and problems of using computer technology to determine the operating parameters of movement of the vehicle. Scientific works related to the study of the properties of the vehicle smooth ride are studied. The following example shows that the modern researches of smooth ride do not pay enough attention to issues associated with the processes that occur in the suspension rod of a vehicle. Scientific works related to the choice of the optimal and simple CAD system for conducting computer simulation tests are overviewed. We developed an animating model of experimental car in SOLIDWORKS environment with the staff suspension rod and the suspension rod based on four-stage arm mechanism, which allows a wide range of tests of components of the vehicle. Methodology and hardware-software complex for testing a car are developed. A test of a vehicle of category N1 is conducted. A computer simulation of the motion of the smooth ride of the car with suspension rod based on four-stage arm mechanism is conducted. The comparative analysis of suspension rod performance based on four-stage arm mechanism is conducted.

  7. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  8. An assessment of mode-coupling and falling-friction mechanisms in railway curve squeal through a simplified approach

    Science.gov (United States)

    Ding, Bo; Squicciarini, Giacomo; Thompson, David; Corradi, Roberto

    2018-06-01

    Curve squeal is one of the most annoying types of noise caused by the railway system. It usually occurs when a train or tram is running around tight curves. Although this phenomenon has been studied for many years, the generation mechanism is still the subject of controversy and not fully understood. A negative slope in the friction curve under full sliding has been considered to be the main cause of curve squeal for a long time but more recently mode coupling has been demonstrated to be another possible explanation. Mode coupling relies on the inclusion of both the lateral and vertical dynamics at the contact and an exchange of energy occurs between the normal and the axial directions. The purpose of this paper is to assess the role of the mode-coupling and falling-friction mechanisms in curve squeal through the use of a simple approach based on practical parameter values representative of an actual situation. A tramway wheel is adopted to study the effect of the adhesion coefficient, the lateral contact position, the contact angle and the damping ratio. Cases corresponding to both inner and outer wheels in the curve are considered and it is shown that there are situations in which both wheels can squeal due to mode coupling. Additionally, a negative slope is introduced in the friction curve while keeping active the vertical dynamics in order to analyse both mechanisms together. It is shown that, in the presence of mode coupling, the squealing frequency can differ from the natural frequency of either of the coupled wheel modes. Moreover, a phase difference between wheel vibration in the vertical and lateral directions is observed as a characteristic of mode coupling. For both these features a qualitative comparison is shown with field measurements which show the same behaviour.

  9. The Effect of the Rotor Static Eccentricity on the Electro-Mechanical Coupled Characteristics of the Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Wu Zaixin

    2016-01-01

    Full Text Available High-speed motorized spindle is a multi-variable, non-linear and strong coupling system. The rotor static eccentricity is inevitable because of machining or assembling error. The rotor static eccentricities have an important effect on the electromechanical coupled characteristics of the motorized spindle. In this paper, the electromechanical coupled mathematical model of the motorized spindle was set up. The mathematical model includes mechanical and electrical equation. The mechanical and electrical equation is built up by the variational principle. Furthermore, the inductance parameters without the rotor static eccentricity and the inductance parameters with rotor static eccentricity have been calculated by the winding function method and the high speed motorized spindle was simulated. The result show that the rotor static eccentricity can delay the starting process of the motorized spindle, and at steady state, the rotor circuit currents are still large because of the rotor static eccentricity.

  10. An application of nonlinear supratransmission to the propagation of binary signals in weakly damped, mechanical systems of coupled oscillators

    International Nuclear Information System (INIS)

    Macias-Diaz, J.E.; Puri, A.

    2007-01-01

    In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information

  11. Effects of c-axis Josephson coupling on dissipation, flux dynamics and the mechanism of high-Tc superconductivity

    International Nuclear Information System (INIS)

    Gray, K.E.; Hettinger, J.D.

    1995-01-01

    Measurements of the c-axis transport in highly anisotropic HTS materials strongly indicate that Josephson coupling is involved. This conclusion affects various properties of the HTS cuprates, including the irreversibility behavior for transport in the ab planes, the direct c-axis transport and potentially the mechanism of Cooper pairing

  12. Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage

    International Nuclear Information System (INIS)

    Leon, Juan A.; Palacios-Bereche, Reynaldo; Nebra, Silvia A.

    2016-01-01

    In the ethanol production process from sugarcane molasses, the distillation process is a high-energy demand stage. The distillation energy efficiency is strongly associated with the alcoholic fermentation performance in the process. The final ethanol concentration in the alcoholic wines has a direct impact on consumption of thermal energy in ethanol separation. In this paper, ethanol production with a H-SBMF (Hybrid-Simple Batch Membrane Fermenter) using PDMS (polydimethylsiloxane) pervaporation membrane was modelled and simulated, in order to determine its influence on energy consumption in distillation. Steam in distillation and electrical energy needs in permeate recovery were mainly influenced by membrane adaptation. The H-SBMF achieved a higher ethanol production in the range of 10–13% compared to the conventional batch fermenter, and an increase in productivity of 150%. The distillation system consisted of two sets of columns: the ethanol recovery column and the rectification column. The permeate recovery system (i.e. vacuum and compression) was regarded in order to evaluate the electrical energy requirement, and the thermal energy demand was evaluated. A decrease in steam consumption was evidenced by the adaptation of the membrane to the fermenter. Higher energy efficiencies were achieved in distillation with larger membrane areas, achieving almost 17% steam reduction. - Highlights: • Higher and faster ethanol productions were achieved by fermenter hybridization. • Multi-stage permeate compression and inter-stage heat recovery were assumed. • Energy demand was studied based on an integrated fermentation and distillation scheme. • High-energy efficiency was attained in the distillation to produce hydrated alcohol.

  13. Micro electro-mechanical heater

    Science.gov (United States)

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2016-04-19

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  14. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O. [University of Nevada Reno, Reno, Nevada 89557 (United States); Papp, D. [University of Nevada Reno, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  15. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip.

    Science.gov (United States)

    Gupta, Shaweta; Chakraborty, Srirupa; Vij, Ridhima; Auerbach, Anthony

    2017-01-01

    Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing ("gating") between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component ("flip") apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2-M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2-M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a "bubble" that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation. © 2017 Gupta et al.

  16. Mechanism research on coupling effect between dew point corrosion and ash deposition

    International Nuclear Information System (INIS)

    Wang, Yun-Gang; Zhao, Qin-Xin; Zhang, Zhi-Xiang; Zhang, Zhi-Chao; Tao, Wen-Quan

    2013-01-01

    In order to study the coupling mechanism between ash deposition and dew point corrosion, five kinds of tube materials frequently used as anti-dew point corrosion materials were selected as research objects. Dew point corrosion and ash deposition experiments were performed with a new type experimental device in a Chinese thermal power plant. The microstructures of the materials and the composition of ash deposition were analyzed by X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS). The results showed that the ash deposition layer could be divided into non-condensation zone, the main condensation zone and the secondary condensation zone. The acid vapor condensed in the main condensation zone rather than directly on the tube wall surface. The dew point corrosion mainly is oxygen corrosion under the condition of the viscosity ash deposition, and the corrosion products are composed of the ash and acid reaction products in the outer layer, iron sulfate in the middle layer, and iron oxide in the inner layer. The innermost layer is the main corrosion layer. With the increase of the tube wall temperature, the ash deposition changes from the viscosity ash deposition to the dry loose ash deposition, the ash deposition rate decreases dramatically and dew point corrosion is alleviated efficiently. The sulfuric dew point corrosion resistance of the five test materials is as follows: 316L > ND > Corten>20G > 20 steel. -- Highlights: ► Dew point corrosion and ash deposition tests of five materials were performed. ► Acid vapor condensed in the ash deposit rather than directly on the tube surface. ► Dew point corrosion resistance is as follow: 316L > ND > Corten>20G > 20 steel. ► Dew point corrosion mainly is oxygen corrosion under viscosity ash deposition

  17. Mechanism of climate change over South America during the LGM in coupled Ocean- Atmosphere model simulations

    Science.gov (United States)

    Khodri, M.

    2006-12-01

    On a regional perspective the database of proxy information for South America during the Last Glacial Maximum (LGM) shows large and regionally extensive changes of the mean climate and vegetation types over the Amazon basin. In some instances these changes were associated with decrease in the mean precipitation amount (and most probably in moist deep convection) over the Amazonian and South East Brazil monsoon regions and wetter mean conditions in present day drought-prone regions such as Northeast of Brazil (Nordeste). These changes have been interpreted as local responses to shift in the mean position and intensity of the Atlantic ITCZ due to glacial extratropical forcings or to changes in the South American Monsoons. However there are still two issues is the path to further understand the mechanism of climate change over South America during the LGM. The first is incomplete knowledge in both the modeling and observational communities of how the moist deep convection over the Amazonian region respond to glacial boundary condition and how this changes might interact with the meridional shift of rainfall over Nordeste and Atlantic Ocean. The second is our understanding of how ocean-atmosphere changes that do occur in the tropical Pacific region influence the climate of the remainder of the planet and on a regional way over South America. Using PMIP-2 coupled Ocean-Atmosphere simulations for LGM and comparison to paleodata we show that hydrological cycle changes over the Amazon basin might be independent of their Atlantic Ocean counterpart, while teleconnections with Pacific Ocean might have played a significant role in the observed changes over tropical South America.

  18. Thermo-hydro-mechanical coupling in long-term sedimentary rock response

    Science.gov (United States)

    Makhnenko, R. Y.; Podladchikov, Y.

    2017-12-01

    Storage of nuclear waste or CO2 affects the state of stress and pore pressure in the subsurface and may induce large thermal gradients in the rock formations. In general, the associated coupled thermo-hydro-mechanical effect on long-term rock deformation and fluid flow have to be studied. Principles behind mathematical models for poroviscoelastic response are reviewed, and poroviscous model parameter, the bulk viscosity, is included in the constitutive equations. Time-dependent response (creep) of fluid-filled sedimentary rocks is experimentally quantified at isotropic stress states. Three poroelastic parameters are measured by drained, undrained, and unjacketed geomechanical tests for quartz-rich Berea sandstone, calcite-rich Apulian limestone, and clay-rich Jurassic shale. The bulk viscosity is calculated from the measurements of pore pressure growth under undrained conditions, which requires time scales 104 s. The bulk viscosity is reported to be on the order of 1015 Pa•s for the sandstone, limestone, and shale. It is found to be decreasing with the increase of pore pressure despite corresponding decrease in the effective stress. Additionally, increase of temperature (from 24 ºC to 40 ºC) enhances creep, where the most pronounced effect is reported for the shale with bulk viscosity decrease by a factor of 3. Viscous compaction of fluid-filled porous media allows a generation of a special type of fluid flow instability that leads to formation of high-porosity, high-permeability domains that are able to self-propagate upwards due to interplay between buoyancy and viscous resistance of the deforming porous matrix. This instability is known as "porosity wave" and its formation is possible under conditions applicable to deep CO2 storage in reservoirs and explains creation of high-porosity channels and chimneys. The reported experiments show that the formation of high-permeability pathways is most likely to occur in low-permeable clay-rich materials (caprock

  19. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobayashi, A.

    1985-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. The medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in plane strain condition; water in the ground does not change its phase; heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively in the coupled model. Several types of problems are analyzed. The one is a study of some of the effects of completely coupled thermo-hydro-mechanical behavior on the response of a saturated-unsaturated porous rock containing a buried heat source. Excavation of an underground opening which has radioactive wastes at elevated temperatures is modeled and analyzed. The results shows that the coupling phenomena can be estimated at some degree by the numerical procedure. The computer code has a powerful ability to analyze of the repository the complex nature of the repository

  20. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model

    International Nuclear Information System (INIS)

    Sun, Zhi-xue; Zhang, Xu; Xu, Yi; Yao, Jun; Wang, Hao-xuan; Lv, Shuhuan; Sun, Zhi-lei; Huang, Yong; Cai, Ming-yu; Huang, Xiaoxue

    2017-01-01

    The Enhanced Geothermal System (EGS) creates an artificial geothermal reservoir by hydraulic fracturing which allows heat transmission through the fractures by the circulating fluids as they extract heat from Hot Dry Rock (HDR). The technique involves complex thermal–hydraulic–mechanical (THM) coupling process. A numerical approach is presented in this paper to simulate and analyze the heat extraction process in EGS. The reservoir is regarded as fractured porous media consisting of rock matrix blocks and discrete fracture networks. Based on thermal non-equilibrium theory, the mathematical model of THM coupling process in fractured rock mass is used. The proposed model is validated by comparing it with several analytical solutions. An EGS case from Cooper Basin, Australia is simulated with 2D stochastically generated fracture model to study the characteristics of fluid flow, heat transfer and mechanical response in geothermal reservoir. The main parameters controlling the outlet temperature of EGS are also studied by sensitivity analysis. The results shows the significance of taking into account the THM coupling effects when investigating the efficiency and performance of EGS. - Highlights: • EGS reservoir comprising discrete fracture networks and matrix rock is modeled. • A THM coupling model is proposed for simulating the heat extraction in EGS. • The numerical model is validated by comparing with several analytical solutions. • A case study is presented for understanding the main characteristics of EGS. • The THM coupling effects are shown to be significant factors to EGS's running performance.

  1. Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Flurina C.; Camenisch, Ulrike; Fei, Jia; Kaczmarek, Nina; Mathieu, Nadine [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland); Naegeli, Hanspeter, E-mail: naegelih@vetpharm.uzh.ch [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland)

    2010-03-01

    The recognition and subsequent repair of DNA damage are essential reactions for the maintenance of genome stability. A key general sensor of DNA lesions is xeroderma pigmentosum group C (XPC) protein, which recognizes a wide variety of helix-distorting DNA adducts arising from ultraviolet (UV) radiation, genotoxic chemicals and reactive metabolic byproducts. By detecting damaged DNA sites, this unique molecular sensor initiates the global genome repair (GGR) pathway, which allows for the removal of all the aforementioned lesions by a limited repertoire of excision factors. A faulty GGR activity causes the accumulation of DNA adducts leading to mutagenesis, carcinogenesis, neurological degeneration and other traits of premature aging. Recent findings indicate that XPC protein achieves its extraordinary substrate versatility by an entirely indirect readout strategy implemented in two clearly discernible stages. First, the XPC subunit uses a dynamic sensor interface to monitor the double helix for the presence of non-hydrogen-bonded bases. This initial screening generates a transient nucleoprotein intermediate that subsequently matures into the ultimate recognition complex by trapping undamaged nucleotides in the abnormally oscillating native strand, in a way that no direct contacts are made between XPC protein and the offending lesion itself. It remains to be elucidated how accessory factors like Rad23B, centrin-2 or the UV-damaged DNA-binding complex contribute to this dynamic two-stage quality control process.

  2. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Cha, Seung I. [International Center for Young Scientists, National Institute for Materials Science 1-1, Namiki, Tsukuba 305-0044 (Japan); Ryu, Ho J. [DUPIC, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yusong-gu, Taejon 305-353 (Korea, Republic of); Hong, Soon H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of)], E-mail: shhong@kaist.ac.kr

    2007-06-15

    Oxide dispersion strengthened (ODS) tungsten heavy alloys have been considered as promising candidates for advanced kinetic energy penetrator due to their characteristic fracture mode compared to conventional tungsten heavy alloy. In order to obtain high relative density, the ODS tungsten heavy alloy needs to be sintered at higher temperature for longer time, however, induces growth of tungsten grains. Therefore, it is very difficult to obtain controlled microstructure of ODS tungsten heavy alloy having fine tungsten grains with full densification. In this study, two-stage sintering process, consisted of primary solid-state sintering and followed by secondary liquid phase sintering, was introduced for ODS tungsten heavy alloys. The mechanically alloyed 94W-4.56Ni-1.14Fe-0.3Y{sub 2}O{sub 3} powders are solid-state sintered at 1300-1450 deg. C for 1 h in hydrogen atmosphere, and followed by liquid phase sintering temperature at 1465-1485 deg. C for 0-60 min. The microstructure of ODS tungsten heavy alloys showed high relative density above 97%, with contiguous tungsten grains after primary solid-state sintering. The microstructure of solid-state sintered ODS tungsten heavy alloy was changed into spherical tungsten grains embedded in W-Ni-Fe matrix during secondary liquid phase sintering. The two-stage sintered ODS tungsten heavy alloy from mechanically alloyed powders showed finer microstructure and higher mechanical properties than conventional liquid phase sintered alloy. The mechanical properties of ODS tungsten heavy alloys are dependent on the microstructural parameters such as tungsten grain size, matrix volume fraction and tungsten/tungsten contiguity, which can be controlled through the two-stage sintering process.

  3. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    Science.gov (United States)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  4. Mechanisms of the initial stage of fuel elements degradation of BN reactor fuel assemblies

    International Nuclear Information System (INIS)

    Zagorul'ko, Yu.I.; Kashcheev, M.V.; Ganichev, N.S.

    2015-01-01

    On the base of developed calculational technique numerical evaluation is carried out to the time of fuel element fracture in conditions of loss of sodium flow through fuel element jacket. Data on mechanical properties of steel EhK-164 is used in calculations. Calculations are carried out for different conditions of jacket outer surface cooling: by sodium of 1073 K temperature, by boiling sodium and by sodium in condition of film boiling. It is shown that time to jacket fracture under considered rupture mechanisms essentially depends on fuel element cooling conditions [ru

  5. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    Science.gov (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  6. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.

    Science.gov (United States)

    He, Yong

    2017-06-23

    We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.

  7. Mechanical testing - designers need: a view at component design and operations stages

    International Nuclear Information System (INIS)

    Shrivastava, S.K.

    2007-01-01

    Mechanical design of any component requires knowledge of values of various material properties which designer(s) make(s) use in designing the component. In design of nuclear power plant components, it assumes even greater importance in view of degree of precision and accuracy with which the values of various properties are required. This is in turn demands, high accuracy in testing machines and measuring methods. In this paper, attempt has been made to bring out that even from conventional tension test, how designer today looks for availability of engineering stress-strain diagram preferably through digitally acquired data points during the test from which he can derive values of Ramberg-Osgood parameters for use in fracture mechanics based analysis. Attempt has been also made to provide account of some of important fracture mechanics related tests which have been evolved in last two decades and designers need for evolution of simple test techniques to measure many more fracture mechanics related parameters as well as cater to constraints such as shape and size of material available from the components. Nuclear power plant has been primarily kept in view and ASME. Section III NB, ASME Section XI and relevant ASTM Standards have been taken as standard references. Further pressure retaining materials of pressure vessels/Reactor Pressure Vessels have been kept in view. (author)

  8. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage

    International Nuclear Information System (INIS)

    Kharkhour, H.

    2002-12-01

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  9. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  10. Mechanical modelling of the Singoe deformation zone. Site descriptive modelling Forsmark stage 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Maersk Hansen, Lars; Fredriksson, Anders; Bergkvist, Lars; Markstroem, Ingemar; Elfstroem, Mats [Golder Associates AB (Sweden)

    2007-02-15

    This project aims at demonstrating the theoretical approach developed by SKB for determination of mechanical properties of large deformation zones, in particular the Singoe deformation zone. Up to now, only bedrock and minor deformation zones have been characterized by means of this methodology, which has been modified for this project. The Singoe deformation zone is taken as a reference object to get a more comprehensive picture of the structure, which could be incorporated in a future version of the SDM of Forsmark. Furthermore, the Singoe Zone has been chosen because of available data from four tunnels. Scope of work has included compilation and analysis of geological information from site investigations and documentation of existing tunnels. Results have been analyzed and demonstrated by means of RVS-visualization. Numerical modelling has been used to obtain mechanical properties. Numerical modelling has also been carried out in order to verify the results by comparison of calculated and measured deformations. Compilation of various structures in the four tunnels coincides largely with a magnetic anomaly and also with the estimated width. Based on the study it is clear that the Singoe deformation zone has a heterogeneous nature. The number of fracture zones associated with the deformation zone varies on either side of the zone, as does the transition zone between host rock and the Singoe zone. The overall impression from the study is that the results demonstrate that the methodology used for simulating of equivalent mechanical properties is an applicable and adequate method, also in case of large deformation zones. Typical rock mechanical parameters of the Singoe deformations that can be used in the regional stress model considering the zone to be a single fracture are: 200 MPa/m in normal stiffness, 10-15 MPa/m in shear stiffness, 0.4 MPa in cohesion and 31.5 degrees in friction angle.

  11. Mechanical modelling of the Singoe deformation zone. Site descriptive modelling Forsmark stage 2.1

    International Nuclear Information System (INIS)

    Glamheden, Rune; Maersk Hansen, Lars; Fredriksson, Anders; Bergkvist, Lars; Markstroem, Ingemar; Elfstroem, Mats

    2007-02-01

    This project aims at demonstrating the theoretical approach developed by SKB for determination of mechanical properties of large deformation zones, in particular the Singoe deformation zone. Up to now, only bedrock and minor deformation zones have been characterized by means of this methodology, which has been modified for this project. The Singoe deformation zone is taken as a reference object to get a more comprehensive picture of the structure, which could be incorporated in a future version of the SDM of Forsmark. Furthermore, the Singoe Zone has been chosen because of available data from four tunnels. Scope of work has included compilation and analysis of geological information from site investigations and documentation of existing tunnels. Results have been analyzed and demonstrated by means of RVS-visualization. Numerical modelling has been used to obtain mechanical properties. Numerical modelling has also been carried out in order to verify the results by comparison of calculated and measured deformations. Compilation of various structures in the four tunnels coincides largely with a magnetic anomaly and also with the estimated width. Based on the study it is clear that the Singoe deformation zone has a heterogeneous nature. The number of fracture zones associated with the deformation zone varies on either side of the zone, as does the transition zone between host rock and the Singoe zone. The overall impression from the study is that the results demonstrate that the methodology used for simulating of equivalent mechanical properties is an applicable and adequate method, also in case of large deformation zones. Typical rock mechanical parameters of the Singoe deformations that can be used in the regional stress model considering the zone to be a single fracture are: 200 MPa/m in normal stiffness, 10-15 MPa/m in shear stiffness, 0.4 MPa in cohesion and 31.5 degrees in friction angle

  12. Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber: Mechanical and electrical properties

    International Nuclear Information System (INIS)

    Preetha Nair, K.; Thomas, Paulbert; Joseph, Rani

    2012-01-01

    Highlights: ► MWCNT can act as a reinforcing filler in XNBR at very low concentration. ► SEM and XRD analysis confirm uniform distribution of nanotube in the matrix. ► Mechanical properties showed considerable improvement. ► Thermal stability of the composite is marginally improved. -- Abstract: Multiwalled carbon nanotube (MWCNT) was dispersed in sodium dodecyl benzene sulphonate (SDBS) by sonication. The dispersed MWCNT (0.05–0.3 gm) was incorporated in carboxylated acrylonitrile butadiene rubber (XNBR) latex. Mechanical, electrical and thermal properties of these composites were studied. Mechanical properties of the composites increased up to an optimum concentration and then decreased. Dielectric properties of the composites were studied in the S band (frequency range 2–4 GHz) by Cavity Perturbation method. Direct current (DC) electrical conductivity shows a percolation behaviour and conductivity increased by about 10 orders of magnitude. Thermal studies were conducted using Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). As expected with the very small concentration of multiwalled carbon nanotube, glass transition temperature (T g ) and thermal stability of the composite showed a marginal increase. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscope (SEM) analysis.

  13. Influence of additional coupling agent on the mechanical properties of polyester–agave cantala roxb based composites

    Energy Technology Data Exchange (ETDEWEB)

    Ubaidillah, E-mail: ubaidillah@uns.ac.id [Mechanical Engineering Department, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126 (Indonesia); Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur (Malaysia); Raharjo, Wijang W.; Wibowo, A. [Mechanical Engineering Department, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126 (Indonesia); Harjana [Iwany Acoustic Research Group, Sebelas Maret University, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126 (Indonesia); Mazlan, S. A., E-mail: amri.kl@utm.my [Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur (Malaysia)

    2016-03-29

    The mechanical and morphological properties of the unsaturated polyester resins (UPRs)-agave cantala roxb based composite are investigated in this paper. The cantala fiber woven in 3D angle interlock was utilized as the composite reinforcement. Surface grafting of the cantala fiber through chemical treatment was performed by introducing silane coupling agent to improving the compatibility with the polymer matrix. The fabrication of the composite specimens was conducted using vacuum bagging technique. The effect of additional coupling agent to the morphological appearance of surface fracture was observed using scanning electron microscopy. Meanwhile, the influence of additional silane to the mechanical properties was examined using tensile, bending and impact test. The photograph of surface fracture on the treated specimens showed the residual matrix left on the fibers in which the phenomenon was not found in the untreated specimens. Based on mechanical tests, the treated specimens were successfully increased their mechanical properties by 55%, 9.67%, and 92.4% for tensile strength, flexural strength, and impact strength, respectively, at 1.5% silane coupling agent.

  14. Effect of Silane Coupling Agent on the Creep Behavior and Mechanical Properties of Carbon Fibers/Acrylonitrile Butadiene Rubber Composites.

    Science.gov (United States)

    Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang

    2018-09-01

    In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.

  15. End-stage renal disease in Nigeria: An overview of the epidemiology and the pathogenetic mechanisms

    Directory of Open Access Journals (Sweden)

    M O Odubanjo

    2011-01-01

    Full Text Available There is paucity of information on the magnitude of the burden of renal disease in our environment. Obtaining accurate data is hampered by the poor socioeconomic status of most patients with lack of access to specialized care in tertiary institutions, where most of the data is generated. The incidence of chronic renal failure (CRF and end-stage renal disease (ESRD in any specified area is known to be influenced by the prevalence of specific disease entities resulting in CRF. Hypertension, glomerulonephritis (GN, sickle cell disease, quartan malaria nephropathy, urinary tract schistosomiasis and other parasite-related forms of chronic GN are known to contribute significantly to the incidence of CRF in Nigeria. As is the situation in other parts of the world, diabetic nephropathy appears to be of increasing importance in the causation of ESRD in Nigeria. Even though the underlying cause of renal disease can often not be treated, extensive studies in experimental animals and preliminary studies in humans suggest that progression in chronic renal disease may largely be due to secondary factors, attention to which may be important in the prevention and/or control of renal disease.

  16. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    Science.gov (United States)

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  17. Diffusion mechanisms taking place at the early stages of cobalt deposition on Au(111)

    International Nuclear Information System (INIS)

    Oviedo, O A; Leiva, E P M; Mariscal, M M

    2008-01-01

    In the present work a detailed atomic-level analysis of some of the main diffusion mechanisms which take place during cobalt adatom deposition are studied within atom dynamics (AD) and the nudged elastic band (NEB) method. Our computer simulations reveal a very fast exchange between Co and Au atoms when the deposit is a single cobalt adatom. However, when the nucleus size increases, a decrease in the exchange probability is observed. Activation energies for different transitions are obtained using AD in combination with the NEB method

  18. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes

    Science.gov (United States)

    Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang

    2018-02-01

    We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.

  19. Coupling of the four design stages in the management of nuclear fuel; Acoplamiento de las cuatro etapas de diseno en la administracion de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Marinez R, R. L.

    2016-07-01

    In this work, the main characteristics of the system to solve the four stages of the nuclear fuel management are presented; the above for boiling water reactors (BWR). The novelty of the system is that a complete solution is obtained in a coupled way; the involved stages are fuel lattice design, fuel assembly design, fuel reload design and control rod pattern design. To do this, in each stage of the process some heuristics techniques are applied, and each stage has its own objective function. The used heuristic techniques are neural network and a hybrid between scatter search and path re linking for fuel lattice design; for fuel assembly design a simple local search was applied and finally, for both fuel reload and control rod pattern designs, the tabu search technique was used. The system have two loops, one external loop and one internal loop, the first one starts with fuel lattice design and concludes with control rod pattern design; on the other hand, the internal loop executes an iterative process between both fuel reload design and control rod pattern designs, to start this loop a seed fuel reload is required, which is obtained applying Haling principle. The internal loop is finished when four iterations were achieved, while the external loop is finished when two iterations were achieved, this number of iterations was fixed due to the great quantity of required computational resources. An 18- months equilibrium cycle was considered to have a reference value to compare against the obtained results with our system, this cycle have two fuel fresh batches with the same average uranium enrichment, but different gadolinia content. The above cycle achieved a 10,896 Mwd/Tu of energy and was divided into 12 burnup steps. The obtained results show the advantage to solve the complete problem in a coupled way, even though a great quantity of computational resources are used. It is necessary to note that the energy value was not achieved in all cases, only in some

  20. Design and Vibration Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Diamond Coupling Mechanism

    Directory of Open Access Journals (Sweden)

    Yanwei Guan

    2016-04-01

    Full Text Available In this paper, a new micromachined tuning fork gyroscope (TFG with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one. The frequencies of the in- and anti-phase modes in the sense direction are 9799.6 Hz and 4705.3 Hz, respectively. The analytical solutions illustrate that the stiffness difference ratio of the in- and anti-phase modes is inversely proportional to the output induced by the vibration from the sense direction. Additionally, FEM simulations demonstrate that the stiffness difference ratio of the anchored diamond coupling TFG is 16.08 times larger than the direct coupling one while the vibration output is reduced by 94.1%. Consequently, the proposed new anchored diamond coupling TFG can structurally increase the stiffness difference ratio to improve the mode ordering and considerably reduce the vibration sensitivity without sacrificing the scale factor.

  1. Theoretical study of coupling mechanisms between oxygen diffusion, chemical reaction, mechanical stresses in a solid-gas reactive system

    International Nuclear Information System (INIS)

    Creton, N.; Optasanu, V.; Montesin, T.; Garruchet, S.

    2008-01-01

    This paper offers a study of oxygen dissolution into a solid, and its consequences on the mechanical behaviour of the material. In fact, mechanical strains strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO 2 compound near the internal interface is consistent with some oxidation mechanisms of oxidation experimentally observed. More generally, this work will be extended to the simulation to an oxide layer growth on a metallic substrate. (authors)

  2. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 15-99-02. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, Masakazu; Sugita, Yutaka; Fujita, Tomoo [Tokai Works, Waste Management and Fuel Cycle Research Center, Waste Isolation Research Division, Barrier Performance Group, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Amemiya, Kiyoshi [Hazama Corp., Tokyo (Japan)

    1999-07-01

    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. In 1996, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. The field experiment leads to a better understanding of the behavior of the coupled thermo-hydro-mechanical phenomena in the near field. (author)

  3. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  4. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    Science.gov (United States)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  5. Two-stage continuous process of methyl ester from high free fatty acid mixed crude palm oil using static mixer coupled with high-intensity of ultrasound

    International Nuclear Information System (INIS)

    Somnuk, Krit; Smithmaitrie, Pruittikorn; Prateepchaikul, Gumpon

    2013-01-01

    Highlights: • Mixed crude palm oil was used in the two-step continuous process. • Two-step continuous process was performed using static mixer coupled with ultrasound. • The maximum obtained yield was 92.5 vol.% after the purification process. • The residence time less than 20 s was achieved in ultrasonic reactors. - Abstract: The two-stage continuous process of methyl ester from high free fatty acid (FFA) mixed crude palm oil (MCPO) was performed by using static mixer coupled with high-intensity of ultrasound. The 2 × 1000 W ultrasonic homogenizers were operated at 18 kHz frequency in the 2 × 100 mL continuous reactors. For the first-step, acid-catalyzed esterification was employed with 18 vol.% of methanol, 2.7 vol.% of sulfuric acid, 60 °C of temperature, and 20 L h −1 of MCPO flow rate, for reducing the acid value from 28 mg KOH g −1 to less than 2 mg KOH g −1 . For the second-step, base-catalyzed transesterification was carried out under 18 vol.% of methanol, 8 g KOH L −1 of oil, and 20 L h −1 of esterified oil flow rate at 30 °C. The high yields of esterified oil and crude biodiesel were attained within the residence time of less than 20 s in the ultrasonic reactors. The yields of each stage process were: 103.3 vol.% of esterified oil, 105.4 vol.% of crude biodiesel, and 92.5 vol.% of biodiesel when compared with 100 vol.% MCPO. The quality of the biodiesel meets the specification of biodiesel standard in Thailand

  6. Simulation of the Mechanical Response of the 11T Magnet by Means of COMSOL-MpCCI-ANSYS Coupling

    CERN Document Server

    Wilczek, Michal

    2017-01-01

    This report covers the work during my Summer Student internship at CERN as a part of the STEAM group (Simulation of Transient Effects in Accelerator Magnets) in the Technology Department, Machine Protection and Electrical Integrity group. I was responsible for the development of the ANSYS APDL model of the 11T superconducting magnet serving as a proof of concept for magneto-thermo-mechanical co-simulations of quench propagation in COMSOL and ANSYS software. The aforementioned co-simulation estimates the magnetic, thermal, and mechanical response of the magnet during the discharge process, while protected by a recently developed method, called Coupling-Loss Induced Quench (CLIQ). The already existing STEAM framework performs field/circuit coupling of a magneto-thermal field models previously developed by the STEAM. The next task of the group aimed at combining magneto-thermal field solution with the mechanical simulations. Such a coupling is of interest for the High-Luminosity upgrade of the Large Hadron Colli...

  7. Results of laboratory and in-situ measurements for the description of coupled thermo-hydro-mechanical processes in clays

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory aims at producing a validated model of thermo-hydro-mechanically (THM) coupled processes. The experiment consists of an engineered barrier system where in a vertical borehole, a heater is embedded in bentonite blocks, surrounded by the host rock, Opalinus Clay. The experimental programme comprises permanent monitoring before, during, and after the heating phase, complemented by geotechnical, hydraulic, and seismic in-situ measurements as well as laboratory analyses of mineralogical and rock mechanics properties. After the heating, the experiment was dismantled for further investigations. Major results of the experimental findings are outlined. (authors)

  8. Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for the Feshbach resonance

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel

    2006-01-01

    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)

  9. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  10. Final Report: Improving the understanding of the coupled thermal-mechanical-hydrologic behavior of consolidating granular salt

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States); Lampe, Brandon [Univ. of New Mexico, Albuquerque, NM (United States); Mills, Melissa [Univ. of New Mexico, Albuquerque, NM (United States); Paneru, Laxmi [Univ. of New Mexico, Albuquerque, NM (United States); Lynn, Timothy [Univ. of New Mexico, Albuquerque, NM (United States); Piya, Aayush [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-09-09

    The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositories in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report

  11. Nucleation Mechanisms of Aromatic Polyesters, PET, PBT, and PEN, on Single-Wall Carbon Nanotubes: Early Nucleation Stages

    Directory of Open Access Journals (Sweden)

    Adriana Espinoza-Martínez

    2012-01-01

    Full Text Available Nucleation mechanisms of poly(ethylene terephthalate (PET, poly(butylene terephthalate (PBT, and poly(ethylene naphthalate (PEN on single-wall carbon nanotubes (SWNTs are proposed, based on experimental evidence, theoretical epitaxy analysis, and semiempirical quantum chemical calculations. In order to elucidate early nucleation stages polyester-coated nanotubes were obtained from highly diluted solutions. High-resolution transmission electron microscopy (HRTEM revealed helical morphologies for PET/SWNTs and PEN/SWNTs and the formation of lobules with different orientations for PBT/SWNTs. To explain the morphological behavior one model was proposed based on crystallographic interactions, that is, epitaxy. Theoretical epitaxy calculations indicated that epitaxy is not possible from the strict epitaxy point of view. Instead, aromatic self-assembly mechanism was proposed based on π-π interactions and the chirality of the nanotube. It was proposed that the mechanism implies two steps to produce helical or lobular morphologies with different orientations. In the first step polymer chains were approached, aligned parallel to the nanotube axis and adsorbed due to electrostatic interactions and the flexibility of the molecule. However, due to π-π interactions between the aromatic rings of the polymer and the nanotube, in the second step chains reoriented on the nanotube surface depending on the chirality of the nanotube. The mechanism was supported by semi-empirical calculations.

  12. Towards Tuning the Mechanical Properties of Three-Dimensional Collagen Scaffolds Using a Coupled Fiber-Matrix Model

    Directory of Open Access Journals (Sweden)

    Shengmao Lin

    2015-08-01

    Full Text Available Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

  13. Early stages of Cs adsorption mechanism for GaAs nanowire surface

    Science.gov (United States)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu

    2018-03-01

    In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.

  14. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.

    Science.gov (United States)

    Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko

    2017-08-01

    Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.

  15. Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride.

    Science.gov (United States)

    Jha, Santosh Kumar; Marqusee, Susan

    2014-04-01

    Dry molten globular (DMG) intermediates, an expanded form of the native protein with a dry core, have been observed during denaturant-induced unfolding of many proteins. These observations are counterintuitive because traditional models of chemical denaturation rely on changes in solvent-accessible surface area, and there is no notable change in solvent-accessible surface area during the formation of the DMG. Here we show, using multisite fluorescence resonance energy transfer, far-UV CD, and kinetic thiol-labeling experiments, that the guanidinium chloride (GdmCl)-induced unfolding of RNase H also begins with the formation of the DMG. Population of the DMG occurs within the 5-ms dead time of our measurements. We observe that the size and/or population of the DMG is linearly dependent on [GdmCl], although not as strongly as the second and major step of unfolding, which is accompanied by core solvation and global unfolding. This rapid GdmCl-dependent population of the DMG indicates that GdmCl can interact with the protein before disrupting the hydrophobic core. These results imply that the effect of chemical denaturants cannot be interpreted solely as a disruption of the hydrophobic effect and strongly support recent computational studies, which hypothesize that chemical denaturants first interact directly with the protein surface before completely unfolding the protein in the second step (direct interaction mechanism).

  16. A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor

    DEFF Research Database (Denmark)

    Grundmann, Manuel; Tikhonova, Irina G; Hudson, Brian D

    2016-01-01

    Ligands targeting G protein-coupled receptors (GPCRs) are currently classified as either orthosteric, allosteric, or dualsteric/bitopic. Here, we introduce a new pharmacological concept for GPCR functional modulation: sequential receptor activation. A hallmark feature of this is a stepwise ligand...

  17. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  18. Experimental evidence of two mechanisms coupling leaf-level C assimilation to rhizosphere CO2 release

    Science.gov (United States)

    Zachary Kayler; Claudia Keitel; Kirstin Jansen; Arthur Gessler

    2017-01-01

    The time span needed for carbon fixed by plants to induce belowground responses of root and rhizosphere microbial metabolic processing is of high importance for quantifying the coupling between plant canopy physiology and soil biogeochemistry, but recent observations of a rapid link cannot be explained by new assimilate transport by phloem mass flow alone. We performed...

  19. Coupling between chemical kinetics and mechanics that is both nonlinear and compatible with thermodynamics

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Grmela, M.

    2013-01-01

    Roč. 87, č. 1 (2013), s. 1-9 ISSN 1539-3755 Institutional support: RVO:61388998 Keywords : gemneric * non- equilibrium thermodynamics * coupling Subject RIV: BJ - Thermodynamics Impact factor: 2.326, year: 2013 http://link.aps.org/doi/10.1103/PhysRevE.87.012141

  20. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    Science.gov (United States)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach

  1. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products.

    Science.gov (United States)

    Wang, Liping; Li, Aimin

    2015-01-01

    Hydrothermal treatment coupled with mechanical expression at increased temperature in two separate cells respectively is effective for the dewatering of excess sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and the characteristics of obtained products (hydrothermal sludge, hydrochar and filtrate). The results showed that harsher hydrothermal treatment (temperature from 120 to 210 °C and residence time from 10 to 90 min) led to greater water removal (from 7.44 to 96.64% reduction of total water) and mechanical pressure became less significant as it increased. The whole expression stage was completely described by the modified Terzaghi-Voigt rheological model. The role of tertiary consolidation stage in the water removal was reduced with hydrothermal treatment being stronger. The hydrothermal treatment is mainly a devolatilization process. The observed changes in H/C and O/C for hydrothermal sludge suggested dehydration was the major reaction mechanism and decarboxylation only occurred significantly at higher temperature. The higher heating value correlated well with carbon content of sludge, which was increased by 4.8% for hydrothermal sludge at 210 °C for 60 min and significantly decreased by 15.4% for hydrochar after 6.0 MPa for 20 min. The solubilization and decomposition of proteins, polysaccharides and DNA were determined to be temperature and residence time dependent. The improvement of dewaterability was closely correlated to the variation of these biopolymers. The filtrates collected above 150 °C were found to be acidic. The increase of humic substances and the melanoidins formed by Maillard reaction were largely responsible for the filtrate color.

  2. Optimal elastic coupling in form of one mechanical spring to improve energy efficiency of walking bipedal robots

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fabian; Römer, Ulrich, E-mail: ulrich.roemer@kit.edu; Fidlin, Alexander; Seemann, Wolfgang [Institute of Engineering Mechanics, Karlsruhe Institute of Technology (Germany)

    2016-11-15

    This paper presents a method to optimize the energy efficiency of walking bipedal robots by more than 80 % in a speed range from 0.3 to 2.3 m/s using elastic couplings—mechanical springs with movement speed independent parameters. The considered planar robot consists of a trunk, two two-segmented legs, two actuators in the hip joints, two actuators in the knee joints and an elastic coupling between the shanks. It is modeled as underactuated system to make use of its natural dynamics and feedback controlled via input–output linearization. A numerical optimization of the joint angle trajectories as well as the elastic couplings is performed to minimize the average energy expenditure over the whole speed range. The elastic couplings increase the swing leg motion’s natural frequency thus making smaller steps more efficient which reduce the impact loss at the touchdown of the swing leg. The process of energy turnover is investigated in detail for the robot with and without elastic coupling between the shanks. Furthermore, the influences of the elastic couplings’ topology and of joint friction are analyzed. It is shown that the optimization of the robot’s motion and elastic coupling towards energy efficiency leads to a slightly slower convergence rate of the controller, yet no loss of stability, but a lower sensitivity with respect to disturbances. The optimal elastic coupling discovered via numerical optimization is a linear torsion spring with transmissions between the shanks. A design proposal for this elastic coupling—which does not affect the robot’s trunk and parallel shank motion and can be used to enhance an existing robot—is given for planar as well as spatial robots.

  3. AC loss performance of cable-in-conduit conductor. Influence of cable mechanical property on coupling loss reduction

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Koizumi, Norikiyo; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko

    2003-01-01

    The ITER Central Solenoid (CS) model coil, CS Insert and Nb 3 Al Insert were developed and tested from 2000 to 2002. The AC loss performances of these coils were investigated in various experiments. In addition, the AC losses of the CS and Nb 3 Al Insert conductors were measured using short CS and Nb 3 Al Insert conductors before the coil tests. The coupling time constants of these conductors were estimated to be 30 and 120 ms, respectively. On the other hand, the test results of the CS and Nb 3 Al Inserts show that the coupling currents induced in these conductors had multiple decay time constants. In fact, the existence of the coupling currents with long decay time constants, the order of which was in the thousands of seconds, was directly observed with hall sensors and voltage taps. Moreover, the AC loss test results show that electromagnetic force decreases coupling losses with exponential decay constants. This is because the weak sinter among the strands, which originated during heat treatment, was broken due to the electromagnetic force, and then the contact resistance among strands increased. It was found that this exponential decay constant was the function of a gap (i.e., a mechanical property of the cable) created between the cable and conduit due to electromagnetic force. The gap can be estimated by pressure drop, measured under the electromagnetic force. The pressure drop can easily be measured at an initial trial charge, and then it is possible to estimate the exponential decay constant before normal coil operation. Accordingly, it is possible to predict promptly how many times the trial operations are necessary to decrease the coupling losses to the designed value by measuring the coupling losses and the pressure drop during the initial coil operation trial. (author)

  4. Pathological mechanisms of alcohol-induced hepatic portal hypertension in early stage fibrosis rat model.

    Science.gov (United States)

    Li, Jian; Niu, Jian-Zhao; Wang, Ji-Feng; Li, Yu; Tao, Xiao-Hua

    2005-11-07

    To study the role of hepatic sinusoidal capillarization and perisinusoidal fibrosis in rats with alcohol-induced portal hypertension and to discuss the pathological mechanisms of alcohol-induced hepatic portal hypertension. Fifty SD rats were divided into control group (n=20) and model group (n=30). Alcoholic liver fibrosis rat model was induced by intragastric infusion of a mixture containing alcohol, corn oil and pyrazole (1 000:250:3). Fifteen rats in each group were killed at wk 16. The diameter and pressure of portal vein were measured. Plasma hyaluronic acid (HA), type IV collagen (CoIV) and laminin (LN) were determined by radioimmunoassay. Liver tissue was fixed in formalin (10%) and 6-mum thick sections were routinely stained with Mallory and Sirius Red. Liver tissue was treated with rabbit polyclonal antibody against LN and ColIV. Hepatic non-parenchymal cells were isolated, total protein was extracted and separated by SDS-PAGE. MMP-2 and TIMP-1 protein expression was estimated by Western blotting. The diameter (2.207+/-0.096 vs 1.528+/-0.054 mm, Pportal vein were significantly higher in model group than those in the control group. Plasma HA (129.97+/-16.10 vs 73.09+/-2.38 ng/mL, Pmodel group. Abundant collagen deposited around the central vein of lobules, hepatic sinusoids and hepatocytes in model group. ColI and ColIII increased remarkably and perisinusoids were almost surrounded by ColIII. Immunohistochemical staining showed that ColIV protein level (0.130+/-0.007 vs 0.032+/-0.004, Pprotein level (0.152+/-0.005 vs 0.029+/-0.005, Pmodel group. MMP-2 protein expression (2.306+/-1.089 vs 0.612+/-0.081, Pprotein expression (3.015+/-1.364 vs 0.446+/-0.009, Pmodel group and TIMP-1 protein expression was evidently higher than MMP-2 protein expression (2.669+/-0.170 vs 1.695+/-0.008, Pportal hypertension in rats.

  5. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    Science.gov (United States)

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture

  6. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  7. Electromagneto-mechanical coupling analysis of a test module in J-TEXT Tokamak during plasma disruption

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Haijie; Yuan, Zhensheng; Yuan, Hongwei; Pei, Cuixiang [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shanxi Engineering Research Center for NDT and Structural Integrity Evaluation Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shanxi Engineering Research Center for NDT and Structural Integrity Evaluation Xi’an Jiaotong University, Xi’an 710049 (China); Yang, Jinhong; Wang, Weihua [Institute of Applied Physics of AOA, Hefei 230031 (China)

    2016-11-01

    In this paper, the dynamic response during plasma disruption of a test blanket module in vacuum vessel (VV) of the Joint TEXT (J-TEXT), which is an experimental Tokamak device with iron core, was simulated by applying a program developed by authors on the ANSYS platform using its parametric design language (APDL). The moving coordinate method as well as the load transfer and sequential coupling strategy were adopted to cope with the electromagneto-mechanical coupling effect. To establish the numerical model, the influence of the iron core on the eddy current and electromagnetic (EM) force during disruption was numerically investigated at first and the influence was found not significant. Together with the geometrical features of the J-TEXT Tokamak structure, 180° sector models without magnetic core were finally established for the EM field and the structural response simulations. To obtain the source plasma current, the plasma current evolution during disruption was simulated by using the Tokamak Simulation Code (TSC). With the numerical models and the source plasma current, the dynamic response of both the VV structure and the test module were calculated. The numerical results show that the maximum stress of the test module is in safe range, and the magnetic damping effect can weaken vibration of the test module. In addition, simulation without considering the coupling effect was carried out, which shows that the influence of coupling effect is not significant for the peak stress of the J-TEXT disruption problem.

  8. Cytocompatibility and Mechanical Properties of Short Phosphate Glass Fibre Reinforced Polylactic Acid (PLA Composites: Effect of Coupling Agent Mediated Interface

    Directory of Open Access Journals (Sweden)

    Gavin Walker

    2012-10-01

    Full Text Available In this study three chemical agents Amino-propyl-triethoxy-silane (APS, sorbitol ended PLA oligomer (SPLA and Hexamethylene diisocyanate (HDI were identified to be used as coupling agents to react with the phosphate glass fibre (PGF reinforcement and the polylactic acid (PLA polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP control, supporting the use of these materials as coupling agent’s within medical implant devices.

  9. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles; Azdoud, Yan; Han, Fei; Rey, Christian C.; Askari, Abe H.

    2012-01-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  10. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles

    2012-06-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  11. Periodic driving control of Raman-induced spin-orbit coupling in Bose-Einstein condensates: The heating mechanisms

    Science.gov (United States)

    Gomez Llorente, J. M.; Plata, J.

    2016-06-01

    We focus on a technique recently implemented for controlling the magnitude of synthetic spin-orbit coupling (SOC) in ultracold atoms in the Raman-coupling scenario. This technique uses a periodic modulation of the Raman-coupling amplitude to tune the SOC. Specifically, it has been shown that the effect of a high-frequency sinusoidal modulation of the Raman-laser intensity can be incorporated into the undriven Hamiltonian via effective parameters, whose adiabatic variation can therefore be used to tune the SOC. Here, we characterize the heating mechanisms that can be relevant to this method. We identify the main mechanism responsible for the heating observed in the experiments as basically rooted in driving-induced transfer of population to excited states. Characteristics of that process determined by the harmonic trapping, the decay of the excited states, and the technique used for preparing the system are discussed. Additional heating, rooted in departures from adiabaticity in the variation of the effective parameters, is also described. Our analytical study provides some clues that may be useful in the design of strategies for curbing the effects of heating on the efficiency of the control methods.

  12. Summary report of research on evaluation of coupled thermo-hydro-mechanical behavior in the engineered barrier

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Yamashita, Ryo

    2002-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in to the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. In the above numerical code, swelling phenomenon is modeled as the function of water potential. However it dose no evaluate the experiment results enough. Then, we try to apply the new model. (author)

  13. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  14. Mechanical features of a 700 MHz bridge-coupled drift tube linac

    International Nuclear Information System (INIS)

    Liska, D.; Smith, P.; Carlisle, L.; Larkin, T.; Lawrence, G.; Garnett, R.

    1992-01-01

    Modem linac designs for treating radioactive waste achieve high proton currents through funneling at low energy, typically around 20 MeV. The resulting switch to a high-frequency accelerating structure poses severe performance and fabrication difficulties below 100 MeV. Above 100 MeV, proven coupled-cavity linacs (CCLS) are available. However, at 20 MeV one must choose between a high-frequency drift-tube linac (DTL) or a coupled-cavity linac with very short cells. Potential radiation damage from the CW beam, excessive RF power losses, multipactoring, and fabricability all enter into this decision. At Los Alamos, we have developed designs for a bridge-coupled DTL (BCDTL) that, like a CCL, uses lattice focusing elements and bridge couplers, but that unlike a CCL, accelerates the beam in simple, short, large-aperture DTL modules with no internal quadrupole focusing. Thus, the BCDTL consumes less power than the CCL linac without beam performance and is simpler and cheaper to fabricate in the 20 to 100 MeV range

  15. Compassionate love as a mechanism linking sacred qualities of marriage to older couples' marital satisfaction.

    Science.gov (United States)

    Sabey, Allen K; Rauer, Amy J; Jensen, Jakob F

    2014-10-01

    Previous work has underscored the robust links between sanctification of marriage and marital outcomes, and recent developments in the literature suggest that compassionate love, which is important for intimate relationships, may act as a mediator of that relationship. Accordingly, the current study used actor-partner interdependence models to examine the relationship between a spiritual cognition (i.e., perceived sacred qualities of marriage) and marital satisfaction, and to determine whether that relationship is mediated by compassionate love, in a sample of older married couples (N = 64). Results revealed that wives' greater sacred qualities of marriage were significantly and positively linked to marital satisfaction on the part of both spouses, and that these links were partially mediated by couples' reports of compassionate love. These findings highlight the importance of moving beyond simply establishing the existence of the link between global markers of involvement of religion and marriage to understanding how specific spiritual cognitions may foster better relationship quality, especially among older couples. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  16. Mechanical features of a 700-MHz bridge-coupled drift-tube linac

    International Nuclear Information System (INIS)

    Liska, D.; Smith, P.; Carlisle, L.; Larkin, T.; Lawrence, G.; Garnett, R.

    1992-01-01

    Modern linac designs for treating radioactive waste achieve high proton currents through funneling at low energy, typically around 20 MeV. The resulting switch to a high-frequency accelerating structure poses severe performance and fabrication difficulties below 100 MeV. Above 100 MeV, proven coupled-cavity linacs (CCLs) are available. However, at 20 MeV one must choose between a high-frequency drift-tube linac (DTL) or a coupled-cavity linac with very short cells. Potential radiation damage from the CW beam, excessive RF power losses, multipactoring, and fabricability all enter into this decision. At Los Alamos, we have developed designs for a bridge-coupled DTL (BCDTL) that, like a CCL, uses lattice focusing elements and bridge couplers, but that unlike a CCL, accelerates the beam in simple, short, large-aperture DTL modules with no internal quadrupole focusing. Thus, the BCDTL consumes less power than the CCL linac without beam performance and is simpler and cheaper to fabricate in the 20 to 100 MeV range. (Author) ref., tab., 3 figs

  17. Uncovering the exposure mechanisms of sunken heavy oil that makes it chronically toxic to early life stages of fish

    International Nuclear Information System (INIS)

    Martin, J.; Young, G.; Lemire, B.; Hodson, P.

    2010-01-01

    A train derailment in 2005 caused the release of 150,000 litres of No. 6 heavy fuel oil into a lake in Alberta. The oil is a residue of the crude oil refinement process and contains 3-4 ringed alkylated forms of polycyclic aromatic hydrocarbons (PAH) that are known to cause sub-lethal toxic responses during the early life stages of rainbow trout. Because the oil does not disperse well, oil patches still persist in near-shore sediments of the lake where fish spawn. This study assessed how the behaviour of heavy oil in water interacts with exposure and toxicity to the early life stages of fish. Daily renewal tests with heavy fuel oil coated on glass plate demonstrated higher levels of toxicity to trout embryos than oil that was mechanically or chemically dispersed. A flow-through oil gravel column was used to assess whether the toxic constituents of the heavy oil are transferred quickly enough to cause toxicity. The aim of the study was to develop exposure and toxicity test methods that accurately reflect the behaviour of heavy oil after a spill.

  18. Ultra high tip speed (670.6 m/sec) fan stage with composite rotor: Aerodynamic and mechanical design

    Science.gov (United States)

    Halle, J. E.; Burger, G. D.; Dundas, R. E.

    1977-01-01

    A highly loaded, single-stage compressor having a tip speed of 670.6 m/sec was designed for the purpose of investigating very high tip speeds and high aerodynamic loadings to obtain high stage pressure ratios at acceptable levels of efficiency. The design pressure ratio is 2.8 at an adiabatic efficiency of 84.4%. Corrected design flow is 83.4 kg/sec; corrected design speed is 15,200 rpm; and rotor inlet tip diameter is 0.853 m. The rotor uses multiple-circular-arc airfoils from 0 to 15% span, precompression airfoils assuming single, strong oblique shocks from 21 to 43% span, and precompression airfoils assuming multiple oblique shocks from 52% span to the tip. Because of the high tip speeds, the rotor blades are designed to be fabricated of composite materials. Two composite materials were investigated: Courtaulds HTS graphite fiber in a Kerimid 601 polyimide matrix and the same fibers in a PMR polyimide matrix. In addition to providing a description of the aerodynamic and mechanical design of the 670.0 m/sec fan, discussion is presented of the results of structural tests of blades fabricated with both types of matrices.

  19. Change in mechanical properties of low-alloyed molybdenum alloys at two-stage strengthening during aging

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Arbuzov, V.K.

    1977-01-01

    Change in mechanical properties of hardened low-alloyed molybdenum alloys (Mo-Zr-C and Mo-Zr-Nb-C) at two-stage strengthening during ageing at 1400 deg C is studied. The initial strengthening maximum following ageing for 5 hr is caused by separation of dispersed ZrC particles and is accompanied by worsened plasticity, a development characteristic of precipitation hardening processes. The second increase in strength after a 10-hr ageing is not accompanied by reduced plasticity, this being characteristic of strengthening as a result of reconstruction of the dislocation structure. Niobium (0.16 wt.%) added to Mo-Zr-C alloys simultaneously increases their plastic and strength properties. The said effect is caused by prevention of premature decomposition of alloys on account of increased low-temperature plasticity, which permits to obtain high resistance to plastic deformation

  20. Coupled thermo-hydro-mechanical processes around a bentonite buffer embedded in Opalinus Clay - Comparison between measurements and calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo; Munoz, Juan Jorge [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory consists of an engineered barrier system composed of compacted bentonite blocks around a heater. The bentonite barrier is embedded in Opalinus Clay. The aim of the project is improved understanding of thermo-hydro mechanically (THM) coupled processes. Calculations are performed by 2 Finite-Element programs, CODE-BRIGHT and MHERLIN, the former for the near-field modeling and the latter for the rock modeling. Numerical modeling is carried out during all phases of the project to give input for design tasks such as cooling and dismantling, and to finally produce verified models of the THM coupled engineered barrier system. Results of both programs are discussed in the light of the experimental findings. (authors)

  1. Magnetic exchange in {Gd(III)-radical} complexes: method assessment, mechanism of coupling and magneto-structural correlations.

    Science.gov (United States)

    Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan

    2014-07-28

    Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.

  2. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    Science.gov (United States)

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  3. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 3. Result Report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito, Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao

    2004-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu and phreeqc, which are existing analysis code, is developed in this study. And some case analyses on THMC phenomena are carried out by this code. (1) Some supporting modules, which include the transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), were prepared as a functional expansion. And in order to add on the function of treat de-gases and gases diffusion, accumulation and dilution phenomena, the mass transport analysis code was modified. (2) We have modified reactive transport module to treat ionic exchange, surface reaction and kinetic reaction in the each barrier. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), degradation of buffer material such as Ca-type bentonite and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqc and the hydraulic conductivity module were installed in COUPLYS (Coupling Analysis), verification study was carried out to check basic function. And we have modified COUPLYS to control coupling process. (4) In order to confirm the applicability of the developed THMC analysis code (existing analysis code and COUPLYS), we have carried out case analyses on 1-dimensional and 3-dimensional model which are including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  4. Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults

    Science.gov (United States)

    Vytal, Katherine E.; Overstreet, Cassie; Charney, Danielle R.; Robinson, Oliver J.; Grillon, Christian

    2014-01-01

    Background Neuroimaging research has traditionally explored fear and anxiety in response to discrete threat cues (e.g., during fear conditioning). However, anxiety is a sustained aversive state that can persist in the absence of discrete threats. Little is known about mechanisms that maintain anxiety states over a prolonged period. Here, we used a robust translational paradigm (threat of shock) to induce sustained anxiety. Recent translational work has implicated an amygdala–prefrontal cortex (PFC) circuit in the maintenance of anxiety in rodents. To explore the functional homologues of this circuitry in humans, we used a novel paradigm to examine the impact of sustained anticipatory anxiety on amygdala–PFC intrinsic connectivity. Methods Task-independent fMRI data were collected in healthy participants during long-duration periods of shock anticipation and safety. We examined intrinsic functional connectivity. Results Our study involved 20 healthy participants. During sustained anxiety, amygdala activity was positively coupled with dorsomedial PFC (DMPFC) activity. High trait anxiety was associated with increased amygdala–DMPFC coupling. In addition, induced anxiety was associated with positive coupling between regions involved in defensive responding, and decreased coupling between regions involved in emotional control and the default mode network. Limitations Inferences regarding anxious pathology should be made with caution because this study was conducted in healthy participants. Conclusion Findings suggest that anticipatory anxiety increases intrinsic amygdala–DMPFC coupling and that the DMPFC may serve as a functional homologue for the rodent prefrontal regions by sustaining anxiety. Future research may use this defensive neural context to identify bio-markers of risk for anxious pathology and target these circuits for therapeutic intervention. PMID:24886788

  5. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    Science.gov (United States)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  6. Collagen-based mechanical anisotropy of the tectorial membrane: implications for inter-row coupling of outer hair cell bundles.

    Directory of Open Access Journals (Sweden)

    Núria Gavara

    Full Text Available The tectorial membrane (TM in the mammalian cochlea displays anisotropy, where mechanical or structural properties differ along varying directions. The anisotropy arises from the presence of collagen fibrils organized in fibers of approximately 1 microm diameter that run radially across the TM. Mechanical coupling between the TM and the sensory epithelia is required for normal hearing. However, the lack of a suitable technique to measure mechanical anisotropy at the microscale level has hindered understanding of the TM's precise role.Here we report values of the three elastic moduli that characterize the anisotropic mechanical properties of the TM. Our novel technique combined Atomic Force Microscopy (AFM, modeling, and optical tracking of microspheres to determine the elastic moduli. We found that the TM's large mechanical anisotropy results in a marked transmission of deformations along the direction that maximizes sensory cell excitation, whereas in the perpendicular direction the transmission is greatly reduced.Computational results, based on our values of elastic moduli, suggest that the TM facilitates the directional cooperativity of sensory cells in the cochlea, and that mechanical properties of the TM are tuned to guarantee that the magnitude of sound-induced tip-link stretching remains similar along the length of the cochlea. Furthermore, we anticipate our assay to be a starting point for other studies of biological tissues that require directional functionality.

  7. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries

    Science.gov (United States)

    Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas

    2018-02-01

    The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.

  8. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    Energy Technology Data Exchange (ETDEWEB)

    Chason, Eric; Shenoy, Vivek

    2013-01-22

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  9. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Liebscher, Ines; Ackley, Brian; Araç, Demet

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region....... In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF...

  10. On phase transformation models for thermo-mechanically coupled response of Nitinol

    KAUST Repository

    Sengupta, Arkaprabha

    2011-03-31

    Fully coupled thermomechanical models for Nitinol at the grain level are developed in this work to capture the inter-dependence between deformation and temperature under non-isothermal conditions. The martensite transformation equations are solved using a novel algorithm which imposes all relevant constraints on the volume fractions. The numerical implementation of the resulting models within the finite element method is effected by the monolithic solution of the momentum and energy equations. Validation of the models is achieved by means of thin-tube experiments at different strain rates. © 2011 Springer-Verlag.

  11. Quantum mechanical rippling of a MoS2 monolayer controlled by interlayer bilayer coupling.

    Science.gov (United States)

    Zheng, Yi; Chen, Jianyi; Ng, M-F; Xu, Hai; Liu, Yan Peng; Li, Ang; O'Shea, Sean J; Dumitrică, T; Loh, Kian Ping

    2015-02-13

    Nanoscale corrugations are of great importance in determining the physical properties of two-dimensional crystals. However, the mechanical behavior of atomically thin films under strain is not fully understood. In this Letter, we show a layer-dependent mechanical response of molybdenum disulfide (MoS(2)) subject to atomistic-precision strain induced by 2H-bilayer island epitaxy. Dimensional crossover in the mechanical properties is evidenced by the formation of star-shaped nanoripple arrays in the first monolayer, while rippling instability is completely suppressed in the bilayer. Microscopic-level quantum mechanical simulations reveal that the nanoscale rippling is realized by the twisting of neighboring Mo-S bonds without modifying the chemical bond length, and thus invalidates the classical continuum mechanics. The formation of nanoripple arrays significantly changes the electronic and nanotribological properties of monolayer MoS(2). Our results suggest that quantum mechanical behavior is not unique for sp(2) bonding but general for atomic membranes under strain.

  12. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Bazzigaluppi, Paolo; Beckett, Tina L; Koletar, Margaret M; Lai, Aaron Y; Joo, Illsung L; Brown, Mary E; Carlen, Peter L; McLaurin, JoAnne; Stefanovic, Bojana

    2018-03-01

    Alzheimer's disease (AD) is pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aβ-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABA A ) receptor subunits α1 , α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aβ and tau pathologies. This article is part of the Special Issue "Vascular Dementia". © 2017 Her Majesty the Queen in Right of Canada Journal of Neurochemistry © 2017 International Society for Neurochemistry.

  13. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates.

    Science.gov (United States)

    Dimitriadis, Stavros I; Salis, Christos; Linden, David

    2018-04-01

    Limitations of the manual scoring of polysomnograms, which include data from electroencephalogram (EEG), electro-oculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) channels have long been recognized. Manual staging is resource intensive and time consuming, and thus considerable effort must be spent to ensure inter-rater reliability. As a result, there is a great interest in techniques based on signal processing and machine learning for a completely Automatic Sleep Stage Classification (ASSC). In this paper, we present a single-EEG-sensor ASSC technique based on the dynamic reconfiguration of different aspects of cross-frequency coupling (CFC) estimated between predefined frequency pairs over 5 s epoch lengths. The proposed analytic scheme is demonstrated using the PhysioNet Sleep European Data Format (EDF) Database with repeat recordings from 20 healthy young adults. We validate our methodology in a second sleep dataset. We achieved very high classification sensitivity, specificity and accuracy of 96.2 ± 2.2%, 94.2 ± 2.3%, and 94.4 ± 2.2% across 20 folds, respectively, and also a high mean F1 score (92%, range 90-94%) when a multi-class Naive Bayes classifier was applied. High classification performance has been achieved also in the second sleep dataset. Our method outperformed the accuracy of previous studies not only on different datasets but also on the same database. Single-sensor ASSC makes the entire methodology appropriate for longitudinal monitoring using wearable EEG in real-world and laboratory-oriented environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    Science.gov (United States)

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  15. Etching characteristic and mechanism of BST thin films using inductively coupled Cl2/Ar plasma with additive CF4 gas

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    BST thin films were etched with inductively coupled CF 4 /(Cl 2 +Ar) plasmas. The maximum etch rate of the BST thin films was 53.6 nm/min for a 10% CF 4 to the Cl 2 /Ar gas mixture at RF power of 700 W, DC bias of -150 V, and chamber pressure of 2 Pa. Small addition of CF 4 to the Cl 2 /Ar mixture increased chemical effect. Consequently, the increased chemical effect caused the increase in the etch rate of the BST thin films. To clarify the etching mechanism, the surface reaction of the BST thin films was investigated by X-ray photoelectron spectroscopy

  16. Coupled thermo-hydro-mechanical analysis for the conceptual repository of high-level radioactive waste in China

    International Nuclear Information System (INIS)

    Lin, Y.M.; Wang, J.; Ke, D.; Cai, M.F.

    2010-01-01

    In order to safely dispose of the high-level radioactive waste (HLW), RD guide of HLW disposal was published in February 2006 in China. The spent fuel from nuclear power plants will be reprocessed first, followed by verification and final disposal. A conceptual repository 3D configuration comprises a single vertical borehole in a continuous and homogeneous hard rock, containing a canister surrounded by an over-pack and a bentonite layer, and the backfilled upper portion of the gallery using FLAC3D. To take into account in situ stress, geothermal gradient and groundwater of Beishan area, thermal relief of HLW and swelling pressure of buffer/backfill material made by GMZ01 bentonite, the TM, HM and THM evolution of the whole configuration is simulated over a period of 100 years. The results demonstrate that temperature is hardly affected by the couplings. In contrast, the influence of the couplings on the mechanical stresses is considerable. The repository has long-term stability in fully THM coupling action condition. (authors)

  17. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators

    International Nuclear Information System (INIS)

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-01-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)

  18. Coupling mechanisms between nucleosome assembly and the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Lautrette, Aurelie

    2006-01-01

    Cells are continuously exposed to genotoxic stresses that induce a variety of DNA lesions. To protect their genome, cells have specific pathways that orchestrate the detection, signaling and repair of DNA damages. This work is dedicated to the characterization of such pathways that couple the DNA damage response to the assembly of chromatin, a complex that protects and regulates DNA accessibility. We have focused our study on two multifunctional proteins: Rad53, a central checkpoint kinase in the cellular response to DNA damage and Asf1, a histone chaperone involved in chromatin assembly. We have characterized in vitro the binding mode of Asf1 with Rad53 and Asfl with histones. This study is associated with the functional analysis of the role of these interactions in vivo in yeast cells. (author) [fr

  19. Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Shurong; LIU Qian; LUO Zhongyang; WEN Lihua; CEN Kefa

    2007-01-01

    Based on the investigation of the polysaccharide structure of cellulose by using Fourier transform spectrum analysis,the pyrolysis behaviour of cellulose was studied at a heating rate of 20 K/min by thermogravimetric (TG) analysis coupled with Fourier transform infrared (FTIR) spectroscopy.Experimental results show that the decomposition of cellulose mainly occurs at the temperature range of 550-670 K.The weight loss becomes quite slow when the temperature increases further up to 680 K and the amount of residue reaches a mass percent of 14.7%.The FTIR analysis shows that free water is released first during cellulose pyrolysis,followed by depolymerization and dehydration.Glucosidic bond and carbon-carbon bond break into a series of hydrocarbons,alcohols,aldehydes,acids,etc.Subsequently these large-molecule compounds decompose further into gases,such as methane and carbon monoxide.

  20. Coupling mechanism between geoacoustic emission and electromagnetic anomalies prior to earthquakes

    Directory of Open Access Journals (Sweden)

    Viacheslav Pilipenko

    2014-11-01

    Full Text Available Micro-cracking in the earthquake preparation zone is accompanied by the generation of acoustic emission (AE. Even low-intensity AE can essentially modify the underground fluid dynamics owing to the influence of high-frequency acoustic field on filtration process. Laboratory experiments show that acoustic impact on pour sample destroys a film with bounded water and results in a steep increase of its permeability up to 2 orders of magnitude. Impulsive acoustic fields also decrease the effective viscosity of the fluid. The occurrence in the crust under pressure of a region with distinct hydrodynamic and electrokinetic parameters will result in an appearance of anomalous telluric and magnetic fields on the surface above. This effect is estimated analytically using a simple model with an ellipticshaped inhomogeneity. The suggested hypothesis about possible coupling between AE and geoelectrical anomalies needs observational verification.

  1. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  2. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kalnins, E G [Department of Mathematics and Statistics, University of Waikato, Hamilton (New Zealand); Miller, W Jr; Post, S [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: miller@ima.umn.edu

    2010-01-22

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  3. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Kalnins, E G; Miller, W Jr; Post, S

    2010-01-01

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  4. Metabolomics study on primary dysmenorrhea patients during the luteal regression stage based on ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry

    Science.gov (United States)

    Fang, Ling; Gu, Caiyun; Liu, Xinyu; Xie, Jiabin; Hou, Zhiguo; Tian, Meng; Yin, Jia; Li, Aizhu; Li, Yubo

    2017-01-01

    Primary dysmenorrhea (PD) is a common gynecological disorder which, while not life-threatening, severely affects the quality of life of women. Most patients with PD suffer ovarian hormone imbalances caused by uterine contraction, which results in dysmenorrhea. PD patients may also suffer from increases in estrogen levels caused by increased levels of prostaglandin synthesis and release during luteal regression and early menstruation. Although PD pathogenesis has been previously reported on, these studies only examined the menstrual period and neglected the importance of the luteal regression stage. Therefore, the present study used urine metabolomics to examine changes in endogenous substances and detect urine biomarkers for PD during luteal regression. Ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was used to create metabolomic profiles for 36 patients with PD and 27 healthy controls. Principal component analysis and partial least squares discriminate analysis were used to investigate the metabolic alterations associated with PD. Ten biomarkers for PD were identified, including ornithine, dihydrocortisol, histidine, citrulline, sphinganine, phytosphingosine, progesterone, 17-hydroxyprogesterone, androstenedione, and 15-keto-prostaglandin F2α. The specificity and sensitivity of these biomarkers was assessed based on the area under the curve of receiver operator characteristic curves, which can be used to distinguish patients with PD from healthy controls. These results provide novel targets for the treatment of PD. PMID:28098892

  5. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  6. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    International Nuclear Information System (INIS)

    Jing, L.; Stephansson, O.; Kautzky, F.

    2005-02-01

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project. The

  7. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    Science.gov (United States)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  8. A phase field approach for the fully coupled thermo-electro-mechanical dynamics of nanoscale ferroelectric actuators

    Science.gov (United States)

    Wang, Dan; Du, Haoyuan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    The fully coupled thermo-electro-mechanical properties of nanoscale ferroelectric actuators are investigated by a phase field model. Firstly, the thermal effect is incorporated into the commonly-used phase field model for ferroelectric materials in a thermodynamic consistent way and the governing equation for the temperature field is derived. Afterwards, the modified model is numerically implemented to study a selected prototype of the ferroelectric actuators, where strain associated with electric field-induced non-180° domain switching is employed. The temperature variation and energy flow in the actuation process are presented, which enhances our understanding of the working mechanism of the actuators. Furthermore, the influences of the input voltage frequency and the thermal boundary condition on the temperature variation are demonstrated and carefully discussed in the context of thermal management for real applications.

  9. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  10. Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites

    Science.gov (United States)

    Farzanian, Shafee; Shahsavari, Rouzbeh

    2018-03-01

    Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.

  11. Chaotic synchronization of vibrations of a coupled mechanical system consisting of a plate and beams

    Directory of Open Access Journals (Sweden)

    J. Awrejcewicz

    Full Text Available In this paper mathematical model of a mechanical system consisting of a plate and either one or two beams is derived. Obtained PDEs are reduced to ODEs, and then studied mainly using the fast Fourier and wavelet transforms. A few examples of the chaotic synchronizations are illustrated and discussed.

  12. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  13. Ground state structure of a coupled 2-fermion system in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Finster, F.

    1997-01-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to the N=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like. copyright 1997 Academic Press, Inc

  14. A Proposal Of Simulation Model Of A Wind-Steering System For Sailing Yachts, Based On Single-Stage Servo-Pendulum Coupled With Main Rudder

    Directory of Open Access Journals (Sweden)

    Piętak Andrzej

    2015-04-01

    Full Text Available The aim of this study was to investigate possible application of fast design prototyping methods for wind-steering systems used in offshore sailing yachts. The development of such methods would help to speed up the construction work and reduce the scope of necessary experimental research, prior to implementation of the system. In the present work, based on an analysis of existing designs of windvane systems, a preliminary selection of the system configuration has been undertaken, in terms of a compromise between efficiency, performance, and design complexity. Construction design of a single-stage, servo – pendulum system, has been developed by using the Autodesk Inventor design package. Next, based on the design data, a simulation model of the system, has been produced by using Matlab - Simulink software and SimMechanics library. The model was further verified in terms of kinematics mapping with the use of Matlab visualization tools.

  15. A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates.

    Science.gov (United States)

    Lenarda, P; Paggi, M

    A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.

  16. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  17. Mechanical analyses of the waveguide flange coupling for the first confinement system of the ITER electron cyclotron upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Mas Sánchez, Avelino, E-mail: avelino.massanchez@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Bertizzolo, Robert; Chavan, René [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Gagliardi, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Goodman, Timothy; Landis, Jean-Daniel [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Saibene, Gabriella [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Santos Silva, Phillip [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Vaccaro, Alessandro [Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany)

    2016-11-01

    Highlights: • A double-metallic-seal waveguide flange coupling, capable of withstanding the expected load specification, has been designed. • The numerical simulations have shown that bending is the dominant load configuration for the current coupling concept. • The numerical studies indicate that an excessive seal decompression will not occur due to the expected load configurations. • Experimental tests show a good agreement with the results obtained in the numerical analyses. - Abstract: The four electron cyclotron (EC) upper port antennas (or “upper launchers” —UL) will be used to drive current locally inside magnetic islands located at the q = 2 (or smaller) rational surfaces in order to stabilize neoclassical tearing modes (NTMs), as well as heat inside of ρ of about 0.4. Each antenna consists of eight beam lines that are designed for the transmission of 1.5 MW of mm-wave power at 170 GHz. The First Confinement System (FCS) is formed by the ex-vessel mm-wave waveguide components, for which SIC-1 classification requirements apply. The beam lines in the FCS comprise a Z shaped set of straight corrugated waveguides with a nominal diameter of 50 mm connected by miter bends. This system is subjected to imposed displacements coming mainly from the thermal expansion of the vacuum vessel, seismic events and/or plasma disruption events. In absence of suitable SIC-1 waveguide bellows, the FCS waveguides must provide the necessary mechanical functional compliance. This has required the development of a dedicated, flange type coupling system with double metallic seals, capable of resisting the generated external loads while maintaining vacuum tightness and alignment. This paper presents the results of the design, analysis and pre-qualification experimental work done on the waveguides and the integrated SIC-1 compliant coupling system.

  18. Mechanical analyses of the waveguide flange coupling for the first confinement system of the ITER electron cyclotron upper launcher

    International Nuclear Information System (INIS)

    Mas Sánchez, Avelino; Bertizzolo, Robert; Chavan, René; Gagliardi, Mario; Goodman, Timothy; Landis, Jean-Daniel; Saibene, Gabriella; Santos Silva, Phillip; Vaccaro, Alessandro

    2016-01-01

    Highlights: • A double-metallic-seal waveguide flange coupling, capable of withstanding the expected load specification, has been designed. • The numerical simulations have shown that bending is the dominant load configuration for the current coupling concept. • The numerical studies indicate that an excessive seal decompression will not occur due to the expected load configurations. • Experimental tests show a good agreement with the results obtained in the numerical analyses. - Abstract: The four electron cyclotron (EC) upper port antennas (or “upper launchers” —UL) will be used to drive current locally inside magnetic islands located at the q = 2 (or smaller) rational surfaces in order to stabilize neoclassical tearing modes (NTMs), as well as heat inside of ρ of about 0.4. Each antenna consists of eight beam lines that are designed for the transmission of 1.5 MW of mm-wave power at 170 GHz. The First Confinement System (FCS) is formed by the ex-vessel mm-wave waveguide components, for which SIC-1 classification requirements apply. The beam lines in the FCS comprise a Z shaped set of straight corrugated waveguides with a nominal diameter of 50 mm connected by miter bends. This system is subjected to imposed displacements coming mainly from the thermal expansion of the vacuum vessel, seismic events and/or plasma disruption events. In absence of suitable SIC-1 waveguide bellows, the FCS waveguides must provide the necessary mechanical functional compliance. This has required the development of a dedicated, flange type coupling system with double metallic seals, capable of resisting the generated external loads while maintaining vacuum tightness and alignment. This paper presents the results of the design, analysis and pre-qualification experimental work done on the waveguides and the integrated SIC-1 compliant coupling system.

  19. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  20. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  1. The Effects of Coupling Agents on the Mechanical and Thermal Properties of Eucalyptus Flour/HDPE Composite

    Directory of Open Access Journals (Sweden)

    Metanawin Siripan

    2015-01-01

    Full Text Available The aim of this research was to study the effects of the coupling agents, FusabondTM E-528 (polyethylene-grafted maleic anhydride; PE-g-MA, MA and Amino Silane (Si, on the thermal properties, and mechanical properties of Eucalyptus flour-HDPE composite. Variation of the Eucalyptus flour contents in the HDPE resulted in properties of the composite. With increasing in the contents of Eucalyptus flour in polymer matrix, the mechanical properties of the HDPE composite decreased in EU-MA series samples while they were gradually decreased in EU-Si series samples. SEM micrographs showed the fracture surface of the HDPE/Eucalyptus composite at different ratios of Eucalyptus flour. SEM micrograpgh exhibited the dispersion of EU flour in polymer matrix. The samples of both coupling agents showed an increase in interfacial adhesion, observed for the considerable decreased of gaps between the matrix and the dispersed phase. However, the EU-MA sample appeared to be more uniformly than the EU-Si sample.

  2. Mechanical coupling between earthquakes and volcanoes inferred from stress transfer models: evidence from Vesuvio, Etna and Alban Hills (Italy)

    Science.gov (United States)

    Cocco, M.; Feuillet, N.; Nostro, C.; Musumeci, C.

    2003-04-01

    We investigate the mechanical interactions between tectonic faults and volcanic sources through elastic stress transfer and discuss the results of several applications to Italian active volcanoes. We first present the stress modeling results that point out a two-way coupling between Vesuvius eruptions and historical earthquakes in Southern Apennines, which allow us to provide a physical interpretation of their statistical correlation. Therefore, we explore the elastic stress interaction between historical eruptions at the Etna volcano and the largest earthquakes in Eastern Sicily and Calabria. We show that the large 1693 seismic event caused an increase of compressive stress along the rift zone, which can be associated to the lack of flank eruptions of the Etna volcano for about 70 years after the earthquake. Moreover, the largest Etna eruptions preceded by few decades the large 1693 seismic event. Our modeling results clearly suggest that all these catastrophic events are tectonically coupled. We also investigate the effect of elastic stress perturbations on the instrumental seismicity caused by magma inflation at depth both at the Etna and at the Alban Hills volcanoes. In particular, we model the seismicity pattern at the Alban Hills volcano (central Italy) during a seismic swarm occurred in 1989-90 and we interpret it in terms of Coulomb stress changes caused by magmatic processes in an extensional tectonic stress field. We verify that the earthquakes occur in areas of Coulomb stress increase and that their faulting mechanisms are consistent with the stress perturbation induced by the volcanic source. Our results suggest a link between faults and volcanic sources, which we interpret as a tectonic coupling explaining the seismicity in a large area surrounding the volcanoes.

  3. A coupled channel study on a binding mechanism of positronic alkali atoms

    International Nuclear Information System (INIS)

    Kubota, Yoshihiro; Kino, Yasushi

    2008-01-01

    In order to investigate the binding mechanism of weakly bound states of positronic alkali atoms, we calculate the energies and wavefunctions using the Gaussian expansion method (GEM) where a positronium (Ps)-alkali ion channel and a positron-alkali atom channel are explicitly introduced. The energies of the bound states are updated using a model potential that reproduces well the observed energy levels of alkali atoms. The binding mechanism of the positronic alkali atom is analyzed by the wavefunctions obtained. The structure of the positronic alkali atom has been regarded as a Ps cluster orbiting the alkali ion, which is described by the Ps-alkali ion channel. We point out that the fraction having the positron-alkali atom configuration is small but plays an indispensable role for the weakly bound system

  4. Non–double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    Czech Academy of Sciences Publication Activity Database

    Šílený, Jan; Hill, D. P.; Eisner, L.; Cornet, F. H.

    2009-01-01

    Roč. 114, B8 (2009), B08307/1-B08307/15 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300120502; GA ČR GA205/09/0724 Grant - others:EC(XE) MTKI-CT-2004-517242 Institutional research plan: CEZ:AV0Z30120515 Keywords : microearthquakes * source mechanisms * hydraulic fracturing Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.082, year: 2009

  5. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    OpenAIRE

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain inte...

  6. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  7. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts

    Science.gov (United States)

    Pacardo, Dennis B.; Slocik, Joseph M.; Kirk, Kyle C.; Naik, Rajesh R.; Knecht, Marc R.

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions.

  8. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts.

    Science.gov (United States)

    Pacardo, Dennis B; Slocik, Joseph M; Kirk, Kyle C; Naik, Rajesh R; Knecht, Marc R

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions. © The Royal Society of Chemistry 2011

  9. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    Science.gov (United States)

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  10. Mechanisms causing reduced Arctic sea ice loss in a coupled climate model

    Directory of Open Access Journals (Sweden)

    A. E. West

    2013-03-01

    Full Text Available The fully coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the meridional overturning circulation (MOC and subpolar gyre in some integrations, as well as freshening of the mixed layer driven by causes other than ice melt, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.

  11. Mechanical strength calculation of the disk type windings with elastic couplings by the finite element method

    International Nuclear Information System (INIS)

    Sivkova, G.N.; Spirchenko, Yu.V.; Chvartatskij, P.V.

    1981-01-01

    Stressed-deformed state of toroidal field coils of the disc type with elastic couplings of the tokamaks has been investigated with provision for the effect of the central core pliability by means of the two-dimensional version of the finite element method. Numerical solution of the finite element method is performed by means of the ES 1040 computer according to the computer code permitting taking account of boundary conditions of elastic support. The calculation has been performed using as the example the project of T-20 facility coil of the disc type. Consideration of pliability of the central core of the facility inductor is accomplished by the introduction of additional rigidities to the complete matrix of rigidity. Scheme of the structure distretization includes 141 units, 211 elements. The accuracy of solution depends on the reduction accuracy of the volume load to unit forces and on the number of finite elements. Analysis of the solution convergence is performed by the comparison of solutions obtained for three different schemes of the disk discretization without regard for the inductor pliability. The comparative analysis of the results shows that transfer epures for all the three discretization versions practically coincide and stresses differ not more than by 10%. On the whole the above investigation has demonstrated good convergence of the problem solution [ru

  12. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.

    Science.gov (United States)

    Zhu, Feng; Rodriguez, Jacob; Yang, Tianyi; Kevlishvili, Ilia; Miller, Eric; Yi, Duk; O'Neill, Sloane; Rourke, Michael J; Liu, Peng; Walczak, Maciej A

    2017-12-13

    position. Taken together, facile access to both anomers of various glycoside nucleophiles, a broad reaction scope, and uniformly high transfer of anomeric configuration make the glycosyl cross-coupling reaction a practical tool for the synthesis of bioactive natural products, drug candidates, allowing for late-stage glycodiversification studies with small molecules and biologics.

  13. Coupled thermal, hydraulic and mechanical analysis in the near field for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Taniguchi, Wataru

    1999-02-01

    Geological disposal of high-level radioactive waste (HLW) in Japan is based on a multibarrier system composed of engineered and natural barriers. The engineered barriers are composed of vitrified waste confined within a canister, overpack and buffer material. Highly compacted bentonite clay is considered one of the most promising candidate buffer material mainly because of its low hydraulic conductivity and high adsorption capacity of radionuclides. In a repository for HLW, complex thermal, hydraulic and mechanical (T-H-M) phenomena will take place, involving the interactive processes between radioactive decay heat from the vitrified waste, infiltration of ground water and stress generation due to the earth pressure, the thermal loading and the swelling pressure of the buffer material. In order to evaluate the performance of the buffer material, the coupled T-H-M behaviors within the compacted bentonite have to be modelled. Before establishing a fully coupled T-H-M model, the mechanism of each single phenomenon or partially coupled phenomena should be identified and modelled physically and numerically. Under the unsaturated condition, the water movement within the buffer material has often been expressed as a simple diffusion model with the constant apparent water diffusivity. However, the water movement in the low permeable and unsaturated porous medium has been known as a transfer process in both vapor and liquid phases. Therefore, it is necessary to incorporate the two-phase contribution into the physical model. In this study, the water diffusivity of compacted bentonite is obtained as a function of water content and temperature. The proposed water movement model is constructed by applying the Philip and de Vries' model and Darcy's law. While the water retention curve is measured by the thermocouple psychrometer, van Genuchten model is applied as the water retention curve because the smooth derivative of the water potential with respect to water content is

  14. Bioinspired coupled helical coils for soft tissue engineering of tubular structures - Improved mechanical behavior of tubular collagen type I templates.

    Science.gov (United States)

    Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E

    2017-09-01

    The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to

  15. Numerical modelling of coupled phenomena within molten glass heated by induction and mechanically stirred

    International Nuclear Information System (INIS)

    Jacoutot, L.

    2006-11-01

    This study reports on a new vitrification process developed by the French Atomic Energy Commission (CEA, Marcoule). This process is used for the treatment of high activity nuclear waste. It is characterized by the cooling of all the metal walls and by currents directly induced inside the molten glass. In addition, a mechanical stirring device is used to homogenize the molten glass. The goal of this study is to develop numerical tools to understand phenomena which take place within the bath and which involve thermal, hydrodynamic and electromagnetic aspects. The numerical studies are validated using experimental results obtained from pilot vitrification facilities. (author)

  16. Coupled transverse and torsional vibrations in a mechanical system with two identical beams

    Science.gov (United States)

    Vlase, S.; Marin, M.; Scutaru, M. L.; Munteanu, R.

    2017-06-01

    The paper aims to study a plane system with bars, with certain symmetries. Such problems can be encountered frequently in industry and civil engineering. Considerations related to the economy of the design process, constructive simplicity, cost and logistics make the use of identical parts a frequent procedure. The paper aims to determine the properties of the eigenvalues and eigenmodes for transverse and torsional vibrations of a mechanical system where two of the three component bars are identical. The determination of these properties allows the calculus effort and the computation time and thus increases the accuracy of the results in such matters.

  17. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Michael J.; Leak, David J.; Spanu, Pietro D.; Murphy, Richard J. [Division of Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ (United Kingdom); Porter Alliance, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-08-15

    A current barrier to the large-scale production of lignocellulosic biofuels is the cost associated with the energy and chemical inputs required for feedstock pretreatment and hydrolysis. The use of controlled partial biological degradation to replace elements of the current pretreatment technologies would offer tangible energy and cost benefits to the whole biofuel process. It has been known for some time from studies of wood decay that, in the early stages of growth in wood, brown rot fungi utilise a mechanism that causes rapid and extensive depolymerisation of the carbohydrate polymers of the wood cell wall. The brown rot hyphae act as delivery vectors to the plant cell wall for what is thought to be a combination of a localised acid pretreatment and a hydroxyl radical based depolymerisation of the cell wall carbohydrate polymers. It is this quality that we have exploited in the present work to enhance the saccharification potential of softwood forest residues for biofuel production. Here we show that after restricted exposure of pine sapwood to brown rot fungi, glucose yields following enzymatic saccharification are significantly increased. Our results demonstrate the potential of using brown rot fungi as a biological pretreatment for biofuel production. (author)

  18. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    Science.gov (United States)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  19. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Science.gov (United States)

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  20. Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception

    Science.gov (United States)

    Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.

    2015-01-01

    We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126

  1. Mechanisms of Saharan Dust Radiative Effects Coupled to Eddy Energy and Wave Activity

    Science.gov (United States)

    Hosseinpour, F.; Wilcox, E. M.; Colarco, P. R.

    2017-12-01

    We explore mechanisms addressing the relationships between the net radiative forcing of Saharan Air Layer (SAL) and eddy energetics of the African Easterly jet-African easterly wave (AEJ-AEWs) system across the tropical Atlantic storm track. This study indicates that radiatively interactive dust aerosols have the capability to modify the exchange of kinetic energy between the AEWs and AEJ. We find that while dust can have both constructive and destructive effects on eddy activity of the waves, depending on the behavior and structure of waves exhibiting different characteristic time-scales, the local heating by dust tends to change the quadruple pattern of eddy momentum fluxes of the AEWs which can yield feedbacks onto the mean-flow. These results arise from applying an ensemble of large NASA satellite observational data sets, such as MODIS, SeaWiFS and TRMM, as well as the GOCART aerosol model and MERRA reanalysis. Sensitivity studies indicate that the results are consistent when the analysis is performed with multiple different aerosol datasets. While the mechanisms proposed here require further evaluation with numerical model experiments, this study presents a novel approach and new insights into Saharan dust effects on large-scale climate dynamics.

  2. Learnings from investigations on SG divider plates: Coupling field characterizations with numerical mechanical simulation

    International Nuclear Information System (INIS)

    Rossillon, F.; Depradeux, L.; Miloudi, S.; Deforge, D.; Lemaire, E.; Massoud, J.P.

    2014-01-01

    Nickel based alloys stress corrosion cracking (SCC) has been a major concern for the nuclear power plant utilities since the 1970s. Since 2002, SCC indications have been found on steam generator (SG) divider plates made of alloy 600 on French PWRs (pressurized water reactors) 900 MWe units. Although integrity is not questioned, many studies have been conducted to deepen understanding of the phenomenon. Among numerous studies to investigate the SCC damage phenomena, advanced mechanical analysis has been performed to improve the knowledge of the in-service loadings of the SG 900 MWe partition stub and divider plate. Manufacturing steps are taken into account, such as welding and the first hydro-test, to have a more precise description of the mechanical states in the vicinity of the welds where SCC is likely to occur. Recently, EDF hot laboratories made destructive examinations of a decommissioned SG. To fulfil the analyses computations have been carried out on the dedicated configuration. A 3D FE model, including the simulation of the welding and hydro-test, has been set up. Comparisons with experimental investigations on the divider plate of decommissioned SG have shown a good agreement between experimental and numerical results. These results emphasize the redistribution of weld residual stresses after the first hydro-test, and the effect of hydro-testing on the plastic deformation of the stub only in some specific cases of 900 MWe SG

  3. Learnings from investigations on SG divider plates: Coupling field characterizations with numerical mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossillon, F., E-mail: frederique.rossillon@edf.fr [EDF SEPTEN, 12-14 Avenue Dutrievoz, Villeurbanne (France); Depradeux, L. [EC2-MS, 66 Bd Niels Bohr, Villeurbanne (France); Miloudi, S. [EDF CEIDRE, CNPE de Chinon, Avoine (France); Deforge, D. [EDF CEIDRE, 2 Rue Ampère, Saint Denis (France); Lemaire, E. [EDF UNIE, Cap Ampère, Saint Denis (France); Massoud, J.P. [EDF SEPTEN, 12-14 Avenue Dutrievoz, Villeurbanne (France)

    2014-04-01

    Nickel based alloys stress corrosion cracking (SCC) has been a major concern for the nuclear power plant utilities since the 1970s. Since 2002, SCC indications have been found on steam generator (SG) divider plates made of alloy 600 on French PWRs (pressurized water reactors) 900 MWe units. Although integrity is not questioned, many studies have been conducted to deepen understanding of the phenomenon. Among numerous studies to investigate the SCC damage phenomena, advanced mechanical analysis has been performed to improve the knowledge of the in-service loadings of the SG 900 MWe partition stub and divider plate. Manufacturing steps are taken into account, such as welding and the first hydro-test, to have a more precise description of the mechanical states in the vicinity of the welds where SCC is likely to occur. Recently, EDF hot laboratories made destructive examinations of a decommissioned SG. To fulfil the analyses computations have been carried out on the dedicated configuration. A 3D FE model, including the simulation of the welding and hydro-test, has been set up. Comparisons with experimental investigations on the divider plate of decommissioned SG have shown a good agreement between experimental and numerical results. These results emphasize the redistribution of weld residual stresses after the first hydro-test, and the effect of hydro-testing on the plastic deformation of the stub only in some specific cases of 900 MWe SG.

  4. Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation

    Science.gov (United States)

    Gehlert, Sebastian; Bloch, Wilhelm; Suhr, Frank

    2015-01-01

    Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance. PMID:25569087

  5. Adventures of the coupled Yang-Mills oscillators: II. YM-Higgs quantum mechanics

    International Nuclear Information System (INIS)

    Matinyan, Sergei G; Mueller, Berndt

    2006-01-01

    We continue our study of the quantum mechanical motion in the x 2 y 2 potentials for n = 2, 3, which arise in the spatially homogeneous limit of the Yang-Mills (YM) equations. In the present paper, we develop a new approach to the calculation of the partition function Z(t) beyond the Thomas-Fermi (TF) approximation by adding a harmonic (Higgs) potential and taking the limit v → 0, where v is the vacuum expectation value of the Higgs field. Using the Wigner-Kirkwood method to calculate higher-order corrections in ℎ, we show that the limit v → 0 leads to power-like singularities of the type v -n , which reflect the possibility of escape of the particle along the channels in the classical limit. We show how these singularities can be eliminated by taking into account the quantum fluctuations dictated by the form of the potential

  6. Etching mechanism of MgO thin films in inductively coupled Cl2/Ar plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Koo, Seong-Mo; Kim, Dong-Pyo; Kim, Kyoung-Tae; Kim, Chang-Il

    2004-01-01

    The etching mechanism of MgO thin films in Cl 2 /Ar plasma was investigated. It was found that the increasing Ar in the mixing ratio of Cl 2 /Ar plasma causes nonmonotonic MgO etch rate, which reaches a maximum value at 70%Ar+30%Cl 2 . Langmuir probe measurement showed the noticeable influence of Cl 2 /Ar mixing ratio on electron temperature and electron density. The zero-dimensional plasma model indicated monotonic changes of both densities and fluxes of active species. At the same time, analyses of surface kinetics showed the possibility of nonmonotonic etch rate behavior due to the concurrence of physical and chemical pathways in ion-assisted chemical reaction

  7. A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems

    International Nuclear Information System (INIS)

    Bailey, C; Cross, M.; Pericleous, K.

    1998-01-01

    Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)

  8. [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices].

    Science.gov (United States)

    Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P

    2015-12-01

    Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl  · min(-1) and 2.7 × 10(-3) mmHg/µl  · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost

  9. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    Science.gov (United States)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  10. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    Science.gov (United States)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  11. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei

    2016-05-17

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  12. Coupled mechanical and chemo-transport model for the simulation of cementitious materials subjected to external sulfate attack

    International Nuclear Information System (INIS)

    Bary, B.; Le Bescop, P.; Leterrier, N.; Deville, E.

    2012-01-01

    We propose in this study to develop a chemo-transport-mechanical model for the simulation of external sulfate attack in cementitious materials. This degradation mainly consists in the hydrate decalcification/dissolution due to leaching, and in the reaction between the sulfate ions migrating within the material and mono-sulfate initially present to precipitate into ettringite. It may generate macroscopic expansions leading to severe microcracking. The key point in this study is the use of the integration numerical platform ALLIANCES which couples a code solving the chemical equations, the diffusion of ionic species into the porosity and the mechanical problem. The crystallization pressures resulting from the interaction between growing mono-sulfate crystals and the surrounding C-S-H matrix are assumed to cause the observed macroscopic swelling. A macroscopic bulk strain tensor calculated from the volume of formed ettringite is introduced for directly reproducing these expansions. Explicit up-scaling techniques applied on a simplified representation of the materials allow estimating both mechanical and diffusive properties of the evolving microstructure. The calculated macroscopic free expansions are in quite good agreement with experimental data, provided a correct calibration of the parameter involved in the expression of the bulk strain tensor. However, it is asserted that the model would lead to very high stress levels in the structures in the particular case of restrained displacements at its boundaries

  13. Results from an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q.S. Liu; Y. Oda; W. Wang; C.Y. Zhang

    2006-01-01

    As part of the ongoing international code comparison project DECOVALEX, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types with open or back-filled repository drifts under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermal-mechanical responses was achieved for both repository types, even with some teams using relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified (and well-known) process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level. The research teams have now moved on to the second phase of the project, the analysis of THM-induced permanent (irreversible) changes and the impact of those changes on the fluid flow field near an emplacement drift

  14. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  15. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan

    2016-01-01

    The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.

  16. Coupling between mechanical behaviour and drying of cementing materials: experimental study on mortars

    International Nuclear Information System (INIS)

    Yurtdas, I.

    2003-10-01

    The aim of this work is to understand the desiccation effects on the mechanical behaviour of cement materials. Two mortars of ratio E/C=0.5 and 0.8 have been tested. All the tests have been implemented after a six months maturing in water. The experimental study has been carried out as follows: 1)tests characterizing the differed behaviour and the transport properties have been carried out 2)tests characterizing the short term multiaxial mechanical behaviour have been carried out. The desiccation shrinkage in terms of the weight loss presents three characteristic phases. The permeability measurement on the mortar 05 shows that the permeability of the specimens dried and crept is greater than those of the specimens dried before being crept, and the permeability of the specimens submitted to a desiccation creep and then dried is sensibly the same as the last one in spite of a very important differed deformation. The influence of the desiccation on the uniaxial and deviatoric compressions resistance depends of the binding agent: for a cement paste of good quality (E/C=0.5), the resistances increase with the desiccation because of the capillary depression and of the hydric gradients. For a cement paste of low quality (E/C=0.8), there is a competitive effect between the increase of the microcracks induced and the specimen rigidification; the microcracking becomes then the parameter controlling the rupture process. The elasto-plastic behaviour becomes a damageable elasto-plastic behaviour during desiccation which induces, as the decrease of the E/C ratio, a translation of the elastic limit surfaces and ruptures towards higher stresses. In parallel, the elastic properties and the incompressibility modulus are damaged and the volume deformations increase after the drying. At last, the decrease of the Young modulus and the passage to the third shrinkage phase in terms of the weight loss coincide. This can be attributed to the induced microcracking: this decrease of the

  17. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  18. Technical basis and programmatic requirements for large block testing of coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, Wunan.

    1993-09-01

    This document contains the technical basis and programmatic requirements for a scientific investigation plan that governs tests on a large block of tuff for understanding the coupled thermal- mechanical-hydrological-chemical processes. This study is part of the field testing described in Section 8.3.4.2.4.4.1 of the Site Characterization Plan (SCP) for the Yucca Mountain Project. The first, and most important objective is to understand the coupled TMHC processes in order to develop models that will predict the performance of a nuclear waste repository. The block and fracture properties (including hydrology and geochemistry) can be well characterized from at least five exposed surfaces, and the block can be dismantled for post-test examinations. The second objective is to provide preliminary data for development of models that will predict the quality and quantity of water in the near-field environment of a repository over the current 10,000 year regulatory period of radioactive decay. The third objective is to develop and evaluate the various measurement systems and techniques that will later be employed in the Engineered Barrier System Field Tests (EBSFT)

  19. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  20. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions.

    Science.gov (United States)

    Milenkovic, Stefan; Bondar, Ana-Nicoleta

    2016-02-01

    SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path. Copyright © 2015. Published by Elsevier B.V.

  1. Study of the dislocation mechanism responsible for the Bordoni relaxation in aluminum by the two-wave acoustic coupling method

    Science.gov (United States)

    Bujard, M.; Gremaud, G.; Benoit, W.

    1987-10-01

    The most realistic model for the interpretation of the Bordoni relaxation observed by internal friction experiments is the mechanism of kink pair formation (KPF) on the dislocations. However, according to this model, high values of the critical resolved shear stress should also be measured at low temperature in face-centered-cubic (fcc) metals, but this has never been observed. Using the newly developed two-wave acoustic coupling method, we have studied the reality of the KPF model as an explanation for the Bordoni relaxation in aluminum. The results are in very good agreement with the predictions of the KPF model and thus confirm this model. On the other hand, experimental evidence that the kink mobility is very high in aluminum have been found. Therefore, the diffusion time of the kinks is negligibly small for the KPF process in fcc metals. Values of the internal stress field in cold-worked samples have also been obtained using the two-wave acoustic coupling approach. A description of the experimental method and the theoretical approach for the interpretation of the results will also be given in this paper.

  2. Effects and safety of mechanical bathing as a complementary therapy for terminal stage cancer patients from the physiological and psychological perspective: a pilot study.

    Science.gov (United States)

    Fujimoto, Sawako; Iwawaki, Yoko; Takishita, Yukie; Yamamoto, Yoko; Murota, Masako; Yoshioka, Saori; Hayano, Azusa; Hosokawa, Toyoshi; Yamanaka, Ryuya

    2017-11-01

    In palliative care hospitals in Japan, mechanical bathing is conducted to maintain cleanliness. However, the physiological and psychological influence of mechanical bathing on patients has not been sufficiently studied. The objective of this study was to assess, using physiological and psychological indices, the effects of mechanical bathing care for patients in the terminal stage of cancer. Mechanical bathing was performed using a Marine Court SB7000 in a supine or semi-seated position. The heart rate variability analysis method was used to measure autonomic nervous system function. The patients' state of anxiety was assessed using the State-Trait Anxiety Inventory (STAI), a psychological index, and patients' verbal responses were also collected after mechanical bathing. Twenty-four patients were enrolled in this study. Their sympathetic and parasympathetic nervous activity did not differ before and after bathing. A significant difference was found between pre- and post-bathing anxiety, as evaluated by STAI (P mechanical bathing according to STAI evaluation and their verbal responses. The findings suggest that the method of bathing used in this study is safe and pain-relieving for terminal stage cancer patients. It is thus possible to provide safe and comfortable care for terminal stage cancer patients using mechanical baths. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    International Nuclear Information System (INIS)

    Bouchet, M I De Barros; Matta, C; Le-Mogne, Th; Martin, J Michel; Zhang, Q; III, W Goddard; Kano, M; Mabuchi, Y; Ye, J

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13 C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp 3 ) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp 2 and sp 1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp 1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  4. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.

    Science.gov (United States)

    Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping

    2017-05-24

    Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H 2 O 2 ) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H 2 O 2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H 2 O 2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.

  5. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  6. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.

    Science.gov (United States)

    De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena; De Rossi, María Emilia; Sued, Mariela; Rodríguez, Daniela; Gelfand, Vladimir; Bruno, Luciana; Levi, Valeria

    2017-12-01

    Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Well-Posedness of a fully coupled thermo-chemo-poroelastic system with applications to petroleum rock mechanics

    Directory of Open Access Journals (Sweden)

    Tetyana Malysheva

    2017-05-01

    Full Text Available We consider a system of fully coupled parabolic and elliptic equations constituting the general model of chemical thermo-poroelasticity for a fluid-saturated porous media. The main result of this paper is the developed well-posedness theory for the corresponding initial-boundary problem arising from petroleum rock mechanics applications. Using the proposed pseudo-decoupling method, we establish, subject to some natural assumptions imposed on matrices of diffusion coefficients, the existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the problem. Numerical experiments confirm the applicability of the obtained well-posedness results for thermo-chemo-poroelastic models with real-data parameters.

  8. Channel-coupling theory of covalent bonding in H2: A further application of arrangement-channel quantum mechanics

    International Nuclear Information System (INIS)

    Levin, F.S.; Krueger, H.

    1977-01-01

    The dissociation energy D/sub e/ and the equilibrium proton-proton separation R/sub eq/ of H 2 are calculated using the methods of arrangement-channel quantum mechanics. This theory is the channel component version of the channel-coupling array approach to many-body scattering, applied to bound-state problems. In the approximation used herein, the wave function is identical to that of the classic Heitler-London-Sugiura valence-bond calculation, which gave D/sub e/ = 3.14 eV and R/sub eq/ = 1.65a 0 , values accurate to 34% and 17.8%, respectively. The present method yields D/sub e/ = 4.437 eV and R/sub eq/ approx. = 1.42a 0 , accurate to 6.5% and 1%, respectively. Some implications of these results are discussed

  9. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    Science.gov (United States)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  10. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes

  11. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  12. Handedness results from Complementary Hemispheric Dominance, not Global Hemispheric Dominance: Evidence from Mechanically Coupled Bilateral Movements.

    Science.gov (United States)

    Woytowicz, Elizabeth J; Westlake, Kelly P; Whitall, Jill; Sainburg, Robert L

    2018-05-09

    Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g. bread) with one hand while applying forces to the object (e.g. slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand, while moving the other hand to a target. Thus, the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right hand reach and left hand stabilize; left hand reach and right hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction, such that the right hand showed straighter reaching performance while the left showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks.

  13. Friction between various self-ligating brackets and archwire couples during sliding mechanics.

    Science.gov (United States)

    Stefanos, Sennay; Secchi, Antonino G; Coby, Guy; Tanna, Nipul; Mante, Francis K

    2010-10-01

    The aim of this study was to evaluate the frictional resistance between active and passive self-ligating brackets and 0.019 × 0.025-in stainless steel archwire during sliding mechanics by using an orthodontic sliding simulation device. Maxillary right first premolar active self-ligating brackets In-Ovation R, In-Ovation C (both, GAC International, Bohemia, NY), and SPEED (Strite Industries, Cambridge, Ontario, Canada), and passive self-ligating brackets SmartClip (3M Unitek, Monrovia, Calif), Synergy R (Rocky Mountain Orthodontics, Denver, Colo), and Damon 3mx (Ormco, Orange, Calif) with 0.022-in slots were used. Frictional force was measured by using an orthodontic sliding simulation device attached to a universal testing machine. Each bracket-archwire combination was tested 30 times at 0° angulation relative to the sliding direction. Statistical comparisons were performed with 1-way analysis of variance (ANOVA) followed by Dunn multiple comparisons. The level of statistical significance was set at P <0.05. The Damon 3mx brackets had significantly the lowest mean static frictional force (8.6 g). The highest mean static frictional force was shown by the SPEED brackets (83.1 g). The other brackets were ranked as follows, from highest to lowest, In-Ovation R, In-Ovation C, SmartClip, and Synergy R. The mean static frictional forces were all statistically different. The ranking of the kinetic frictional forces of bracket-archwire combinations was the same as that for static frictional forces. All bracket-archwire combinations showed significantly different kinetic frictional forces except SmartClip and In-Ovation C, which were not significantly different from each other. Passive self-ligating brackets have lower static and kinetic frictional resistance than do active self-ligating brackets with 0.019 × 0.025-in stainless steel wire. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    Science.gov (United States)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  15. Structure, texture, and mechanical properties of an MA2-1hp magnesium alloy after two-stage equal-channel angular pressing and intermediate annealing

    Science.gov (United States)

    Serebryany, V. N.; Perezhogin, V. Yu.; Raab, G. I.; Kopylov, V. I.; Tabachkova, N. Yu.; Sirotinkin, V. P.; Dobatkin, S. V.

    2015-01-01

    The effect of two-stage equal-channel angular pressing (ECAP) on the microstructure, the texture, and the mechanical properties of an MA2-1hp magnesium alloy is analyzed. ECAP leads to the formation of a submicrocrystalline structure with an average grain size of 640 nm, which includes Mg17Al12 phase particles with an average grain size of 240 nm and a volume fracture of 5.5%. A scattered tilted basal texture forms after ECAP, and its experimental pole figures are used for calculating orientation distribution functions and determining the volume fractions of the main orientations and the Schmid factors for different deformation systems. An increased activation of basal slip is found after both the first and the second stages of ECAP. As a result of two-stage ECAP, the strength properties of the alloy that correspond to the minimum acceptable values achieved by direct compression are obtained. Ductility is 44 and 18% after the first stage of ECAP plus subsequent annealing and after the second stage, respectively, which is almost four and two times higher than the initial value. The resulting strength mechanical properties of the alloy after the first and the second ECAP stages are analyzed using the Hall-Petch relation.

  16. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  17. Evidence for an amoeba-like infectious stage of ichthyophonus sp. and description of a circulating blood stage: a probable mechanism for dispersal within the fish host

    Science.gov (United States)

    Kocan, Richard; LaPatra, Scott; Hershberger, Paul

    2013-01-01

    Small amoeboid cells, believed to be the infectious stage of Ichthyophonus sp., were observed in the bolus (stomach contents) and tunica propria (stomach wall) of Pacific staghorn sculpins and rainbow trout shortly after they ingested Ichthyophonus sp.–infected tissues. By 24–48 hr post-exposure (PE) the parasite morphed from the classically reported multinucleate thick walled schizonts to 2 distinct cell types, i.e., a larger multinucleate amoeboid cell surrounded by a narrow translucent zone and a smaller spherical cell surrounded by a “halo” and resembling a small schizont. Both cell types also appeared in the tunica propria, indicating that they had recently penetrated the columnar epithelium of the stomach. No Ichthyophonus sp. pseudo-hyphae (“germination tubes”) were observed in the bolus or penetrating the stomach wall. Simultaneously, Ichthyophonus sp. was isolated in vitro from aortic blood, which was consistently positive from 6 to 144 hr PE, then only intermittently for the next 4 wk. Small PAS-positive cells observed in blood cultures grew into colonies consisting of non-septate tubules (pseudo-hyphae) terminating in multinucleated knob-like apices similar to those seen in organ explant cultures. Organ explants were culture positive every day; however, typical Ichthyophonus sp. schizonts were not observed histologically until 20–25 days PE. From 20 to 60 days PE, schizont diameter increased from ≤25 μm to ≥82 μm. Based on the data presented herein, we are confident that we have resolved the life cycle of Ichthyophonus sp. within the piscivorous host.

  18. Evidence for an amoeba-like infectious stage of Ichthyophonus sp. and description of a circulating blood stage: a probable mechanism for dispersal within the fish host.

    Science.gov (United States)

    Kocan, Richard; LaPatra, Scott; Hershberger, Paul

    2013-04-01

    Small amoeboid cells, believed to be the infectious stage of Ichthyophonus sp., were observed in the bolus (stomach contents) and tunica propria (stomach wall) of Pacific staghorn sculpins and rainbow trout shortly after they ingested Ichthyophonus sp.-infected tissues. By 24-48 hr post-exposure (PE) the parasite morphed from the classically reported multinucleate thick walled schizonts to 2 distinct cell types, i.e., a larger multinucleate amoeboid cell surrounded by a narrow translucent zone and a smaller spherical cell surrounded by a "halo" and resembling a small schizont. Both cell types also appeared in the tunica propria, indicating that they had recently penetrated the columnar epithelium of the stomach. No Ichthyophonus sp. pseudo-hyphae ("germination tubes") were observed in the bolus or penetrating the stomach wall. Simultaneously, Ichthyophonus sp. was isolated in vitro from aortic blood, which was consistently positive from 6 to 144 hr PE, then only intermittently for the next 4 wk. Small PAS-positive cells observed in blood cultures grew into colonies consisting of non-septate tubules (pseudo-hyphae) terminating in multinucleated knob-like apices similar to those seen in organ explant cultures. Organ explants were culture positive every day; however, typical Ichthyophonus sp. schizonts were not observed histologically until 20-25 days PE. From 20 to 60 days PE, schizont diameter increased from ≤ 25 μm to ≥ 82 μm. Based on the data presented herein, we are confident that we have resolved the life cycle of Ichthyophonus sp. within the piscivorous host.

  19. Mechanisms of topoisomerase I (TOP1) gene copy number increase in a stage III colorectal cancer patient cohort

    DEFF Research Database (Denmark)

    Smith, David Hersi; Christensen, Ib Jarle; Jensen, Niels Frank

    2013-01-01

    Topoisomerase I (Top1) is the target of Top1 inhibitor chemotherapy. The TOP1 gene, located at 20q12-q13.1, is frequently detected at elevated copy numbers in colorectal cancer (CRC). The present study explores the mechanism, frequency and prognostic impact of TOP1 gene aberrations in stage III C...

  20. Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond

    Science.gov (United States)

    Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2017-03-01

    We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.

  1. Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems

    Science.gov (United States)

    Poulet, Thomas; Paesold, Martin; Veveakis, Manolis

    2017-03-01

    Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.

  2. A Thermo-Hydro-Mechanical coupled Numerical modeling of Injection-induced seismicity on a pre-existing fault

    Science.gov (United States)

    Kim, Jongchan; Archer, Rosalind

    2017-04-01

    In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).

  3. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Seeger, Markus A; Anselmi, Claudio; Zhou, Wenchang; Brandstätter, Lorenz; Verrey, François; Diederichs, Kay; Faraldo-Gómez, José D; Pos, Klaas M

    2014-09-19

    Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of the major efflux system AcrAB-TolC in Escherichia coli, and one most complex and intriguing membrane transporters known to date. Analysis of wildtype AcrB and four functionally-inactive variants reveals an unprecedented mechanism that involves two remote alternating-access conformational cycles within each protomer, namely one for protons in the transmembrane region and another for drugs in the periplasmic domain, 50 Å apart. Each of these cycles entails two distinct types of collective motions of two structural repeats, coupled by flanking α-helices that project from the membrane. Moreover, we rationalize how the cross-talk among protomers across the trimerization interface might lead to a more kinetically efficient efflux system.

  4. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    Science.gov (United States)

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml-1. The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  5. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    Science.gov (United States)

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    International Nuclear Information System (INIS)

    Guo, Gepu; Lu, Lu; Tu, Juan; Guo, Xiasheng; Zhang, Dong; Yin, Leilei; Wu, Junru; Xu, Di

    2014-01-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml −1 . The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic. (paper)

  7. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H2O2 coupled internal micro-electrolysis process.

    Science.gov (United States)

    Zhou, Dongfang; Hu, Yongyou; Guo, Qian; Yuan, Weiguang; Deng, Jiefan; Dang, Yapan

    2016-12-29

    Internal micro-electrolysis (IE) coupled with Fenton oxidation (IEF) was a very effective technology for copper (Cu)-ethylenediaminetetraacetic acid (EDTA) wastewater treatment. However, the mechanisms of Cu 2+ removal and EDTA degradation were scarce and lack persuasion in the IEF process. In this paper, the decomplexation and removal efficiency of Cu-EDTA and the corresponding mechanisms during the IEF process were investigated by batch test. An empirical equation and the oxidation reduction potential (ORP) index were proposed to flexibly control IE and the Fenton process, respectively. The results showed that Cu 2+ , total organic carbon (TOC), and EDTA removal efficiencies were 99.6, 80.3, and 83.4%, respectively, under the proper operation conditions of iron dosage of 30 g/L, Fe/C of 3/1, initial pH of 3.0, Fe 2+ /H 2 O 2 molar ratio of 1/4, and reaction time of 20 min, respectively for IE and the Fenton process. The contributions of IE and Fenton to Cu 2+ removal were 91.2 and 8.4%, respectively, and those to TOC and EDTA removal were 23.3, 25.1, and 57, 58.3%, respectively. It was found that Fe 2+ -based replacement-precipitation and hydroxyl radical (•OH) were the most important effects during the IEF process. •OH played an important role in the degradation of EDTA, whose yield and productive rate were 3.13 mg/L and 0.157 mg/(L min -1 ), respectively. Based on the intermediates detected by GC-MS, including acetic acid, propionic acid, pentanoic acid, amino acetic acid, 3-(diethylamino)-1,2-propanediol, and nitrilotriacetic acid (NTA), a possible degradation pathway of Cu-EDTA in the IEF process was proposed. Graphical abstract The mechanism diagram of IEF process.

  8. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans.

    Science.gov (United States)

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G; Joyner, Michael J; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions ( n = 8), and during progressive loss of 1 L blood ( n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result

  9. On non-linear dynamics of coupled 1+1DOF versus 1+1/2DOF Electro-Mechanical System

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2014-01-01

    The electro-mechanical systems (EMS) are used from nano-/micro-scale (NEMS/MEMS) up to macro-scale applications. From mathematical view point, they are modelled with the second order differential equation (or a set of equations) for mechanical system, which is nonlinearly coupled with the second...... or the first order differential equation (or a set of equations) for electrical system, depending on properties of the electrical circuit. For the sake of brevity, we assume a 1DOF mechanical system, coupled to 1 or 1/2DOF electrical system (depending whether the capacitance is, or is not considered......). In the paper, authors perform a parametric study to identify operation regimes, where the capacitance term contributes to the non-linear behaviour of the coupled system. To accomplish this task, the classical method of multiple scales is used. The parametric study allows us to assess for which applications...

  10. Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability

    DEFF Research Database (Denmark)

    Cayla, M.; Rachidi, N.; Leclercq, O.

    2014-01-01

    Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even...... though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage...... at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10...

  11. Coupled effects of the precipitation of secondary species on the mechanical behaviour and chemical degradation of concretes

    International Nuclear Information System (INIS)

    Planel, D.

    2002-06-01

    Sulfate attack of cement-based materials remains an important problem for the durability assessment of containers and disposal engineering barriers dedicated to the long-term storage of radioactive wastes since underground water which may reach these elements contains small quantities of sulfates (7-31 mmol/1). This work contributes to the study of sulfate-induced damage mechanisms, to their understanding and modelling. The experimental phases of this study aimed at the understanding of the different physico-chemical phenomena involved during an external sulfate attack at following their evolution and their impact on the transport and mechanical properties of the material. Leaching experiments in pure water and in a solution of sodium sulfate (with a sulfate content of 15 mmol/1), have been performed simultaneously on OPC paste (w/c 0,4)in order to allow a comparison of test results. The frequent analysis of the leachant has shown a consumption of sulfate ions by the matrix, proportional to the square rate of time. The use of X-Ray Diffraction on powders, obtained by scraping the calcium-depleted part of the samples, led a precise view of the cement paste mineralogy, during sulfate attack. The use of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) confirmed the correctness of XRD profiles and brought important informations concerning cracking distribution and localisation. In addition, a visual monitoring of crack appearance and evolution completed the previous observations. Based on these experimental results, a simplified model accounting for the chemical degradation of cement paste in sulfated water has been proposed. A geochemical code, coupling the chemistry in solution with the reactive transport in porous media has been used for this purpose. The model accounts for the evolution of transport properties (diffusivity) associated with the calcium-depleting of the cement matrix and the precipitation of secondary phases (gypsum

  12. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  13. Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters.

    Science.gov (United States)

    Lai, Zhigang; Yin, Kedong

    2014-01-01

    Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.

    2010-09-02

    A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.

  15. Finite Element Modeling of Dieless Tube Drawing of Strain Rate Sensitive Material with Coupled Thermo-Mechanical Analysis

    Science.gov (United States)

    Furushima, Tsuyoshi; Sakai, Takashi; Manabe, Ken-ichi

    2004-06-01

    Dieless drawing is a unique deformation process without conventional dies, which can achieve a great reduction of wire and tube metals in single pass by means of local heating and cooling approach. In this study, for microtube forming, the dieless drawing process applying superplastic behavior was analyzed by finite element method (FEM) in order to clarify the effect of dieless tube drawing conditions such as tensile speed, moving speed of heating and cooling system, and material properties on deformation behavior of the tube. In the calculation, the material properties were dealt in a special subroutine, whose constitutive equation was defined as σ = Kɛnɛ˙m, and was linked to the solver. A coupled thermo-mechanical analysis was performed for the dieless tube drawing using the FEM. In the thermal analysis of dieless tube drawing, heat transfer was introduced to calculate the heat flux between heating coil and tube surface, and heat conduction in a tube. The influence of dieless tube drawing conditions on deformation behavior was clarified. As a result, for the strain rate sensitive material, the maximum reduction of area and the minimum outer diameter in single pass attain to 90.9% and 2.56mm, respectively. From the result, it is concluded that the dieless tube drawing is essential to produce an extrafine microtube by reason of keeping cylindrical tube diameter ratio constant with extremely high reduction.

  16. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    Science.gov (United States)

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  17. A coupled mechanical-hydrological investigation of crystalline rocks: Annual technical progress report, proposed test matrix, and preliminary results

    International Nuclear Information System (INIS)

    Bastian, R.J.; Voss, C.F.; Apted, M.J.; Shotwell, L.R.

    1988-02-01

    This report reviews the Fracture Flow Behavior in Rock Study being performed at the Pacific Northwest Laboratory. The study's objective is to determine the feasibility of predicting mechanical-hydrological behavior of natural rock fractures by accurately characterizing fracture surface topography and mineralization. A laboratory-scale facility is currently being used to ensure optimum control of variables. Devising a technique to study small-scale samples is the first step to understanding the complex coupled processes encountered in geomechanics and hydrology. The major accomplishments during fiscal year 1987 were initial development of the innovative testing method, identification of appropriate specimens, substantial renovation to the facility, completion of several sets of experiments, and procurement of hardware components for a laser-imaging device used to characterize fracture surfaces. A complete set of preliminary results and findings is presented in this report. These results, gathered from a basalt core with a natural fracture, have demonstrated that the methodology is valid, and definite trends in the data are readily apparent. 10 refs., 14 figs., 1 tab

  18. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession.

    Science.gov (United States)

    Ma, Liyuan; Wang, Xingjie; Feng, Xue; Liang, Yili; Xiao, Yunhua; Hao, Xiaodong; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan

    2017-01-01

    The effect of co-culture microorganisms with different initial proportions on chalcopyrite bioleaching was investigated. Communities were rebuilt by six typical strains isolated from the same habitat. The results indicated, by community with more sulfur oxidizers at both 30 and 40°C, the final copper extraction rate was 19.8% and 6.5% higher, respectively, than that with more ferrous oxidizers. The variations of pH, redox potential, ferrous and copper ions in leachate also provided evidences that community with more sulfur oxidizers was more efficient. Community succession of free and attached cells revealed that initial proportions played decisive roles on community dynamics at 30°C, while communities shared similar structures, not relevant to initial proportions at 40°C. X-ray diffraction analysis confirmed different microbial functions on mineral surface. A mechanism model for chalcopyrite bioleaching was established coupling with community succession. This will provide theoretical basis for reconstructing an efficient community in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  20. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRAC