Sample records for stacking fault nucleation

  1. Deformation Induced Microtwins and Stacking Faults in Aluminum Single Crystal (United States)

    Han, W. Z.; Cheng, G. M.; Li, S. X.; Wu, S. D.; Zhang, Z. F.


    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  2. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F


    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  3. Hydrogen Embrittlement And Stacking-Fault Energies (United States)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.


    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  4. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.


    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.


    Directory of Open Access Journals (Sweden)

    Eva Mazancová


    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  6. Stacking fault domains as sources of a-type threading dislocations in III-nitride heterostructures (United States)

    Smalc-Koziorowska, J.; Bazioti, C.; Albrecht, M.; Dimitrakopulos, G. P.


    A mechanism for the nucleation of a-type threading dislocation half-loops from basal stacking faults in wurtzite III-nitride heterostructures is presented. Transmission electron microscopy observations, in conjunction with topological and strain analysis, show that there are two possible configurations of closed domains comprising basal stacking faults of I1 type. It is shown that the lattice dislocation may emanate when the sphalerite structural units of the stacking faults in the closed domain are oriented in a parallel manner. The closed domain configurations do not introduce any shift on the basal planes, resulting in zero defect content along the growth direction. The stacking fault domains are hexagonal, with sides along the ⟨ 10 1 ¯ 0 ⟩ directions, and the threading dislocation half loops nucleate at the line nodes. The mechanism was found to be operational in multiple III-nitride systems.

  7. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel


    A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local-density ......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...

  8. Displacive phase transformations and generalized stacking faults

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Ostapovets, Andriy; Duparc, O. H.; Khalfallah, O.


    Roč. 122, č. 3 (2012), s. 490-492 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : ab-initio calculations * close-packed structures * generalized stacking faults * homogeneous deformation * lattice deformation * many-body potentials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  9. Stacking fault tetrahedron induced plasticity in copper single crystal

    International Nuclear Information System (INIS)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Su, Lihong; Zhao, Xing; Pei, Linqing


    Stacking fault tetrahedron (SFT) is the most common type of vacancy clustered defects in fcc metals and alloys, and can play an important role in the mechanical properties of metallic materials. In this study, molecular dynamics (MD) simulations were carried out to investigate the incipience of plasticity and the underlying atomic mechanisms in copper single crystals with SFT. Different deformation mechanisms of SFT were reported due to the crystal orientations and loading directions (compression and tension). The results showed that the incipient plasticity in crystals with SFT resulted from the heterogeneous dislocation nucleation from SFT, so the stress required for plastic deformation was less than that needed for perfect single crystals. Three crystal orientations ([1 0 0], [1 1 0] and [1 1 1]) were specified in this study because they can represent most of the typical deformation mechanisms of SFT. MD simulations revealed that the structural transformation of SFT was frequent under the applied loading; a metastable SFT structure and the collapse of SFT were usually observed. The structural transformation resulted in a different reduction of yield stress in compression and tension, and also caused a decreased or reversed compression/tension asymmetry. Compressive stress can result in the unfaulting of Frank loop in some crystal orientations. According to the elastic theory of dislocation, the process of unfaulting was closely related to the size of the dislocation loop and the stacking fault energy.

  10. Generalized stacking fault energies of alloys. (United States)

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente


    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  11. The behaviour of stacking fault energy upon interstitial alloying. (United States)

    Lee, Jee-Yong; Koo, Yang Mo; Lu, Song; Vitos, Levente; Kwon, Se Kyun


    Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.

  12. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars. (United States)

    Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L


    Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.

  13. Stacking faults in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Hermida, J.D. [CNEA, San Martin (Argentina). Dept. de Materiales


    During last decade, Austempered Ductile Iron (ADI) has been successfully used as an acceptable replacement material for steel in many applications, due to the relatively high strength and reasonable ductility obtained. These properties are the result of the special microstructure exhibited by this material at the end of the upper bainite reaction: ferrite platelets surrounded by high carbon stabilized austenite. However, at the beginning of the austempering treatment, the existence of interdendritic low carbon austenite is revealed by its transformation to martensite when cooling the sample or during subsequent deformation. The completion of the upper bainite reaction is of decisive importance to mechanical properties because the remaining martensite reduces ductility. It was observed that the rate of the upper bainite reaction is governed by the carbon content difference between the low and high carbon austenites. The carbon content is obtained by the lattice parameter measurement, because there exists a known expression that relates both magnitudes. Several works have used X-ray diffraction to measure the lattice parameter and phase concentrations as a function of austempering time. In these works, the lattice parameters were obtained directly from the {l_brace}220{r_brace} and {l_brace}311{r_brace} peaks position. The purpose of this work is to show more precise lattice parameters measurement and, very closely related to this, the existence of stacking faults in austenite, even at times within the processing window.

  14. Stacking faults and phase transformations in silicon nitride (United States)

    Milhet, X.; Demenet, J.-L.; Rabier, J.


    From observations of extended dislocation nodes in β silicon nitride, possible stacking fault structures in the basal plane of this compound have been investigated. It has been found that stacking fault structure is locally analogous to α silicon nitride. A phase transformation α to β or β to α can also be achieved by cooperative shear of partial dislocations with 1/3<~ngle1bar{1}00rangle Burgers vectors.

  15. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis. (United States)

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V


    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  16. Estimation of stacking fault and twin energies in transition metals

    International Nuclear Information System (INIS)

    Papon, Anne-Marie


    As twins and stacking faults play an important role in the plastic deformation of metals, the objective of this research thesis is, by using an as correct as possible description of band d state density, to assess the internal energy of twins and stacking faults in metals with a CFC, HC or CC crystal structure. If, in transition metals, cohesion mainly results from d electron attraction, other terms intervening in crystal equilibrium must also be taken into account. Thus, the author proposes a decomposition of cohesion energy. The geometry of twins and stacking faults in compact phases is defined, and energy calculations are presented and discussed. Alloying effects are then addressed, as well as a general comparison with available experimental results. After a geometric description of twins and stacking faults in CC structures, their energies are calculated for a Gaussian distribution of state density. For higher order moments, defect energy due to d orbital anisotropy is assessed, and then applied to energy and stability calculations in twins and stacking faults for various relaxed atomic configurations

  17. Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe-Mn-based austenitic steels?

    International Nuclear Information System (INIS)

    Idrissi, H.; Ryelandt, L.; Veron, M.; Schryvers, D.; Jacques, P.J.


    By changing the testing temperature, an austenitic Fe-Mn-Al-Si alloy presents either ε-martensite transformation or mechanical twinning during straining. In order to understand the nucleation and growth mechanisms involved in both phenomena, defects and particularly stacking faults, were characterized by transmission electron microscopy. It is observed that the character of the stacking faults also changes (from extrinsic to intrinsic) together with the temperature and the activated mode of plasticity.

  18. Stacking faults and microstructural parameters in non-mulberry silk ...

    Indian Academy of Sciences (India)

    Then the whole pattern fitting was done by introducing weight factors for the individual profiles and also taking into account the average stacking faults derived using eqs (4) and (5) in the final stage of refinement with the whole experimental diffraction data of the sample. Computational procedure is given in the flow chart ...

  19. Mesoscale models for stacking faults, deformation twins and martensitic transformations: Linking atomistics to continuum (United States)

    Kibey, Sandeep A.

    We present a hierarchical approach that spans multiple length scales to describe defect formation---in particular, formation of stacking faults (SFs) and deformation twins---in fcc crystals. We link the energy pathways (calculated here via ab initio density functional theory, DFT) associated with formation of stacking faults and twins to corresponding heterogeneous defect nucleation models (described through mesoscale dislocation mechanics). Through the generalized Peieirls-Nabarro model, we first correlate the width of intrinsic SFs in fcc alloy systems to their nucleation pathways called generalized stacking fault energies (GSFE). We then establish a qualitative dependence of twinning tendency in fee metals and alloys---specifically, in pure Cu and dilute Cu-xAl (x= 5.0 and 8.3 at.%)---on their twin-energy pathways called the generalized planar fault energies (GPFE). We also link the twinning behavior of Cu-Al alloys to their electronic structure by determining the effect of solute Al on the valence charge density redistribution at the SF through ab initio DFT. Further, while several efforts have been undertaken to incorporate twinning for predicting stress-strain response of fcc materials, a fundamental law for critical twinning stress has not yet emerged. We resolve this long-standing issue by linking quantitatively the twin-energy pathways (GPFE) obtained via ab initio DFT to heterogeneous, dislocation-based twin nucleation models. We establish an analytical expression that quantitatively predicts the critical twinning stress in fcc metals in agreement with experiments without requiring any empiricism at any length scale. Our theory connects twinning stress to twin-energy pathways and predicts a monotonic relation between stress and unstable twin stacking fault energy revealing the physics of twinning. We further demonstrate that the theory holds for fcc alloys as well. Our theory inherently accounts for directional nature of twinning which available

  20. Electronic structure of the rotation twin stacking fault in β-ZnS

    International Nuclear Information System (INIS)

    Northrup, J.E.; Cohen, M.L.


    The electronic structure of the rotation twin stacking fault in β-ZnS is calculated with the self-consistent pseudopotential method. The stacking fault creates a potential barrier of approx.0.07 eV and induces the localization of stacking-fault resonances near the top of the valence band. Stacking-fault states are also predicted to exist in the various gaps in the projected valence-band structure

  1. Calculated stacking-fault energies of elemental metals

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt


    We have performed ab initio calculations of twin, intrinsic, and extrinsic face-centered-cubic stacking faults for all the 3d, 4d, and 5d transition metals by means of a Green's-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approxima......We have performed ab initio calculations of twin, intrinsic, and extrinsic face-centered-cubic stacking faults for all the 3d, 4d, and 5d transition metals by means of a Green's-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic......-sphere approximations. The results are in excellent agreement with recent layer Korringa-Kohn-Rostoker Green's-function calculations where stacking-fault energies for Ni, Cu, Rh, Pd, Ag, Ir, and Au were found by means of the the so-called force theorem. We find that the self-consistent fault energies for all the metals...... on the local atomic coordination are obeyed to a high degree of accuracy....

  2. Earthquake Nucleation on Faults With Heterogeneous Frictional Properties, Normal Stress (United States)

    Ray, Sohom; Viesca, Robert C.


    We examine the development of an instability of fault slip rate. We consider a slip rate and state dependence of fault frictional strength, in which frictional properties and normal stress are functions of position. We pose the problem for a slip rate distribution that diverges quasi-statically within finite time in a self-similar fashion. Scenarios of property variations are considered and the corresponding self-similar solutions found. We focus on variations of coefficients, a and b, respectively, controlling the magnitude of a direct effect on strength due to instantaneous changes in slip rate and of strength evolution due to changes in a state variable. These results readily extend to variations in fault-normal stress, σ, or the characteristic slip distance for state evolution, Dc. We find that heterogeneous properties lead to a finite number of self-similar solutions, located about critical points of the distributions: maxima, minima, and between them. We examine the stability of these solutions and find that only a subset is asymptotically stable, occurring at just one of the critical point types. Such stability implies that during instability development, slip rate and state evolution can be attracted to develop in the manner of the self-similar solution, which is also confirmed by solutions to initial value problems for slip rate and state. A quasi-static slip rate divergence is ultimately limited by inertia, leading to the nucleation of an outward expanding dynamic rupture: asymptotic stability of self-similar solutions then implies preferential sites for earthquake nucleation, which are determined by distribution of frictional properties.

  3. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Guo, Yongbo; Xie, Wenkun


    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  4. Stacking fault tetrahedra formation in the neighbourhood of grain boundaries

    CERN Document Server

    Samaras, M; Van Swygenhoven, H; Victoria, M


    Large scale molecular dynamics computer simulations are performed to study the role of the grain boundary (GB) during the cascade evolution in irradiated nanocrystalline Ni. At all primary knock-on atom (PKA) energies in cascades near GBs, the damage produced after cooling down is vacancy dominated. Truncated stacking fault tetrahedra (TSFTs) are easily formed at 10 keV and higher PKA energies. At the higher energies a complex partial dislocation network forms, consisting of TSFTs. The GB acts as an interstitial sink without undergoing major structural changes.

  5. Stacking fault growth of FCC crystal: The Monte-Carlo simulation approach

    International Nuclear Information System (INIS)

    Jian Jianmin; Ming Naiben


    The Monte-Carlo method has been used to simulate the growth of the FCC (111) crystal surface, on which is presented the outcrop of a stacking fault. The comparison of the growth rates has been made between the stacking fault containing surface and the perfect surface. The successive growth stages have been simulated. It is concluded that the outcrop of stacking fault on the crystal surface can act as a self-perpetuating step generating source. (author). 7 refs, 3 figs

  6. Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co: a first-principles study. (United States)

    Aas, C J; Szunyogh, L; Evans, R F L; Chantrell, R W


    In terms of the fully relativistic screened Korringa-Kohn-Rostoker method we investigate the effect of stacking faults on the magnetic properties of hexagonal close-packed (hcp) cobalt. In particular, we consider the formation energy and the effect on the magnetocrystalline anisotropy energy (MAE) of four different stacking faults in hcp cobalt-an intrinsic growth fault, an intrinsic deformation fault, an extrinsic fault and a twin-like fault. We find that the intrinsic growth fault has the lowest formation energy, in good agreement with previous first-principles calculations. With the exception of the intrinsic deformation fault which has a positive impact on the MAE, we find that the presence of a stacking fault generally reduces the MAE of bulk Co. Finally, we consider a pair of intrinsic growth faults and find that their effect on the MAE is not additive, but synergic.

  7. Stacking faults in a layered cobalt tellurium phosphate oxochloride (United States)

    Zimmermann, Iwan; Johnsson, Mats


    The new compound Co2Te3(PO4)O6Cl was synthesized by chemical reactions in a sealed and evacuated silica tube. The crystal structure was solved from single crystal diffraction data and is made up by charge neutral layers. Within the layers two types of chains are made up by edge sharing [CoO6] and [CoO5Cl] polyhedra respectively. The chains are separated by tellurium oxide and phosphate building blocks. There are only weak Van der Waals interactions in between the layers and severe diffuse scattering is observed due to faulted stacking of the layers. Structure solutions in a P-1 triclinic cell and a larger monoclinic cell in P21/c are discussed and compared to a computer generated model. The reasons for the stacking faults may be due to that there are two positions available for each layer that results in similar connectivity to the next layer in addition to the relatively wide channels in between the layers that reduce the Van der Waals interactions in between them.

  8. Stacking faults in the Co7W6 isomorph of the µ phase

    NARCIS (Netherlands)

    Carvalho, P.A.; Hosson, J.Th.M. De


    This paper concentrates on an electron microscopy study of stacking faults on pyramidal planes, that are concurrent with the characteristic twins, in the Co7W6 isomorph of the µ phase. The faults are frequently found to inflect over 9° when crossing a twin domain.

  9. Stacking faults in (Ga,Mn)As and uniaxial magnetocrystalline anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Maca, Frantisek; Masek, Jan; Kopecky, Milos; Kub, Jiri; Jungwirth, Tomas [Institute of Physics ASCR, Praha (Czech Republic)


    The high resolution X-ray difraction measurements of (Ga,Mn)As and (Ga,Mn)(As,P) epilayers showed a structural anisotropy in the form of stacking faults which are present in the (1-11) and (111) planes and absent in the (-111) and (1-11) planes. Our full-potential density functional calculations explain the energetic preference of substitutional Mn to decorate the stacking faults. This preference energy is comparable with the formation energy of the faults in a pure GaAs. We surmise that the enhanced Mn density along the common [1-10] direction of the stacking fault planes represents the micro-structural origin of the in-plane uniaxial magnetocrystalline anisotropy of these semiconductors.

  10. Influence of Stacking Fault Energy (SFE) on the deformation mode of stainless steels

    International Nuclear Information System (INIS)

    Li, X.; Van Renterghem, W.; Al Mazouzi, A.


    The sensibility to irradiation-assisted stress corrosion cracking (IASCC) of stainless steels in light water reactor (LWR) can be caused by the localisation of deformation that takes place in these materials. Dislocation channelling and twinning modes of deformation can induce localised plasticity leading to failure. Stacking fault energy (SFE) plays an important role in every process of plastic deformation behaviour, especially in twinning and dislocation channelling. In order to correlate localised deformation with stacking fault energy, this parameter has been experimentally determined by transmission electron microscope (TEM) using both dislocation node and multiple ribbons methods after compression in three different model alloys. Detailed deformation behaviour of three fabricated alloys with different stacking fault energy before and after tensile tests at temperatures from -150 deg C to 300 deg C, will be shown and discussed based on mechanical test and TEM observation. (authors)

  11. Broadband infrared photoluminescence in silicon nanowires with high density stacking faults. (United States)

    Li, Yang; Liu, Zhihong; Lu, Xiaoxiang; Su, Zhihua; Wang, Yanan; Liu, Rui; Wang, Dunwei; Jian, Jie; Lee, Joon Hwan; Wang, Haiyan; Yu, Qingkai; Bao, Jiming


    Making silicon an efficient light-emitting material is an important goal of silicon photonics. Here we report the observation of broadband sub-bandgap photoluminescence in silicon nanowires with a high density of stacking faults. The photoluminescence becomes stronger and exhibits a blue shift under higher laser powers. The super-linear dependence on excitation intensity indicates a strong competition between radiative and defect-related non-radiative channels, and the spectral blue shift is ascribed to the band filling effect in the heterostructures of wurtzite silicon and cubic silicon created by stacking faults.

  12. Stacking faults and phase changes in Mg-doped InGaN grown on Si

    International Nuclear Information System (INIS)

    Liliental-Weber, Zuzanna; Yu, Kin M.; Reichertz, Lothar A.; Ager, Joel W.; Walukiewicz, Wladek; Schaff, William J.; Hawkridge, Michael E.


    We report evidence for the role of Mg in the formation of basal stacking faults and a phase transition in In x Ga 1-x N layers doped with Mg grown by molecular beam epitaxy on Si(111) substrates with AlN buffer layers. Several samples with varying In content between x∝0.1 and x∝0.3 are examined by transmission electron microscopy and other techniques. High densities of basal stacking faults are observed in the central region of the InGaN layer away from the substrate or layer surface, but at varying depths within this region. Selected area diffraction patterns show that while the InGaN layer is initially in the wurtzite phase (and of good quality) AlN buffer layer, there is a change to the zinc blende phase in the upper part of the InGaN layer. SIMS measurements show that the Mg concentration drops from a maximum to a steady concentration coinciding with the presence of the basal stacking faults. There is little change in In or Ga concentrations in the same area. High-resolution electron microscopy from the area of the stacking faults confirms that the change to the cubic phase is abrupt across one such fault. These results indicate that Mg plays a role in the formation of stacking faults and the phase change observed in In x Ga 1-x N alloys. We also consider the role of In in the formation of these defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires. (United States)

    Meng, Fei; Estruga, Marc; Forticaux, Audrey; Morin, Stephen A; Wu, Qiang; Hu, Zheng; Jin, Song


    Stacking faults are an important class of crystal defects commonly observed in nanostructures of close packed crystal structures. They can bridge the transition between hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases, with the most known example represented by the "nanowire (NW) twinning superlattice". Understanding the formation mechanisms of stacking faults is crucial to better control them and thus enhance the capability of tailoring physical properties of nanomaterials through defect engineering. Here we provide a different perspective to the formation of stacking faults associated with the screw dislocation-driven growth mechanism of nanomaterials. With the use of NWs of WZ aluminum nitride (AlN) grown by a high-temperature nitridation method as the model system, dislocation-driven growth was first confirmed by transmission electron microscopy (TEM). Meanwhile numerous stacking faults and associated partial dislocations were also observed and identified to be the Type I stacking faults and the Frank partial dislocations, respectively, using high-resolution TEM. In contrast, AlN NWs obtained by rapid quenching after growth displayed no stacking faults or partial dislocations; instead many of them had voids that were associated with the dislocation-driven growth. On the basis of these observations, we suggest a formation mechanism of stacking faults that originate from dislocation voids during the cooling process in the syntheses. Similar stacking fault features were also observed in other NWs with WZ structure, such as cadmium sulfide (CdS) and zinc oxide (ZnO).

  14. Earthquake Nucleation Size: Evidence of Loading Rate Dependence in Laboratory Faults (United States)

    Guerin-Marthe, S.; Nielsen, S. B.; Giani, S.; Bird, R.; Di Toro, G.


    Slow slip precursors during the nucleation of earthquakes have potential implications for early-warning systems and probabilistic forecasting. Although most field studies on nucleation focus on foreshocks sequences, recent GPS observations of the 2014 Chile megathrust show a slow slip phase releasing a significant portion of the total moment. Despite hints from theoretical stability analysis (Rice & Ruina, 1983) and modelling (Rubin & Ampuero 2005; Kaneko et al. 2017), it is not fully understood what controls the prevalence and the size of slip in the nucleation process. Here we present laboratory observations of slow slip preceding dynamic rupture, where for the first time we observe a dependence of nucleation size on the loading rate (laboratory-equivalent of tectonic loading rate). The setup is composed of two polycarbonate plates under direct shear with a 30 cm slip interface. Rupture position, stresses and slip are monitored at high frequency using a high-speed camera, strain gages and laser positioning system placed along the simulated fault interface. The results of our laboratory experiments are in agreement with the pre-slip model proposed by Ellsworth (1995) and subsequently observed in laboratory experiments (Nielsen et al. 2010; Latour et al. 2013), which show a slow slip followed by an acceleration up to dynamic rupture velocity. However, further complexity arises from the effect of (1) rate of shear loading and (2) small-scale inhomogeneities on the fault surface. In particular, the nucleation length shrinks (from 3 cm to 0.5 cm) when loading is increased (from 10-2 MPa/s to 1 MPa/s).

  15. Modeling aftershock rates using simulations of spontaneous earthquake nucleation on rate and state faults (United States)

    Kaneko, Y.; Lapusta, N.


    Large earthquakes are followed by increased seismic activity, usually referred to as aftershock sequences, that decays to the background rate over time. The decay of aftershocks is well-described empirically by Omori's law. Dieterich (1994) proposed that Omori's law could result from perturbing, by static stress steps, a population of nucleation sites governed by laboratory-derived rate and state friction. He used one-degree-of-freedom spring-slider system to represent elastic interactions and made a simplified assumption about frictional behavior during nucleation. The model was further explored in a number of studies (i.e., Gomberg et al., 2000) and used to interpret observations (i.e., Toda et al., 1998). In this study, we explore the consequences of Dieterich's approach using models of faults embedded in elastic continuum, where the nucleation process can be more complicated than assumed in Dieterich's model. Our approach is different from previous studies of aftershock rates with rate and state friction in that here, nucleation processes are simulated as a part of spontaneously occurring earthquake sequences in continuum fault models. We use two 2D models of a vertical strike-slip fault, the depth-variable model (Rice, 1993; Lapusta at el., 2000) and the crustal-plane model (Myers et al., 1996). We find that nucleation processes in continuum models and the resulting aftershock rates are well-described by the model of Dieterich (1994) when Dieterich's assumption that the state variable of the rate and state friction law is significantly behind its steady-state value holds during the entire nucleation process. On the contrary, aftershock rates in models where the state variable assumption is violated for a significant portion of the nucleation process exhibit behavior different from Dieterich's model. The state variable assumption is significantly violated, and hence the aftershock rates are affected, when stress heterogeneities are present within the nucleation

  16. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods. (United States)

    Hughes, Steven M; Alivisatos, A Paul


    Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

  17. Effects of Cl+ and F+ implantation of oxidation-induced stacking faults in silicon

    NARCIS (Netherlands)

    Xu, J.Y.; Bronsveld, P.M.; Boom, G.; Hosson, J.Th.M. De


    Three implantation effects were investigated in floating-zone-grown silicon: (a) the effect of Cl+ implantation resulting in the shrinkage of oxidation-induced stacking faults; (b) the effect of F+ implantation giving rise to defaulting of the 1/3 [111] Frank dislocations into 1/2[110] perfect

  18. Effect of stacking fault energy on steady-state creep rate of face ...

    African Journals Online (AJOL)

    Continuum elastic theory was used to establish the relationships between the force of interaction required to constrict dislocation partials, energy of constriction and climb velocity of the constricted thermal jogs, in order to examine the effect of stacking fault energy (SFE) on steady state creep rate of face centered cubic ...

  19. Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt


    We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green...

  20. Calculation of the energy of stacking faults in uranium dioxide

    International Nuclear Information System (INIS)

    Lefebvre, J.-M.; Soullard, J.


    Energy computations of some (100), (110) and (111), planar defects were performed using an ionic bond model for stoichiometric uranium dioxyde. The repulsive contribution to the fault was estimated in two different ways, i.e. using the Born-Mayer classical treatment, or potentials derived from shell model calculations. The stability of the various defect configurations has been studied; on the basis of the numerical values, it may be concluded that dislocation dissociation is unlikely in stoichiometric uranium dioxyde. (Auth.)

  1. Stacking faults on (001) in transition-metal disilicides with the C11b structure

    International Nuclear Information System (INIS)

    Ito, K.; Nakamoto, T.; Inui, H.; Yamaguchi, M.


    Stacking faults on (001) in MoSi 2 and WSi 2 with the C11 b structure have been characterized by transmission electron microscopy (TEM), using their single crystals grown by the floating-zone method. Although WSi 2 contains a high density of stacking faults, only several faults are observed in MoSi 2 . For both crystals, (001) faults are characterized to be of the Frank-type in which two successive (001) Si layers are removed from the lattice, giving rise to a displacement vector parallel to [001]. When the displacement vector of faults is expressed in the form of R = 1/n[001], however, their n values are slightly deviated from the exact value of 3, because of dilatation of the lattice in the direction perpendicular to the fault, which is caused by the repulsive interaction between Mo (W) layers above and below the fault. Matching of experimental high-resolution TEM images with calculated ones indicates n values to be 3.12 ± 0.10 and 3.34 ± 0.10 for MoSi 2 and WSi 2 , respectively

  2. Generation of stacking faults in 4H-SiC epilayer induced by oxidation (United States)

    Asafuji, Ryosuke; Hijikata, Yasuto


    Stacking faults (SFs) generated by thermal oxidation of a 4H-SiC epilayer were investigated using photoluminescence (PL) imaging/mapping and transmission electron microscopy (TEM). Line-shaped and band-shaped faults perpendicular to the off-cut direction in the epilayer were formed by thermal oxidation. In addition, the line-shaped faults increased and were stretched with the oxidation time. Triangular SFs were also formed under UV laser irradiation from both types of faults as starting points, and expanded along the basal plane toward the sample surface. The oxidation time dependence of the line-shaped fault density indicated that line-shaped faults are predominantly formed close to 1100 °C. The atomic structures of the line-shaped faults and triangular SFs were observed using cross-sectional TEM. Line-shaped faults were present at the epilayer/bulk interface with which double Shockley SFs stretch into the bulk layer. PL mapping results indicated that the band-shaped faults are probably intrinsic Frank-type SFs.

  3. The Rock Record of Seismic Nucleation: examples from pseudotachylites beneath the Whipple Detachment Fault, eastern California (United States)

    Ortega-Arroyo, D.; Behr, W. M.; Gentry, E.


    The mechanisms that lead to nucleation and dynamic weakening in the middle crust are not well understood. Proposed mechanisms include flash heating of asperities, thermal pressurization of pore fluids, dynamic instabilities, and fracture interactions. We investigate this issue in the rock record using exhumed mid-crustal rocks exposed beneath the Whipple Detachment fault (WDF) in eastern CA. Analysis of pseudotachylites (PS) beneath the WDF, representing paleo-earthquakes, reveal two types: Type 1 PS exhibit little to no precursory cataclasis and are concentrated along shear bands at the margins of feldspar-rich lenses embedded in more quartz-rich domains. These appear synkinematic with S-C fabrics in the surrounding mylonites and they exhibit finely dynamically recrystallized grains in quartz at their margins, suggesting coeval ductile deformation. By contrast, Type 2 PS occur along the principal slip surface of a brittle shear zone and show evidence for precursory cataclasis, brecciation, and fracturing. Some cataclasites inject into the host rock, forming eddies along the boundary with the PS. Slip appears to localize progressively into a 2 cm thick fault core, with PS concentrated primarily in the interior- the presence of solidified melt and fluidized cataclasite as clasts within the fault core suggests multiple slip events are preserved. We interpret the two types of pseudotachylites to represent different conditions and mechanisms of earthquake nucleation near the brittle-ductile transition (BDT). Type 1 PS are interpreted to represent nucleation in deeper sections of the BDT by failure along mineralogically-controlled stress concentrations hosted within an otherwise viscously deforming mylonite. Our data suggest that these do not develop into large-magnitude EQ's because seismic slip is dampened into the surrounding quartz-rich viscous matrix; instead they may represent deep microseismicity and/or seismic tremor. By contrast, Type 2 PS are interpreted to

  4. Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout (United States)

    Jochym-O'Connor, Tomas; Bartlett, Stephen D.


    We introduce a class of three-dimensional color codes, which we call stacked codes, together with a fault-tolerant transformation that will map logical qubits encoded in two-dimensional (2D) color codes into stacked codes and back. The stacked code allows for the transversal implementation of a non-Clifford π /8 logical gate, which when combined with the logical Clifford gates that are transversal in the 2D color code give a gate set that is both fault-tolerant and universal without requiring nonstabilizer magic states. We then show that the layers forming the stacked code can be unfolded and arranged in a 2D layout. As only Clifford gates can be implemented transversally for 2D topological stabilizer codes, a nonlocal operation must be incorporated in order to allow for this transversal application of a non-Clifford gate. Our code achieves this operation through the transformation from a 2D color code to the unfolded stacked code induced by measuring only geometrically local stabilizers and gauge operators within the bulk of 2D color codes together with a nonlocal operator that has support on a one-dimensional boundary between such 2D codes. We believe that this proposed method to implement the nonlocal operation is a realistic one for 2D stabilizer layouts and would be beneficial in avoiding the large overheads caused by magic state distillation.

  5. AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia) (United States)

    Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael


    We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.

  6. Investigating stacking faults in nonpolar gallium nitride films using X-ray diffraction

    International Nuclear Information System (INIS)

    Moram, M.A.; Johnston, C.F.; Kappers, M.J.; Humphreys, C.J.


    Nonpolar (11-20) GaN films with different basal-plane stacking fault (BSF) densities (determined using transmission electron microscopy) were investigated using X-ray diffraction. Diffuse streaking from I 1 and I 2 BSFs was observed in reciprocal space maps of the 10-10 and 20-20 reflections. X-ray calibration curves for BSF density determination can be plotted using the diffusely scattered intensity of open detector 10-10 or 20-20 ω-scans measured at a fixed, large separation from the peak maximum. However, ab initio determination of stacking fault densities is not possible due to additional broadening from other defects. Similarly, ω-scan peak widths are poor indicators of BSF densities.

  7. Application of Post-stack migration to seismic data associated with fault structures


    Koduru Anitha; Mohanty P. R


    In hydrocarbon exploration, wave-equation migration techniques play an important role in imaging the complex geological structures. Usually, post-stack migration scheme is applied to the seismic data to improve the resolution with restoration of dipping reflectors to their true position. As a result, the migrated time sections are interpretable in terms of subsurface features. As a numerical study, three fault models are considered for the present study. First of all, ...

  8. Stacking Faults and Mechanical Behavior beyond the Elastic Limit of an Imidazole-Based Metal Organic Framework: ZIF-8. (United States)

    Hegde, Vinay I; Tan, Jin-Chong; Waghmare, Umesh V; Cheetham, Anthony K


    We determine the nonlinear mechanical behavior of a prototypical zeolitic imidazolate framework (ZIF-8) along two modes of mechanical failure in response to tensile and shear forces using first-principles simulations. Our generalized stacking fault energy surface reveals an intrinsic stacking fault of surprisingly low energy comparable to that in copper, though the energy barrier associated with its formation is much higher. The lack of vibrational spectroscopic evidence for such faults in experiments can be explained with the structural instability of the barrier state to form a denser and disordered state of ZIF-8 seen in our analysis, that is, large shear leads to its amorphization rather than formation of faults.

  9. Conjugated π electron engineering of generalized stacking fault in graphene and h-BN (United States)

    Ouyang, Bin; Chen, Cheng; Song, J.


    Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.

  10. Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods. (United States)

    Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V


    Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.

  11. Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors (United States)

    Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron


    We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.

  12. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking (United States)

    Lyons, Suzanne; Sandwell, David


    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  13. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy

    International Nuclear Information System (INIS)

    Tian, Chenggang; Han, Guoming; Cui, Chuanyong; Sun, Xiaofeng


    Highlights: • The decrease of SFE could promote the dislocation dissociation. • The creep mechanisms were significantly affected by the SFE of the alloys. • The creep properties of the alloys improved with the decrease of SFE by facilitating the microtwinning process. - Abstract: Cobalt in a 23 wt.% Co containing Ni-base superalloys was systematically substituted by Ni in order to study the effects of stacking fault energy (SFE) on the creep mechanisms. The deformation microstructures of the alloys during different creep stages at 725 °C and 630 MPa were investigated by transmission electron microscopy (TEM). The results showed that the creep life increased as the SFE decreased corresponding to the increase of Co content in the alloys. At primary creep stage, the dislocation was difficult to dissociate independent of SFE. In contrast, at secondary and tertiary creep stages the dislocations dissociated at γ/γ′ interface and the partial dislocation started to shear γ′ precipitates, leaving isolated faults (IFs) in high SFE alloy, while the dislocations dissociated in the matrix and the partials swept out the matrix and γ′ precipitates creating extended stacking faults (ESFs) or deformation microtwins which were involved in diffusion-mediated reordering in low SFE alloy. It is suggested that the deformation microtwinning process should be favorable with the decrease of SFE, which could enhance the creep resistance and improve the creep properties of the alloys

  14. Impact of Alloying on Stacking Fault Energies in γ-TiAl

    Directory of Open Access Journals (Sweden)

    Phillip Dumitraschkewitz


    Full Text Available Microstructure and mechanical properties are key parameters influencing the performance of structural multi-phase alloys such as those based on intermetallic TiAl compounds. There, the main constituent, a γ -TiAl phase, is derived from a face-centered cubic structure. Consequently, the dissociation of dislocations and generation of stacking faults (SFs are important factors contributing to the overall deformation behavior, as well as mechanical properties, such as tensile/creep strength and, most importantly, fracture elongation below the brittle-to-ductile transition temperature. In this work, SFs on the { 111 plane in γ -TiAl are revisited by means of ab initio calculations, finding their energies in agreement with previous reports. Subsequently, stacking fault energies are evaluated for eight ternary additions, namely group IVB–VIB elements, together with Ti off-stoichiometry. It is found that the energies of superlattice intrinsic SFs, anti-phase boundaries (APBs, as well as complex SFs decrease by 20–40% with respect to values in stoichiometric γ -TiAl once an alloying element X is present in the fault plane having thus a composition of Ti-50Al-12.5X. In addition, Mo, Ti and V stabilize the APB on the (111 plane, which is intrinsically unstable at 0 K in stoichiometric γ -TiAl.

  15. Nucleation and arrest of slow slip earthquakes: mechanisms and nonlinear simulations using realistic fault geometries and heterogeneous medium properties (United States)

    Alves da Silva Junior, J.; Frank, W.; Campillo, M.; Juanes, R.


    Current models for slow slip earthquakes (SSE) assume a simplified fault embedded on a homogeneous half-space. In these models SSE events nucleate on the transition from velocity strengthening (VS) to velocity weakening (VW) down dip from the trench and propagate towards the base of the seismogenic zone, where high normal effective stress is assumed to arrest slip. Here, we investigate SSE nucleation and arrest using quasi-static finite element simulations, with rate and state friction, on a domain with heterogeneous properties and realistic fault geometry. We use the fault geometry of the Guerrero Gap in the Cocos subduction zone, where SSE events occurs every 4 years, as a proxy for subduction zone. Our model is calibrated using surface displacements from GPS observations. We apply boundary conditions according to the plate convergence rate and impose a depth-dependent pore pressure on the fault. Our simulations indicate that the fault geometry and elastic properties of the medium play a key role in the arrest of SSE events at the base of the seismogenic zone. SSE arrest occurs due to aseismic deformations of the domain that result in areas with elevated effective stress. SSE nucleation occurs in the transition from VS to VW and propagates as a crack-like expansion with increased nucleation length prior to dynamic instability. Our simulations encompassing multiple seismic cycles indicate SSE interval times between 1 and 10 years and, importantly, a systematic increase of rupture area prior to dynamic instability, followed by a hiatus in the SSE occurrence. We hypothesize that these SSE characteristics, if confirmed by GPS observations in different subduction zones, can add to the understanding of nucleation of large earthquakes in the seismogenic zone.

  16. Dislocation dissociation and stacking-fault energy calculation in strontium titanate

    International Nuclear Information System (INIS)

    Castillo-Rodriguez, M.; Sigle, W.


    The dislocation microstructure of strontium titanate plastically deformed below room temperature shows dipolar configurations of a screw dislocations. The dipole height is so small that dipole annihilation is expected. Here we show why this is inhibited. By high-resolution transmission electron microscopy observations we find that in such dipoles each dislocation is dissociated into two collinear a/2 partials on a {1 1 0} plane. Elasticity theory calculations provide a stacking-fault energy value of 340 ± 90 mJ m -2 . Finally, we discuss the effects of this dissociation process on the mechanical behaviour.

  17. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2


    Li, Zuocheng; Yan, Xingxu; Tang, Zhenkun; Huo, Ziyang; Li, Guoliang; Jiao, Liying; Liu, Li-Min; Zhang, Miao; Luo, Jun; Zhu, Jing


    Electronic properties of two-dimensional (2D) MoS2 semiconductors can be modulated by introducing specific defects. One important type of defect in 2D layered materials is known as rotational stacking fault (RSF), but the coexistence of multiple RSFs with different rotational angles was not directly observed in freestanding 2D MoS2 before. In this report, we demonstrate the coexistence of three RSFs with three different rotational angles in a freestanding bilayer MoS2 sheet as directly observ...

  18. Participation of oxygen and carbon in formation of oxidation-induced stacking faults in monocrystalline silicon

    Directory of Open Access Journals (Sweden)

    Иван Федорович Червоный


    Full Text Available It is experimentally established, that density of oxidation-induced stacking faults (OISF in the boron doped monocrystalline silicon plates, that above, than it is more relation of oxygen atoms concentration to carbon atoms concentration in them.On research results of geometry of OISF rings in the different sections of single-crystal geometry of areas is reconstructed with their different closeness. At adjustment of the growing modes of single-crystals of silicon the increase of output of suitable product is observed

  19. Effect of stacking fault energy on high-temperature creep parameters of nickel-cobalt alloys

    International Nuclear Information System (INIS)

    Nerodenko, L.M.; Dabizha, E.V.


    Results of creep investigation are discussed for two alloys of the Ni-Co system. In terms of the structural creep model an analysis is made for the effect of stacking fault energy on averaged parameters of the dislocation structure: inovable dislocation density subgrain size, activation volume. The rate of steady-state creep is determined by the process of dislocation passing through the subgrain boundaries with activation energy of 171.0 and 211.5 kJ/mol for the Ni-25% Co and Ni-65% Co alloys, respectively

  20. Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly. (United States)

    Sun, Yugang; Wang, Lin; Liu, Yuzi; Ren, Yang


    Squeezing out crystalline stacking faults: Birnessite-type δ-phase MnO2 microflowers containing interconnected ultrathin nanosheets are synthesized through a microwave-assisted hydrothermal process and exhibit a layered crystalline structure with significant stacking faults. Compressing these MnO2 nanosheets in a diamond anvil cell with high pressure up to tens of GPa effectively eliminates the crystalline stacking faults. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes (United States)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime


    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  2. Stacking fault energy of C-alloyed steels: The effect of magnetism

    International Nuclear Information System (INIS)

    Lu, Song; Li, Ruihuan; Kádas, Krisztina; Zhang, Hualei; Tian, Yanzhong; Kwon, Se Kyun; Kokko, Kalevi; Hu, Qing-Miao; Hertzman, Staffan


    First-principles calculations have been performed to study the effect of C on the stacking fault energy (SFE) of paramagnetic γ-Fe and Fe−Cr−Ni austenitic steel. In these systems, the local magnetic structure is very sensitive to the volume in both fcc and hcp structures, which emphasizes the importance of the magnetovolume coupling effect on the SFE. The presence of C atom suppresses the local magnetic moments of Fe atoms in the first coordination shell of C. Compared to the hypothetical nonmagnetic case, paramagnetism significantly reduces the effect of C on the SFE. In the scenario of C being depleted from the stacking fault structure or twin boundaries, e.g., due to elevated temperature, where the chemical effect of C is dissipated, we calculate the C-induced volume expansion effect on the SFE. The volume induced change in the SFE corresponds to more than ∼ 50% of the total C effect on the SFE obtained assuming uniform C distribution.

  3. Application of Post-stack migration to seismic data associated with fault structures (United States)

    Koduru, Anitha; Mohanty, P. R.


    In hydrocarbon exploration, wave-equation migration techniques play an important role in imaging the complex geological structures. Usually, post-stack migration scheme is applied to the seismic data to improve the resolution with restoration of dipping reflectors to their true position. As a result, the migrated time sections are interpretable in terms of subsurface features. As a numerical study, three fault models are considered for the present study. First of all, synthetic time sections are generated corresponding to three models. Later, post stack migration schemes such as Gazdag(PS), Phase-shift with turning rays and reverse time migration (T-K) domain techniques are applied in order to judge the imaging accuracy, preservation of true amplitude and computational speed. All the three post stack time migrated sections delineate the structure with their throw.However, the reverse time migrations (T-K) clearly delineate the reflectors in restoring the throw properly with minimum computational time. In order to test the validity the numerical results, similar exercise has been undertaken using field seismic data of KG basin, India. The results indicates that the field migrated sections are imaged. But, the reverse time migration (T-K ) provides the best subsurface image with restoration of reflectors and collapse of diffracted events with least computational time. Gazdag (PS) and Phase-Shift with turning migrated section shows the reduction of amplitude whereas, the reverse time migration preserved the amplitude fully.

  4. Determination of the stacking fault energies of face centured cubic metals and alloys by X-rays diffraction

    International Nuclear Information System (INIS)

    Borges, J.F.A.; Padilha, A.F.; Imakuma, K.


    An X-rays diffraction method was applied to measure the Stacking Fault Energies (SFE) of the AISI 304, AISI 316, AISI 347 and DIN-WERKSTOFF 1.4970 Austenitic Stainless Steels. The SFE determination plays an important role in the research of the mecanichal behaviour of the Metal and Alloys, their deformation mechanisms, stability of micro-structure and electronic configuration. The method is based on the relationship between the SFE and the ratio of the Mean Square Strains to the Stacking-Fault probability. The Mean Square Strain was evaluated by Fourier Analysis of X-rays Diffaction profiles, corrected to reduce instrumental effects, followed by the application of the Warren-Averbach method to the Fourier Coefficients. The Stacking-Fault probabilities were derived from the changes of peak separations between cold-worked and annealed specimens. (author) [pt

  5. Stacking-fault energy and anti-Invar effect in Fe-Mn alloy from first principles (United States)

    Reyes-Huamantinco, Andrei; Puschnig, Peter; Ambrosch-Draxl, Claudia; Peil, Oleg E.; Ruban, Andrei V.


    Based on state-of-the-art density-functional-theory methods we calculate the stacking-fault energy of the prototypical high-Mn steel Fe-22.5 at% Mn between 300 and 800 K. We estimate magnetic thermal excitations by considering longitudinal spin fluctuations. Our results demonstrate that the interplay between the magnetic excitations and the thermal lattice expansion is the main factor determining the anti-Invar effect, the hcp-fcc transformation temperature, and the stacking-fault energy, all of which are in good agreement with measurements.

  6. X-ray diffraction study of stacking faults in a single crystal of 2H SiC

    International Nuclear Information System (INIS)

    Pandey, D.; Krishna, P.


    The nature of random stacking faults in a heavily disordered single crystal of 2H SiC has been investigated by studying the broadening of x-ray diffraction maxima. The intensity distribution along the 10.1 reciprocal lattice row was recorded on a four-circle, computer-controlled single crystal diffractometer. The 10.1 reflections with 1 even were found to be considerably broadened showing that the stacking faults present are predominantly intrinsic faults ( both growth and deformation faults). A careful study of the half-width values of different 10.1 reflections revealed that the fault probabilities are large. Exact expressions for the diffracted intensity and the observable diffraction effects were obtained and these were then used to calculate the deformation and growth fault probabilities which were found to be 0.20 and 0.11 respectively. It is suggested that several deformation fault configurations result from a clustering of growth faults. The results obtained are compared with those obtained for 2H ZnS crystals. (author)

  7. Basic criteria for formation of growth twins in high stacking fault energy metals

    International Nuclear Information System (INIS)

    Yu, K. Y.; Zhang, X.; Bufford, D.; Chen, Y.; Liu, Y.; Wang, H.


    Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity of these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system

  8. Effect of Carbon Fraction on Stacking Fault Energy of Austenitic Stainless Steels (United States)

    Lee, Tae-Ho; Ha, Heon-Young; Hwang, Byoungchul; Kim, Sung-Joon; Shin, Eunjoo


    The effect of C fraction (C/N) on stacking fault energy (SFE) of austenitic Fe-18Cr-10Mn steels with a fixed amount of C + N (0.6 wt pct) was investigated by means of neutron diffraction and transmission electron microscopy (TEM). The SFE were evaluated by the Rietveld whole-profile fitting combined with the double-Voigt size-strain analysis for neutron diffraction profiles using neutron diffraction. The measured SFE showed distinguishable difference and were well correlated with the change in deformation microstructure. Three-dimensional linear regression analyses yielded the relation reflecting the contribution of both C + N and C/N: SFE (mJ/m2) = -5.97 + 39.94(wt pct C + N) + 3.81(C/N). As C fraction increased, the strain-induced γ→ ɛ martensitic transformation was suppressed, and deformation twinning became the primary mode of plastic deformation.

  9. Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg

    International Nuclear Information System (INIS)

    Li, B.; Yan, P.F.; Sui, M.L.; Ma, E.


    We present transmission electron microscopy (TEM) observations of stacking faults (SFs) and their interactions with pyramidal dislocations, in plastically deformed polycrystalline pure magnesium. We have observed well-defined fringes as well as streaking in diffraction patterns, typical of SFs. The basal SFs are decorated by a large number of dark speckles, which are created by the interaction with pyramidal dislocations that have both and components as revealed by our contrast analysis. The SFs do not appear to result from the splitting of unit dislocations, as the SFs are relatively wide and no dislocation nodes were observed. By tilting the specimen systematically inside TEM, the SFs and the associated dislocations in Mg are found to exhibit a rich variety of features in terms of their morphology and diffraction contrast.

  10. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy. (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Polychroniadis, Efstathios K; Stanciu, George A


    Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.

  11. Yield behaviour associated with stacking faults in a high-temperature annealed ultra-low carbon high manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Liming [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Fan, Likun [Shanghai Research Institute of Materials, 99 Handan Road, Shanghai, 200437 (China); Li, Zhigang; Sun, Nairong [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Wang, Huanrong; Wang, Wei [Baosteel Research Institute, 889 Fujin Road, Shanghai, 201900 (China); Shan, Aidang, E-mail: [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)


    This paper investigated the tensile behaviour of high-temperature annealed ultra-low carbon high manganese steel with 42 vol% delta-ferrite. The results show that the tensile stress-strain curve of plastic deformation exhibits three distinct stages of deformation: a yielding stage with a remarkably large elongation and a positive strain-hardening rate, a second stage in which the strain-hardening rate rapidly increases, and a third stage in which the strain-hardening rate slowly increase. The yield plateau is intrinsically associated with the increasing formation of strain-induced stacking faults. The stacking faults quickly form during yield deformation, and the yield elongation monotonically increases with the extent of the stacking faults. The localised strain concentration of delta-ferrite and the heterogeneous strain partitioning between harder delta-ferrite and softer austenite play important roles in the rapid formation of stacking faults during strain at the yield plateau, which is an important prerequisite for this yielding phenomenon. The results and analysis demonstrate that the rapid and then slow hardening deformation after the yield plateau result from strain-induced transformation and deformation twinning, respectively.

  12. The effect of atomic disorder at the core-shell interface on stacking fault formation in hybrid nanoparticles. (United States)

    Mangel, Shai; Houben, Lothar; Bar Sadan, Maya


    On the atomic scale, the exact engineering of interfaces affects the overall properties of functional nanostructures. One factor that is considered both fundamental and practical in determining the structural features of interfaces is the lattice mismatch, but zooming into the atomic scale reveals new data, which suggest that this paradigm should be reconsidered. Here, we used advanced transmission electron microscopy techniques to image, with atomic resolution, the core-shell interfaces of a strain-free system (CdSe@CdSe) and of a strain-induced system (CdSe@CdS). Then, we analyzed the pattern of stacking fault formation in these particles and correlated the location of the stacking faults with the synthetic procedure. We found that, in the strain-free system, the formation of stacking faults is substantial and the faults are located mostly at the core-shell interface, in a pattern that was surprisingly similar to that observed in the strain-induced system. Therefore, we conclude that the formation of faults within the nanoparticles results mainly from the interaction between the last atomic layer and the growth solution, and it is only weakly correlated with lattice mismatch. This finding is important for the design of defect-engineering in multi-step syntheses.

  13. Application of Phase-Weighted Stacking to Low-Frequency Earthquakes near the Alpine Fault, Central Southern Alps, New Zealand (United States)

    Baratin, L. M.; Townend, J.; Chamberlain, C. J.; Savage, M. K.


    Characterising seismicity in the vicinity of the Alpine Fault, a major transform boundary late in its typical earthquake cycle, may provide constraints on the state of stress preceding a large earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated major rupture. We work with a continuous seismic dataset collected between 2009 and 2012 from a network of short-period seismometers, the Southern Alps Microearthquake Borehole Array (SAMBA). Fourteen primary LFE templates have been used to scan the dataset using a matched-filter technique based on an iterative cross-correlation routine. This method allows the detection of similar signals and establishes LFE families with common hypocenter locations. The detections are then combined for each LFE family using phase-weighted stacking (Thurber et al., 2014) to produce a signal with the highest possible signal to noise ratio. We find this method to be successful in increasing the number of LFE detections by roughly 10% in comparison with linear stacking. Our next step is to manually pick polarities on first arrivals of the phase-weighted stacked signals and compute preliminary locations. We are working to estimate LFE focal mechanism parameters and refine the focal mechanism solutions using an amplitude ratio technique applied to the linear stacks. LFE focal mechanisms should provide new insight into the geometry and rheology of the Alpine Fault and the stress field prevailing in the central Southern Alps.

  14. Local Conduction in MoxW1–xSe2: The Role of Stacking Faults, Defects, and Alloying (United States)


    Here, we report on the surface conductivity of WSe2 and MoxW1–xSe2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe2, in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of MoxW1–xSe2, its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys. PMID:29578328

  15. Local Conduction in Mo xW1- xSe2: The Role of Stacking Faults, Defects, and Alloying. (United States)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W


    Here, we report on the surface conductivity of WSe 2 and Mo x W 1- x Se 2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe 2 , in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of Mo x W 1- x Se 2 , its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys.

  16. Fault Localization Method by Partitioning Memory Using Memory Map and the Stack for Automotive ECU Software Testing

    Directory of Open Access Journals (Sweden)

    Kwanhyo Kim


    Full Text Available Recently, the usage of the automotive Electronic Control Unit (ECU and its software in cars is increasing. Therefore, as the functional complexity of such software increases, so does the likelihood of software-related faults. Therefore, it is important to ensure the reliability of ECU software in order to ensure automobile safety. For this reason, systematic testing methods are required that can guarantee software quality. However, it is difficult to locate a fault during testing with the current ECU development system because a tester performs the black-box testing using a Hardware-in-the-Loop (HiL simulator. Consequently, developers consume a large amount of money and time for debugging because they perform debugging without any information about the location of the fault. In this paper, we propose a method for localizing the fault utilizing memory information during black-box testing. This is likely to be of use to developers who debug automotive software. In order to observe whether symbols stored in the memory have been updated, the memory is partitioned by a memory map and the stack, thus the fault candidate region is reduced. A memory map method has the advantage of being able to finely partition the memory, and the stack method can partition the memory without a memory map. We validated these methods by applying these to HiL testing of the ECU for a body control system. The preliminary results indicate that a memory map and the stack reduce the possible fault locations to 22% and 19% of the updated memory, respectively.

  17. Stacking faults enriched silver nanowires: facile synthesis, catalysis and SERS investigations. (United States)

    Xu, Minmin; Yang, Fengzhu; Yuan, Yaxian; Guo, Qinghua; Ren, Bin; Yao, Jianlin; Gu, Renao


    A facile approach based on seed-mediated method for synthesis of stacking faults enriched Ag nanowires (SFEANWs) was successfully developed. SFEANWs were formed and attached onto the seed (α-Fe2O3/Au) surfaces through the reduction of AgNO3 by ascorbic acid (AA) in the presence of sodium polyacrylate (PAANa). Their length can be tuned with different concentrations of AgNO3 or PAANa. According to the effects of seeds and PAANa, the plausible growth mechanism of SFEANWs was discussed. The catalytic activity of SFEANWs comparing with fivefold twinned Ag nanowires (FFTANWs) was evaluated through reducing p-nitrophenol by NaBH4. The activation energy of the classical reaction catalyzed by SFEANWs was calculated through the Arrhenius equation. In addition, these SFEANWs exhibited excellent surface enhanced Raman scattering (SERS) activities due to the hot spots located in the cross of the twist wires. The detection limit of by SERS for 1,4-benzenedithiol (1,4-BDT) was estimated about 10(-7) mol/L. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Structure of kaolinite and influence of stacking faults: reconciling theory and experiment using inelastic neutron scattering analysis. (United States)

    White, Claire E; Kearley, Gordon J; Provis, John L; Riley, Daniel P


    The structure of kaolinite at the atomic level, including the effect of stacking faults, is investigated using inelastic neutron scattering (INS) spectroscopy and density functional theory (DFT) calculations. The vibrational dynamics of the standard crystal structure of kaolinite, calculated using DFT (VASP) with normal mode analysis, gives good agreement with the experimental INS data except for distinct discrepancies, especially for the low frequency modes (200-400 cm(-1)). By generating several types of stacking faults (shifts in the a,b plane for one kaolinite layer relative to the adjacent layer), it is seen that these low frequency modes are affected, specifically through the emergence of longer hydrogen bonds (O-H⋯O) in one of the models corresponding to a stacking fault of -0.3151a - 0.3151b. The small residual disagreement between observed and calculated INS is assigned to quantum effects (which are not taken into account in the DFT calculations), in the form of translational tunneling of the proton in the hydrogen bonds, which lead to a softening of the low frequency modes. DFT-based molecular dynamics simulations show that anharmonicity does not play an important role in the structural dynamics of kaolinite.

  19. The elastic properties, generalized stacking fault energy and dissociated dislocations in MgB2 under different pressure

    KAUST Repository

    Feng, Huifang


    The 〈112̄0〉 perfect dislocation in MgB2 is suggested to dissociate into two partial dislocations in an energy favorable way 〈112̄0〉 → 1/2 〈112̄0〉 + SF + 1/2 〈112̄0〉. This dissociation style is a correction of the previous dissociation 〈1000〉 → 1/3 〈11̄00〉 SF + 1/3 〈 2100〉proposed by Zhu et al. to model the partial dislocations and stacking fault observed by transmission electron microscopy. The latter dissociation results in a maximal stacking fault energy rather than a minimal one according to the generalized stacking fault energy calculated from first-principles methods. Furthermore, the elastic constants and anisotropy of MgB2 under different pressure are investigated. The core structures and mobilities of the 〈112̄0〉 dissociated dislocations are studied within the modified Peierls-Nabarro (P-N) dislocation theory. The variational method is used to solve the modified P-N dislocation equation and the Peierls stress is also determined under different pressure. High pressure effects on elastic anisotropy, core structure and Peierls stress are also presented. © 2013 Springer Science+Business Media New York.

  20. Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P)

    International Nuclear Information System (INIS)

    Kopecky, M.; Kub, J.; Maca, F.; Masek, J.; Pacherova, O.; Rushforth, A. W.; Gallagher, B. L.; Campion, R. P.; Novak, V.; Jungwirth, T.


    We report on high-resolution x-ray diffraction measurements of (Ga,Mn)As and (Ga,Mn)(As,P) epilayers. We observe a structural anisotropy in the form of stacking faults that are present in the (111) and (111) planes and absent in the (111) and (111) planes. They occupy 10 -2 %-10 -1 % of the ferromagnetic epilayer volume while no stacking faults are detected in the controlled, undoped GaAs epilayer. Full-potential density functional calculations provide additional evidence that the formation of the stacking faults is promoted by Mn attracted to these structural defects. The enhanced Mn density along the common [110] direction of the stacking fault planes produces a symmetry-breaking mechanism of a strength and sense that can account for the uniaxial [110]/[110] magnetocrystalline anisotropy of these ferromagnetic semiconductors.

  1. Annealing Twinning and the Nucleation of Recrystallization at Grain Boundaries

    DEFF Research Database (Denmark)

    Jones, A R.


    boundaries during recovery might stimulate nucleation of recrystallization in low stacking fault energy materials. The experimental observations also lead to the implication that the density of recrystallization nuclei formed in such materials may be directly related to the strength of the deformation...

  2. Structure of fault stackings of molecular layers X-M-X in CdI2 polytypic crystals

    International Nuclear Information System (INIS)

    Palosz, B.; Przedmojski, J.


    The arrangements of molecular layers I-Cd-I, which may be regarded as 'faulted' for CdI 2 polytypic crystals, are analyzed. Tentative classification of faults into those which are intermediate structure between the basic polytypes 2H and 4H and faults occurring between different blocks of pure structure 4 H is proposed. The connection between some growth parameters and the structure of faults in CdI 2 crystals grown from solutions is discussed. It is shown that the geometrical classification of stacking faults used for layered inorganic crystals is not appropriate for the description of the faults existing in polytypic crystals of MX 2 type. The effect of weak external electric and magnetic fields on the polytypic structure of CdI 2 is analyzed. The experiments performed for several hundred of polytypes of CdI 2 showed that the external fields may, in some conditions, affect the organization of the polytypic structure of crystals very strongly. In particular, it was found that the external fields may change the period of polytype cells and that the relative number of hexagonal and rhombohedral polytypes differ very strongly for crystals grown in the absence and in the presence of external electric and magnetic fields. (author)

  3. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. (United States)

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K


    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  4. Detection and characterization of stacking faults by light beam induced current mapping and scanning infrared microscopy in silicon (United States)

    Vève-Fossati, C.; Martinuzzi, S.


    Non destructive techniques like scanning infrared microscopy and light beam induced current mapping are used to reveal the presence of stacking faults in heat treated Czochralski grown silicon wafers. In oxidized or contaminated samples, scanning infrared microscopy reveals that stacking faults grow around oxygen precipitates. This could be due to an aggregation of silicon self-interstitials emitted by the growing precipitates in the (111) plane. Light beam induced current maps show that the dislocations which surround the stacking faults are the main source of recombination centers, especially when they are decorated by a fast diffuser like copper. Des techniques non destructives telles que la microscopie infrarouge à balayage et la cartographie de photocourant induit par un spot lumineux ont été utilisées pour révéler la présence de fautes d'empilement après traitements thermiques, dans des plaquettes de silicium préparées par tirage Czochralski. Dans des échantillons oxydés ou contaminés, la microscopie infrarouge à balayage révèle des fautes d'empilement qui se développent autour des précipités d'oxygène. Cela peut être dû à la formation d'un agglomérat d'auto-interstitiels de silicium émis par la croissance des précipités dans les plans (111). Les cartographies de photocourant montrent que les dislocations qui entourent les fautes d'empilement sont la principale source de centres de recombinaison, et cela tout particulièrement quand ces fautes sont décorées par un diffuseur rapide tel que le cuivre.

  5. Characterization of double Shockley-type stacking faults formed in lightly doped 4H-SiC epitaxial films (United States)

    Yamashita, T.; Hayashi, S.; Naijo, T.; Momose, K.; Osawa, H.; Senzaki, J.; Kojima, K.; Kato, T.; Okumura, H.


    Double Shockley-type stacking faults (2SSFs) formed in 4H-SiC epitaxial films with a dopant concentration of 1.0 × 1016 cm-3 were characterized using grazing incident X-ray topography and high-resolution scanning transmission electron microscopy. The origins of 2SSFs were investigated, and it was found that 2SSFs in the epitaxial layer originated from narrow SFs with a double Shockley structure in the substrate. Partial dislocations formed between 4H-type and 2SSF were also characterized. The shapes of 2SSFs are related with Burgers vectors and core types of the two Shockley partial dislocations.

  6. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults. (United States)

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H


    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  7. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction. (United States)

    Davtyan, Arman; Lehmann, Sebastian; Kriegner, Dominik; Zamani, Reza R; Dick, Kimberly A; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J; Pietsch, Ullrich; Holý, Václav


    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\\bar{1}] direction in the vicinity of the wurtzite 00\\bar{1}\\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.

  8. Flat-Top and Stacking-Fault-Free GaAs-Related Nanopillars Grown on Si Substrates

    Directory of Open Access Journals (Sweden)

    Kouta Tateno


    Full Text Available The VLS (vapor-liquid-solid method is one of the promising techniques for growing vertical III-V compound semiconductor nanowires on Si for application to optoelectronic circuits. Heterostructures grown in the axial direction by the VLS method and in the radial direction by the general layer-by-layer growth method make it possible to fabricate complicated and functional three-dimensional structures in a bottom-up manner. We can grow some vertical heterostructure nanopillars with flat tops on Si(111 substrates, and we have obtained core-multishell Ga(InP/GaAs/GaP nanowires with flat tops and their air-gap structures by using selective wet etching. Simulations indicate that a high- factor of over 2000 can be achieved for this air-gap structure. From the GaAs growth experiments, we found that zincblende GaAs without any stacking faults can be grown after the GaP nanowire growth. Pillars containing a quantum dot and without stacking faults can be grown by using this method. We can also obtain flat-top pillars without removing the Au catalysts when using small Au particles.

  9. Towards further understanding of stacking fault tetrahedron absorption and defect-free channels – A molecular dynamics study

    International Nuclear Information System (INIS)

    Fan, Haidong; El-Awady, Jaafar A.; Wang, Qingyuan


    Highlights: • Stacking fault tetrahedron (SFT) is fully absorbed by screw dislocation. • Absorbed SFT becomes moveable with the aid of Lomer dislocations. • Finally SFT is removed from the specimen or from defect-free channels. • Two scenarios responsible for the formation of defect-free channels were proposed. - Abstract: The mechanisms leading to stacking fault tetrahedron (SFT) absorption via interactions with dislocations, and subsequent formation of plastic flow localization in defect-free channels, which were frequently observed in irradiated materials in transmission electron microscopy experiments, are still unclear. To address this, screw dislocation interactions with SFTs in copper were investigated using molecular dynamics (MD) simulations. The interaction details reveal that a screw dislocation can fully absorb an SFT through the thermally activated transformation of Lomer–Cottrell lock into Lomer dislocations. After absorption, almost all the vacancies in the SFT are transferred into Lomer dislocations, which are able to move transversely under complex loading conditions. As a result, SFTs can be removed from the material (for SFTs near surface) or from defect-free channels (for SFTs in the bulk) with the aid of Lomer dislocations. In addition, it was shown that this absorption process is favorable only at high temperature, low applied shear stress and/or high SFT density. These results are in good agreement with in situ TEM observations. The current simulations and analyses provide useful insights into the formation mechanisms of defect-free channels in irradiated materials

  10. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons (United States)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.


    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  11. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes. (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N


    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  12. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ram Adapa; Mr. Dante Piccone


    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the line in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current

  13. On the measurement of the stacking-fault energies of face centered cubic metal and austenitic stainless steels by X-ray diffraction

    International Nuclear Information System (INIS)

    Borges, J.F.A.


    An X-rays diffraction method was applied to measure the Stacking-Fault Energies (SFE) of the AISI 304, AISI 316, AISI 347 and DIN-WERKSTOFF 1.4970 Austenitic Stainless Steels. The SFE determination plays an important role in the research of the mechanical behaviour of the Metal and Alloys, their deformation mechanisms, stability of microstructure amd electronic configuration. The method is based on the relationship between the SFE and the ratio of the Mean Square Strain to the Stacking-Fault probability. The Mean Square Strain was evaluated by Fourier Analysis of X-rays Diffraction profiles, corrected to reduce instrumental effects, followed by the application of the Warren-Averbach method to the Fourier Coefficients. The Stacking-Fault probabilities were derived from the changes of peak separations between cold-worked and annealed specimens. (author) [pt

  14. Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires. (United States)

    Chen, Yujie; Burgess, Tim; An, Xianghai; Mai, Yiu-Wing; Tan, H Hoe; Zou, Jin; Ringer, Simon P; Jagadish, Chennupati; Liao, Xiaozhou


    Stacking faults (SFs) are commonly observed crystalline defects in III-V semiconductor nanowires (NWs) that affect a variety of physical properties. Understanding the effect of SFs on NW mechanical properties is critical to NW applications in nanodevices. In this study, the Young's moduli of GaAs NWs with two distinct structures, defect-free single crystalline wurtzite (WZ) and highly defective wurtzite containing a high density of SFs (WZ-SF), are investigated using combined in situ compression transmission electron microscopy and finite element analysis. The Young's moduli of both WZ and WZ-SF GaAs NWs were found to increase with decreasing diameter due to the increasing volume fraction of the native oxide shell. The presence of a high density of SFs was further found to increase the Young's modulus by 13%. This stiffening effect of SFs is attributed to the change in the interatomic bonding configuration at the SFs.

  15. Modeling defects and plasticity in MgSiO3 post-perovskite: Part 1-generalized stacking faults. (United States)

    Goryaeva, Alexandra M; Carrez, Philippe; Cordier, Patrick

    In this work, we examine the transferability of a pairwise potential model (derived for MgSiO 3 perovskite) to accurately compute the excess energies of the generalized stacking faults (GSF, also called γ -surfaces) in MgSiO 3 post-perovskite. All calculations have been performed at 120 GPa, a pressure relevant to the D″ layer. Taking into account an important aspect of crystal chemistry for complex materials, we consider in detail all possible locations of slip planes in the post-perovskite structure. The γ -surface calculations emphasize the easiness of glide of slip systems with the smallest shear vector [100] and of the [001](010) slip system. Our results are in agreement with previous ab initio calculations. This validates the use the chosen potential model for further full atomistic modeling of dislocations in MgSiO 3 post-perovskite.

  16. Nucleation and Growth of GaN on GaAs (001) Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.


    The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

  17. Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics

    Directory of Open Access Journals (Sweden)

    Linda Mosecker and Alireza Saeed-Akbari


    Full Text Available Nitrogen in austenitic stainless steels and its effect on the stacking fault energy (SFE has been the subject of intense discussions in the literature. Until today, no generally accepted method for the SFE calculation exists that can be applied to a wide range of chemical compositions in these systems. Besides different types of models that are used from first-principle to thermodynamics-based approaches, one main reason is the general lack of experimentally measured SFE values for these steels. Moreover, in the respective studies, not only different alloying systems but also different domains of nitrogen contents were analyzed resulting in contrary conclusions on the effect of nitrogen on the SFE. This work gives a review on the current state of SFE calculation by computational thermodynamics for the Fe–Cr–Mn–N system. An assessment of the thermodynamic effective Gibbs free energy, $Delta G^{gamma o varepsilon }$ , model for the $gamma o varepsilon$ phase transformation considering existing data from different literature and commercial databases is given. Furthermore, we introduce the application of a non-constant composition-dependent interfacial energy, бγ/ε, required to consider the effect of nitrogen on SFE in these systems.

  18. Correlation of Grain Size, Stacking Fault Energy, and Texture in Cu-Al Alloys Deformed under Simulated Rolling Conditions

    Directory of Open Access Journals (Sweden)

    Ehab A. El-Danaf


    Full Text Available The effect of grain size and stacking fault energy (SFE on the strain hardening rate behavior under plane strain compression (PSC is investigated for pure Cu and binary Cu-Al alloys containing 1, 2, 4.7, and 7 wt. % Al. The alloys studied have a wide range of SFE from a low SFE of 4.5 mJm−2 for Cu-7Al to a medium SFE of 78 mJm−2 for pure Cu. A series of PSC tests have been conducted on these alloys for three average grain sizes of ~15, 70, and 250 μm. Strain hardening rate curves were obtained and a criterion relating twinning stress to grain size is established. It is concluded that the stress required for twinning initiation decreases with increasing grain size. Low values of SFE have an indirect influence on twinning stress by increasing the strain hardening rate which is reflected in building up the critical dislocation density needed to initiate mechanical twinning. A study on the effect of grain size on the intensity of the brass texture component for the low SFE alloys has revealed the reduction of the orientation density of that component with increasing grain size.

  19. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC (United States)

    Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko


    We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.

  20. Stacking-fault energy and anti-Invar effect in FeMn alloys at high temperature (United States)

    Reyes-Huamantinco, Andrei; Puschnig, Peter; Ambrosch-Draxl, Claudia; Peil, Oleg; Ruban, Andrei


    High-Mn steels (20-30at%Mn, 2-4wt%Si and Al) are of interest for the automotive industry due to their outstanding mechanical properties. Their deformation behavior has been empirically correlated to the stacking-fault energy (SFE), an important quantity in steel design that can be calculated ab-initio. Using state-of-the-art methods within density-functional theory together with Monte Carlo simulations, we calculate the free energy of the Fe-22.5at%Mn binary alloy between 300-800 K. Experimentally, the alloy is completely random and in the paramagnetic state, which we model via the coherent potential approximation and the disordered local moment approach, respectively. We treat magnetic excitations by including longitudinal spin-fluctuations and find that the FeMn alloy is an itinerant paramagnet. Our calculations confirm the experimentally observed strong magneto-volume coupling, realized in the anti-Invar behavior. We then obtain the structural stability and the SFE from free energy differences and find very good agreement with measurements. Our results demonstrate that the interplay between magnetic excitations and the thermal lattice expansion is the main factor determining the anti-Invar effect, the fcc-hcp martensitic transformation temperature and the SFE.

  1. Stacking faults in Zr(Fe, Cr)2 Laves structured secondary phase particle in Zircaloy-4 alloy. (United States)

    Liu, Chengze; Li, Geping; Yuan, Fusen; Han, Fuzhou; Zhang, Yingdong; Gu, Hengfei


    Stacking faults (SFs) in secondary phase particles (SPPs), which generally crystallize in the Laves phase in Zircaloy-4 (Zr-4) alloy, have been frequently observed by researchers. However, few investigations on the nano-scale structure of SFs have been carried out. In the present study, an SF containing C14 structured SPP, which located at grain boundaries (GBs) in the α-Zr matrix, was chosen to be investigated, for its particular substructure as well as location, aiming to reveal the nature of the SFs in the SPPs in Zr-4 alloy. It was indicated that the SFs in the C14 structured SPP actually existed in the local C36 structured Laves phase, for their similarities in crystallography. The C14 → C36 phase transformation, which was driven by synchroshearing among the (0001) basal planes, was the formation mechanism of the SFs in the SPPs. By analyzing the strained regions near the SPP, a model for understanding the driving force of the synchroshear was proposed: the interaction between SPP and GB resulted in the Zener pinning effect, leading to the shearing parallel to the (0001) basal planes of the C14 structured SPP, and the synchroshear was therefore activated.

  2. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults. (United States)

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi


    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg-8Er-1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances.

  3. The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide

    International Nuclear Information System (INIS)

    Langford, J.I.; Boultif, A.; Auffredic, J.P.; Louer, D.


    The microstructure of ZnO powder, obtained from thermal decomposition of the oxalate and studied previously by electron microscopy and adsorption calorimetry, was investigated by means of X-ray powder diffraction pattern decomposition. A Williamson-Hall plot revealed that some lines were broadened solely due to the effects of crystallite size, whereas other breadths included a contribution due to stacking faults. Spherical and cylindrical models are used to describe the form of the crystallites and procedures are presented for separating 'size' effects from 'mistake' broadening. This leads to estimates of the mean dimensions of the crystallites and the stacking-fault probability. The analysis demonstrates that, with good-quality data for a large number of reflections, a considerable amount of detailed information can be obtained about microstructure. On the other hand, it reveals some of the limitations of current procedures for modelling diffraction line profiles. (orig.)

  4. How does a brittle-ductile fault nucleate and grow in dolostone? A lesson learnt from a structural, geochemical and K-Ar chronological study of a reactivated Paleozoic thrust fault (United States)

    Viola, G.; Torgersen, E.; Zwingmann, H.; Harris, C.


    Carbonate-hosted faults in the upper crust are mechanically strong, yet, under certain environmental conditions, carbonates may decompose into mechanically weak minerals, with major consequences for faults´ rheological behavior. We combine structural analysis, geochemistry, stable isotopes and K-Ar dating of synkinematic illite/muscovite to investigate the processes that control localization and weakening of initially strong, seismogenic brittle faults. We aim at better understanding how the constantly evolving architecture and composition of brittle-ductile faults affect their seismogenic properties. The Kvenklubben fault in northern Norway is part of a Caledonian compressional imbricate stack. It juxtaposes greenschist facies metabasalts in the hanging wall against meta-dolostones and has a 2.5 m thick fault core consisting of talc-bearing calc-phyllonites and chlorite phyllonites. Petrographic and geochemical results indicate that the phyllonites formed mainly through fluid-rock interaction and progressive decomposition of the adjacent wall rocks. K-Ar dating and chlorite geothermometry documents that the fault damage zone developed from the base upwards with fault initiation at 530 Ma around 200°C and the main development during reactivation around 440 Ma at c. 285°C. Early strain increments were accommodated in the dolostone by pressure-solution, formation of optimally oriented tensional fractures and cataclasis along geometrical irregularities of the growing fault plane. Fluids caused sequential decarbonation of the dolostones and carbonation of the metabasalts, resulting in the formation of phyllosilicate-decorated planar fabrics. The newly formed phyllosilicate levels weakened the fault under overall viscous creep conditions. The strongly anisotropic fluid-flow within the phyllonites, together with vein sealing following localized and transient high pore pressure-driven embrittlement, caused strain hardening. Together, the interaction between strain

  5. A TEM study of in-grown stacking faults in 3C-SiC layers grown by CF-PVT on 4H-SiC substrates

    International Nuclear Information System (INIS)

    Marinova, Maya; Mercier, Frederic; Mantzari, Alkioni; Galben, Irina; Chaussende, Didier; Polychroniadis, Efstathios K.


    A transmission electron microscopy (TEM) study on the generation of stacking faults (SFs) and stacking fault (SF) induced inclusion during 3C-SiC growth by Continuous Feed Physical Vapour Transport (CF-PVT) method on 4H-SiC substrates is presented. A transition region of about 100 nm between the 4H-SiC substrate and 3C-SiC layer, where cubic and 4H-SiC sequences follow after each other is observed. A tendency for formation of multiple stacking faults (SFs) as opposed to the more common for fcc materials intrinsic (single) or extrinsic (double) SFs was observed. They rarely originate directly at the interface, but they are found to start on twin boundaries in some cases. Later during the CF-PVT growth process the density of SFs in the (1 1 1) and (1-bar11) gradually increases. The (1-bar11) SF density is the higher which leads to the formation of large 6H-SiC inclusions, extending to large lengths.

  6. Stacking Faults and Polytypes for Layered Double Hydroxides: What Can We Learn from Simulated and Experimental X-ray Powder Diffraction Data? (United States)

    Sławiński, Wojciech A; Sjåstad, Anja Olafsen; Fjellvåg, Helmer


    Layered double hydroxides (LDH) are a broad group of widely studied materials. The layered character of those materials and their high flexibility for accommodating different metals and anions make them technologically interesting. The general formula for the LDH compound is [M 1-x II M x III (OH) 2 ][A n- ] x/n ·mH 2 O, where M II is a divalent metal cation which can be substituted by M III trivalent cation, and A n- is a charge compensating anion located between positively charged layers. In this paper we present a comprehensive study on possible structural disorder in LDH. We show how X-ray powder diffraction (XRPD) can be used to reveal important features of the LDH crystal structure such as stacking faults, random interlayer shifts, anion-molecule orientation, crystal water content, distribution of interlayer distances, and also LDH slab thickness. All calculations were performed using the Discus package, which gives a better flexibility in defining stacking fault sequences, simulating and refining XRPD patterns, relative to DIFFaX, DIFFaX+, and FAULTS. Finally, we show how the modeling can be applied to two LDH samples: Ni 0.67 Cr 0.33 (OH) 2 (CO 3 ) 0.16 ·mH 2 O (3D structure) and Mg 0.67 Al 0.33 (OH) 2 (NO 3 ) 0.33 (2D layered structure).

  7. Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes

    International Nuclear Information System (INIS)

    Gong, Beini; Lu, Yonghong; Wu, Pingxiao; Huang, Zhujian; Zhu, Yajie; Dang, Zhi; Zhu, Nengwu; Lu, Guining; Huang, Junyi


    Graphical abstract: - Highlights: • CdZnS with stacking faults was combined with Cu 2+ modified carbon nanotubes. • Stacking faults and carbon nanotubes (Cu) synergized to promote charge separation. • The composite exhibited enhanced photocatalytic performance. - Abstract: For enhanced photocatalytic performance of visible light responsive CdZnS, a series of Cd 0.5 Zn 0.5 S solid solutions were fabricated by different methods. It was found that the semiconductor obtained through the precipitation-hydrothermal method (CZS-PH) exhibited the highest photocatalytic hydrogen production rate of 2154 μmol h −1 g −1 . The enhanced photocatalytic hydrogen production of CZS-PH was probably due to stacking fault formation as well as narrow bandgap, a large surface area and a small crystallite size. Based on this, carbon nanotubes modified with Cu 2+ (CNTs (Cu)) were used as a cocatalyst for CZS-PH. The addition of CNTs (Cu) enhanced notably the absorption of the composites for visible light. The highest photocatalytic hydrogen production rate of the Cd 0.5 Zn 0.5 S-CNTs (Cu) composite was 2995 μmol h −1 g −1 with 1.0 wt.% of CNTs (Cu). The improvement of the photocatalytic activity by loading of CNTs (Cu) was not due to alteration of bandgap energy or surface area, and was probably attributed to suppression of the electron-hole recombination by the CNTs, with Cu 2+ anchored in the interface optimizing the photogenerated electron transfer pathway between the semiconductor and CNTs. We report here the successful combination of homojunction and heterojunction in CdZnS semiconductor, which resulted in promotion of charge separation and enhanced photocatalytic activity.

  8. Application of UV photoluminescence imaging spectroscopy for stacking faults identification on thick, lightly n-type doped, 4°-off 4H-SiC epilayers

    Directory of Open Access Journals (Sweden)

    N. Thierry-Jebali


    Full Text Available This paper deals with the description and the application of an original photoluminescence (PL imaging technique on thick, lighly n-type doped 4H-SiC epilayers for in-grown stacking fault (SF identification. This technique, call “photoluminescence imaging spectroscopy” (PLIS, compares different PL imaging pictures in order to create a new picture which displays the location and an approximation of the maximum photoemission wavelength of SFs at room temperature. Five types of SF have been detected and identified by PLIS on two different wafers. The origin of SF type modification during the growth is also discussed in this work.

  9. Evaluation of single crystal elastic constants and stacking fault energy in high-nitrogen duplex stainless steel by in-situ neutron diffraction

    International Nuclear Information System (INIS)

    Kim, Yanghoo; Kim, Yong Min; Koh, Ji-Yeon; Lee, Tae-Ho; Woo, Wan Chuck; Han, Heung Nam


    Single crystal elastic constants of austenite and ferrite phases in high-nitrogen duplex stainless steel were evaluated by an elastic self-consistent model combined with an optimization process using in-situ neutron diffraction data. The optimized elastic constants were validated by the indentation moduli of each phase obtained by nanoindentation. In addition, the stacking fault energy of austenite was evaluated based on the neutron diffraction profile and the single crystal elastic constants and was subsequently correlated with the observed deformation microstructure.

  10. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart


    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells...... methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%....

  11. Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC. (United States)

    Jiang, M; Peng, S M; Zhang, H B; Xu, C H; Xiao, H Y; Zhao, F A; Liu, Z J; Zu, X T


    In this study, an ab initio molecular dynamics method is employed to investigate how the existence of stacking faults (SFs) influences the response of SiC to low energy irradiation. It reveals that the C and Si atoms around the SFs are generally more difficult to be displaced than those in unfaulted SiC, and the corresponding threshold displacement energies for them are generally larger, indicative of enhanced radiation tolerance caused by the introduction of SFs, which agrees well with the recent experiment. As compared with the unfaulted state, more localized point defects are generated in faulted SiC. Also, the efficiency of damage production for Si recoils is generally higher than that of C recoils. The calculated potential energy increases for defect generation in SiC with intrinsic and extrinsic SFs are found to be higher than those in unfaulted SiC, due to the stronger screen-Coulomb interaction between the PKA and its neighbors. The presented results provide a fundamental insight into the underlying mechanism of displacement events in faulted SiC and will help to advance the understanding of the radiation response of SiC with and without SFs.

  12. Magnetic fabric of fault breccia: Revealing the direction of the Cretaceous nappe-stacking in the Inner Western Carpathians by AMS analyses (United States)

    Pomella, Hannah; Kövér, Szilvia; Fodor, László


    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia, fault rocks with clast-in-matrix textures. A noteworthy feature of the breccia is the presence of a fabric defined by the preferred orientation of clasts and grains in the matrix. However, this fabric is often not visible in the field or in thin sections but can be detected by AMS analyses. The sample area of the present study is located within the Cretaceous thin-skinned nappe-system of the Inner Western Carpathians. This Alpine-type orogenic belt is built up by large-scale, few km thick nappes without connection to their root areas. These thin rock slices thrust over large distances without sign of mayor deformation within the nappe slice. All the deformation took place along highly strained, narrow shear zones lubricated by hot fluids. These hydrostatically pressurized zones develop on the bases of the nappes, where basal tectonic breccia was formed. Newly formed, syn-kinematic minerals are growing from the overpressured fluids. These polymict breccias have typical block-in-matrix texture with clast size vary between mm and few cm. The matrix is mainly submillimetre-scale rock fragments and cement. In spite of detailed studies about the physical conditions of nappe movements, there is no information about the tectonic transport direction. Analyses of brittle fault kinematics within the different tectonic slices suggest either NW-SE or N-S compressional stress field during the nappe-stacking. With this study we want to test if the magnetic fabric of tectonic breccia can help to determine the transport direction. The first results are very promising: Area 1 (basal tectonic breccia from Tisovec): the magnetic lineation is well defined and plunges gently towards N-NNW. The stretching lineation observable in the field within the uppermost

  13. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation (United States)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen


    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  14. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin, E-mail:; Chen, Jun; Yao, Yuanzhao; Sekiguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Matsuhata, Hirofumi; Okumura, Hajime [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)


    Using the fine control of an electron beam (e-beam) in scanning electron microscopy with the capabilities of both electrical and optical imaging, the stacking fault (SF) formation together with its tuning of carrier lifetime was in situ monitored and investigated in p-type 4H-SiC homoepitaxial films. The SFs were formed through engineering basal plane dislocations with the energy supplied by the e-beam. The e-beam intensity required for the SF formation in the p-type films was ∼100 times higher than that in the n-type ones. The SFs reduced the minority-carrier lifetime in the p-type films, which was opposite to that observed in the n-type case. The reason for the peculiar SF behavior in the p-type 4H-SiC is discussed with the cathodoluminescence results.

  15. First-principles study of the atomic and electronic properties of (1 0 0) stacking faults in BaSnO3 crystal (United States)

    Xue, Yuanbin; Wang, Wenyuan; Guo, Yao


    We investigated the atomic and electronic properties of (1 0 0) stacking fault (SF) in undoped and La-doped BaSnO3 by first-principles calculations. It was found that 1/2[1 1 1] (1 0 0) SF is energetically favorable when Ba atoms occupy the interface while 1/2 (1 0 0) [1 0 1] SF becomes the most stable when the SF interface is occupied by Sn atoms. SF influences the distribution of La dopant and the electric properties of the system. In the presence of SF, electronic states near the Fermi level decrease and the bandgap expands by about 0.6 eV. Our results suggest that SF is one of the possible origins for the performance degradation.

  16. Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion (United States)

    An, X. H.; Lin, Q. Y.; Wu, S. D.; Zhang, Z. F.; Figueiredo, R. B.; Gao, N.; Langdon, T. G.


    Disks of pure Cu and several Cu-Al alloys were processed by high-pressure torsion (HPT) at room temperature through different numbers of turns to systematically investigate the influence of the stacking fault energy (SFE) on the evolution of microstructural homogeneity. The results show there is initially an inhomogeneous microhardness distribution but this inhomogneity decreases with increasing numbers of turns and the saturation microhardness increases with increasing Al concentration. Uniform microstructures are more readily achieved in materials with high or low SFE than in materials with medium SFE, because there are different mechanisms governing the microstructural evolution. Specifically, recovery processes are dominant in high or medium SFE materials, whereas twin fragmentation is dominant in materials having low SFE. The limiting minimum grain size (d min) of metals processed by HPT decreases with decreasing SFE and there is additional evidence suggesting that the dependence of d min on the SFE decreases when the severity of the external loading conditions is increased.

  17. Quantification of Honeycomb Number-Type Stacking Faults: Application to Na3Ni2BiO6 Cathodes for Na-Ion Batteries. (United States)

    Liu, Jue; Yin, Liang; Wu, Lijun; Bai, Jianming; Bak, Seong-Min; Yu, Xiqian; Zhu, Yimei; Yang, Xiao-Qing; Khalifah, Peter G


    Ordered and disordered samples of honeycomb-lattice Na3Ni2BiO6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na(+)/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycomb layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. It is demonstrated that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are

  18. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations (United States)

    Mahata, Avik; Asle Zaeem, Mohsen; Baskes, Michael I.


    Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, and solid-state grain growth regimes. The main crystalline phase was identified as face-centered cubic, but a hexagonal close-packed (hcp) and an amorphous solid phase were also detected. The hcp phase was created due to the formation of stacking faults during solidification of Al melt. By slowing down the cooling rate, the volume fraction of hcp and amorphous phases decreased. After the box was completely solid, grain growth was simulated and the grain growth exponent was determined for different annealing temperatures.

  19. Effects of stacking fault energies on the interaction between an edge dislocation and an 8.0-nm-diameter Frank loop of self-interstitial atoms

    Directory of Open Access Journals (Sweden)

    S. Hayakawa


    Full Text Available Molecular dynamics simulations were conducted to investigate the effects of stacking fault energy (SFE as a single variable parameter on the interaction between an edge dislocation and a Frank loop of self-interstitial atoms with a diameter of 8.0nm. The physical contact between the edge dislocation and the loop causes constriction of the edge dislocation, followed by the formation of a D-Shockley partial dislocation. The latter process is associated with either the formation of a screw component and its cross-slip, or the direct core reaction between the dislocation and the loop. These processes induce either the absorption of the loop into the dislocation or the transformation of the loop into a perfect loop. The SFE influences the interaction morphologies by determining the separation distance of the two partial dislocations and consequently the rate of constriction. The dependence of the interaction morphology on the SFE varies with the habit plane of the loop. A higher SFE increases the probability of the absorption or transformation interaction; however, only loop shearing is observed at the lower limit of the SFE range of austenitic stainless steels.

  20. Evolution and interaction of twins, dislocations and stacking faults in rolled α-brass during nanostructuring at sub-zero temperature

    Directory of Open Access Journals (Sweden)

    Barna Roy


    Full Text Available The effect of cryorolling (CR strain at 153 K on the evolution of structural defects and their interaction in α−brass (Cu–30 wt.% Zn during nanostructuring has been evaluated. Even though the lattice strain increases up to 2.1 × 10−3 at CR strain of 0.6 initially, but it remains constant upon further rolling. Whereas, the twin density (β increases to a maximum value of 5.9 × 10−3 at a CR strain of 0.7 and reduces to 1.1 × 10−5 at 0.95. Accumulation of stacking faults (SFs and lattice disorder at the twin boundaries causes dynamic recrystallization, promotes grain refinement and decreases the twin density by forming subgrains. Detailed investigations on the formation and interaction of defects have been done through resistivity, positron lifetime and Doppler broadening measurements in order to understand the micro-mechanism of nanostructuring at sub-zero temperatures.

  1. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001 interface by aberration-corrected high-resolution transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    C. Wen


    Full Text Available The stacking faults (SFs in an AlSb/GaAs (001 interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM. The structure and strain distribution of the single and intersecting (V-shaped SFs associated with partial dislocations (PDs were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps εxx and εyy, a SF can be divided into several sections under different strain states (positive or negative strain values. Furthermore, the strain state for the same section of a SF is in contrast to each other in εxx and εyy strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  2. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001) interface by aberration-corrected high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C., E-mail: [School of Science, Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010 (China); Ge, B. H.; Cui, Y. X.; Li, F. H. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, J.; Yu, R.; Cheng, Z. Y. [Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)


    The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ε{sub xx} and ε{sub yy}, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ε{sub xx} and ε{sub yy} strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  3. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study. (United States)

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc


    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  4. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery (United States)

    Rohatgi, Aashish; Vecchio, Kenneth S.; Gray, George T.


    The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ˜78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ˜75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ˜1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

  5. Mobilities and dislocation energies of planar faults in an ordered ...

    Indian Academy of Sciences (India)

    D019) phase with an axial ratio less than the ideal. Mobilities and dislocation energies of various planar faults viz. antiphase boundaries (APBs), superlattice intrinsic stacking faults (SISFs) and complex stacking faults (CSFs) have been ...

  6. Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction and tremor (United States)

    Johnston, M.J.S.; Borcherdt, R.D.; Linde, A.T.; Gladwin, M.T.


    Near-field observations of high-precision borehole strain and pore pressure, show no indication of coherent accelerating strain or pore pressure during the weeks to seconds before the 28 September 2004 M 6.0 Parkfield earthquake. Minor changes in strain rate did occur at a few sites during the last 24 hr before the earthquake but these changes are neither significant nor have the form expected for strain during slip coalescence initiating fault failure. Seconds before the event, strain is stable at the 10-11 level. Final prerupture nucleation slip in the hypocentral region is constrained to have a moment less than 2 ?? 1012 N m (M 2.2) and a source size less than 30 m. Ground displacement data indicate similar constraints. Localized rupture nucleation and runaway precludes useful prediction of damaging earthquakes. Coseismic dynamic strains of about 10 microstrain peak-to-peak were superimposed on volumetric strain offsets of about 0.5 microstrain to the northwest of the epicenter and about 0.2 microstrain to the southeast of the epicenter, consistent with right lateral slip. Observed strain and Global Positioning System (GPS) offsets can be simply fit with 20 cm of slip between 4 and 10 km on a 20-km segment of the fault north of Gold Hill (M0 = 7 ?? 1017 N m). Variable slip inversion models using GPS data and seismic data indicate similar moments. Observed postseismic strain is 60% to 300% of the coseismic strain, indicating incomplete release of accumulated strain. No measurable change in fault zone compliance preceding or following the earthquake is indicated by stable earth tidal response. No indications of strain change accompany nonvolcanic tremor events reported prior to and following the earthquake.

  7. Application of current steps and design of experiments methodology to the detection of water management faults in a proton exchange membrane fuel cell stack (United States)

    Moçotéguy, Philippe; Ludwig, Bastian; Yousfi Steiner, Nadia


    We apply a 25-1 fractional factorial Design of Experiments (DoE) test plan in order to discriminate the direct effects and interactions of five factors on the water management of a 500 We PEMFC stack. The stack is submitted to current steps between different operating levels and several responses are extracted for the DoE analysis. A strong ageing effect on stack and cell performances is observed. Therefore, in order to perform the DoE analysis, responses which values are too strongly affected by ageing are ;corrected; prior to the analysis. A ;virtual; stack, considered as ;healthy;, is also ;reconstructed; by ;putting in series; the cells exhibiting very low performance drop. The results show that stacks and cells' resistivities are mostly impacted by direct effects of both temperature and cathodic inlet relative humidity and by compensating interaction between temperature and anodic overstoichiometric ratio. It also appears that two responses are able to distinguish a ;healthy; stack from a degraded stack: heterogeneities in cell voltages and cell resistivities distributions. They are differently impacted by considered effects and interactions. Thus, a customised water management strategy could be developed, depending on the stack's state of health to maintain it in the best possible operating conditions.

  8. Nucleation process of an M2 earthquake in a deep gold mine in South Africa inferred from on-fault foreshock activity (United States)

    Yabe, Y.; Nakatani, M.; Naoi, M.; Philipp, J.; Janssen, C.; Kawakata, H.; Dresen, G. H.; Ogasawara, H.


    We observed foreshock activity of an Mw2.2 earthquake (the mainshock) that occurred in a gabbroic dyke at a depth of about 3.3 km from the surface in a deep gold mine in South Africa. Foreshock activity, selectively occurring on a plane on which the mainshock would occur, lasted for at least six months until the mainshock. Rock samples in the mainshock source region were recovered by drilling afterward. Indication of ancient hydrothermal alteration on the rupture plane of the mainshock suggests that the foreshock activity occurred on a pre-existing weakness, probably a healed joint, to nucleate the mainshock. The foreshocks during the three months leading up to the mainshock concentrated to three clusters (F1-F3), which, we interpreted, represent the nucleation at multiple sites. The temporal variation in the foreshock activity in the three months can be well explained by the temporal variation of the stressing state in the source region of the mainshock due to nearby mining. One of these clusters (cluster F2) showed an accelerated activity from about 10 days before the mainshock, while activity over the entire foreshock area was rather constant. The foreshock sources in the final 41 hours, during which the stress state was constant, migrated from F2 to F1 that neighbored to the mainshock hypocenter, suggesting coalescence of the two nuclei. The occurrence of mainshock was 0.4-2.3 days earlier than the time expected from an extrapolation of the accelerated foreshock activity in F2. The nucleation of mainshock may have been advanced to the criticality for dynamic instability in a stepwise manner upon the coalescence of nuclei.While the heterogeneity of geological structures obscures the straightforward manifestation of self-driven quasi-static nucleation, the present careful analysis suggests that some essence of such nucleation as known from the fracture theory and laboratory experiments was caught in the pre-M2 AE data on a natural joint at a depth of 3.3 km.

  9. Moment magnitude, local magnitude and corner frequency of small earthquakes nucleating along a low angle normal fault in the Upper Tiber valley (Italy) (United States)

    Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.


    The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a

  10. Multi-microscopy study of the influence of stacking faults and three-dimensional In distribution on the optical properties of m-plane InGaN quantum wells grown on microwire sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, L.; Lefebvre, W.; Houard, J.; Blum, I.; Vurpillot, F.; Rigutti, L., E-mail: [Groupe de Physique des Matériaux, UMR CNRS 6634, Normandie University, INSA and University of Rouen, 76800 St Etienne du Rouvray (France); Hernández-Maldonado, D. [Groupe de Physique des Matériaux, UMR CNRS 6634, Normandie University, INSA and University of Rouen, 76800 St Etienne du Rouvray (France); SuperSTEM STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Eymery, J.; Durand, C. [CEA, CNRS, Université Grenoble Alpes, 38000 Grenoble (France); Tchernycheva, M. [Institut d' Electronique Fondamentale, UMR CNRS 8622, University Paris Saclay, 91405 Orsay (France)


    The optical properties of m-plane InGaN/GaN quantum wells grown on microwire sidewalls were investigated carrying out a correlative scanning transmission electron microscopy (STEM), atom probe tomography (APT), and micro-photoluminescence study applied on single nanoscale field-emission tips obtained by a focused ion beam annular milling. Instead of assuming simple rectangular composition profiles, yielding misleading predictions for the optical transition energies, we can thus take into account actual compositional distributions and the presence of stacking faults (SFs). SFs were shown to be responsible for a lowering of the recombination energies of the order of 0.1 eV with respect to those expected for defect-free quantum wells (QWs). Such energy reduction allows establishing a good correspondence between the transition energies observed by optical spectroscopy and those calculated on the basis of the QWs In measured composition and distribution assessed by STEM structural analysis and APT chemical mapping.

  11. Effect of Pressure on Elastic Constants, Generalized Stacking Fault Energy, and Dislocation Properties in Antiperovskite-Type Ni-Rich Nitrides ZnNNi3 and CdNNi3

    KAUST Repository

    Liu, Lili


    The elastic properties and generalized stacking fault energy curves of antiperovskite-type Ni-rich nitrides MNNi3 (M = Zn, Cd) under different pressure have been obtained from the first-principles calculations. By using the variational method, the core width and Peierls stresses of (Formula presented.) edge dislocation and screw dislocation in ZnNNi3 and CdNNi3 within the improved Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account have been investigated. Whatever the material or the pressure range, the Peierls stress of edge dislocation is smaller than that of screw dislocation. This also demonstrates that the edge dislocation is considered to be the dominant factor in determining the plastic behavior of MNNi3 (M = Zn, Cd) in the pressure range of 0–30 GPa.

  12. Algebraic stacks

    Indian Academy of Sciences (India)

    generally, any fiber product) is not uniquely defined: it is only defined up to unique isomorphism. ..... Fiber product. Given two morphisms f1 : F1 ! G, f2 : F2 ! G, we define a new stack. F1 آG F2 (with projections to F1 and F2) as follows. The objects are triples ًX1; X2; ق ..... In fact, any Artin stack F can be defined in this fashion.

  13. Mobilities and dislocation energies of planar faults in an ordered ...

    Indian Academy of Sciences (India)

    Present work describes the stability of possible planar faults of the A3B (D019) phase with an axial ratio less than the ideal. Mobilities and dislocation energies of various planar faults viz. antiphase boundaries (APBs), superlattice intrinsic stacking faults (SISFs) and complex stacking faults (CSFs) have been computed using ...

  14. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren


    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  15. Algebraic stacks

    Indian Academy of Sciences (India)

    truct the 'moduli stack', that captures all the information that we would like in a fine moduli space. ..... the fine moduli space), it has the property that for any family W of vector bundles (i.e. W is a vector bundle over B ...... the etale topology is finer: V is a 'small enough open subset' because the square root can be defined on it.

  16. Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of Li2MnO3 Nanobelts as Lithium-Ion Battery Cathodes. (United States)

    Sun, Ya; Cong, Hengjiang; Zan, Ling; Zhang, Youxiang


    Among the Li-rich layered oxides Li 2 MnO 3 has significant theoretical capacity as a cathode material for Li-ion batteries. Pristine Li 2 MnO 3 generally has to be electrochemically activated in the first charge-discharge cycle which causes very low Coulombic efficiency and thus deteriorates its electrochemical properties. In this work, we show that low-temperature reduction can produce a large amount of structural defects such as oxygen vacancies, stacking faults, and orthorhombic LiMnO 2 in Li 2 MnO 3 . The Rietveld refinement analysis shows that, after a reduction reaction with stearic acid at 340 °C for 8 h, pristine Li 2 MnO 3 changes into a Li 2 MnO 3 -LiMnO 2 (0.71/0.29) composite, and the monoclinic Li 2 MnO 3 changes from Li 2.04 Mn 0.96 O 3 in the pristine Li 2 MnO 3 (P-Li 2 MnO 3 ) to Li 2.1 Mn 0.9 O 2.79 in the reduced Li 2 MnO 3 (R-Li 2 MnO 3 ), indicating the production of a large amount of oxygen vacancies in the R-Li 2 MnO 3 . High-resolution transmission electron microscope images show that a high density of stacking faults is also introduced by the low-temperature reduction. When measured as a cathode material for Li-ion batteries, R-Li 2 MnO 3 shows much better electrochemical properties than P-Li 2 MnO 3 . For example, when charged-discharged galvanostatically at 20 mA·g -1 in a voltage window of 2.0-4.8 V, R-Li 2 MnO 3 has Coulombic efficiency of 77.1% in the first charge-discharge cycle, with discharge capacities of 213.8 and 200.5 mA·h·g -1 in the 20th and 30th cycles, respectively. In contrast, under the same charge-discharge conditions, P-Li 2 MnO 3 has Coulombic efficiency of 33.6% in the first charge-discharge cycle, with small discharge capacities of 80.5 and 69.8 mA·h·g -1 in the 20th and 30th cycles, respectively. These materials characterizations, and electrochemical measurements show that low-temperature reduction is one of the effective ways to enhance the performances of Li 2 MnO 3 as a cathode material for Li-ion batteries.

  17. Principles of nucleation theory

    International Nuclear Information System (INIS)

    Clement, C.F.; Wood, M.H.


    The nucleation of small stable species is described in the problem of void growth by discrete rate equations. When gas is being produced the problem reduces to one of calculating the incubation dose for the gas bubble to void transition. A general expression for the steady state nucleation rate is derived for the case when voids are formed by vacancy fluctuations which enable an effective nucleation barrier to be crossed. (author)

  18. Effects of healing on the seismogenic potential of carbonate fault rocks : Experiments on samples from the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye; Verberne, Berend A.; Spiers, Christopher J.


    Fault slip and healing history may crucially affect the fault seismogenic potential in the earthquake nucleation regime. Here we report direct shear friction tests on simulated gouges derived from a carbonate fault breccia, and from a clay/carbonate fault-core gouge, retrieved from a surface

  19. Mobilities and dislocation energies of planar faults in an ordered A 3 ...

    Indian Academy of Sciences (India)

    Present work describes the stability of possible planar faults of the A3B (D019) phase with an axial ratio less than the ideal. Mobilities and dislocation energies of various planar faults viz. antiphase boundaries (APBs), superlattice intrinsic stacking faults (SISFs) and complex stacking faults (CSFs) have been computed using ...

  20. Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H

    Energy Technology Data Exchange (ETDEWEB)

    Bruenger, E.; Wang, X.; Gottstein, G. [RWTH Aachen (Germany). Inst. fuer Metallkunde und Metallphysik


    Many metals and alloys with low and intermediate stacking fault energy undergo dynamic recrystallization (DRX). Due to the growing importance of hot deformation in metal forming there is an increasing interest in the understanding and modeling of microstructure evolution during DRX and its effect on flow behavior. However, despite extensive research in this field and numerous data on a variety of materials the physical understanding of DRX still remains very qualitative. Especially the nucleation of DRX lacks a detailed physical understanding and experimental evidence, due to the difficulties of investigating the micromechanisms of dynamic processes during high temperature deformation. The improved techniques of single grain orientation measurements by using EBSD (electron backscatter diffraction) in the SEM allow to measure the local orientation arrangement and thus identify the orientations of individual nuclei. The current report focuses on the examination of the substructure evolution during dynamic recrystallization with particular attention to the role of continuous subgrain rotation or instabilities of the subgrain structure near the grain boundary with regard to nucleation during DRX.

  1. Damage instability and Earthquake nucleation (United States)

    Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.


    Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.

  2. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Klein, William [Boston Univ., MA (United States)


    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structure of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.

  3. Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals (United States)

    Miraglia, Peter Q.; Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert


    Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to , and directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {1 0 0} and {0 0 1} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {1 0 0} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.

  4. Dimers in nucleating vapors (United States)

    Lushnikov, A. A.; Kulmala, M.


    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  5. Critical radius for nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Alexiades, V.; Solomon, A.D.


    The free energy of formation and the critical radius for homogeneous nucleation of a spherical nucleus in supercooled liquid, at given temperature and ambient pressure, are determined, taking fully into account surface area, curvature, and pressure effects. The specific heats and densities of the two phases are allowed to be different and all thermophysical properties are temperature dependent. In the simple case in which classical nucleation theory is valid, the results predict a critical radius of about 40% larger than the classical value, and an activation energy barrier of almost three times larger than the classical value. 8 refs.

  6. Return to nucleate boiling

    International Nuclear Information System (INIS)

    Shumway, R.W.


    This paper presents a collection of TMIN (temperature of return to nucleate boiling) correlations, evaluates them under several conditions, and compares them with a wide range of data. Purpose is to obtain the best one for use in a water reactor safety computer simulator known as TRAC-B. Return to nucleate boiling can occur in a reactor accident at either high or low pressure and flow rates. Most of the correlations yield unrealistic results under some conditions. A new correlation is proposed which overcomes many of the deficiencies

  7. Communication: Thermodynamics of stacking disorder in ice nuclei (United States)

    Quigley, D.


    A simple Ising-like model for the stacking thermodynamics of ice 1 is constructed for nuclei in supercooled water, and combined with classical nucleation theory. For relative stabilities of cubic and hexagonal ice I within the range of experimental estimates, this predicts critical nuclei are stacking disordered at strong sub-cooling, consistent with recent experiments. At higher temperatures nucleation of pure hexagonal ice is recovered. Lattice-switching Monte-Carlo is applied to accurately compute the relative stability of cubic and hexagonal ice for the popular mW model of water. Results demonstrate that this model fails to adequately capture the relative energetics of the two polytypes, leading to stacking disorder at all temperatures.

  8. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.


    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  9. Earthquake nucleation in weak subducted carbonates (United States)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Christopher J.; Behrmann, Jan H.


    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests performed on simulated fault gouges prepared from ocean-floor carbonates and clays, cored during IODP drilling offshore Costa Rica. Clay-rich gouges show internal friction coefficients (that is, the slope of linearized shear stress versus normal stress data) of μint = 0.44 - 0.56, irrespective of temperature and pore-fluid pressure (Pf). By contrast, μint for the carbonate gouge strongly depends on temperature and pore-fluid pressure, with μint decreasing dramatically from 0.84 at room temperature and Pf = 20 MPa to 0.27 at T = 140 °C and Pf = 120 MPa. This effect provides a fundamental mechanism of shear localization and earthquake generation in subduction zones, and makes carbonates likely nucleation sites for plate-boundary earthquakes. Our results imply that rupture nucleation is prompted by a combination of temperature-controlled frictional instability and temperature- and pore-pressure-dependent weakening of calcareous fault gouges.

  10. Slip dislocation and twin nucleation mechanisms in hcp metals

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andriy; Serra, A.


    Roč. 52, č. 1 (2017), s. 533-540 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Defects * Shear stress * Stacking faults Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.599, year: 2016

  11. Deploying OpenStack

    CERN Document Server

    Pepple, Ken


    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  12. Surface Nanobubbles Nucleate Microdroplets


    Zhang , Xuehua; Lhuissier , Henri; Sun , Chao; Lohse , Detlef


    International audience; When a hydrophobic solid is in contact with water, surface nanobubbles often form at the interface. They have a lifetime many orders of magnitude longer than expected. Here, we show that they even withstand a temperature increase to temperatures close to the boiling point of bulk water; i.e., they do not nucleate larger bubbles (" superstability "). On the contrary, when the vapor-liquid contact line passes a nanobubble, a liquid film remains around it, which, after pi...

  13. Overview: Nucleation of clathrate hydrates (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.


    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  14. OpenStack essentials

    CERN Document Server

    Radez, Dan


    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  15. Mastering OpenStack

    CERN Document Server

    Khedher, Omar


    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  16. Surface Nanobubbles Nucleate Microdroplets (United States)

    Zhang, Xuehua; Lhuissier, Henri; Sun, Chao; Lohse, Detlef


    When a hydrophobic solid is in contact with water, surface nanobubbles often form at the interface. They have a lifetime many orders of magnitude longer than expected. Here, we show that they even withstand a temperature increase to temperatures close to the boiling point of bulk water; i.e., they do not nucleate larger bubbles ("superstability"). On the contrary, when the vapor-liquid contact line passes a nanobubble, a liquid film remains around it, which, after pinch-off, results in a microdroplet in which the nanobubbles continue to exist. Finally, the microdroplet evaporates and the nanobubble consequently bursts. Our results support that pinning plays a crucial role for nanobubble stability.

  17. Fault linkage and continental breakup (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia


    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  18. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail:


    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  19. Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and self-induced approaches

    Energy Technology Data Exchange (ETDEWEB)

    Cheze, Caroline


    {sub x}N{sub y} layer leads to the massive nucleation of GaN islands that are free of the substrate lattice constraint and therefore form in the wurtzite (WZ) structure. In the catalyst-assisted approach, Ga strongly reacts with the catalyst Ni particles whose crystal structure and phases are decisive for the NW growth. In the catalyst-free approach, N forms an interfacial layer with Si before the intense nucleation of GaN starts, and the lattice-mismatch to the substrate plays the most important role. Both approaches are viable to produce NWs within the same range of substrate temperatures and V/III ratios, provided the latter is larger than one (N-excess). Both yield monocrystalline GaN NWs of WZ structure, which grow in the Ga-polar direction. However, strong differences are also observed. First, the catalyst-assisted NWs are longer than the catalyst-free ones after growth under identical conditions (duration, substrate temperature and V/III ratio), and the former grow at the rate of the supplied N. In contrast, the selfinduced NWs grow with an intermediate rate between the supplied Ga- and N-rates. Second, the catalyst-assisted approach provides GaN NWs that contain many stacking faults, while the catalyst-free ones are largely free of defects. Third, the photoluminescence (PL) of the catalyst-free NWs is narrower and much more intense than the one of the catalyst-assisted NWs. The seed captures Ga atoms arriving at the NW tip more efficiently than the bare top facet in the catalyst-free approach. (orig.)

  20. Shocking Path of Least Resistance Shines Light on Subsurface by Revealing the Paths of Water and the Presence of Faults: Stacked EM Case Studies over Barite Hills Superfund Site in South Carolina (United States)

    Haggar, K. S.; Nelson, H. R., Jr.; Berent, L. J.


    The Barite Hills/Nevada Gold Fields mines are in Late Proterozoic and early Paleozoic rocks of the gold and iron sulfides rich Carolina slate belt. The mines were active from 1989 to1995. EPA and USGS site investigations in 2003 resulted in the declaration of the waste pit areas as a superfund site. The USGS and private consulting firms have evaluated subsurface water flow paths, faults & other groundwater-related features at this superfund site utilizing 2-D conductivity & 3-D electromagnetic (EM) surveys. The USGS employed conductivity to generate instantaneous 2-D profiles to evaluate shallow groundwater patterns. Porous regolith sediments, contaminated water & mine debris have high conductivity whereas bedrock is identified by its characteristic low conductivity readings. Consulting contractors integrated EM technology, magnetic & shallow well data to generate 3-D images of groundwater flow paths at given depths across the superfund site. In so doing several previously undetected faults were identified. Lighting strike data was integrated with the previously evaluated electrical and EM data to determine whether this form of natural-sourced EM data could complement and supplement the more traditional geophysical data described above. Several lightning attributes derived from 3-D lightning volumes were found to correlate to various features identified in the previous geophysical studies. Specifically, the attributes Apparent Resistivity, Apparent Permittivity, Peak Current & Tidal Gravity provided the deepest structural geological framework & provided insights into rock properties & earth tides. Most significantly, Peak Current showed remarkable coincidence with the preferred groundwater flow map identified by one of the contractors utilizing EM technology. This study demonstrates the utility of robust integrated EM technology applications for projects focused on hydrology, geohazards to dams, levees, and structures, as well as mineral and hydrocarbon exploration.

  1. Theory and Simulation of Nucleation

    NARCIS (Netherlands)

    Kuipers, J.|info:eu-repo/dai/nl/304832049


    Nucleation is the process where a stable nucleus spontaneously emerges in a metastable environment. Examples of nucleation abound, for instance the formation of droplets in undercooled gasses and of crystals in undercooled liquids. The process is thermally activated and is key to understanding

  2. Faults Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  3. A dynamical theory of nucleation (United States)

    Lutsko, James F.


    A dynamical theory of nucleation based on fluctuating hydrodynamics is described. It is developed in detail for the case of diffusion-limited nucleation appropriate to colloids and macro-molecules in solution. By incorporating fluctuations, realistic fluid-transport and realistic free energy models the theory is able to give a unified treatment of both the pre-critical development of fluctuations leading to a critical cluster as well as of post-critical growth. Standard results from classical nucleation theory are shown to follow in the weak noise limit while the generality of the theory allows for many extensions including the description of very high supersaturations (small clusters), multiple order parameters and strong-noise effects to name a few. The theory is applied to homogeneous and heterogeneous nucleation of a model globular protein in a confined volume and it is found that nucleation depends critically on the existence of long-wavelength, small-amplitude density fluctuations.

  4. The magnitude distribution of earthquakes near Southern California faults (United States)

    Page, M.T.; Alderson, D.; Doyle, J.


    We investigate seismicity near faults in the Southern California Earthquake Center Community Fault Model. We search for anomalously large events that might be signs of a characteristic earthquake distribution. We find that seismicity near major fault zones in Southern California is well modeled by a Gutenberg-Richter distribution, with no evidence of characteristic earthquakes within the resolution limits of the modern instrumental catalog. However, the b value of the locally observed magnitude distribution is found to depend on distance to the nearest mapped fault segment, which suggests that earthquakes nucleating near major faults are likely to have larger magnitudes relative to earthquakes nucleating far from major faults. Copyright 2011 by the American Geophysical Union.

  5. Fault finder (United States)

    Bunch, Richard H.


    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  6. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory


    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  7. Review: The nucleation of disorder

    International Nuclear Information System (INIS)

    Cahn, R.W.; Johnson, W.L.


    Four types of phase transformation that involve the conversion of crystalline phases into more disordered forms are reviewed: melting, disordering of superlattices, amorphization by diffusion between crystalline phases, and irradation amorphization. In the review emphasis is placed on evidence for the heterogeneous nucleation of the product phases; in this connection, the role of surfaces, antiphase domain boundaries, dislocations, vacancies, and grain boundaries is specifically discussed. All of these features have been either observed, or hypothesized, to play a role as heterogeneous nucleation sites in one or more of the four transformations. An attempt is made to draw parallels between nucleation mechanisms in the various processes

  8. Metadynamics studies of crystal nucleation (United States)

    Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele


    Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662

  9. Metadynamics studies of crystal nucleation

    Directory of Open Access Journals (Sweden)

    Federico Giberti


    Full Text Available Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation.

  10. On Stack Reconstruction Problem

    Directory of Open Access Journals (Sweden)

    V. D. Аkeliev


    Full Text Available The paper describes analytical investigations that study relation of fuel combustion regimes with concentration values of sulphur anhydride in flue gases and acid dew point. Coefficients of convective heat transfer at internal and external surfaces of stacks have been determined in the paper. The paper reveals the possibility to reconstruct stacks while using gas discharging channel made of composite material on the basis of glass-reinforced plastic which permits to reduce thermo-stressed actions on reinforced concrete and increase volume of released gases due to practically two-fold reduction of gas-dynamic pressure losses along the pipe length.

  11. Laser pulse stacking method (United States)

    Moses, E.I.


    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  12. Influence of annealing process and its associated atomic migrations on the Si/LaAlO{sub 3}(001) nanostructure nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Azzouz, Chiraz Ben; Akremi, Abdelwahab; Chefi, Chaabanne [Unité spectromètre de surfaces, Faculté des Sciences, Jarzouna, 7021 Bizerte (Tunisia); Derivaz, Mickael; Bischoff, Jean-Luc; Florentin, Alban [Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS-UHA, Université de Haute Alsace, 68093 Mulhouse (France); Mortada, Hussein [Research Platform in Nanoscience and Nanotechnologies (RP2N), BSST, Lebanese University, Beyrouth (Lebanon); Zanouni, Mohamed [Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS-UHA, Université de Haute Alsace, 68093 Mulhouse (France); Equipe de Recherche Mécanique Matériaux et Métallurgie (ERMMM), Faculté des Sciences et Techniques Tanger, 614 Tanger (Morocco); Dentel, Didier, E-mail: [Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS-UHA, Université de Haute Alsace, 68093 Mulhouse (France)


    We report here on the atomic migration and associated nucleation mechanisms of Si nanocrystals on LaAlO{sub 3}(001) surface, a high-κ crystalline oxide. Chemical and structural properties were investigated using X-ray photoelectron spectroscopy, X-ray photoelectron diffraction (XPD), reflection high-energy electron diffraction (RHEED), and ex situ with atomic force microscopy. The Si deposition was achieved by molecular beam epitaxy at room temperature. The morphological and chemical properties were followed as a function of isochronal post-growth annealing at increasing temperatures up to 800 °C by 100 °C steps. Up to 500 °C the Si layer remains amorphous without any interdiffusion and interfacial alloy formation. Above 500 °C Si nanocrystals nucleate on the surface by transformation of the amorphous Si layer into Si crystalline islands. Two kinds of annealing treatments were performed (direct current and electronic bombardment), leading to a better crystal quality (without stacking faults or twins) for a direct current heating process. Finally, a preferential epitaxial relationship between LaAlO{sub 3} and the Si islands was deduced by RHEED and confirmed by XPD: Si(001) planes are parallel to the LaAlO{sub 3}(001) surface and rotated by 45° around the [001] growth axis. - Highlights: • We study the atomic migration and Si nanocrystal nucleation on LaAlO{sub 3}(001). • A crystallization process takes place for annealing temperatures above 600 °C. • The direct current annealing leads to superior island crystallographic quality. • Si adopts its bulk relaxed structure with a unique epitaxial relationship on LaAlO{sub 3}.

  13. Bubble nucleation in stout beers (United States)

    Lee, W. T.; McKechnie, J. S.; Devereux, M. G.


    Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines, and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology (widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to the inside of a can or bottle could be a potential replacement for widgets.

  14. po_stack_movie

    DEFF Research Database (Denmark)


    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  15. Learning SaltStack

    CERN Document Server

    Myers, Colton


    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  16. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)



    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  17. Role of nucleation in nanodiamond film growth

    International Nuclear Information System (INIS)

    Lifshitz, Y.; Lee, C.H.; Wu, Y.; Zhang, W.J.; Bello, I.; Lee, S.T.


    Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C 2 dimer growth (CH 4 and H 2 in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH 4 in H 2 ) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C 2 dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite

  18. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich


    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  19. Energy Expenditure of Sport Stacking (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.


    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  20. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro


    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  1. Frictional behaviour of megathrust fault gouges under in-situ subduction zone conditions

    NARCIS (Netherlands)

    den Hartog, S.A.M.


    Subduction zone megathrusts generate the largest earthquakes and tsunamis known. Understanding and modelling “seismogenesis” on such faults requires an understanding of the frictional processes that control nucleation and propagation of seismic slip. However, experimental data on the frictional

  2. A note on the nucleation with multiple steps: Parallel and series nucleation


    Iwamatsu, Masao


    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized and the extension to the more complex nucleation process is su...

  3. Earth's inner core nucleation paradox (United States)

    Huguet, Ludovic; Van Orman, James A.; Hauck, Steven A.; Willard, Matthew A.


    The conventional view of Earth's inner core is that it began to crystallize at Earth's center when the temperature dropped below the melting point of the iron alloy and has grown steadily since that time as the core continued to cool. However, this model neglects the energy barrier to the formation of the first stable crystal nucleus, which is commonly represented in terms of the critical supercooling required to overcome the barrier. Using constraints from experiments, simulations, and theory, we show that spontaneous crystallization in a homogeneous liquid iron alloy at Earth's core pressures requires a critical supercooling of order 1000 K, which is too large to be a plausible mechanism for the origin of Earth's inner core. We consider mechanisms that can lower the nucleation barrier substantially. Each has caveats, yet the inner core exists: this is the nucleation paradox. Heterogeneous nucleation on a solid metallic substrate tends to have a low energy barrier and offers the most straightforward solution to the paradox, but solid metal would probably have to be delivered from the mantle and such events are unlikely to have been common. A delay in nucleation, whether due to a substantial nucleation energy barrier, or late introduction of a low energy substrate, would lead to an initial phase of rapid inner core growth from a supercooled state. Such rapid growth may lead to distinctive crystallization texturing that might be observable seismically. It would also generate a spike in chemical and thermal buoyancy that could affect the geomagnetic field significantly. Solid metal introduced to Earth's center before it reached saturation could also provide a nucleation substrate, if large enough to escape complete dissolution. Inner core growth, in this case, could begin earlier and start more slowly than standard thermal models predict.

  4. Stack Caching Using Split Data Caches

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Schoeberl, Martin


    In most embedded and general purpose architectures, stack data and non-stack data is cached together, meaning that writing to or loading from the stack may expel non-stack data from the data cache. Manipulation of the stack has a different memory access pattern than that of non-stack data, showing...... higher temporal and spatial locality. We propose caching stack and non-stack data separately and develop four different stack caches that allow this separation without requiring compiler support. These are the simple, window, and prefilling with and without tag stack caches. The performance of the stack...

  5. Nucleation and cavitation in parahydrogen

    International Nuclear Information System (INIS)

    Pi, Martí; Barranco, Manuel; Navarro, Jesús; Ancilotto, Francesco


    Highlights: ► We have constructed a density functional (DF) for parahydrogen between 14 and 32 K. ► The experimental equation of state and the surface tension are well reproduced. ► We have investigated nucleation and cavitations processes in the metastable phase. ► We have obtained the electron bubble explosion within the capillary model. - Abstract: We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model.

  6. Nucleation in Sheared Granular Matter (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias


    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  7. Nucleation in Sheared Granular Matter. (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L; Schröter, Matthias


    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  8. Fault diagnosis (United States)

    Abbott, Kathy


    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  9. Crystal nucleation in lithium borate glass (United States)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.


    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  10. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham


    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  11. Passive stack ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.; Parkins, L.; Shaw, P.; Watkins, R. [Databuild, Birmingham (United Kingdom)


    The adequate ventilation of houses is essential for both the occupants and the building fabric. As air-tightness standards increase, background infiltration levels decrease and extra ventilation has to be designed into the building. Passive stack ventilation has many advantages - particularly when employed in low cost housing schemes -but it is essential that it performs satisfactorily. This paper give the results from monitoring two passive stack ventilation schemes. One scheme was a retrofit into refurbished local authority houses in which a package of energy efficiency measures had been taken and condensation had been a problem. The other series of tests were conducted on a new installation in a Housing Association development. Nine houses were monitored each of which had at least two passive vents. The results show air flow rates by the passive ducts equivalent to approximately 1 room air change per hour. The air flow in the ducts was influenced by both, internal to external temperature difference and wind speed and direction. (author)

  12. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A


    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  13. Microstructure changes in the low stacking fault energy steel

    International Nuclear Information System (INIS)

    Rodak, K.; Kuc, D.; Niewielski, G.; Hetmanczyk, M.


    A Cr-Ni austenitic steel (type 304) was investigated using TEM. It is shown that some structural parameters (dislocations density within the subgrains and the subgrains size) change with temperature and strain rate after hot temperature deformation. The subgrain microstructure was characterized quantitatively for different characteristics. (author)

  14. Stacking faults and microstructural parameters in non-mulberry silk ...

    Indian Academy of Sciences (India)

    order method is a reasonably good approach to obtain microstructural parameters [13]. Keijser et al [14] have also suggested a single-order method employing Voigt function and integral breadth of reflections. For silk fibres and for most of the other ...

  15. Investigations on nucleation thermodynamical parameters of ...

    Indian Academy of Sciences (India)


    ation thermodynamical parameters like interfacial energy between the solid Nd123 and its flux BaO–CuO, metastable zone-width, Gibbs free energy, critical energy barrier for nucleation and critical nucleation radius have been calculated from the knowledge of solubility data and by applying the classical nucleation theory.

  16. Nucleation speed limit on remote fluid induced earthquakes (United States)

    Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca


    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  17. Nucleation speed limit on remote fluid-induced earthquakes (United States)

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige


    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448

  18. Instant BlueStacks

    CERN Document Server

    Judge, Gary


    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  19. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng


    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  20. Ice nucleation activity of polysaccharides (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich


    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  1. Assessing Elementary Algebra with STACK (United States)

    Sangwin, Christopher J.


    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system,, which uses the CAS…

  2. HPC Software Stack Testing Framework

    Energy Technology Data Exchange (ETDEWEB)


    The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).

  3. How Fault Geometry Affects Dynamic Rupture Models of Earthquakes in San Gorgonio Pass, CA (United States)

    Tarnowski, J. M.; Oglesby, D. D.; Cooke, M. L.; Kyriakopoulos, C.


    We use 3D dynamic finite element models to investigate potential rupture paths of earthquakes propagating along faults in the western San Gorgonio Pass (SGP) region of California. The SGP is a structurally complex area along the southern California portion of the San Andreas fault system (SAF). It has long been suspected that this structural knot, which consists of the intersection of various non-planar strike-slip and thrust fault segments, may inhibit earthquake rupture propagation between the San Bernardino and Banning strands of the SAF. The above condition may limit the size of potential earthquakes in the region. Our focus is on the San Bernardino strand of the SAF and the San Gorgonio Pass Fault zone, where the fault connectivity is not well constrained. We use the finite element code FaultMod (Barall, 2009) to investigate how fault connectivity, nucleation location, and initial stresses influence rupture propagation and ground motion, including the likelihood of through-going rupture in this region. Preliminary models indicate that earthquakes that nucleate on the San Bernardino strand and propagate southward do not easily transfer rupture to the thrust faults of the San Gorgonio Pass fault zone. However, under certain assumptions, earthquakes that nucleate along the San Gorgonio Pass fault zone can transfer rupture to the San Bernardino strand.

  4. Qademah Fault 3D Survey

    KAUST Repository

    Hanafy, Sherif M.


    Objective: Collect 3D seismic data at Qademah Fault location to 1. 3D traveltime tomography 2. 3D surface wave migration 3. 3D phase velocity 4. Possible reflection processing Acquisition Date: 26 – 28 September 2014 Acquisition Team: Sherif, Kai, Mrinal, Bowen, Ahmed Acquisition Layout: We used 288 receiver arranged in 12 parallel lines, each line has 24 receiver. Inline offset is 5 m and crossline offset is 10 m. One shot is fired at each receiver location. We use the 40 kgm weight drop as seismic source, with 8 to 15 stacks at each shot location.

  5. Thermodynamic and Dynamic Aspects of Ice Nucleation (United States)

    Barahona, Donifan


    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  6. A note on the nucleation with multiple steps: parallel and series nucleation. (United States)

    Iwamatsu, Masao


    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized, and the extension to the more complex nucleation process is suggested. © 2012 American Institute of Physics

  7. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.


    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  8. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments (United States)

    Mclaskey, G.


    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  9. Competitive Growth of - -Crystals in -Nucleated Isotactic Polypropylene under Shear Flow

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Mao, Y; Li, Z; Hsiao, B


    and {beta}-nucleating agent changed the stacking manner of molecular chains, so that the long period of sheared, {beta}-nucleated iPP was comparable to that of quiescently crystallized iPP.

  10. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.


    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  11. Fracture Statistics: Universality vs. Nucleation (United States)

    Shekhawat, Ashivni


    We reexamine several common assumptions about fracture strength, utilizing large-scale simulations of a fuse network model and applying both renormalization-group and nucleation theory methods. Statistical distributions of fracture strengths are believed to be universal and material independent. The universal Weibull and Gumbel distributions emerge as a consequence of the ``weakest-link hypothesis'' and have been studied in the classical theory of extreme value statistics. These distributions are also the fixed points of a renormalization group (RG) flow. However, the engineering community often ignores the Gumbel distribution and uses the Weibull form almost exclusively to fit experimental data. Further, such fits are often extrapolated beyond the available data to estimate the probability of rare events in a variety of applications ranging from structural reliability to insurance pricing. Our recent studies of the random fuse network model raises doubts about most of these practices. We find that the emergent distribution of fracture strengths is the Gumbel distribution. However, the extremely slow convergence to the universal Gumbel form renders it unusable at least in this case. On the other hand, we show that a non-universal distribution derived by using a Griffiths type nucleation theory (due to Duxbury et al.) converges rapidly even for moderate system sizes. We find that while extrapolating the RG based universal Gumbel distribution is perilous and gives wildly incorrect predictions, the nucleation based non-universal results can be extrapolated with confidence. It is entertaining that fracture provides wonderful examples of the statistical mechanics tools developed to study both continuous as well as abrupt phase transitions.

  12. PieceStack: Toward Better Understanding of Stacked Graphs. (United States)

    Wu, Tongshuang; Wu, Yingcai; Shi, Conglei; Qu, Huamin; Cui, Weiwei


    Stacked graphs have been widely adopted in various fields, because they are capable of hierarchically visualizing a set of temporal sequences as well as their aggregation. However, because of visual illusion issues, connections between overly-detailed individual layers and overly-generalized aggregation are intercepted. Consequently, information in this area has yet to be fully excavated. Thus, we present PieceStack in this paper, to reveal the relevance of stacked graphs in understanding intrinsic details of their displayed shapes. This new visual analytic design interprets the ways through which aggregations are generated with individual layers by interactively splitting and re-constructing the stacked graphs. A clustering algorithm is designed to partition stacked graphs into sub-aggregated pieces based on trend similarities of layers. We then visualize the pieces with augmented encoding to help analysts decompose and explore the graphs with respect to their interests. Case studies and a user study are conducted to demonstrate the usefulness of our technique in understanding the formation of stacked graphs.

  13. Crystal nucleation of colloidal hard dumbbells. (United States)

    Ni, Ran; Dijkstra, Marjolein


    Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.

  14. Study on nucleation kinetics of lysozyme crystallization (United States)

    Lin, Chen; Zhang, Yang; Liu, Jing J.; Wang, Xue Z.


    The nucleation kinetics of hen egg-white lysozyme crystallization was investigated using a hot stage cooling crystallizer and a microscope to monitor the solution crystallization process in real time. Images of crystals were continuously recorded under varied precipitant and protein concentrations. The nucleation rate was found to be higher at higher precipitant concentration, and increase monotonically with protein concentration if the precipitant concentration was held constant. Attempt was made to interpret the experimental data using classical nucleation theory. It was found that the model predictions are lower than the experimental values at low supersaturations but agree well with experimental data at high supersaturations. The trends in the experimental data suggest that two nucleation mechanisms might co-exist: heterogeneous nucleation seems to be the dominant at low supersaturation while at higher supersaturation homogeneous nucleation seems to play the major role.

  15. Effects of clustered nucleation on recrystallization

    DEFF Research Database (Denmark)

    Storm, Søren; Juul Jensen, Dorte


    Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although...... the experimentally observed clustering is not very strong, it changes the kinetics and the recrystallized microstructural morphology plus leads to a recrystallized grain size distribution, which is significantly broadened compared to that of random nucleation simulations. (C) 2009 Published by Elsevier Ltd...

  16. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato


    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  17. Structuring effects in binary nucleation : Molecular dynamics simulatons and coarse-grained nucleation theory

    NARCIS (Netherlands)

    Braun, S.; Kraska, T.; Kalikmanov, V.I.


    Binary clusters formed by vapor-liquid nucleation are frequently nonhomogeneous objects in which components are not well mixed. The structure of a cluster plays an important role in nucleation and cluster growth. We demonstrate structuring effects by studying high-pressure nucleation and cluster

  18. New trends in the nucleation research (United States)

    Anisimov, M. P.; Hopke, P. K.


    During the last half of century the most of efforts have been directed towards small molecule system modeling using intermolecular potentials. Summarizing the nucleation theory, it can be concluded that the nowadays theory is far from complete. The vapor-gas nucleation theory can produce values that deviate from the experimental results by several orders of magnitude currently. Experiments on the vapor-gas nucleation rate measurements using different devices show significant inconsistencies in the measured rates as well. Theoretical results generally are quite reasonable for sufficiently low vapor nucleation rates where the capillary approximation is applicable. In the present research the advantages and current problems of the vapor-gas nucleation experiments are discussed briefly and a view of the future studies is presented. Using the brake points of the first derivative for the nucleation rate surface as markers of the critical embryos phase change is fresh idea to show the gas-pressure effect for the nucleating vapor-gas systems. To test the accuracy of experimental techniques, it is important to have a standard system that can be measured over a range of nucleation conditions. Several results illustrate that high-pressure techniques are needed to study multi-channel nucleation. In practical applications, parametric theories can be used for the systems of interest. However, experimental measurements are still the best source of information on nucleation rates. Experiments are labor intensive and costly, and thus, it is useful to extend the value of limited experimental measurements to a broader range of nucleation conditions. Only limited experimental data one needs for use in normalizing the slopes of the linearized nucleation rate surfaces. The nucleation rate surface is described in terms of steady-state nucleation rates. It is supposed that several new measuring systems, such as High Pressure Flow Diffusion Chamber for pressure limit up to 150 bar will be

  19. Machine Fault Signature Analysis

    Directory of Open Access Journals (Sweden)

    Pratesh Jayaswal


    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  20. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.


    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  1. Systematic coarse-graining in nucleation theory

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.


    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem.

  2. Heterogeneous nucleation in hypermonotectic aluminum alloys (United States)

    Köhler, M.; Ratke, L.; Kaban, I.; Hoyer, W.


    Simple casting experiments were set up to solve the question, if heterogeneous nucleation of the liquid-liquid decomposition in monotectic systems is possible. Al-Pb alloys with different inoculants were solidified, and the resulting microstructure was analysed by SEM and X-ray microtomography. Pronounced changes in the distribution of the lead precipitations indicate that it is possible to trigger the nucleation.

  3. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun


    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  4. Crystal nucleation of colloidal hard dumbbells

    NARCIS (Netherlands)

    Ni, R.; Dijkstra, M.


    Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the

  5. Investigations on nucleation thermodynamical parameters of ...

    Indian Academy of Sciences (India)

    Investigations on nucleation thermodynamical parameters are very essential for the successful growth of good quality single crystals from high temperature solution. A theoretical estimation of the nucleation thermodynamical parameters like interfacial energy between the solid Nd123 and its flux BaO–CuO, metastable ...

  6. Fatigue crack nucleation in metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, P. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering; Laird, C. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science and Engineering; Ramamurty, U. [Nanyang Technological Univ. (Singapore). School of Mechanical and Production Engineering; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Campbell, G.H.; King, W.E. [Lawrence Livermore National Lab., CA (United States); Mitchell, T.E. [Los Alamos National Lab., NM (United States). Center for Materials Science


    The process of fatigue crack nucleation in metallic materials is reviewed placing emphasis in results derived for pure FCC metals with wavy slip behavior. The relationship between Persistent Slip Bands (PSB`s) and crack initiation will be examined for both single crystals and polycrystals, including the conditions for inter- and transgranular crack nucleation and their connection to type of loading, crystallography and slip geometry. The latter has been found to be an important parameter in the nucleation of intergranular cracks in polycrystals subjected to high strain fatigue, whereby primary slip bands with long slip lengths impinging on a grain boundary produce intergranular crack nucleation under the right conditions. Recent results related to intergranular crack nucleation in copper bicrystals and crack nucleation in Cu/Sapphire interfaces indicate that this mechanism controls crack nucleation in those simpler systems as well. Furthermore, it is found that under multiple slip conditions the crack nucleation location is controlled by the presence of local single slip conditions and long slip lengths for a particular Burgers vector that does not have to be in the primary slip system.

  7. Hydraulic properties of a low permeable rupture zone on the Yingxiu-Beichuan fault activated during the Wenchuan earthquake, China : Implications for fluid conduction, fault sealing and dynamic weakening mechanisms

    NARCIS (Netherlands)

    Duan, Qingbao; Yang, Xiaosong; Chen, J.


    Fluid transport properties of fault rocks are crucial parameters that affect earthquake nucleation and rupture propagation. In this study, we examined the internal structure, mineral composition and fluid transport properties of fault rocks collected from two shallow boreholes penetrating a granitic

  8. Using rheometry to determine nucleation density in a colored system containing a nucleating agent

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhe; Steenbakkers, Rudi J.A.; Peters, Gerrit W.M. [Eindhoven University of Technology, Materials Technology, Department of Mechanical Engineering, Eindhoven (Netherlands); Giboz, Julien [Universite de Savoie, LMOPS, CNRS UMR5041, Le Bourget-du-Lac (France)


    A new suspension-based rheological method was applied to experimentally study the crystallization of a nucleating agent (NA) filled isotactic polypropylene. This method allows for determination of point nucleation densities where other methods fail. For example, optical microscopy can fail because nucleation densities become too high to be counted (materials with effective NA) or crystallites are not easily visible (colored materials), while differential scanning calorimetry does not allow the effect of flow to be studied. Both quiescent and mild-shear-induced crystallization were investigated. The results show that the addition of a nucleating agent increases the nucleation density by six decades for quiescent crystallization. The effect of shear on crystallization in the presence of a nucleating agent was assessed, and it is demonstrated that, at least for this system, the effect of shear is much smaller than the effect of the nucleating agent. (orig.)

  9. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.


    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  10. Nucleation and growth kinetics of palladium nanoparticles on thin ...

    African Journals Online (AJOL)

    1073 K and deposition time of 1000 s. The nucleation kinetics is interpreted according to the theory of random nucleation. The general scheme is consisting of three stages namely, nucleation, growth and coalescence. The saturation density of ...

  11. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore...

  12. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  13. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred


    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...... segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations...

  14. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin


    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  15. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...... in a standard setup and a synthesis method for fault detectors is given. Further, fault detection problems with both parametric faults and faults described by external input signals are also shortly considered....

  16. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.


    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  17. Nonclassical nucleation pathways in protein crystallization (United States)

    Zhang, Fajun


    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  18. Pressurized electrolysis stack with thermal expansion capability (United States)

    Bourgeois, Richard Scott


    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  19. The Direct FuelCell™ stack engineering (United States)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  20. Basement Fault Reactivation by Fluid Injection into Sedimentary Reservoirs (United States)

    Peter, Eichhubl; Fan, Zhiqiang; Zhu, Cheng


    Many suspected injection-induced earthquakes occur in crystalline basement rather than in the overlying sedimentary injection reservoir. To address why earthquakes nucleate in the basement rather than the injection layer we investigate the relationship between pore pressure diffusion, rock matrix deformation, and induced fault reactivation through 3D fully coupled poroelastic finite element models. These models simulate the temporal and spatial perturbation of pore pressure and solid stresses within a basement fault that extends into overlying sedimentary layers and that is conductive for flow along the fault but a barrier for flow across. We compare the effects of direct pore pressure communication and indirect poroelastic stress transfer from the injection reservoir to the fault on increasing the Coulomb failure stress that could reactivate the basement fault for normal, reverse, and strike-slip faulting stress regimes. Our numerical results demonstrate that volumetric expansion of the reservoir causes a bending of the fault near the injector and induces shear tractions along the downdip direction of the fault in the basement. These induced shear tractions act to increase the Coulomb failure stress for a normal faulting stress regime, and decrease the Coulomb failure stress for a reverse faulting regime. For a strike-slip faulting stress regime, the induced shear tractions increase the Coulomb failure stress both in the reservoir and basement. The induced normal traction on the fault reduces the Coulomb failure stress in all three tectonic regimes, but is larger in the reservoir than in the basement due to the more pronounced poroelastic effect in the reservoir. As a result, strike-slip stress regimes favor fault reactivation in the basement. Whereas the magnitude of the direct pore pressure increase exceeds the magnitude of induced poroelastic stress change, the poroelastic stress change increases the Coulomb failure stress in the basement fault for the normal

  1. Damage nucleation in Si during ion irradiation

    International Nuclear Information System (INIS)

    Holland, O.W.; Fathy, D.; Narayan, J.


    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed

  2. Viscosity of interfacial water regulates ice nucleation

    International Nuclear Information System (INIS)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun; Song, Yanlin


    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J 0 and Γ, in the context of classical nucleation theory. From the extracted J 0 and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces

  3. Stack semantics of type theory

    DEFF Research Database (Denmark)

    Coquand, Thierry; Mannaa, Bassel; Ruch, Fabian


    We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe...

  4. Multilayer Piezoelectric Stack Actuator Characterization (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph


    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  5. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  6. Adding large EM stack support

    KAUST Repository

    Holst, Glendon


    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  7. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy) (United States)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio


    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  8. Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5

    KAUST Repository

    Li, Haoyuan


    The preparation of two-dimensional covalent organic frameworks (2D COFs) with large crystalline domains and controlled morphology is necessary for realizing the full potential of their atomically precise structures and uniform, tailorable porosity. Currently 2D COF syntheses are developed empirically, and most materials are isolated as insoluble and unprocessable powders with typical crystalline domain sizes smaller than 50 nm. Little is known about their nucleation and growth processes, which involve a combination of covalent bond formation, degenerate exchange, and non-covalent stacking processes. A deeper understanding of the chemical processes that lead to COF polymerization and crystallization is key to achieving improved materials quality and control. Here, we report a kinetic Monte Carlo (KMC) model that describes the formation of a prototypical boronate-ester linked 2D COF known as COF-5 from its 2,3,6,7,10,11-hexahydroxytriphenylene and 1,4-phenylene bis(boronic acid) monomers in solution. The key rate parameters for the KMC model were derived from experimental measurements when possible and complemented with reaction pathway analyses, molecular dynamics simulations, and binding free-energy calculations. The essential features of experimentally measured COF-5 growth kinetics are reproduced well by the KMC simulations. In particular, the simulations successfully captured a nucleation process followed by a subsequent growth process. The nucleating species are found to be multi-layer structures that form through multiple pathways. During the growth of COF-5, extensions in the lateral (in-plane) and vertical (stacking) directions are both seen to be linear with respect to time and are dominated by monomer addition and oligomer association, respectively. Finally, we show that the experimental observations of increased average crystallite size with the addition of water are modeled accurately by the simulations. These results will inform the rational development

  9. Tectonic origin for polygonal normal faults in pelagic limestones of the Cingoli anticline hinge (Italy) (United States)

    Petracchini, Lorenzo; Antonellini, Marco; Billi, Andrea; Scrocca, Davide


    Polygonal faults are a relatively-recent new class of normal faults which are thought to be formed during early burial and diagenesis as a consequence of heterogeneous lateral volume changes. Polygonal faults are non-systematically oriented and, in map view, they form rhombus-, pentagon-, or hexagon-like pattern, suggesting a non-tectonic origin. Furthermore, polygonal faults are layer bound and they are restricted to particular stratigraphic level. Predicting the pattern of polygonal normal fault results crucial for geofluid exploration and exploitation, but, despite the large number of studies, the origin of these faults remains still largely controversial. One of the main reason for this uncertainty is that they are poorly known in outcrops. Polygonal faults have been identified in few localities within Mesozoic chalk (United Kingdom, France, and Egypt), in Paleogene claystone (Belgium), and in the Cretaceous Khoman Formation (Egypt) where polygonal faults have been observed in an extensive exposure of chalk. In this study, we describe an outcrop in the Cingoli anticline hinge, which is located at external front of the northern Apennines fold-thrust belt (Italy), showing normal faults that we interpreted as syn-tectonically (syn-thrusting) polygonal faults. The outcrop shows three vertical exposures of sub-horizontal fine-grained marly limestones with chert interlayers of Albian-Turonian age. Intraformational short normal faults affect the carbonate and chert beds. These faults are poorly-systematic and they cut through the carbonate beds whereas usually stop against the chert layers. The fault surfaces are often characterized by slickolites, clayey residue, and micro-breccias including clasts of chert and carbonate. Fault displacement is partly or largely accommodated by pressure solution. At the fault tips, the displacement is generally transferred, via a lateral step, to an adjacent similar fault segment. The aim of our study is to understand the nucleation

  10. Nucleation versus instability race in strained films (United States)

    Liu, Kailang; Berbezier, Isabelle; David, Thomas; Favre, Luc; Ronda, Antoine; Abbarchi, Marco; Voorhees, Peter; Aqua, Jean-Noël


    Under the generic term "Stranski-Krastanov" are grouped two different growth mechanisms of SiGe quantum dots. They result from the self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. While these regimes are well known, we elucidate here the origin of the transition between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the time scales for ATG instability development and three-dimensional (3D) nucleation onset, we demonstrate that the transition between these two regimes is simply explained by the crossover between their divergent evolutions. Nucleation exhibits a strong exponential deviation at low strain while ATG behaves only algebraically. The associated time scale varies with exp(1 /x4) for nucleation, while it only behaves as 1 /x8 for the ATG instability. Consequently, at high (low) strain, nucleation (instability) occurs faster and inhibits the alternate evolution. It is then this different kinetic evolution which explains the transition from one regime to the other. Such a kinetic view of the transition between these two 3D growth regimes was not provided before. The crossover between nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50% in the experimental conditions used here. Varying the experimental conditions and/or the system parameters does not allow us to suppress the transition. This means that the SiGe quantum dots always grow via ATG instability at low strain and nucleation at high strain. This result is important for the self-organization of quantum dots.

  11. Homogeneous nucleation with magic numbers: aluminum. (United States)

    Girshick, Steven L; Agarwal, Pulkit; Truhlar, Donald G


    Homogeneous nucleation of clusters that exhibit magic numbers is studied numerically, using as an example aluminum at 2000 K, based on recent calculations of free energies [Li et al., J. Phys. Chem. C 111, 16227 (2007)] and condensation rate constants [Li and Truhlar, J. Phys. Chem. C 112, 11109 (2008)] that provide a database for Al(i) up to i=60. The nucleation behavior for saturation ratios greater than about 4.5 is found to be dominated by a peak in the free energy change associated with the reaction iAl-->Al(i) at i=55, making it the critical size over a wide range of saturation ratios. Calculated steady-state nucleation rates are many orders of magnitude lower than predicted by classical nucleation theory (CNT). The onset of nucleation is predicted to occur at a saturation ratio of about 13.3, compared to about 5.1 in CNT, while for saturation ratios greater than about 25 the abundance of magic-numbered clusters becomes high enough to invalidate the assumption that cluster growth occurs solely by monomer addition. Transient nucleation is also predicted to be substantially different than predicted by CNT, with a much longer time required to reach steady state: about 10(-4) s at a saturation ratio of 20, compared to about 10(-7) s from CNT. Magic numbers are seen to play an important role in transient nucleation, as the nucleation currents for clusters of adjacent sizes become equal to each other in temporally successive groups, where the largest cluster in each group is the magic-numbered one.

  12. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.


    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  13. Development and durability of SOFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Beeaff, D.; Dinesen, A.R.; Mikkelsen, Lars; Nielsen, Karsten A.; Solvang, M.; Hendriksen, Peter V.


    The present project is a part of the Danish SOFC programme, which has the overall aim of establishing a Danish production of SOFC - cells, stacks and systems for economical and environmentally friendly power production. The aim of the present project was to develop and demonstrate (on a small scale, few cells, few thousand hours) a durable, thermally cyclable stack with high performance at 750 deg. C. Good progress towards this target has been made and demonstrated at the level of stack-elements (one cell between two interconnects) or small stacks (3 5 cells). Three different stacks or stack-elements have been operated for periods exceeding 3000 hr. The work has covered development of stack-components (seals, interconnects, coatings, contact layers), establishment of procedures for stack assembly and initiation, and detailed electrical characterisation with the aims of identifying performance limiting factors as well as long term durability. Further, post test investigations have been carried out to identify possible degradation mechanisms. (BA)

  14. Fluorescence Studies of Lysozyme Nucleation (United States)

    Pusey, Marc L.; Smith, Lori


    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  15. Foreshocks and Aftershocks Detected from Stick-slip Events on a 3 m Biaxial Apparatus and their Relationship to Quasistatic Nucleation and Wear Processes (United States)

    Wu, S.; Mclaskey, G.


    We investigate foreshocks and aftershocks of dynamic stick-slip events generated on a newly constructed 3 m biaxial friction apparatus at Cornell University (attached figure). In a typical experiment, two rectangular granite blocks are squeezed together under 4 or 7 MPa of normal pressure ( 4 or 7 million N on a 1 m2 fault surface), and then shear stress is increased until the fault slips 10 - 400 microns in a dynamic rupture event similar to a M -2 to M -3 earthquake. Some ruptures nucleate near the north end of the fault, where the shear force is applied, other ruptures nucleate 2 m from the north end of the fault. The samples are instrumented with 16 piezoelectric sensors, 16 eddy current sensors, and 8 strain gage rosettes, evenly placed along the fault to measure vertical ground motion, local slip, and local stress, respectively. We studied sequences of tens of slip events and identified a total of 194 foreshocks and 66 aftershocks located within 6 s time windows around the stick-slip events and analyzed their timing and locations relative to the quasistatic nucleation process. We found that the locations of the foreshocks and aftershocks were distributed all along the length of the fault, with the majority located at the ends of the fault where local normal and shear stress is highest (caused by both edge effects and the finite stiffness of the steel frame surrounding the granite blocks). We also opened the laboratory fault and inspected the fault surface and found increased wear at the sample ends. To explore the foreshocks' and aftershocks' relationship to the nucleation and afterslip, we compared the occurrence of foreshocks to the local slip rate on the laboratory fault closest to each foreshock in space and time. We found that that majority of foreshocks were generated from local slip rates between 1 and 100 microns/s, though we were not able to resolve slip rate lower than about 1 micron/s. Our experiments provide insight into how foreshocks and

  16. Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for Fault Diagnosis in Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Xiaojie Guo


    Full Text Available Fault diagnosis in rotating machinery is significant to avoid serious accidents; thus, an accurate and timely diagnosis method is necessary. With the breakthrough in deep learning algorithm, some intelligent methods, such as deep belief network (DBN and deep convolution neural network (DCNN, have been developed with satisfactory performances to conduct machinery fault diagnosis. However, only a few of these methods consider properly dealing with noises that exist in practical situations and the denoising methods are in need of extensive professional experiences. Accordingly, rethinking the fault diagnosis method based on deep architectures is essential. Hence, this study proposes an automatic denoising and feature extraction method that inherently considers spatial and temporal correlations. In this study, an integrated deep fault recognizer model based on the stacked denoising autoencoder (SDAE is applied to both denoise random noises in the raw signals and represent fault features in fault pattern diagnosis for both bearing rolling fault and gearbox fault, and trained in a greedy layer-wise fashion. Finally, the experimental validation demonstrates that the proposed method has better diagnosis accuracy than DBN, particularly in the existing situation of noises with superiority of approximately 7% in fault diagnosis accuracy.

  17. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.


    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  18. Geophysical Imaging of Fault Structures Over the Qadimah Fault, Saudi Arabia

    KAUST Repository

    AlTawash, Feras


    The purpose of this study is to use geophysical imaging methods to identify the conjectured location of the ‘Qadimah fault’ near the ‘King Abdullah Economic City’, Saudi Arabia. Towards this goal, 2-D resistivity and seismic surveys were conducted at two different locations, site 1 and site 2, along the proposed trace of the ‘Qadimah fault’. Three processing techniques were used to validate the fault (i) 2-D travel time tomography, (ii) resistivity imaging, and (iii) reflection trim stacking. The refraction traveltime tomograms at site 1 and site 2 both show low-velocity zones (LVZ’s) next to the conjectured fault trace. These LVZ’s are interpreted as colluvial wedges that are often observed on the downthrown side of normal faults. The resistivity tomograms are consistent with this interpretation in that there is a significant change in resistivity values along the conjectured fault trace. Processing the reflection data did not clearly reveal the existence of a fault, and is partly due to the sub-optimal design of the reflection experiment. Overall, the results of this study strongly, but not definitively, suggest the existence of the Qadimah fault in the ‘King Abdullah Economic City’ region of Saudi Arabia.

  19. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.


    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  20. Micromechanisms of Twin Nucleation in TiAl: Effects of Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, A.; Yoo, M.H.


    The so-called radiation-induced ductility (RID) reported in neutron-irradiated 47at%Al alloys is attributed to the formation of effective twin embryos in the presence of interstitial-type Frank loops in {gamma}-TiAl and the subsequent nucleation and growth of microtwins during post-irradiation tensile deformation. The stability of large faulted Frank loops is explained in terms of the repulsive interaction between Shockley and Frank partials. Interaction of only six ordinary slip dislocations with a Frank loop can facilitate a pole mechanism for twin formation to work. The relative ease of heterogeneous twin nucleation is the reason for the RID and the lack of changes in yield strength and work hardening.

  1. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...

  2. Lightweight Stacks of Direct Methanol Fuel Cells (United States)

    Narayanan, Sekharipuram; Valdez, Thomas


    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  3. Faults architecture and growth in clay-limestone alternation. Examples in the S-E Basin alternations (France) and numerical modeling

    International Nuclear Information System (INIS)

    Roche, Vincent


    The following work has been carried out in the framework of the studies conducted by IRSN in support of its safety evaluation of the geological disposal programme of high and intermediate level, long-lived radioactive waste. Such a disposal is planned to be hosted by the Callovian-Oxfordian indurate clay formation between two limestone formations in eastern Paris basin, France. Hypothetical faults may cross-cut this layered section, decreasing the clay containment ability by creating preferential pathways for radioactive solute towards limestones. This study aims at characterising the fault architecture and the normal fault growth in clay/limestone layered sections. Structural analysis and displacement profiles have been carried out in normal faults crossing several decimetres to metre thick sedimentary alternations in the South-Eastern Basin (France) and petrophysical properties have been determined for each layer. The studied faults are simple fault planes or complex fault zones showing are significantly controlled by the layering. The analysis of the fault characteristics and the results obtained on numerical models enlighten several processes such as fault nucleation, fault restriction, and fault growth through layered section. Some studied faults nucleated in the limestone layers, without using pre-existing fractures such as joints, and according to our numerical analysis, a strong stiffness, a low strength contrast between the limestone and the clay layer, and/or s a greater thickness of the clay layer are conditions which favour nucleation of faults in limestone. The range of mechanical properties leading to the fault nucleation in one layer type or another was investigated using a 3D modelling approach. After its nucleation, the fault propagates within a homogeneous medium with a constant displacement gradient until its vertical propagation is stopped by a restrictor. The evidenced restrictors are limestone-clay interfaces or faults in clays, sub

  4. Dynamic rupture activation of backthrust fault branching (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Ben-Zion, Yehuda; Ampuero, Jean-Paul


    We perform dynamic rupture simulations to investigate the possible reactivation of backthrust branches triggered by ruptures along a main thrust fault. Simulations with slip-weakening fault friction and uniform initial stress show that fast propagation speed or long propagation distance of the main rupture promotes reactivation of backthrust over a range of branch angles. The latter condition may occur separately from the former if rupture speed is limited by an increasing slip-weakening distance towards the junction direction. The results suggest a trade-off between the amplitude and duration of the dynamic stress near the main rupture front for backthrust reactivation. Termination of the main rupture by a barrier can provide enhanced loading amplitude and duration along a backthrust rooted near the barrier, facilitating its reactivation especially with a high frictional resistance. The free surface and depth-dependent initial stress can have several additional effects. The sign of the triggered motion along the backthrust can be reversed from thrust to normal if a deeply nucleated main rupture breaks the free surface, while it is preserved as thrust if the main rupture is terminated by a barrier at depth. The numerical results are discussed in relation to several recent megathrust earthquakes in Sumatra, Chile, and Japan, and related topics such as branch feedbacks to the main fault. The dynamic view on backthrust fault branching provided by the study fills a gap not covered by quasi-static models or observations. A specific examined case of antithetic fault branching may be useful for indicating a barrier-like behavior along the main fault.

  5. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible to separate the loss...... in the hydrogen fuel gas supplied to the stack. EIS was used to examine the long-term behavior and monitor the evolution of the impedance of each of the repeating units and the whole stack. The observed impedance was analyzed in detail for one of the repeating units and the whole stack and the losses reported...

  6. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    Energy Technology Data Exchange (ETDEWEB)

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.


    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

  7. Modelling the stochastic behaviour of primary nucleation. (United States)

    Maggioni, Giovanni Maria; Mazzotti, Marco


    We study the stochastic nature of primary nucleation and how it manifests itself in a crystallisation process at different scales and under different operating conditions. Such characteristics of nucleation are evident in many experiments where detection times of crystals are not identical, despite identical experimental conditions, but instead are distributed around an average value. While abundant experimental evidence has been reported in the literature, a clear theoretical understanding and an appropriate modelling of this feature is still missing. In this contribution, we present two models describing a batch cooling crystallisation, where the interplay between stochastic nucleation and deterministic crystal growth is described differently in each. The nucleation and growth rates of the two models are estimated by a comprehensive set of measurements of paracetamol crystallisation from aqueous solution in a 1 mL vessel [Kadam et al., Chemical Engineering Science, 2012, 72, 10-19]. Both models are applied to the cooling crystallisation process above under different operating conditions, i.e. different volumes, initial concentrations, cooling rates. The advantages and disadvantages of the two approaches are illustrated and discussed, with particular reference to their use across scales of nucleation rate measured in very small crystallisers.

  8. Can Hail and Rain Nucleate Cloud Droplets? (United States)

    Weiss, S.; Prabhakaran, P.; Krekhov, A.; Pumir, A.; Bodenschatz, E.


    We present results from a laboratory scale moist convection experiment composed of a mixture of pressurized sulphur hexafluoride (SF6 - liquid and vapor phase) and helium (He - gas phase) to mimic the wet (saturated water vapor) and dry components (nitrogen, oxygen etc.) of the earth's atmosphere. We operate the experiments close to critical conditions to allow for homogeneous nucleation of sulphur hexafluoride droplets. The liquid SF6 pool is heated from below and the warm SF6 vapor from the liquid-vapor interface rise and condense underneath the cold top plate. We observe the nucleation of microdroplets in the wake of cold drops falling through the SF6-He atmosphere. Using classical nucleation theory, we show that the nucleation is caused by isobaric cooling of SF6 vapor in the wake of the cold drop. Furthermore, we argue that in an atmospheric cloud, falling hail and large cold raindrops may induce heterogeneous nucleation of microdroplets in their wake. We also observe that under appropriate conditions these microdroplets form a stable horizontal layer, thus separating regions of super and sub-critical saturation.

  9. Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning and Sound Signals

    Directory of Open Access Journals (Sweden)

    Hongmei Liu


    Full Text Available The main challenge of fault diagnosis lies in finding good fault features. A deep learning network has the ability to automatically learn good characteristics from input data in an unsupervised fashion, and its unique layer-wise pretraining and fine-tuning using the backpropagation strategy can solve the difficulties of training deep multilayer networks. Stacked sparse autoencoders or other deep architectures have shown excellent performance in speech recognition, face recognition, text classification, image recognition, and other application domains. Thus far, however, there have been very few research studies on deep learning in fault diagnosis. In this paper, a new rolling bearing fault diagnosis method that is based on short-time Fourier transform and stacked sparse autoencoder is first proposed; this method analyzes sound signals. After spectrograms are obtained by short-time Fourier transform, stacked sparse autoencoder is employed to automatically extract the fault features, and softmax regression is adopted as the method for classifying the fault modes. The proposed method, when applied to sound signals that are obtained from a rolling bearing test rig, is compared with empirical mode decomposition, Teager energy operator, and stacked sparse autoencoder when using vibration signals to verify the performance and effectiveness of the proposed method.

  10. Seismic Velocity and Elastic Properties of Plate Boundary Faults (United States)

    Jeppson, Tamara N.

    The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal

  11. Rotational speed invariant fault diagnosis in bearings using vibration signal imaging and local binary patterns. (United States)

    Khan, Sheraz Ali; Kim, Jong-Myon


    Structural vibrations of bearing housings are used for diagnosing fault conditions in bearings, primarily by searching for characteristic fault frequencies in the envelope power spectrum of the vibration signal. The fault frequencies depend on the non-stationary angular speed of the rotating shaft. This paper explores an imaging-based approach to achieve rotational speed independence. Cycle length segments of the rectified vibration signal are stacked to construct grayscale images which exhibit unique textures for each fault. These textures show insignificant variation with the rotational speed, which is confirmed by the classification results using their local binary pattern histograms.

  12. Automatic Fault Characterization via Abnormality-Enhanced Classification

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G; Laguna, I; de Supinski, B R


    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  13. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  14. Iowa Bedrock Faults (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  15. Design of fault simulator

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Sayed, Hanaa E.; Osunleke, Ajiboye S.; Masanobu, Hara


    Fault simulator is proposed to understand and evaluate all possible fault propagation scenarios, which is an essential part of safety design and operation design and support of chemical/production processes. Process models are constructed and integrated with fault models, which are formulated in qualitative manner using fault semantic networks (FSN). Trend analysis techniques are used to map real time and simulation quantitative data into qualitative fault models for better decision support and tuning of FSN. The design of the proposed fault simulator is described and applied on experimental plant (G-Plant) to diagnose several fault scenarios. The proposed fault simulator will enable industrial plants to specify and validate safety requirements as part of safety system design as well as to support recovery and shutdown operation and disaster management.

  16. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos


    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  17. A variational approach to nucleation simulation. (United States)

    Piaggi, Pablo M; Valsson, Omar; Parrinello, Michele


    We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. Therefore we use a recently developed enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett.113, 090601 (2014)] based on the variational determination of a bias potential. We differ from previous applications of this method in that the bias is constructed on the basis of the physical model provided by the classical theory of nucleation. We examine the technical problems associated with this approach. Our results are very satisfactory and will pave the way for calculating the nucleation rates in many systems.


    Directory of Open Access Journals (Sweden)

    Javier González-Villa


    Full Text Available The nucleator is a design unbiased method of local stereology for estimating the volume of a bounded object. The only information required lies in the intersection of the object with an isotropic random ray emanating from a fixed point (called the pivotal point associated with the object. For instance, the volume of a neuron can be estimated from a random ray emanating from its nucleolus. The nucleator is extensively used in biosciences because it is efficient and easy to apply. The estimator variance can be reduced by increasing the number of rays. In an earlier paper a systematic sampling design was proposed, and theoretical variance predictors were derived, for the corresponding volume estimator. Being the only variance predictors hitherto available for the nucleator, our basic goal was to check their statistical performance by means of Monte Carlo resampling on computer reconstructions of real objects. As a plus, the empirical distribution of the volume estimator revealed statistical properties of practical relevance.

  19. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.


    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  20. Nucleation and kinematic rupture of the 2017 Mw 8.2 Chiapas Mexico earthquake (United States)

    Meng, L.; Huang, H.; Xie, Y.; Feng, T.; Dominguez, L. A.; Han, J.; Davis, P. M.


    Integrated geophysical observations from the 2017 Mw 8.2 Oaxaca, Mexico earthquake allow the exploration of one of the largest recorded normal faulting events inside a subducting slab. In this study, we collect seismic data from regional and teleseismic stations, and regional tsunami recordings to better understand the preparation and rupture processes. The mainshock occurred on the steeply dipping plane of a mega-normal fault, confirmed by time reversal analysis of tsunami waves. We utilize a template matching approach to detect possible missing earthquakes within a 2-month period before the Oaxaca mainshock. The seismicity rate (M > 3.7) shows an abrupt increase in the last day within 30 km around the mainshock hypocenter. The largest one is a M 4.6 event with similar normal faulting as the mainshock located at about 18 km updip from the hypocenter. The waveforms of the subsequent foreshocks are not similar, supporting the diversity of their locations or focal mechanisms. The nucleation process can be explained by a cascading process which eventually triggers the mainshock. Back-projection using the USArray network in Alaska reveals that the mainshock rupture propagated northwestward unilaterally at a speed of 3.1 km/s, for about 200 km and terminated near the Tehuantepec Fracture Zone. We also document the tectonic fabric of bending related faulting of the incoming Cocos plate. The mainshock is likely a reactivation of subducted outer rise faults, supported by the similarity of the strike angle between the mainshock and the outer rise faults. The surprisingly large magnitude is consistent with the exceedingly large dimensions of outer rise faulting in this particular segment of the central Mexican trench.

  1. A unified kinetic approach to binary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Physics, Rutgers University, 136 Frelinghuysen Road]|[E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States); Lazaridis, M. [Norwegian Institute for Air Research (NILU), Instittutvein 18, P. O. Box 100, N-2007 Kjeller (Norway); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy); Georgopoulos, P.G. [E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)


    Two different methods to calculate the steady-state nucleation rate in heteromolecular systems proposed by Stauffer (1976) and Langer (1969) are analyzed. Their mathematical equivalence is explicitly demonstrated, thereby obtaining a generic expression for the rate of binary nucleation. Its numerical evaluation does not entail rotation of the coordinate system at the saddle point, but it only requires data in the natural coordinate system of number fluctuations, namely molecular impingement rates, the droplet free energy and its second order derivatives at the saddle point, and the total density of condensible vapors. {copyright} {ital 1999 American Institute of Physics.}

  2. Dumbbells and onions in ternary nucleation. (United States)

    Nellas, Ricky B; Chen, Bin; Siepmann, J Ilja


    Molecular simulations for a ternary nucleation system (water/n-nonane/1-butanol) demonstrate a more complex nucleation mechanism than previously thought, where critical nuclei with different compositions are present even for a given vapour-phase composition; the spatial distribution in these critical nuclei is heterogeneous and dumbbell and onion motifs are found; in the former, water and nonane nano-droplets are connected through a butanol handle, while in the latter a water core is surrounded by a nonane corona with an interfacial butanol shell.

  3. Crystal nucleation in simple and complex fluids. (United States)

    Oxtoby, David W


    The application of density-functional methods from statistical mechanics to the nucleation of crystals from the melt is described. Simple fluids such as metals, with sizes comparable with the range of their attractive forces, are compared with complex fluids such as colloidal suspensions and proteins dissolved in solution. A different mechanism for crystal nucleation is proposed in the latter case, in which density (concentration) changes before periodic crystalline order appears. This leads to a theoretical foundation for empirical observations on the 'crystallization window' in protein crystallization. Comparisons are made with the results of computer simulation via molecular dynamics.

  4. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.


    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  5. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  6. Anisotropic electrical conduction in relation to the stacking disorder in graphite

    International Nuclear Information System (INIS)

    Tsuzuku, T.


    The in-plane and c-axis conduction behaviours of Kish graphite and of hot-worked pyrolytic graphite are discussed in relation to their structural perfection, special interest being focused onto the stacking fault disorder which appears in the form of extended basal dislocation ribbons. Analysis of the two-dimensional magneto-conductivity indicates that the carrier density of faulted specimens increases slowly with temperature (T) even below the degeneracy point of the carrier system, whereas the unfaulted ones do not. the c-axis resistivity (psub(c)) has been found to decrease with diminishing stacking disorder for a well-defined specimen group not containing such irregularities as microcracks. This verifies the applicability of the band model to the intrinsic psub(c) 's, in connection with the success of Ono's theory accounting for the wide-range scattering of past data. The discrepancy still remaining between the theoretical and experimental psub(c) vs T relationship, as well as the increase of the in-plane conduction carrier density with temperature, seems to be removed by assuming thermal liberation of the localized Tamm-state electrons from the stacking fault planes. (author)

  7. Vertically stacked nanocellulose tactile sensor. (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun


    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  8. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults

    NARCIS (Netherlands)

    den Hartog, S.A.M.; Spiers, C.J.


    To understand the temperature/depth distribution of destructive earthquakes in subduction megathrusts, and the mechanisms of nucleation of these events, data on the frictional behaviour of phyllosilicate/quartz-rich megathrust fault gouges under in-situ conditions are needed. We performed rotary

  9. Generalized data stacking programming model with applications

    Directory of Open Access Journals (Sweden)

    Hala Samir Elhadidy


    Full Text Available Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identification technique are proposed to extract the different layers between images and identify the stack class the object follows; respectively. The general multi-stacking network is presented including the interaction between various stack-based layering of some applications. The experiments prove that the concept of stack matrix gives average accuracy of 99.45%.

  10. Fault-Tree Compiler (United States)

    Butler, Ricky W.; Boerschlein, David P.


    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  11. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  12. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.


    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  13. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  14. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.


    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  15. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.


    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  16. Transformation kinetics for surface and bulk nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Elena, E-mail: [University of Milan, Department of Mathematics, via Saldini 50, 20133 Milano (Italy); Rios, Paulo R., E-mail: [Universidade Federal Fluminense, Escola de Engenharia Industrial Metalurgica de Volta Redonda, Av. dos Trabalhadores 420, 27255-125 Volta Redonda, RJ (Brazil)] [RWTH Aachen University, Institut fuer Metallkunde und Metallphysik, D-52056 Aachen (Germany)


    A rigorous mathematical approach based on the causal cone and stochastic geometry concepts is used to derive new exact expressions for transformation kinetics theory. General expressions for the mean volume density and the volume fraction are derived for both surface and bulk nucleation in a general Borel subset of R{sup 3}. In practice, probably any specimen shape of engineering interest is going to be a Borel set. An expression is also derived for the important case of polyhedral shape, in which surface nucleation may take place on the faces, edges and vertices of the polyhedron as well as within the bulk. Moreover, explicit expressions are given for surface and bulk nucleation for three specific shapes of engineering relevance: two parallel planes, an infinitely long cylinder and a sphere. Superposition is explained in detail and it permits the treatment of situations in which surface and bulk nucleation take place simultaneously. The new exact expressions presented here result in a significant increase in the number of exactly solvable cases available to formal kinetics.

  17. Binary nucleation of water and sodium chloride

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Palmer, A.


    Roč. 124, č. 4 (2006), 0445091-0445096 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA101/05/2536 Institutional research plan: CEZ:AV0Z20760514 Keywords : binary nucleation * sodium chloride * water Subject RIV: BJ - Thermodynamics Impact factor: 3.166, year: 2006

  18. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation. (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad


    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  19. Effect of Air Injection on Nucleation Rates

    DEFF Research Database (Denmark)

    Capellades Mendez, Gerard; Kiil, Søren; Dam-Johansen, Kim


    was reduced from 69 to 13 min, and the mean induction time decreased from 128 to 36 min. The effect on aqueous solutions of l-arginine was less apparent, with a detection delay reduction from 15 to 3 min, and no significant changes on the rate of primary nucleation. These results demonstrate the potential...

  20. Homogeneous crystal nucleation in Ni droplets

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Zdeněk; Demo, Pavel


    Roč. 475, Oct (2017), s. 247-250 ISSN 0022-0248 R&D Projects: GA MŠk LD15004 Institutional support: RVO:68378271 Keywords : nucleation * crystallization * phase transition * nickel Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016


    Directory of Open Access Journals (Sweden)

    S. SOBRI


    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  2. Surface nucleation in complex rheological systems (United States)

    Herfurth, J.; Ulrich, J.


    Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.

  3. Crystal nucleation kinetics in confined systems

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Zdeněk


    Roč. 15, č. 12 (2013), 2269-2274 ISSN 1466-8033 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : nucleation * phase transtion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.858, year: 2013

  4. Earthquake fault superhighways (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  5. Stacks of SPS Dipole Magnets

    CERN Multimedia


    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  6. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.


    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  7. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.


    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  8. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault (United States)

    Scuderi, M. M.; Collettini, C.; Marone, C.


    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  9. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene

    DEFF Research Database (Denmark)

    Luo, Birong; Whelan, Patrick Rebsdorf; Shivayogimath, Abhay


    We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes and amorph...

  10. Nucleation, Melting Behaviour and Mechanical Properties of Poly(L ...

    African Journals Online (AJOL)

    Anew category of nucleating agent for poly(L-lactic acid) (PLLA) was developed. An organic nucleating agent; N,N'-bis(benzoyl) suberic acid dihydrazide (NA) was synthesized from benzoyl hydrazine and suberoyl chloride which was deprived from suberic acid via acylation. The nucleation, melting behaviour and ...

  11. Detection of bubble nucleation event in superheated drop detector ...

    Indian Academy of Sciences (India)


    Dec 8, 2016 ... the low cost. The bubble nucleation event is detected by measuring the acoustic shock wave released dur- ing the nucleation process. The present work demonstrates the detection of bubble nucleation events by .... This noise level does not affect the characteristics or performance of the sensor–amplifier.

  12. Mechanism of cube grain nucleation during recrystallization of ...

    Indian Academy of Sciences (India)

    The subject of cube texture nucleation i.e. cube grain nucleation, from the deformed state of aluminium and copper is of scientific curiosity with concurrent technological implications. There are essentially two models currently in dispute over the mechanism of cube grain nucleation i.e. the differential stored energy model ...

  13. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.


    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  14. The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications (United States)

    Chau, Savio N.; Alkalai, Leon; Tai, Ann T.


    The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.

  15. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet. (United States)

    Shao, Haidong; Jiang, Hongkai; Wang, Fuan; Wang, Yanan


    Automatic and accurate identification of rolling bearing fault categories, especially for the fault severities and compound faults, is a challenge in rotating machinery fault diagnosis. For this purpose, a novel method called adaptive deep belief network (DBN) with dual-tree complex wavelet packet (DTCWPT) is developed in this paper. DTCWPT is used to preprocess the vibration signals to refine the fault characteristics information, and an original feature set is designed from each frequency-band signal of DTCWPT. An adaptive DBN is constructed to improve the convergence rate and identification accuracy with multiple stacked adaptive restricted Boltzmann machines (RBMs). The proposed method is applied to the fault diagnosis of rolling bearings. The results confirm that the proposed method is more effective than the existing methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  17. Vapor nucleation paths in lyophobic nanopores. (United States)

    Tinti, Antonio; Giacomello, Alberto; Casciola, Carlo Massimo


    In recent years, technologies revolving around the use of lyophobic nanopores gained considerable attention in both fundamental and applied research. Owing to the enormous internal surface area, heterogeneous lyophobic systems (HLS), constituted by a nanoporous lyophobic material and a non-wetting liquid, are promising candidates for the efficient storage or dissipation of mechanical energy. These diverse applications both rely on the forced intrusion and extrusion of the non-wetting liquid inside the pores; the behavior of HLS for storage or dissipation depends on the hysteresis between these two processes, which, in turn, are determined by the microscopic details of the system. It is easy to understand that molecular simulations provide an unmatched tool for understanding phenomena at these scales. In this contribution we use advanced atomistic simulation techniques in order to study the nucleation of vapor bubbles inside lyophobic mesopores. The use of the string method in collective variables allows us to overcome the computational challenges associated with the activated nature of the phenomenon, rendering a detailed picture of nucleation in confinement. In particular, this rare event method efficiently searches for the most probable nucleation path(s) in otherwise intractable, high-dimensional free-energy landscapes. Results reveal the existence of several independent nucleation paths associated with different free-energy barriers. In particular, there is a family of asymmetric transition paths, in which a bubble forms at one of the walls; the other family involves the formation of axisymmetric bubbles with an annulus shape. The computed free-energy profiles reveal that the asymmetric path is significantly more probable than the symmetric one, while the exact position where the asymmetric bubble forms is less relevant for the free energetics of the process. A comparison of the atomistic results with continuum models is also presented, showing how, for simple

  18. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe


    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  19. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard


    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  20. 40 CFR 61.44 - Stack sampling. (United States)


    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled, during...

  1. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James


    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  2. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)



    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  3. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.


    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  4. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)


    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  5. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.


    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  6. Dislocation nucleation facilitated by atomic segregation (United States)

    Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen


    Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

  7. How Faults Shape the Earth. (United States)

    Bykerk-Kauffman, Ann


    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  8. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems (United States)

    Wantha, Channarong


    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  9. Acoustic vibration effects in classical nucleation theory (United States)

    Baird, James K.; Su, C.-H.


    Acoustic vibration is often used to improve the yield of crystals and nanoparticles growing from solutions and melts. As there is still a debate on how acoustic vibration actually works, we have examined the possibility that acoustic pressure can affect the rate of nucleation. Our method is based on an expansion of the free energy of the nucleus in powers of the acoustic pressure. With the assumption that the period of the sound wave is short as compared to the time scale for nucleation, we replace the powers of the acoustic pressure by their time averages, retaining the average of the square of the acoustic pressure as the leading term. By assuming a nucleus having spherical shape, we use the Young-Laplace equation to relate the pressure inside the nucleus to the ambient pressure. Without making further approximations not already standard in classical nucleation theory, we find that the proximate effect of acoustic pressure is to reduce both the size of the critical nucleus as well as the work required to form it from monomers. As the work serves as the activation energy, the ultimate effect of acoustic pressure is to increase the rate of nucleation. If we assume that the atomic structure of the nucleus is the same as that of an ordinary solid, however, we find the compressibility is too small for acoustic vibration effects to be noticeable. If on the other hand, we assume that the structure is similar to that of a loosely bound colloidal particle, then the effects of acoustic vibration become potentially observable.

  10. The emergence of modern nucleation theory

    International Nuclear Information System (INIS)

    Cahn, J.W.


    A series of important papers by David Turnbull and his collaborators in the late 1940's and early 1950's laid the experimental and theoretical foundation of modern nucleation theory. The elegance, versatility, and generality of the phenomenological approach, coupled with brilliant and insightful experimental confirmation, sparked widespread application which continues today. Much of David Turnbull's subsequent work in other subjects grew directly or indirectly from this work

  11. Nucleation of (4)R brane universes

    International Nuclear Information System (INIS)

    Cordero, Ruben; Rojas, EfraIn


    The creation of brane universes induced by a totally antisymmetric tensor living in a fixed background spacetime is presented, where a term involving the intrinsic curvature of the brane is considered. A canonical quantum mechanical approach employing the Wheeler-DeWitt equation is used. The probability nucleation for the brane is calculated by means of the corresponding instanton and the WKB approximation. Some cosmological implications from the model are presented

  12. Nucleation of {sup (4)}R brane universes

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de FIsica, Escuela Superior de FIsica y Matematicas del IPN, Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, DF (Mexico); Rojas, EfraIn [Facultad de FIsica e Inteligencia Artificial, Universidad Veracruzana, Sebastian Camacho 5, Xalapa, Veracruz, 91000 (Mexico)


    The creation of brane universes induced by a totally antisymmetric tensor living in a fixed background spacetime is presented, where a term involving the intrinsic curvature of the brane is considered. A canonical quantum mechanical approach employing the Wheeler-DeWitt equation is used. The probability nucleation for the brane is calculated by means of the corresponding instanton and the WKB approximation. Some cosmological implications from the model are presented.

  13. Modelling earthquake ruptures with dynamic off-fault damage (United States)

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban


    modelling earthquake ruptures. We then modelled earthquake ruptures allowing for coseismic off-fault damage with appropriate fracture nucleation and growth criteria. We studied the effect of different conditions such as rupture speed (sub-Rayleigh or supershear), the orientation of the initial maximum principal stress with respect to the fault and the magnitude of the initial stress (to mimic depth). The comparison between the sub-Rayleigh and supershear case shows that the coseismic off-fault damage is enhanced in the supershear case when compared with the sub-Rayleigh case. The orientation of the maximum principal stress also has significant difference such that the dynamic off-fault cracking is more likely to occur on the extensional side of the fault for high principal stress orientation. It is found that the coseismic off-fault damage reduces the rupture speed due to the dissipation of the energy by dynamic off-fault cracking generated in the vicinity of the rupture front. In terms of the ground motion amplitude spectra it is shown that the high-frequency radiation is enhanced by the coseismic off-fault damage though it is quickly attenuated. This is caused by the intricate superposition of the radiation generated by the off-fault damage and the perturbation of the rupture speed on the main fault.

  14. A nanoscale temperature-dependent heterogeneous nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. Y. [Nanosurface Science and Engineering Research Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060 Guangdong (China); Yang, G. W., E-mail: [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, 510275 Guangdong (China)


    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale.

  15. Systematic coarse-graining in nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M., E-mail: [Department of Materials, Polymer Physics, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Sagis, L. M. C., E-mail: [Department of Materials, Polymer Physics, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Food Physics Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen (Netherlands)


    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 − 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.

  16. Systematic coarse-graining in nucleation theory (United States)

    Schweizer, M.; Sagis, L. M. C.


    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.

  17. Nucleation and structural growth of cluster crystals

    International Nuclear Information System (INIS)

    Leitold, Christian; Dellago, Christoph


    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds.

  18. Images and properties of individual nucleated particles (United States)

    Németh, Zoltán; Pósfai, Mihály; Nyirő-Kósa, Ilona; Aalto, Pasi; Kulmala, Markku; Salma, Imre


    Atmospheric aerosol particles were collected in Budapest, Hungary in April-June onto lacey Formvar substrates by using an electrostatic precipitator during the beginning phase of the particle growth process in ten nucleation and growth events. Median contribution of the nucleated particles - expressed as the concentration of particles with a diameter between 6 and 25 nm to the total particle number concentration - was 55%, and the median electrical mobility diameter of the particles was approximately 20 nm. The sample was investigated using high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy. Major types of individual particles such as soot, sulphate/organic and tar ball particles were identified in the sample. In addition, particles with an optical diameter range of 10-30 nm were also observed. They clearly differed from the other particle types, showed homogeneous contrast in the bright-field TEM images, and evaporated within tens of seconds when exposed to the electron beam. They were interpreted as representatives of freshly nucleated particles.

  19. Molecular-dynamics simulations of urea nucleation from aqueous solution (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele


    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932

  20. Leipzig Ice Nucleation chamber Comparison (LINC): intercomparison of four online ice nucleation counters (United States)

    Burkert-Kohn, Monika; Wex, Heike; Welti, André; Hartmann, Susan; Grawe, Sarah; Hellner, Lisa; Herenz, Paul; Atkinson, James D.; Stratmann, Frank; Kanji, Zamin A.


    Ice crystal formation in atmospheric clouds has a strong effect on precipitation, cloud lifetime, cloud radiative properties, and thus the global energy budget. Primary ice formation above 235 K is initiated by nucleation on seed aerosol particles called ice-nucleating particles (INPs). Instruments that measure the ice-nucleating potential of aerosol particles in the atmosphere need to be able to accurately quantify ambient INP concentrations. In the last decade several instruments have been developed to investigate the ice-nucleating properties of aerosol particles and to measure ambient INP concentrations. Therefore, there is a need for intercomparisons to ensure instrument differences are not interpreted as scientific findings.In this study, we intercompare the results from parallel measurements using four online ice nucleation chambers. Seven different aerosol types are tested including untreated and acid-treated mineral dusts (microcline, which is a K-feldspar, and kaolinite), as well as birch pollen washing waters. Experiments exploring heterogeneous ice nucleation above and below water saturation are performed to cover the whole range of atmospherically relevant thermodynamic conditions that can be investigated with the intercompared chambers. The Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the Portable Immersion Mode Cooling chAmber coupled to the Portable Ice Nucleation Chamber (PIMCA-PINC) performed measurements in the immersion freezing mode. Additionally, two continuous-flow diffusion chambers (CFDCs) PINC and the Spectrometer for Ice Nuclei (SPIN) are used to perform measurements below and just above water saturation, nominally presenting deposition nucleation and condensation freezing.The results of LACIS and PIMCA-PINC agree well over the whole range of measured frozen fractions (FFs) and temperature. In general PINC and SPIN compare well and the observed differences are explained by the ice crystal growth and different residence times in

  1. Inorganic Nanoparticle Nucleation on Polymer Matrices (United States)

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  2. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa


    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  3. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  4. Uncovering dynamic fault trees

    NARCIS (Netherlands)

    Junges, Sebastian; Guck, Dennis; Katoen, Joost P.; Stoelinga, Mariëlle Ida Antoinette

    Fault tree analysis is a widespread industry standard for assessing system reliability. Standard (static) fault trees model the failure behaviour of systems in dependence of their component failures. To overcome their limited expressive power, common dependability patterns, such as spare management,

  5. Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles (United States)

    Eastwood, Michael L.; Cremel, Sebastien; Gehrke, Clemens; Girard, Eric; Bertram, Allan K.


    An optical microscope coupled to a flow cell was used to investigate the onset conditions for ice nucleation on five atmospherically relevant minerals at temperatures ranging from 233 to 246 K. Here we define the onset conditions as the humidity and temperature at which the first ice nucleation event was observed. Kaolinite and muscovite were found to be efficient ice nuclei in the deposition mode, requiring relative humidities with respect to ice (RHi) below 112% in order to initiate ice crystal formation. Quartz and calcite, by contrast, were poor ice nuclei, requiring relative humidities close to water saturation before ice crystals would form. Montmorillonite particles were efficient ice nuclei at temperatures below 241 K but were poor ice nuclei at higher temperatures. In several cases, there was a lack of quantitative agreement between our data and previously published work. This can be explained by several factors including the mineral source, the particle sizes, the surface area available for nucleation, and observation time. Heterogeneous nucleation rates (Jhet) were calculated from the measurements of the onset conditions (temperature and RHi) required from ice nucleation. The Jhet values were then used to calculate contact angles (θ) between the mineral substrates and an ice embryo using classical nucleation theory. The contact angles measured for kaolinite and muscovite ranged from 6° to 12°, whereas for quartz and calcite, the contact angles ranged from 25° to 27°. The reported Jhet and θ values may allow for a more direct comparison between laboratory studies and can be used when modeling ice cloud formation in the atmosphere.

  6. Solar system fault detection (United States)

    Farrington, R.B.; Pruett, J.C. Jr.


    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  7. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  8. Do scaly clays control seismicity on faulted shale rocks? (United States)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie


    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  9. Effects of shear flow on phase nucleation and crystallization (United States)

    Mura, Federica; Zaccone, Alessio


    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  10. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen


    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  11. Wearable solar cells by stacking textile electrodes. (United States)

    Pan, Shaowu; Yang, Zhibin; Chen, Peining; Deng, Jue; Li, Houpu; Peng, Huisheng


    A new and general method to produce flexible, wearable dye-sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal-textile electrode that was made from micrometer-sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire-shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stack-Based Typed Assembly Language

    National Research Council Canada - National Science Library

    Morrisett, Greg


    .... This paper also formalizes the typing connection between CPS based compilation and stack based compilation and illustrates how STAL can formally model calling conventions by specifying them as formal translations of source function types to STAL types.

  13. Characterization of Piezoelectric Stacks for Space Applications (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph


    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  14. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H


    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  15. Differences in ice nucleation behavior of arable and desert soil dust in deposition nucleation regime (United States)

    Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea


    Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil

  16. Stacking for Cosmic Magnetism with SKA Surveys


    Stil, J. M.; Keller, B. W.


    Stacking polarized radio emission in SKA surveys provides statistical information on large samples that is not accessible otherwise due to limitations in sensitivity, source statistics in small fields, and averaging over frequency (including Faraday synthesis). Polarization is a special case because one obvious source of stacking targets is the Stokes I source catalog, possibly in combination with external catalogs, for example an SKA HI survey or a non-radio survey. We point out the signific...

  17. Environmental Modeling Framework using Stacked Gaussian Processes


    Abdelfatah, Kareem; Bao, Junshu; Terejanu, Gabriel


    A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of quantities of interest with quantified uncertainties. The main applications of the StackedGP framework are to integrate different datasets through model composition, enhance predictions of quantities of interest through a cascade of intermediate predictions, and to propagate uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first an...

  18. Generalized data stacking programming model with applications


    Hala Samir Elhadidy; Rawya Yehia Rizk; Hassen Taher Dorrah


    Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP) model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identif...

  19. Representations of stack triangulations in the plane


    Selig, Thomas


    Stack triangulations appear as natural objects when defining an increasing family of triangulations by successive additions of vertices. We consider two different probability distributions for such objects. We represent, or "draw" these random stack triangulations in the plane $\\R^2$ and study the asymptotic properties of these drawings, viewed as random compact metric spaces. We also look at the occupation measure of the vertices, and show that for these two distributions it converges to som...

  20. Identification & Characterization of Fungal Ice Nucleation Proteins (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine


    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  1. The 2009MW 6.1 L'Aquila fault system imaged by 64k earthquake locations (United States)

    Valoroso, Luisa


    On April 6 2009, a MW 6.1 normal-faulting earthquake struck the axial area of the Abruzzo region in central Italy. We investigate the complex architecture and mechanics of the activated fault system by using 64k high-resolution foreshock and aftershock locations. The fault system is composed by two major SW dipping segments forming an en-echelon NW trending system about 50km long: the high-angle L'Aquila fault and the listric Campotosto fault, located in the first 10km depth. From the beginning of 2009, foreshocks activated the deepest portion of the mainshock fault. A week before the MW 6.1 event, the largest (MW 4.0) foreshock triggered seismicity migration along a minor off-fault segment. Seismicity jumped back to the main plane a few hours before the mainshock. High-precision locations allowed us to peer into the fault zone showing complex geological structures from the metre to the kilometre scale, analogous to those observed by field studies and seismic profiles. Also, we were able to investigate important aspects of earthquakes nucleation and propagation through the upper crust in carbonate-bearing rocks such as: the role of fluids in normal-faulting earthquakes; how crustal faults terminate at depths; the key role of fault zone structure in the earthquake rupture evolution processes.

  2. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin


    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to le...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures.......Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...

  3. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.


    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, determination of the limits of safe operation and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires applica...... out at a range of ac perturbation amplitudes in order to investigate linearity of the response and the signal-to-noise ratio. Separation of the measured impedance into series and polarisation resistances was possible....... to analyse in detail. Today one is forced to use mathematical modelling to extract information about existing gradients and cell resistances in operating stacks, as mature techniques for local probing are not available. This type of spatially resolved information is essential for model refinement...... and validation, and helps to further the technological stack development. Further, more detailed information obtained from operating stacks is essential for developing appropriate process monitoring and control protocols for stack and system developers. An experimental stack with low ohmic resistance from Topsoe...

  4. Binary Homogeneous Nucleation in Selected Aqueous

    Czech Academy of Sciences Publication Activity Database

    Maršík, František; Němec, Tomáš; Hrubý, Jan; Demo, Pavel; Kožíšek, Zdeněk; Petr, V.; Kolovratník, M.


    Roč. 37, č. 12 (2008), s. 1671-1708 ISSN 0095-9782 R&D Projects: GA ČR(CZ) GA101/05/2524; GA AV ČR KJB400760701; GA MŠk(CZ) 1M06031; GA AV ČR IBS2076003 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : nucleation * steam * theory Subject RIV: BJ - Thermodynamics Impact factor: 1.241, year: 2008

  5. Dynamics of intraoceanic subduction initiation : 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

    NARCIS (Netherlands)

    Maffione, Marco; Thieulot, Cedric; van Hinsbergen, Douwe J.J.; Morris, Antony; Plümper, Oliver; Spakman, Wim

    Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In

  6. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena


    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  7. Fault Management Metrics (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig


    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  8. Heterogeneous ice nucleation: bridging stochastic and singular freezing behavior (United States)

    Niedermeier, D.; Shaw, R. A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.


    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized model that bridges these stochastic and singular descriptions of heterogeneous ice nucleation. This "soccer ball" model treats statistically similar particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. We suggest that ice nucleation is fundamentally a stochastic process but that for realistic atmospheric particle populations this process can be masked by the heterogeneity of surface properties. Full evaluation of the model will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

  9. Nucleation and growth of voids by radiation. Pt. 2

    International Nuclear Information System (INIS)

    Mayer, R.M.; Brown, L.M.


    The original model of Brown, Kelly and Mayer [1] for the nucleation of interstitial loops has been extended to take into account the following: (i) mobility of the vacancies, (ii) generation and migration of gas atoms during irradiation, (iii) nucleation and growth of voids, and (iv) vacancy emission from voids and clusters at high temperatures. Using chemicalrate equations, additional expressions are formulated for the nucleation and growth of vacancy loops and voids. (orig.)

  10. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.


    -effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  11. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc


    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  12. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  13. Active Fault Geometry and Crustal Deformation Along the San Andreas Fault System Through San Gorgonio Pass, California: The View in 3D From Seismicity (United States)

    Nicholson, C.; Hauksson, E.; Plesch, A.


    Understanding the 3D geometry and deformation style of the San Andreas fault (SAF) is critical to accurate dynamic rupture and ground motion prediction models. We use 3D alignments of hypocenter and focal mechanism nodal planes within a relocated earthquake catalog (1981-2011) [Hauksson et al., 2012] to develop improved 3D fault models for active strands of the SAF and adjacent secondary structures. Through San Gorgonio Pass (SGP), earthquakes define a mechanically layered crust with predominantly high-angle strike-slip faults in the upper ~10 km, while at greater depth, intersecting sets of strike-slip, oblique slip and low-angle thrust faults define a wedge-shaped volume deformation of the lower crust. In some places, this interface between upper and lower crustal deformation may be an active detachment fault, and may have controlled the down-dip extent of recent fault rupture. Alignments of hypocenters and nodal planes define multiple principal slip surfaces through SGP, including a through-going steeply-dipping predominantly strike-slip Banning fault strand at depth that upward truncates a more moderately dipping (40°-50°) blind, oblique North Palm Springs fault. The North Palm Springs fault may be the active down-dip extension of the San Gorgonio Pass thrust offset at depth by the principal, through-going Banning strand. In the northern Coachella Valley, seismicity indicates that the Garnet Hill and Banning fault strands are most likely sub-parallel and steeply dipping (~70°NE) to depths of 8-10 km, where they intersect and merge with a stack of moderately dipping to low-angle oblique thrust faults. Gravity and water well data confirm that these faults are sub-parallel and near vertical in the upper 2-3 km. Although the dense wedge of deep seismicity below SGP and largely south of the SAF contains multiple secondary fault sets of different orientations, the predominant fault set appears to be a series of en echelon NW-striking oblique strike-slip faults

  14. The 2009 L'Aquila sequence (Central Italy): fault system anatomy by aftershock distribution. (United States)

    Chiaraluce, Lauro


    On April 6 (01:32 UTC) 2009 a destructive MW 6.13 earthquake struck the Abruzzi region in Central Italy, causing nearly 300 deaths, 40.000 homeless people and strong damage to the cultural heritage of the L'Aquila city and its province. Two strong earthquakes hit the same area in historical times (e.g. the 1461 and 1703 events), but the main fault that drives the extension in this portion of the Apennines was unknown. Seismic data was recorded at both permanent stations of the Centralised Italian National Seismic Network managed by the INGV and 45 temporary stations installed in the epicentral area together with the LGIT of Grenoble (Fr). The resulting geometry of the dense monitoring network allows us to gain very high resolution earthquake locations that we use to investigate the geometry of the activated fault system and to report on seismicity pattern and kinematics of the whole sequence. The mainshock was preceded by a foreshock sequence that activated the main fault plane during the three months before, while the largest foreshock (MW 4.08) occurred one week before (30th of March) nucleated on a antithetic (e.g. off-fault) segment. The distribution of the aftershocks defines a complex, 50 km long, NW-trending normal fault system, with seismicity nucleating within the upper 10-12 km of the crust. There is an exception of an event (MW 5.42) nucleating a couple of kilometers deeper that the 7th of April that activates a high angle normal fault antithetic to the main system. Its role is still unclear. We reconstruct the geometry of the two major SW-dipping normal faults forming a right lateral en-echelon system. The main fault (L'Aquila fault) is activated by the 6th of April mainshock unluckily located right below the city of L'Aquila. A 50°SW-dipping plane with planar geometry about 16 km long. The related seismicity interests the entire first 12 km of the upper crust from the surface. The ground surveys carried out soon after the occurrence of the earthquake

  15. Fatigue crack nucleation of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Kim, Woo Gon; Hong, Jun Hwa; Ryu, Woo Seog


    Low Cycle Fatigue (LCF) life decreases drastically with increasing temperature but increases with the addition of nitrogen at room and high temperatures. The effect of nitrogen on LCF life may be related to crack nucleation at high temperatures in austenitic stainless steel because the fraction of crack nucleation in LCF life is about 40%. The influence of nitrogen on the crack nucleation of LCF in type 316LN stainless steel is investigated by observations of crack population and crack depth after testing at 40% of fatigue life. Nitrogen increases the number of cycles to nucleate microcracks of 100 μm but decreases the crack population

  16. Post-Stack Seismic Data Enhancement of Thrust-Belt Area, Sabah Basin (United States)

    Latiff, A. H. Abdul; Jamaludin, S. N. F.; Zakariah, M. N. A.


    In this paper, an integrated post-stack seismic data processing and interpretation for a complex thrust-belt area was proposed. The sequence was suggested due to poor seismic data quality of the Sabah basin area that was obtained after a pre-stack data processing sequences. This basin consists of a complex geological setting such as thrust-belt with steep dip reflector which is the main features of the region. In this paper, we outlined several methods used in the seismic data processing and interpretation such as amplitude recovery and frequency filtering for enhancing seismic data quality, and relative acoustic impedance, structural smoothing and wavelet coherency were used for attribute analysis. The outcome from this research aims at illuminating the hidden structures such as proper beds termination and faults systems that was heavily affected by low signal-to-noise ratio.

  17. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA. (United States)

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen


    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Controlling the quantum dot nucleation site

    International Nuclear Information System (INIS)

    Motta, Nunzio; Sgarlata, Anna; Rosei, Federico; Szkutnik, P.D.; Nufris, S.; Scarselli, M.; Balzarotti, A.


    Quantum dots (QDs) are actually easily produced by self-assembling during heteroepitaxial growth of semiconductors. In order to exploit the unique electronic properties of semiconductor QDs in novel quantum effect devices, the lateral dimensions of these structures have to be reduced to the order of tens of nanometers, which is the range of the De Broglie wavelength of electrons inside these materials. Moreover, millions of QDs must be arranged in dense ordered arrays to achieve the necessary active volume for optoelectronic applications. Nowadays it is possible to control size and shape of the nanocrystals, but it is still difficult to decide their nucleation site. Many approaches have been undertaken to overcome this problem, like using regular dislocation networks, lithographically and Atomic Force Microscopy (AFM) patterned substrates, naturally patterned surfaces. We present results obtained by some of these methods, visualized by Scanning Tunnelling Microscopy (STM) or AFM microscopy. STM measurements at high temperature during the epitaxial growth are of great help in these studies. Images and movies of the growth of Ge on Si help to identify the real nucleation sites of the islands and to follow their evolution. The influence of the 'step bunching' on the self-organization of Ge islands on Si(111) surfaces will be analysed, as an example of growth on self-nanostructured surfaces

  19. A nucleation theory of cell surface capping

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Wester, M.J.; Perelson, A.S.


    We propose a new theory of cell surface capping based on the principles of nucleation. When antibody interacts with cell surface molecules, the molecules initially form small aggregates called patches that later coalesce into a large aggregate called a cap. While a cap can form by patches being pulled together by action of the cell''s cytoskeleton, in the case of some molecules, disruption of the cytoskeleton does not prevent cap formation. Diffusion of large aggregates on a cell surface is slow, and thus we propose that a cap can form solely through the diffusion of small aggregates containing just one or a few cell surface molecules. Here we consider the extreme case in which single molecules are mobile, but aggregates of all larger sizes are immobile. We show that a set of patches in equilibrium with a open-quotes seaclose quotes of free cell surface molecules can undergo a nucleation-type phase transition in which the largest patch will bind free cell surface molecules, deplete the concentration of such molecules in the open-quotes seaclose quotes and thus cause the other patches to shrink in size. We therefore show that a cap can form without patches having to move, collide with each other, and aggregate

  20. Epitaxial nucleation and growth of molecular films (United States)

    Hooks, Daniel Edwin


    The last decade has witnessed an increased emphasis on the design and use of molecular-based materials, commonly in thin film form, as components in electronic devices, sensors, displays, and logic elements. The growing interest in films based on molecular components, rather than their more traditional inorganic counterparts, stems largely from the premise that collective optical and electronic properties can be systematically manipulated through molecular design. Many of these properties depend strongly upon film structure and orientation with respect to the substrate upon which they are deposited. This relationship mandates careful attention to the interface between the primary molecular overlayer and the substrate. Further advances in molecular films and multilayer composites based on molecular films require improved understanding of the role of epitaxy in molecular organization as well as the nucleation events that precede film formation. Determination of critical nucleus dimensions and elucidation of the factors that govern critical size are particularly important for fabricating nanoscale molecular features and controlling domain defects in contiguous molecular films. This thesis describes an examination of the role of epitaxy in the growth of molecular films, including a hierarchical classification and grammar of molecular epitaxy, an atomic force microscopy (AFM) investigation of the intercalation of molecular components into multilayer organic-inorganic composites, and an AFM investigation of the nucleation of molecular films.

  1. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail:


    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  2. From Multi to Single Stack Automata (United States)

    Atig, Mohamed Faouzi

    We investigate the issue of reducing the verification problem of multi-stack machines to the one for single-stack machines. For instance, elegant (and practically efficient) algorithms for bounded-context switch analysis of multi-pushdown systems have been recently defined based on reductions to the reachability problem of (single-stack) pushdown systems [10,18]. In this paper, we extend this view to both bounded-phase visibly pushdown automata (BVMPA) [16] and ordered multi-pushdown automata (OMPA) [1] by showing that each of their emptiness problem can be reduced to the one for a class of single-stack machines. For these reductions, we introduce effective generalized pushdown automata (EGPA) where operations on stacks are (1) pop the top symbol of the stack, and (2) push a word in some (effectively) given set of words L over the stack alphabet, assuming that L is in some class of languages for which checking whether L intersects regular languages is decidable. We show that the automata-based saturation procedure for computing the set of predecessors in standard pushdown automata can be extended to prove that for EGPA too the set of all predecessors of a regular set of configurations is an effectively constructible regular set. Our reductions from OMPA and BVMPA to EGPA, together with the reachability analysis procedure for EGPA, allow to provide conceptually simple algorithms for checking the emptiness problem for each of these models, and to significantly simplify the proofs for their 2ETIME upper bounds (matching their lower-bounds).

  3. Start-Stop Test Procedures on the PEMFC Stack Level

    DEFF Research Database (Denmark)

    Mitzel, Jens; Nygaard, Frederik; Veltzé, Sune

    The test is addressed to investigate the influence on stack durability of a long stop followed by a restart of a stack. Long stop should be defined as a stop in which the anodic compartment is fully filled by air due to stack leakages. In systems, leakage level of the stack is low and time to fil...

  4. Fault reactivation by fluid injection considering permeability evolution in fault-bordering damage zones (United States)

    Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.


    Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection

  5. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite (United States)

    Thompson, B.D.; Young, R.P.; Lockner, David A.


    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  6. Quaternary Fault Lines (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  7. Strike-slip faulting in the Inner California Borderlands, offshore Southern California. (United States)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.


    eastern margin of Avalon Knoll, where the fault is spatially coincident and potentially linked with the San Pedro Basin fault (SPBF). Kinematic linkage between the SDTF and the SPBF increases the potential rupture length for earthquakes on either fault and may allow events nucleating on the SDTF to propagate much closer to the LA Basin.

  8. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation (United States)

    Niemeijer, A. R.; Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.


    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing (V rate-and-state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity-strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

  9. Large‐displacement, hydrothermal frictional properties of DFDP‐1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation (United States)

    Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.


    Abstract The Alpine Fault, New Zealand, is a major plate‐bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP‐1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity‐strengthening behavior to velocity‐weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity‐weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low‐velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate‐and‐state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity‐strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle‐plastic transition for quartzofeldspathic compositions. PMID:27610290

  10. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li


    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  11. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)


    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  12. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan


    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  13. Contemporary sample stacking in analytical electrophoresis. (United States)

    Malá, Zdena; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr


    This contribution is a methodological review of the publications about the topic from the last 2 years. Therefore, it is primarily organized according to the methods and procedures used in surveyed papers and the origin and type of sample and specification of analytes form the secondary structure. The introductory part about navigation in the architecture of stacking brings a brief characterization of the various stacking methods, with the description of mutual links to each other and important differences among them. The main body of the article brings a survey of publications organized according to main principles of stacking and then according to the origin and type of the sample. Provided that the paper cited gave explicitly the relevant data, information about the BGE(s) used, procedure, detector employed, and reached LOD and/or concentration effect is given. The papers where the procedure used is a combination of diverse fragments and parts of various stacking techniques are mentioned in a special section on combined techniques. The concluding remarks in the final part of the review evaluate present state of art and the trends of sample stacking in CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced dynamical stability with harmonic slip stacking

    Directory of Open Access Journals (Sweden)

    Jeffrey Eldred


    Full Text Available We develop a configuration of radio-frequency (rf cavities to dramatically improve the performance of slip stacking. Slip stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out the resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99% slip stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip stacking simulation. We demonstrate that the harmonic rf cavity can not only reduce particle loss during slip stacking, but also reduce the final longitudinal emittance.

  15. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System


    後藤, 秀昭


    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  16. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)


    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  17. Effects of temperature and CO2 on the frictional behavior of simulated anhydrite fault rock (United States)

    Pluymakers, Anne M. H.; Samuelson, Jon E.; Niemeijer, André R.; Spiers, Christopher J.


    The frictional behavior of anhydrite-bearing faults is of interest to (a) the safety and effectiveness of CO2 storage in anhydrite-capped reservoirs, (b) seismicity induced by hydrocarbon production, and (c) natural seismicity nucleated in evaporite formations. We performed direct shear experiments on simulated anhydrite fault gouges, at a range of temperatures (80-150°C) and sliding velocities (0.2-10 µm s-1), under a fixed effective normal stress of 25 MPa. Four types of experiments were conducted (1) dry experiments, (2) experiments pressurized with water, (3) dry experiments pressurized with CO2, and (4) wet experiments pressurized with CO2. Fluid pressures of 15 MPa were used when applied. Over the temperature range investigated water-saturated samples were found to be up to 15% frictionally weaker than dry equivalents. Wet samples containing CO2 were also up to 15% weaker than CO2-free equivalents. Dry sample strength without CO2 was independent of temperature, whereas wet samples without CO2 strengthened 10% from 80 to 150°C. Samples containing CO2 weakened by 4% (dry) and 10% (wet) from 80 to 150°C. Under the P-T conditions investigated, only dry anhydrite fault gouge showed velocity-weakening behavior above 120°C, required for faults to potentially generate earthquakes. Assuming natural fault gouges are wet in situ, seismicity is unlikely to nucleate in anhydrite-rich faults, though the presence of dolomite or (reaction-produced) calcite may change seismic potential. CO2 penetration into wet anhydrite-rich faults may trigger slip on critically stressed faults due to the observed short-term CO2 weakening effects (excluding possible formation of secondary minerals), but is not expected to influence slip stability.

  18. Twin nucleation in Fe-based bcc alloys—modeling and experiments (United States)

    Ojha, A.; Sehitoglu, H.; Patriarca, L.; Maier, H. J.


    We develop an analytical expression for twin nucleation stress in bcc metal and alloys considering generalized planar fault energy and the dislocations bounding the twin nucleus. We minimize the total energy to predict the twinning stress relying only on parameters that are obtained through atomistic calculations, thus excluding the need for any empirical constants. We validate the present approach by means of precise measurements of the onset of twinning in bcc Fe-50at% Cr single crystals showing excellent agreement. The experimental observations of the three activated slip systems of symmetric configuration in relation to the twinning mechanism are demonstrated via transmission electron microscopy techniques along with digital image correlation. We then confirm the validity of the model for Fe, Fe-25at% Ni and Fe-3at% V alloys compared with experiments from the literature to show general applicability.

  19. Some ice nucleation characteristics of Asian and Saharan desert dust

    Directory of Open Access Journals (Sweden)

    P. R. Field


    Full Text Available The large (7 m×4 m cylinder, 84 m3 AIDA (Aerosol Interactions and Dynamics in the Atmosphere cloud chamber facility at Forschungszentrum, Karlsruhe, Germany was used to test the ice nucleating ability of two desert dust samples from the Sahara and Asia. Aerosol samples were lognormally distributed with a mode diameter of 0.4(±0.1 μm and geometric standard deviation of ~1.7(±0.2. At temperatures warmer than −40°C droplets were formed before ice crystals formed and there was generally no deposition nucleation observed. At temperatures colder than −40°C both dust samples exhibited dual nucleation events that were observed during the same expansion experiment. The primary nucleation event occurred at ice saturation ratios of 1.1 to 1.3 and is likely to be a deposition nucleation mode. The secondary nucleation event occurred at ice saturation ratios between 1.35 and 1.5. We cannot categorically determine whether this ice nucleation event is via a further deposition mode or a condensation mode, but the presence of some soluble material in the dust samples leads us to favour the latter process. The activated fractions of desert dust ranged from ~5–10% at −20°C to 20–40% at temperatures colder than −40°C. There was no obvious difference between the nucleation behaviour of the two dust samples.

  20. Nucleation of domains under the influence of temperature in ...

    Indian Academy of Sciences (India)

    Abstract. It is found that the nucleation of domains can take place in Ba5Ti2O7Cl4 under the influence of temperature unlike in many other ferroelectrics. The nucleated domain can also be removed from the structure under the randomizing effect of tem- perature. These observations have been explained on the basis of a ...

  1. Mechanism of cube grain nucleation during recrystallization of ...

    Indian Academy of Sciences (India)


    Abstract. Cube texture is a sharp recrystallization texture component in fcc metals like aluminium, copper, etc. It is described by an ideal orientation i.e. (100) 〈100〉. The subject of cube texture nucleation i.e. cube grain nucleation, from the deformed state of aluminium and copper is of scientific curiosity with concurrent.

  2. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.


    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and ...

  3. Local structure of liquid carbon controls diamond nucleation

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Valeriani, C.; Meijer, E.J.; Frenkel, D.


    Diamonds melt at temperatures above 4000 K. There are no measurements of the steady-state rate of the reverse process: diamond nucleation from the melt, because experiments are difficult at these extreme temperatures and pressures. Using numerical simulations, we estimate the diamond nucleation rate

  4. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.


    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers...... in a monoclinic cholesterol . H2O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before...... transformation to the triclinic phase of cholesterol . H2O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves...

  5. Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System (United States)

    Mortimer, Estelle; Kirstein, Linda A.; Stuart, Finlay M.; Strecker, Manfred R.


    The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission-track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation

  6. Design Handbook for a Stack Foundation


    Tuominen, Vilma


    This thesis was made for Citec Engineering Oy Ab as a handbook and as a design tool for concrete structure designers. Handbook is about the Wärtsilä Power Plant stack structure, which is a base for about 40 meters high stack pipe. The purpose is to make a calculation base to support the design work, which helps the designer to check the right dimensions of the structure. Thesis is about to be for the concrete designers and also other designers and authorities. As an example I have used an...

  7. Observations on the nucleation of ice VII in compressed water (United States)

    Stafford, Samuel J. P.; Chapman, David J.; Bland, Simon N.; Eakins, Daniel E.


    Water can freeze upon multiple shock compression, but the window material determines the pressure of the phase transition. Several plate impact experiments were conducted with liquid targets on a single-stage gas gun, diagnosed simultaneously using photonic doppler velocimetry (PDV) and high speed imaging through the water. The experiments investigated why silica windows instigate freezing above 2.5 GPa whilst sapphire windows do not until 7 GPa. We find that the nucleation of ice occurs on the surfaces of windows and can be affected by the surface coating suggesting the surface energy of fused silica, likely due to hydroxyl groups, encourages nucleation of ice VII crystallites. Aluminium coatings prevent nucleation and sapphire surfaces do not nucleate until approximately 6.5 GPa. This is believed to be the threshold pressure for the homogeneous nucleation of water.

  8. Velocity Structure of the Alpine Fault Zone, New Zealand: Laboratory and Log-Based Fault Rock Acoustic Properties at Elevated Pressures (United States)

    Jeppson, T.; Graham, J. L., II; Tobin, H. J.; Paris Cavailhes, J.; Celerier, B. P.; Doan, M. L.; Nitsch, O.; Massiot, C.


    The elastic properties of fault zone rocks at seismogenic depth play a key role in rupture nucleation, propagation, and damage associated with fault slip. In order to understand the seismic hazard posed by a fault we need to both measure these properties and understand how they govern that particular fault's behavior. The Alpine Fault is the principal component of the active transpressional plate boundary through the South Island of New Zealand. Rapid exhumation along the fault provides an opportunity to study near-surface rocks that have experienced similar histories to those currently deforming at mid-crustal depths. In this study, we examine the acoustic properties of the Alpine Fault in Deep Fault Drilling Project (DFDP)-1 drill core samples and borehole logs from the shallow fault zone, DFDP-2 borehole logs from the hanging wall, and outcrop samples from a number of field localities along the central Alpine Fault. P- and S-wave velocities were measured at ultrasonic frequencies on saturated 2.5 cm-diameter core plugs taken from DFDP-1 core and outcrops. Sampling focused on mylonites, cataclasites, and fault gouge from both the hanging and foot walls of the fault in order to provide a 1-D seismic velocity transect across the entire fault zone. Velocities were measured over a range of effective pressures between 1 and 68 MPa to determine the variation in acoustic properties with depth and pore pressure. When possible, samples were cut in three orthogonal directions and S-waves were measured in two polarization directions on all samples to constrain velocity anisotropy. XRD and petrographic characterization were used to examine how fault-related alteration and deformation change the composition and texture of the rock, and to elucidate how these changes affect the measured velocities. The ultrasonic velocities were compared to sonic logs from DFDP to examine the potential effects of frequency dispersion, brittle deformation, and temperature on the measured

  9. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...... isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated...

  10. Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M., E-mail: [Materials Design, Inc., 6 First National Place, Angel Fire, NM 87710 (United States); Wolf, W.; Freeman, C.; Wimmer, E. [Materials Design, Inc., 6 First National Place, Angel Fire, NM 87710 (United States); Adamson, R.B. [Zircology Plus, 36848 Montecito Dr, Fremont, CA 94536 (United States); Hallstadius, L. [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Cantonwine, P.E. [Global Nuclear Fuel – Americas, P.O. Box 780, M/C F12, Wilmington, NC 28402 (United States); Mader, E.V. [Electric Power Research Institute (EPRI), 3420 Hillview Ave, Palo Alto, CA 94303 (United States)


    c-loops can collapse into stacking-fault pyramids and, somewhat unexpectedly, this is associated with a contraction in the a-directions. This collapse can be impeded by hydrogen atoms. Interstitial hydrogen atoms have no marked influence on self-interstitial diffusion and aggregation. These simulations use a new Zr–H embedded atom potential, which is based on ab initio energies.

  11. Do protein crystals nucleate within dense liquid clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Dominique, E-mail: [Vrije Universiteit Brussel, 1050 Brussels (Belgium); Vorontsova, Maria A. [University of Houston, Houston, TX 77204 (United States); Potenza, Marco A. C.; Sanvito, Tiziano [Universita di Milano, 20133 Milano (Italy); Sleutel, Mike [Vrije Universiteit Brussel, 1050 Brussels (Belgium); Giglio, Marzio [Universita di Milano, 20133 Milano (Italy); Vekilov, Peter G. [Vrije Universiteit Brussel, 1050 Brussels (Belgium); University of Houston, Houston, TX 77204 (United States); University of Houston, Houston, TX 77204 (United States)


    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  12. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.


    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  13. The Effects of Pre-stress Assumptions on Dynamic Rupture with Complex Fault Geometry in the San Gorgonio Pass, CA Region (United States)

    Kyriakopoulos, C.; Tarnowski, J. M.; Oglesby, D. D.


    We use 3D dynamic finite element models to investigate potential rupture paths of earthquakes propagating along faults in the western San Gorgonio Pass (SGP) region. The SGP is a structurally complex region along the San Andreas fault system (SAF) in southern California. We focus on the San Bernardino strand of the SAF, the San Gorgonio Pass Fault Zone, and a portion of the Garnet Hill strand of the SAF. The San Bernardino and Garnet Hill strands are predominately right-lateral strike-slip faults. Thrust faults dominate the San Gorgonio Pass Fault Zone, with small right-lateral tear faults between the thrust faults. We use the finite element code FaultMod (Barall, 2009) to observe differences in rupture propagation along a meshed fault geometry that reflects most of the surface trace complexity. We test three different types of pre-stress assumptions: 1) constant tractions, 2) regional stress regimes, and 3) long-term stressing rates from quasi-static crustal deformation modeling. Models with constant tractions assume pure right-lateral strike-slip motion on the San Bernardino and Garnet Hill strands and oblique thrust/right-lateral strike-slip motion on the San Gorgonio Pass Fault Zone. Preliminary results from models with constant tractions suggest that the complexity of the fault geometry may inhibit rupture propagation, depending on nucleation location.

  14. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman


    In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been...... decreasing. And, even though drivers still accounts for a large part of the kernel code and contains the most faults, its fault rate is now below that of other directories, such as arch (HAL) and fs (file systems). These results can guide further development and research efforts. To enable others...

  15. Fault location on power networks

    CERN Document Server

    Saha, Murari Mohan


    Fault Location on Power Lines enables readers to pinpoint the location of a fault on power lines following a disturbance. The nine chapters are organised according to the design of different locators. The authors do not simply refer the reader to manufacturers' documentation, but instead have compiled detailed information to allow for in-depth comparison. Fault Location on Power Lines describes basic algorithms used in fault locators, focusing on fault location on overhead transmission lines, but also covering fault location in distribution networks. An application of artificial intelligence i

  16. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.


    Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...... availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault...

  17. Faults architecture and growth in clay-limestone alternation. Examples in the S-E Basin alternations (France) and numerical modeling; Architecture et croissance des failles dans les alternances argilo-calcaires. Exemples dans les alternances du Bassin du Sud-Est (France) et modelisation numerique

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Vincent


    The following work has been carried out in the framework of the studies conducted by IRSN in support of its safety evaluation of the geological disposal programme of high and intermediate level, long-lived radioactive waste. Such a disposal is planned to be hosted by the Callovian-Oxfordian indurate clay formation between two limestone formations in eastern Paris basin, France. Hypothetical faults may cross-cut this layered section, decreasing the clay containment ability by creating preferential pathways for radioactive solute towards limestones. This study aims at characterising the fault architecture and the normal fault growth in clay/limestone layered sections. Structural analysis and displacement profiles have been carried out in normal faults crossing several decimetres to metre thick sedimentary alternations in the South-Eastern Basin (France) and petrophysical properties have been determined for each layer. The studied faults are simple fault planes or complex fault zones showing are significantly controlled by the layering. The analysis of the fault characteristics and the results obtained on numerical models enlighten several processes such as fault nucleation, fault restriction, and fault growth through layered section. Some studied faults nucleated in the limestone layers, without using pre-existing fractures such as joints, and according to our numerical analysis, a strong stiffness, a low strength contrast between the limestone and the clay layer, and/or s a greater thickness of the clay layer are conditions which favour nucleation of faults in limestone. The range of mechanical properties leading to the fault nucleation in one layer type or another was investigated using a 3D modelling approach. After its nucleation, the fault propagates within a homogeneous medium with a constant displacement gradient until its vertical propagation is stopped by a restrictor. The evidenced restrictors are limestone-clay interfaces or faults in clays, sub

  18. Time contour expression of limited range phenomena on stack chart; Jugo chart jo deno kyokuchi gensho jikan contour

    Energy Technology Data Exchange (ETDEWEB)

    Kametani, T.


    Time contour expression of limited range phenomena on stack chart is examined for further improvement on the result of the ultimate interpretation in the seismic reflection survey. The policy is made clear from the beginning that local phenomena are to be discussed, and data prior CMP stacking is interpreted in detail. For this purpose, it is effective to make use of the time contour expression in the midpoint-offset plane simultaneously with the CMP and COP panels. For the review of data prior to CMP stacking, it is convenient to use the CMP (CDP) stacking chart in which the data is arranged methodically. In this chart, all the channels which are crude data prior to stacking are plotted on midpoint-offset coordinates, which plane is called the MOD (Midpoint Offset Domain) panel. Various panels can be chosen unrestrictedly, and their mutual relations can be easily grasped. When data points are given a time axis, they can be expressed in a time contour. Studies are conducted about the underground structure, multiple reflection paths divided by it, and characteristics of detour reflection attributable to faults. 4 refs., 9 figs.

  19. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr


    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  20. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.


    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  1. Testing of Electrodes, Cells and Short Stacks

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg


    The present contribution describes the electrochemical testing and characterization of electrodes, cells, and short stacks. To achieve the maximum insight and results from testing of electrodes and cells, it is obviously necessary to have a good understanding of the fundamental principles...

  2. Stack Gas Scrubber Makes the Grade (United States)

    Chemical and Engineering News, 1975


    Describes a year long test of successful sulfur dioxide removal from stack gas with a calcium oxide slurry. Sludge disposal problems are discussed. Cost is estimated at 0.6 mill per kwh not including sludge removal. A flow diagram and equations are included. (GH)

  3. OpenStack Object Storage (Swift) essentials

    CERN Document Server

    Kapadia, Amar; Varma, Sreedhar


    If you are an IT administrator and you want to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Basic knowledge of Linux and server technology is beneficial to get the most out of the book.

  4. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)



    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  5. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr


    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  6. The data type variety of stack algebras

    NARCIS (Netherlands)

    Bergstra, J.A.; Tucker, J.V.


    We define and study the class of all stack algebras as the class of all minimal algebras in a variety defined by an infinite recursively enumerable set of equations. Among a number of results, we show that the initial model of the variety is computable, that its equational theory is decidable,

  7. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.


    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  8. 40 CFR 61.53 - Stack sampling. (United States)


    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...

  9. 40 CFR 61.33 - Stack sampling. (United States)


    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...

  10. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin


    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  11. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn


    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  12. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel


    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  13. Computer hardware fault administration (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.


    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  14. Nucleation at the Contact Line Observed on Nanotextured Surfaces (United States)

    Kostinski, A. B.; Gurganus, C.; Charnawskas, J. C.; Shaw, R. A.


    Surface nucleation, and contact nucleation in particular, are important for many physical processes, including pharmaceutical drug synthesis, metallurgy, and heterogeneous ice nucleation. It has been conjectured that roughness plays a role in surface nucleation, the tendency for freezing to begin preferentially at the liquid-gas interface. Using high speed imaging, we sought evidence for freezing at the contact line on catalyst substrates with imposed characteristic length scales (texture). It is found that nano-scale texture causes a shift in the nucleation of ice in super-cooled water to the three-phase contact line, while micro-scale texture does not. The reduction in the Gibbs barrier for nucleation at the droplet triple line suggests that a line tension, inversely proportional to the surface feature length scale, may be the relevant physical mechanism. A survey of line tension values in literature supports this hypothesis. This work suggests that the physical morphology of a particle, and not just its chemical composition, is important for characterizing a nucleation catalyst.

  15. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  16. Do protein crystals nucleate within dense liquid clusters? (United States)

    Maes, Dominique; Vorontsova, Maria A; Potenza, Marco A C; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G


    Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10(-3) of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.

  17. Cross-Linking Studies of Lysozyme Nucleation (United States)

    Forsythe, Elizabeth; Pusey, Marc


    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  18. Improving Multiple Fault Diagnosability using Possible Conflicts (United States)

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  19. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  20. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko


    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  1. Fault management and systems knowledge (United States)


    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  2. Nucleation of recrystallization at selected sites in deformed fcc metals

    DEFF Research Database (Denmark)

    Xu, Chaoling

    have higher average hardness values and higher nucleation probabilities. In general, indentations with higher hardness values have higher nucleation potentials. The orientations of the nuclei from different indentations in a given grain are observed not to be randomly distributed, but clustered...... indentations is also investigated non-destructively by the DAXM technique. By first characterizing the deformation microstructure within a selected gauge volume near a hardness indentation, then annealing the sample and measuring the same volume again, nucleation is directly correlated to the deformation...

  3. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P


    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  4. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.


    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  5. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc


    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  6. Fault-Mechanism Simulator (United States)

    Guyton, J. W.


    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  7. Row fault detection system (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN


    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  8. Guilt without fault

    DEFF Research Database (Denmark)

    Schrøder, Katja; la Cour, Karen; Jørgensen, Jan Stener


    -free approach is promoted in the aftermath of adverse events. The purpose is to illustrate how healthcare professionals may experience guilt without being at fault after adverse events, and Gamlund's theory on forgiveness without blame is used as the theoretical framework for this analysis. Philosophical...

  9. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens


    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line...... breakage and a high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing need be designed using dedicated change detection for the type of distribution encountered....... Properties of detection and fault-tolerant control are demonstrated by high fidelity simulations....

  10. Fault-Related Sanctuaries (United States)

    Piccardi, L.


    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  11. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.


    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  12. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  13. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann


    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  14. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Andrew


    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  15. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    that the fault is discovered in time such that appropriate actions can be taken. That could either be the aircraft controlling computer taking the fault into account or a human operator that intervenes. Detection of faults that occur during flight is exactly the subject of this thesis. Safety towards faults...... for manned aircraft is often achieved by making most of the systems onboard redundant. This is an easy way to obtain safety since no single system fault is catastrophic. The failed subsystem can be disconnected and the redundant systems can take over the tasks of the failed system. For smaller UAVs both...... a specific UAV, used by the Danish military, it is investigated how a number of critical faults can be detected and handled. One of the challenges using telemetry data for the fault diagnosis is the limited bandwidth in the radio link between the aircraft and the base-station on ground. This combined...

  16. DEVS Models of Palletized Ground Stacking in Storeyed Grain Warehouse

    Directory of Open Access Journals (Sweden)

    Hou Shu-Yi


    Full Text Available Processed grain stored in storeyed warehouse is generally stacked on the ground without pallets. However, in order to improve the storing way, we developed a new stacking method, palletized ground stacking. Simulation should be used to present this new storing way. DEVS provides a formalized way to describe the system model. In this paper, DEVS models of palletized ground stacking in storeyed grain warehouse are given and a simulation model is developed by AutoMod.

  17. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.


    -slip deformation of southern California. A block nature of the crust also implies that not only will strains be inhomogeneous and likely concentrated along edge-bounding faults, but that local stress orientations will largely be responding to local kinematic constraints of block rotation and fault interaction. This behavior, coupled with the presence of possible regional detachments, accounts for some of the precursory changes observed at considerable distances prior to large earthquakes and the triggering of seismicity or slip on nearby faults or around adjacent block edges. Although fault displacements along secondary structures associated with block rotations remain small, they may still influence the nucleation and the characteristic rupture length of large earthquakes. A more complete description of what these structures are, and how they interact, may prove critical to any fundamental understanding of the earthquake process and any realistic assessment of the regional seismic hazard.

  18. Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics (United States)

    Chason, Eric; Vasquez, Justin; Pei, Fei; Jain, Nupur; Hitt, Andrew


    Although Sn whiskers have been studied extensively, there is still a need to understand the driving forces behind whisker nucleation and growth. Many studies point to the role of stress, but confirming this requires a quantitative comparison between controlled stress and the resulting whisker evolution. Recent experimental studies applied stress to a Sn layer via thermal cycling and simultaneously monitored the evolution of the temperature, stress and number of nuclei. In this work, we analyze these nucleation kinetics in terms of classical nucleation theory to relate the observed behavior to underlying mechanisms including a stress dependent activation energy and a temperature and stress-dependent whisker growth rate. Non-linear least squares fitting of the data taken at different temperatures and strain rates to the model shows that the results can be understood in terms of stress decreasing the barrier for whisker nucleation.

  19. Nucleation from a cluster of inclusions, leading to void coalescense

    DEFF Research Database (Denmark)

    Tvergaard, Viggo


    A cell model analysis is used to study the nucleation and subsequent growth of voids from a non-uniform distribution of inclusions in a ductile material. Nucleation is modeled as either stress controlled or strain controlled. The special clusters considered consist of a number of uniformly spaced...... inclusions located along a plane perpendicular to the maximum principal tensile stress. A plane strain approximation is used, where the inclusions are parallel cylinders perpendicular to the plane. Clusters with different numbers of inclusions are compared with the nucleation and growth from a single...... inclusion, such that the total initial volume of the inclusions is the same for the clusters and the single inclusion. After nucleation, local void coalescence inside the clusters is accounted for, since this makes it possible to compare the rate of growth of the single larger void that results from...

  20. The role of ammonia in sulfuric acid ion induced nucleation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega


    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  1. Mediating conducting polymer growth within hydrogels by controlling nucleation

    Directory of Open Access Journals (Sweden)

    A. J. Patton


    Full Text Available This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1 particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS. Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  2. Dynamic damage nucleation and evolution in multiphase materials (United States)

    Fensin, S. J.; Escobedo, J. P.; Gray, G. T.; Patterson, B. M.; Trujillo, C. P.; Cerreta, E. K.


    For ductile metals, dynamic fracture occurs through void nucleation, growth, and coalescence. Previous experimental works in high purity metals have shown that microstructural features such as grain boundaries, inclusions, vacancies, and heterogeneities can act as initial void nucleation sites. However, for materials of engineering significance, those with, second phase particles it is less clear what the role of a soft second phase will be on damage nucleation and evolution. To approach this problem in a systematic manner, two materials have been investigated: high purity copper and copper with 1% lead. These materials have been shock loaded at ˜1.5 GPa and soft recovered. In-situ free surface velocity information and post mortem metallography reveals the presence of a high number of small voids in CuPb in comparison to a lower number of large voids in Cu. This suggests that damage evolution is nucleation dominated in the CuPb and growth dominated in the pure Cu.

  3. Availability analysis for heterogeneous nucleation in a uniform electric field

    CERN Document Server

    Saidi, M H


    Industrial demands for more compact heat exchangers are a motivation to find new technology features. Electrohydrodynamics (EHD) is introduced as a promising phenomenon for heat transfer enhancement mechanisms. Similar to any new technology, EHD has not been understood completely yet and require more fundamental studies. In boiling phase change phenomena, nucleation is the dominant mechanism in heat transfer. Because of higher performance in heat transfer, nucleate boiling is considered as the main regime in thermal components. Hence, bubble dynamic investigation is a means to evaluate heat transfer. This study investigate bubble formation, including homogeneous and heterogeneous nucleation, from a thermodynamic point of view. Change in availability due to bubble embryo nucleation is discussed. Stability criteria for these systems are theoretically studied and results are discussed considering experimental data. In addition, a conceptual discussion on entropy generation in a thermodynamic system under electri...

  4. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat


    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis, metallogra...

  5. Evolution of a magnetic bubble after quantum nucleation (United States)

    Defranzo, A.; Gunther, L.


    Chudnovsky and Gunther recently presented a theory of quantum nucleation in a ferromagnet [Phys. Rev. B 37, 9455 (1989)]. As a sequel, this paper is concerned with the evolution of the magnetic bubble after its materialization.

  6. Theoretical Studies Of Nucleation Kinetics And Nanodroplet Microstructure

    International Nuclear Information System (INIS)

    Wilemski, Gerald


    The goals of this project were to (1) explore ways of bridging the gap between fundamental molecular nucleation theories and phenomenological approaches based on thermodynamic reasoning, (2) test and improve binary nucleation theory, and (3) provide the theoretical underpinning for a powerful new experimental technique, small angle neutron scattering (SANS) from nanodroplet aerosols, that can probe the compositional structure of nanodroplets. This report summarizes the accomplishments of this project in realizing these goals. Publications supported by this project fall into three general categories: (1) theoretical work on nucleation theory (2) experiments and modeling of nucleation and condensation in supersonic nozzles, and (3) experimental and theoretical work on nanodroplet structure and neutron scattering. These publications are listed and briefly summarized in this report.

  7. Influence of fault heterogeneity on the frequency-magnitude statistics of earthquake cycle simulations (United States)

    Norbeck, Jack; Horne, Roland


    Numerical models are useful tools for investigating natural geologic conditions can affect seismicity, but it can often be difficult to generate realistic earthquake sequences using physics-based earthquake rupture models. Rate-and-state earthquake cycle simulations on planar faults with homogeneous frictional properties and stress conditions typically yield single event sequences with a single earthquake magnitude characteristic of the size of the fault. In reality, earthquake sequences have been observed to follow a Gutenberg-Richter-type frequency-magnitude distribution that can be characterized by a power law scaling relationship. The purpose of this study was to determine how fault heterogeneity can affect the frequency-magnitude distribution of simulated earthquake events. We considered the effects fault heterogeneity at two different length-scales by performing numerical earthquake rupture simulations within a rate-and-state friction framework. In our first study, we investigated how heterogeneous, fractal distributions of shear and normal stress resolved along a two-dimensional fault surface influenced the earthquake nucleation, rupture, and arrest processes. We generated a catalog of earthquake events by performing earthquake cycle simulations for 90 random realizations of fractal stress distributions. Typical realizations produced between 4 to 6 individual earthquakes ranging in event magnitudes between those characteristic of the minimum patch size for nucleation and the size of the model fault. The resulting aggregate frequency-magnitude distributions were characterized well by a power-law scaling behavior. In our second study, we performed simulations of injection-induced seismicity using a coupled fluid flow and rate-and-state earthquake model. Fluid flow in a two-dimensional reservoir was modeled, and the fault mechanics was modeled under a plane strain assumption (i.e., one-dimensional faults). We generated a set of faults with an average strike of

  8. Sport stacking motor intervention programme for children with ...

    African Journals Online (AJOL)

    The purpose of this study was to explore sport stacking as an alternative intervention approach with typically developing children and in addition to improve DCD. Sport stacking consists of participants stacking and unstacking 12 specially designed plastic cups in predetermined sequences in as little time as possible.

  9. Notes on G-theory of Deligne-Mumford stacks


    Toen, B.


    Based on the methods used by the author to prove the Riemann-Roch formula for algebraic stacks, this paper contains a description of the rationnal G-theory of Deligne-Mumford stacks over general bases. We will use these results to study equivariant K-theory, and also to define new filtrations on K-theory of algebraic stacks.

  10. Learning algorithms for stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Zimmer, Beate G [TEXAS A& M


    Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.

  11. Industrial stacks design; Diseno de chimeneas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cacheux, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    The Instituto de Investigaciones Electricas (IIE) though its Civil Works Department, develops, under contract with CFE`s Gerencia de Proyectos Termoelectricos (Management of Fossil Power Plant Projects), a series of methods for the design of stacks, which pretends to solve the a present day problem: the stack design of the fossil power plants that will go into operation during the next coming years in the country. [Espanol] El Instituto de Investigaciones Electricas (IIE), a traves del Departamento de Ingenieria Civil, desarrolla, bajo contrato con la Gerencia de Proyectos Termoelectricos, de la Comision Federal de Electricidad (CFE), un conjunto de metodos para el diseno de chimeneas, con el que se pretende resolver un problema inmediato: el diseno de las chimeneas de las centrales termoelectricas que entraran en operacion durante los proximos anos, en el pais.

  12. Annular feed air breathing fuel cell stack (United States)

    Wilson, Mahlon S.


    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  13. System for inspection of stacked cargo containers (United States)

    Derenzo, Stephen [Pinole, CA


    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  14. Multistage Force Amplification of Piezoelectric Stacks (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)


    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  15. Radiation-Tolerant Intelligent Memory Stack - RTIMS (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.


    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  16. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L


    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  17. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)


    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  18. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.


    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  19. Development of an experimental apparatus for nucleate boiling analysis

    International Nuclear Information System (INIS)

    Castro, A.J.A. de.


    An experimental apparatus is developed for the study of the parameters that affect nucleate boiling. The experimental set up is tested for nucleate boiling in an annular test section with subcooled water flow. The following parameters are analysed: pressure, fluid velocity and the fluid temperature at the test section entrance. The performance of the experimental apparatus is analysed by the results and by the problems raised by the operation of the setup. (Author) [pt

  20. CAM and stack air sampler design guide

    International Nuclear Information System (INIS)

    Phillips, T.D.


    About 128 air samplers and CAMs presently in service to detect and document potential radioactive release from 'H' and 'F' area tank farm ventilation stacks are scheduled for replacement and/or upgrade by Projects S-5764, S-2081, S-3603, and S-4516. The seven CAMs scheduled to be upgraded by Project S-4516 during 1995 are expected to provide valuable experience for the three remaining projects. The attached document provides design guidance for the standardized High Level Waste air sampling system

  1. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr


    Roč. 32, č. 1 (2011), s. 116-126 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  2. Stacked Switched Capacitor Energy Buffer Architecture


    Chen, Minjie; Perreault, David J.; Afridi, Khurram


    Electrolytic capacitors are often used for energy buffering applications, including buffering between single-phase ac and dc. While these capacitors have high energy density compared to film and ceramic capacitors, their life is limited. This paper presents a stacked switched capacitor (SSC) energy buffer architecture and some of its topological embodiments, which when used with longer life film capacitors overcome this limitation while achieving effective energy densities comparable to elect...

  3. Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil (United States)

    Destro, Nivaldo


    Two types of cross faults are herein recognized: transfer faults and the newly termed release faults. Transfer faults form where cross faults connect distinct normal faults and horizontal displacements predominate over vertical ones. In contrast, release faults form where cross faults associated with individual normal faults die out within the hangingwall before connecting to other normal faults, and have predominantly vertical displacements. Release faults are geometrically required to accommodate variable displacements along the strike of a normal fault. Thus, they form to release the bending stresses in the hangingwall, and do not cut normal fault planes nor detachment surfaces at depth. Release faults have maximum throws adjacent to normal faults, and may be nearly perpendicular or obliquely oriented to the strike of the latter. Such geometry appears not to depend upon pre-existing weaknesses, but such variable orientation to normal faults is an inherent property of release faults. Release faults commonly appear as simple normal faults in seismic sections, without implying extension along the strike of rift and basins. Three-dimensional strain deformation occurs in the hangingwall only between the terminations of an individual normal fault, but regionally, release faulting is associated with plane strain deformation in linked extensional fault systems.

  4. When is stacking confusing? The impact of confusion on stacking in deep H I galaxy surveys (United States)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Papastergis, Emmanouil


    We present an analytic model to predict the H I mass contributed by confused sources to a stacked spectrum in a generic H I survey. Based on the ALFALFA (Arecibo Legacy Fast ALFA) correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest Square Kilometre Array precursor H I surveys. Stacking with LADUMA (Looking At the Distant Universe with MeerKAT) and DINGO UDEEP (Deep Investigation of Neutral Gas Origins - Ultra Deep) data will only be mildly impacted by confusion if their target synthesized beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES (COSMOS H I Large Extragalactic Survey) 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST (Five hundred metre Aperture Spherical Telescope) will be the most impeded by confusion, with H I surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the H I density of the Universe and the H I correlation function. However, we argue that the two idealized cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.

  5. Thyristor stack for pulsed inductive plasma generation. (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J


    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  6. Electrochemical Detection in Stacked Paper Networks. (United States)

    Liu, Xiyuan; Lillehoj, Peter B


    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  7. Effect of nucleating agents on crystallization kinetics of PET

    Directory of Open Access Journals (Sweden)


    Full Text Available Effects of three nucleating agents concluding talc, sodium benzoate (SB and an ionomer (Ion., Na+ on crystallization of poly(ethylene terephthalate (PET were studied by differential scanning calorimetry (DSC and polarized optical microscope (POM, the parameters of crystallization kinetics were obtained through Avrami and Ozawa equations. The fold surface free energy σe of pure PET and PET/nucleating agent blends were calculated by Hoffman-Lauritzen theory. The results indicate that the three kinds of nucleating agents increase the crystallization rate constant through promoting their nucleating effect for PET crystallization, among which SB is the best one with the same content. The crystallization mode of PET might shift from three-dimensional growth to two-dimensional growth by the addition of the nucleating agents. The values of σe of PET/nucleating agent blends are much less than that of pure PET, and PET/SB (99:1 blend has the least value of σe (18.2 mJ/m2. The conclusion based on Hoffman theory is similar to the analysis by Avrami and Ozawa equations.

  8. Computer simulations of homogeneous nucleation of benzene from the melt. (United States)

    Shah, Manas; Santiso, Erik E; Trout, Bernhardt L


    Nucleation is the key step in crystallization by which the molecules (or atoms or ions) aggregate together, find the right relative orientations, and start to grow to form the final crystal structure. Since nucleation is an activated step involving a large gap in time scales between molecular motions and the nucleation event itself, nucleation must be studied using rare events methods. We employ a technique developed previously in our group known as aimless shooting [Peters, B.; Trout, B. L. J. Chem. Phys., 2006, 125, 054108], which is based on transition path sampling, to generate reactive trajectories between the disordered and ordered phases of benzene. Using the likelihood maximization algorithm, we analyze the aimless shooting trajectories to identify the key order parameters or collective variables to describe the reaction coordinate for the nucleation of benzene from the melt. We find that the local bond orientation and local relative orientation order parameters are the most important collective variables in describing the reaction coordinate for homogeneous nucleation from the melt, as compared to cluster size and space-averaged order parameters. This study also demonstrates the utility of recently developed order parameters for molecular crystals [Santiso, E. E.; Trout, B. L. J. Chem. Phys., 2011, 134, 064109].

  9. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.


    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  10. Connection of sulfuric acid to atmospheric nucleation in boreal forest. (United States)

    Nieminen, T; Manninen, H E; Sihto, S L; Yli-Juuti, T; Mauldin, R L; Petäjä, T; Riipinen, I; Kerminen, V M; Kulmala, M


    Gas to particle conversion in the boundary layer occurs worldwide. Sulfuric acid is considered to be one of the key components in these new particle formation events. In this study we explore the connection between measured sulfuric acid and observed formation rate of both charged 2 nm as well as neutral clusters in a boreal forest environment A very short time delay of the order of ten minutes between these two parameters was detected. On average the event days were clearly associated with higher sulfuric acid concentrations and lower condensation sink (CS) values than the nonevent days. Although there was not a clear sharp boundary between the nucleation and no-nucleation days in sulfuric acid-CS plane, at our measurement site a typical threshold concentration of 3.10(5) molecules cm(-3) of sulfuric acid was needed to initiate the new particle formation. Two proposed nucleation mechanisms were tested. Our results are somewhat more in favor of activation type nucleation than of kinetic type nucleation, even though our data set is too limited to omit either of these two mechanisms. In line with earlier studies, the atmospheric nucleation seems to start from sizes very close to 2 nm.

  11. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles (United States)

    Li, Luying; Gan, Zhaofeng; McCartney, Martha R.; Liang, Hanshuang; Yu, Hongbin; Gao, Yihua; Wang, Jianbo; Smith, David J.


    The atomic arrangements of two types of InAs dislocation cores associated by a Z-shape faulted dipole are observed directly by aberration-corrected high-angle annular-dark-field imaging. Single unpaired columns of different atoms in a matrix of dumbbells are clearly resolved, with observable variations of bonding lengths due to excess Coulomb force from bare ions at the dislocation core. The corresponding geometric phase analysis provides confirmation that the dislocation cores serve as origins of strain field inversion while stacking faults maintain the existing strain status. PMID:24231692

  12. Generalized planar fault energies and twinning in Cu-Al alloys (United States)

    Kibey, S.; Liu, J. B.; Johnson, D. D.; Sehitoglu, H.


    We report ab initio density functional theory calculations of generalized planar fault energies of fcc Cu -xAl (x =0, 5.0, and 8.3at.%) alloys. We investigate the effects of substitutional solute Al on the unstable intrinsic γus and twin γut stacking fault energies (SFEs). Our results reveal an increased tendency of Cu-Al to deform preferentially by twinning with increasing Al content, consistent with experiment. We attribute this mechanical behavior to appreciable lowering of the twinning barrier γut, along with the stable intrinsic and twin SFEs.

  13. Guanine base stacking in G-quadruplex nucleic acids (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân


    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  14. Geology Structure Identification Using Pre-Stack Depth Migration (PSDM Method of Tomography Result in North West Java Basin

    Directory of Open Access Journals (Sweden)

    Sudra Irawan


    Full Text Available North West Java Basin is a tertiary sedimentary basin which is located in the right of the western part of the Java island. North West Java Basin is geodynamic where currently located at the rear position of the path of the volcanic arc of Java that is the result of the India-Australia plate subduction to the south towards the Eurasian plate (Explanation of Sunda in the north. Geology structure observation is difficult to be conducted at Quaternary volcanicfield due to the classical problem at tropical region. In the study interpretation of fault structures can be done on a cross-section of Pre-Stack Depth Migration (PSDM used prayer namely Hardware Key Device, ie Central Processing Unit: RedHat Enterprise Linux AS 5.0, prayer Monitor 24-inch pieces, Server: SGI altix 450/SuSe Linux Enterprise Server 9.0, 32 GB, 32 X 2,6 GHz Procesor, network: Gigabyte 1 Gb/s, and the software used is paradigm, product: Seismic Processing and Imaging. The third fault obtained in this study in accordance with the geological information derived from previous research conducted by geologists. The second general direction is northwest-southeast direction represented by Baribis fault, fault-fault in the Valley Cimandiri and Gunung Walat. This direction is often known as the directions Meratus (Meratus Trend. Meratus directions interpreted as directions that follow the pattern of continuous arc Cretaceous age to Meratus in Kalimantan.

  15. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann


    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  16. Experimental challenges to reproduce seismic fault motion (United States)

    Shimamoto, T.


    This presentation briefly reviews scientific and technical development in the studies of intermediate to high-velocity frictional properties of faults and summarizes remaining technical challenges to reproduce nucleation to growth processes of large earthquakes in laboratory. Nearly 10 high-velocity or low to high-velocity friction apparatuses have been built in the last several years in the world and it has become possible now to produce sub-plate velocity to seismic slip rate in a single machine. Despite spreading of high-velocity friction studies, reproducing seismic fault motion at high P and T conditions to cover the entire seismogenic zone is still a big challenge. Previous studies focused on (1) frictional melting, (2) thermal pressurization, and (3) high-velocity gouge behavior without frictional melting. Frictional melting process was solved as a Stefan problem with very good agreement with experimental results. Thermal pressurization has been solved theoretically based on measured transport properties and has been included successfully in the modeling of earthquake generation. High-velocity gouge experiments in the last several years have revealed that a wide variety of gouges exhibit dramatic weakening at high velocities (e.g., Di Toro et al., 2011, Nature). Most gouge experiments were done under dry conditions partly to separate gouge friction from the involvement of thermal pressurization. However, recent studies demonstrated that dehydration or degassing due to mineral decomposition can occur during seismic fault motion. Those results not only provided a new view of looking at natural fault zones in search of geological evidence of seismic fault motion, but also indicated that thermal pressurization and gouge weakening can occur simultaneously even in initially dry gouge. Thus experiments with controlled pore pressure are needed. I have struggled to make a pressure vessel for wet high-velocity experiments in the last several years. A technical

  17. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo


    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., "nastrino") exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic faults.

  18. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. (United States)

    Geidobler, R; Winter, G


    In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault (United States)

    Delorey, Andrew; Van Der Elst, Nicholas; Johnson, Paul


    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.

  20. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    International Nuclear Information System (INIS)

    Delorey, Andrew A.; Elst, Nicholas J. van der; Johnson, Paul Allan


    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.