WorldWideScience

Sample records for stack gas treatment

  1. Stack gas treatment

    Science.gov (United States)

    Reeves, Adam A.

    1977-04-12

    Hot stack gases transfer contained heat to a gravity flow of pebbles treated with a catalyst, cooled stacked gases and a sulfuric acid mist is withdrawn from the unit, and heat picked up by the pebbles is transferred to air for combustion or other process. The sulfuric acid (or sulfur, depending on the catalyst) is withdrawn in a recovery unit.

  2. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  3. High-power selfshielded electron processors and their application to stack gas treatment

    International Nuclear Information System (INIS)

    Hiley, J.; Frutiger, W.A.; Nablo, S.V.

    1987-01-01

    The increasing industrial demands for large width (approximately 2 m), high dose rate (1 Mrad at 1500 m/min) electron beam machinery has led to a relatively rapid improvement in this field over the past several years. Selfshielded machinery capable of up to 1000 mA of current at 300 kV is now in commercial use, and the essential features of these designs are presented. A variety of product handling geometries for use with these accelerators has been developed for processes involving flexible web, rigid sheet, and three-dimensional objects in both the polymerization and sterilization applications. One of the major power-intensive processes to which these machines are currently applied is that of the reduction of pollutants (NO x , SO 2 , etc.) in the flue gas from fuel combustion - particularly those fossil fuels used in power production. The preferred technique utilizes the treatment of the ammoniated gas at modest dose levels (0.5-2.0 Mrads) to enhance the formation of ammonium salts which are then removed from the gas stream by conventional filtration. Some results from a 180 kWx300 kV pilot installation in Karlsruhe, Federal Republic of Germany are presented. (orig.)

  4. Power station stack gas emissions

    International Nuclear Information System (INIS)

    Hunwick, Richard J.

    2006-01-01

    There are increasing awareness and pressure to reduce emissions of acid rain and photochemical smog. There is a need to produce new control system and equipment to capture those emissions. The most visible form of pollutions are the chimney smoke, dust and particles of fly ash from mineral matter in the fuel. Acid gases are hard on structures and objects containing limestone. Coal fired power generation is likely to be able to sustain its competitive advantage as a clean source of electricity in comparison with nuclear power and natural gas

  5. Measurement of lead compound in stack gas

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y; Hori, M; Tanikawa, N

    1979-01-01

    The concentration and particle-size distribution of lead compounds in the exhaust gas from various stationary sources are examined. The stationary sources concern lead production from battery scraps, lead smelting of cable mold, steel production from iron scraps, plastic combustion furnace, and a heavy oil boiler. A lead concentration of 0.2-100 mg/cu m in exhaust gas is detected. Furthermore, exhaust gas lead compounds are affected by the raw materials used.

  6. Treatment of Gas

    Science.gov (United States)

    ... Funding IFFGD Symposium reports Industry Council Contact Us Treatment of Gas You are here: Home Symptoms & Causes Intestinal Gas ... Controlling Intestinal Gas Foods That May Cause Gas Treatment of Gas Tips on Controlling Gas Adapted from IFFGD Publication # ...

  7. Numerical model for stack gas diffusion in terrain with buildings. Variations in air flow and gas concentration with additional building near stack

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio

    2009-01-01

    A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)

  8. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  9. Determination of Source Term for an Annual Stack Release of Gas Reactor G.A. Siwabessy

    International Nuclear Information System (INIS)

    Sudiyati; Syahrir; Unggul Hartoyo; Nugraha Luhur

    2008-01-01

    Releases of radionuclide from the reactor are noble gases, halogenides and particulates. The measurements were carried out directly on the air monitoring system of the stack. The results of these measurements are compared with the annual Source-Term data from the Safety Analyses report (SAR) of RSG-GAS. The measurement results are smaller than the data reported in SAR document. (author)

  10. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  11. Independent determination of the accuracy of the OSTR stack gas monitor and its operational application

    International Nuclear Information System (INIS)

    Pickett, B.D.; Johnson, A.G.

    1982-01-01

    This study was undertaken to determine the accuracy of the stack gas monitor, using techniques which were independent of the monitoring system itself. Samples of argon-41 to be used as the standards in this study were carefully produced in the thermal column of the OSTR and counted on a Ge(Li) detector which was connected to a multichannel analyzer (MCA). As the argon-41 standard in the gas sample flask decayed, the concentration of the argon-41 was compared to the output of the Ge(Li)/MCA system. This established a calibration curve for the counting system, whereby a sample with an unknown concentration of argon-41 could be counted and the subsequent count rate from the sample converted to a concentration expressed in mCi per milliliter. Gas samples were extracted from various points in the reactor exhaust system and the concentrations of argon-41 were determined by counting on the Ge(Li)/MCA system. Each sample concentration was then compared to the argon-41 concentration indicated by the stack gas monitor. The initial results indicated that, although possibly intermittent, the argon-41 concentrations displayed by the stack gas monitor were often approximately 50% of those predicted by analysis of individual samples from the exhaust system. Several possible sources for the discrepancy were checked, including the method of SGM calibration, uneven mixing of exhaust air and argon-41 in the reactor building exhaust stream, and dilution of the gas concentration in the SGM system by air leakage into the system. After considerable effort, the latter cause was found to be the culprit, due to an aging gasket around the stack monitor's moving particulate-filter-paper housing

  12. MOCVD waste gas treatment

    International Nuclear Information System (INIS)

    Geelen, A. van; Bink, P.H.M.; Giling, L.J.

    1993-01-01

    A large scale production of GaAs based solar cells with MOCVD will give rise to a considerable use of arsine. Therefore a gas treatment system is needed to convert the waste gases into less toxic compounds. In this study seven different gas treatment systems for MOCVD are compared by quantifying the environmental aspects. The systems are divided in wet systems, adsorption systems and thermal systems. The smallest amount of waste is produced by adsorption and thermal systems. Adsorption systems use the smallest amount of energy. The amount of primary materials used for the equipment varies per system. All systems are safe, but adsorption systems are simplest. At the moment, adsorption systems are probably the best choice from an environmental point of view. Nevertheless thermal systems have some potential advantages which make them interesting for the future

  13. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  14. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  15. Tracer gas experiment to verify the dispersion from a tall stack

    International Nuclear Information System (INIS)

    Sivertsen, B.; Irwin, J.S.

    1996-01-01

    At the request of the Ministerios de Obras Publicas y Urbanismo (MOPU) in Madrid, the Norwegian Institute for Air Research (NILU) planned and carried out a comprehensive field experiment at the Andorra (Teruel) power plant in Spain. All together, eleven releases of sulfur hexafluoride (SF6) tracer were carried out at the 1,200 MW electric coal fired power plant. The tracer was emitted into the atmosphere from the 343 m high stack, stack exit diameter of 9 m. The stack gas emission characteristics were nearly constant during the period having an exit temperature of 175.1 C (1.9), exit velocity of 35.5 m/s (0.14) and sulfur dioxide (SO 2 ) emission rate of 46.1 x 10 3 kg/hr (5.15 x 10 3 ); standard deviations are listed in parentheses. Samples were taken at the surface along sampling arcs located approximately 8, 23, 43 and 75 km downwind. The releases were undertaken during typical late spring daytime conditions. The synoptic weather conditions were dominated by a large high pressure system on the Atlantic, west of Spain. Fronts were passing the area from the north and a low pressure system was developing over central Europe (Germany). Winds at the surface were generally brisk from the northwest at 7 to 12 m/s

  16. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    Science.gov (United States)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  17. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  18. Plasma target output from a magnetically augmented, gas-injected, washer-stack plasma gun

    International Nuclear Information System (INIS)

    Osher, J.E.

    1982-01-01

    This article describes a new washer-stack gun design developed for the application of plasma target production for the startup of neutral-beam trapping in a fusion research magnetic confinement system. The gun is a Mo anode type that is D 2 injected and has an auxiliary pulsed magnet for control of plasma-flux mapping. One of the principal features of 2--10-ms duration pulses for gun operation in a suitable magnetic field is the formation of an arc column along magnetic field lines from the gun's central cathode electrode to the vacuum chamber walls (at common anode potential). The primary power output from a 5.0-cm-i.d. gun is typically carried along this arc column by a stream of approximately 2000 A of 50--250-eV electrons. This primary stream of relatively low-density energetic electrons efficiently ionizes the injected gas, forming a quasi-dc source of denser secondary plasma of approx.10 13 /cm 3 at a few eV, which is able to flow or diffuse away along a somewhat larger column of magnetic field lines. In plasma-target production tests on a test stand, a gun operated at a D 2 gas flow of 22 Torr ls -1 yielded 250 A of equivalent plasma flow

  19. Gas embolism: pathophysiology and treatment

    NARCIS (Netherlands)

    van Hulst, Robert A.; Klein, Jan; Lachmann, Burkhard

    2003-01-01

    Based on a literature search, an overview is presented of the pathophysiology of venous and arterial gas embolism in the experimental and clinical environment, as well as the relevance and aims of diagnostics and treatment of gas embolism. The review starts with a few historical observations and

  20. Simultaneous treatment of SO2 containing stack gases and waste water

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  1. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  2. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  3. Radioactive gas solidification treatment device

    International Nuclear Information System (INIS)

    Igarashi, Ryokichi; Watanabe, Yu; Seki, Eiji.

    1992-01-01

    In a radioactive gas solidification treatment device by using sputtering, spiral pipelines are disposed with a gap therebetween for cooling an ion injection electrode by passing cooling water during operation of the solidification treatment. During the operation of the solidification treatment, cooling water is passed in the pipelines to cool the ion injection electrode. During storage, a solidification vessel is cooled by natural heat dissipation from an exposed portion at the surface of the solidification vessel. Accordingly, after-heat of radioactive gas solidified in a metal accumulation layer can be removed efficiently, safely and economically to improve the reliability. (N.H.)

  4. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.

    Science.gov (United States)

    Zhuang, Li; Zheng, Yu; Zhou, Shungui; Yuan, Yong; Yuan, Haoran; Chen, Yong

    2012-02-01

    A tubular air-cathode microbial fuel cell (MFC) stack with high scalability and low material cost was constructed and the ability of simultaneous real wastewater treatment and bioelectricity generation was investigated under continuous flow mode. At the two organic loading rates (ORLs) tested (1.2 and 4.9kg COD/m(3)d), five non-Pt MFCs connected in series and parallel circuit modes treating swine wastewater can enable an increase of the voltage and the current. The parallel stack retained high power output and the series connection underwent energy loss due to the substrate cross-conduction effect. With continuous electricity production, the parallel stack achieved 83.8% of COD removal and 90.8% of NH(4)(+)-N removal at 1.2kg COD/m(3)d, and 77.1% COD removal and 80.7% NH(4)(+)-N removal at 4.9kg COD/m(3)d. The MFC stack system in this study was demonstrated to be able to treat real wastewater with the added benefit of harvesting electricity energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors

    International Nuclear Information System (INIS)

    1968-01-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [fr

  6. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    OpenAIRE

    Takenobu Michioka; Koichi Sada; Kazuki Okabayashi

    2016-01-01

    Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking) on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the...

  7. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm 2 . The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for a relatively large sized fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  8. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    Science.gov (United States)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  9. Alkali ion migration between stacked glass plates by corona discharge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Sakai, Daisuke [Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2015-05-30

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  10. A methodology for handling exploration risk and constructing supply curves for oil and gas plays when resources are stacked

    International Nuclear Information System (INIS)

    Dallaire, S.M.

    1994-01-01

    The use of project economics to estimate full-cycle supply prices for undiscovered oil and gas resources is a straightforward exercise for those regions where oil and gas plays are not vertically superimposed on one another, ie. are not stacked. Exploration risk is incorporated into such an analysis by using a simple two-outcome decision tree model to include the costs of dry and abandoned wells. The decision tree model can be expanded to include multiple targets or discoveries, but this expansion requires additional drilling statistics and resource assessment data. A methodology is suggested to include exploration risk in the preparation of supply curves when stacked resources are expected and little or no information on uphole resources is available. In this method, all exploration costs for wells drilled to targets in the play being evaluated are assigned to that play, rather than prorated among the multiple targets or discoveries. Undiscovered pools are assumed to either bear all exploration costs (full cycle discoveries) or no exploration costs (half cycle discoveries). The weighted full- and half-cycle supply price is shown to be a more realistic estimate of the supply price of undiscovered pools in a play when stacked resources exist. The statistics required for this methodology are minimal, and resource estimates for prospects in other zones are not required. The equation relating the average pool finding cost to the discovery record is applicable to different scenarios regarding the presence of shallower and deeper resources. The equation derived for the two-outcome decision tree model is shown to be a special case of the general expression. 5 refs., 7 figs

  11. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  12. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  13. Nonlinear empirical model of gas humidity-related voltage dynamics of a polymer-electrolyte-membrane fuel cell stack

    Science.gov (United States)

    Meiler, M.; Andre, D.; Schmid, O.; Hofer, E. P.

    suitable experimental setup to apply fast variations of gas humidity is introduced and is used to investigate a 10 cell PEMFC stack under various operation conditions. Using methods like stepwise multiple-regression a good mathematical description with reduced free parameters is achieved.

  14. Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks

    International Nuclear Information System (INIS)

    Sasmito, Agus P.; Kurnia, Jundika C.; Mujumdar, Arun S.

    2012-01-01

    A careful design of gas and coolant channel is essential to ensure high performance and durability of proton exchange membrane (PEM) fuel cell stack. The channel design should allow for good thermal, water and gas management whilst keeping low pressure drop. This study evaluates numerically the performance of various gas and coolant channel designs simultaneously, e.g. parallel, serpentine, oblique-fins, coiled, parallel-serpentine and a novel hybrid parallel-serpentine-oblique-fins designs. The stack performance and local distributions of key parameters are investigated with regards to the thermal, water and gas management. The results indicate that the novel hybrid channel design yields the best performance as it constitutes to a lower pumping power and good thermal, water and gas management as compared to conventional channels. Advantages and limitation of the designs are discussed in the light of present numerical results. Finally, potential application and further improvement of the design are highlighted. -- Highlights: ► We evaluate various gas and coolant channel designs in liquid-cooled PEM fuel cell stack. ► The model considers coupled electrochemistry, channel design and cooling effect simultaneously. ► We propose a novel hybrid channel design. ► The novel hybrid channel design yields the best thermal, water and gas management which is beneficial for long term durability. ► The novel hybrid channel design exhibits the best performance.

  15. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  16. SO3 tinges stack gas from scrubbed coal-fired units

    International Nuclear Information System (INIS)

    Jones, C.; Ellison, W.

    1998-01-01

    The small amount of SO 3 in flue gas creates enough problems inside the plant. New US EPA regulations on so-called air toxics are making SO 3 discharge an emission problem as well - and a visible one at that. Units that have installed wet scrubbers to control SO 2 emissions may be most affected. The article explains that SO 3 levels in coal-fired power plants are mainly increased by catalytic oxidation of SO 2 by iron oxide on the fireside surfaces of the superheater tubes. Dependence on air-heater temperature is discussed. Wet FGD systems are responsible for the formation of 'blue eye' where SO 3 causes a blue hue in the plume. Ammonia injection has been effective in reducing SO 3 vapour, as has injecting water ahead of the electrostatic precipitator. Replacement of a wet ESP with a dry ESP is also a solution. 2 figs

  17. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    Science.gov (United States)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  18. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  19. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment.

    Science.gov (United States)

    Wu, Shijia; Li, Hui; Zhou, Xuechen; Liang, Peng; Zhang, Xiaoyuan; Jiang, Yong; Huang, Xia

    2016-07-01

    A novel stacked microbial fuel cell (MFC) which had a total volume of 72 L with granular activated carbon (GAC) packed bed electrodes was constructed and verified to present remarkable power generation and COD removal performance due to its advantageous design of stack and electrode configuration. During the fed-batch operation period, a power density of 50.9 ± 1.7 W/m(3) and a COD removal efficiency of 97% were achieved within 48 h. Because of the differences among MFC modules in the stack, reversal current occurred in parallel circuit connection with high external resistances (>100 Ω). This reversal current consequently reduced the electrochemical performance of some MFC modules and led to a lower power density in parallel circuit connection than that in independent circuit connection. While increasing the influent COD concentrations from 200 to 800 mg/L at hydraulic retention time of 1.25 h in continuous operation mode, the power density of stacked MFC increased from 25.6 ± 2.5 to 42.1 ± 1.2 W/m(3) and the COD removal rates increased from 1.3 to 5.2 kg COD/(m(3) d). This study demonstrated that this novel MFC stack configuration coupling with GAC packed bed electrode could be a feasible strategy to effectively scale up MFC systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites

    Science.gov (United States)

    Papanicolaou, G. C.; Pappa, E. J.; Portan, D. V.; Kotrotsos, A.; Kollia, E.

    2018-02-01

    The aim of the present investigation was to study the effect of both the stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites. Four types of multilayered hybrid nanocomposites were manufactured and tested: Nitinol- CNTs (carbon nanotubes)- Acrylic resin; Nitinol- Acrylic resin- CNTs; Surface treated Nitinol- CNTs- Acrylic resin and Surface treated Nitinol- Acrylic resin- CNTs. Surface treatment of Nitinol plies was realized by means of the electrochemical anodization. Surface topography of the anodized nitinol sheets was investigated through Scanning Electron Microscopy (SEM). It was found that the overall thermal response of the manufactured multilayered nano-composites was greatly influenced by both the anodization and the stacking sequence. A theoretical model for the prediction of the overall thermal conductivity has been developed considering the nature of the different layers, their stacking sequence as well as the interfacial thermal resistance. Thermal conductivity and Differential Scanning Calorimetry (DSC) measurements were conducted, to verify the predicted by the model overall thermal conductivities. In all cases, a good agreement between theoretical predictions and experimental results was found.

  1. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  2. Algebraic stacks

    Indian Academy of Sciences (India)

    Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

  3. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  4. Overview of flue gas treatment in Brazil

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Duarte, C.L.; Omi, N.M.; Poli, D.C.R.; Lima, W.

    2011-01-01

    The coal mines in Brazil are primarily located in southern part areas. The total coal reserves are approximately 32.8 billions tons, 89% of which are located in Rio Grande do Sul state. The Brazilian agriculture potentiality is very high, mainly due to the availability of flat land and the existence of industrial capacity to supply the main fertilizers needs. Electron beam flue gas treatment process ensures simultaneous removal of SO 2 and NO X from flue gases by single process, requiring no additional wastewater treatment system and can produce useful nitrogen fertilizer consisting of ammonium sulfate (NH 4 ) 2 SO 4 and ammonium nitrate NH 4 NO 3 as by-products. During the TC Project BRA/8/021 - Pilot Plant for Electron Beam Purification of Flue Gas supported by IAEA (1995-1996), a laboratory facility for electron beam flue gas treatment was set at IPEN. In 1997, an official request from Brazilian Government, Ministry of Science & Technology (MCT) and IPEN was made for the Japan Consulting Institute (JCI) to prepare feasibility studies of air pollution control by electron beam flue gas treatment in three power generation companies. These companies are responsible for the power generation, the transmission and the supply of electricity to Brazil: Jorge Lacerda – Eletrosul Centrais Eletricas do Sul do Brasil S.A., Presidente Medici – Companhia Estadual de Energia Eletrica (CEEE) and Piratininga – AES Eletropaulo Thermal Power Plants. (author)

  5. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  6. Overview of flue gas treatment in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, W. A.P.; Duarte, C. L.; Omi, N. M. [National Nuclear Energy Commission (CNEN), Institute for Nuclear and Energy Research (IPEN), Radiation Technology Center - CTR, Sao Paulo (Brazil); Poli, D. C.R.; Lima, W. [National Nuclear Energy Commission (CNEN), Institute for Nuclear and Energy Research (IPEN), Cyclotron Accelerator Center - CAC, Sao Paulo (Brazil)

    2011-07-01

    The coal mines in Brazil are primarily located in southern part areas. The total coal reserves are approximately 32.8 billions tons, 89% of which are located in Rio Grande do Sul state. The Brazilian agriculture potentiality is very high, mainly due to the availability of flat land and the existence of industrial capacity to supply the main fertilizers needs. Electron beam flue gas treatment process ensures simultaneous removal of SO{sub 2} and NO{sub X} from flue gases by single process, requiring no additional wastewater treatment system and can produce useful nitrogen fertilizer consisting of ammonium sulfate (NH{sub 4}){sub 2}SO{sub 4} and ammonium nitrate NH{sub 4}NO{sub 3} as by-products. During the TC Project BRA/8/021 - Pilot Plant for Electron Beam Purification of Flue Gas supported by IAEA (1995-1996), a laboratory facility for electron beam flue gas treatment was set at IPEN. In 1997, an official request from Brazilian Government, Ministry of Science & Technology (MCT) and IPEN was made for the Japan Consulting Institute (JCI) to prepare feasibility studies of air pollution control by electron beam flue gas treatment in three power generation companies. These companies are responsible for the power generation, the transmission and the supply of electricity to Brazil: Jorge Lacerda – Eletrosul Centrais Eletricas do Sul do Brasil S.A., Presidente Medici – Companhia Estadual de Energia Eletrica (CEEE) and Piratininga – AES Eletropaulo Thermal Power Plants. (author)

  7. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  8. Endwall Treatment and Method for Gas Turbine

    Science.gov (United States)

    Hathaway, Michael D. (Inventor); Strazisar, Anthony J. (Inventor); Suder, Kenneth L. (Inventor)

    2006-01-01

    An endwall treatment for a gas turbine engine having at least one rotor blade extending from a rotatable hub and a casing circumferentially surrounding the rotor and the hub, the endwall treatment including, an inlet formed in an endwall of the gas turbine engine adapted to ingest fluid from a region of a higher-pressure fluid, an outlet formed in the endwall and located in a region of lower pressure than the inlet, wherein the inlet and the outlet are in a fluid communication with each other, the outlet being adapted to inject the fluid from the inlet in the region of lower pressure, and wherein the outlet is at least partially circumferentially offset relative to the inlet.

  9. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  10. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  12. Electron-beam flue gas treatment

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    A new flue gas treatment process (EBA process) using an electron beam will be discussed. This EBA process is attracting worldwide attention as a new effective measure for solving acid rain problems and jointly developed by Ebara Corporation and the Japan Atomic Energy Research Institute. This process has many advantages: a) a dry process capable of removing high level SO x and NO x simultaneously, b) a process simple and easy to operate, c) production of agricultural fertilizers as salable by-products, and d) minimal installation space. Test results from the demonstration plant (max. gas flow rate of 24,000 m 3 N/h) which was erected in a coal-fired power station in Indianapolis, Indiana, U.S.A. will be presented. (author)

  13. HDT mixtures treatment strategies by gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Laquerbe, C.; Contreras, S.; Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)

    2008-07-15

    Gas phase chromatographic processes are of interest for the separation of hydrogen isotopes from an HDT mixture. For a certain quantity, they are very competitive and present several benefits. Nevertheless no active packing material allows to have simultaneously good enrichment performances for tritium production and high decontamination capabilities for HD gases. The influence of the packing material is first described in this article. Then two specific processes (TCAP and Reverse Chromatography), each well adapted to perform one target, are presented. Finally, the problematic to propose an optimized treatment scheme associating these two processes is formulated. (authors)

  14. HDT mixtures treatment strategies by gas chromatography

    International Nuclear Information System (INIS)

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-01-01

    Gas phase chromatographic processes are of interest for the separation of hydrogen isotopes from an HDT mixture. For a certain quantity, they are very competitive and present several benefits. Nevertheless no active packing material allows to have simultaneously good enrichment performances for tritium production and high decontamination capabilities for HD gases. The influence of the packing material is first described in this article. Then two specific processes (TCAP and Reverse Chromatography), each well adapted to perform one target, are presented. Finally, the problematic to propose an optimized treatment scheme associating these two processes is formulated. (authors)

  15. Live-cell imaging of dual-labeled Golgi stacks in tobacco BY-2 cells reveals similar behaviors for different cisternae during movement and brefeldin A treatment.

    Science.gov (United States)

    Madison, Stephanie L; Nebenführ, Andreas

    2011-09-01

    In plant cells, the Golgi apparatus consists of numerous stacks that, in turn, are composed of several flattened cisternae with a clear cis-to-trans polarity. During normal functioning within living cells, this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility, constant membrane flux through the cisternae, and Golgi enzyme recycling through the ER. In order to further investigate various aspects of Golgi stack dynamics and integrity, we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments, movement, and brefeldin A (BFA)-induced disassembly. A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm. The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead, but trans cisternae were also found at the leading edge. During BFA treatments, the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however, no consistent order could be detected. In contrast, the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected. Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER. In addition, we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.

  16. Early lessons from the Turner Valley Gas Plant: 'those smoke stacks got a lot of it'

    Energy Technology Data Exchange (ETDEWEB)

    Finch, D.

    2002-06-01

    Lessons learned (or not learned) since 1924 in Turner Valley in conjunction with the Royalite No. 4, Alberta's famous runaway well, is told. Initially the gas from this well contained 700 grains of hydrogen sulphide per 100 cubic feet of gas, delivered at such high pressure that no compression was necessary until 1938. Various technologies had been tried to scrub the gas, including a soda ash solution trickled down over a trellis of redwood grids in steel towers, absorbing the hydrogen sulphide. As early as 1925, the plant scrubbed 97 per cent of hydrogen sulphide from 45 million cubic feet of gas per day, making it the largest gas scrubbing plant in the world. However, the hydrogen sulphide scrubbed from the gas stream was being pumped out of twin 123-feet tall towers, and discharged into the atmosphere. At least one death is known to have been caused by the hydrogen sulphide, however, it is suspected that many more deaths have occurred on the ranches and homesteads located downwind from the plant, since people there breathed diluted hydrogen sulphide for 27 years. Royalite finally built a sulphur plant and began manufacturing elemental sulphur from the deadly gas processing byproduct. The issue of flaring has been a matter of serious concern in Alberta for a long time. Governments have made a variety of promises, usually prior to elections, to hold the industry to higher environmental standards, but such promises invariably last only a short time. Sooner or later every government appears to succumb to industry demands; after all, a large part of the provincial economy relies on the oil patch, and a significant portion of the provincial budget comes from direct and indirect taxation of the oil industry, the goose that lays the golden egg. To seriously deal with the issue of flaring, Albertans will need substantial changes in the management of the province.

  17. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  18. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    Science.gov (United States)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  19. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling

    Science.gov (United States)

    Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel

    Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling

  20. Toluene removal in a biofilm reactor for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1997-01-01

    A lab-scale trickling filter for treatment of toluene-containing waste gas was investigated. The filter performance was investigated for various loads of toluene. Two levels of the gas flow were examined, 322 m d(-1) and 707 m d(-1). The gas inlet concentrations were varied in the range from 0...

  1. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  2. Gas treatment processes for keeping the environment of nuclear plants free from gas-borne activity

    International Nuclear Information System (INIS)

    Schiller, H.

    1977-01-01

    The separation processes in gas treatment steps for the decontamination of circuit or offgas streams are described and their practicability is evaluated. Examples of the effectiveness of gas separation plants for keeping the environment within and without nuclear plants free from harmful gas-borne activity are presented. (orig.) [de

  3. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    Science.gov (United States)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  4. In situ gas treatment technology demonstration test plan

    International Nuclear Information System (INIS)

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  5. Biological off-gas treatment: let's make things better

    NARCIS (Netherlands)

    Groenestijn, J.W. van

    1998-01-01

    Biological off-gas treatment is the most effective cleaning method for many off-gases which contain low concentration of pollutants (<5 g/m3). The world market share in off-gas treatment is a few percent. Potential buyers are reserved because of existing biofilter quality differences and lack of

  6. Stack gas desulfurization using adsorbent materials based on copper oxide; Desulfuracion de gases de combustion usando materiales adsorbentes basados en oxido de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, Roberto; Rodas Grapain, Arturo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    One of main fossil fuels used to date in Mexico for power generation is the fuel oil, with a total participation of 32%. The Mexican fuel oil is constituted in average by 84% in weight of carbon, 11% hydrogen, 0.4% nitrogen, 0.2% oxygen, 4% sulfur and the remaining is assumed to be metals such as vanadium, nickel, calcium, magnesium among others. The purpose of the present paper is to show a new route of preparation of materials impregnated through the application of ultrasonic energy and to evaluate its performance in the stack gas desulfurization. [Spanish] Uno de los principales combustibles fosiles empleados actualmente en Mexico para la generacion de energia electrica es el combustoleo, con una participacion total del 32%. El combustoleo mexicano esta constituido en promedio por 84% en peso de carbono, 11% de hidrogeno, 0.4% de nitrogeno, 0.2% de oxigeno, 4% de azufre y el resto se asume a metales como vanadio, niquel, calcio, magnesio entre otros. El proposito del presente trabajo es mostrar una nueva ruta de preparacion de materiales impregnados a traves de la aplicacion de energia ultrasonica y evaluar su desempeno en la desulfuracion de gases de combustion.

  7. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    As SOFC technology is moving closer to a commercial break through, methods to measure the “state-of-health” of operating stacks are becoming of increasing interest. This requires application of advanced methods for detailed electrical and electrochemical characterization during operation....... An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... in the hydrogen fuel gas supplied to the stack. EIS was used to examine the long-term behavior and monitor the evolution of the impedance of each of the repeating units and the whole stack. The observed impedance was analyzed in detail for one of the repeating units and the whole stack and the losses reported...

  8. Electron beam application in gas waste treatment in China

    International Nuclear Information System (INIS)

    Wu Haifeng

    2003-01-01

    In the most recent decade, electron beam waste treatment technology attracted serious attention from environment policymaker and industrial leaders in power industry in China. Starting in middle of 1980's, Chinese research institute began experiment of electron beam treatment on flue gas. By the end of 2000, two 10,000 cubic meters per hour small scale electron beam gas purifying station were established in Sichuang province and Beijing. Several electron beam gas purifying demonstration projects are under construction. With robust economy and strong energy demand, needless to say, in near future, electron beam gas purifying technology will have a bright prospect in China. (author)

  9. System and method for treatment of a flue gas

    Science.gov (United States)

    Spiry, Irina Pavlovna; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Perry, Robert James; McDermott, John Brian

    2017-09-19

    A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.

  10. Analysis of the industrial treatment of gas

    Energy Technology Data Exchange (ETDEWEB)

    Shirkovskiy, A.I.; Belaya, N.N.; Nad, Z.

    1982-01-01

    Mathematical models, algorithms and programs are developed for calculation of the thermodynamic conditions of the operation of installations for low temperature separation, which made it possible, in an example of the gas condensate deposit of western Shatlyk, to predict the operation of low temperature separation installations to 1984.

  11. Pilot test of flue gas treatment by electron beam

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro

    1995-01-01

    The development of the technology of the desulfurization and denitration for flue gas by using electron beam was started in Japan in 1970s, and since then, the development research for putting it to practical use and the basic research on the subjects which must be resolved for promoting the practical use have been advanced. Based on these results, the verifying test using a pilot scale plant was carried out from 1991 to 1994 for the treatment of coal-burning flue gas, municipal waste-burning flue gas and highway tunnel exhaust gas. The operation of the pilot plant was already finished, and the conceptual design of a practical scale plant based on the results and the assessment of the economical efficiency were performed. As for the coal-burning flue gas treatment by using electron beam, the basic test, the pilot test and the conceptual design of a practical scale plant and the assessment of the economical efficiency are reported. As for the municipal waste-burning flue gas treatment by using electron beam, the basic test and the pilot test are reported. Also the pilot test on the denitration of exhaust gas in highway tunnels in reported. In Poland, the pilot test on the treatment of flue gas in coal-burning thermal power stations is carried out. In Germany, the technical development for cleaning the air contaminated by volatile organic compounds by electron beam irradiation is advanced. (K.I.)

  12. Dosimetry for combustion flue gas treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, K.; Bułka, S.; Sun, Y. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    The electron beam treatment of flue gas is one of the new technologies. There are several reasons for carrying out dosimetry at various phases of the project as understanding the process and optimizing the equipment, for process control and for troubleshooting in case of malfunction etc. The main challenge in measuring dose for flue gas applications is that the medium being irradiated is gaseous. Two general approaches for dose measurements are: adding/placing some dosimeters in the reaction vessel (gas) and using the components of the gas itself as a dosimeter. Various techniques and methods have been tried which are discussed in this paper. (author)

  13. Development of electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Namba, Hideki; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitake; Aoki, Shinji; Izutsu, Masahiro.

    1995-01-01

    Smoke treatment system making use of electron beam irradiation made it possible to simultaneously eliminate SOx and NOn from exhaust gas. The fundamental study of the system was started in the seventies and at present, its application in practical use is under way. A pilot plant for the smoke treatment system was constructed in cooperation of Chubu Electric Power Company, Inc., Japan Atomic Energy Research Institute and Ebara Corporation and several tests with the actual exhaust gas were conducted during the period, Oct. 1992-Dec. 1993 and the treatment efficiency and the control capacity of this system was confirmed to be so high as the conventional systems and many engineering data were obtained. A high treatment efficiency (>94% for desulfurization and >80% for denitrification) was obtainable by choosing the optimum irradiation amount of electron beam and the optimum temperature of gas to treat. And this system was found superior from a financial aspect to the conventional smoke treatment system. (M.N.)

  14. High power electron accelerators for flue gas treatment

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Flue gas treatment process based on electron beam application for SO 2 and NO x removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  15. High power electron accelerators for flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Flue gas treatment process based on electron beam application for SO{sub 2} and NO{sub x} removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  16. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  17. Emission of gaseous organic pollutants and flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun, Y.

    2007-01-01

    Gaseous organic pollutants are emitted into atmosphere from various sources, creating a threat to the environment and man. New, economical technologies are needed for flue gas treatment. Emission sources of pollutants are reviewed and different treatment technologies are discussed in this report. (authors)

  18. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  19. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  20. Simple Stacking Methods for Silicon Micro Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gianmario Scotti

    2014-08-01

    Full Text Available We present two simple methods, with parallel and serial gas flows, for the stacking of microfabricated silicon fuel cells with integrated current collectors, flow fields and gas diffusion layers. The gas diffusion layer is implemented using black silicon. In the two stacking methods proposed in this work, the fluidic apertures and gas flow topology are rotationally symmetric and enable us to stack fuel cells without an increase in the number of electrical or fluidic ports or interconnects. Thanks to this simplicity and the structural compactness of each cell, the obtained stacks are very thin (~1.6 mm for a two-cell stack. We have fabricated two-cell stacks with two different gas flow topologies and obtained an open-circuit voltage (OCV of 1.6 V and a power density of 63 mW·cm−2, proving the viability of the design.

  1. Microwave off-gas treatment apparatus and process

    Science.gov (United States)

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  2. Development of electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Tanaka, T.

    1995-01-01

    The electron beam flue gas treatment technology is expected to bring many advantages such as the simultaneous reduction of SO x and NO x emissions, a dry process without waste water, valuable fertilizer byproducts, etc. In order to verify the feasibility and performances of the process, a practical application test is carried out with a pilot plant which treats the actual flue gas from a coal-fired boiler. Results are presented. 4 figs., 2 tabs

  3. Hazardous gas treatment by atmospheric discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, J.

    2005-01-01

    hazardous gas emissions will be discussed. (Author)

  4. Electron-beam flue-gas treatment system

    International Nuclear Information System (INIS)

    Aoki, Sinji; Suzuki, Ryoji

    1994-01-01

    The damage of forests in the world due to acid rain has become serious problems, and the development of high efficiency and economical desulfurization and denitration technologies for combustion exhaust gas has been desired. Japan leads the world in exhaust gas treatment technology. The conventional technologies have been the desulfurization by lime gypsum process and the denitration by ammonia catalytic reduction process. The solution by entirely new concept is the electron beam treatment technology for exhaust gas. This technology is a dry process without drain, and does not require catalyst. The byproduct from this technology was approved as a fertilizer. The electron beam treatment technology is called EBA (electron beam with ammonia). The exhaust gas treatment technology by electron beam process is constituted by the cooling of exhaust gas, ammonia addition, electron beam irradiation and the separation of byproduct. The features of the technology are the simultaneous removal of sulfur and nitrogen oxides, dry process, the facilities are simple and the operation is easy, easy following to load variation and the utilization of byproduct. The reaction mechanism of desulfurization and denitration, the course of development, the electron beam generator, and the verifying test are reported. (K.I.)

  5. Physical and electrical characterizations of AlGaN/GaN MOS gate stacks with AlGaN surface oxidation treatment

    Science.gov (United States)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Shih, Hong-An; Nakazawa, Satoshi; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-06-01

    The impacts of inserting ultrathin oxides into insulator/AlGaN interfaces on their electrical properties were investigated to develop advanced AlGaN/GaN metal–oxide–semiconductor (MOS) gate stacks. For this purpose, the initial thermal oxidation of AlGaN surfaces in oxygen ambient was systematically studied by synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) and atomic force microscopy (AFM). Our physical characterizations revealed that, when compared with GaN surfaces, aluminum addition promotes the initial oxidation of AlGaN surfaces at temperatures of around 400 °C, followed by smaller grain growth above 850 °C. Electrical measurements of AlGaN/GaN MOS capacitors also showed that, although excessive oxidation treatment of AlGaN surfaces over around 700 °C has an adverse effect, interface passivation with the initial oxidation of the AlGaN surfaces at temperatures ranging from 400 to 500 °C was proven to be beneficial for fabricating high-quality AlGaN/GaN MOS gate stacks.

  6. Treatment of off-gas from lagoon sludge thermal decomposition

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Ga, M. J.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has launched a decommissioning program of the uranium conversion plant in 2001. The treatment of the sludge waste, which was generated during the operation of the plant and stored in the lagoon, is one of the most important tasks in the decommissioning program of the plant. The major compounds of the lagoon sludge are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and uranium compounds. The minor compounds are iron, magnesium, aluminum, silicon and phosphorus. A treatment process of the sludge was developed as figure 1 based on the results of the sludge characteristics and the developed treatment technologies. A treatment of off-gas evolved from the nitrate salts thermal decomposition is one of the important process. Off-gas treatment by using a selective catalytic reduction (SCR) method was investigated in this study

  7. Progress in standards for nuclear air and gas treatment

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1978-01-01

    Standardization in nuclear air and gas treatment spans a period of more than 25 years, starting with military specifications for HEPA filters and filter media, and now progressing to the development of a formal code analogous to the ASME Boiler and Pressure Vessel Code. Whereas the current standard for components and installation of nuclear air cleaning systems is limited to safety related facilities for nuclear power plants, the proposed code will cover all types of critical ventilation and air and gas treatment installations for all types of nuclear facilities

  8. Hyperbaric oxygen treatment for air or gas embolism.

    Science.gov (United States)

    Moon, R E

    2014-01-01

    Gas can enter arteries (arterial gas embolism) due to alveolar-capillary disruption (caused by pulmonary overpressurization, e.g., breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is sub-atmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces strokelike manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries. However, VGE can cause pulmonary edema, cardiac "vapor lock" and AGE due to transpulmonary passage or right-to-left shunt through a patent foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.

  9. Comprehensive treatment for gas gangrene of the limbs in earthquakes.

    Science.gov (United States)

    Wang, Yue; Lu, Bo; Hao, Peng; Yan, Meng-ning; Dai, Ke-rong

    2013-10-01

    Mortality rates for patients with gas gangrene from trauma or surgery are as high as 25%, but they increase to 50%-80% for patients injured in natural hazards. Early diagnosis and treatment are essential for these patients. We retrospectively analyzed the clinical characteristics and therapeutic results of 19 patients with gas gangrene of the limbs, who were injured in the May 2008 earthquake in the Wenchuan district of China's Sichuan province and treated in our hospital, to seek how to best diagnose and treat earthquake-induced gas gangrene. Of 226 patients with limbs open injuries sustained during the earthquake, 53 patients underwent smear analysis of wound exudates and gas gangrene was diagnosed in 19 patients. The average elapsed time from injury to arrival at the hospital was 72 hours, from injury to definitive diagnosis was 4.3 days, and from diagnosis to conversion of negative findings on wound smear analysis to positive findings was 12.7 days. Anaerobic cultures were also obtained before wound closure. The average elapsed time from completion of surgery to recovery of normal vital signs was 6.3 days. Of the 19 patients, 16 were treated with open amputation, two with closed amputation, and 1 with successful limb salvage; 18 patients were successfully treated and one died. In earthquakes, rapid, accurate screening and isolation are essential to successful treatment of gas gangrene and helpful in preventing nosocomial diffusion. Early and thorough debridement, open amputation, and active supportive treatment can produce satisfactory therapeutic results.

  10. Treatment of waste using a hybrid gas- water stabilized torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana; Beeckman, E.; Verstraeten, J.

    2005-01-01

    Roč. 5, č. 1 (2005), s. 7-12. ISBN 4-9900642-4-8 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * waste treatment Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  12. Treatment Of Mercury Target Off-Gas At SNS

    International Nuclear Information System (INIS)

    DeVore, Joe R.; Freeman, David W.

    2007-01-01

    The Spallation Neutron Source (SNS) is the first operational spallation source to use liquid Mercury as a target material. This paper describes the treatment system to remove volatile spallation products from a Helium purge stream that emanates from the Mercury target and adjustments made to achieve design goals in response to phenomena experienced during initial operations. The Helium stream is treated to remove volatile spallation products prior to environmental release because of its activity level as these accumulate in the gas space in the Mercury Loop. Unanticipated local dose rates were noted in treatment system components during low power startup. Gamma scanning of these components identified the presence of nineteen noble gas isotopes and their daughters, indicating that the doses resulted from noble gas sorption. Treatment of this equipment with stable Xenon greatly reduced but did not eliminate these. Significant moisture was also encountered in the system, resulting in the plugging of the system cold trap. Changes to some of the system equipment were required together with moisture elimination from components to which moisture was sorbed. Necessary re-configuration of Mercury pump components presented additional requirements and system control changes to accommodate system operation at reduced pressure. The Off-Gas Treatment System has been successfully operated since April, 2006. System availability and removal effectiveness have been high. Operational issues occurring during the first year of operation have been resolved.

  13. Handwriting on the power plant wall: flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Troupe, J.S.

    1979-08-01

    This paper reviews the present state of flue gas treatment technology. Describes the operation of four basic types of devices used by electric utilities:- mechanical dust collectors, electrostatic precipitators, wet scrubbers and fabric filters. Considers their reliability and cost, and outlines possible future trends.

  14. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors; Formulaire pour le calcul de la mecanique des empilements des reacteurs graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [French] Le domaine de ce formulaire est strictement limite aux effets mecaniques, pour les empilements, des deformations, thermiques ou autres, des structures metalliques de soutien (aire - support et corset). On propose un ensemble de relations qui ont ete etablies a la suite des essais de CHINON sur des maquettes de grande taille. Ces relations permettent le calcul des mouvements, des deformations et des contraintes dans les empilements du type EDF, a reseau horizontal triangulaire regulier. (auteurs)

  15. Off-gas treatment carbon footprint calculator : form and function

    Energy Technology Data Exchange (ETDEWEB)

    Kessell, L. [Good EarthKeeping Organization Inc., Corona, CA (United States); Squire, J.; Crosby, K. [Haley and Aldrich Inc., Boston, MA (United States)

    2008-07-01

    Carbon footprinting is the measurement of the impact on the environment in terms of the amount of greenhouse gases produced, measured in units of carbon dioxide released directly and indirectly by an individual, organization, process, event or product. This presentation discussed an off-gas treatment carbon footprint calculator. The presentation provided a review of off-gas treatment technologies and presented a carbon footprint model. The model included: form and function; parameters; assumptions; calculations; and off-gas treatment applications. Parameters of the model included greenhouse gases listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change, such as carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, hydrofluorocarbons, and perfluorocarbons. Assumptions of the model included stationary combustion emissions; mobile combustion emissions; indirect emissions; physical or chemical processing emissions; fugitive emissions; and de minimus emissions. The presentation also examined resource conservation and discussed three greenhouse gas footprint case studies. It was concluded that the model involved a calculator with standard calculations with clearly defined assumptions with boundaries. tabs., figs.

  16. Sour gas injection for use with in situ heat treatment

    Science.gov (United States)

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  17. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  18. Quantifying greenhouse gas emissions from waste treatment facilities

    DEFF Research Database (Denmark)

    Mønster, Jacob

    to be in-stalled in any vehicle and thereby enabling measurements wherever there were roads. The validation of the measurement method was done by releasing a controlled amount of methane and quantifying the emission using the release of tracer gas. The validation test showed that even in areas with large...... treatment plants. The PhD study reviewed and evaluated previously used methane measurement methods and found the tracer dispersion method promising. The method uses release of tracer gas and the use of mobile equipment with high analytical sensitivity, to measure the downwind plumes of methane and tracer...... ranged from 10 to 92 kg per hour and was found to change in even short timescales of a few hours. The periods with large emissions correlated with a drop in methane utilization, indicating that emissions came from the digesters tanks or gas storage/use. The measurements indicated that the main emissions...

  19. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method.

    Science.gov (United States)

    Miyake, Yuichi; Tokumura, Masahiro; Iwazaki, Yuta; Wang, Qi; Amagai, Takashi; Horii, Yuichi; Otsuka, Hideyuki; Tanikawa, Noboru; Kobayashi, Takeshi; Oguchi, Masahiro

    2017-06-16

    An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m 3 (assuming a sampling volume of 1m 3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m 3 . The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Treatment of low-temperature tar-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F

    1928-07-04

    Process for the treating and conversion of low-temperature tar-vapor and gas mixtures in the presence of metals or metal oxides as well as bodies of large surface, without previous condensation of the liquid material to be treated, characterized by the treatment taking place with a mixture of desulfurizing metals and metal oxides which, if necessary, are precipitated on carriers and large surface nonmetal cracking catalysts, such as active carbon and silica gel.

  1. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  2. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  3. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Directory of Open Access Journals (Sweden)

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  4. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  5. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  6. Technique for radiation treatment of exhaust gas due to combustion

    International Nuclear Information System (INIS)

    Machi, Sueo

    1978-01-01

    As the Japanese unique research in the field of preservation of environment, the technique to remove simultaneously sulphur dioxide and nitrogen oxides in exhaust gas using electron beam irradiation is noteworthy. This research was started by the experiment in the central research laboratory of Ebara Manufacturing Co., Ltd., in which it was found that the sulphur dioxide of initial concentration of 1,000 ppm was almost completely vanished when the exhaust gas of heavy oil combustion in a batch type vessel was irradiated for 9 minutes by electron beam. Based on this experiment, JAERI installed a continuous irradiation equipment with a large accelerator, and has investigated the effect of various parameters such as dose rate, irradiation temperature, total dose and agitation. This resulted in the remarkable finding that nitrogen oxides were also completely removed as well as sulphur dioxide when the exhaust gas containing both sulphur dioxide and nitrogen oxides was irradiated for a few seconds. In this case, if water of about 0.3% is added, removal rate of sulphur dioxide is greatly increased. The research group of University of Tokyo obtained other findings concerning removal rates. Then, after the pilot plant stage in Ebara Manufacturing Co., Ltd. from 1974, the test plant of exhaust gas treatment for a sintering machine, having the capacity of 3,000 Nm 3 /hr, has been constructed in Yawata Works of Nippon Steel Corp. This is now operating properly. (Wakatsuki, Y.)

  7. Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2017-01-01

    Plant-integrated methane (CH4) and nitrous oxide (N2O) emission quantifications were performed at five Scandinavian wastewater treatment plants, using a ground-based remote sensing approach that combines a controlled release of tracer gas from the plant with downwind concentration measurements. CH4...... emission factors were between 1 and 21% of CH4 production, and between 0.2 and 3.2% of COD influent. The main CH4 emitting sources at the five plants were sludge treatment and energy production units. The lowest CH4 emission factors were obtained at plants with enclosed sludge treatment and storage units...... in international guidelines. This study showed that measured CH4 and N2O emission rates from wastewater treatment plants were plant-specific and that emission rates estimated using models in current guidelines, mainly meant for reporting emissions on the country scale, were unsuitable for Scandinavian plant...

  8. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. FY-2001 Accomplishments in Off-gas Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas William

    2001-09-01

    This report summarizes the efforts funded by the Tank Focus Area to investigate nitrogen oxide (NOx) destruction (a.k.a. deNOx) technologies and off-gas scrubber system designs. The primary deNOx technologies that were considered are staged combustion (a.k.a. NOx reburning), selective catalytic reduction, selective non-catalytic reduction, and steam reformation. After engineering studies and a team evaluation were completed, selective catalytic reduction and staged combustion were considered the most likely candidate technologies to be deployed in a sodium-bearing waste vitrification facility. The outcome of the team evaluation factored heavily in the establishing a baseline configuration for off-gas and secondary waste treatment systems.

  10. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  11. Safety evaluation of BWR off-gas treatment systems

    International Nuclear Information System (INIS)

    Schultz, R.J.; Schmitt, R.C.

    1975-01-01

    Some of the results of a safety evaluation performed on current generic types of BWR off-gas treatment systems including cooled and ambient temperature adsorber beds and cryogenics are presented. The evaluation covered the four generic types of off-gas systems and the systems of five major vendors. This study was part of original work performed under AEC contract for the Directorate of Regulatory Standards. The analysis techniques employed for the safety evaluation of these systems include: Fault Tree Analysis; FMECA (Failure Mode Effects and Criticality Analysis); general system comparisons, contaminant, system control, and design adequacy evaluations; and resultant Off-Site Dose Calculations. The salient areas presented are some of the potential problem areas, the approach that industry has taken to mitigate or design against potential upset conditions, and areas where possible deficiencies still exist. Potential problem areas discussed include hydrogen detonation, hydrogen release to equipment areas, operator/automatic control interface, and needed engineering evaluation to insure safe system operation. Of the systems reviewed, most were in the category of advanced or improved over that commonly in use today, and a conclusion from the study was that these systems offer excellent potential for noble gas control for BWR power plants where more stringent controls may be specified -- now or in the future. (U.S.)

  12. Stacking the Equiangular Spiral

    OpenAIRE

    Agrawal, A.; Azabi, Y. O.; Rahman, B. M.

    2013-01-01

    We present an algorithm that adapts the mature Stack and Draw (SaD) methodology for fabricating the exotic Equiangular Spiral Photonic Crystal Fiber. (ES-PCF) The principle of Steiner chains and circle packing is exploited to obtain a non-hexagonal design using a stacking procedure based on Hexagonal Close Packing. The optical properties of the proposed structure are promising for SuperContinuum Generation. This approach could make accessible not only the equiangular spiral but also other qua...

  13. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  14. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  15. Intravitreal gas injection for the treatment of diabetic macular edema

    Directory of Open Access Journals (Sweden)

    McHugh D

    2011-10-01

    Full Text Available Dominic McHugh, Bhaskar Gupta, Manzar Saeed King's College Hospital, Denmark Hill, London, England, UK Purpose: This study investigates the efficacy of an intravitreal gas injection in inducing a posterior vitreous detachment (PVD in patients with clinically significant diabetic macular edema refractory to laser therapy. Methods: A local ethics committee-approved technique of an intravitreal injection of pure perfluoropropane gas (C3F8 was performed for all participants. After a period of prone positioning, the patients underwent regular and detailed clinical review. Main outcome measures: The induction of a PVD, change in macular thickness, change in visual acuity. Results: A PVD was induced in all five eyes with subsequent signs of reduction in macular thickness and resolution of exudates. Mean visual improvement was 11 ETDRS (Early Treatment Diabetic Retinopathy Study letters (range 4–21. Apart from a transient vitreous hemorrhage in one eye, there were no significant treatment-related complications. Conclusion: The induction of a PVD by pneumatic retinopexy appears to have a significant influence on diabetic macular edema in eyes which have not successfully responded to macular laser therapy. A randomized clinical trial is justified on the basis of the initial promising data. Keywords: optical coherence tomography, OCT, posterior vitreous detachment, perfluoropropane

  16. Preliminary exploitation of industrial facility for flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Zimek, Z.; Iller, E.; Tyminski, B.; Licki, J.

    2001-01-01

    Full text: High emission of SO 2 and NO x in the process of fossil fuel combustion creates a major world environmental problem. Poland which uses for energy production mainly pit and brown coal produces these pollutants as well. The certain amount of SO 2 and slightly less NO x pollutants is introduced into the atmosphere. 1/2 of SO 2 and 1/3 NO x pollution is contributed by heat and electricity generating boilers. The biggest sources of pollution are located in south west side of Poland and are connected with industrial centers but over 45% of the total 802 and 69% of NO x pollutants distributed over polish territory come from external sources. The laboratory facility for flue gas treatment radiation technology was organized in Institute of Nuclear Chemistry and Technology at Warsaw at the end of 80s. Soon after the pilot plant for flue gas treatment with electron beam has been installed at Power Plant Kaweczyn near Warsaw. The flow capacity trough those installations was respectively 400 and 20000 Nm /h. Three new elements have been introduced to the construction of the radiation chamber in Polish pilot installation. Those are: cascade double stage irradiation, longitudinal irradiation, (beam scanned along the chamber axis) and the air blow under the chamber window with the purpose to create air curtain separating the window from the flue gases causing corrosion. Three different system for filtration aid has been constructed and tested: bag filter, gravel bead filter and electrostatic precipitator. The pilot plant installation was used to establish the optimal parameters of industrial facility: optimizing of the process parameters leading to reduction of energy with high efficiency of SO 2 and NO x removal; selecting and testing filter devices and filtration process; developing of the monitoring and control systems at industrial plant for flue gas cleaning, preparation of the design for industrial scale facility. The positive results of the tests performed on

  17. Stack Monitoring System At PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Zamrul Faizad Omar; Mohd Sabri Minhat; Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Izhar Abu Hussin

    2014-01-01

    This paper describes the current Stack Monitoring System at PUSPATI TRIGA Reactor (RTP) building. A stack monitoring system is a continuous air monitor placed at the reactor top for monitoring the presence of radioactive gaseous in the effluent air from the RTP building. The system consists of four detectors that provide the reading for background, particulate, Iodine and Noble gas. There is a plan to replace the current system due to frequent fault of the system, thus thorough understanding of the current system is required. Overview of the whole system will be explained in this paper. Some current results would be displayed and moving forward brief plan would be mentioned. (author)

  18. Treatment of gas from an in situ conversion process

    Science.gov (United States)

    Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  19. Industrial plant for electron beam flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Tyminnski, B.; Zimek, Z; Ostapczuk, A.; Licki, J.

    2001-01-01

    The electron beam flue gas treatment technology was invented many years ago. Research on the process has been carried out in Japan, USA, Germany and Poland. However, the recent fidings, based on the experiments performed at pilot plant at Electric Power Station Kaweczyn, led to developments which made process mature just at the dawn of the XXI century. The process is being implemented in the full industrial scale at Electric Power Station Pomorzany (Dolna Odra EPS Group). Other developments are reported in Japan and after Nagoya's pilot plant experiments, an industrial plant has been built in China and another one is constructed in Japan. There are remarkable differences in technological and design solutions applied in all these installations. Developments achieved at EPS Kaweczyn pilot plant and INCT laboratory unit were the basis for the project realized at EPS Pomorzan

  20. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  1. Stochastic stacking without filters

    International Nuclear Information System (INIS)

    Johnson, R.P.; Marriner, J.

    1982-12-01

    The rate of accumulation of antiprotons is a critical factor in the design of p anti p colliders. A design of a system to accumulate higher anti p fluxes is presented here which is an alternative to the schemes used at the CERN AA and in the Fermilab Tevatron I design. Contrary to these stacking schemes, which use a system of notch filters to protect the dense core of antiprotons from the high power of the stack tail stochastic cooling, an eddy current shutter is used to protect the core in the region of the stack tail cooling kicker. Without filters one can have larger cooling bandwidths, better mixing for stochastic cooling, and easier operational criteria for the power amplifiers. In the case considered here a flux of 1.4 x 10 8 per sec is achieved with a 4 to 8 GHz bandwidth

  2. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  3. Basic research on flue gas smoke treatment by electron beam

    International Nuclear Information System (INIS)

    Namba, Hideki

    1995-01-01

    Recently, accompanying the increase of the use of fossil fuel, the environment destruction due to the sulfur oxides and nitrogen oxides contained in combustion smoke has become a serious problem. The development of flue gas smoke treatment technology by using electron beam was started in Japan, and attention has been paid worldwide as the promising dry type simultaneous desulfurizing and denitrating process. In this process, by adding ammonia to smoke, and irradiating electron beam on it, ammonium nitrate and ammonium sulfate are formed. As to the reaction mechanism of denitration and desulfurization, radical formation, radical reaction, denitration mechanism, desulfurization mechanism, the particle size distribution of the formed aerosol, the amounts of denitration and desulfurization by electron beam smoke treatment process, the improvement of the denitration efficiency by multi-stage irradiation method and the improvement of the desulfurization rate by low temperature irradiation, and the basic test toward the pilot test are explained. The basic research for putting this system to practical use was carried out jointly by Japan Atomic Energy Research Institute, Chubu Electric Power Co., Inc., and Ebara Seisakusho for standard coal burning smoke in Japan. The verifying test at the pilot plant in Shinnagoya Thermal Power Station was carried out, and it was verified that this process can be used practically for treating coal-burning smoke. (K.I.)

  4. Testing and Evaluation of an Advanced High Performance Planar SOFC Stack

    National Research Council Canada - National Science Library

    Elangovan, S

    1999-01-01

    .... SOFCo has conducted several programs which synergistically address this objective: an internally funded program focusing on stack development and system integration for pipeline natural gas (PNG...

  5. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  6. Electron beam coal combustion flue gas treatment developments in Poland

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1994-01-01

    The research on EB(electron beam) flue gas treatment has started in Poland since 1985. It followed early tests performed in Japan, USA and Germany. The first tests using batch method were carried out in Institute of Atomic Energy. The continuous flow laboratory installation (400 Nm 3 /h) has been constructed in the Institute of Nuclear Chemistry and Technology (INCT) then. This installation containing ILV-6 electron beam accelerator (power 20 kW, energy of electrons 0-2 MeV) is equipped with additional microwaves generator. The eb or eb/mw energy can be applied to treated flue gas. On the basis of laboratory test an industrial pilot plant has been constructed at EPS Kaweczyn near Warsaw. At this plant being the biggest of this kind (20 000 Nm 3 /h) for the first time in industrial conditions multistage irradiation has been applied (two ELW-3 accelerators 50 kW each, energy of electrons 600-800 keV). High efficiency of SO 2 and NO x simultaneous removal, usable product (fertilizer), lower (in comparison with conventional technologies - FGD/SCR) investment and operational costs are the main advantages which have led to decision about starting demonstration industrial project. Feasibility study has been prepared for EPS Pomorzany, Szczecin, Poland. The plant planned will treat flue gases from power/heat generation block (2 Benson type boilers 56 MW e plus 40 MW th each). To meet Polish limits of 1997 half of flue gases will be treated with removal efficiency of 90% for SO 2 and 70% for NO x . Total flow rate will be equal to 270 000 Nm 3 /h. (author)

  7. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  8. Sorption Modeling and Verification for Off-Gas Treatment

    International Nuclear Information System (INIS)

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue; Yiacoumi, Sotira; Tsouris, Costas; Ladshaw, Austin; Sharma, Ketki; Gabitto, Jorge; DePaoli, David

    2015-01-01

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  9. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  10. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    Rigney, T.K. II; Saville, M.P.

    1993-01-01

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  11. Iridium Interfacial Stack (IRIS)

    Science.gov (United States)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  12. Feature of flue gas treatment by electron-beam irradiation and details of its development

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Suzuki, Nobutake.

    1986-01-01

    The method of flue gas treatment with an electron beam, developed jointly by Japan Atomic Energy Research Institute and Ebara Corporation, is promising as a simple, dry process, not using a catalyst, of the desulfurization and denitration. In the procedure, flue gas is irradiated with an electron beam in the presence of ammonia, so that sulfurous acid gas and nitrogen oxide are converted to ammonium sulfate and ammonium nitrate particles, which are then removed. The method is already demonstrated in the flue gas treatment of an iron ore sintering furnace as pilot test. And further, the pilot tests in coal combustion flue gas treatment are proceeding in the United States and West Germany. For the flue gas treatment method using an electron beam, the mechanisms of desulfurization and denitration, the course taken in its development and the present state of development are described, and also the future outlook and problems. (Mori, K.)

  13. Current status of electron beam treatment of flue gas in China

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2006-01-01

    Fossil resource especially coal will remain the main energy resource in China over the next 3 ∼4 decades. Pollution of flue gas from fossil power station is one problem being desiderated to solve since 1990's. Electron beam treatment of flue gas as an advanced technique has been developed and used by some institutes and industries in China. The current status of flue gas treatment using electron beam and the development of electron accelerator in China are reviewed. (author)

  14. Gas plasma treatment: a new approach to surgery?

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Kieft, I.E.; Sladek, R.E.J.; Laan, van der E.P.; Slaaf, D.W.

    2004-01-01

    In this survey we analyse the status quo of gas plasma applications in medical sciences. Plasma is a partly ionized gas, which contains free charge carriers (electrons and ions), active radicals, and excited molecules. So-called nonthermal plasmas are particularly interesting, because they operate

  15. Greenhouse gas emissions from municipal wastewater treatment plants

    Science.gov (United States)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    Operating wastewater treatment plants (WWTP) represent a source of greenhouse gases (GHG). Direct GHG emissions include emissions of methane (CH4) and nitrous oxide (N2O) that can be biologically produced during wastewater and sewage sludge treatment. This is also highlighted in the Intergovernmental Panel on Climate Change (IPCC 2006) guidelines used for national GHG inventories. Indirect GHG emissions occur at WWTPs mainly by the consumption of electricity, fossil fuel for transportation and by the use of chemicals (e.g. coagulants). In this study, the impact of direct and indirect GHG emissions was quantified for two model WWTPs of 50.000 person equivalents (p.e.) using carbon footprint analyses. It was assumed that at one WWTP sewage sludge is digested anaerobically, at the other one it is aerobically stabilised in the activated sludge tank. The carbon footprint analyses were performed using literature emission factors. A new estimation model based on measurements at eight Austrian WWTPs was used for the assessment of N2O direct emissions (Parravicini et al., 2015). The results of the calculations show that, under the selected assumptions, the direct N2O emission from the activated sludge tank can dominate the carbon footprint of WWTP with a poor nitrogen removal efficiency. Through an improved operation of nitrogen removal several advantages can be gained: direct N2O emissions can be reduced, the energy demand for aeration can be decreased and a higher effluent quality can be achieved. Anaerobic digesters and anaerobic sludge storage tanks can become a relevant source of direct CH4 emissions. Minimising of CH4 losses from these sources improves the carbon footprint of the WWTP also increasing the energy yield achievable by combusting this renewable energy carrier in a combined heat and power unit. The estimated carbon footprint of the model WWTPs lies between 20 and 40 kg CO2e/p.e./a. This corresponds to 0.2 to 0.4% of the CO2e average emission caused yearly

  16. Five stacks over the Danube

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Following the departure of Communism, Hungary adopted the most ambitious privatisation programme of all the eastern European countries. Within a year the state electricity company, MVM, and the oil and gas company, MOL, were prepared for sale and a consequent injection of foreign capital. Control of prices by central government inhibited investment initially but a new legal framework put in place in 1995 introduced a pricing regime more attractive to external investors. Particular interest was shown in the 2,200MW mixed heavy oil and natural gas power plant at Dunamenti on the Danube, characterised by its five stacks of varying height which reflect the changing technology employed at the plant. The bid was won by Tractabel of Belgium who have been highly successful in improving plant efficiency. However, the impact of privatisation is now being felt in uncertainty over fuel supply. Removing such uncertainty in order to maintain existing investment and provide the additional 4000MW of generating capacity needed to keep pace with demand, is a major problem which the incoming government faces. (UK)

  17. Forming gas treatment of lithium ion battery anode graphite powders

    Science.gov (United States)

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  18. Analytical treatment of gas flows through multilayer insulation, project 1

    Science.gov (United States)

    Lin, J. T.

    1972-01-01

    A theoretical investigation of gas flow inside a multilayer insulation system was made for the case of the broadside pumping process. A set of simultaneous first-order differential equations for the temperature and pressure of the gas molecules through the perforations on the insulation layers. A modified Runge-Kutta method was used for numerical experiment. The numerical stability problem was also investigated. It was shown that when the relaxation time is less than the time period over which the gas properties change appreciably, the set of differential equations can be replaced by a set of algebraic equations for solution. Numerical examples were given and comparisons with experimental data were made.

  19. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    NARCIS (Netherlands)

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before

  20. MEAN STACK WEB DEVELOPMENT

    OpenAIRE

    Le Thanh, Nghi

    2017-01-01

    The aim of the thesis is to provide a universal website using JavaScript as the main programming language. It also shows the basic parts anyone need to create a web application. The thesis creates a simple CMS using MEAN stack. MEAN is a collection of JavaScript based technologies used to develop web application. It is an acronym for MongoDB, Express, AngularJS and Node.js. It also allows non-technical users to easily update and manage a website’s content. But the application also lets o...

  1. Die-stacking architecture

    CERN Document Server

    Xie, Yuan

    2015-01-01

    The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the ""memory wall"" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to design

  2. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  3. A simple treatment of fission gas for normal and accident conditions

    International Nuclear Information System (INIS)

    Matthews, J.R.; Wood, M.H.

    1980-01-01

    A set of simple modules have been developed to describe fission gas release and swelling in oxide nuclear fuels for use in fuel behaviour codes. The methods used are simplifications of earlier more detailed work and contain several important developments that allow for improved accuracy over earlier simple treatments and the description of the fission gas bubble population with little penalty in computer time or storage. The three modules are: (i) intragranular fission gas behaviour during normal operation, which treats gas bubble nucleation, growth and destruction by fission fragments and the diffusion of gas to the grain boundaries by single gas atom diffusion, (ii) intragranular fission gas behaviour during rapid transients which treats the migration and coalescence of gas bubbles, the sweeping up of fission gas atoms by bubbles and the drift of gas bubbles to the grain boundary under the driving force of the temperature gradient, and (iii) intergranular fission gas behaviour, which treats the growth and interaction of face and edge bubbles on the grain boundary, their interlinkage and gas release. All these models allow for transient behaviour and are compared with experimental observations of both macroscopic swelling and gas release (and retention) and microscopic observations of bubble sizes and concentrations. (author)

  4. New approach for dynamic flow management within the PEMFC stack

    International Nuclear Information System (INIS)

    Varlam, Mihai; Culcer, Mihai; Carcadea, Elena; Stefanescu, Ioan; Iliescu, Mariana; Enache, Adrian

    2009-01-01

    An adequate gas and water flow management is a key issue to reach and maintain a higher output power for a PEM fuel cell stack. One of the main aspects which could limit the performance of a PEM fuel cell stack is the weak capability for a non-uniform water distribution management within the fuel cell. The produced water could become a handicap to attain the best working performance by blocking the catalytic surfaces and by preventing the mass transport process. Usually, the excess water is removed in one cell, comparatively to others from the stack and taking into account that all the cells are supplied in parallel from a common air admission pipe, a limitation of gas flow rate within that cell is created. Consequently, this constraint will reduce further the water removal speed. This feedback process will generate finally a drastic decrease of the fuel cell stack performance. A new practical solution to this water and gas non-uniformity of distributions problem is to use a sequential purge procedure of several fuel cell groups inside the stack which could guarantee a right management of water. An experimental setup has been built based on four fuel cell stack. Every fuel cell was connected to a single removal pipe via a solenoid valve. A computer-controlled hardware and software system has been designed and built, in order to generate a given opening-closing sequence for the automatic valve system. (authors)

  5. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  6. Dealuminization treatment effect of krypton gas adsorption on zeolite

    International Nuclear Information System (INIS)

    Shin, J. M.; Shin, S. W.; Park, J. J.; Lee, H. H.; Yang, M. S.

    2003-01-01

    During the OREOX process of DUPIC fuel fabrication, krypton is released as a noble fission gas. In order to treat Kr safely, adsorption method on solids havs been selected. In order to determine the optimum extraction conditions of zeolite for Kr adsorption, the preliminary experiments for the concentration of hydrochloric acid were conducted. It was found that zeolite treated with 2N hydrochloric acid solution is superior to the zeolite untreated with HCl solution. When the zeolite was treated with 2N hydrochloric acid, it was found that the surface area was decreased. The micropores and the pore volume were increased and the adsorption amount of Kr gas was increased

  7. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  8. Japan’s experience of flue gas treatment by electron beams

    International Nuclear Information System (INIS)

    Machi, S.

    2011-01-01

    The electron beam flue gas treatment technology was invented in Japan in 1970's. The paper presents the outlook of the Japanese activities on the development and present state of EBFGT technology. (author)

  9. Japan’s experience of flue gas treatment by electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Machi, S.

    2011-07-01

    The electron beam flue gas treatment technology was invented in Japan in 1970's. The paper presents the outlook of the Japanese activities on the development and present state of EBFGT technology. (author)

  10. Treatment of exhaust gas from the semiconductor manufacturing process. 3; Handotai seizo sochi kara no hai gas shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, A. [Ebara Research Co. Ltd., Kanagawa (Japan); Mori, Y.; Osato, M.; Tsujimura, M. [Ebara Corp., Tokyo (Japan)

    1995-10-20

    Demand has been building up for an individual dry type scrubber for treating exhaust gas from the semiconductor manufacturing process. Some factors for the wide acceptance of such a scrubber would be the capability for complete treatment, easy maintenance and safety features, etc. Practical gas analysis and optimum scrubbing techniques would have to be applied, as well as effective monitoring, alarm, and fail-safe techniques. The overall exhaust gas line, i.e. the line connecting the scrubber system and the upstream process, including that extending to pump system, has to be fully considered for enabling effective scrubbing performance. Such factors, which have until now not been given any priority, would have to be fully studied for the development of a practical, individual dry type scrubber. Cooperation on this matter from the semiconductor manufacturing industry would also be essential. 6 refs., 3 figs., 5 tabs.

  11. Pilot plant for flue gas treatment - continuous operation tests

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Iller, E.; Zimek, Z.; Licki, J.; Radzio, B.

    1995-01-01

    Tests of continuous operation have been performed on pilot plant at EPS Kaweczyn in the wide range of SO 2 concentration (500-3000 ppm). The bag filter has been applied for aerosol separation. The high efficiencies of SO 2 and NO x removal, approximately 90% were obtained and influenced by such process parameters as: dose, gas temperature and ammonia stoichiometry. The main apparatus of the pilot plant (e.g. both accelerators) have proved their reliability in hard industrial conditions. (Author)

  12. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  13. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  14. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  15. Spherical Torus Center Stack Design

    International Nuclear Information System (INIS)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-01

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device

  16. Technology of off-gas treatment for liquid-fed ceramic melters

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.A.; Goles, R.W.; Peters, R.D.

    1985-05-01

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs.

  17. State of the art of membrane technology for treatment of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Donno, S. De

    1997-11-01

    This topic has been selected in accordance with a general interest expressed by the Gas Industry. Membranes technology is achieving industrial success in many operations for selective fluids separation. In the specific area of natural gas treatment, membranes are viewed as a technological breakthrough in the coming years despite the fact that the real entity of their potential advantage on conventional technologies has still to be clarified. Aim of this report has been an overview of the overall potentiality and present limits of the use of membranes in natural gas treatment with emphasis on requirements and conditions which could enable established applications of membranes in short to medium terms. This Committee report is based on recent literature and on the opinions of gas companies active and/or interest in technology development of membranes for naturla gas. (au) 27 refs.

  18. Improved vacuum sealing drainage in the treatment of gas gangrene: a case report.

    Science.gov (United States)

    Liu, Zhaofa; Zhao, Dewei; Wang, Benjie

    2015-01-01

    In this case, improved vacuum sealing drainage was used for gas gangrene treatment, which is different from traditional therapies of gas gangrene and this is the first report of using improved vacuum sealing drainage to treat gas gangrene. The patient was a 12-year-old Asian Male who was presented to the Emergency Department with a one-day history of left femoral progressing swelling, paining and fevering. Four days ago, rusty iron bars were plugged into the muscle of the left femoral when he played. Then he was taken to the local clinic and injected with tetanus antitoxin. A diagnosis of gas gangrene was made and modified vacuum sealing drainage device was used after thorough debridement. After two weeks' treatment, left femoral was kept and gas gangrene was cured successfully.

  19. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  20. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    Science.gov (United States)

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View Texas A& M; DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-20

    This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on the active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection

  2. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-01-01

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 o C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  3. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China); Chang, Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China); Li, Zhenjiang, E-mail: zjli126@126.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  4. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  5. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    International Nuclear Information System (INIS)

    Lu Na; Li Jie; Wu Yan; Masayuki, Sato

    2012-01-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO 2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O 2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO 2 could be induced by the pulsed discharge plasma and addition of TiO 2 aided the decoloration of Acid Orange II.

  6. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2009-01-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  7. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2008-03-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  8. Preparation of alveolate hydrophobic catalyst for tritium waste gas treatment

    International Nuclear Information System (INIS)

    Yang, Yong; Peng, Shuming; Wang, Heyi; Du, Yang; Li, Jiamao

    2016-01-01

    Highlights: • The catalyst is hydrophobic, it will not be poisoned by steam in room air at room temperature which is better than Pt-Al 2 O 3 . • At room temperature, the conversion of low concentration of H2 and tritium gas in room air over the catalyst is high. • The air resistance of catalyst is much lower than graininess Pt-Al 2 O 3 . • It is inorganic and will not burn. - Abstract: To prepare a catalyst for the detritiation of waste gases at high flow rates, a heat-resistant hydrophobic zeolitic molecular sieve coating was synthesized on the surface of alveolate cordierite by hydrothermal processing. The alveolate hydrophobic catalyst prepared from the support was essentially waterproof and not easily poisoned by moisture. At room temperature, the conversion of low concentrations of H 2 in humid air over the catalyst was higher than 95% at different space velocities (0–16,000 h −1 ) and different relative humidities. The reaction rate constant of the oxidation of tritium over alveolate hydrophobic catalyst is 0.182 s −1 at 293.3 K–293.7 K and 59%–60% RH, it is much higher than the catalyst of reference honeycomb catalyst.

  9. Hazardous gas treatment using atmospheric pressure microwave discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon

    2005-01-01

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low (∼100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min -1 and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h) -1 . This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs

  10. Development of exhaust gas treatment technologies for environment protection

    International Nuclear Information System (INIS)

    David, E.; Stefanescu, I.; Stanciu, V.; Niculescu, V.; Sandru, C.; Armeanu, A.; Bucura, F.; Sisu, C.

    2006-01-01

    Full text: The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the immediate term over the next 10 - 20 years at least, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove other pollutants such as SO x and NO x which are released in the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this types of plants. Hence, efficient, cost-effective capture/separation technologies will need to be developed in order to allow their large-scale use. (authors)

  11. Natural gas use in treatment of steel surfaces; Utilizacao de gas natural em tratamento de superficies de aco

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Andre Dias; Machado, Antonio Rogerio; Rocha, Ivan; Azevedo, Jorge; Oshiro, Hugo K.; Konishi, Ricardo; Lehmkuhl, Willian [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Piazza, Walter [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2011-12-21

    The surface treatments of metals, such as carburizing, rely on processing under high temperature in carbon rich atmospheres. The atmosphere is industrially generated using the partial oxidation of a carbon rich fuel, such as propane, butane or methanol. This article reports a study of the production of a carburizing atmosphere for surface treatment of steel from the partial oxidation of natural gas in a catalytic reactor. The reactor studied was a production size reactor with 300 mm of diameter and 1500 mm of length, packed with alumina supported nickel catalyst. The quality of the carburizing gas was evaluated from its carbon potential of the carburizing gas that was calculated from the concentrations of carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxygen (O{sub 2}) and methane (CH{sub 4}) measured at the reactor's exit. The results indicate that CO concentration is very close to equilibrium, while CO{sub 2} is higher and CH{sub 4} is lower. Examining the reactor, the conclusion was that there was an axial temperature gradient, resulting in lower residence time under the required processing temperature. This resulted in smaller decomposition of CH{sub 4} and smaller production of CO{sub 2}. An equilibrium calculation of carbon potential, expressed as weight percent of carbon in iron, was developed to predict the possible optimizations of mixture composition and reactor temperature for a given required carbon potential. Conclusion: it is possible to generate a carburizing atmosphere under well controlled and repeatable conditions for the carbon potentials required for surface carburizing of steels in industrial processing using natural gas and air mixtures. (author)

  12. Pilot-scale tests for EB flue gas treatment process in Japan

    International Nuclear Information System (INIS)

    Sato, S.; Tokunaga, O.; Namba, H.

    1994-01-01

    A review of electron beam applications for flue gas treatment in Japan has been done. Several pilot plants are being performed for commercial use of electron beams process for cleaning of flue gas from low-sulfur coal burning boiler, a municipal waste incinerator and for removal of NO x from a ventilation exhaust of a highway tunnel. Outlines of three pilot-scale tests are introduced. 9 refs, 4 figs

  13. Maturing of SOFC cell and stack production technology and preparation for demonstration of SOFC stacks. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    2006-07-01

    The TOFC/Riso pilot plant production facility for the manufacture of anode-supported cells has been further up-scaled with an automated continuous spraying process and an extra sintering capacity resulting in production capacity exceeding 15,000 standard cells (12x12 cm2) in 2006 with a success rate of about 85% in the cell production. All processing steps such as tape-casting, spraying, screen-printing and atmospheric air sintering in the cell production have been selected on condition that up-scaling and cost effective, flexible, industrial mass production are feasible. The standard cell size is currently being increased to 18x18 cm2, and 150 cells of this size have been produced in 2006 for our further stack development. To improve quality and lower production cost, a new screen printing line is under establishment. TOFC's stack design is an ultra compact multilayer assembly of cells (including contact layers), metallic interconnects, spacer frames and glass seals. The compactness ensures minimized material consumption and low cost. Standard stacks with cross flow configuration contains 75 cells (12x12cm2) delivering about 1.2 kW at optimal operation conditions with pre-reformed NG as fuel. Stable performance has been demonstrated for 500-1000 hours. Significantly improved materials, especially concerning the metallic interconnect and the coatings have been introduced during the last year. Small stacks (5-10 cells) exhibit no detectable stack degradation using our latest cells and stack materials during test periods of 500-1000 hours. Larger stacks (50-75 cells) suffer from mal-distribution of gas and air inside the stacks, gas leakage, gas cross-over, pressure drop, and a certain loss of internal electrical contact during operation cycles. Measures have been taken to find solutions during the following development work. The stack production facilities have been improved and up-scaled. In 2006, 5 standard stacks have been assembled and burned in based on

  14. An investigation of gas separation membranes for reduction of thermal treatment emissions

    International Nuclear Information System (INIS)

    Stull, D.M.; Logsdon, B.W.

    1994-01-01

    Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds

  15. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  16. Regular control of monitors for effluents from nuclear power plant stacks

    International Nuclear Information System (INIS)

    Stroem, L.

    1979-01-01

    The report describes a test procedure for emission monitoring devices for nuclear power plants. The follosing procedures are described, inspection, determination of the air flow through the stack, measurement and adjustment of the flow in the stack loop, measurement and adjustment of flow and density in the measuring loop, calibration of the gas detector, efficiency of sampling of methyliodide and aerosol. (K.K.)

  17. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  18. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  19. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Nick Soelberg

    2005-01-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost

  20. Advanced treatment of flue gas condensate; Avancerad rening av roekgaskondensat

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik [Carl Bro Energikonsult AB, Malmoe (Sweden); Ekengren, Oesten; Bjurhem, Jan Erik [IVL Swedish Environmental Research Inst. (Sweden)

    2004-11-01

    The aim of the project is to study different techniques to recover water to the process and to reduce emission of ammonia to water and air. Membrane technology (ultra- (UF) and nanofiltration (NF) and reverse osmosis (RO)) and a stripper have been studied for ammonia separation. The use of bio-fuel in energy production is increasing. The off-gases are often condensed to increase energy yield and to decrease emissions to air. Since the concentration of nitrogen (ammonium) is high in condensates from units with SNCR for NO{sub x}-reduction (selective non-catalytic reduction) this water has to be treated further. Another aim of the project is to replace a great part of the tap water used in the process. This can be accomplished with membrane technology. Laboratory tests revealed a certain degree of membrane fouling. However, both NF and RO worked well in the full-scale unit, in spite of problems in the condensate treatment that resulted in tar products in the water. There was no obvious negative effect on these membranes. Analyses of PAH have shown a low base concentration that may lead to fouling after a long time. UF removes most of these PAH and thus protects the following NF- or RO-membranes. NF gave about 3 times higher filtration capacity (flux) than RO for the condensate at 30 bars. This can save a lot of money, since the membrane area can be reduced to a third. High temperature also increases the flux. The results are of high interest but ought to be certified during long run tests. Fouling was low in both NF and RO, and initial flux was retained after cleaning. The reason is probably the good pre-treatment (UF). The concentration could proceed very far, which make it possibly to reuse the concentrate to the system. Simulations of an ammonia stripper showed some parameters to be critical in certain ranges, while others didn't affect the result. Airflow is a critical parameter during stable conditions within the design data. Simulated data were verified

  1. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field

  2. New progress in wastewater treatment technology for standard-reaching discharge in sour gas fields

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2018-02-01

    Full Text Available Gas field water is generally characterized by complex contaminant components and high salinity. Its proper treatment has always been the great concern in the field of environmental protection of oil & gas fields. In this paper, the wastewater from a gas field in the Sichuan Basin with high salinity and more contaminants (e.g. sulfides was treated as a case study for the standard-reaching discharge. Lab experiments were carried out to analyze the adaptability and effectiveness of coagulation–desulfurization composite treatment technology, chemical oxidation based ammonia nitrogen removal technology and cryogenic multi-efficacy distillation technology in the treatment of wastewater in this field. The results show that the removal rate of sulfides and oils is over 90% if polymeric ferric sulfate (PFS is taken as the coagulant combined with TS-1 desulfurization agent. Besides, the removal rate of ammonia nitrogen is over 96% if CA-1 is taken as the oxidant. Finally, after the gas field water is treated by means of cryogenic three-efficacy distillation technology, chloride concentration of distilled water is below 150 mg/L and CODcr concentration is less than 60 mg/L. It is concluded that after the whole process treatment, the main contaminant indicators of wastewater in this case study can satisfy the grade one standard specified in the Integrated Wastewater Discharge Standard (GB 8978–1996 and the chloride concentration can meet the requirement of the Standards for Irrigation Water Quality (GB 5084–2005. To sum up, the above mentioned composite technologies are efficient to the wastewater treatment in sour gas fields. Keywords: Sulfide-bearing gas field water, Coagulation, Desulfurization, Chemical oxidation, Standard discharge, Ammonia nitrogen, Chloride, Cryogenic multi-efficacy distillation, Sichuan Basin

  3. Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg–9Gd–xEr–1.6Zn–0.6Zr magnesium alloys

    International Nuclear Information System (INIS)

    Wang, Jingfeng; Song, Pengfei; Huang, Song; Pan, Fusheng

    2013-01-01

    This study investigates the effects of heat treatment on the morphology of long-period stacking ordered phase (LPSO) and the corresponding mechanical properties of Mg–9Gd–xEr–1.6Zn–0.6Zr (1–4 wt%) using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, transmission electron microscopy, and tensile tests. The microstructure analysis of the as cast alloys showed that the volume fraction of the (Mg, Zn) 3 (Gd, Er) phase increased with increasing Er content. The (Mg, Zn) 3 (Gd, Er) phase in grain boundaries transformed into the 14H-LPSO phase Mg 12 Zn(Gd, Er) after heat treatment between 400 °C and 515 °C. The bulk shaped LPSO phases distributed along the grain boundaries produced isometric crystal grains in and enhanced the ductility of the as-extruded alloys. However, the lamellar LPSO phases precipitating in the grain interior induced strip-shaped grains in and improved the strength of the as-extruded alloys

  4. Determination of Penetration Depth of 800 keV Electron Beam into Coal Fired Power Plant Flue Gas at in a Electron Beam Machine Flue Gas Treatment System

    International Nuclear Information System (INIS)

    Rany Saptaaji

    2008-01-01

    Penetration depth calculation of 800 keV electron beam into flue gas from coal fired power plan is presented in this paper. Electron Beam for Flue Gas Treatment (EB-FGT) is a dry treatment process using electron beam to simultaneously reduce SO 2 and NO x . Flue gas irradiation produces active radicals and then reaction with SO 2 and NO x produces nitrate acid and sulphate acid. Process vessel is needed in this process as reaction container of flue gas with electron beam. The calculation of electron beam penetration depth into flue gas is used to determine the process vessel dimension. The result of calculation of optimum penetration depth of 800 keV electron beam into flue gas is 188.67 cm. (author)

  5. The efficacy of fluid-gas exchange for the treatment of postvitrectomy retinal detachment.

    Science.gov (United States)

    Jang, Ji Hye; Kim, Yu Cheol; Kim, Kwang Soo

    2009-12-01

    This study was designed to evaluate the efficacy of fluid-gas exchange for the treatment of postvitrectomy retinal detachment. We retrospectively reviewed the records of 33 consecutive patients (35 eyes) who underwent fluid-gas exchange treatment for postvitrectomy retinal detachment using the two-needle pars plana approach technique. The retinal reattachment rate was 80.0% after complete intravitreal gas disappearance following the fluid-gas exchange; the overall success rate was 65.7%. Visual acuity was improved or stable in 80.0% of cases; a two-line or greater vision improvement or a best-corrected visual acuity of 0.4 or better occurred in 62.9% of cases. The success rates for superior retinal detachments and posterior pole retinal detachments were 76.5% and 85.7%, respectively. Fluid-gas exchange represents a simple and cost-effective alternative outpatient procedure for retinal reattachment without reoperation for the treatment of superior and posterior pole retinal detachments.

  6. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Marmy, C A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  7. FEASIBILITY STUDY OF GAS TREATMENT PLANT BASED ON AN EJECTOR SCRUBBER

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. The article executed the feasibility study of various options for gas treatment. Rapid development of industry and transport worldwide in recent times raises the problem in the protection of habitat environment from harmful waste. In solving problems of flue gas treatment great attention is given to the economic characteristics and recycling techniques for capturing emissions and disposal must also meet the sanitary health requirements: flue gas treatment plants should not cause air or water pollution. The set objective is solved by developing a two-stage wet treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. Projected plant can be used in enterprises for processing of solid domestic and industrial waste, where there are steam and hot water boilers, whose operations result in contaminated gases emissions obtained with high temperatures. In particular, this installation can be applied at a cement plant in which a large amount of waste gases containing sulfur oxides is emitted. Assessment of market potential for the plant designed to treat waste gases in the cement factory is performed through a SWOT analysis. SWOT analysis results indicate the possibility of the treatment of exhaust gases without a high cost and with high gas treatment efficiency. Plant competitive analysis was done using an expert method in comparison with market competitors. Technical and economic indicators of the plant are presented. Return on investments is 46% and payback period of capital investments - 2.7 years.

  8. Installation of laboratory scale flue gas treatment system at ALURTRON, MINT

    International Nuclear Information System (INIS)

    Siti A'iasah Hashim; Khairul Zaman Dahlan; Zulkafli Ghazali; Khomsaton Abu Bakar, Ayub Muhamad

    2002-01-01

    A laboratory scale test rig to treat simulated flue gas using electron beam technology was installed at the Alurtron EB-irradiation center, MINT. The experiment test rig was proposed as a result of a feasibility studies conducted jointly by IAEA, MINT and TNB Research in 1997. The test rig system consisted of several components, among other, diesel generator, gas analyzers and spray cooler. The installation was completed and commissioned in October 2001. Results from the commissioning test runs and subsequent experimental work showed that the efficiency of the gas treatment is high. It was proven that electron beam technology might be applied in the treatment of air pollutants. This paper describes the design and work function of the individual major components as well as the full system function. Results from the initial experimental works are also presented. (Author)

  9. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. FMECA about pre-treatment system for purge gas of test blanket module in ITER

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    The pre-treatment system for purge gas of TBM will be installed in Port Cell for installing TBM in ITER, the function of which includes filtering purge gas, removing HTO, cooling, and adjusting flow rate, etc. The purge gas treated will be conveyed into TES (Tritium Extraction System). The technological process and system components in pre-treatment system were introduced. Tritium releasing risk was regarded as failure criterion; failure mode, effects and criticality analysis (FMECA) were carried out and several weaknesses or failure mode in the system were found. Besides, risk priority number (RPN) and failure mode criticality were calculated. Finally, some design improvement measures and usage compensation measures were given. At last, four important potential failure modes were found out. The analysis will provide the design basis for reducing risk of excessive tritium releasing, which is also a useful assist for safety analysis about other tritium system. (authors)

  11. Report on ANSI/ASME nuclear air and gas treatment standards for nuclear power plants

    International Nuclear Information System (INIS)

    Fish, J.F.

    1979-01-01

    Original N Committee, N45-8, has completed and published through the approved American National Standards Institute process two Standards, N-509 and N-510. This committee has been dissolved and replaced by ASME Committee on Nuclear Air and Gas Treatment with expanded scope to cover not only air cleaning, but thermal treatment equipment. Current efforts are directed to produce Code documents rather than Standards type publications. This report summarizes changed scope, current organization and sub-committee coverage areas

  12. Colorimetric gas dosimeter

    International Nuclear Information System (INIS)

    McConnaughey, P.W.; McKee, E.S.

    1984-01-01

    A gas dosimeter comprises a stack of porous sheets, impregnated with a reagent that changes color on contact with the gas to be determined, contained in a housing which has an opening to expose one end of the stack to the atmosphere to be tested. The gas to be determined penetrates by diffusion the layers of porous sheets, causing the sheets in the stack to change color sequentially from the end of the stack exposed to the atmosphere. The degree of penetration through the layers of porous sheets is a function of dosage exposure. The housing may be transparent with each superposed sheet in the stack being larger than the adjacent underlying sheet, so that each sheet is visible through the housing endwall

  13. A favorable outcome despite a 39-hour treatment delay for arterial gas embolism: case report.

    Science.gov (United States)

    Covington, Derek; Bielawski, Anthony; Sadler, Charlotte; Latham, Emi

    2016-01-01

    Cerebral arterial gas embolism (CAGE) occurs when gas enters the cerebral arterial vasculature. CAGE can occur during sitting craniotomies, cranial trauma or secondary to gas embolism from the heart. A far less common cause of CAGE is vascular entrainment of gas during endoscopic procedures. We present the case of a 49-year-old male who developed a CAGE following an esophagoduodenoscopy (EGD) biopsy. Due to a delay in diagnosis, the patient was not treated with hyperbaric oxygen (HBO₂) therapy until 39 hours after the inciting event. Despite presenting to our institution non-responsive and with decorticate posturing, the patient was eventually discharged to a rehabilitation facility, with only mild left upper extremity weakness. This delay in HBO₂ treatment represents the longest delay in treatment to our knowledge for a patient suffering from CAGE secondary to EGD. In addition to the clinical case report, we discuss the etiology of CAGE and the evidence supporting early HBO₂ treatment, as well as the data demonstrating efficacy even after considerable treatment delay. Copyright© Undersea and Hyperbaric Medical Society.

  14. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  15. Computer simulation of the off gas treatment process for the KEPCO pilot vitrification plant

    International Nuclear Information System (INIS)

    Kim, Hey Suk; Maeng, Sung Jun; Lee, Myung Chan

    1999-01-01

    Vitrification technology for treatment of low and intermediate radioactive wastes can remarkably reduce waste volume to about one twentieth of the initial volume as they are collected and converted into a very stable form. Therefore, it can minimize environmental impact when the vitrified waste is disposed of. But an off gas treatment system is necessary to apply this technology because air pollutants and radioisotopes are generated like those of other conventional incinerators during thermal oxidation process at high temperature. KEPCO designed and installed a pilot scale vitrification plant to demonstrate the feasibility of the vitrification process and then to make a conceptual design for a commercial vitrification facility. The purpose of this study was to simulate the off gas treatment system(OGTS) in order optimize the operating conditions. Mass balance and temperature profile in the off gas treatment system were simulated for different combinations of combustible wastes by computer simulation code named OGTS code and removal efficiency of each process was also calculated with change of design parameters. The OGTS code saved efforts,time and capital because scale and configuration of the system could be easily changed. The simulation result of the pilot scale off gas process as well as pilot tests will be of great use in the future for a design of the commercial vitrification facility. (author)

  16. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Koetz, R; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  17. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore...

  18. Hanford gas dispersion analysis

    International Nuclear Information System (INIS)

    Fujita, R.K.; Travis, J.R.

    1994-01-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster's operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently ∼4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased

  19. The production of high dose hydrogen gas by the AMS-H-01 for treatment of disease

    OpenAIRE

    Richard Camara; Lei Huang; John H Zhang

    2016-01-01

    Hydrogen gas is a new and promising treatment option for a variety of diseases including stroke. Here, we introduce the AMS-H-01, a medically approved machine capable of safely producing ~66% hydrogen gas. Furthermore, we propose the significance of this machine in the future of hydrogen gas research.

  20. The operation and monitoring of sewage disposal by stack injection

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.A. [Alyeska Pipeline Service Co. (United States)

    1994-12-31

    A system that uses turbine exhaust to evaporate sewage, was described. The Alyeska Pipeline Service developed the system for isolated pump stations located in permafrost areas. The pumps moving the crude oil in the Trans Alaska Pipeline System (TAPS) were driven by simple cycle gas turbine engines which produce large amounts of waste heat. The waste heat was used to evaporate the sewage effluent, effectively destroying all pathogens in it. The process, known as `stack injection`, was recently upgraded to increase efficiency and safety. Stack injection was being used at five pump stations. Methods used to control operation of the stack injection system, and field data used to redesign the system were reviewed. 3 figs., 3 refs.

  1. Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas.

    Science.gov (United States)

    Deng, Jia-Jia; Pan, Liang-Ming; Chen, De-Qi; Dong, Yu-Quan; Wang, Cheng-Mu; Liu, Hang; Kang, Mei-Qiang

    2014-01-01

    Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.

  2. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Science.gov (United States)

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. The trans-Golgi Network and the Golgi Stacks Behave Independently During Regeneration After Brefeldin A Treatment in Tobacco BY-2 Cells.

    Science.gov (United States)

    Ito, Yoko; Toyooka, Kiminori; Fujimoto, Masaru; Ueda, Takashi; Uemura, Tomohiro; Nakano, Akihiko

    2017-04-01

    The trans-Golgi network (TGN) plays an essential role in intracellular membrane trafficking. In plant cells, recent live-cell imaging studies have revealed the dynamic behavior of the TGN independent from the Golgi apparatus. In order to better understand the relationships between the two organelles, we examined their dynamic responses to the reagent brefeldin A (BFA) and their recovery after BFA removal. Golgi markers responded to BFA similarly over a range of concentrations, whereas the behavior of the TGN was BFA concentration dependent. The TGN formed aggregates at high concentrations of BFA; however, TGN proteins relocalized to numerous small vesicular structures dispersed throughout the cytoplasm at lower BFA concentrations. During recovery from weak BFA treatment, the TGN started to regenerate earlier than the completion of the Golgi. The regeneration of the two organelles proceeded independently of each other for a while, and eventually was completed by their association. Our data suggest that there is some degree of autonomy for the regeneration of the TGN and the Golgi in tobacco BY-2 cells. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    Science.gov (United States)

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  6. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft 2 ) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft 2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft 2 ) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  7. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  8. Thermal stress analysis of a planar SOFC stack

    Science.gov (United States)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  9. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment

    International Nuclear Information System (INIS)

    Hou, Yue; Jayatissa, Ahalapitiya H.

    2014-01-01

    The effect of oxygen plasma treatment on nanocrystalline ZnO thin film based gas sensor was investigated. ZnO thin films were synthesized on alkali-free glass substrates by a sol–gel process. ZnO thin films were treated with oxygen plasma to change the number of vacancies/defects in ZnO. The effect of oxygen plasma on the structural, electrical, optical and gas sensing properties was investigated as a function of plasma treatment time. The results suggest that the microstructure and the surface morphology can be tuned by oxygen plasma treatment. The optical transmission in the visible range varies after the oxygen plasma treatment. Moreover, it is found that the oxygen plasma has significant impact on the electrical properties of ZnO thin films indicating a variation of resistivity. The oxygen plasma treated ZnO thin film exhibits an enhanced sensing response towards NH 3 in comparison with that of the as-deposited ZnO sensor. When compared with the as-deposited ZnO film, the sensing response was improved by 50% for the optimum oxygen plasma treatment time of 8 min. The selectivity of 8 min plasma treated ZnO sensor was also examined for an important industrial gas mixture of H 2 , CH 4 and NH 3 .

  10. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  11. Decontamination by foams: A promising treatment for the removal of radioactive dust from gas streams

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1989-06-01

    Foams provide a promising method for the treatment of gas streams containing radioactive aerosol particles. A review of the literature has been undertaken to define and assess the mechanics of aerosol behaviour in contact with foams. Applications are also examined in which foams have been used to treat aerosols. Key issues are identified which require further study. In particular, the efficiency of sub-micron particle removal can be determined using recently developed analysers and the use of the process gas to generate the foam could have a major impact on the design of commercial units. (author)

  12. Removal of siloxanes in sewage sludge by thermal treatment with gas stripping

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Omori, Keigo; Takaoka, Masaki; Mizuno, Tadao

    2014-01-01

    Highlights: • A new treatment of sewage sludge were studied to reduce siloxanes in biogas. • D5 of cyclic siloxane concentrations were the highest in sewage sludge. • Under optimal conditions, most of siloxanes in the sludge were removed previously. • By this treatment, CH 4 was 1.6-fold larger and siloxane in biogas 95% lower. - Abstract: In this study, thermal treatment with gas stripping of sewage sludge before anaerobic digestion to reduce siloxanes in the sludge and accelerate the anaerobic digestion was studied experimentally. Regarding siloxanes in the sludge, D5 concentrations were the highest. Siloxane concentrations in the digested sludge were decreased, versus those in thickened sludge, because siloxanes in the sludge are moved to the biogas during the anaerobic digestion. Thermal treatment and gas stripping experiments were conducted. The optimum conditions for siloxane removal from sludge were found to be thermal treatment with gas stripping at 80 °C with 0.5 L/min of air flow for 48 h. Under these conditions, approximately 90% of all siloxanes in the sludge were removed. Next, anaerobic digestion experiments were conducted with the optimally treated sludge and untreated sludge. The biogas volume of the optimally treated sludge was 1.6-fold larger than that of the untreated sludge. Furthermore, D5 contents in biogas from the optimally treated sludge were 95% lower than in biogas from untreated sludge. Thus, thermal treatment with gas stripping of sludge before anaerobic digestion was effective in increasing biogas amounts, decreasing siloxane concentrations in the biogas, and reducing the need for a siloxane removal process from the biogas

  13. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  14. Stack semantics of type theory

    DEFF Research Database (Denmark)

    Coquand, Thierry; Mannaa, Bassel; Ruch, Fabian

    2017-01-01

    We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe...

  15. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  16. V-stack piezoelectric actuator

    Science.gov (United States)

    Ardelean, Emil V.; Clark, Robert L.

    2001-07-01

    Aeroelastic control of wings by means of a distributed, trailing-edge control surface is of interest with regards to maneuvers, gust alleviation, and flutter suppression. The use of high energy density, piezoelectric materials as motors provides an appealing solution to this problem. A comparative analysis of the state of the art actuators is currently being conducted. A new piezoelectric actuator design is presented. This actuator meets the requirements for trailing edge flap actuation in both stroke and force. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties while displaying linearity over a wide range of stroke. The V-Stack Piezoelectric Actuator, consists of a base, a lever, two piezoelectric stacks, and a pre-tensioning element. The work is performed alternately by the two stacks, placed on both sides of the lever. Pre-tensioning can be readily applied using a torque wrench, obviating the need for elastic elements and this is for the benefit of the stiffness of the actuator. The characteristics of the actuator are easily modified by changing the base or the stacks. A prototype was constructed and tested experimentally to validate the theoretical model.

  17. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  18. Adding large EM stack support

    KAUST Repository

    Holst, Glendon

    2016-12-01

    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  19. Manifold seal structure for fuel cell stack

    Science.gov (United States)

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  20. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1975-01-01

    Described is a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time

  1. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1976-01-01

    A description is given of a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time. 2 claims, 9 drawing figures

  2. Decontamination by foams: a promising treatment for the removal of radioactive dust from gas streams

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1989-06-01

    Foams provide a promising method for the treatment of gas streams containing radioactive aerosol particles. They contain a very large surface area of liquid-gas interface in small cells; thus it is possible to achieve rapid capture of airborne particles in the liquid phase, particularly if the aerosol can be incorporated in the foam structure. The foam can be collapsed into a small volume of liquid, immobilising any trapped aerosol in a form that may be treated as liquid waste. A review of the literature has been undertaken to define and assess the mechanics of aerosol behaviour in contact with foams. Applications are also examined in which foams have been used to treat aerosols. Key issues are identified which require further study. In particular, the efficiency of sub-micron particle removal can be determined using recently developed analysers and the use of the process gas to generate the foam could have a major impact on the design of commercial units. (author)

  3. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1985-01-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, /sup 238/239/Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing or cooldown. Due to the high temperatures during processing, some gases were released into the off-gas hood that was placed over the test site. The hood was maintained at a light negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr

  4. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1984-08-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized by Pacific Northwest Laboratory. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, 238 / 239 Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing of cooldown. Due to the high temperature during processing, some gases were released into the off-gas hood that was over the test site. The hood was maintained at a slight negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr. 7 references, 15 figures, 4 tables

  5. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    International Nuclear Information System (INIS)

    Simmons, D. W.

    1994-01-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF 3 ) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF 6 ) gas. The potential existence of chlorine dioxide (ClO 2 ) during gas phase decontamination with ClF 3 has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO 2 in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO 2 was not detected in the flow loop in the absence of ClF 3 ; (2) ClO 2 was not detected in the static reactors in the absence of both ClF 3 and ClF; and (3) ClO 2 was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO 2 will not exist in the presence of ClF 3 , ClF, or UF 6 . The data analyzed to date is insufficient to determine the stability of ClO 2 in the presence of ClO 2 F. Thermodynamic calculations of the ClF 3 + H 2 O system support the experimental evidence, and suggest that ClO 2 will not exist in the presence of ClO 2 F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF 3 treatments and the product gases. However, preliminary evidence to date suggests that ClO 2 should not be present as a product during the normal operations of the gas phase decontamination project

  6. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Simmons

    1994-09-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF{sub 3}) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF{sub 6}) gas. The potential existence of chlorine dioxide (ClO{sub 2}) during gas phase decontamination with ClF{sub 3} has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO{sub 2} in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO{sub 2} was not detected in the flow loop in the absence of ClF{sub 3}; (2) ClO{sub 2} was not detected in the static reactors in the absence of both ClF{sub 3} and ClF; and (3) ClO{sub 2} was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO{sub 2} will not exist in the presence of ClF{sub 3}, ClF, or UF{sub 6}. The data analyzed to date is insufficient to determine the stability of ClO{sub 2} in the presence of ClO{sub 2}F. Thermodynamic calculations of the ClF{sub 3} + H{sub 2}O system support the experimental evidence, and suggest that ClO{sub 2} will not exist in the presence of ClO{sub 2}F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF{sub 3} treatments and the product gases. However, preliminary evidence to date suggests that ClO{sub 2} should not be present as a product during the normal operations of the gas phase decontamination project.

  7. Thermal treatment and competing technologies for remediation of MGP (manufactured gas plant) sites

    International Nuclear Information System (INIS)

    McGowan, T.F.; Greer, B.A.; Lawless, M.

    1995-01-01

    More than 1,500 MGP (manufactured gas plant) sites exist throughout the US. Many are contaminated with coal tar from coal-fueled gas works which produced ''town gas'' from the mid-1800s through the 1950s. Virtually all old US cities have such sites. Most are in downtown areas, as they were installed for central distribution of manufactured gas. While a few sites are CERCLA/Superfund, most are not. However, the contaminants and methods used for remediation are similar to those used for Superfund cleanups of coal tar contamination from wood-treating and coke oven facilities. Clean-up of sites is triggered by property transfers and re-development as well as releases to the environment--in particular, via ground water migration. This paper describes recent experience with high capacity/low cost thermal desorption process for this waste. It also reviews competing non-thermal technology, such as bio-treatment, capping, recycling, and dig and haul. Cost data are provided for all technologies, and a case study for thermal treatment is also presented

  8. A novel approach for toluene gas treatment using a downflow hanging sponge reactor.

    Science.gov (United States)

    Yamaguchi, Tsuyoshi; Nakamura, Syoichiro; Hatamoto, Masashi; Tamura, Eisuke; Tanikawa, Daisuke; Kawakami, Shuji; Nakamura, Akinobu; Kato, Kaoru; Nagano, Akihiro; Yamaguchi, Takashi

    2018-05-01

    A novel gas-scrubbing bioreactor based on a downflow hanging sponge (DHS) reactor was developed as a new volatile organic compound (VOC) treatment system. In this study, the effects of varying the space velocity and gas/liquid ratio were investigated to assess the effectiveness of using toluene gas as a model VOC. Under optimal conditions, the toluene removal rate was greater than 80%, and the maximum elimination capacity was observed at approximately 13 g-C m -3  h -1 . The DHS reactor demonstrated slight pressure loss (20 Pa) and a high concentration of suspended solids (up to 30,000 mg/L-sponge). Cloning analysis of the 16S rRNA and functional genes of toluene degradation pathways (tmoA, todC, tbmD, xylA, and bssA) revealed that the clones belonging to the toluene-degrading bacterium Pseudomonas putida constituted the predominant species detected at the bottom of the DHS reactor. The toluene-degrading bacteria Pseudoxanthomonas spadix and Pseudomonas sp. were also detected by tmoA- and todC-targeted cloning analyses, respectively. These results demonstrate the potential for the industrial application of this novel DHS reactor for toluene gas treatment.

  9. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  10. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  11. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  12. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  13. Electron beam flue gas treatment. Research cooperation among JAERI, IAEA and INCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The research co-operation is conducted among Japan Atomic Energy Research Institute (JAERI), International Atomic Energy Agency (IAEA) and Institute of Nuclear Chemistry and Technology in Poland (INCT) on Electron Beam Flue Gas Treatment from January 1993 to March 1997. The first phase of the cooperation was carried out for 3 years from January 1993 to March 1995. This cooperation was performed through information exchange meetings (Coordination Meetings), held in Takasaki and Warsaw, and experiments and discussions by exchange scientists. Many useful results were obtained on electron beam treatment of flue gas from coal-combustion heat generation plant in Kaweczyn within the frame work of the research co-operation. This report includes the main results of the tripartite research cooperation. (author)

  14. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  15. Off-gas treatment system Process Experimental Pilot Plant (PREPP) k-t evaluation

    International Nuclear Information System (INIS)

    Hedahl, T.G.; Cargo, C.H.; Ayers, A.L.

    1982-06-01

    The scope of work for this task involves a systems' evaluation, using the Kepner-Tregoe (K-T) decision analysis methodology, of off-gas treatment alternatives for a Process Experimental Pilot Plant (PREPP). Two basic systems were evaluated: (1) a wet treatment system using a quencher and scrubber system; and (2) a dry treatment system using a spray dryer and baghouse arrangement. Both systems would neutralize acidic off-gases (HCL and SO 2 ) and remove radioactive particulates prior to release to the environment. The K-T analysis results provided a numerical comparison of the two basic off-gas treatments systems for PREPP. The overall ratings for the two systems differ by only 7%. The closeness of the evaluation indicates that either system is capable of treating the off-gases from PREPP. Based on the analysis, the wet treatment system design is slightly more favorable for PREPP. Technology development, expected operability, total costs, and safety aspects were determined to be more advantageous for the wet system design. Support technology was the only major category that appears less favorable for using the wet off-gas system for PREPP. When considering the two criteria considered most important for PREPP (capital cost and major accident prevention - both rated 10), the wet treatment system received maximum ratings. Space constraints placed on the design by the existing TAN-607 building configuration also are more easily met by the wet system design. Lastly, the level of development for the wet system indicates more applicable experience for nuclear waste processing

  16. Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

    2008-07-01

    A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

  17. Clinical significance of changes of serum gas, IL-6 and IL-10 levels after treatment in patients with peptic ulcer

    International Nuclear Information System (INIS)

    Ye Yuexian

    2009-01-01

    Objective: To explore the clinical significance of changes of serum Gas, Interleukin-6(IL-6) and Interleukin-10(IL-10) levels in patients with peptic ulcer. Methods: Serum Gas, IL-6 and IL-10 (with RIA) levels were determined in 61 patients with peptic ulcer both before and after treatment as well as in 35 controls. Results: Before treatment the serum Gas, IL-6 and IL-10 levels were significantly higher in the patients with peptic ulcer than those in controls (P 0.05). Conclusion: Serum Gas, IL-6 and IL-10 levels were closely related to the diseases process of peptic ulcer and were of prognostic values. (authors)

  18. Helping Students Design HyperCard Stacks.

    Science.gov (United States)

    Dunham, Ken

    1995-01-01

    Discusses how to teach students to design HyperCard stacks. Highlights include introducing HyperCard, developing storyboards, introducing design concepts and scripts, presenting stacks, evaluating storyboards, and continuing projects. A sidebar presents a HyperCard stack evaluation form. (AEF)

  19. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    International Nuclear Information System (INIS)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-01-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczyński (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  20. Docker on OpenStack

    OpenAIRE

    Agarwal, Nitin; Moreira, Belmiro

    2014-01-01

    Project Specification CERN is establishing a large scale private cloud based on OpenStack as part of the expansion of the computing infrastructure for storing the data coming out of the Large Hadron Collider (LHC) experiments. As the data coming out of the detectors is increasing continuously that needs to be stored in the data center, we need more physical resources (more money) and since Virtual machines takes lot of CPU and memory overhead and minutes for creating the images, booting u...

  1. Stack Monitor Operating Experience Review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Bruyere, S.A.

    2009-01-01

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative 'all modes' failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  2. Test results from the GA Technologies engineering-scale off-gas treatment system

    International Nuclear Information System (INIS)

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1985-01-01

    Test results are available from the GA Technologies (GA) off-gas treatment facilities using gas streams from both the graphite fuel element burner system and from the spent fuel dissolver. The off-gas system is part of a pilot plant for development of processes for treating spent fuel from high temperature gas-cooled reactors (HTGRs). One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constituents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Integrated testing of major BOG system components confirmed the performance of units evaluated in individual tests. Design decontamination and conversion factors were maintained for up to 72 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  3. Thermal treatment and non-thermal technologies for remediation of manufactured gas plant sites

    International Nuclear Information System (INIS)

    McGowan, T.F.; Greer, B.A.; Lawless, M.

    1996-01-01

    More than 1,500 manufactured gas plant (MGP) sites exist throughout the US. Many are contaminated with coal tar from coal-fueled gas works which produced town gas from the mid-1800s through the 1950s. Virtually all old US cities have such sites. Most are in downtown areas as they were installed for central distribution of manufactured gas. While a few sites are CERCLA/Superfund, most are not. However, the contaminants and methods used for remediation are similar to those used for Superfund clean-ups of coal tar contamination from wood-treating and coke oven facilities. Clean-up of sites is triggered by regulatory pressure, property transfers and re-development as well as releases to the environment--in particular, via groundwater migration. Due to utility de-regulation, site clean-ups may also be triggered by sale of a utility or of a specific utility site to other utilities. Utilities have used two approaches in dealing with their MGP sites. The first is do nothing and hope for the best. History suggests that, sooner or later, these sites become a bigger problem via a release, citizen lawsuit or regulatory/public service commission intervention. The second, far better approach is to define the problem now and make plans /for waste treatment or immobilization. This paper describes recent experience with a high capacity/low cost thermal desorption process for this waste and reviews non-thermal technology, such as bio-treatment, capping, recycling, and dig and haul. Cost data are provided for all technologies, and a case study for thermal treatment is also presented

  4. Removal of CO2 in closed loop off-gas treatment systems

    International Nuclear Information System (INIS)

    Clemens, M.K.; Nelson, P.A.; Swift, W.M.

    1994-01-01

    A closed loop test system has been installed at Argonne National Laboratory (ANL) to demonstrate off-gas treatment, absorption, and purification systems to be used for incineration and vitrification of hazardous and mixed waste. Closed loop systems can virtually eliminate the potential for release of hazardous or toxic materials to the atmosphere during both normal and upset conditions. In initial tests, a 250,000 Btu/h (75 kW thermal) combustor was operated in an open loop to produce a combustion product gas. The CO 2 in these tests was removed by reaction with a fluidized bed of time to produce CaCO 3 . Subsequently, recirculation system was installed to allow closed loop operation with the addition of oxygen to the recycle stream to support combustion. Commercially marketed technologies for removal of CO 2 can be adapted for use on closed loop incineration systems. The paper also describes the Absorbent Solution Treatment (AST) process, based on modifications to commercially demonstrated gas purification technologies. In this process, a side loop system is added to the main loop for removing CO 2 in scrubbing towers using aqueous-based CO 2 absorbents. The remaining gas is returned to the incinerator with oxygen addition. The absorbent is regenerated by driving off the CO 2 and water vapor, which are released to the atmosphere. Contaminants are either recycled for further treatment or form precipitates which are removed during the purification and regeneration process. There are no direct releases of gases or particulates to the environment. The CO 2 and water vapor go through two changes of state before release, effectively separating these combustion products from contaminants released during incineration. The AST process can accept a wide range of waste streams. The system may be retrofitted to existing Facilities or included in the designs for new installations

  5. Testing the sampling efficiency of a nuclear power station stack monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.H. [Instrumentinvest, Nykoeping (Sweden)

    1997-08-01

    The test method comprises the injection of known amounts of monodisperse particles in the stack air stream, at a suitable point upstream of the sampling installation. To find a suitable injection polls, the gas flow was mapped by means of a tracer gas, released in various points in the stack base. The resulting concentration distributions at the stack sampler level were observed by means of an array of gas detectors. An injection point that produced symmetrical distribution over the stack area, and low concentrations at the stack walls was selected for the particle tests. Monodisperse particles of 6, 10, and 19 {mu}m aerodynamic diameter, tagged with dysprosium, were dispersed in the selected injection point. Particle concentration at the sampler level was measured. The losses to the stack walls were found to be less than 10 %. The particle concentrations at the four sampler inlets were calculated from the observed gas distribution. The amount calculated to be aspirated into the sampler piping was compared with the quantity collected by the sampling train ordinary filter, to obtain the sampling line transmission efficiency. 1 ref., 2 figs.

  6. Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas

    International Nuclear Information System (INIS)

    Maetzing, H.; Namba, H.; Tokunaga, O.

    1994-01-01

    In the Electron Beam Dry Scrubbing (EBDS) process, flue gas from fossil fuel burning power plants is irradiated with accelerated (300-800 keV) electrons. Thereby, nitrogen oxide (NO x ) and sulfur dioxide (SO 2 ) traces are transformed into nitric and sulfuric acids, respectively, which are converted into particulate ammonium nitrate and sulfate upon the addition of ammonia. The powdery product can be filtered from the main gas stream and can be sold as agricultural fertilizer. A lot of experimental investigations have been performed on the EBDS process and computer models have been developed to interpret the experimental results and to predict economic improvements. According to the model calculations, substantial amounts of intermediate nitrous acid (HNO 2 ) are formed in the electron beam treatment of flue gas. The first experimental investigation about the formation of nitrous acid in an irradiated mixture of NO in synthetic air has been undertaken. Under these conditions, aerosol formation is avoided. UV spectra of the irradiated gas were recorded in the wavelength range λ = 345-375 nm. Both NO 2 and HNO 2 have characteristic absorption bands in this wavelength range. Calibration spectra of NO 2 were subtracted from the sample spectra. The remaining absorption bands can clearly be assigned to nitrous acid. The concentration of nitrous acid was determined by differential optical absorption. It was found lower than the model prediction. The importance of nitrous acid formation in the EBDS process needs to be clarified. (author)

  7. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  8. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  9. Protection and safety functions of different off-gas treatment systems in radioactive waste incineration

    International Nuclear Information System (INIS)

    Caramelle, D.; Chevalier, G.; Chevalier, G.

    1986-01-01

    Gaseous effluent cleaning installations are designed to protect workmen and environment and must be efficient enough to guarantee that the amounts of gases and dusts emitted by a furnace operating normally or accidentally are at an acceptable level in the atmosphere on the incinerator site. The process equipments necessary to operations and the monitoring devices must be reliable. The main risk in normal operation is occupational exposure close to the radioactive products accumulation points. The accidental risks are mainly related to an outage of the off-gas cleaning or a tightness failure with radioactive products dissemination resulting from either internal perturbation (filter tear, exhauster failure, ...) or external incident (electricity cut-off, furnace disarrangements, fire or explosion inside the incinerator). In view of these risks, it is interesting to examine the safety and protection functions of different components of off-gas treatment systems

  10. Thermal and Hydrothermal Treatment of Silica Gels as Solid Stationary Phases in Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available Silica gel was prepared and treated thermally and hydrothermally and was characterized as solid stationary phase in gas chromatography. The characteristics have been evaluated in terms of polarity, selectivity, and separation efficiencies. These parameters were used to assess the outer silica surface contributions and the degree of surface deactivation brought about by different treatment techniques. The parent silica elutes the paraffinic hydrocarbons with high efficiency of separation and elutes aromatic hydrocarbons with nearly good separation and has bad separation of alcohols. The calcined silica at 500°C and 1000°C has a pronounced effect on the separation of aromatic hydrocarbons compared with the parent silica and hydrothermal treatment of silica. With respect to alcohols separation, the obtained bad separations using treated and untreated silica reflect the little effect of the thermal and hydrothermal treatment on the silica surface deactivation.

  11. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Mønster, Jacob; Scheutz, Charlotte

    2014-01-01

    experiencing operational problems, such as during foaming events in anaerobic digesters and during sub-optimal operation of biological nitrogen removal in the secondary treatment of wastewater. Methane emissions detected during measurement campaigns corresponded to 2.07-32.7% of the methane generated......Wastewater treatment plants (WWTPs) contribute to anthropogenic greenhouse gas (GHG) emissions. Due to its spatial and temporal variation in emissions, whole plant characterization of GHG emissions from WWTPs face a number of obstacles. In this study, a tracer dispersion method was applied...... in the plant. As high as 4.27% of nitrogen entering the WWTP was emitted as nitrous oxide under the sub-optimal operation of biological treatment processes. The study shows that the unit process configuration, as well as the operation of the WWTP, determines the rate of GHG emission. The applied plant...

  12. Effect of Additions of Ceramic Nanoparticles and Gas-Dynamic Treatment on Al Casting Alloys

    Directory of Open Access Journals (Sweden)

    Konstantin Borodianskiy

    2015-12-01

    Full Text Available In recent years, improving the mechanical properties of metals has become the main challenge in the modern materials and metallurgical industry. An alloying process is usually used to achieve advanced performance of metals. This paper, however, describes an alternative approach. Modification with ceramic nanoparticles, gas-dynamic treatment (GDT and a combined treatment were investigated on a hypoeutectic Al-Si A356 alloy. Microstructural studies revealed the refinement of coarse α-Al grains and the formation of distributed eutectic Si particles. Subsequent testing of the mechanical properties revealed improvement after applying each of the treatments. The best results were obtained after modification with TiCN nanoparticles followed by GDT; the tensile strength and elongation of the A356 alloys increased by 18% and 19%, respectively.

  13. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    Science.gov (United States)

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  14. Retrofitting of an improved stack monitoring system in Rajasthan atomic power station

    International Nuclear Information System (INIS)

    Natarajan, K.

    1985-01-01

    The problems encountered in the measurement of inert gas activities, iodine activity and tritium activity released through the stack in RAPS are described and the considerations for the development of improved instruments outlined. The new approach provides for better accuracy of measurement of all the relevant radioactive parameters in the stack at one centralised place. The construction work in the station for the newly conceived stack activity monitoring system is completed and the earlier equipment used is installed in the room temporarily. Development prototypes of stack inert gas monitoring system and iodine monitoring system as described in Section 5 are made and evaluated. Fabrication of new equipment for retrofitting in RAPS is in progress and these will replace the equipment temporarily installed in the station

  15. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    Science.gov (United States)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  16. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  17. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  18. Numerical Investigation of a Liquid-Gas Ejector Used for Shipping Ballast Water Treatment

    Directory of Open Access Journals (Sweden)

    Xueguan Song

    2014-01-01

    Full Text Available Shipping ballast water can have significant ecological and economic impacts on aquatic ecosystems. Currently, water ejectors are widely used in marine applications for ballast water treatment owing to their high suction capability and reliability. In this communication, an improved ballast treatment system employing a liquid-gas ejector is introduced to clear the ballast water to reduce environmental risks. Commonly, the liquid-gas ejector uses ballast water as the primary fluid and chemical ozone as the secondary fluid. In this study, high-pressure water and air, instead of ballast water and ozone, are considered through extensive numerical and experimental research. The ejector is particularly studied by a steady three-dimensional multiphase computational fluid dynamics (CFD analysis with commercial software ANSYS-CFX 14.5. Different turbulence models (including standard k-ε, RNG k-ε, SST, and k-ω with different grid size and bubble size are compared extensively and the experiments are carried out to validate the numerical design and optimization. This study concludes that the RNG k-ε turbulence model is the most efficient and effective for the ballast water treatment system under consideration and simple change of nozzle shape can greatly improve the ejector performance under high back pressure conditions.

  19. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  20. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Developments in odour control and waste gas treatment biotechnology: a review.

    Science.gov (United States)

    Burgess, J E; Parsons, S A; Stuetz, R M

    2001-02-01

    Waste and wastewater treatment processes produce odours, which can cause a nuisance to adjacent populations and contribute significantly to atmospheric pollution. Sulphurous compounds are responsible for acid rain and mist; many organic compounds of industrial origin contribute to airborne public health concerns, as well as environmental problems. Waste gases from industry have traditionally been treated using physicochemical processes, such as scrubbing, adsorption, condensation, and oxidation, however, biological treatment of waste gases has gained support as an effective and economical option in the past few decades. One emergent technique for biological waste gas treatment is the use of existing activated sludge plants as bioscrubbers, thus treating the foul air generated by other process units of the wastewater treatment system on site, with no requirement for additional units or for interruption of wastewater treatment. Limited data are available regarding the performance of activated sludge diffusion of odorous air in spite of numerous positive reports from full-scale applications in North America. This review argues that the information available is insufficient for precise process design and optimization, and simultaneous activated sludge treatment of wastewater and airborne odours could be adopted worldwide.

  2. Biological fluidized-bed treatment of groundwater from a manufactured gas plant site

    International Nuclear Information System (INIS)

    Grey, G.M.; Scheible, O.K.; Maiello, J.A.; Guarini, W.J.; Sutton, P.M.

    1995-01-01

    Bench- and pilot-scale biological treatability studies were performed as part of a comprehensive study for developing an on-site treatment system for contaminated groundwater at a former manufactured gas plant site. The bench-scale work, which included evaluations of activated sludge and fluidized-bed biological processes, indicated that a carbon-based fluidized-bed process was most appropriate. The process was then demonstrated on a pilot level at the site. The bench and pilot studies demonstrated significant reductions of chemical oxygen demand (COD), and all target organics including polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)

  3. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  4. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption

  5. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  6. An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water.

    Science.gov (United States)

    Silva, Tânia L S; Morales-Torres, Sergio; Castro-Silva, Sérgio; Figueiredo, José L; Silva, Adrián M T

    2017-09-15

    Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  8. The Use of Hemoglobin Vesicles for Delivering Medicinal Gas for the Treatment of Intractable Disorders.

    Science.gov (United States)

    Taguchi, Kazuaki; Yamasaki, Keishi; Sakai, Hiromi; Maruyama, Toru; Otagiri, Masaki

    2017-09-01

    Bioactive gaseous molecules, such as oxygen (O 2 ) and carbon monoxide (CO), are essential elements for most living organisms to maintain their homeostasis and biological activities. An accumulating body of evidence suggests that such molecules can be used in clinics as a medical gas in the treatment of various intractable disorders. Recent developments in hemoglobin-encapsulated liposomes, namely hemoglobin vesicles (HbV), possess great potential for retaining O 2 and CO and could lead to strategies for the development of novel pharmacological agents as medical gas donors. HbV with either O 2 or CO bound to it has been demonstrated to have therapeutic potential for treating certain intractable disorders and has the possibility to serve as diagnostic and augmenting product by virtue of unique physicochemical characteristics of HbV. The present review provides an overview of the present status of the use of O 2 - or CO-binding HbV in experimental animal models of intractable disorders and discusses prospective clinical applications of HbV as a medical gas donor. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Application of Irradiation. Application to polymer processing, exhaust gas treatment, sterilization of medical instruments and food

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, Takeshi; Sawai, Teruko

    2000-03-01

    Many fields such as industry, agriculture, medical treatment and environment use radiation. This report explained some examples of irradiation applications. Radiation source is {sup 60}Co {gamma}-ray. Polymer industry use radiation for radiation curing (thermally stable polymer), tire, expanded polymer, radiation induced graft copolymerization and electron beam curing. On environmental conservation, radiation is used for elimination of NOx and SOx in exhaust combustion gas. In the medical treatment, radiation is applied to sterilization of medical instruments, that occupied about 50% volume, and blood for transfusion, which is only one method to prevent GVHD after transfusion. On agriculture, irradiation to spice, dry vegetable, frozen kitchen, potato and garlic are carried out in 30 countries. However, potato is only a kind food in Japan. Radiation breeding and pest control are put in practice. (S.Y.)

  10. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    Science.gov (United States)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  11. Effects of H2/O2 mixed gas plasma treatment on electrical and optical property of indium tin oxide

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Dong-Min; Kim, Jae-Kwan; Yang, Su-Hwan; Lee, Ji-Myon

    2013-01-01

    Highlights: ► The specific resistivity of ITO was enhanced by H 2 + O 2 mixed gas plasma treatment. ► The transmittance was same as that of untreated ITO after plasma treatment. ► The process was carried out at room temperature without any step of post-treatment. - Abstract: This study examined the effects of H 2 and H 2 + O 2 mixed gas plasma treatment on the properties of ITO films. The films were deposited on corning glass by RF magnetron sputtering under Ar and Ar/O 2 mixed gas ambient. After a H 2 plasma treatment, the ITO films showed an improved specific resistance due to the formation of oxygen vacancies acting as shallow donors, but showed quenched transmittance due to the formation of agglomerated metals on the surface. After an H 2 + O 2 mixed gas plasma treatment, the specific resistance of the film was improved without deteriorating transmittance. The enhanced specific resistance by mixed gas plasma treatment was attributed to the formation of free electrons by the incorporation of H in the lattice.

  12. The untyped stack calculus and Bohm's theorem

    Directory of Open Access Journals (Sweden)

    Alberto Carraro

    2013-03-01

    Full Text Available The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.

  13. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  14. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang

    2013-11-01

    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16Citation: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16

  15. Use of porous silicon to minimize oxidation induced stacking fault defects in silicon

    International Nuclear Information System (INIS)

    Shieh, S.Y.; Evans, J.W.

    1992-01-01

    This paper presents methods for minimizing stacking fault defects, generated during oxidation of silicon, include damaging the back of the wafer or depositing poly-silicon on the back. In either case a highly defective structure is created and this is capable of gettering either self-interstitials or impurities which promote nucleation of stacking fault defects. A novel method of minimizing these defects is to form a patch of porous silicon on the back of the wafer by electrochemical etching. Annealing under inert gas prior to oxidation may then result in the necessary gettering. Experiments were carried out in which wafers were subjected to this treatment. Subsequent to oxidation, the wafers were etched to remove oxide and reveal defects. The regions of the wafer adjacent to the porous silicon patch were defect-free, whereas remote regions had defects. Deep level transient spectroscopy has been used to examine the gettering capability of porous silicon, and the paper discusses the mechanism by which the porous silicon getters

  16. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    Science.gov (United States)

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  17. ooi: OpenStack OCCI interface

    Directory of Open Access Journals (Sweden)

    Álvaro López García

    2016-01-01

    Full Text Available In this document we present an implementation of the Open Grid Forum’s Open Cloud Computing Interface (OCCI for OpenStack, namely ooi (Openstack occi interface, 2015  [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.

  18. ooi: OpenStack OCCI interface

    Science.gov (United States)

    López García, Álvaro; Fernández del Castillo, Enol; Orviz Fernández, Pablo

    In this document we present an implementation of the Open Grid Forum's Open Cloud Computing Interface (OCCI) for OpenStack, namely ooi (Openstack occi interface, 2015) [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.

  19. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  20. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  1. Impact of gas emboli and hyperbaric treatment on respiratory function of loggerhead sea turtles (Caretta caretta).

    Science.gov (United States)

    Portugues, Cyril; Crespo-Picazo, Jose Luis; García-Párraga, Daniel; Altimiras, Jordi; Lorenzo, Teresa; Borque-Espinosa, Alicia; Fahlman, Andreas

    2018-01-01

    Fisheries interactions are the most serious threats for sea turtle populations. Despite the existence of some rescue centres providing post-traumatic care and rehabilitation, adequate treatment is hampered by the lack of understanding of the problems incurred while turtles remain entrapped in fishing gears. Recently it was shown that bycaught loggerhead sea turtles ( Caretta caretta ) could experience formation of gas emboli (GE) and develop decompression sickness (DCS) after trawl and gillnet interaction. This condition could be reversed by hyperbaric O 2 treatment (HBOT). The goal of this study was to assess how GE alters respiratory function in bycaught turtles before recompression therapy and measure the improvement after this treatment. Specifically, we assessed the effect of DCS on breath duration, expiratory and inspiratory flow and tidal volume ( V T ), and the effectiveness of HBOT to improve these parameters. HBOT significantly increased respiratory flows by 32-45% while V T increased by 33-35% immediately after HBOT. Repeated lung function testing indicated a temporal increase in both respiratory flow and V T for all bycaught turtles, but the changes were smaller than those seen immediately following HBOT. The current study suggests that respiratory function is significantly compromised in bycaught turtles with GE and that HBOT effectively restores lung function. Lung function testing may provide a novel means to help diagnose the presence of GE, be used to assess treatment efficacy, and contribute to sea turtle conservation efforts.

  2. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    International Nuclear Information System (INIS)

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  3. Comparing the effects of cryotherapy with nitrous oxide gas versus topical corticosteroids in the treatment of oral lichen planus

    Directory of Open Access Journals (Sweden)

    Dariush Amanat

    2014-01-01

    Conclusion: Cryotherapy with nitrous oxide gas is as effective as topical triamcinolone acetonide in the treatment of OLP with no systemic side effects and needs less patient compliance. It can be considered as an alternative or adjuvant therapy in OLP patients to reduce the use of treatments with adverse effects.

  4. Features and treatment of gas-forming synergistic necrotizing cellulitis: a nine-year retrospective study.

    Science.gov (United States)

    Ling, Xiangwei; Ye, Yuanyuan; Guo, Hailei; Liu, Zhengjun; Xia, Weidong; Lin, Cai

    2018-03-01

    As many doctors know little about gas-forming synergistic necrotizing cellulitis, we retrospectively explored it in our study. Totally, 30 patients diagnosed with gas-forming synergistic necrotizing cellulitis between November 2006 and September 2015 were included. They were divided into two groups: open drainage group (19 patients) and aggressive debridement group (11 patients). Retrospectively analyzed data comprised demographic characteristics, APACHE II scores, pathogen culture results, bleeding amount during the operation, white blood cell count, length of hospital stay and recovery. The mortality rate was 26% in the open drainage group and 73% in the aggressive debridement group (p=0.023). There was no statistical difference in the APACHE II score before treatment between the open drainageand aggressive debridement groups (16.6±4.5 vs 18.1±7.5, p=0.511). The APACHE II score was significantly higher after treatment in the aggressive debridement group (14.2±5.8 score vs 20.1±9.1, p=0.038). There were no statistical differences in the white blood count cell before and after treatment (13.49 × 109±5.05×109 cells/L vs 17.46×109±6.94×109 cells/L, p=0.082; 10.37×109±3.54×109 cells/L vs 15.47×109 ±7.51×109 cells/L, p=0.055; respectively). The bleeding amount during the operation was significantly more in the aggressive debridement group (315±112 ml vs 105±45 ml, pgas-forming synergistic necrotizing cellulitis, performing open drainage as early as possible isthe most important procedure after admission.

  5. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  6. Dual Gas Treatment With Hydrogen and Carbon Monoxide Attenuates Oxidative Stress and Protects From Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Nishida, T; Hayashi, T; Inamoto, T; Kato, R; Ibuki, N; Takahara, K; Takai, T; Yoshikawa, Y; Uchimoto, T; Saito, K; Tanda, N; Kouno, J; Minami, K; Uehara, H; Hirano, H; Nomi, H; Okada, Y; Azuma, H

    Hydrogen (H 2 ) and carbon monoxide (CO) gas are both reported to reduce reactive oxygen species and alleviate tissue ischemia-reperfusion (I-R) injury. The present study was conducted to evaluate the effects of a mixture of H 2 gas and CO gas (dual gas) in comparison with hydrogen gas (H 2 : 2%) alone on I-R renal injury (composition of dual gas; N 2 : 77.8%; O 2 : 20.9%; H 2 : 1.30%; CO: 250 parts per million). Adult male Sprague-Dawley rats (body weight 250-280 g) were divided into 5 groups: (1) sham operation control, (2) dual gas inhalation (dual treatment) without I-R treatment, (3) I-R renal injury, (4) H 2 gas alone inhalation (H 2 treatment) with I-R renal injury, and (5) dual treatment with I-R renal injury. I-R renal injury was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion, and then contralateral nephrectomy was performed 2 weeks later. Renal function was markedly decreased at 24 hours after reperfusion, and thereafter the effects of dual gas were assessed by histologic examination and determination of the superoxide radical, together with functional and molecular analyses. Pathologic examination of the kidney of I-R rats revealed severe renal damage. Importantly, cytoprotective effects of the dual treatment in comparison with H 2 treatment and I-R renal injury were observed in terms of superoxide radical scavenging activity and histochemical features. Rats given dual treatment and I-R renal injury showed significant decreases in blood urea nitrogen. Increased expression of several inflammatory cytokines (tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, nuclear factor-κB, hypoxia inducible factor-1α, and heme oxygenase-1) was attenuated by the dual treatment. Dual gas inhalation decreases oxidative stress and markedly improves I-R-induced renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An assessment of off-gas treatment technologies for application to thermal treatment of Department of Energy wastes

    International Nuclear Information System (INIS)

    Dalton, J.D.; Gillins, R.L.; Harris, T.L.; Wollerman, A.L.

    1992-09-01

    The purpose of this report is to describe available air pollution control technologies for pollutants generated by thermal treatment of DOE wastes. A basic process for selecting air pollution control devices is summarized. Types of air pollutants generated by thermal treatment units are described, as well as the factors that influence the types and quantities of pollutants generated. This report also reviews applicable regulatory emission requirements. A listing of available and emerging air pollution control technologies and a brief introduction to the basic engineering principles involved in collecting each of the pollutants are presented. Section 7 of this report contains two types of evaluations for air pollution control devices. First, comparative evaluations of individual technologies are presented, based upon criteria generally relevant to DOE facilities. Using this evaluation system, the spray dryer absorber received the highest rating for acid-gas removal; high-efficiency particulate air (HEPA) filters received the highest rating for particulate removal; activated carbon adsorption received the highest rating for the removal of both toxic metals and residual hydrocarbons; and selective catalytic reduction received the highest rating for nitrogen oxide abatement. Also evaluated in Sect. 7 is the expected performance of different types of pollution control systems on two hypothetical waste streams. The waste streams were defined based upon typical DOE wastes and thermal treatment technologies. Section 8 presents conclusions for this report. Two appendixes are included with this report. The first appendix contains a brief description of all the technologies evaluated and the second lists of some of the vendors for each of the technologies that was evaluated

  8. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  9. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  10. Extracorporeal gas exchange and spontaneous breathing for the treatment of acute respiratory distress syndrome: an alternative to mechanical ventilation?*.

    Science.gov (United States)

    Langer, Thomas; Vecchi, Vittoria; Belenkiy, Slava M; Cannon, Jeremy W; Chung, Kevin K; Cancio, Leopoldo C; Gattinoni, Luciano; Batchinsky, Andriy I

    2014-03-01

    extracorporeal gas exchange as a safe and valuable alternative to mechanical ventilation for the treatment of patients with acute respiratory distress syndrome.

  11. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  12. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  13. 40 CFR 61.44 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled, during...

  14. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  15. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  16. Study on component interface evolution of a solid oxide fuel cell stack after long term operation

    Science.gov (United States)

    Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian

    2018-05-01

    A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.

  17. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.; Arafa, Nadim M.; Abdel-Rahman, Ehab

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack's position, length and plate spacing are the three main parameters that have been investigated in this study. Stack's position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine's most powerful operating point.

  18. Application of radioisotope tracer techniques in evaluation of irradiation vessel of flue gas treatment system

    International Nuclear Information System (INIS)

    Joon-Ha Jin; Myun-Joo Lee; Sung-Hee Jung; Young-Chang Nho

    1998-01-01

    The proper design of the irradiation vessel of electron beam flue gases treatment plant and resultant optimum gas flow pattern is a very important factor to get a high removal efficiency of toxic materials from flue gases. Radioisotope tracer experiments were conducted to study the residence time distribution of gas flow in a cylindrical irradiation vessel. A few mCi of gaseous radioisotope tracer Ar-41 was injected to the upstream of the vessel and the input and output response were measured with two NaI scintillation detectors. The same experiment was conducted after the modification of the vessel by introducing 4 baffles. The experimental data were analyzed to calculate mean residence times and mixing characteristics of each system using the residence time distribution (RTD) analysis software. A method to estimate pollutant removal efficiencies of an irradiation vessel from the residence time distributions measured by radiotracer experiments was suggested. The analytical results were compared to evaluate the effect of the baffles on the removal efficiency of the plant

  19. A hybrid plasma-chemical system for high-NOx flue gas treatment

    Science.gov (United States)

    Chmielewski, Andrzej G.; Zwolińska, Ewa; Licki, Janusz; Sun, Yongxia; Zimek, Zbigniew; Bułka, Sylwester

    2018-03-01

    The reduction of high concentrations of NOx and SO2 from simulated flue gas has been studied. Our aim was to optimise energy consumption for NOx and SO2 removal from off-gases from a diesel generator using heavy fuel oil. A hybrid process: electron beam (EB) plasma and wet scrubber has been applied. A much higher efficiency of NOx and SO2 removal was achieved in comparison to dry, ammonia free, electron beam flue gas treatment (EBFGT). A recorded removal from a concentration of 1500 ppm NOx reached 49% at a low dose of 6.5 kGy, while only 2% NOx was removed at the same dose if EB only was applied. For SO2, removal efficiency at a dose of 6.5 kGy increased from 15% (EB only) to 84% when sea water was used as a wet scrubber agent for 700 ppm SO2. The results of this study indicate that EB combined with wet scrubber is a very promising technology to be applied for removal of high concentrations of NOx and SO2 emitted from diesel engines operated e.g. on cargo ships, which are the main sources of SO2 and NOx pollution along their navigation routes.

  20. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma.

    Science.gov (United States)

    Lee, Jangwook; Min, Hyun-Su; You, Dong Gil; Kim, Kwangmeyung; Kwon, Ick Chan; Rhim, Taiyoun; Lee, Kuen Yong

    2016-02-10

    The development of safe and efficient diagnostic/therapeutic agents for treating cancer in clinics remains challenging due to the potential toxicity of conventional agents. Although the annual incidence of neuroblastoma is not that high, the disease mainly occurs in children, a population vulnerable to toxic contrast agents and therapeutics. We demonstrate here that cancer-targeting, gas-generating polymeric nanoparticles are useful as a theranostic tool for ultrasound (US) imaging and treating neuroblastoma. We encapsulated calcium carbonate using poly(d,l-lactide-co-glycolide) and created gas-generating polymer nanoparticles (GNPs). These nanoparticles release carbon dioxide bubbles under acidic conditions and enhance US signals. When GNPs are modified using rabies virus glycoprotein (RVG) peptide, a targeting moiety to neuroblastoma, RVG-GNPs effectively accumulate at the tumor site and substantially enhance US signals in a tumor-bearing mouse model. Intravenous administration of RVG-GNPs also reduces tumor growth in the mouse model without the use of conventional therapeutic agents. This approach to developing theranostic agents with disease-targeting ability may provide useful strategy for the detection and treatment of cancers, allowing safe and efficient clinical applications with fewer side effects than may occur with conventional agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Treatment of back flow fluids from shale gas exploration with recovery of uranium

    International Nuclear Information System (INIS)

    Gajda, D.; Zakrzewska-Koltuniewicz, G.; Abramowska, A.; Kiegiel, K.; Niescior-Borowinska, P.; Miskiewicz, A.; Olszewska, W.; Kulisa, K.; Samszynski, Z.; Drzewicz, P.; Konieczynska, M.

    2015-01-01

    Shale gas exploitation is the cause of many social protests. According to the protesters gas extraction technology threatens the environment: it consumes huge amounts of water, creates danger of poisoning drinking water, the formation of toxic wastewater, air contamination, noise, etc. Hydro-fracturing fluids could also leach radioactive isotopes e.g. uranium from the rock. The upper content of the main elements found in examined back flow fluids in Poland are the following: chlorine: 100.00 Kg/m 3 , sodium: 40.00 kg/m 3 , potassium: 0.90 kg/m 3 , lithium: 0.15 kg/m 3 , magnesium: 2.00 kg/m 3 , calcium: 20.00 kg/m 3 , strontium: 0.80 kg/m 3 and cesium: 0.06 kg/m 3 while the upper content of trace elements are the following: uranium: 3.5 g/m 3 , lanthanum: 12.4 g/m 3 , vanadium: 1.3 g/m 3 , yttrium: 1.3 g/m 3 , molybdenum: 2.0 g/m 3 and manganese: 9.7 g/m 3 . The recovery of uranium, and other valuable metals, from back flow fluids will reduce an environmental impact of hydro-fracturing process. This poster details the treatment of back flow fluids in Poland allowing rare earth elements and uranium recovery

  2. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  3. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  4. Biological Effect of Gas Plasma Treatment on CO2 Gas Foaming/Salt Leaching Fabricated Porous Polycaprolactone Scaffolds in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tae-Yeong Bak

    2014-01-01

    Full Text Available Porous polycaprolactone (PCL scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering.

  5. Pilot plant experience in electron-beam treatment of iron-ore sintering flue gas and its application to coal boiler flue gas cleanup

    International Nuclear Information System (INIS)

    Kawamura, K.

    1984-01-01

    The present development status of the electron-beam flue gas treatment process, which is a dry process capable of removing SOx and NOx simultaneously, is described. The most advanced demonstration of this process was accomplished with a pilot plant in Japan where the maximum gas flow rate of 10,000 Nm 3 /h of an iron-ore sintering machine flue gas was successfully treated. The byproduct produced in this process is collected as a dry powder which is a mixture of ammonia sulfate and ammonium nitrate and is saleable as a fertilizer or a fertilizer component. A preliminary economic projection showed that this process costs less than the lime scrubber which removes SOx but does not remove NOx. Tests using simulated coal combustion gases suggest that this process will be applicable to coal-fired boiler flue gas treatment as well. However, tests on actual coal-fired flue gases are still required for commercial application decisions. A process development unit program consisting of the design, construction and testing of actual coal-fired power station flue gases is underway in the U.S.A. The design and engineering of the test plant is far advanced and the construction phase will be launched in the very near future. (author)

  6. Industrial applications of electron beam flue gas treatment - From laboratory to the practice

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.

    2007-01-01

    The electron beam technology for flue gas treatment (EBFGT) has been developed in Japan in the early 1980s. Later on, this process was investigated in pilot scale in the USA, Germany, Japan, Poland, Bulgaria and China. The new engineering and process solutions have been developed during the past two decades. Finally industrial plants have been constructed in Poland and China. The high efficiency of SO x and NO x removal was achieved (up to 95% for SO x and up to 70% for NO x ) and by-product is a high quality fertilizer. Since the power of accelerators applied in industrial installation is over 1 MW and requested operational availability of the plant is equal to 8500 h in year, it is a new challenge for radiation processing applications

  7. Performance of a methane-fueled single-cell SOFC stack at various levels of fuel utilization

    International Nuclear Information System (INIS)

    Ahmed, K.; Bolden, R.; Ramprakash and Foger, K.

    1998-01-01

    Fuel-gas mixtures representing 10 to 85% utilization of a methane-steam mixture at S/C=2 were fed to a single cell stack with a Ni-based anode at 875 deg C. Cell voltage and power output were recorded at current densities of 50 to 350 mA/cm 2 . The accompanying anode off-gas composition at some of these conditions were measured using on-line gas chromatograph and compared with the compositions predicted by a thermodynamic model based on the assumption of no carbon formation. Electrical losses were measured at a chosen current density at various levels of fuel utilization by the galvanostatic current-interruption technique. Cell voltage stability was monitored for up to 1000 h at two levels of fuel utilization. The stack performance was simulated using a mathematical model of the stack; the simulations were compared with the stack test data. Copyright (1998) Australasian Ceramic Society

  8. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  9. Demonstration test of electron beam flue gas treatment pilot plant of a coal fired thermal power station

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Hayashi, Kazuaki; Izutsu, Masahiro; Watanabe, Shigeharu; Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi.

    1995-01-01

    The Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation jointly constructed a pilot plant for electron beam flue gas treatment (dry process) capable of treating 12,000 m 3 /h (NTP) of flue gas from a coal fired boiler, at Shin-Nagoya Thermal Power Station, Chubu Electric Power Company. Various tests carried out at the plant over a period extending one year verified the followings. By appropriately controlling parameters such as electron beam dosage, flue gas temperature, and ammonia stoichiometric amount, highly efficient simultaneous SO 2 and NOx removal from flue gas was achieved under all gas conditions, equal to or more efficient than that by the highest level conventional treatment. The operation of the pilot plant was stable and trouble-free over a long term, and the operation and the process was easy to operate and control. By-products (ammonium sulfate and ammonium nitrate) produced by the flue gas treatment were proven to have superior quality, equivalent to that of market-available nitrogen fertilizers. These by-products had been registered as by-product nitrogen fertilizers. (author)

  10. Development of high performance catalyst for off-gas treatment system in BWR

    International Nuclear Information System (INIS)

    Kawasaki, Toru; Kawabe, Kenichi; Maeda, Kiyomitsu; Matsubara, Hirofumi; Aizawa, Motohiro; Iizuka, Hidehiro; Kumagai, Naoki

    2011-01-01

    A high performance catalyst for off-gas treatment system in boiling water reactor (BWR) has been developed. The hydrogen concentration in the outlets of off-gas recombiners increased at several BWR plants in Japan. These phenomena were caused by deactivation of catalysts for the recombiners, and we assumed two types of deactivation mechanisms. The first cause was an increase of the amount of boehmite in the catalyst support due to alternation of the manufacturing process. The other cause was catalysts being poisoned by cyclic siloxanes that were introduced from the silicone sealant used in the upstream of the off-gas recombiners. The catalysts were manufactured by Pt adhering on alumina support. The conventional catalyst (CAT-A) used the aqueous solution of the chloroplatinic acid for adhesion of Pt. A dechlorination process by autoclave was applied to prevent the equipment at the downstream of the recombiners from stress corrosion cracking, but this process caused the support material to transform into boehmite. The boehmite-rich catalysts were deactivated more easily by organic silicon than gamma alumina-rich catalysts. Therefore, the CAT-A was replaced at many Japanese BWR plants by the improved catalyst (CAT-B), and their support was transformed into more stable gamma alumina by heating at 500degC. However, the siloxanes keep being detected in the off-gas though the source of siloxane had been removed and there still remain possibilities to deactivate the catalysts. Therefore, we have been developing high performance catalyst (CAT-C) that has higher activity and durability against poisoning. We investigated the properties of CAT-C by performance tests and instrumental analyses. The dependency of thermal output of nuclear reactor, and durability against siloxane poisoning were investigated. We found that CAT-C showed higher performance and better properties than CAT-B did. Moreover, we have been developing a modeling method to evaluate the hydrogen recombination

  11. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    Science.gov (United States)

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Plant design alternatives for gas treatment with amines; Alternativas de diseno de plantas de tratamiento de gas con aminas

    Energy Technology Data Exchange (ETDEWEB)

    Maioli, Gerardo; Guruchaga, Gustavo; Raventos, Martin [Tecna S.A., Buenos Aires (Argentina)

    2004-07-01

    In the last three years Tecna S.A. has developed a project to install six gas processing plants with amines, whose goal is the removal of carbon dioxide and hydrogen sulfide from natural gas. During the design of the facility several options for control problems solution were presented. The objective is to provide a description of the most important solution implemented in different situations. Comparative analyses of the six plants, that will be useful in time to carry out similarities with other plants or to address future applications, were included. The main conclusion of this work is that the incorporation of technologies and an appropriate selection of control systems improve the operation of the plants, minimizing maintenance and provide better levels of performance in these types of facilities.

  13. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun, E-mail: xjwang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Jia, Mingsheng, E-mail: msjia@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Xiaohai, E-mail: cxiaoh_xm@126.com [Xiamen City Environmental Sanitation Management Department, Xiamen 361000 (China); Xu, Ying, E-mail: yxu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Lin, Xiangyu, E-mail: xylin@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Kao, Chih Ming, E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Chen, Shaohua, E-mail: shchen@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  14. Démonstration du procédé IFP de désulfuration des fumées de centrales Demonstration of the Ifp Stack-Gas Desulfurization Process

    Directory of Open Access Journals (Sweden)

    Busson C.

    2006-11-01

    Full Text Available Les produits pétroliers et le charbon continueront à couvrir les besoins énergétiques pendant plusieurs décennies. La pollution par le SOZ, provenant de la combustion de ces combustibles fossiles, devient une préoccupation pour la population et les Pouvoirs publics. La désulfuration des fumées de combustion devrait, à plus ou moins longue échéance, se développer. L'Institut Français du Pétrole (IFP, mettant à profit ses travaux dans le domaine de la désulfuration, a développé un procédé de traitement des fumées. L'IFP, en collaboration avec Électricité de France (EDF, a effectué en 1976 une opération de démonstration à une échelle pilote (30 MW dans la Centrale de Champagne-sur-Oise. Le procédé consiste à éliminer le S02 des fumées par lavage avec une solution ammoniacale, à produire du soufre à partir de la liqueur obtenue et à recycler l'ammoniaque dans l'étape de lavage. Après quelques modifications d'ordre technologique, l'unité de démonstration a fonctionné d'une manière continue pendant une période de trois mois, correspondant à l'objectif fixé. Les résultats obtenus permettent, actuellement, d'envisager une application de cette technique à une échelle de 250 MW. Oil and coal productswill continue to fulfill energy needs for several more decades. Pollution by SO2 coming from the combustion of such fossil fuels is becoming a preoccupation for the population and the public authorities. The desulfurization of combustion fumes should continue ta develop in the more or less long run. Institut Français du Pétrole (IFP has taken advantage of its research in the fixed of desulfurization to develop a stock-gas treating process. In collaboration with Électricite de Fronce (EDF, IFP carried out a demonsiration operation in 1976 on a pilot-plant scale (30MW in a power plant at Champagne-sur-Oise. The process consists in removing S02 from stock gases by scrubbing them with an ammonia solution

  15. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  16. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  18. Text-Filled Stacked Area Graphs

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    -filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...... solutions for the design of text-filled stacked area graphs with the help of an exemplary visualization of the genres, publication years, and titles of a database of several thousand PC games....

  19. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  20. Measurement of Heat Flow Transmitted through a Stacked-Screen Regenerator of Thermoacoustic Engine

    Directory of Open Access Journals (Sweden)

    Shu Han Hsu

    2017-03-01

    Full Text Available A stacked-screen regenerator is a key component in a thermoacoustic Stirling engine. Therefore, the choice of suitable mesh screens is important in the engine design. To verify the applicability of four empirical equations used in the field of thermoacoustic engines and Stirling engines, this report describes the measurements of heat flow rates transmitted through the stacked screen regenerator inserted in an experimental setup filled with pressurized Argon gas having mean pressure of 0.45 MPa. Results show that the empirical equations reproduce the measured heat flow rates to a mutually similar degree, although their derivation processes differ. Additionally, results suggest that two effective pore radii would be necessary to account for the viscous and thermal behaviors of the gas oscillating in the stacked-screen regenerators.

  1. Greenhouse Gas Emissions from Green Infrastructure vs. Conventional Wastewater Treatment Plants

    Science.gov (United States)

    Morse, N.; Walter, T.

    2017-12-01

    The need for resilient infrastructure and cities in the face of climate change has prompted an expansion of green infrastructure (GI) in suburban and urban areas. However, some researchers have begun to question if these engineered and vegetated systems could be contributing excess greenhouse gas (GHG) emissions. They theorize that the often inundated GI practices may be hot-spots for biogeochemical processes emitting GHGs. However, no studies have compared passive GI to the only available alternative for water treatment: conventional wastewater treatment plants (WWTPs). This study monitored the nitrous oxide (N2O) and methane (CH4) emissions from two GI detention basins in Ithaca, NY and compared these emissions with reported and modeled on-site emissions from WWTPs. One basin was often saturated ("Wet Basin"), while the other drained quickly and was rarely saturated ("Dry Basin"). The Wet Basin emitted more GHGs than nearby reference turfgrass (92 vs. 5 mg CO2 eq m-2 hr-), while the Dry Basin emitted less than reference turfgrass (0.9 vs 4 mg CO2 eq m-2 hr-). However, both basins emitted far less GHGs than conventional WWTPs. According to EPA calculations, aerobic WWTPs emit approximately 1,079 mg CO2 eq L-1, and the Wet and Dry Basin emitted roughly 117-516 and 0.28-2.56 mg CO2 eq L-1, respectively. Thus, on a per volume of water treated basis, conventional WWTPs are emitting approximately 3 and 750 times more GHGs than GI Wet and Dry Basins, respectively. This study highlights how passive GI provides a valuable ecosystem service (i.e., stormwater treatment) while producing less GHGs than WWTPs.

  2. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Zhang, Jian; Fan, Jinlin; Ngo, Huu Hao; Guo, Wenshan; Zeng, Chujun; Wu, Yiwen; Wang, Siyuan

    2018-02-01

    In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH 4 + -N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H 2 S, NH 3 and N 2 O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively. Copyright © 2017. Published by Elsevier Ltd.

  3. Engineering of Mixed Matrix Membranes for Water Treatment, Protective Coating and Gas Separation

    KAUST Repository

    Hammami, Mohamed Amen

    2017-11-01

    Mixed Matrix Membranes (MMMs) have received worldwide attention during the last decades. This is due to the fact that the resulting materials can combine the good processability and low cost of polymer membranes with the diverse functionality, high performance and thermal properties of the fillers. This work explores the fabrication and application of MMMs. We focused on the design and fabrication of nanofillers to impart target functionality to the membrane for water treatment, protective coating and gas separation. This thesis is divided into three sections according to the application including: I- Water Treatment: This part is divided into three chapters, two related to the membrane distillation (MD) and one related to the oil spill. Three different nanofillers have been used: Periodic mesoporous organosilica (PMO), graphene and carbon nanotube (CNT). Those nanofillers were homogeneously incorporated into polyetherimide (PEI) electrospun nanofiber membranes. The doped nanoparticle not only improved the mechanical properties and thermal stability of the pristine fiber but also enhanced the MD and oil spill performance due to the functionality of those nanofillers. II- Protective coating: This part includes two chapters describing the design and the fabrication of a smart antibacterial and anti-corrosion coating. In the first project, we fabricated colloidal lysozyme-templated gold nanoclusters gating antimicrobial-loaded silica nanoparticles (MSN-AuNCs@lys) as nano-fillers in poly(ethylene oxide)/poly(butylene terephthalate) polymer matrix. MSN-AuNCs@lys dispersed homogeneously within the polymer matrix with zero NPs leaching. The system was coated on a common radiographic dental imaging device that is prone to oral bacteria contamination. This coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. In the second project, the coaxial electrospinning approach has been applied to

  4. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  5. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H

    2016-01-01

    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  6. Development of Auto-Stacking Warehouse Truck

    Directory of Open Access Journals (Sweden)

    Kuo-Hsien Hsia

    2018-03-01

    Full Text Available Warehouse automation is a very important issue for the promotion of traditional industries. For the production of larger and stackable products, it is usually necessary to operate a fork-lifter for the stacking and storage of the products by a skilled person. The general autonomous warehouse-truck does not have the ability of stacking objects. In this paper, we develop a prototype of auto-stacking warehouse-truck that can work without direct operation by a skill person. With command made by an RFID card, the stacker truck can take the packaged product to the warehouse on the prior-planned route and store it in a stacking way in the designated storage area, or deliver the product to the shipping area or into the container from the storage area. It can significantly reduce the manpower requirements of the skilled-person of forklift technician and improve the safety of the warehousing area.

  7. Greenhouse gas emissions from the mineralisation process in a Sludge Treatment Reed Bed system: Seasonal variation and environmental impact

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen; Scheutz, Charlotte

    2017-01-01

    Greenhouse gas emission data from the mineralisation process in Sludge Treatment Reed Bed systems (STRB) are scarce. The aim of this study was to quantify the emission rates of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and to investigate seasonal variations in order to estimate ...

  8. A new argon gas-based device for the treatment of keloid scars with the use of intralesional cryotherapy

    NARCIS (Netherlands)

    van Leeuwen, M.C.E.; Bulstra, A.E.J.; van Leeuwen, P.A.M.; Niessen, F.B.

    2014-01-01

    Background: Intralesional (IL) cryotherapy is a new promising technique for the treatment of keloid scars, in which the scar is frozen from inside. Multiple devices are available, mostly based on a simple liquid nitrogen Dewar system, which have a limited freezing capacity. Argon gas-based systems

  9. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  10. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Møller, S.; Molin, S.

    1997-01-01

    A biological trickling filter for treatment of toluene-containing waste gas was studied. The overall kinetics of the biofilm growth was followed in the early growth phase. A rapid initial colonization took place during the first three days. The biofilm thickness increased exponentially, whereas...

  11. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  12. Exploring online evolution of network stacks

    OpenAIRE

    Imai, Pierre

    2013-01-01

    Network stacks today follow a one-size-fits-all philosophy. They are mostly kept unmodified due to often prohibitive costs of engineering, deploying and administrating customisation of the networking software, with the Internet stack architecture still largely being based on designs and assumptions made for the ARPANET 40 years ago. We venture that heterogeneous and rapidly changing networks of the future require, in order to be successful, run-time self-adaptation mechanisms at different tim...

  13. Comparing the effects of cryotherapy with nitrous oxide gas versus topical corticosteroids in the treatment of oral lichen planus.

    Science.gov (United States)

    Amanat, Dariush; Ebrahimi, Hooman; Zahedani, Maryam Zahed; Zeini, Nasim; Pourshahidi, Sara; Ranjbar, Zahra

    2014-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa with treatment challenges for clinicians. The objective of this study is to compare the effects of cryotherapy as a new modality with topical corticosteroids as a conventional therapy in the treatment of OLP. Thirty patients with bilateral OLP lesions were selected. From each patient a lesion on one side was chosen randomly for a single session of cryotherapy with nitrous oxide gas and the lesion on the other side received triamcinolone acetonide 0.1% ointment in orabase. Treatment outcome was measured by means of an appearance score, pain score (visual analogue scale), and severity of lesions before treatment and after 2, 4 and 6 weeks of treatment. Paired samples t-test and Wilcoxon test. In both methods of treatment sign score, pain score and severity of lesions was significantly reduced in all follow-up sessions (Ptreatment outcome and relapse was not significantly different between the two treatment methods (P>0.05). Cryotherapy with nitrous oxide gas is as effective as topical triamcinolone acetonide in the treatment of OLP with no systemic side effects and needs less patient compliance. It can be considered as an alternative or adjuvant therapy in OLP patients to reduce the use of treatments with adverse effects.

  14. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  15. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to le...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures.......Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...

  16. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

    OpenAIRE

    Zhang, Han; Xu, Tao; Li, Hongsheng; Zhang, Shaoting; Wang, Xiaogang; Huang, Xiaolei; Metaxas, Dimitris

    2017-01-01

    Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aiming at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of the object based on given...

  17. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  18. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  19. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  20. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  1. Systematic selection of off-gas treatment at the Savannah River Site

    International Nuclear Information System (INIS)

    McKillip, S.T.; Rehder, T.E.

    1992-01-01

    At the Savannah River Site (SRS), from 1958--1985, effluent waste from the reactor fuel and target rod fabrication area (M-Area) was discharged to a settling basin. In 1981, monitoring wells detected groundwater contamination, specifically trichloroethylene and tetrachloroethylene, in the immediate vicinity of the basin. Under the auspices of Resource Conservation and Recovery Act (RCRA) the M-Area contamination must be addressed by a corrective action program until the volatile organic compound (VOC) concentrations reach Drinking Water Standards. This was initiated in 1985 with startup of a full-scale pump-and-treat air stripper system. Recently, remediation efforts have focused on vacuum extraction to treat vadose zone contamination not addressed by the original recovery wells, and additional pump-and-treat systems to achieve hydraulic control of the plume. Regulatory requirements allowed for discharge of VOCs to the atmosphere when the original remediation system was installed; however, 1990 amendments to the Clean Air Act will eventually require treatment of VOC contaminated air prior to discharge. This has ramifications to systems currently being design, as well as the existing systems. In response to the 1990 Clean Air Act amendments, SRS initiated a study to assess commercially available off-gas treatment technologies. These included carbon adsorption, thermal incineration, catalytic oxidation, absorption, condensation, and UV/peroxide destruction, and xenon flashlamp. Criteria used to evaluate the technologies were the thirty (30) year life cycle cost, permitting considerations, and manpower requirements. The study concluded that catalytic oxidation provided the most desirable combination of these elements

  2. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    Science.gov (United States)

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  3. Gas treatment in trickle-bed biofilters: biomass, how much is enough?

    Science.gov (United States)

    Alonso, C; Suidan, M T; Sorial, G A; Smith, F L; Biswas, P; Smith, P J; Brenner, R C

    1997-06-20

    The objective of this article is to define and validate a mathematical model that desribes the physical and biological processes occurring in a trickle-bed air biofilter for waste gas treatment. This model considers a two-phase system, quasi-steady-state processes, uniform bacterial population, and one limiting substrate. The variation of the specific surface area with bacterial growth is included in the model, and its effect on the biofilter performance is analyzed. This analysis leads to the conclusion that excessive accumulation of biomass in the reactor has a negative effect on contaminant removal efficiency. To solve this problem, excess biomass is removed via full media fluidization and backwashing of the biofilter. The backwashing technique is also incorporated in the model as a process variable. Experimental data from the biodegradation of toluene in a pilot system with four packed-bed reactors are used to validate the model. Once the model is calibrated with the estimation of the unknown parameters of the system, it is used to simulate the biofilter performance for different operating conditions. Model predictions are found to be in agreement with experimental data. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 583-594, 1997.

  4. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    International Nuclear Information System (INIS)

    Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji

    2011-01-01

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  5. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  6. Influence factors of the inter-nanowire thermal contact resistance in the stacked nanowires

    Science.gov (United States)

    Wu, Dongxu; Huang, Congliang; Zhong, Jinxin; Lin, Zizhen

    2018-05-01

    The inter-nanowire thermal contact resistance is important for tuning the thermal conductivity of a nanocomposite for thermoelectric applications. In this paper, the stacked copper nanowires are applied for studying the thermal contact resistance. The stacked copper nanowires are firstly made by the cold-pressing method, and then the nanowire stacks are treated by sintering treatment. With the effect of the volumetric fraction of nanowires in the stack and the influence of the sintering-temperature on the thermal contact resistance discussed, results show that: The thermal conductivity of the 150-nm copper nanowires can be enlarged almost 2 times with the volumetric fraction increased from 32 to 56% because of the enlarged contact-area and contact number of a copper nanowire. When the sintering temperature increases from 293 to 673 K, the thermal conductivity of the stacked 300-nm nanowires could be enlarged almost 2.5 times by the sintering treatment, because of the improved lattice property of the contact zone. In conclusion, application of a high volumetric fraction or/and a sintering-treatment are effectivity to tune the inter-nanowire thermal contact resistance, and thus to tailor the thermal conductivity of a nanowire network or stack.

  7. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  8. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  9. Short-Acting Gas Tamponade with Strict Face-Down Posturing for the Treatment of Idiopathic Macular Hole.

    Science.gov (United States)

    Gotzaridis, Stratos; Liazos, Efstathios; Petrou, Petros; Georgalas, Ilias

    2017-01-01

    A retrospective consecutive case series to evaluate the safety and efficacy of 25 gauge pars plana vitrectomy, ILM peeling, 20% SF 6 gas tamponade and strict posturing for the treatment of idiopathic full-thickness macular holes. We report the results of 106 consecutive eyes that underwent standard 25-gauge pars plana vitrectomy, brilliant peel-assisted internal limiting membrane peel, fluid:gas exchange with 20% SF 6 and strict posturing for one week. All patients were followed up at one week, one month, three months, and nine months postoperatively. Biomicroscopy at day 1 and biomicroscopy and OCT at week 1, months 1, 3, and 9 were used to assess macular hole status postoperatively. Pre- and postoperative logMAR visual acuity was compared. The macular hole was closed in 102/106 eyes postoperatively (96.2%). Four eyes showed unclosed macular holes and underwent additional SF 6 intravitreal injection and strict posturing for 10 days. All macular holes were eventually closed without the need of a second surgical procedure. Mean visual acuity improved from 0.63 logMAR preoperatively to 0.39 logMAR postoperatively. One case of retinal toxicity was reported due to accidental intravitreal injection of antibiotic. 25-gauge vitrectomy, ILM peel, and short-acting gas tamponade are highly effective for the treatment of macular holes. Additional intravitreal gas injection followed by strict posturing seems to be a simple and effective treatment for unclosed holes.

  10. Impact of mine wastewaters on greenhouse gas emissions from northern peatlands used for mine water treatment

    Science.gov (United States)

    Palmer, Katharina; Ronkanen, Anna-Kaisa; Klöve, Björn; Hynynen, Jenna; Maljanen, Marja

    2015-04-01

    The amount of wastewaters generated during mining operations is increasing along with the increasing number of operation mines, which poses great challenges for mine water management and purification. Mine wastewaters contain high concentrations of nitrogen compounds such as nitrate (NO3-) and ammonium (NH4+) originating from remnant explosives as well as sulfate (SO42-) originating from the oxidation of sulfidic ores. At a mine site in Finnish Lapland, two natural peatlands have been used for cost-effective passive wastewater treatment. One peatland have been used for the treatment of drainage waters (TP 1), while the other has been used for the treatment of process-based wastewaters (TP 4). In this study, the impact of mine water derived nitrogen compounds as well as SO42- on the emission of the potent greenhouse gases methane (CH4) and nitrous oxide (N2O) from those treatment peatlands was investigated. Contaminant concentrations in the input and output waters of the treatment peatlands were monitored which allowed for the calculation of contaminant-specific retention efficiencies. Treatment peatlands showed generally good retention efficiencies for metals and metalloids (e.g. nickel, arsenic, antimony, up to 98% reduction in concentration) with rather low input-concentrations (i.e., in the μg/l-range). On the other hand, retention of contaminants with high input-concentrations (i.e., in mg/l-range) such as NO3-, NH4+ and SO42- was much lower (4-41%, 30-60% and -42-30%, respectively), indicating the limited capability of the treatment peatlands to cope with such high input concentrations. NO3- and NH4+ concentrations were determined in surface and pore water from TP 4 in July 2013 as well as in surface water from TP 1 and TP 4 in October 2013. Up to 720 μM NO3- and up to 600 μM NH4+ were detected in surface water of TP 4 in July 2013. NO3- and NH4+ concentrations in surface waters were highest near the mine wastewater distribution ditch and decreased with

  11. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  12. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    Science.gov (United States)

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Start-Stop Test Procedures on the PEMFC Stack Level

    DEFF Research Database (Denmark)

    Mitzel, Jens; Nygaard, Frederik; Veltzé, Sune

    The test is addressed to investigate the influence on stack durability of a long stop followed by a restart of a stack. Long stop should be defined as a stop in which the anodic compartment is fully filled by air due to stack leakages. In systems, leakage level of the stack is low and time to fil...

  14. Principles for Instructional Stack Development in HyperCard.

    Science.gov (United States)

    McEneaney, John E.

    The purpose of this paper is to provide information about obtaining and using HyperCard stacks that introduce users to principles of stack development. The HyperCard stacks described are available for downloading free of charge from a server at Indiana University South Bend. Specific directions are given for stack use, with advice for beginners. A…

  15. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    Science.gov (United States)

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. Copyright © 2015. Published by Elsevier B.V.

  16. Data Quality Objectives Summary Report for the Demolition of the 116-D and 116-DR Stacks

    International Nuclear Information System (INIS)

    Adler, J. G.

    1999-01-01

    This data quality objective (DQO) summary report has been developed to support demolition and disposal of the 116-D and 116-DR stacks in the 100-D Area of the Hanford Site. This project-specific summary was developed to meet the requirements in BHI-EE-01, Environmental Investigations Procedures, Procedure 1.2, ''Data Quality Objectives,'' using a simplified DQO process. The pathway for disposal of the 116-D and 116-DR stacks is the Environmental Restoration Disposal Facility (ERDF), which requires the development of a waste profile. A combination of process knowledge, history, and existing analogous data will be used to build a waste profile to dispose of the stack and plenum debris in the ERDF. Additional sample data are not necessary for waste designation. This report also addresses the Resources, Conservation, and Recovery Act of 1976 treatment, storage, and disposal closure requirements associated with the 116-DR stack

  17. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  18. Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California’s municipal solid waste

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Horvathc, Arpad

    2011-01-01

    How waste is managed – whether as a nuisance to be disposed of, or as a resource to be reused – directly affects local and global environmental quality. This analysis explores the GHG benefits of five treatment options for residual municipal solid waste (MSW) in California: Business As Usual...... landfills. Using two different waste LCA models, EASEWASTE (a Danish model) and WARM (a U.S. model), we find that improved biogenic waste management through anaerobic digestion and waste reduction can lead to life-cycle GHG savings when compared to Business As Usual. The magnitude of the benefits depends...... strongly on a number of model assumptions: the type of electricity displaced by waste-derived energy, how biogenic carbon is counted as a contributor to atmospheric carbon stocks, and the landfill gas collection rate. Assuming that natural gas is displaced by waste-derived energy, that 64% of landfill gas...

  19. GRS/ISTec strategy for the treatment of gas-related issues for repositories located in rock salt

    International Nuclear Information System (INIS)

    Muller-Lyda, I.; Javeri, V.; Muller, W.

    2001-01-01

    The treatment of gas-related issues for repositories located in rock salt by GRS and ISTec has followed a strategy which has been developed with increasing complexity and degree of detail in the past. The strategy today clearly indicates the direction to establish a comprehensive safety case and the work that remains to be done. For gas generation mainly long-term aspects are an issue to increase accuracy of predictions. Physical modelling especially for HLW is still incomplete with regard to the coupling of fluid flow with geomechanics, solution/precipitation effects and geochemistry. The appropriate tools to transform the physical models into numerical solutions are at hand in principle but have to be further developed collaterally to the physical modelling. The first full-scale demonstration of safety regarding gas issues in rock salt will have to be provided for the licensing of the Morsleben repository shut-down in the near future. (authors)

  20. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  1. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  2. A pilot study for the extraction and treatment of groundwater from a manufactured gas plant site. Final report

    International Nuclear Information System (INIS)

    1997-12-01

    This report describes a pilot study involving treatment of contaminated groundwater at a former manufactured gas plant site on the eastern seaboard of the US. The work was performed in order to provide the design basis for a full-scale groundwater extraction and treatment system at the site, as well as to develop a generic approach to selection of groundwater treatment sequences at other MGP sites. It included three main components: hydrogeologic investigations, bench-scale treatability studies, and pilot-scale treatability studies. Technologies evaluated in bench-scale work included gravity settling, filtration, and dissolved air flotation (DAF) for primary treatment of nonaqueous phase materials; biological degradation, air stripping, and carbon adsorption for secondary treatment of dissolved organics; and carbon adsorption as tertiary treatment of remaining dissolved contaminants. Pilot-scale studies focused on collecting system performance data fore three distinct levels of contamination. Two treatment trains were evaluated. One consisted of DAF, fluidized-bed biotreatment, and filtration plus carbon adsorption; the other used the same steps except to substitute air stripping for fluidized bed treatment. The final effluents produced by both treatment sequences were similar and demonstrated complete treatment of the groundwater. Besides detailing system design and performance for the treatability studies, the report includes an analysis of groundwater treatment applications to MGP sites in general, including a discussion of capital and operating costs

  3. Treatment of discharge water from hydrostatic testing of natural gas pipelines. Volume 4. Topical report, January 1989-June 1992

    International Nuclear Information System (INIS)

    Tallon, J.T.; Lee-Ryan, P.B.; Volpi, K.A.; Fillo, J.P.

    1992-06-01

    The report presents results developed from bench- and full-scale treatment testing conducted on discharge water from hydrostatic testing of natural gas pipelines. Bench-scale testing examined sedimentation with and without chemical coagulants for reducing iron and total suspended solids, aeration for removal of volatile organics, and activated carbon adsorption for removal of organic constituents. Treatment results are provided for a full-scale treatment process, which utilized a hay bale structure and adsorbent booms for removing suspended solids and oil from the discharge water. Detailed characterization results are presented for test water collected before and after treatment. Results developed from an economic analysis of other potential treatment/disposal alternatives are also presented. A total of eight approaches that may be applied for managing constituents present in hydrostatic test waters are examined. The report is Volume 4 of a five-volume report series

  4. A new argon gas-based device for the treatment of keloid scars with the use of intralesional cryotherapy.

    Science.gov (United States)

    van Leeuwen, Michiel C E; Bulstra, Anne-Eva J; van Leeuwen, Paul A M; Niessen, Frank B

    2014-12-01

    Intralesional (IL) cryotherapy is a new promising technique for the treatment of keloid scars, in which the scar is frozen from inside. Multiple devices are available, mostly based on a simple liquid nitrogen Dewar system, which have a limited freezing capacity. Argon gas-based systems ensure accurate and highly controlled freezing and have shown to be effective within the field of oncologic surgery. However, this technique has never been used for the treatment of keloid scars. This prospective study evaluates an argon gas-based system for the treatment of keloids in a patient population including all Fitzpatrick skin types with a 1-year follow-up. Twenty-five patients with 30 keloid scars were included and treated with a device called Seednet (Galil Medical, Yokneam, Israel). Scar quality and possible scar recurrence were assessed before treatment and post treatment (6 and 12 months) with objective devices determining scar color, scar elasticity, scar volume, and patient's skin type. In addition, scars were evaluated using the Patient and Observer Scar Assessment Scale. After 12 months, a significant volume reduction of 62% was obtained, p = 0.05. Moreover, complaints of pain and itching were alleviated and scar quality had improved according to the Patient and Observer Scar Assessment Scale. Scar pigmentation recovered in 62% of all keloid scars within 12 months. Five out of 30 (17%) scars recurred within 12 months, three of which had previously been treated with liquid nitrogen-based IL cryotherapy. Both recurrent and persistent hypopigmentation were mainly seen in Afro-American patients. IL cryotherapy with the use of an argon gas-based system proves to be effective in the treatment of keloid scars, yielding volume reduction and low recurrence rates. Although hypopigmentation recovered in most cases, it is strongly related to non-Caucasian patients. Finally, additional treatment of keloid scars previously unresponsive to IL cryotherapy is predisposed to a high

  5. Device for the treatment of biomass for obtaining methane gas. Vorrichtung fuer die Behandlung von Biomasse zur Methangasgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Mergen, R

    1983-06-09

    This is a device for the treatment of biomass from all organic materials for obtaining methane gas by anaerobic fermentation, characterized by the fact that a water-cooled internal combustion engine carries out three main functions: it drives the chopper, it drives the stirrer and, together with a rake, it destroys the floating surface and heats the fermentation area, where the device is made as a direct waste gas heating system, is controlled via a thermostat control. It gives the pulse for starting and shutting down the internal combustion engine and the waste heat of the engine and the heat of the waste gas from the internal combustion engine are used to heat the service water heat, characterized by the fact that for large plants with biogas flow, the generator engine with its exhaust gas heat takes over the function of the fermentation area heater, that the exhaust gas heat is also used to heat the service water and that a heating circuit is connected to the water cooling system of the generator engine, also characterized by the fact that an effective layer of insulation made of hard foam surrounds an iron skeleton frame, the fermentation container, fixes the supports of the heating coils, acts as a sealed protective trough and as transport packing or outside of a compact ready to use plant.

  6. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    International Nuclear Information System (INIS)

    Bockreis, A.; Steinberg, I.

    2005-01-01

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed

  7. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  8. Development of an Integrated Polymer Microfluidic Stack

    International Nuclear Information System (INIS)

    Datta, Proyag; Hammacher, Jens; Pease, Mark; Gurung, Sitanshu; Goettert, Jost

    2006-01-01

    Microfluidic is a field of considerable interest. While significant research has been carried out to develop microfluidic components, very little has been done to integrate the components into a complete working system. We present a flexible modular system platform that addresses the requirements of a complete microfluidic system. A microfluidic stack system is demonstrated with the layers of the stack being modular for specific functions. The stack and accompanying infrastructure provides an attractive platform for users to transition their design concepts into a working microfluidic system quickly with very little effort. The concept is demonstrated by using the system to carry out a chemilumiscence experiment. Details regarding the fabrication, assembly and experimental methods are presented

  9. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  10. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  11. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z; Scherer, G G; Marmy, Ch; Glaus, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  12. Microseismic event location by master-event waveform stacking

    Science.gov (United States)

    Grigoli, F.; Cesca, S.; Dahm, T.

    2016-12-01

    Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We

  13. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  14. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  15. Nonlinearly stacked low noise turbofan stator

    Science.gov (United States)

    Schuster, William B. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  16. [A case of freeze-dried gas gangrene antitoxin for the treatment of Clostridium perfringens sepsis].

    Science.gov (United States)

    Yoshida, Juichiro; Nakamura, Hideki; Yamada, Shinya; Sekoguchi, Satoru; Suzuki, Takahiro; Tomatsuri, Naoya; Sato, Hideki; Okuyama, Yusuke; Kimura, Hiroyuki; Yoshida, Norimasa

    2015-02-01

    A 66-year-old man was admitted to our hospital with high fever. We diagnosed a gas-containing liver abscess and performed percutaneous abscess drainage. However, 15 hours after admission, he developed massive intravascular hemolysis and acidosis. Sepsis due to Clostridium perfringens was suspected and we treated the patient intensively with multidisciplinary approaches, including antibiotics, mechanical ventilation, and renal replacement therapy. Furthermore, we administered freeze-dried gas gangrene antitoxin. Despite intensive care, the patient died 43 hours after admission.

  17. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker.

    Science.gov (United States)

    Horn, Felix C; Marshall, Helen; Collier, Guilhem J; Kay, Richard; Siddiqui, Salman; Brightling, Christopher E; Parra-Robles, Juan; Wild, Jim M

    2017-09-01

    Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 ( 3 He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔR net ) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔR net showed significant correlation (P treatment effect was detected with all metrics; however, ΔR net showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.

  18. Roles of preoperative arterial blood gas tests in the surgical treatment of scoliosis with moderate or severe pulmonary dysfunction.

    Science.gov (United States)

    Liu, Jia-Ming; Shen, Jian-Xiong; Zhang, Jian-Guo; Zhao, Hong; Li, Shu-Gang; Zhao, Yu; Qiu, Giu-Xing

    2012-01-01

    It has been stated that preoperative pulmonary function tests are essential to assess the surgical risk in patients with scoliosis. Arterial blood gas tests have also been used to evaluate pulmonary function before scoliotic surgery. However, few studies have been reported. The aim of this study was to investigate the roles of preoperative arterial blood gas tests in the surgical treatment of scoliosis with moderate or severe pulmonary dysfunction. This study involved scoliotic patients with moderate or severe pulmonary dysfunction (forced vital capacity treatment between January 2002 and April 2010. A total of 73 scoliotic patients (23 males and 50 females) with moderate or severe pulmonary dysfunction were included. The average age of the patients was 16.53 years (ranged 10 - 44). The demographic distribution, medical records, and radiographs of all patients were collected. All patients received arterial blood gas tests and pulmonary function tests before surgery. The arterial blood gas tests included five parameters: partial pressure of arterial oxygen, partial pressure of arterial carbon dioxide, alveolar-arterial oxygen tension gradient, pH, and standard bases excess. The pulmonary function tests included three parameters: forced expiratory volume in 1 second ratio, forced vital capacity ratio, and peak expiratory flow ratio. All five parameters of the arterial blood gas tests were compared between the two groups with or without postoperative pulmonary complications by variance analysis. Similarly, all three parameters of the pulmonary function tests were compared. The average coronal Cobb angle before surgery was 97.42° (range, 50° - 180°). A total of 15 (20.5%) patients had postoperative pulmonary complications, including hypoxemia in 5 cases (33.3%), increased requirement for postoperative ventilatory support in 4 (26.7%), pneumonia in 2 (13.3%), atelectasis in 2 (13.3%), pneumothorax in 1 (6.7%), and hydrothorax in 1 (6.7%). No significant differences

  19. Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data.

    Science.gov (United States)

    de Haas, D W; Pepperell, C; Foley, J

    2014-01-01

    Primary operating data were collected from forty-six wastewater treatment plants (WWTPs) located across three states within Australia. The size range of plants was indicatively from 500 to 900,000 person equivalents. Direct and indirect greenhouse gas emissions were calculated using a mass balance approach and default emission factors, based on Australia's National Greenhouse Energy Reporting (NGER) scheme and IPCC guidelines. A Monte Carlo-type combined uncertainty analysis was applied to the some of the key emission factors in order to study sensitivity. The results suggest that Scope 2 (indirect emissions due to electrical power purchased from the grid) dominate the emissions profile for most of the plants (indicatively half to three quarters of the average estimated total emissions). This is only offset for the relatively small number of plants (in this study) that have significant on-site power generation from biogas, or where the water utility purchases grid electricity generated from renewable sources. For plants with anaerobic digestion, inventory data issues around theoretical biogas generation, capture and measurement were sometimes encountered that can skew reportable emissions using the NGER methodology. Typically, nitrous oxide (N(2)O) emissions dominated the Scope 1 (direct) emissions. However, N(2)O still only accounted for approximately 10 to 37% of total emissions. This conservative estimate is based on the 'default' NGER steady-state emission factor, which amounts to 1% of nitrogen removed through biological nitrification-denitrification processing in the plant (or indicatively 0.7 to 0.8% of plant influent total nitrogen). Current research suggests that true N(2)O emissions may be much lower and certainly not steady-state. The results of this study help to place in context research work that is focused on direct emissions from WWTPs (including N(2)O, methane and carbon dioxide of non-biogenic origin). For example, whereas non-biogenic CO(2

  20. The effect of nitrogen gas flow rate on heat treatment of AISI SS-430: Study of microstructure and hardness

    Science.gov (United States)

    Sebayang, Perdamean; Darmawan, Bobby Aditya; Simbolon, Silviana; Alfirano, Sudiro, Toto; Aryanto, Didik

    2018-05-01

    The aim of this research was to obtain the austenite phase from ferritic stainless steel through sample heat treatment. The AISI 430 ferritic steel with the thickness of about 0.4 mm was used. The heat treatment was conducted in a tube furnace at elevated temperature of 1150, 1200, 1250 °C and nitrogen gas flow rate of 0.57 and 0.73 l/s. The samples were then rapidly quenched in water bath. An optical microscope, XRD, SEM-EDS and micro vickers hardness tester were used to characterize the sample before and after het treatment. The presence of anneal twins indicated the formation of austenite phase in the sample. Its fraction was varied from 10.89 wt% to 35.10 wt%. In addition, the heat treatment temperature strongly affected the sample hardness. The optimum hardness obtained was about 542.69 HV. According to the results, this material can be considered for biomedical applications.

  1. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  2. Prototype particulate stack sampler with single-cut nozzle and microcomputer calculating/display system

    International Nuclear Information System (INIS)

    Eler, J.C.; Littlefield, L.G.; Tillery, M.I.

    1979-01-01

    A prototype particulate stack sampler (PPSS) has been developed to improve on the existing EPA Method 5 sampling apparatus. Its primary features are (1) higher sampling rate (56 1/min); (2) display (on demand) of all required variables and calculated values by a microcomputer-based calculating and display system; (3) continuous stack gas moisture determination; (4) a virtual impactor nozzle with 3 μm mass median diameter cutpoint which collects fine and coarse particle fractions on separate glass fiber filters; (5) a variable-area inlet to maintain isokinetic sampling conditions; and (6) conversion to stainless steel components from the glass specified by EPA Method 5. The basic sampling techniques of EPA Method 5 have been retained; however, versatility in the form of optional in-stack filters and general modernization of the stack sampler have been provided in the prototype design. Laboratory testing with monodisperse dye aerosols has shown the present variable inlet, virtual impactor nozzle to have a collection efficiency which is less than 77% and significant wall losses. This is primarily due to lack of symmetry in this rectangular jet impactor and short transition lengths dictated by physical design constraints (required passage of the nozzle through a 7.6 cm (3 in) diameter stack port). Electronic components have shown acceptable service in laboratory testing although no field testing of the prototype under a broad range of temperature, humidity, and SO 2 concentration has been undertaken

  3. Progress in the study of PCHE performance with various stacking methods; PCHEs and test facility

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Kim, Eun Ho; Yoon, Sung Ho; Kim, Moo Hwan; Park, Gun Yeop

    2012-01-01

    Printed Circuit Heat Exchanger (PCHE) is famous with its superior compactness and relatively higher resistance to pressure which came from its manufacturing process. PCHE is made by diffusion bonding of thin metal plates having various flow channel shapes on them. Diffusion bonding makes stack of plates become a monolithic block by grain growth between the surfaces of each plates near the melting temperature of material. With these characteristics, it has become a promising heat exchanger type in oil and gas industry, power plant and chemical reactors fields, despite of its relatively short history than others. From many researches, it is known that the flow channel and the stacking method of plates are the major design factors of PCHE. Flow channels have been studied by relatively many researchers, and there are several well known channel types like zigzag channel, S shape fin, and airfoil fin shape. On the other hands, there is little research about stacking method so called 'bank type'. By Kim et al., it was showed that stacking method of PCHE influences the heat transfer rate and pressure drop, but the comparison of the different stacking method was not conducted. In this research, heat transfer and pressure drop characteristics of PCHEs with various bank types will be studied. And this article will introduce three kinds of PCHEs fabricated by different bank types, and the test facility for performance test of these heat exchangers

  4. Destruction of benzene (VOC) using electron beam radiation in flue gas treatment

    International Nuclear Information System (INIS)

    Mohd Nahar Othman; Mohd Noor Muhd Yunus

    2004-01-01

    In this study, Benzene, one of the volatile organic compounds (VOCs) is used to destruct by electron beam. As we know Benzene is one of the most stable compound and very difficult to break. By using the powerful energy produced by electron beam, the benzene compound can be broken up to form new compounds. The technique used in this experiment is by using static process in a control condition where other gases are not allowed to enter the Tedlar bag or glass jar. The Tedlar Bag and Glass jar are used as media for benzene gas to be irradiated. From the experiment it was found that the Tedlag Bag is more suitable than the glass jar the electron beam can easily penetrate and destroy benzene gas. Nitrogen and Helium gas is used as a cleaning gas. The concentrations of benzene gas used for this study are 100 ppm. (part per million), 1 ppmv, and 1 ppmv each for 32 types of VOC. From the result it can be concluded that the electron beam technique used for destruction of benzene (VOQ is very suitable for the low concentration of benzene, the dose needed for the destruction to reach 85-95% is only between 8-12 kGy. It was also observed that many new compound can be produced when benzene is destruct by electron beam. (Author)

  5. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  6. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  7. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  8. Scaling the CERN OpenStack cloud

    Science.gov (United States)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  9. Stacking non-BPS D-branes

    International Nuclear Information System (INIS)

    Alberghi, Gian Luigi; Caceres, Elena; Goldstein, Kevin; Lowe, David A. . lowe@het.brown.edu

    2001-08-01

    We present a candidate supergravity solution for a stacked configuration of stable non-BPS D-branes in Type II string theory compactified on T 4 /Z 2 . This gives a supergravity description of nonabelian tachyon condensation on the brane woldvolume. (author)

  10. Trace interpolation by slant-stack migration

    International Nuclear Information System (INIS)

    Novotny, M.

    1990-01-01

    The slant-stack migration formula based on the radon transform is studied with respect to the depth steep Δz of wavefield extrapolation. It can be viewed as a generalized trace-interpolation procedure including wave extrapolation with an arbitrary step Δz. For Δz > 0 the formula yields the familiar plane-wave decomposition, while for Δz > 0 it provides a robust tool for migration transformation of spatially under sampled wavefields. Using the stationary phase method, it is shown that the slant-stack migration formula degenerates into the Rayleigh-Sommerfeld integral in the far-field approximation. Consequently, even a narrow slant-stack gather applied before the diffraction stack can significantly improve the representation of noisy data in the wavefield extrapolation process. The theory is applied to synthetic and field data to perform trace interpolation and dip reject filtration. The data examples presented prove that the radon interpolator works well in the dip range, including waves with mutual stepouts smaller than half the dominant period

  11. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  12. 40 CFR 61.53 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...

  13. 40 CFR 61.33 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...

  14. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin

    2013-01-01

    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  15. Toward advising SME's on stacked funding

    NARCIS (Netherlands)

    Rauwerda, Kirsten; van Teeffelen, Lex; de Graaf, Frank Jan

    2017-01-01

    This paper addresses new funding issues faced by SMEs. Over a period of nine months, the authors conducted a preliminary study into the problems surrounding stacked funding faced by SMEs and their financial advisers. The study includes a short literature review, the outcomes of three round table

  16. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  17. Optoelectronic interconnects for 3D wafer stacks

    Science.gov (United States)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  18. OpenStack Object Storage (Swift) essentials

    CERN Document Server

    Kapadia, Amar; Varma, Sreedhar

    2015-01-01

    If you are an IT administrator and you want to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Basic knowledge of Linux and server technology is beneficial to get the most out of the book.

  19. Hydrogen Gas Inhalation Treatment in Acute Cerebral Infarction: A Randomized Controlled Clinical Study on Safety and Neuroprotection.

    Science.gov (United States)

    Ono, Hirohisa; Nishijima, Yoji; Ohta, Shigeo; Sakamoto, Masaki; Kinone, Kazunori; Horikosi, Tohru; Tamaki, Mituyuki; Takeshita, Hirosi; Futatuki, Tomoko; Ohishi, Wataru; Ishiguro, Taichi; Okamoto, Saori; Ishii, Shou; Takanami, Hiroko

    2017-11-01

    Molecular hydrogen (H 2 ) acts as a therapeutic antioxidant. Inhalation of H 2 gas (1-4%) was effective for the improvement of cerebral infarction in multiple animal experiments. Thus, for actual applications, a randomized controlled clinical study is desired to evaluate the effects of inhalation of H 2 gas. Here, we evaluate the H 2 treatment on acute cerebral infarction. Through this randomized controlled clinical study, we assessed the safety and effectiveness of H 2 treatment in patients with cerebral infarction in an acute stage with mild- to moderate-severity National Institute of Health Stroke Scale (NIHSS) scores (NIHSS = 2-6). We enrolled 50 patients (25 each in the H 2 group and the control group) with a therapeutic time window of 6 to 24 hours. The H 2 group inhaled 3% H 2 gas (1 hour twice a day), and the control group received conventional intravenous medications for the initial 7 days. The evaluations included daily vital signs, NIHSS scores, physical therapy indices, weekly blood chemistry, and brain magnetic resonance imaging (MRI) scans over the 2-week study period. The H 2 group showed no significant adverse effects with improvements in oxygen saturation. The following significant effects were found: the relative signal intensity of MRI, which indicated the severity of the infarction site, NIHSS scores for clinically quantifying stroke severity, and physical therapy evaluation, as judged by the Barthel Index. H 2 treatment was safe and effective in patients with acute cerebral infarction. These results suggested a potential for widespread and general application of H 2 gas. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Collection and application of by-product formed in e-b flue gas treatment process

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Zakrzewska-Trznadel, G.; Tokunaga, O.; Machi, S.

    1998-01-01

    In the e-b process SO 2 and NO x are converted into ammonium sulphate and ammonium nitrate, which condenses from gas phase in the form of submicrone particles. These salts are a valuable fertilizer and should be removed from cleaned gas. Bag filter, ESP and wet gravel bed filter were applied for collecting of salt particles in pilot plant facilities. Up to now ESP is considered to be the best filtration method of aerosols formed after irradiation of flue gas. Collected salts after granulation may be used as a fertilizer enriching soil in nitrogen and sulphur or as a component of mixed fertilizer. Analysis of by-products from different e-b pilot plants confirms that it does not contain any harmful substances like heavy metals and fulfill all standards for commercial fertilizers. Also field experiments show that the by-products have the same properties as a commercial fertilizer

  1. Natural gas treatment: Simultaneous water and hydrocarbon-dew point-control

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T. (Solvay Catalysts GmbH, Hannover (Germany)); Rennemann, D. (Solvay Catalysts GmbH, Hannover (Germany)); Schulz, T. (Solvay Catalysts GmbH, Hannover (Germany))

    1993-10-01

    Natural gas is a multicomponent mixture of hydrocarbons. The condensation behavior of such mixtures is different from single component systems. The so-called retrograde behavior leads to the observations that saturated vapor (dew point curve) and saturated liquid curve (bubble point curve) are not identical. Between both is a region of saturated phases which even can exist above the critical point. Following this behaviour it is possible that condensation might occur at pressure decrease or at temperature increase, respectively. This phenomenon is undesired in natural gas pipeline networks. Selective removal of higher hydrocarbons by the means of adsorption can change the phase behavior in such a way that condensation does not occur at temperatures and pressures specified for gas distribution. (orig.)

  2. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  3. From non-disposable to disposable, treatment of pyrophoric or gas forming waste forms for disposal - Thermal treatment of pyrophoric or gas-forming metals

    International Nuclear Information System (INIS)

    Oesterberg, Carl; Lindberg, Maria

    2014-01-01

    In order to dispose of waste in either a deep geological disposal or in a shallower repository there are several demands that the waste and its package must fulfil, one is that it is not to react with oxygen or the waste package or backfill in the repository, i.e. concrete or grout. The waste forms that do not fulfil this particular criterion must be treated in some way to render the waste non-reactive. One of these waste are metallic uranium. Metallic uranium is not only an issue originating from the nuclear industry, as old types of fuel, it is also present in, for example, transport flasks and as samples used in schools, which all has to be disposed of sooner or later. Another waste that arise is magnesium doped with thorium, originating from the aviation, aerospace and missile industry. These alloys are now being replaced with others without thorium so they are in need of handling and possibly treatment before disposal. Magnesium metal is also pyrophoric, in particular in molten or powder form. In order to evaluate thermally treating these metals in a very controlled environment, such as a pyrolysis vessel, experimental work has been performed. The aim of the thermal treatment is to oxidise the metals and obtain an oxide with low leachability. Inactive trials were performed, first using small amount of magnesium tape followed by using Cerium instead of uranium, to check the ability of controlling the process. After the process had been deemed safe the next step was to test the process first with metallic uranium and thereafter with magnesium thorium alloy. The first results show that the oxidation process can be totally controlled and safe. The results show that the metals are oxidised and no longer reactive and can in principle be disposed of. The test will continue and further results will be reported. (authors)

  4. Investigations on electron beam flue gas treatment held in the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Zimek, Z.; Licki, J.

    1992-01-01

    Two different research installations have been built. The first one, laboratory unit has a flow capacity of approx. 400 Nm 3 /h of flue gas from two gas fired boilers. The composition of gas can be adjusted. An irradiator, accelerator ILU-6, is used with electron beam energy in the range 600-1000 keV. The unit is mostly used for aerosol formation and filtration research. This laboratory installation is being adapted for electron beam/microwave combined gas molecule excitation. The second unit, a pilot with a plant of flow rate up to 20 000 Nm 3 /h has been constructed in EPS Kaweczyn. Pit coal is used as a fuel in a boiler from which flue gas is purified. Two accelerators, ELW-3, of beam power 40-50 kW and electrons energy 700 keV are applied. The arrangement of accelerators in series allows cascade, step by step gas mixture irradiation. The installation is equipped in a spray cooler, ammonia dosage system and bag filter. The irradiation/reaction part of the plant was put in operation in April 1991. Separately, laboratory research on grain bed aerosol filtration is performed to study the possibility of such filtration unit as a prefilter application. Agriculture tests of the byproduct have been performed. Two types of the byproduct with and without additive were tested. Comparative vegetation tests have shown that application of the pure product gives similar results as application of market fertilizer - ammonia sulfate. The elemental analysis have shown that content of the heavy metals do not exceed acceptable value. For both systems dosimetric measurements were performed. The electron penetration depth and dose distribution profiles were established. The results of preliminary tests both laboratory and pilot plant units have proved high efficiency of SO 2 and NO X removal. (J.P.N.)

  5. Posterior subtenon triamcinolone acetonide in gas-filled eyes as an adjunctive treatment for complicated proliferative diabetic retinopathy.

    Science.gov (United States)

    Lee, Yongeun; Kang, Seungbum; Park, Young-Hoon

    2013-02-01

    To evaluate the effect of adjunctive subtenon injection of triamcinolone acetonide (TA) in gas-filled eyes after vitrectomy for complicated proliferative diabetic retinopathy (PDR). This nonrandomized comparative study included 27 patients (27 eyes) who underwent pars plana vitrectomy and gas tamponade for treatment of PDR with tractional or combined tractional-rhegmatogenous retinal detachment and who received subtenon injection of TA (40 mg) at the end of surgery. The study group was compared with the control group (29 eyes), which was matched with the study group for preoperative and intraoperative parameters, but underwent pars plana vitrectomy and gas tamponade without a subtenon injection of TA. Retinal reattachments without reoperation were achieved in 25 eyes (92.6%) and 26 eyes (89.7%) at 6 months (p = 1.000) in the study and control groups, respectively. The study group and the control group did not differ significantly in the frequency of postoperative proliferative vitreoretinopathy, retinal redetachment rate, reoperation rate, macular pucker formation, postoperative vitreous hemorrhage, gain in visual acuity, intraocular pressure, and intraocular inflammation (p > 0.05). The clinical results of pars plana vitrectomy for complicated PDR are not improved significantly by an adjunctive subtenon TA injection in gas-filled eyes.

  6. Tail gas treatment of SEWGS technology. Literature review on CO2 and H2S separation

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, E.N.; Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2011-12-15

    This literature review is the result of an investigation of the most important way to remove sulphur for the last decades. We will discuss Claus and Claus tail gas process options to solve the problem. Next to solutions which come from membranes, direct oxidation catalysis, from acid gas removal technology, sorbent technology, and liquid oxidation. Each field will be described and explained to understand in which way it could be suitable to separate CO2 and H2S and reach our goals with regard to CO2 transport and storage conditions. Finally, the target of this work will be to propose some interesting and promising solutions in view of future experiments.

  7. Treatment of the off-gas stream from the HTR reprocessing head-end

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Juergens, B.; Vijgen, H.

    1985-01-01

    The AKUT II-facility (nominal throughput 10 m 3 /h, STP) for the clean-up of the burner off-gas has been operated for 20 cold runs in parallel to the JUPITER reprocessing head-end. Two of these runs were continuous operation tests with a duration of 50 and 80 hours, respectively. The facility met or exceeded all design specifications. In a further test series the distillation column alone was run with pure CO 2 and two- and three-component gas mixtures to determine the flooding curves and the stage height (HETP)

  8. In situ x-ray photoelectron spectroscopy and capacitance voltage characterization of plasma treatments for Al{sub 2}O{sub 3}/AlGaN/GaN stacks

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoye; Lucero, Antonio; Azcatl, Angelica; Kim, Jiyoung; Wallace, Robert M. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-07-07

    We investigate the Al{sub 2}O{sub 3}/AlGaN/GaN metal-oxide-semiconductor structure pretreated by O{sub 2} anneals, N{sub 2} remote plasma, and forming gas remote plasma prior to atomic layer deposition of Al{sub 2}O{sub 3} using in situ X-ray photoelectron spectroscopy, low energy electron diffraction, and capacitance- voltage measurements. Plasma pretreatments reduce the Ga-oxide/oxynitride formation and the interface state density, while inducing a threshold voltage instability.

  9. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    Science.gov (United States)

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film

  10. New ultrasonographic evaluation of stool and/or gas distribution for treatment of chronic constipation.

    Science.gov (United States)

    Manabe, Noriaki; Kamada, Tomoari; Hata, Jiro; Haruma, Ken

    2018-03-01

    The first aim of this study was to develop a new ultrasonographic method (US) to evaluate stool and/or gas distribution. The second aim was to apply this method to compare stool and/or gas distribution between healthy subjects and patients with chronic constipation and evaluate whether US parameters could be an alternative to the colonic transit time (CTT). We enrolled seven healthy volunteers (four men, three women; mean age 29.3 ± 5.2 years) who underwent US and computed tomography (CT) on the same day to evaluate the reproducibility of US results. We then enrolled 268 patients with chronic constipation (94 men, 174 women; mean age 63.3 ± 4.2 years) and 66 age- and sex-matched healthy subjects (controls). The transverse diameters of four segments of the colon [ascending (AC), transverse (TC), descending (DC), and sigmoid (SC)] and the rectum (R) were measured, and their stool and/or gas distribution was evaluated using the constipation index (CI) [AC + TC + DC + SC + R/5] and left/right (L/R) distribution [(DC + SC)/(AC + TC)]. The CTT was assessed using radiopaque markers. All healthy subjects underwent US and CT successfully, with a sufficiently high reproducibility coefficient for this method and significant correlation between the US and CT parameters. The stool and/or gas distribution evaluated by US showed a significant difference in one of the US parameters between healthy subjects and patients, and the CI was an indirect indicator for the CTT. These findings may assist physicians evaluate stool and/or gas distribution of patients with chronic constipation, which is an indirect indicator for CTT.

  11. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    International Nuclear Information System (INIS)

    Hudson, P.I.; Buckley, C.P.; Miller, W.W.

    1995-01-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant's discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation

  12. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.I. [British Nuclear Fuels, Sellafield (United Kingdom); Buckley, C.P.; Miller, W.W. [British Nuclear Fuels, Risley (United Kingdom)

    1995-02-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant`s discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation.

  13. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data.

    Science.gov (United States)

    Poulsen, Tjalfe G; Hansen, Jens Aage

    2009-11-01

    Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.

  14. Project W-420 Stack Monitoring system upgrades conceptual design report

    International Nuclear Information System (INIS)

    TUCK, J.A.

    1998-01-01

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks

  15. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  16. Gas treatment of Cr(VI)-contaminated sediment samples from the North 60's pits of the chemical waste landfill

    International Nuclear Information System (INIS)

    Thornton, E.C.; Amonette, J.E.

    1997-12-01

    Twenty sediment samples were collected at depths ranging from 5 to 100 ft (1.5 to 30 m) beneath a metal-contaminated plating-waste site and extensively characterized for Cr(VI) content and environmental availability. Three samples were selected for treatment with diluted gas mixtures with the objective of converting Cr(VI) to Cr(III), which is relatively nontoxic and immobile. These tests were designed to provide information needed to evaluate the potential application of gas injection as an in situ remediation technique. Gas treatment was performed in small columns (4.9-cm ID, 6.4- to 13.9-cm long) using 100 ppm (μL L -1 ) H 2 S or ethylene mixtures in N 2 . Treatment progress during the tests involving H 2 S was assessed by monitoring the breakthrough of H 2 S. Evaluation of H 2 S treatment efficacy included (1) water-leaching of treated and untreated columns for ten days, (2) repetitive extraction of treated and untreated subsamples by water, 0.01 M phosphate (pH 7) or 6 M HCl solutions, and (3) Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy of treated and untreated subsamples. Results of the water-leaching studies showed that the H 2 S treatment decreased Cr(VI) levels in the column effluent by 90% to nearly 100%. Repetitive extractions by water and phosphate solutions echoed these results, and the extraction by HCl released only 35-40% as much Cr in the treated as in the untreated samples. Analysis by XANES spectroscopy showed that a substantial portion of the Cr in the samples remained as Cr(VI) after treatment, even though it was not available to the water and phosphate extracting solutions. These results suggest that this residual Cr(VI) is present in low solubility phases such as PbCrO 4 or sequestered in unreacted grain interiors under impermeable coatings formed during H 2 S treatment. However, this fraction is essentially immobile and thus unavailable to the environment

  17. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    International Nuclear Information System (INIS)

    Swenson, J.A.; Crowe, R.D.; Apthorpe, R.; Plys, M.G.

    2010-01-01

    will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  18. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  19. Ab initio treatment of gas phase GeO{sup 2+} doubly charged ion

    Energy Technology Data Exchange (ETDEWEB)

    Mogren Al Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Ben Abdallah, D. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Department of General Studies, Riyadh Corporation of Technology, Technical and Vocational Training Corporation, PO Box 42826, Riyadh 11551 (Saudi Arabia); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2015-01-13

    Highlights: • Theoretical investigation of the novel gas-phase molecular species GeO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of GeO. - Abstract: Using multi reference configuration interaction methodology in connection with a large basis set, we show that GeO{sup 2+} is a metastable species either in the ground or in the electronically excited states. This confirms the observation of this dication in gas phase by mass spectrometry. In addition, we derived a set of accurate spectroscopic terms for GeO{sup 2+} bound states. At the MRCI/aug-cc-pV5Z level of theory, the adiabatic double ionization energy of GeO is computed to be ∼28.93 eV.

  20. Treatment of reduced sulphur compounds and SO2 by Gas Phase Advanced Oxidation

    DEFF Research Database (Denmark)

    Meusinger, Carl; Bluhme, Anders Brostrøm; Ingemar, Jonas L.

    2017-01-01

    Reduced sulphur compounds (RSCs) emitted from pig farms are a major problem for agriculture, due to their health and environmental impacts and foul odour. This study investigates the removal of RSCs, including H2S, and their oxidation product SO2 using Gas Phase Advanced Oxidation (GPAO). GPAO...... is a novel air cleaning technique which utilises accelerated atmospheric chemistry to oxidise pollutants before removing their oxidation products as particles. Removal efficiencies of 24.5% and 3.9% were found for 461 ppb of H2S and 714 ppb of SO2 in a laboratory system (volumetric flow Q = 75 m3/h......). A numerical model of the reactor system was developed to explore the basic features of the system; its output was in fair agreement with the experiment. The model verified the role of OH radicals in initiating the oxidation chemistry. All sulphur removed from the gas phase was detected as particulate matter...

  1. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-21

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  2. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site....... This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  3. Laboratory and field evaluation of the gas treatment approach for insitu remediation of chromate-contaminated soils

    International Nuclear Information System (INIS)

    Thornton, E.C.; Jackson, R.L.

    1994-04-01

    Laboratory scale soil treatment tests have been conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of chromate-contaminated soils through the use of reactive gases. These tests involved three different soil samples that were contaminated with Cr(VI) at the 200 ppM level. Treatment of the contaminated soils was performed by passing 100 ppM and 2000 ppM concentrations of hydrogen sulfide in nitrogen through soil columns until a S:Cr mole ratio of 10:1 was achieved. The treated soils were then leached with groundwater or deionized water and analyzed to assess the extent of chromium immobilization. Test results indicate >90% immobilization of chromium and demonstrate that the treatment process is irreversible. Ongoing developmental efforts are being directed towards the demonstration and evaluation of the gas treatment approach in a field test at a chromate-contaminated site. Major planned activities associated with this demonstration include laboratory testing of waste site soil samples, design of the treatment system and injection/extraction well network, geotechnical and geochemical characterization of the test site, and identification and resolution of regulatory and safety requirements

  4. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats.

    Science.gov (United States)

    Yan, Weiming; Chen, Tao; Long, Pan; Zhang, Zhe; Liu, Qian; Wang, Xiaocheng; An, Jing; Zhang, Zuoming

    2018-06-07

    BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P0.05), while the activation of microglia cells in the H-O group was somewhat reduced (Ptreatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.

  5. Computer simulation f the genetic controller for the EB flue gas treatment process

    International Nuclear Information System (INIS)

    Moroz, Z.; Bouzyk, J.; Sowinski, M.; Chmielewski, A.G.

    2001-01-01

    The use of computer genetic algorithm (GA) for driving a controller device for the industrial flue gas purification systems employing the electron beam irradiation, has been studied. As the mathematical model of the installation the properly trained artificial neural net (ANN) was used. Various cost functions and optimising strategies of the genetic code were tested. These computer simulations proved, that ANN + GA controller can be sufficiently precise and fast to be applied in real installations. (author)

  6. Test results in the treatment of HTR reprocessing off-gas

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Bendick, B.; Juergens, B.; Nafissi, A.; Vygen, H.; Krill, W.

    1983-01-01

    The AKUT II-facility (throughput 10 m 3 /h, STP) for the clean up of the burner off-gas has been tested with synthetic off-gas and with off-gas from cold burner tests. The results are reported. During dissolution of the burner ash in nitric acid an off-gas is formed whose main component is air and which, besides the gaseous fission products, contains NO/sub x/. Before the separation of the gaseous fission products NO/sub x/ and/or O 2 are removed by reaction with H 2 or NH 3 . For these reactions catalysts were used. Because of the known disadvantages of catalytic systems, like reduction in efficiency by poisoning or thermal influence, the alternative method of thermal, flameless reduction was tested. The reactions were carried out in a stainless steel and a quartz reactor. Throughput, reaction temperature, O 2 -, NO/sub x/-, H 2 -, and NH 3 -concentrations respectively were varied. The goal of these tests was to remove O 2 and NO/sub x/ to below 1 ppM behind the reactor and NH 3 to below the detection limit of 50 ppM. It was found that at a reaction temperature of 750 0 C in the stainless steel reactor these goals can be reached for both H 2 and NH 3 as reducing agents. In the quartz reactor only the O 2 -H 2 -reaction takes place. Obviously stainless steel acts as a catalyst for all other reactions

  7. Use of dilute ammonia gas for treatment of 1,2,3-trichloropropane and explosives-contaminated soils.

    Science.gov (United States)

    Coyle, Charles G; Waisner, Scott A; Medina, Victor F; Griggs, Chris S

    2017-12-15

    Laboratory studies were performed to test a novel reactive gas process for in-situ treatment of soils containing halogenated propanes or explosives. A soil column study, using a 5% ammonia-in-air mixture, established that the treatment process can increase soil pH from 7.5 to 10.2. Batch reactor experiments were performed to demonstrate contaminant destruction in sealed jars exposed to ammonia. Comparison of results from batch reactors that were, and were not, exposed to ammonia demonstrated reductions in concentrations of 1,2,3-trichloropropane (TCP), 1,3-dichloropropane (1,3-DCP), 1,2-dicholoropropane (1,2-DCP) and dibromochloropropane (DBCP) that ranged from 34 to 94%. Decreases in TCP concentrations at 23° C ranged from 37 to 65%, versus 89-94% at 62° C. A spiked soil column study was also performed using the same set of contaminants. The study showed a pH penetration distance of 30 cm in a 2.5 cm diameter soil column (with a pH increase from 8 to > 10), due to treatment via 5% ammonia gas at 1 standard cubic centimeter per minute (sccm) for 7 days. Batch reactor tests using explosives contaminated soils exhibited a 97% decrease in 2,4,6-trinitrotoluene (TNT), an 83% decrease in nitrobenzene, and a 6% decrease in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A biotransformation study was also performed to investigate whether growth of ammonia-oxidizing microorganisms could be stimulated via prolonged exposure of soil to ammonia. Over the course of the 283 day study, only a very small amount of nitrite generation was observed; indicating very limited ammonia monooxygenase activity. Overall, the data indicate that ammonia gas addition can be a viable approach for treating halogenated propanes and some types of explosives in soils. Published by Elsevier Ltd.

  8. Control and monitoring systems for electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Licki, J.; Mazurekc, J.; Nelskic, L.; Sobolewskic, L.

    2011-01-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO 2 and NO x removal efficiencies by control of amount of spray water at the spray cooler, amount of NH 3 injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO 2 and NO x removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  9. Meet the biologists: Sour gas treatment uses biology rather than chemistry to clean things up

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2003-03-01

    Basic elements of the new bio-desulfurization technology are described. The new process uses the commonly occurring bacterium, Thiobacillus, rather than chemical means to remove hydrogen sulfide from natural gas. Development of the process began some ten years ago in the Netherlands as a means to clean sewage water and purify water for beer. The application of removing hydrogen sulfide from natural gas evolved upon discovery that the process was able to convert hydrogen sulfide to sulfur. Key to the bio-desulfurization process is the Thiobacillus bacterium, which unlike other plant forms, relies on chemosynthesis (instead of photosynthesis) of hydrogen sulfide, oxygen and carbon dioxide for its energy requirements. The technology has applications in refineries as well as in gas processing plants. It is well suited for use in Canada where operations tend to be on the small scale (less than 50 tonnes per day). The portable unit can be moved to another location when production at a given well drops off.

  10. Pancreatic Necrosis and Gas in the Retroperitoneum: Treatment with Antibiotics Alone.

    Science.gov (United States)

    Rasslan, Roberto; da Costa Ferreira Novo, Fernando; Rocha, Marcelo Cristiano; Bitran, Alberto; de Souza Rocha, Manoel; de Oliveira Bernini, Celso; Rasslan, Samir; Utiyama, Edivaldo Massazo

    2017-02-01

    To present our experience in the management of patients with infected pancreatic necrosis without drainage. The records of patients with pancreatic necrosis admitted to our facility from 2011 to 2015 were retrospectively reviewed. We identified 61 patients with pancreatic necrosis. Six patients with pancreatic necrosis and gas in the retroperitoneum were treated exclusively with clinical support without any type of drainage. Only 2 patients had an APACHE II score >8. The first computed tomography scan revealed the presence of gas in 5 patients. The Balthazar computed tomography severity index score was >9 in 5 of the 6 patients. All patients were treated with antibiotics for at least 3 weeks. Blood cultures were positive in only 2 patients. Parenteral nutrition was not used in these patients. The length of hospital stay exceeded three weeks for 5 patients; 3 patients had to be readmitted. A cholecystectomy was performed after necrosis was completely resolved; pancreatitis recurred in 2 patients before the operation. No patients died. In selected patients, infected pancreatic necrosis (gas in the retroperitoneum) can be treated without percutaneous drainage or any additional surgical intervention. Intervention procedures should be performed for patients who exhibit clinical and laboratory deterioration.

  11. Control and monitoring systems for electron beam flue gas treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, J. [Institute of Atomic Energy, Otwock-Świerk (Poland); Mazurekc, J.; Nelskic, L.; Sobolewskic, L. [Dolna Odra Group, Pomorzany Power Plant, Szczecin (Poland)

    2011-07-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO{sub 2} and NO{sub x} removal efficiencies by control of amount of spray water at the spray cooler, amount of NH{sub 3} injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO{sub 2} and NO{sub x} removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  12. Multistage Force Amplification of Piezoelectric Stacks

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  13. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    Science.gov (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  14. System for inspection of stacked cargo containers

    Science.gov (United States)

    Derenzo, Stephen [Pinole, CA

    2011-08-16

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  15. Industrial stacks design; Diseno de chimeneas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cacheux, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The Instituto de Investigaciones Electricas (IIE) though its Civil Works Department, develops, under contract with CFE`s Gerencia de Proyectos Termoelectricos (Management of Fossil Power Plant Projects), a series of methods for the design of stacks, which pretends to solve the a present day problem: the stack design of the fossil power plants that will go into operation during the next coming years in the country. [Espanol] El Instituto de Investigaciones Electricas (IIE), a traves del Departamento de Ingenieria Civil, desarrolla, bajo contrato con la Gerencia de Proyectos Termoelectricos, de la Comision Federal de Electricidad (CFE), un conjunto de metodos para el diseno de chimeneas, con el que se pretende resolver un problema inmediato: el diseno de las chimeneas de las centrales termoelectricas que entraran en operacion durante los proximos anos, en el pais.

  16. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  17. Industrial stacks design; Diseno de chimeneas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cacheux, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Instituto de Investigaciones Electricas (IIE) though its Civil Works Department, develops, under contract with CFE`s Gerencia de Proyectos Termoelectricos (Management of Fossil Power Plant Projects), a series of methods for the design of stacks, which pretends to solve the a present day problem: the stack design of the fossil power plants that will go into operation during the next coming years in the country. [Espanol] El Instituto de Investigaciones Electricas (IIE), a traves del Departamento de Ingenieria Civil, desarrolla, bajo contrato con la Gerencia de Proyectos Termoelectricos, de la Comision Federal de Electricidad (CFE), un conjunto de metodos para el diseno de chimeneas, con el que se pretende resolver un problema inmediato: el diseno de las chimeneas de las centrales termoelectricas que entraran en operacion durante los proximos anos, en el pais.

  18. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  19. Determination of Reasons of Obstruction in the Condensate Stabilizer System of Namconson Gas Treatment Terminal by Radioisotope Techniques

    International Nuclear Information System (INIS)

    Bui Quang Tri; Nguyen Huu Quang; Dang Nguyen The Duy; Tran Tri Hai; Tran Thanh Minh

    2008-01-01

    The Condensate Stabilizer System of Namconson Gas Treatment Terminal was designed with operational flow rate of 60 m 3 /h but for unknown reason it ran efficiently below 20 m 3 /h. The Radiotracer in combination with Gamma Scan was used to investigate in understanding the reasons. The results showed the build up at the bottom of Trap out Tray which caused obstruction of condensate flow in the outlet of Trap out Tray. As a results the feed flow rate to Reboiler from Trap out Tray lowered into 1/3 and the remaining 2/3 by passing the Reboiler by overflow to the Sump. (author)

  20. Role of stacking disorder in ice nucleation.

    Science.gov (United States)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  1. A Late Pleistocene sea level stack

    OpenAIRE

    Spratt Rachel M; Lisiecki Lorraine E

    2016-01-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal componen...

  2. CAM and stack air sampler design guide

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1994-01-01

    About 128 air samplers and CAMs presently in service to detect and document potential radioactive release from 'H' and 'F' area tank farm ventilation stacks are scheduled for replacement and/or upgrade by Projects S-5764, S-2081, S-3603, and S-4516. The seven CAMs scheduled to be upgraded by Project S-4516 during 1995 are expected to provide valuable experience for the three remaining projects. The attached document provides design guidance for the standardized High Level Waste air sampling system

  3. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; Buckley Walsh

    2003-08-01

    In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression

  4. Extended Life PZT Stack Test Fixture

    Science.gov (United States)

    Badescu, Mircea; Sherrit, S.; Bao, X.; Aldrich, J.; Bar-Cohen, Y.; Jones, C.

    2009-01-01

    Piezoelectric stacks are being sought to be used as actuators for precision positioning and deployment of mechanisms in future planetary missions. Beside the requirement for very high operation reliability, these actuators are required for operation at space environments that are considered harsh compared to normal terrestrial conditions.These environmental conditions include low and high temperatures and vacuum or high pressure. Additionally, the stacks are subjected to high stress and in some applications need to operate with a very long lifetime durability.Many of these requirements are beyond the current industry design margins for nominal terrestrial applications. In order to investigate some of the properties that will indicate the durability of such actuators and their limitations we have developed a new type of test fixture that can be easily integrated in various test chambers for simulating environmental conditions, can provide access for multiple measurements while being exposed to adjustable stress levels. We designed and built two test fixtures and these fixtures were made to be adjustable for testing stacks with different dimensions and can be easily used in small or large numbers. The properties that were measured using these fixtures include impedance, capacitance, dielectric loss factor, leakage current, displacement, breakdown voltage, and lifetime performance. The fixtures characteristics and the test capabilities are presented in this paper.

  5. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  6. Quantification of greenhouse gas (GHG) emissions from wastewater treatment plants using a ground-based remote sensing approach

    Science.gov (United States)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2016-04-01

    The direct release of nitrous oxide (N2O) and methane (CH4) from wastewater treatment plants (WWTP) is important because it contributes to the global greenhouse gases (GHGs) release and strongly effects the WWTP carbon footprint. Biological nitrogen removal technologies could increase the direct emission of N2O (IPCC, 2006), while CH4 losses are of environmental, economic and safety concern. Currently, reporting of N2O and CH4 emissions from WWTPs are performed mainly using methods suggested by IPCC which are not site specific (IPCC, 2006). The dynamic tracer dispersion method (TDM), a ground based remote sensing approach implemented at DTU Environment, was demonstrated to be a novel and successful tool for full-scale CH4 and N2O quantification from WWTPs. The method combines a controlled release of tracer gas from the facility with concentration measurements downwind of the plant (Mønster et al., 2014; Yoshida et al., 2014). TDM in general is based on the assumption that a tracer gas released at an emission source, in this case a WWTP, disperses into the atmosphere in the same way as the GHG emitted from process units. Since the ratio of their concentrations remains constant along their atmospheric dispersion, the GHG emission rate can be calculated using the following expression when the tracer gas release rate is known: EGHG=Qtr*(CGHG/Ctr)*(MWGHG/MWtr) EGHG is the GHG emission in mass per time, Qtr is the tracer release in mass per time, CGHG and Ctr are the concentrations measured downwind in parts per billion subtracted of their background values and integrated over the whole plume, and MWGHG and MWtr are the molar weights of GHG and tracer gas respectively (Mønster et al. 2014). In this study, acetylene (C2H2) was used as tracer. Downwind plume concentrations were measured driving along transects with two cavity ring down spectrometers (Yoshida et al., 2014). TDM was successfully applied in different seasons at several Scandinavian WWTPs characterized by

  7. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.

    Science.gov (United States)

    Luo, Shuangjiang; Zhang, Qinnan; Zhang, Yizhou; Weaver, Kevin P; Phillip, William A; Guo, Ruilan

    2018-05-02

    Rigid H-shaped pentiptycene units, with an intrinsic hierarchical structure, were employed to fabricate a highly microporous organic polymer sorbent via Friedel-Crafts reaction/polymerization. The obtained microporous polymer exhibits good thermal stability, a high Brunauer-Emmett-Teller surface area of 1604 m 2 g -1 , outstanding CO 2 , H 2 , and CH 4 storage capacities, as well as good adsorption selectivities for the separation of CO 2 /N 2 and CO 2 /CH 4 gas pairs. The CO 2 uptake values reached as high as 5.00 mmol g -1 (1.0 bar and 273 K), which, along with high adsorption selectivity values (e.g., 47.1 for CO 2 /N 2 ), make the pentiptycene-based microporous organic polymer (PMOP) a promising sorbent material for carbon capture from flue gas and natural gas purification. Moreover, the PMOP material displayed superior absorption capacities for organic solvents and dyes. For example, the maximum adsorption capacities for methylene blue and Congo red were 394 and 932 mg g -1 , respectively, promoting the potential of the PMOP as an excellent sorbent for environmental remediation and water treatment.

  8. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    Science.gov (United States)

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Treatment of portal venous gas embolism with hyperbaric oxygen after accidental ingestion of hydrogen peroxide: a case report and review of the literature.

    Science.gov (United States)

    Papafragkou, Sotirios; Gasparyan, Anna; Batista, Richard; Scott, Paul

    2012-07-01

    It is well known that hydrogen peroxide ingestion can cause gas embolism. To report a case illustrating that the definitive, most effective treatment for gas embolism is hyperbaric oxygen therapy. We present a case of a woman who presented to the Emergency Department with acute abdominal pain after an accidental ingestion of concentrated hydrogen peroxide. Complete recovery from her symptoms occurred quickly with hyperbaric oxygen therapy. This is a case report of the successful use of hyperbaric oxygen therapy to treat portal venous gas embolism caused by hydrogen peroxide ingestion. Hyperbaric oxygen therapy can be considered for the treatment of symptomatic hydrogen peroxide ingestion. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Guanine base stacking in G-quadruplex nucleic acids

    Science.gov (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  11. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  12. Burner and dissolver off-gas treatment in HTR fuel reprocessing

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Heidendael, M.; Kirchner, H.; Merz, E.; Schroeder, G.; Vygen, H.

    1979-01-01

    In the reprocessing of HTR fuel, essentially all of the gaseous fission products are released during the heat-end tratment, which includes burning of the graphite matrix and dissolving of the heavy metallic residues in THOREX reagent. Three facilities for off-gas cleaning are described, the status of the facility development and test results are reported. Hot tests with a continuous dissolver for HTR-type fuel (throughput 2 kg HM/d) with a closed helium purge loop have been carried out. Preliminary results of these experiments are reported

  13. Desalination of Produced Water via Gas Hydrate Formation and Post Treatment

    OpenAIRE

    Niu, Jing

    2012-01-01

    This study presents a two-step desalination process, in which produced water is cleaned by forming gas hydrate in it and subsequently dewatering the hydrate to remove the residual produced water trapped in between the hydrate crystals. All experiments were performed with pressure in the range of 450 to 800psi and temperature in the range of -1 to 1°C using CO? as guest molecule for the hydrate crystals. The experiments were conducted using artificial produced waters containing different amoun...

  14. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption

    International Nuclear Information System (INIS)

    Redondas, V.; Gómez, X.; García, S.; Pevida, C.; Rubiera, F.; Morán, A.; Pis, J.J.

    2012-01-01

    Highlights: ► The dark fermentation process of food wastes was studied over an extended period. ► Decreasing the HRT of the process negatively affected the specific gas production. ► Adsorption of CO 2 was successfully attained using a biomass type activated carbon. ► H 2 concentration in the range of 85–95% was obtained for the treated gas-stream. - Abstract: The production of H 2 by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H 2 streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO 2 from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H 2 yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H 2 producing microflora leading to a reduction in specific H 2 production. Adsorption of CO 2 from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H 2 S onto the activated carbon also took place, there being no evidence of H 2 S present in the bio-H 2 exiting the column. Nevertheless, the concentration of H 2 S was very low, and this co-adsorption did not affect the CO 2

  15. Modification on surface oxide layer structure and surface morphology of niobium by gas cluster ion beam treatments

    International Nuclear Information System (INIS)

    Wu, A.T.; Swenson, D.R.; Insepov, Z.

    2010-01-01

    Recently, it was demonstrated that significant reductions in field emission on Nb surfaces could be achieved by means of a new surface treatment technique called gas cluster ion beam (GCIB). Further study as shown in this paper revealed that GCIB treatments could modify surface irregularities and remove surface asperities leading to a smoother surface finish as demonstrated through measurements using a 3D profilometer, an atomic force microscope, and a scanning electron microscope. These experimental observations were supported by computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics. Measurements employing a secondary ion mass spectrometry found that GCIB could also alter Nb surface oxide layer structure. Possible implications of the experimental results on the performance of Nb superconducting radio frequency cavities treated by GCIB will be discussed. First experimental results on Nb single cell superconducting radio frequency cavities treated by GCIB will be reported.

  16. Treatment and disposal of naturally occurring radioactive material (NORM) in the oil and gas industry. A review

    International Nuclear Information System (INIS)

    Richter, Ruediger B.; Schmuelling, Marcus; Hosemann, Peter

    2014-01-01

    Concerning naturally occurring radioactive material (NORM) from the oil/ and gas industry most of the industrial countries were lacking clear regulatory frameworks in waste legislation for many years. In the meanwhile on several places in Europe, but also in some of the GCC states in the Middle East such as in the United Arab Emirates and in Oman specialized treatment facilities are either in the stage of construction or already in operation. In particular, pilot plants for the decontamination of NORM-contaminated equipment have been tested recently. The paper reflects on the generation and the technical characterization of NORM but also the legislation compared on international level. Particularly an overview was provided by comparing the common practice on disposal in the North American Countries in comparison to Germany, the UK but also Australia. In addition the successful treatment of produced water from crude oil separation in a ''Constructed Wetland'' in the Sultanate Oman is briefly highlighted.

  17. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system

    International Nuclear Information System (INIS)

    Suetens, T.; Guo, M.; Van Acker, K.; Blanpain, B.

    2015-01-01

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe 2 O 3 particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe 2 O 3 , Zn vapor reacts to form ZnFe 2 O 4 and ZnO. - Abstract: To better understand the phenomena of ZnFe 2 O 4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe 2 O 4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe 2 O 4 formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe 2 O 4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber

  18. R and D for an off-gas treatment system for a slagging pyrolysis radioactive waste incinerator. Final report for Phase I

    International Nuclear Information System (INIS)

    Christian, J.D.; Kirstein, B.E.; Pence, D.T.

    1978-01-01

    Preliminary evaluations were made of off-gas treatment needs for a slagging pyrolysis incinerator (SPI) of Andco--Torrax design for the treatment of radioactive waste at the INEL. Approximate decontamination factors (DFs) for particulates of 10 7 and for volatilized radionuclides of 10 3 will be required across the off-gas system. If lead is present in the waste at concentrations greater than 25-to-120 g/metric ton, volatilized lead will result in formation of substantial deposits in the off-gas system and regenerative towers. A review was made of radioactive incinerator development. Particulate and volatile component removal mechanisms and devices were reviewed. Three off-gas treatment systems were proposed for the SPI which will provide DFs for particulates of 10 8 . 9 figures, 7 tables

  19. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    Science.gov (United States)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  20. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases.

    Science.gov (United States)

    Iman, Maryam; Rezaei, Ramazan; Azimzadeh Jamalkandi, Sadegh; Shariati, Parvin; Kheradmand, Farrah; Salimian, Jafar

    2017-12-01

    Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4 + T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.

  1. Study on the Control of Polluted Odour Gas by Biological Treatment Technology

    Directory of Open Access Journals (Sweden)

    Wen Dong

    2017-07-01

    Full Text Available In order to improve the quality of the environment as well as its purification capacity, to reduce environmental costs and achieve clean and efficient management of malodorous gas pollution, on the basis of fully understanding the theory of biotechnology, this paper presents the research of biotechnology to control the pollution of malodorous pollutants. In this research, the biofiltration method was used to control the odour gas ammonia produced in waste composting, which can effectively purify gases, with a high ammonia removal rate. One week after the ammonia removal experiment, the removal rate was detected to be around 79.3 %. Twenty-four days after the experiment, the removal rate stabilized at around 98 %. Through the test of pH value of nutrient solution, it was found that the change in pH value corresponded to the increase in removal rate. There are many advantages of applying biotechnology to filter malodorous polluted gases, such as low energy consumption, high degree of purification, good environmental compatibility, simple operation and maintenance, and no secondary pollution. Therefore, it has good application prospects.

  2. Method of detecting stacks with leaky fuel elements in liquid-metal-cooled reactor and apparatus for effecting same

    International Nuclear Information System (INIS)

    Aristarkhov, N.N.; Efimov, I.A.; Zaistev, B.I.; Peters, I.G.; Tymosh, B.S.

    1976-01-01

    Described is a method of detecting stacks with leaky fuel elements in a liquid-metal-cooled reactor, consisting in that prior to withdrawing a coolant sample, gas is accumulated in the coolant of the stack being controlled, the reactor being shut down, separated from the sample by means of an inert carrier gas, and the radioactivity of the separated gas is measured. An apparatus for carrying out said method comprises a sampler in the form of a tube parallel to the reactor axis in the hole of a rotating plug and adapted to move along the reactor axis. Made in the top portion of the tube are holes for the introduction of the inert carrier gas and the removal thereof together with the gases evolved from the coolant, while the bottom portion of the tube is provided with a sealing member

  3. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  4. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  5. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  6. Tail gas treatment of sour-SEWGS CO2 product. Public version

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-06-15

    This literature review covers the technologies suitable for the CO2-H2S separation within the context of CO2 purification of a pre-combustion captured stream intended for storage or reuse. The technologies considered cover existing industrially applied processes, emerging processes as well as processes in development. Several technologies capable of achieving the desired CO2-H2S separation were identified. Among them are liquid scrubbing processes Thiopaq and CrystaSulf producing elemental sulphur, selective oxidation to elemental sulphur such as MODOP or based on novel catalysts and sorbent-based (reactive) separations using low-, medium- or high-temperature (reactive) sorbents. SEWGS stands for Sorption Enhanced Water Gas Shift process.

  7. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases. PMID:29628915

  8. Hydrogen peroxide ingestion associated with portal venous gas and treatment with hyperbaric oxygen: a case series and review of the literature.

    Science.gov (United States)

    French, Loren Keith; Horowitz, B Zane; McKeown, Nathanael J

    2010-07-01

    Ingestion of concentrated hydrogen peroxide (H(2)O(2)) has been associated with venous and arterial gas embolic events, hemorrhagic gastritis, gastrointestinal bleeding, shock, and death. Although H(2)O(2) is generally considered a benign ingestion in low concentrations, case reports have described serious toxicity following high concentration exposures. Hyperbaric oxygen (HBO) has been used with success in managing patients suffering from gas embolism with and without manifestations of ischemia. Poison center records were searched from July 1999 to January 2010 for patients with H(2)O(2) exposure and HBO treatment. Cases were reviewed for the concentration of H(2)O(2), symptoms, CT scan findings of portal gas embolism, HBO treatment, and outcome. RESULTS; Eleven cases of portal gas embolism were found. Ages ranged from 4 to 89 years. All but one ingestion was accidental in nature. In 10 cases 35% H(2)O(2) was ingested and in 1 case 12% H(2)O(2) was ingested. All abdominal CT scans demonstrated portal venous gas embolism in all cases. Hyperbaric treatment was successful in completely resolving all portal venous gas bubbles in nine patients (80%) and nearly resolving them in two others. Ten patients were able to be discharged home within 1 day, and one patient had a 3.5-day length of stay. HBO was successful in resolving portal venous gas embolism from accidental concentrated H(2)O(2) ingestions.

  9. Test results from the GA technologies engineering-scale off-gas treatment system

    International Nuclear Information System (INIS)

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1984-06-01

    One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constitutents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Silver-based iodine adsorbents were found to catalyze the premature conversion of CO to CO 2 . Subsequent tests showed that iodine removal could not be performed downstream of the CO/HT oxidizer since iodine in the BOG system rapidly deactivated the Pt-coated alumina CO catalyst. Lead-exchanged zeolite (PbX) was found to be an acceptable alternative for removing iodine from BOG without CO conversion. Intermittent and steady-state tests of the pilot-plant SO 2 removal unit containing sodium-exchanged zeolite (NaX) demonstrated that decontamination factors greater than or equal to 100 could be maintained for up to 50 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system at GA, iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  10. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  11. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  12. The effect of CPAP treatment on venous lactate and arterial blood gas among obstructive sleep apnea syndrome patients.

    Science.gov (United States)

    Lin, Ting; Huang, Jie-Feng; Lin, Qi-Chang; Chen, Gong-Ping; Wang, Bi-Ying; Zhao, Jian-Ming; Qi, Jia-Chao

    2017-05-01

    The aim of this observational study was to investigate the influence of continuous positive airway pressure (CPAP) on arterial blood gas and venous lactate, markers of tissue hypoxia, among obstructive sleep apnea syndrome (OSAS) patients, and determine the risk factor of serum lactate and hydrogen ion concentration (PH) in OSAS patients. One-hundred and nine patients with newly diagnosed OSAS were enrolled in the study. All individuals were treated with CPAP for one night. Venous lactate and arterial blood gas were gathered from all subjects in the morning at the end of polysomnography and the next morning after CPAP treatment. Of the 109 selected subjects, the average lactate level was 2.23 ± 0.59 mmol/L, and the mean PH, PaO 2 , and PaCO 2 were 7.380 ± 0.23, 88.14 ± 17.83 mmHg, and 38.70 ± 4.28 mmHg, respectively. Compared to baseline, lactic acid significantly decreased (2.10 ± 0.50 mmol/L, p = 0.03), while PH increased (7.388 ± 0.27, p treatment. In addition, neck circumference and the polysomnographic parameters, including apnea-hypopnea index, oxygen desaturation index (ODI), mean oxygen saturation (SpO 2 ), and the percentage of sleep time with SpO 2 treatment could reduce serum lactate and increase PH in OSAS patients and might alleviate acid-base balance disorders in OSAS. Furthermore, TS90 % was a risk factor for elevated lactate, and age was independently associated with PH.

  13. Integrated treatment process using a natural Wyoming clinoptilolite for remediating produced waters from coalbed natural gas operations

    Science.gov (United States)

    Zhao, H.; Vance, G.F.; Urynowicz, M.A.; Gregory, R.W.

    2009-01-01

    Coalbed natural gas (CBNG) development in western U.S. states has resulted in an increase in an essential energy resource, but has also resulted in environmental impacts and additional regulatory needs. A concern associated with CBNG development relates to the production of the copious quantities of potentially saline-sodic groundwater required to recover the natural gas, hereafter referred to as CBNG water. Management of CBNG water is a major environmental challenge because of its quantity and quality. In this study, a locally available Na-rich natural zeolite (clinoptilolite) from Wyoming (WY) was examined for its potential to treat CBNG water to remove Na+ and lower the sodium adsorption ratio (SAR, mmol1/2 L- 1/2). The zeolite material was Ca-modified before being used in column experiments. Column breakthrough studies indicated that a metric tonne (1000??kg) of Ca-WY-zeolite could be used to treat 60,000??L of CBNG water in order to lower SAR of the CBNG water from 30 to an acceptable level of 10??mmol1/2 L- 1/2. An integrated treatment process using Na-WY-zeolite for alternately treating hard water and CBNG water was also examined for its potential to treat problematic waters in the region. Based on the results of this study, use of WY-zeolite appears to be a cost-effective water treatment technology for maximizing the beneficial use of poor-quality CBNG water. Ongoing studies are evaluating water treatment techniques involving infiltration ponds lined with zeolite. ?? 2008 Elsevier B.V. All rights reserved.

  14. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  15. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  16. Improved Direct Methanol Fuel Cell Stack

    Science.gov (United States)

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  17. Displacive phase transformations and generalized stacking faults

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Ostapovets, Andriy; Duparc, O. H.; Khalfallah, O.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 490-492 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : ab-initio calculations * close-packed structures * generalized stacking faults * homogeneous deformation * lattice deformation * many-body potentials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  18. Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2012-03-01

    Full Text Available Titanium dioxide (TiO2) nanostructures were synthesized by microwave-assisted and conventionally heated hydrothermal treatment of TiO2 powder. The tubular structures were converted to a rodlike shape by sintering the samples at various temperatures...

  19. Reapplication of Silvicultural Treatments Impacts Phenology and Photosynthetic Gas Exchange of Loblolly Pine

    Science.gov (United States)

    Zhenmin Tang; Jim L. Chambers; Mary A. Sword; Shufang Yu; James P. Barnett

    2004-01-01

    A loblolly pine (Pinus taeda L.) plantation, established in 1981, was thinned and fertilized in 1988. Thinning and fertilization treatments were applied again in early 1995. The morphology of current flushes and needles were measured between March and October in 1995 through 1997. Physiological responses were monitored in the upper and lower crowns....

  20. Feasibility and Treatment of Oil and Gas Produced Water as a Medium for Nannochloropsis Salina cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Yoshida, Thomas M. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory; Laur, Paul A. [Eldorado Biofuels; Visolay, Alfonz [VM Technologies

    2012-06-06

    Some conclusions of this paper are: (1) How much PW is available - (a) Lots, but probably not enough to support the largest estimates of algae production needed, (b) Diluent water is likely needed to support cultivation in some cases, (c) An assessment of how much PW is really available for use is needed; (2) Where is it available - (a) In many places near other resources (land, CO{sub 2}, sunlight, nutrients) and infrastructure (pipelines, refineries, disposal operations/wells); (3) Is the water chemistry acceptable for use - (a) Yes, in many cases with minimal treatment, (b) Additional constituents of value exist in PW for media; (4) Does it need treatment prior to use - (a) Yes, it may often need treatment for organics, some metals, and biological contaminants, (b) Source control and monitoring can reduce need for treatment; (5) How much does it cost to treat it - (a) If desalination is not needed, from <$0.01-$0.60 per m3 is a starting estimate; and (6) Can you grow algae in it - (a) Yes, but we need more experimentation to optimize field conditions, media mixing, and algae types.

  1. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  2. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    Science.gov (United States)

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  4. Surface treatment of non-ferrous metals for the purpose of gas analysis

    International Nuclear Information System (INIS)

    Quaglia, L.; Weber, G.; Triffaux, J.; Geerts, J.; Audenhove, J. van; Pauwels, J.

    1979-01-01

    The present report is an updating of earlier reports published in 1972 and 1976. Its major improvement compared to the earlier reports is that greater importance has been devoted to quantify the parameters of mechanical shaping techniques to be used with or without subsequent chemical etching. Surface treatments have been studied and standardized for a number of non-ferrous metals. Recommendations were generally made on the basis of the following: the proposed treatment must give a minimum surface content; it must exhibit good reproducibility; it must be easy to perform with equipment normally available in analytical laboratories. The recommended treatments are presented in the form of sheets. They give full information on mechanica shaping parameters if these are important, and -if needed- the subsequent chemical etching conditions. Typical residual surface contents are given for oxygen carbon and nitrogen. They refer to samples freshly prepared. The metals or alloys concerned are: aluminium, aluminium alloyed with 3%, 7% and 13% silicon, copper, lead, nickel, titanium, TiAl 6 V 4 zirconium, tungsten and molybdenum

  5. Study on efficient methods for removal and treatment of graphite blocks in a gas cooled reactor

    International Nuclear Information System (INIS)

    Fujii, S.; Shirakawa, M.; Murakami, T.

    2001-01-01

    Tokai Power Station (GCR, 166 MWe) started its commercial operation on July 1966 and ceased activities at the end of March 1998 after 32 years of operation. The decommissioning plans are being developed, to prepare for near future dismantling. In the study, the methods for removal of the graphite blocks of about 1,600 ton have been developed to carrying it out safely and in a short period of time, and the methods of treatment of graphite have also been developed. All technological items have been identified for which R and D work will be required for removal from the core and treatment for disposal. (1) In order to reduce the programme required for the dismantling of reactor internals, an efficient method for removal of the graphite blocks is necessary. For this purpose the design of a dismantling machine has been investigated which can extract several blocks at a time. The conceptual design has being developed and the model has been manufactured and tested in a mock-up facility. (2) In order to reduce disposal costs, it will be necessary to segment the graphite blocks, maximising the packing density available in the disposal containers. Some of the graphite blocks will be cut into pieces longitudinally by a remote machine. Relevant technical matters have been identified, such as graphite cutting methods, the nature of fine particles arising from the cutting operation, the treatment of fine particles for disposal, and the method of mortar filling inside the waste container. (author)

  6. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  7. Control of heteroepitaxial stacking by substrate miscut

    International Nuclear Information System (INIS)

    Bonham, S.W.; Flynn, C.P.

    1998-01-01

    We report studies of fcc epitaxial crystals, grown on Nb(110), in which the Nb surface offers a template for selection between the two alternative stackings, ABCA hor-ellipsis and ACBA hor-ellipsis of the fcc close-packed planes. The Nb templates were grown epitaxially about 500 Angstrom thick on sapphire (11 bar 20), and the fcc material studied was Cu 3 Au. From symmetry it is not possible for the perfect bcc (110) surface to cause any such selection, which is here attributed instead to vicinal miscut: the logarithm of the stacking ratio must be even in miscut along [001] and odd in miscut along [1 bar 10]. We find that the measured selectivity is small for miscuts less than about 0.5 degree, but approaches a factor 10 3 for miscuts along [1 bar 10] greater than about 1 degree. A mechanism for the selection process is discussed in terms of fingered mesostructures that grow on Nb(110) in this regime, as observed first by Zhou, Bonham, and Flynn. copyright 1998 The American Physical Society

  8. Generalized stacking fault energies of alloys.

    Science.gov (United States)

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  9. Systematization of by-product plant. (1) Development of on-line analyzers for treatment of gas liquor

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Susumu; Taketomi, Hirofumi; Ohashi, Shigeru [Nippon Kokan K.K., Tokyo (Japan)

    1988-04-07

    As a part of systematization of absorption and refinery processing installation for coke oven gas, on-line analyzers for gas liquor treatment with activated sludge were developed and established. A T-NH{sub 3} analyzer using a potential difference titration method was equipped to control NH{sub 3} which had a bad influence upon activated sludge. The oxygen intake rate is measured with an activity measuring instrument in order to get the activity condition of bacteria. The SCN concentration of precipitator outlet solution is measured with an SCN(thiocyanogen) measuring instrument so that conditions of bacteria can be seized. An absorptiometry with ferric chloride is used to analyze it. For a COD measuring instrument, precipitator outlet solution is used and analysis with the JIS method is entirely automated. As a transparency measuring instrument, a color-difference colorimeter is used instead of the former instrument made of glass. According to the collected data, charged coal conditions, and operating conditions of coke oven, the process computer does the calculation for optimization and indicates operation control guidances to the operator. Automated on -line analyzers are useful to save a great deal of labor and contribute to the control and stabilization of operations. 9 figs., 1 tab.

  10. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography

    Science.gov (United States)

    Khajeh-Hosseini-Dalasm, Navvab; Sasabe, Takashi; Tokumasu, Takashi; Pasaogullari, Ugur

    2014-11-01

    The microstructure of a TGP-H-120 Toray paper gas diffusion layer (GDL) was investigated using high resolution X-ray computed tomography (CT) technique, with a resolution of 1.8 μm and a field of view (FOV) of ∼1.8 × 1.8 mm. The images obtained from the tomography scans were further post processed, and image thresholding and binarization methodologies are presented. The validity of Otsu's thresholding method was examined. Detailed information on bulk porosity and porosity distribution of the GDL at various Polytetrafluoroethylene (PTFE) treatments and uniform/non-uniform compression pressures was provided. A sample holder was designed to investigate the effects of non-uniform compression pressure, which enabled regulating compression pressure between 0, and 3 MPa at a gas channel/current collector rib configuration. The results show the heterogeneous and anisotropic microstructure of the GDL, non-uniform distribution of PTFE, and significant microstructural change under uniform/non-uniform compression. These findings provide useful inputs for numerical models to include the effects of microstructural changes in the study of transport phenomena within the GDL and to increase the accuracy and predictability of cell performance.

  11. Optical technologies applied alongside on-site and remote approaches for climate gas emission quantification at a wastewater treatment plant

    DEFF Research Database (Denmark)

    Samuelsson, Jerker; Delre, Antonio; Tumlin, Susanne

    2018-01-01

    Plant-integrated and on-site gas emissions were quantified from a Swedish wastewater treatment plant by applying several optical analytical techniques and measurement methods. Plant-integrated CH4 emission rates, measured using mobile ground-based remote sensing methods, varied between 28.5 and 33.......5 kg CH4 h−1, corresponding to an average emission factor of 5.9% as kg CH4 (kg CH4production) −1, whereas N2O emissions varied between 4.0 and 6.4 kg h−1, corresponding to an average emission factor of 1.5% as kg N2O-N (kg TN influent) −1. Plant-integrated NH3 emissions were around 0.4 kg h−1...... quantifications were approximately two-thirds of the plant-integrated emission quantifications, which may be explained by the different timeframes of the approaches and that not all emission sources were identified during on-site investigation. Off-site gas emission quantifications, using ground-based remote...

  12. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  13. Properties variation according to heat treatment for gas turbine blade(bucket) material of GTD-111DS

    International Nuclear Information System (INIS)

    Kim, Moon Young; Park, Sang Yeal; Yang, Sung Ho

    2006-01-01

    The gas turbine components is used on high temperature conditions which under severely circumstance with start-up and stop several times. Therefore, it is used nickel-base superalloys like and GTD-111DS. Damaged buckets on the blade tip during operating are repaired per 24,000 hr to three times according to repair specification of manufacture. It is applied pre-heat, HIP(Hot Isostatic Pressing) and post-heat treatment to support welding repair on blade tip effectively. On this study, it is utilize of WRAP TM (Welding Repair Advanced Process) method to make tension test specimens for this study. And then, material strength and characteristic for GTD-111DS was analyzed

  14. Organic Pollutants in Shale Gas Flowback and Produced Waters: Identification, Potential Ecological Impact, and Implications for Treatment Strategies

    Science.gov (United States)

    2017-01-01

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined. PMID:28376616

  15. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  16. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  17. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  18. Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush

    2018-03-30

    Reprocessing of used nuclear fuel (UNF) is expected to play an important role for sustainable development of nuclear energy by increasing the energy extracted from the fuel and reducing the generation of the high level waste (HLW). However, aqueous reprocessing of UNF is accompanied by emission of off-gas streams containing radioactive nuclides including iodine, krypton, xenon, carbon, and tritium. Volatile iodine (129I), and krypton (85Kr) are long lived isotopes which have adverse effects on the environment as well as human health. Development of methods for the capture and long-term storage of radioactive gases is of crucial importance in order to manage their emissions that are anticipated to increase significantly with the growth of nuclear energy. For more than 70 years, porous solid sorbents have been in the forefront of radioactive contaminant removal due to promising results and their advantages such as high removal efficiency, low maintenance cost, simple equipment design and operation over other techniques. The research conducted in this project has focused on development of a novel nanostructured sorbent and its application for the capture of the above two contaminants of interest. Nanostructured carbon polyhedrons supported on Engelhard Titanosilicate-10 sorbent was synthesized using hydrothermal methods and subjected to structural and compositional characterization using various techniques including electron microscopy, Raman, x-ray diffraction and BET surface area analysis. Dynamic sorption experiments conducted using a flow-through column setup yielded information on the thermodynamics and kinetics of sorption in single-contaminant and multi-contaminant streams. Parameters varied in the study included carbon loading, temperature, contact time, contaminant concentration and humidity. The behavior of the system was modeled using models available in literature as well as development of a mass-transfer model from fundamental principles. Experimental

  19. Development of Osaka gas type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Iha, M.; Shiratori, A.; Chikagawa, O. [Murata Mfg. Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  20. A study of the internal humidification of an integrated PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K H; Lee, T H [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Park, D J; Rho, Y W; Kho, Y T [KOGAS R and D Center, Kyunggi (Korea, Republic of)

    1998-07-15

    An integrated proton exchange membrane fuel-cell (PFMFC) system has been developed with an internal humidifier within the stack. Research is concentrated on selecting a membrane with low cost and good water permeability because, to date, high-cost membranes (e.g., as Nafion) have been used. The gas and water permeability of several membranes were measured. A low-cost ultra filtration (UF) membrane shows better characteristics for the internal humidifier and cell performance than the others. Also, saturated water vapour permeating through the UF membrane can be supplied at the stack from the internal humidifier. The internal humidifier using UF membrane is thought to be a satisfactory humidifier for a PEMPC. (orig.)