WorldWideScience

Sample records for stack gas treatment

  1. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  2. High-power selfshielded electron processors and their application to stack gas treatment

    International Nuclear Information System (INIS)

    Hiley, J.; Frutiger, W.A.; Nablo, S.V.

    1987-01-01

    The increasing industrial demands for large width (approximately 2 m), high dose rate (1 Mrad at 1500 m/min) electron beam machinery has led to a relatively rapid improvement in this field over the past several years. Selfshielded machinery capable of up to 1000 mA of current at 300 kV is now in commercial use, and the essential features of these designs are presented. A variety of product handling geometries for use with these accelerators has been developed for processes involving flexible web, rigid sheet, and three-dimensional objects in both the polymerization and sterilization applications. One of the major power-intensive processes to which these machines are currently applied is that of the reduction of pollutants (NO x , SO 2 , etc.) in the flue gas from fuel combustion - particularly those fossil fuels used in power production. The preferred technique utilizes the treatment of the ammoniated gas at modest dose levels (0.5-2.0 Mrads) to enhance the formation of ammonium salts which are then removed from the gas stream by conventional filtration. Some results from a 180 kWx300 kV pilot installation in Karlsruhe, Federal Republic of Germany are presented. (orig.)

  3. Stack Gas Scrubber Makes the Grade

    Science.gov (United States)

    Chemical and Engineering News, 1975

    1975-01-01

    Describes a year long test of successful sulfur dioxide removal from stack gas with a calcium oxide slurry. Sludge disposal problems are discussed. Cost is estimated at 0.6 mill per kwh not including sludge removal. A flow diagram and equations are included. (GH)

  4. Power station stack gas emissions

    International Nuclear Information System (INIS)

    Hunwick, Richard J.

    2006-01-01

    There are increasing awareness and pressure to reduce emissions of acid rain and photochemical smog. There is a need to produce new control system and equipment to capture those emissions. The most visible form of pollutions are the chimney smoke, dust and particles of fly ash from mineral matter in the fuel. Acid gases are hard on structures and objects containing limestone. Coal fired power generation is likely to be able to sustain its competitive advantage as a clean source of electricity in comparison with nuclear power and natural gas

  5. An industrial FT-IR process gas analyzer for stack gas cems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Welch, G.M. [American instruments, Anacortes, WA (United States); Herman, B.E. [Applied Automation/Hartmann & Braun, Bartlesville, OK (United States)

    1995-12-31

    This paper describes utilizing Fourier Transform Infrared (FT-IR) technology to meet and exceed EPA requirements to Continuously Monitor Carbon Monoxide (CO) and Sulfur Dioxide (SO){sub 2} in an oil refinery. The application consists of Continuous Emission Monitoring (CEMS) of two stacks from a Fluid Catalytic Cracking unit (FCCU). The discussion will follow the project from initial specifications, installation, start-up, certification results (RATA, 7 day drift), Cylinder Gas Audit (CGA) and the required maintenance. FT-IR is a powerful analytical tool suitable for measurement of stack component gases required to meet CEMS regulations, and allows simultaneous multi-component analysis of complex stack gas streams with a continuous sample stream flow through the measurement cell. The Michelson Interferometer in a unique {open_quotes}Wishbone{close_quotes} design and with a special alignment control enables standardized configuration of the analyzer for flue gas analysis. Normal stack gas pollutants: NO{sub x}, SO{sub 2}, and CO; as well as water soluble pollutants such as NH{sub 3} and HCI may be accurately determined and reported even in the presence of 0-31 Vol % water vapor concentrations (hot and wet). This FT-IR analyzer has been operating with EPA Certification in an oil refinery environment since September 1994.

  6. Fabrication of highly porous LSM/CGO cell stacks for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2013-01-01

    In this study porous cell stacks for electrochemical flue gas purification were fabricated using tape casting and lamination followed by sintering. Two different mixtures of pore formers were used; either a mixture of two types of graphite or a mixture of graphite with polymethyl methacrylate micro-particles....... It was shown that the porous cell stacks fabricated with polymethyl methacrylate had a higher porosity but a similar back pressure compared to the porous cell stacks fabricated with only graphite as a pore former. This was due to a high back pressure of the electrolyte layer. The porous cell stacks fabricated...... with polymethyl methacrylate as a pore former seem to be well suited for i.e. caption of soot particles. Furthermore, the back pressure of the electrode layer was significantly reduced when using polymethyl methacrylate pore formers. However, a better interconnectivity of the pores formed by the polymethyl...

  7. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  8. Independent determination of the accuracy of the OSTR stack gas monitor and its operational application

    International Nuclear Information System (INIS)

    Pickett, B.D.; Johnson, A.G.

    1982-01-01

    This study was undertaken to determine the accuracy of the stack gas monitor, using techniques which were independent of the monitoring system itself. Samples of argon-41 to be used as the standards in this study were carefully produced in the thermal column of the OSTR and counted on a Ge(Li) detector which was connected to a multichannel analyzer (MCA). As the argon-41 standard in the gas sample flask decayed, the concentration of the argon-41 was compared to the output of the Ge(Li)/MCA system. This established a calibration curve for the counting system, whereby a sample with an unknown concentration of argon-41 could be counted and the subsequent count rate from the sample converted to a concentration expressed in mCi per milliliter. Gas samples were extracted from various points in the reactor exhaust system and the concentrations of argon-41 were determined by counting on the Ge(Li)/MCA system. Each sample concentration was then compared to the argon-41 concentration indicated by the stack gas monitor. The initial results indicated that, although possibly intermittent, the argon-41 concentrations displayed by the stack gas monitor were often approximately 50% of those predicted by analysis of individual samples from the exhaust system. Several possible sources for the discrepancy were checked, including the method of SGM calibration, uneven mixing of exhaust air and argon-41 in the reactor building exhaust stream, and dilution of the gas concentration in the SGM system by air leakage into the system. After considerable effort, the latter cause was found to be the culprit, due to an aging gasket around the stack monitor's moving particulate-filter-paper housing

  9. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    OpenAIRE

    M.N.Khan; K.P.Tyagi

    2010-01-01

    The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbi...

  10. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Guillen-Alonso, Yvonne; Morales-Morales, Cornelio; García-Sánchez, Liliana; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Loyola-Morales, Félix

    2017-07-01

    Two different air-cathode stacked microbial fuel cell (MFC) configurations were evaluated under continuous flow during the treatment of municipal wastewater and electricity production at a hydraulic retention time (HRT) of 3, 1, and 0.5 d. Stacked MFC 1 was formed by 20 individual air-cathode MFC units. The second stacked MFC (stacked MFC 2) consisted of 40 air-cathode MFC units placed in a shared reactor. The maximum voltages produced at closed circuit (1,000 Ω) were 170 mV for stacked MFC 1 and 94 mV for stacked MFC 2. Different power densities in each MFC unit were obtained due to a potential drop phenomenon and to a change in chemical oxygen demand (COD) concentrations inside reactors. The maximum power densities from individual MFC units were up to 1,107 mW/m 2 for stacked MFC 1 and up to 472 mW/m 2 for stacked MFC 2. The maximum power densities in stacked MFC 1 and MFC 2 connected in series were 79 mW/m 2 and 4 mW/m 2 , respectively. Electricity generation and COD removal efficiencies were reduced when the HRT was decreased. High removal efficiencies of 84% of COD, 47% of total nitrogen, and 30% of total phosphorus were obtained during municipal wastewater treatment.

  11. CO2utilization via a novel anaerobic bioprocess configuration with simulated gas mixture and real stack gas samples.

    Science.gov (United States)

    Daglioglu, S Tugce; Karabey, Burcin; Ozdemir, Guven; Azbar, Nuri

    2017-11-28

    CO 2 , which is considered to be one of the major causes of climate change, has reached to critical levels in the atmosphere due to tremendous consumption of fossil fuels all over the world. In this study, anaerobic bioconversion of CO 2 into bio-methane using a novel bioprocess configuration (HYBRID bioreactor) was studied under mesophilic conditions. Varying ratios of H 2 /CO 2 gas mixture and volumetric feeding rates were investigated and no additional organic matter and trace element were needed throughout the study. The maximum methane production of 19 m 3 CH 4 /m 3 reactor/ d was achieved at a H 2 /CO 2 ratio of 4:1 and feeding rate of 24 m 3 gas/m 3 reactor /d. It was determined that H 2 conversion rate is about 96%. For demonstration purpose, real stack gas sample from a petrochemical industry was also tested under optimized operational conditions. No inhibitory effect from stack gas mixture was observed. This study provided an environmentally friendly and sustainable solution for industries such as petrochemical industry in order to produce extra energy while capturing their waste CO 2 . Thereby, a sustainable and environmentally friendly model solution was presented for industries with high CO 2 emissions. COV: coefficient of variation; Gt: gigatone; IEA: International Energy Agency; IPCC: International Panel on Climate Change; MBBR: moving bed biofilm reactor; MJ: Megajoule; UASB: upflow anaerobic sludge blanket; VFR: volumetric feeding rate.

  12. Tracer gas experiment to verify the dispersion from a tall stack

    International Nuclear Information System (INIS)

    Sivertsen, B.; Irwin, J.S.

    1996-01-01

    At the request of the Ministerios de Obras Publicas y Urbanismo (MOPU) in Madrid, the Norwegian Institute for Air Research (NILU) planned and carried out a comprehensive field experiment at the Andorra (Teruel) power plant in Spain. All together, eleven releases of sulfur hexafluoride (SF6) tracer were carried out at the 1,200 MW electric coal fired power plant. The tracer was emitted into the atmosphere from the 343 m high stack, stack exit diameter of 9 m. The stack gas emission characteristics were nearly constant during the period having an exit temperature of 175.1 C (1.9), exit velocity of 35.5 m/s (0.14) and sulfur dioxide (SO 2 ) emission rate of 46.1 x 10 3 kg/hr (5.15 x 10 3 ); standard deviations are listed in parentheses. Samples were taken at the surface along sampling arcs located approximately 8, 23, 43 and 75 km downwind. The releases were undertaken during typical late spring daytime conditions. The synoptic weather conditions were dominated by a large high pressure system on the Atlantic, west of Spain. Fronts were passing the area from the north and a low pressure system was developing over central Europe (Germany). Winds at the surface were generally brisk from the northwest at 7 to 12 m/s

  13. Four-Dimensional Lung Treatment Planning in Layer-Stacking Carbon Ion Beam Treatment: Comparison of Layer-Stacking and Conventional Ungated/Gated Irradiation

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Kanematsu, Nobuyuki; Asakura, Hiroshi; Sharp, Gregory C.; Kumagai, Motoki; Dobashi, Suguru; Nakajima, Mio; Yamamoto, Naoyoshi; Kandatsu, Susumu; Baba, Masayuki

    2011-01-01

    Purpose: We compared four-dimensional (4D) layer-stacking and conventional carbon ion beam distribution in the treatment of lung cancer between ungated and gated respiratory strategies using 4DCT data sets. Methods and Materials: Twenty lung patients underwent 4DCT imaging under free-breathing conditions. Using planning target volumes (PTVs) at respective respiratory phases, two types of compensating bolus were designed, a full single respiratory cycle for the ungated strategy and an approximately 30% duty cycle for the exhalation-gated strategy. Beams were delivered to the PTVs for the ungated and gated strategies, PTV(ungated) and PTV(gated), respectively, which were calculated by combining the respective PTV(Tn)s by layer-stacking and conventional irradiation. Carbon ion beam dose distribution was calculated as a function of respiratory phase by applying a compensating bolus to 4DCT. Accumulated dose distributions were calculated by applying deformable registration. Results: With the ungated strategy, accumulated dose distributions were satisfactorily provided to the PTV, with D95 values for layer-stacking and conventional irradiation of 94.0% and 96.2%, respectively. V20 for the lung and Dmax for the spinal cord were lower with layer-stacking than with conventional irradiation, whereas Dmax for the skin (14.1 GyE) was significantly lower (21.9 GyE). In addition, dose conformation to the GTV/PTV with layer-stacking irradiation was better with the gated than with the ungated strategy. Conclusions: Gated layer-stacking irradiation allows the delivery of a carbon ion beam to a moving target without significant degradation of dose conformity or the development of hot spots.

  14. Treatment of Gas

    Science.gov (United States)

    ... of air swallowed. Diet Changes That May Help Gas Avoiding fermentable vegetables/carbohydrates like beans, broccoli, cabbage, ... offending foods one can handle. Medications to Help Gas Many nonprescription, over-the-counter medicines are available ...

  15. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  16. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  17. Simultaneous treatment of SO2 containing stack gases and waste water

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  18. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Høgh, Jens Valdemar Thorvald; Nielsen, Karsten Agersted

    2011-01-01

    Electrolysis of steam and co-electrolysis of steam and carbon dioxide was studied in Solid Oxide Electrolysis Cell (SOEC) stacks composed of Ni/YSZ electrode supported SOECs. The results of this study show that long-term electrolysis is feasible without notable degradation in these SOEC stacks...

  19. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.

    Science.gov (United States)

    Zhuang, Li; Zheng, Yu; Zhou, Shungui; Yuan, Yong; Yuan, Haoran; Chen, Yong

    2012-02-01

    A tubular air-cathode microbial fuel cell (MFC) stack with high scalability and low material cost was constructed and the ability of simultaneous real wastewater treatment and bioelectricity generation was investigated under continuous flow mode. At the two organic loading rates (ORLs) tested (1.2 and 4.9kg COD/m(3)d), five non-Pt MFCs connected in series and parallel circuit modes treating swine wastewater can enable an increase of the voltage and the current. The parallel stack retained high power output and the series connection underwent energy loss due to the substrate cross-conduction effect. With continuous electricity production, the parallel stack achieved 83.8% of COD removal and 90.8% of NH(4)(+)-N removal at 1.2kg COD/m(3)d, and 77.1% COD removal and 80.7% NH(4)(+)-N removal at 4.9kg COD/m(3)d. The MFC stack system in this study was demonstrated to be able to treat real wastewater with the added benefit of harvesting electricity energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Up-to-Date Materials of Gas Ducts and Smoke Stacks

    Directory of Open Access Journals (Sweden)

    V. D. Sizov

    2012-01-01

    Full Text Available The paper considers existing systems of smoke removal from heat-generating plants of various heat power. Advantages and disadvantages of every system are specified in the paper. The paper analyzes properties of fiberglass smoke stacks.

  1. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors

    International Nuclear Information System (INIS)

    1968-01-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [fr

  2. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  3. Flue gas treatment with membrane gas absorption

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.E.

    1998-01-01

    Dutch researchers from the TN0 Institute have developed a technique to carry out gas-liquid contacting operations using hollow fibre membranes in combination with an absorption liquid. The method known as membrane gas absorption, aims to combine the advantages of membrane technology (compactness,

  4. A methodology for handling exploration risk and constructing supply curves for oil and gas plays when resources are stacked

    International Nuclear Information System (INIS)

    Dallaire, S.M.

    1994-01-01

    The use of project economics to estimate full-cycle supply prices for undiscovered oil and gas resources is a straightforward exercise for those regions where oil and gas plays are not vertically superimposed on one another, ie. are not stacked. Exploration risk is incorporated into such an analysis by using a simple two-outcome decision tree model to include the costs of dry and abandoned wells. The decision tree model can be expanded to include multiple targets or discoveries, but this expansion requires additional drilling statistics and resource assessment data. A methodology is suggested to include exploration risk in the preparation of supply curves when stacked resources are expected and little or no information on uphole resources is available. In this method, all exploration costs for wells drilled to targets in the play being evaluated are assigned to that play, rather than prorated among the multiple targets or discoveries. Undiscovered pools are assumed to either bear all exploration costs (full cycle discoveries) or no exploration costs (half cycle discoveries). The weighted full- and half-cycle supply price is shown to be a more realistic estimate of the supply price of undiscovered pools in a play when stacked resources exist. The statistics required for this methodology are minimal, and resource estimates for prospects in other zones are not required. The equation relating the average pool finding cost to the discovery record is applicable to different scenarios regarding the presence of shallower and deeper resources. The equation derived for the two-outcome decision tree model is shown to be a special case of the general expression. 5 refs., 7 figs

  5. Emission characteristics of PCDD/Fs in stack gas from municipal solid waste incineration plants in Northern China.

    Science.gov (United States)

    Zhu, Feng; Li, Xiaofei; Lu, Jia-Wei; Hai, Jing; Zhang, Jieru; Xie, Bing; Hong, Chengyang

    2018-06-01

    Emission characteristics including congener's profile, gas emissions and toxic equivalent concentration (TEQ) indicators of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in 57 stack gas samples from 6 municipal solid waste incinerators (MSWIs) in Northern China were investigated by gas chromatography-high resolution mass spectrometry (HRGC-HRMS). Additionally, PCDD/Fs formation mechanisms from the MSWIs were briefly discussed. Results revealed that the concentrations and equivalent concentrations of PCDD/Fs emissions in stack gas from 6 MSWIs were in the range of 0.11-2.53 ng Nm -3 and 0.007-0.059 ng TEQ Nm -3 , respectively. The emission factors of PCDD/Fs from 6 MSWIs varied from 0.027 to 0.225 μg I-TEQ tonne -1 , with a mean value of 0.17 μg I-TEQ tonne -1 waste, which was estimated to an annual emission of 234.96 mg I-TEQ of PCDD/Fs from 6 MSWIs to the atmosphere. O8CDD, O8CDF and 1,2,3,4,6,7,8-H7CDD were the indicatory compounds of PCDD/Fs to apportion the sources of PCDD/Fs in environmental medium especially in ambient environment of MSWIs. 1,2,3,7,8,9-H6CDF and 1,2,3,4,7,8-H6CDF can be used as TEQ indicators for monitoring PCDD/Fs emission. Based on the positive matrix factorization (PMF) model, eight factors were extracted by the PMF analysis. Formation of low-chlorinated PCDDs (1,2,3,7,8-P5CDD, 1,2,3,4,7,8-H6CDD, 1,2,3,6,7,8-H6CDD and 1,2,3,7,8,9-H6CDD) possessed strong correlation, and the chlorophenols maybe the important precursors of low-chlorinated PCDDs, which were generated within the low chlorinated content. Penta- and hexa-PCDFs formation in stack gas from MSWI may block catalytic sites for PCDFs formation from carbon. Meanwhile, possible formation mechanisms of high-chlorinated PCDDs (hepta- and octa-PCDDs) and high-chlorinated PCDFs (hepta- and octa-PCDFs) were respectively dependent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  7. Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks

    International Nuclear Information System (INIS)

    Sasmito, Agus P.; Kurnia, Jundika C.; Mujumdar, Arun S.

    2012-01-01

    A careful design of gas and coolant channel is essential to ensure high performance and durability of proton exchange membrane (PEM) fuel cell stack. The channel design should allow for good thermal, water and gas management whilst keeping low pressure drop. This study evaluates numerically the performance of various gas and coolant channel designs simultaneously, e.g. parallel, serpentine, oblique-fins, coiled, parallel-serpentine and a novel hybrid parallel-serpentine-oblique-fins designs. The stack performance and local distributions of key parameters are investigated with regards to the thermal, water and gas management. The results indicate that the novel hybrid channel design yields the best performance as it constitutes to a lower pumping power and good thermal, water and gas management as compared to conventional channels. Advantages and limitation of the designs are discussed in the light of present numerical results. Finally, potential application and further improvement of the design are highlighted. -- Highlights: ► We evaluate various gas and coolant channel designs in liquid-cooled PEM fuel cell stack. ► The model considers coupled electrochemistry, channel design and cooling effect simultaneously. ► We propose a novel hybrid channel design. ► The novel hybrid channel design yields the best thermal, water and gas management which is beneficial for long term durability. ► The novel hybrid channel design exhibits the best performance.

  8. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  9. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    Science.gov (United States)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  10. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.

    Science.gov (United States)

    Wang, Tianjiao; Chen, Tong; Lin, Xiaoqing; Zhan, Mingxiu; Li, Xiaodong

    2017-02-01

    The concentrations, homologue, and congener profiles, as well as the gas/particle distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), chlorobenzenes (CBzs), chlorophenols (CPhs), and polyaromatic hydrocarbons (PAHs) from stack gas of two different municipal solid waste incinerators in China, were characterized. The incinerators were a stoker furnace incinerator equipped with the advanced air pollution control device (APCD) and a common circulating fluidized bed (CFB) furnace. The concentration of PCDD/Fs in the stack gas of the stoker incinerator ranged 0.011-0.109 ng international toxic equivalent factor (I-TEQ)/Nm 3 and was below the current limit for PCDD/F emissions from the municipal solid waste incinerators (MSWIs) in China (0.1 ng I-TEQ/Nm 3 ) in most of the cases. Moreover, the concentration of PCDD/Fs in the stack gas of the stoker incinerator was significantly lower than that of the CFB incinerator (0.734 to 24.6 ng I-TEQ/Nm 3 ). In both incinerators, the majority of the total PCDD/F emissions (above 90%) ended up in the gas phase. 2,3,4,7,8-PeCDF, which occupied 24.3-43.6 and 32.5-75.6% of I-TEQ contribution in MSWIs A and B, respectively, was the most abundant congener. However, different types of incinerators and APCDs induced different congener and homologue distributions. The total concentration of CBzs from the stoker incinerator (0.05-3.2 μg/Nm 3 ) was also much lower than that formed from the CFB incinerator (10.9-75.2 μg/Nm 3 ). The phase distribution of CBzs followed the same pattern as with the PCDD/Fs. Moreover, the emission level of CBz was 100-1000 times higher than that of the PCDD/Fs, which determines the applicability of CBzs as indicators of PCDD/F emissions. High correlations between the emission concentrations of PCDD/Fs, TeCBz, and PCBz in specific ranges were revealed. Furthermore, high concentrations of CPhs (0.6-141.0 μg/Nm 3 ) and PAHs (148.6-4986.5 μg/Nm 3 ) were detected in the stack gases of MSWI

  11. Effect of stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites

    Science.gov (United States)

    Papanicolaou, G. C.; Pappa, E. J.; Portan, D. V.; Kotrotsos, A.; Kollia, E.

    2018-02-01

    The aim of the present investigation was to study the effect of both the stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites. Four types of multilayered hybrid nanocomposites were manufactured and tested: Nitinol- CNTs (carbon nanotubes)- Acrylic resin; Nitinol- Acrylic resin- CNTs; Surface treated Nitinol- CNTs- Acrylic resin and Surface treated Nitinol- Acrylic resin- CNTs. Surface treatment of Nitinol plies was realized by means of the electrochemical anodization. Surface topography of the anodized nitinol sheets was investigated through Scanning Electron Microscopy (SEM). It was found that the overall thermal response of the manufactured multilayered nano-composites was greatly influenced by both the anodization and the stacking sequence. A theoretical model for the prediction of the overall thermal conductivity has been developed considering the nature of the different layers, their stacking sequence as well as the interfacial thermal resistance. Thermal conductivity and Differential Scanning Calorimetry (DSC) measurements were conducted, to verify the predicted by the model overall thermal conductivities. In all cases, a good agreement between theoretical predictions and experimental results was found.

  12. Exhaust-stack nozzle area and shape for individual cylinder exhaust-gas jet-propulsion system

    Science.gov (United States)

    Pinkel, Benjamin; Turner, Richard; Voss, Fred; Humble, Leroy V

    1943-01-01

    This report presents the results of an investigation conducted on the effect of exhaust-stack nozzle area, shape, and length on engine power, jet thrust, and gain in net thrust (engine propeller plus jet). Single-cylinder engine data were obtained using three straight stacks 25, 44, and 108 inches in length; an S-shaped stack, a 90 degree bend, a 180 degree bend, and a short straight stack having a closed branch faired into it. Each stack was fitted with nozzles varying in exit area from 0.91 square inch to the unrestricted area of the stack of 4.20 square inches. The engine was generally operated over a range of engine speeds from 1300 to 2100 r.p.m, inlet-manifold pressures from 22 to 30 inches of mercury absolute, and a fuel-air ratio of 0.08. The loss in engine power, the jet thrust, and the gain in net thrust are correlated in terms of several simple parameters. An example is given for determining the optimum nozzle area and the overall net thrust.

  13. On Stack Reconstruction Problem

    Directory of Open Access Journals (Sweden)

    V. D. Аkeliev

    2009-01-01

    Full Text Available The paper describes analytical investigations that study relation of fuel combustion regimes with concentration values of sulphur anhydride in flue gases and acid dew point. Coefficients of convective heat transfer at internal and external surfaces of stacks have been determined in the paper. The paper reveals the possibility to reconstruct stacks while using gas discharging channel made of composite material on the basis of glass-reinforced plastic which permits to reduce thermo-stressed actions on reinforced concrete and increase volume of released gases due to practically two-fold reduction of gas-dynamic pressure losses along the pipe length.

  14. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  15. Overview of flue gas treatment in Brazil

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Duarte, C.L.; Omi, N.M.; Poli, D.C.R.; Lima, W.

    2011-01-01

    The coal mines in Brazil are primarily located in southern part areas. The total coal reserves are approximately 32.8 billions tons, 89% of which are located in Rio Grande do Sul state. The Brazilian agriculture potentiality is very high, mainly due to the availability of flat land and the existence of industrial capacity to supply the main fertilizers needs. Electron beam flue gas treatment process ensures simultaneous removal of SO 2 and NO X from flue gases by single process, requiring no additional wastewater treatment system and can produce useful nitrogen fertilizer consisting of ammonium sulfate (NH 4 ) 2 SO 4 and ammonium nitrate NH 4 NO 3 as by-products. During the TC Project BRA/8/021 - Pilot Plant for Electron Beam Purification of Flue Gas supported by IAEA (1995-1996), a laboratory facility for electron beam flue gas treatment was set at IPEN. In 1997, an official request from Brazilian Government, Ministry of Science & Technology (MCT) and IPEN was made for the Japan Consulting Institute (JCI) to prepare feasibility studies of air pollution control by electron beam flue gas treatment in three power generation companies. These companies are responsible for the power generation, the transmission and the supply of electricity to Brazil: Jorge Lacerda – Eletrosul Centrais Eletricas do Sul do Brasil S.A., Presidente Medici – Companhia Estadual de Energia Eletrica (CEEE) and Piratininga – AES Eletropaulo Thermal Power Plants. (author)

  16. Membrane bioreactor for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.

    1997-01-01

    Summary

    This thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of

  17. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  18. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  19. Algebraic stacks

    Indian Academy of Sciences (India)

    generally, any fiber product) is not uniquely defined: it is only defined up to unique isomorphism. ..... Fiber product. Given two morphisms f1 : F1 ! G, f2 : F2 ! G, we define a new stack. F1 آG F2 (with projections to F1 and F2) as follows. The objects are triples ًX1; X2; ق ..... In fact, any Artin stack F can be defined in this fashion.

  20. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  1. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  2. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The Direct FuelCell™ stack engineering

    Science.gov (United States)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  4. Algebraic stacks

    Indian Academy of Sciences (India)

    truct the 'moduli stack', that captures all the information that we would like in a fine moduli space. ..... the fine moduli space), it has the property that for any family W of vector bundles (i.e. W is a vector bundle over B ...... the etale topology is finer: V is a 'small enough open subset' because the square root can be defined on it.

  5. How the states stack up: disparities in substance abuse outpatient treatment completion rates for minorities.

    Science.gov (United States)

    Arndt, Stephan; Acion, Laura; White, Kristin

    2013-10-01

    This study was an exploratory investigation of state-level minority disparities in successfully completing outpatient treatment, a major objective for attending substance abuse treatment and a known process outcome measure. This was a retrospective analysis of state discharge and admission data from the 2006 to 2008 Treatment Episode Datasets-Discharge (TEDS-D). Data were included representing all discharges from outpatient substance abuse treatment centers across the United States. All first treatment episode clients with admission/discharge records meeting inclusion criteria who could be classified as White, Latino, or Black/African American were used (n=940,058). States demonstrated racial and ethnic disparities in their crude and adjusted completion rates, which also varied considerably among the states. Minorities typically showed a disadvantage. A few states showed significantly higher completion rates for Blacks or Latinos. Realistically, a variety of factors likely cause the state race/ethnic differences in successful completion rates. States should investigate their delivery systems to reduce completion disparities. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  7. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    Science.gov (United States)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  8. Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China.

    Science.gov (United States)

    Zou, Lili; Ni, Yuwen; Gao, Yuan; Tang, Fengmei; Jin, Jing; Chen, Jiping

    2018-03-01

    Cement production processes are important sources of unintentionally produced persistent organic pollutants (UP-POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs). The emissions of PCDD/Fs and PCBs in the stack flue gases from eight typical cement plants in China were investigated in this study, including one wet process rotary kiln, three dry process rotary kilns and four vertical shaft kilns. PCBs exhibited relatively higher mass concentrations with the dioxin-like (dl) and indicator PCBs of 0.14-17.36 and 0.42-12.90 ng/Nm 3 , respectively. However, PCDD/Fs contributed most to the total toxic equivalent concentrations, with the proportions exceeding 90%. The international toxicity equivalency (I-TEQ) concentrations of PCDD/Fs varied greatly from 0.01 to 0.46 ng I-TEQ/Nm 3 in stack gases, two of which exceeded the exhaust gas concentration limit of 0.1 ng I-TEQ/Nm 3 established by the European Union Directive. In weight units, 1,2,3,4,6,7,8-HpCDF was the most abundant congener in the stack gases from various types of cement kilns, with the factions of 17.0-27.8%. TCDFs and PeCDFs were the first two most abundant homologue groups. 2,3,4,7,8-PeCDF was the largest contributor to the total I-TEQ. The emission factors of PCDD/Fs and PCBs in the eight cement kilns were estimated to be 0.01-1.35 μg I-TEQ/t clinker and 8.20 × 10 -4 ∼8.23 × 10 -2  μg World Health Organization TEQ (W-TEQ)/t clinker, respectively. No obvious differences of the PCDD/F and PCB emission factors were found among the varied cement production technologies. Copyright © 2017. Published by Elsevier Ltd.

  9. Toluene removal in a biofilm reactor for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1997-01-01

    A lab-scale trickling filter for treatment of toluene-containing waste gas was investigated. The filter performance was investigated for various loads of toluene. Two levels of the gas flow were examined, 322 m d(-1) and 707 m d(-1). The gas inlet concentrations were varied in the range from 0...

  10. Stack gas desulfurization using adsorbent materials based on copper oxide; Desulfuracion de gases de combustion usando materiales adsorbentes basados en oxido de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, Roberto; Rodas Grapain, Arturo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    One of main fossil fuels used to date in Mexico for power generation is the fuel oil, with a total participation of 32%. The Mexican fuel oil is constituted in average by 84% in weight of carbon, 11% hydrogen, 0.4% nitrogen, 0.2% oxygen, 4% sulfur and the remaining is assumed to be metals such as vanadium, nickel, calcium, magnesium among others. The purpose of the present paper is to show a new route of preparation of materials impregnated through the application of ultrasonic energy and to evaluate its performance in the stack gas desulfurization. [Spanish] Uno de los principales combustibles fosiles empleados actualmente en Mexico para la generacion de energia electrica es el combustoleo, con una participacion total del 32%. El combustoleo mexicano esta constituido en promedio por 84% en peso de carbono, 11% de hidrogeno, 0.4% de nitrogeno, 0.2% de oxigeno, 4% de azufre y el resto se asume a metales como vanadio, niquel, calcio, magnesio entre otros. El proposito del presente trabajo es mostrar una nueva ruta de preparacion de materiales impregnados a traves de la aplicacion de energia ultrasonica y evaluar su desempeno en la desulfuracion de gases de combustion.

  11. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible to separate the loss...... in the hydrogen fuel gas supplied to the stack. EIS was used to examine the long-term behavior and monitor the evolution of the impedance of each of the repeating units and the whole stack. The observed impedance was analyzed in detail for one of the repeating units and the whole stack and the losses reported...

  12. Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method.

    Science.gov (United States)

    Jin, Rong; Liu, Guorui; Zheng, Minghui; Fiedler, Heidelore; Jiang, Xiaoxu; Yang, Lili; Wu, Xiaolin; Xu, Yang

    2017-08-04

    Isotopic dilution gas chromatography combined with high resolution mass spectrometry (GC/HRMS) has overwhelming advantages with respect to the accuracy of congener-specific ultratrace analysis of complex persistent organic pollutants (POPs) in environmental matrices. However, an isotopic dilution GC/HRMS method for analysis of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl-PAHs and Br-PAHs) using 13 C-labelled congeners as internal standards has not been established. In this study, a method for identification and quantification of 38 congeners of Cl-PAHs and Br-PAHs in atmosphere and stack gas samples from waste incinerators was developed using the isotopic dilution GC/HRMS technique. The instrumental detection limits of the GC/HRMS method ranged from 0.2pg to 1.8pg for Cl-PAH congeners, and 0.7pg to 2.7pg for Br-PAH congeners, which were about three orders of magnitude lower than those of the GC/quadrupole MS method. This new method developed was also the first to enable determination of Cl-PAH and Br-PAH homologs comprising congeners with the same molecular skeleton and chlorine or bromine substitution numbers. Among the detected congeners, seven Cl-PAH congeners and thirteen Br-PAH congeners that were abundant in the atmosphere and stack gases released from waste incinerators were firstly detected in real samples and reported using the established isotopic dilution GC/HRMS method. The developed isotopic dilution GC/HRMS is significant and needed for better studying the environmental behavior and health risk of Cl-PAHs and Br-PAHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Electron beam application in gas waste treatment in China

    International Nuclear Information System (INIS)

    Wu Haifeng

    2003-01-01

    In the most recent decade, electron beam waste treatment technology attracted serious attention from environment policymaker and industrial leaders in power industry in China. Starting in middle of 1980's, Chinese research institute began experiment of electron beam treatment on flue gas. By the end of 2000, two 10,000 cubic meters per hour small scale electron beam gas purifying station were established in Sichuang province and Beijing. Several electron beam gas purifying demonstration projects are under construction. With robust economy and strong energy demand, needless to say, in near future, electron beam gas purifying technology will have a bright prospect in China. (author)

  14. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    Science.gov (United States)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  15. System and method for treatment of a flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Spiry, Irina Pavlovna; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Perry, Robert James; McDermott, John Brian

    2017-09-19

    A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.

  16. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  17. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  18. Comprehensive treatment for gas gangrene of the limbs in earthquakes.

    Science.gov (United States)

    Wang, Yue; Lu, Bo; Hao, Peng; Yan, Meng-ning; Dai, Ke-rong

    2013-10-01

    Mortality rates for patients with gas gangrene from trauma or surgery are as high as 25%, but they increase to 50%-80% for patients injured in natural hazards. Early diagnosis and treatment are essential for these patients. We retrospectively analyzed the clinical characteristics and therapeutic results of 19 patients with gas gangrene of the limbs, who were injured in the May 2008 earthquake in the Wenchuan district of China's Sichuan province and treated in our hospital, to seek how to best diagnose and treat earthquake-induced gas gangrene. Of 226 patients with limbs open injuries sustained during the earthquake, 53 patients underwent smear analysis of wound exudates and gas gangrene was diagnosed in 19 patients. The average elapsed time from injury to arrival at the hospital was 72 hours, from injury to definitive diagnosis was 4.3 days, and from diagnosis to conversion of negative findings on wound smear analysis to positive findings was 12.7 days. Anaerobic cultures were also obtained before wound closure. The average elapsed time from completion of surgery to recovery of normal vital signs was 6.3 days. Of the 19 patients, 16 were treated with open amputation, two with closed amputation, and 1 with successful limb salvage; 18 patients were successfully treated and one died. In earthquakes, rapid, accurate screening and isolation are essential to successful treatment of gas gangrene and helpful in preventing nosocomial diffusion. Early and thorough debridement, open amputation, and active supportive treatment can produce satisfactory therapeutic results.

  19. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors; Formulaire pour le calcul de la mecanique des empilements des reacteurs graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [French] Le domaine de ce formulaire est strictement limite aux effets mecaniques, pour les empilements, des deformations, thermiques ou autres, des structures metalliques de soutien (aire - support et corset). On propose un ensemble de relations qui ont ete etablies a la suite des essais de CHINON sur des maquettes de grande taille. Ces relations permettent le calcul des mouvements, des deformations et des contraintes dans les empilements du type EDF, a reseau horizontal triangulaire regulier. (auteurs)

  20. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  1. Treatment of waste using a hybrid gas- water stabilized torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana; Beeckman, E.; Verstraeten, J.

    2005-01-01

    Roč. 5, č. 1 (2005), s. 7-12. ISBN 4-9900642-4-8 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * waste treatment Subject RIV: BL - Plasma and Gas Discharge Physics

  2. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  3. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method.

    Science.gov (United States)

    Miyake, Yuichi; Tokumura, Masahiro; Iwazaki, Yuta; Wang, Qi; Amagai, Takashi; Horii, Yuichi; Otsuka, Hideyuki; Tanikawa, Noboru; Kobayashi, Takeshi; Oguchi, Masahiro

    2017-06-16

    An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m 3 (assuming a sampling volume of 1m 3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m 3 . The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Deploying OpenStack

    CERN Document Server

    Pepple, Ken

    2011-01-01

    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  5. The Application of Electron Beam Machine for Flue Gas Treatment

    International Nuclear Information System (INIS)

    Sudjatmoko

    2006-01-01

    The emission of environmental pollutant such as SO 2 and NO x into atmosphere from heavy industrial activities in particular from fossil fuel burning in electricity production has been recognized one of main source of environmental pollution. These environmental pollutants sometimes travel more than thousand kilometers and make a trouble in other places, even in other countries, therefore the problem of the air pollution became world-wide problem. Now many countries are introducing more strict emission control regulations to solve the problem. Electron beam treatment of flue gas is now regarded as a promising pollution control method with some advantages; simultaneous reduction of SO 2 and NO x with high removal efficiency, being a dry process, yields a by-product with can be used as agriculture fertilizer, and so on. In this paper will be discussed concerning electron beam machine and its application for flue gas treatment produced from coal burning in the electric power station. (author)

  6. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  7. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  8. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Handbook of gasifiers and gas-treatment systems. [39 gasification processes and 40 gas processing systems

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, R.D.

    1982-09-01

    In February 1976, the Energy Research and Development Administration (ERDA) published the Handbook of Gasifiers and Gas Treatment Systems. The intent of this handbook was to provide a ready reference to systems that are or may be applicable to coal conversion technology. That handbook was well received by users and was subsequently reprinted many times. The Department of Energy (successor agency to the ERDA) expands, revises and updates the Handbook in this volume. This new Handbook is not intended as a comparative evaluation, but rather as an impartial reference on recent and current technology. The Handbook now presents 39 gasification technologies and 40 gas processing systems that are or may be applicable to coal conversion technology. The information presented has been approved or supplied by the particular licensor/developer.

  10. Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2017-01-01

    Plant-integrated methane (CH4) and nitrous oxide (N2O) emission quantifications were performed at five Scandinavian wastewater treatment plants, using a ground-based remote sensing approach that combines a controlled release of tracer gas from the plant with downwind concentration measurements. CH4...... emission factors were between 1 and 21% of CH4 production, and between 0.2 and 3.2% of COD influent. The main CH4 emitting sources at the five plants were sludge treatment and energy production units. The lowest CH4 emission factors were obtained at plants with enclosed sludge treatment and storage units....... N2O emission factors ranged from general, measurement-based, site-specific CH4 and N2O emission factors for the five studied plants were in the upper range of the literature values and default emission factors applied...

  11. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  12. Safety evaluation of BWR off-gas treatment systems

    International Nuclear Information System (INIS)

    Schultz, R.J.; Schmitt, R.C.

    1975-01-01

    Some of the results of a safety evaluation performed on current generic types of BWR off-gas treatment systems including cooled and ambient temperature adsorber beds and cryogenics are presented. The evaluation covered the four generic types of off-gas systems and the systems of five major vendors. This study was part of original work performed under AEC contract for the Directorate of Regulatory Standards. The analysis techniques employed for the safety evaluation of these systems include: Fault Tree Analysis; FMECA (Failure Mode Effects and Criticality Analysis); general system comparisons, contaminant, system control, and design adequacy evaluations; and resultant Off-Site Dose Calculations. The salient areas presented are some of the potential problem areas, the approach that industry has taken to mitigate or design against potential upset conditions, and areas where possible deficiencies still exist. Potential problem areas discussed include hydrogen detonation, hydrogen release to equipment areas, operator/automatic control interface, and needed engineering evaluation to insure safe system operation. Of the systems reviewed, most were in the category of advanced or improved over that commonly in use today, and a conclusion from the study was that these systems offer excellent potential for noble gas control for BWR power plants where more stringent controls may be specified -- now or in the future. (U.S.)

  13. Intravitreal gas injection for the treatment of diabetic macular edema

    Directory of Open Access Journals (Sweden)

    McHugh D

    2011-10-01

    Full Text Available Dominic McHugh, Bhaskar Gupta, Manzar Saeed King's College Hospital, Denmark Hill, London, England, UK Purpose: This study investigates the efficacy of an intravitreal gas injection in inducing a posterior vitreous detachment (PVD in patients with clinically significant diabetic macular edema refractory to laser therapy. Methods: A local ethics committee-approved technique of an intravitreal injection of pure perfluoropropane gas (C3F8 was performed for all participants. After a period of prone positioning, the patients underwent regular and detailed clinical review. Main outcome measures: The induction of a PVD, change in macular thickness, change in visual acuity. Results: A PVD was induced in all five eyes with subsequent signs of reduction in macular thickness and resolution of exudates. Mean visual improvement was 11 ETDRS (Early Treatment Diabetic Retinopathy Study letters (range 4–21. Apart from a transient vitreous hemorrhage in one eye, there were no significant treatment-related complications. Conclusion: The induction of a PVD by pneumatic retinopexy appears to have a significant influence on diabetic macular edema in eyes which have not successfully responded to macular laser therapy. A randomized clinical trial is justified on the basis of the initial promising data. Keywords: optical coherence tomography, OCT, posterior vitreous detachment, perfluoropropane

  14. A novel configuration for direct internal reforming stacks

    Science.gov (United States)

    Fellows, Richard

    This paper presents a stack concept that can be applied to both molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) internal reforming stacks. It employs anode recycle and allows the design of very simple system configurations, while giving enhanced efficiencies and high specific power densities. The recycle of anode exit gas to the anode inlet has previously been proposed as a means of preventing carbon deposition in direct internal reforming (DIR) stacks. When applied to a normal stack this reduces the Nernst voltages because the recycle stream is relatively depleted in hydrogen. In the concept proposed here, known as the `Smarter' stack, there are two anode exit streams, one of which is depleted, while the other is relatively undepleted. The depleted stream passes directly to the burner, and the undepleted stream is recycled to the stack inlet. By this means high Nernst voltages are achieved in the stack. The concept has been simulated and assessed for parallel-flow and cross-flow MCFC and SOFC stacks and graphs are presented showing temperature distributions. The `Smarter' stacks employ a high recycle rate resulting in a reduced natural gas concentration at the stack inlet, and this reduces or eliminates the unfavourable temperature dip. Catalyst grading can further improve the temperature distribution. The concept allows simple system configurations in which the need for fuel pre-heat is eliminated. Efficiencies are up to 10 percentage points higher than for conventional stacks with the same cell area and maximum stack temperature. The concept presented here was devised in a project part-funded by the EU, and has been adopted by the European Advanced DIR-MCFC development programme led by BCN.

  15. Green house gas emissions from composting and mechanical biological treatment.

    Science.gov (United States)

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.

  16. Industrial plant for electron beam flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Tyminnski, B.; Zimek, Z; Ostapczuk, A.; Licki, J.

    2001-01-01

    The electron beam flue gas treatment technology was invented many years ago. Research on the process has been carried out in Japan, USA, Germany and Poland. However, the recent fidings, based on the experiments performed at pilot plant at Electric Power Station Kaweczyn, led to developments which made process mature just at the dawn of the XXI century. The process is being implemented in the full industrial scale at Electric Power Station Pomorzany (Dolna Odra EPS Group). Other developments are reported in Japan and after Nagoya's pilot plant experiments, an industrial plant has been built in China and another one is constructed in Japan. There are remarkable differences in technological and design solutions applied in all these installations. Developments achieved at EPS Kaweczyn pilot plant and INCT laboratory unit were the basis for the project realized at EPS Pomorzan

  17. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  18. Testing and Evaluation of an Advanced High Performance Planar SOFC Stack

    National Research Council Canada - National Science Library

    Elangovan, S

    1999-01-01

    .... SOFCo has conducted several programs which synergistically address this objective: an internally funded program focusing on stack development and system integration for pipeline natural gas (PNG...

  19. po_stack_movie

    DEFF Research Database (Denmark)

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  20. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  1. Description of the Process Model for the Technoeconomic Evaluation of MEA versus Mixed Amines for Carbon Dioxide Removal from Stack Gas

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Dale A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-08

    This model description is supplemental to the Lawrence Livermore National Laboratory (LLNL) report LLNL-TR-642494, Technoeconomic Evaluation of MEA versus Mixed Amines for CO2 Removal at Near- Commercial Scale at Duke Energy Gibson 3 Plant. We describe the assumptions and methodology used in the Laboratory’s simulation of its understanding of Huaneng’s novel amine solvent for CO2 capture with 35% mixed amine. The results of that simulation have been described in LLNL-TR-642494. The simulation was performed using ASPEN 7.0. The composition of the Huaneng’s novel amine solvent was estimated based on information gleaned from Huaneng patents. The chemistry of the process was described using nine equations, representing reactions within the absorber and stripper columns using the ELECTNRTL property method. As a rate-based ASPEN simulation model was not available to Lawrence Livermore at the time of writing, the height of a theoretical plate was estimated using open literature for similar processes. Composition of the flue gas was estimated based on information supplied by Duke Energy for Unit 3 of the Gibson plant. The simulation was scaled at one million short tons of CO2 absorbed per year. To aid stability of the model, convergence of the main solvent recycle loop was implemented manually, as described in the Blocks section below. Automatic convergence of this loop led to instability during the model iterations. Manual convergence of the loop enabled accurate representation and maintenance of model stability.

  2. TREATMENT OF NATURAL GAS BY ADSORPTION OF CO2

    Directory of Open Access Journals (Sweden)

    Kristýna Hádková

    2015-12-01

    Full Text Available Apart from burning, one of the possible uses of natural gas is as a fuel for motor vehicles. There are two types of fuel from natural gas — CNG (Compressed Natural Gas or LNG (Liquefied Natural Gas. Liquefaction of natural gas is carried out for transport by tankers, which are an alternative to long-distance gas pipelines, as well as for transport over short distance, using LNG as a fuel for motor vehicles. A gas adjustment is necessary to get LNG. As an important part of the necessary adjustment of natural gas to get LNG, a reduction of CO2 is needed. There is a danger of the carbon dioxide freezing during the gas cooling. This work deals with the testing of adsorption removal of CO2 from natural gas. The aim of these measurements was to find a suitable adsorbent for CO2 removal from natural gas. Two different types of adsorbents were tested: activated carbon and molecular sieve. The adsorption properties of the selected adsorbents were tested and compared. The breakthrough curves for CO2 for both adsorbents were measured. The conditions of the testing were estimated according to conditions at a gas regulation station — 4.0MPa pressure and 8 °C temperature. Natural gas was simulated by model gas mixture during the tests. The breakthrough volume was set as the gas volume passing through the adsorber up to the CO2 concentration of 300 ml/m3 in the exhaust gas. The thermal and pressure desorption of CO2 from saturated adsorbents were also tested after the adsorption.

  3. Sorption Modeling and Verification for Off-Gas Treatment

    International Nuclear Information System (INIS)

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue; Yiacoumi, Sotira; Tsouris, Costas; Ladshaw, Austin; Sharma, Ketki; Gabitto, Jorge; DePaoli, David

    2015-01-01

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  4. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  5. Use of impedance tagging to monitor fuel cell stack performance

    Science.gov (United States)

    Silva, Gregory

    Fuel cells are electrochemical device that are traditionally assembled in stacks to perform meaningful work. Monitoring the state of the stack is vitally important to ensure that it is operating efficiently and that constituent cells are not failing for one of a several common reasons including membrane dehydration, gas diffusion layer flooding, reactant starvation, and physical damage. Current state-of-the-art monitoring systems are costly and require at least one connection per cell on the stack, which introduces reliability concerns for stacks consisting of hundreds of cells. This thesis presents a novel approach for diagnosing problems in a fuel cell stack that attempts to reduce the cost and complexity of monitoring cells in a stack. The proposed solution modifies the electrochemical impedance spectroscopy (EIS) response of each cell in the stack by connecting an electrical tag in parallel with each cell. This approach allows the EIS response of the entire stack to identify and locate problems in the stack. Capacitors were chosen as tags because they do not interfere with normal stack operation and because they can generate distinct stack EIS responses. An experiment was performed in the Center for Automation Technologies an Systems (CATS) fuel cell laboratory at Rensselaer Polytechnic Institute (RPI) to perform EIS measurements on a single cell with and without capacitor tags to investigate the proposed solution. The EIS data collected from this experiment was used to create a fuel cell model to investigate the proposed solution under ideal conditions. This thesis found that, although the concept shows some promise in simulations, significant obstacles to implementing the proposed solution. Observed EIS response when the capacitor tags were connected did not match the expected EIS response. Constraints on the capacitor tags found by the model impose significant manufacturing challenges to the proposed solution. Further development of the proposed solution is

  6. Energy Expenditure of Sport Stacking

    Science.gov (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  7. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  8. Current status of electron beam treatment of flue gas in China

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2006-01-01

    Fossil resource especially coal will remain the main energy resource in China over the next 3 ∼4 decades. Pollution of flue gas from fossil power station is one problem being desiderated to solve since 1990's. Electron beam treatment of flue gas as an advanced technique has been developed and used by some institutes and industries in China. The current status of flue gas treatment using electron beam and the development of electron accelerator in China are reviewed. (author)

  9. Greenhouse gas emissions from municipal wastewater treatment plants

    Science.gov (United States)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    Operating wastewater treatment plants (WWTP) represent a source of greenhouse gases (GHG). Direct GHG emissions include emissions of methane (CH4) and nitrous oxide (N2O) that can be biologically produced during wastewater and sewage sludge treatment. This is also highlighted in the Intergovernmental Panel on Climate Change (IPCC 2006) guidelines used for national GHG inventories. Indirect GHG emissions occur at WWTPs mainly by the consumption of electricity, fossil fuel for transportation and by the use of chemicals (e.g. coagulants). In this study, the impact of direct and indirect GHG emissions was quantified for two model WWTPs of 50.000 person equivalents (p.e.) using carbon footprint analyses. It was assumed that at one WWTP sewage sludge is digested anaerobically, at the other one it is aerobically stabilised in the activated sludge tank. The carbon footprint analyses were performed using literature emission factors. A new estimation model based on measurements at eight Austrian WWTPs was used for the assessment of N2O direct emissions (Parravicini et al., 2015). The results of the calculations show that, under the selected assumptions, the direct N2O emission from the activated sludge tank can dominate the carbon footprint of WWTP with a poor nitrogen removal efficiency. Through an improved operation of nitrogen removal several advantages can be gained: direct N2O emissions can be reduced, the energy demand for aeration can be decreased and a higher effluent quality can be achieved. Anaerobic digesters and anaerobic sludge storage tanks can become a relevant source of direct CH4 emissions. Minimising of CH4 losses from these sources improves the carbon footprint of the WWTP also increasing the energy yield achievable by combusting this renewable energy carrier in a combined heat and power unit. The estimated carbon footprint of the model WWTPs lies between 20 and 40 kg CO2e/p.e./a. This corresponds to 0.2 to 0.4% of the CO2e average emission caused yearly

  10. Stack Caching Using Split Data Caches

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Schoeberl, Martin

    2015-01-01

    In most embedded and general purpose architectures, stack data and non-stack data is cached together, meaning that writing to or loading from the stack may expel non-stack data from the data cache. Manipulation of the stack has a different memory access pattern than that of non-stack data, showing...... higher temporal and spatial locality. We propose caching stack and non-stack data separately and develop four different stack caches that allow this separation without requiring compiler support. These are the simple, window, and prefilling with and without tag stack caches. The performance of the stack...

  11. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    NARCIS (Netherlands)

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before

  12. When is stacking confusing? The impact of confusion on stacking in deep H I galaxy surveys

    Science.gov (United States)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Papastergis, Emmanouil

    2016-01-01

    We present an analytic model to predict the H I mass contributed by confused sources to a stacked spectrum in a generic H I survey. Based on the ALFALFA (Arecibo Legacy Fast ALFA) correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest Square Kilometre Array precursor H I surveys. Stacking with LADUMA (Looking At the Distant Universe with MeerKAT) and DINGO UDEEP (Deep Investigation of Neutral Gas Origins - Ultra Deep) data will only be mildly impacted by confusion if their target synthesized beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES (COSMOS H I Large Extragalactic Survey) 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST (Five hundred metre Aperture Spherical Telescope) will be the most impeded by confusion, with H I surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the H I density of the Universe and the H I correlation function. However, we argue that the two idealized cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.

  13. Role of mini-scleral gas-permeable lenses in the treatment of corneal disorders.

    Science.gov (United States)

    Ye, Ping; Sun, Amy; Weissman, Barry A

    2007-03-01

    Case report on the clinical implications of mini-scleral gas-permeable contact lenses in the treatment of corneal disorders. Three patients with different corneal disorders were fitted with Jupiter design mini-scleral gas-permeable contact lenses. All three patients achieved excellent vision and comfort. The contact lenses were tolerated well, and no complications were observed. Mini-scleral gas-permeable contact lenses provide a good option for patients who require gas-permeable contact lenses for optimal visual function but do not tolerate corneal contact lenses. Mini-scleral lenses are also an excellent therapeutic tool in the treatment of at least some forms of severe dry eyes.

  14. Passive stack ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.; Parkins, L.; Shaw, P.; Watkins, R. [Databuild, Birmingham (United Kingdom)

    1994-12-31

    The adequate ventilation of houses is essential for both the occupants and the building fabric. As air-tightness standards increase, background infiltration levels decrease and extra ventilation has to be designed into the building. Passive stack ventilation has many advantages - particularly when employed in low cost housing schemes -but it is essential that it performs satisfactorily. This paper give the results from monitoring two passive stack ventilation schemes. One scheme was a retrofit into refurbished local authority houses in which a package of energy efficiency measures had been taken and condensation had been a problem. The other series of tests were conducted on a new installation in a Housing Association development. Nine houses were monitored each of which had at least two passive vents. The results show air flow rates by the passive ducts equivalent to approximately 1 room air change per hour. The air flow in the ducts was influenced by both, internal to external temperature difference and wind speed and direction. (author)

  15. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  16. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    OpenAIRE

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before emission to the atmosphere. Commercial dehydration processes such as the use of a condenser or a desiccant system have several disadvantages and membrane technology is an attractive, energy efficient a...

  17. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  18. Influence of ethylene oxide gas treatment on the in vitro degradation behaviour of dermal sheep collagen

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1995-01-01

    The influence of ethylene oxide gas treatment on the in vitro degradation behavior of noncrosslinked, glutaraldehyde crosslinked or hexamethylene diisocyanate crosslinked dermal sheep collagen (DSC) using bacterial collagenase is described. The results obtained were compared with the degradation

  19. Japan’s experience of flue gas treatment by electron beams

    International Nuclear Information System (INIS)

    Machi, S.

    2011-01-01

    The electron beam flue gas treatment technology was invented in Japan in 1970's. The paper presents the outlook of the Japanese activities on the development and present state of EBFGT technology. (author)

  20. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  1. HPC Software Stack Testing Framework

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-27

    The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).

  2. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  3. Fuel flow distribution in SOFC stacks revealed by impedance spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, Rasmus

    2014-01-01

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized using Electrochemical...... Impedance Spectroscopy (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible...... to separate the loss contributions in an ohmic and a polarization part and that the low frequency response is useful in detecting mass transfer limitations. This methodology can be used to detect possible minor changes in the supply of gas to the individual cells, which is important when going to high fuel...

  4. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  5. Upgrading producer gas quality from rubber wood gasification in a radio frequency tar thermocatalytic treatment reactor.

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z A

    2013-12-01

    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View Texas A& M; DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-20

    This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on the active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection

  7. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2008-03-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  8. PieceStack: Toward Better Understanding of Stacked Graphs.

    Science.gov (United States)

    Wu, Tongshuang; Wu, Yingcai; Shi, Conglei; Qu, Huamin; Cui, Weiwei

    2016-02-24

    Stacked graphs have been widely adopted in various fields, because they are capable of hierarchically visualizing a set of temporal sequences as well as their aggregation. However, because of visual illusion issues, connections between overly-detailed individual layers and overly-generalized aggregation are intercepted. Consequently, information in this area has yet to be fully excavated. Thus, we present PieceStack in this paper, to reveal the relevance of stacked graphs in understanding intrinsic details of their displayed shapes. This new visual analytic design interprets the ways through which aggregations are generated with individual layers by interactively splitting and re-constructing the stacked graphs. A clustering algorithm is designed to partition stacked graphs into sub-aggregated pieces based on trend similarities of layers. We then visualize the pieces with augmented encoding to help analysts decompose and explore the graphs with respect to their interests. Case studies and a user study are conducted to demonstrate the usefulness of our technique in understanding the formation of stacked graphs.

  9. In situ x-ray photoelectron spectroscopy and capacitance voltage characterization of plasma treatments for Al2O3/AlGaN/GaN stacks

    International Nuclear Information System (INIS)

    Qin, Xiaoye; Lucero, Antonio; Azcatl, Angelica; Kim, Jiyoung; Wallace, Robert M.

    2014-01-01

    We investigate the Al 2 O 3 /AlGaN/GaN metal-oxide-semiconductor structure pretreated by O 2 anneals, N 2 remote plasma, and forming gas remote plasma prior to atomic layer deposition of Al 2 O 3 using in situ X-ray photoelectron spectroscopy, low energy electron diffraction, and capacitance- voltage measurements. Plasma pretreatments reduce the Ga-oxide/oxynitride formation and the interface state density, while inducing a threshold voltage instability.

  10. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  11. Natural gas use in treatment of steel surfaces; Utilizacao de gas natural em tratamento de superficies de aco

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Andre Dias; Machado, Antonio Rogerio; Rocha, Ivan; Azevedo, Jorge; Oshiro, Hugo K.; Konishi, Ricardo; Lehmkuhl, Willian [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Piazza, Walter [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2011-12-21

    The surface treatments of metals, such as carburizing, rely on processing under high temperature in carbon rich atmospheres. The atmosphere is industrially generated using the partial oxidation of a carbon rich fuel, such as propane, butane or methanol. This article reports a study of the production of a carburizing atmosphere for surface treatment of steel from the partial oxidation of natural gas in a catalytic reactor. The reactor studied was a production size reactor with 300 mm of diameter and 1500 mm of length, packed with alumina supported nickel catalyst. The quality of the carburizing gas was evaluated from its carbon potential of the carburizing gas that was calculated from the concentrations of carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxygen (O{sub 2}) and methane (CH{sub 4}) measured at the reactor's exit. The results indicate that CO concentration is very close to equilibrium, while CO{sub 2} is higher and CH{sub 4} is lower. Examining the reactor, the conclusion was that there was an axial temperature gradient, resulting in lower residence time under the required processing temperature. This resulted in smaller decomposition of CH{sub 4} and smaller production of CO{sub 2}. An equilibrium calculation of carbon potential, expressed as weight percent of carbon in iron, was developed to predict the possible optimizations of mixture composition and reactor temperature for a given required carbon potential. Conclusion: it is possible to generate a carburizing atmosphere under well controlled and repeatable conditions for the carbon potentials required for surface carburizing of steels in industrial processing using natural gas and air mixtures. (author)

  12. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...... the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH4) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore...

  13. Chemical treatment of wastewater from flue gas desulphurisation

    Science.gov (United States)

    Pasiecznik, Iwona; Szczepaniak, Włodzimierz

    2017-11-01

    The article presents results of laboratory tests of removing boron and arsenium from non-ideal solutions using double-layered magnesium/aluminium hydroxides (Mg/Al Double-Layered Hydroxide - DLH) produced with nitrate-chloride method. In research, wastewater from an installation for flue gas desulfurization was examined. Double-layered hydroxides are perfect absorbents for anionic compounds. The research proved high effectiveness of preparation with reference to arsenium, as well as confirmed the effect of presence of sulfatic and arsenate ions on the effectiveness of boron removal. On the basis of research on absorption kinetics a theoretical dose of DLH/NO3-Cl/M preparation was calculated and compared with a dose that ensures emimination of boron below the limit standarized by the national regulations. Application of double-layered magnesium/aluminium hydroxides for boron elimination from industrial wastewater requires significantly higher doses of preparation than those calculated in model investigations. It is due to the priority of removal of multivalent ions, such as sulfatic, arsenate or phosphate ions, by DLH/NO3-Cl/M.

  14. Development of exhaust gas treatment technologies for environment protection

    International Nuclear Information System (INIS)

    David, E.; Stefanescu, I.; Stanciu, V.; Niculescu, V.; Sandru, C.; Armeanu, A.; Bucura, F.; Sisu, C.

    2006-01-01

    Full text: The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the immediate term over the next 10 - 20 years at least, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove other pollutants such as SO x and NO x which are released in the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this types of plants. Hence, efficient, cost-effective capture/separation technologies will need to be developed in order to allow their large-scale use. (authors)

  15. Preparation of alveolate hydrophobic catalyst for tritium waste gas treatment

    International Nuclear Information System (INIS)

    Yang, Yong; Peng, Shuming; Wang, Heyi; Du, Yang; Li, Jiamao

    2016-01-01

    Highlights: • The catalyst is hydrophobic, it will not be poisoned by steam in room air at room temperature which is better than Pt-Al 2 O 3 . • At room temperature, the conversion of low concentration of H2 and tritium gas in room air over the catalyst is high. • The air resistance of catalyst is much lower than graininess Pt-Al 2 O 3 . • It is inorganic and will not burn. - Abstract: To prepare a catalyst for the detritiation of waste gases at high flow rates, a heat-resistant hydrophobic zeolitic molecular sieve coating was synthesized on the surface of alveolate cordierite by hydrothermal processing. The alveolate hydrophobic catalyst prepared from the support was essentially waterproof and not easily poisoned by moisture. At room temperature, the conversion of low concentrations of H 2 in humid air over the catalyst was higher than 95% at different space velocities (0–16,000 h −1 ) and different relative humidities. The reaction rate constant of the oxidation of tritium over alveolate hydrophobic catalyst is 0.182 s −1 at 293.3 K–293.7 K and 59%–60% RH, it is much higher than the catalyst of reference honeycomb catalyst.

  16. Gas seal for installations for high-temperature treatment of carbon fibre materials

    Energy Technology Data Exchange (ETDEWEB)

    Cherednichenko, P.I.; Kosenok, V.A.

    1995-01-01

    A gas seal was developed in which the inlet and outlet openings of furnaces for high-temperature treatment of carbon fibre materials are hermetically sealed not only due to the energy of the jet but also due to directed eddy gas flows. A blocking effect is obtained in the seal with excess pressure of the gases in the working chamber of 100-200 Pa and a gas flow rate no greater than 1 m{sup 3}/h. The seal is distinguished by simplicity of construction, is compact, reliable, and easy to service.

  17. An investigation of gas separation membranes for reduction of thermal treatment emissions

    International Nuclear Information System (INIS)

    Stull, D.M.; Logsdon, B.W.

    1994-01-01

    Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds

  18. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  19. Computation and Database Development for Flue Gas Treatment on Electron Beam Machine (EBM)

    International Nuclear Information System (INIS)

    Tono Wibowo; Slamet Santosa

    2007-01-01

    A computation and database development for parameter calculations of SO 2 and NO x flue-gas treatment have been done. This computation and database development will make easier for researchers in calculations of flue gas parameters for various specifications and recur in such a way that saves time and apparatus. Analysis and calculation design of flue gas treatment using EBM right now is performing in Microsoft Excel program and calculator, therefore with a computation and database it is expected that can be developed for further parameter calculations of flue gas treatment and having user friendly characteristic. Computation for parameter calculations of flue gas treatment is developed on Borland Delphi version 7.0 with arithmetic and graphic components are in active and for database function is used dBase and Paradox through Borland Database Engine (BDE). Developed calculations include removal efficiency, dose and time of irradiation and the power of MBE. For the purpose of further calculations and bigger application, database functions have been prepared for SQL-Links. From the operation test, program can be run as expected. (author)

  20. Membrane bioreactor with a porous hydrophobic membrane as a gas-liquid contactor for waste gas treatment.

    Science.gov (United States)

    Reij, M W; de Bont, J A; Hartmans, S; de Gooijer, K D

    1995-01-20

    A novel type of bioreactor for waste gas treatment has been designed. The reactor contains a microporous hydrophobic membrane to create a large interface between the waste gas and the aqueous phase. To test the new reactor, propene was chosen because of its high air/water partition coefficient, which causes a low water concentration and hampers its removal from air. Propene transfer from air to a suspension of propene-utilizing Xanthobacter Py2 cells in the membrane bioreactor proved to be controlled by mass transfer in the liquid phase. The resistance of the membrane was negligible. Simulated propene transfer rates agreed well with the experimental data. A stable biofilm of Xanthobacter Py2 developed on the membrane during prolonged operation. The propene flux into the biofilm was 1 x 10(-6) mol m(-2) s(-1) at a propene concentration of 9.3 x 10(-2) mol m(-3) in the gas phase. (c) 1995 John Wiley & Sons, Inc.

  1. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bedient, P.B.

    1995-01-16

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  2. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field

  3. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Marmy, C.A.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M. [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  4. New progress in wastewater treatment technology for standard-reaching discharge in sour gas fields

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2018-02-01

    Full Text Available Gas field water is generally characterized by complex contaminant components and high salinity. Its proper treatment has always been the great concern in the field of environmental protection of oil & gas fields. In this paper, the wastewater from a gas field in the Sichuan Basin with high salinity and more contaminants (e.g. sulfides was treated as a case study for the standard-reaching discharge. Lab experiments were carried out to analyze the adaptability and effectiveness of coagulation–desulfurization composite treatment technology, chemical oxidation based ammonia nitrogen removal technology and cryogenic multi-efficacy distillation technology in the treatment of wastewater in this field. The results show that the removal rate of sulfides and oils is over 90% if polymeric ferric sulfate (PFS is taken as the coagulant combined with TS-1 desulfurization agent. Besides, the removal rate of ammonia nitrogen is over 96% if CA-1 is taken as the oxidant. Finally, after the gas field water is treated by means of cryogenic three-efficacy distillation technology, chloride concentration of distilled water is below 150 mg/L and CODcr concentration is less than 60 mg/L. It is concluded that after the whole process treatment, the main contaminant indicators of wastewater in this case study can satisfy the grade one standard specified in the Integrated Wastewater Discharge Standard (GB 8978–1996 and the chloride concentration can meet the requirement of the Standards for Irrigation Water Quality (GB 5084–2005. To sum up, the above mentioned composite technologies are efficient to the wastewater treatment in sour gas fields. Keywords: Sulfide-bearing gas field water, Coagulation, Desulfurization, Chemical oxidation, Standard discharge, Ammonia nitrogen, Chloride, Cryogenic multi-efficacy distillation, Sichuan Basin

  5. Installation of laboratory scale flue gas treatment system at ALURTRON, MINT

    International Nuclear Information System (INIS)

    Siti A'iasah Hashim; Khairul Zaman Dahlan; Zulkafli Ghazali; Khomsaton Abu Bakar, Ayub Muhamad

    2002-01-01

    A laboratory scale test rig to treat simulated flue gas using electron beam technology was installed at the Alurtron EB-irradiation center, MINT. The experiment test rig was proposed as a result of a feasibility studies conducted jointly by IAEA, MINT and TNB Research in 1997. The test rig system consisted of several components, among other, diesel generator, gas analyzers and spray cooler. The installation was completed and commissioned in October 2001. Results from the commissioning test runs and subsequent experimental work showed that the efficiency of the gas treatment is high. It was proven that electron beam technology might be applied in the treatment of air pollutants. This paper describes the design and work function of the individual major components as well as the full system function. Results from the initial experimental works are also presented. (Author)

  6. FMECA about pre-treatment system for purge gas of test blanket module in ITER

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    The pre-treatment system for purge gas of TBM will be installed in Port Cell for installing TBM in ITER, the function of which includes filtering purge gas, removing HTO, cooling, and adjusting flow rate, etc. The purge gas treated will be conveyed into TES (Tritium Extraction System). The technological process and system components in pre-treatment system were introduced. Tritium releasing risk was regarded as failure criterion; failure mode, effects and criticality analysis (FMECA) were carried out and several weaknesses or failure mode in the system were found. Besides, risk priority number (RPN) and failure mode criticality were calculated. Finally, some design improvement measures and usage compensation measures were given. At last, four important potential failure modes were found out. The analysis will provide the design basis for reducing risk of excessive tritium releasing, which is also a useful assist for safety analysis about other tritium system. (authors)

  7. Intradiscal injection of oxygen-ozone gas mixture for the treatment of cervical disc herniations.

    Science.gov (United States)

    Alexandre, A; Corò, L; Azuelos, A; Buric, J; Salgado, H; Murga, M; Marin, F; Giocoli, H

    2005-01-01

    For disc herniations the use of open surgical approaches is reduced since new percutaneous methods allowing shrinkage of the disc and improvement of the radicular function are gaining interest. Studies on the spontaneous disappearance of disc fragments have demonstrated autoimmune responses with a chronic inflammatory reaction. Also radicular pain has been shown to be mostly due to biochemical mechanisms. Researchers in different fields surprisingly noticed that a brief, calculated, oxidative stress by ozone administration may correct a persistent imbalance due to excessive, chronic oxidative injury. Oxygen-ozone gas injection in painful patients has a dramatic effect on clinical symptoms. On these bases the intradiscal injection of oxygen-ozone gas has been conceived. We report the treatment on a series of patients affected by cervical disc pathology, treated by intradiscal injection of oxygen-ozone gas mixture. The effects both on pain and on radicular dysfunction are impressive. The morphological effect of the treatment was also evaluated by pathological examination.

  8. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. FEASIBILITY STUDY OF GAS TREATMENT PLANT BASED ON AN EJECTOR SCRUBBER

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. The article executed the feasibility study of various options for gas treatment. Rapid development of industry and transport worldwide in recent times raises the problem in the protection of habitat environment from harmful waste. In solving problems of flue gas treatment great attention is given to the economic characteristics and recycling techniques for capturing emissions and disposal must also meet the sanitary health requirements: flue gas treatment plants should not cause air or water pollution. The set objective is solved by developing a two-stage wet treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. Projected plant can be used in enterprises for processing of solid domestic and industrial waste, where there are steam and hot water boilers, whose operations result in contaminated gases emissions obtained with high temperatures. In particular, this installation can be applied at a cement plant in which a large amount of waste gases containing sulfur oxides is emitted. Assessment of market potential for the plant designed to treat waste gases in the cement factory is performed through a SWOT analysis. SWOT analysis results indicate the possibility of the treatment of exhaust gases without a high cost and with high gas treatment efficiency. Plant competitive analysis was done using an expert method in comparison with market competitors. Technical and economic indicators of the plant are presented. Return on investments is 46% and payback period of capital investments - 2.7 years.

  10. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore...

  11. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  12. Report on ANSI/ASME nuclear air and gas treatment standards for nuclear power plants

    International Nuclear Information System (INIS)

    Fish, J.F.

    1979-01-01

    Original N Committee, N45-8, has completed and published through the approved American National Standards Institute process two Standards, N-509 and N-510. This committee has been dissolved and replaced by ASME Committee on Nuclear Air and Gas Treatment with expanded scope to cover not only air cleaning, but thermal treatment equipment. Current efforts are directed to produce Code documents rather than Standards type publications. This report summarizes changed scope, current organization and sub-committee coverage areas

  13. Validity of using backward Lagrangian Stochastic technique in measuring trace gas emission from treatment lagoon

    Science.gov (United States)

    This study evaluates the accuracy of measuring trace gas emission from treatment lagoons using backward Lagrangian stochastic (bLs) technique. The bLs technique was originally developed for relatively homogeneous terrains without any obstacles causing significant windflow disturbance. The errors ass...

  14. Selective etching of semicrystalline polymers CF4 gas plasma treatment of poly(ethylene)

    NARCIS (Netherlands)

    Olde riekerink, M.B.; Terlingen, J.G.A.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1999-01-01

    A series of poly(ethylene) (PE) films with different degrees of crystallinity was treated with a radio-frequency tetrafluoromethane (CF4) gas plasma (48-49 W, 0.06-0.07 mbar, and continuous vs pulsed treatment). The etching behavior and surface chemical and structural changes of the PE films were

  15. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...... segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations...

  16. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin

    2015-01-01

    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  17. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft 2 ) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft 2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft 2 ) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  18. Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas.

    Science.gov (United States)

    Deng, Jia-Jia; Pan, Liang-Ming; Chen, De-Qi; Dong, Yu-Quan; Wang, Cheng-Mu; Liu, Hang; Kang, Mei-Qiang

    2014-01-01

    Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.

  19. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Science.gov (United States)

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Pressurized electrolysis stack with thermal expansion capability

    Science.gov (United States)

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  1. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  2. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment

    International Nuclear Information System (INIS)

    Hou, Yue; Jayatissa, Ahalapitiya H.

    2014-01-01

    The effect of oxygen plasma treatment on nanocrystalline ZnO thin film based gas sensor was investigated. ZnO thin films were synthesized on alkali-free glass substrates by a sol–gel process. ZnO thin films were treated with oxygen plasma to change the number of vacancies/defects in ZnO. The effect of oxygen plasma on the structural, electrical, optical and gas sensing properties was investigated as a function of plasma treatment time. The results suggest that the microstructure and the surface morphology can be tuned by oxygen plasma treatment. The optical transmission in the visible range varies after the oxygen plasma treatment. Moreover, it is found that the oxygen plasma has significant impact on the electrical properties of ZnO thin films indicating a variation of resistivity. The oxygen plasma treated ZnO thin film exhibits an enhanced sensing response towards NH 3 in comparison with that of the as-deposited ZnO sensor. When compared with the as-deposited ZnO film, the sensing response was improved by 50% for the optimum oxygen plasma treatment time of 8 min. The selectivity of 8 min plasma treated ZnO sensor was also examined for an important industrial gas mixture of H 2 , CH 4 and NH 3 .

  3. Stack semantics of type theory

    DEFF Research Database (Denmark)

    Coquand, Thierry; Mannaa, Bassel; Ruch, Fabian

    2017-01-01

    We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe...

  4. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  5. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  6. Adding large EM stack support

    KAUST Repository

    Holst, Glendon

    2016-12-01

    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  7. Decontamination by foams: A promising treatment for the removal of radioactive dust from gas streams

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1989-06-01

    Foams provide a promising method for the treatment of gas streams containing radioactive aerosol particles. A review of the literature has been undertaken to define and assess the mechanics of aerosol behaviour in contact with foams. Applications are also examined in which foams have been used to treat aerosols. Key issues are identified which require further study. In particular, the efficiency of sub-micron particle removal can be determined using recently developed analysers and the use of the process gas to generate the foam could have a major impact on the design of commercial units. (author)

  8. Manifold seal structure for fuel cell stack

    Science.gov (United States)

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  9. Removal of siloxanes in sewage sludge by thermal treatment with gas stripping

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Omori, Keigo; Takaoka, Masaki; Mizuno, Tadao

    2014-01-01

    Highlights: • A new treatment of sewage sludge were studied to reduce siloxanes in biogas. • D5 of cyclic siloxane concentrations were the highest in sewage sludge. • Under optimal conditions, most of siloxanes in the sludge were removed previously. • By this treatment, CH 4 was 1.6-fold larger and siloxane in biogas 95% lower. - Abstract: In this study, thermal treatment with gas stripping of sewage sludge before anaerobic digestion to reduce siloxanes in the sludge and accelerate the anaerobic digestion was studied experimentally. Regarding siloxanes in the sludge, D5 concentrations were the highest. Siloxane concentrations in the digested sludge were decreased, versus those in thickened sludge, because siloxanes in the sludge are moved to the biogas during the anaerobic digestion. Thermal treatment and gas stripping experiments were conducted. The optimum conditions for siloxane removal from sludge were found to be thermal treatment with gas stripping at 80 °C with 0.5 L/min of air flow for 48 h. Under these conditions, approximately 90% of all siloxanes in the sludge were removed. Next, anaerobic digestion experiments were conducted with the optimally treated sludge and untreated sludge. The biogas volume of the optimally treated sludge was 1.6-fold larger than that of the untreated sludge. Furthermore, D5 contents in biogas from the optimally treated sludge were 95% lower than in biogas from untreated sludge. Thus, thermal treatment with gas stripping of sludge before anaerobic digestion was effective in increasing biogas amounts, decreasing siloxane concentrations in the biogas, and reducing the need for a siloxane removal process from the biogas

  10. Gas and Gas Pains

    Science.gov (United States)

    ... Gas and gas pains Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  11. Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Overly, P.; Tawiah, K.

    1981-12-01

    Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

  12. Development and Applications of a Stage Stacking Procedure

    Science.gov (United States)

    Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.

    2012-01-01

    The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.

  13. Decontamination by foams: a promising treatment for the removal of radioactive dust from gas streams

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1989-06-01

    Foams provide a promising method for the treatment of gas streams containing radioactive aerosol particles. They contain a very large surface area of liquid-gas interface in small cells; thus it is possible to achieve rapid capture of airborne particles in the liquid phase, particularly if the aerosol can be incorporated in the foam structure. The foam can be collapsed into a small volume of liquid, immobilising any trapped aerosol in a form that may be treated as liquid waste. A review of the literature has been undertaken to define and assess the mechanics of aerosol behaviour in contact with foams. Applications are also examined in which foams have been used to treat aerosols. Key issues are identified which require further study. In particular, the efficiency of sub-micron particle removal can be determined using recently developed analysers and the use of the process gas to generate the foam could have a major impact on the design of commercial units. (author)

  14. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1975-01-01

    Described is a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time

  15. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1976-01-01

    A description is given of a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time. 2 claims, 9 drawing figures

  16. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1985-01-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, /sup 238/239/Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing or cooldown. Due to the high temperatures during processing, some gases were released into the off-gas hood that was placed over the test site. The hood was maintained at a light negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr

  17. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  18. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    International Nuclear Information System (INIS)

    Simmons, D. W.

    1994-01-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF 3 ) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF 6 ) gas. The potential existence of chlorine dioxide (ClO 2 ) during gas phase decontamination with ClF 3 has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO 2 in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO 2 was not detected in the flow loop in the absence of ClF 3 ; (2) ClO 2 was not detected in the static reactors in the absence of both ClF 3 and ClF; and (3) ClO 2 was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO 2 will not exist in the presence of ClF 3 , ClF, or UF 6 . The data analyzed to date is insufficient to determine the stability of ClO 2 in the presence of ClO 2 F. Thermodynamic calculations of the ClF 3 + H 2 O system support the experimental evidence, and suggest that ClO 2 will not exist in the presence of ClO 2 F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF 3 treatments and the product gases. However, preliminary evidence to date suggests that ClO 2 should not be present as a product during the normal operations of the gas phase decontamination project

  19. Evaluation of chlorine dioxide gas treatment to inactivate Salmonella enterica on mungbean sprouts.

    Science.gov (United States)

    Prodduk, Vara; Annous, Bassam A; Liu, Linshu; Yam, Kit L

    2014-11-01

    Although freshly sprouted beans and grains are considered to be a source of nutrients, they have been associated with foodborne outbreaks. Sprouts provide good matrices for microbial localization and growth due to optimal conditions of temperature and humidity while sprouting. Also, the lack of a kill step postsprouting is a major safety concern. The objective of this work was to evaluate the effectiveness of chlorine dioxide gas treatment to reduce Salmonella on artificially inoculated mungbean sprouts. The effectiveness of gaseous chlorine dioxide (0.5 mg/liter of air) with or without tumbling (mechanical mixing) was compared with an aqueous chlorine (200 ppm) wash treatment. Tumbling the inoculated sprouts during the chlorine dioxide gas application for 15, 30, and 60 min reduced Salmonella populations by 3.0, 4.0, and 5.5 log CFU/g, respectively, as compared with 3.0, 3.0, and 4.0 log CFU/g reductions obtained without tumbling, respectively. A 2.0 log CFU/g reduction in Salmonella was achieved with an aqueous chlorine wash. The difference in microbial reduction between chlorine dioxide gas versus aqueous chlorine wash points to the important role of surface topography, pore structure, bacterial attachment, and/or biofilm formation on sprouts. These data suggested that chlorine dioxide gas was capable of penetrating and inactivating cells that are attached to inaccessible sites and/or are within biofilms on the sprout surface as compared with an aqueous chlorine wash. Consequently, scanning electron microscopy imaging indicated that chlorine dioxide gas treatment was capable of penetrating and inactivating cells attached to inaccessible sites and within biofilms on the sprout surfaces.

  20. Development and durability of SOFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Beeaff, D.; Dinesen, A.R.; Mikkelsen, Lars; Nielsen, Karsten A.; Solvang, M.; Hendriksen, Peter V.

    2004-12-01

    The present project is a part of the Danish SOFC programme, which has the overall aim of establishing a Danish production of SOFC - cells, stacks and systems for economical and environmentally friendly power production. The aim of the present project was to develop and demonstrate (on a small scale, few cells, few thousand hours) a durable, thermally cyclable stack with high performance at 750 deg. C. Good progress towards this target has been made and demonstrated at the level of stack-elements (one cell between two interconnects) or small stacks (3 5 cells). Three different stacks or stack-elements have been operated for periods exceeding 3000 hr. The work has covered development of stack-components (seals, interconnects, coatings, contact layers), establishment of procedures for stack assembly and initiation, and detailed electrical characterisation with the aims of identifying performance limiting factors as well as long term durability. Further, post test investigations have been carried out to identify possible degradation mechanisms. (BA)

  1. Electron beam flue gas treatment. Research cooperation among JAERI, IAEA and INCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The research co-operation is conducted among Japan Atomic Energy Research Institute (JAERI), International Atomic Energy Agency (IAEA) and Institute of Nuclear Chemistry and Technology in Poland (INCT) on Electron Beam Flue Gas Treatment from January 1993 to March 1997. The first phase of the cooperation was carried out for 3 years from January 1993 to March 1995. This cooperation was performed through information exchange meetings (Coordination Meetings), held in Takasaki and Warsaw, and experiments and discussions by exchange scientists. Many useful results were obtained on electron beam treatment of flue gas from coal-combustion heat generation plant in Kaweczyn within the frame work of the research co-operation. This report includes the main results of the tripartite research cooperation. (author)

  2. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  3. Off-gas treatment system Process Experimental Pilot Plant (PREPP) k-t evaluation

    International Nuclear Information System (INIS)

    Hedahl, T.G.; Cargo, C.H.; Ayers, A.L.

    1982-06-01

    The scope of work for this task involves a systems' evaluation, using the Kepner-Tregoe (K-T) decision analysis methodology, of off-gas treatment alternatives for a Process Experimental Pilot Plant (PREPP). Two basic systems were evaluated: (1) a wet treatment system using a quencher and scrubber system; and (2) a dry treatment system using a spray dryer and baghouse arrangement. Both systems would neutralize acidic off-gases (HCL and SO 2 ) and remove radioactive particulates prior to release to the environment. The K-T analysis results provided a numerical comparison of the two basic off-gas treatments systems for PREPP. The overall ratings for the two systems differ by only 7%. The closeness of the evaluation indicates that either system is capable of treating the off-gases from PREPP. Based on the analysis, the wet treatment system design is slightly more favorable for PREPP. Technology development, expected operability, total costs, and safety aspects were determined to be more advantageous for the wet system design. Support technology was the only major category that appears less favorable for using the wet off-gas system for PREPP. When considering the two criteria considered most important for PREPP (capital cost and major accident prevention - both rated 10), the wet treatment system received maximum ratings. Space constraints placed on the design by the existing TAN-607 building configuration also are more easily met by the wet system design. Lastly, the level of development for the wet system indicates more applicable experience for nuclear waste processing

  4. Study on fracturing flowback fluid treatment technology for shale gas in Yangzhou

    Science.gov (United States)

    Shi, Shengwei; Du, Jiajia; Kang, Dingyu; Chen, Xinjian; Qu, Chengtun; Yu, Tao

    2018-02-01

    Shale gas fracturing flowback fluid has the characteristics of high viscosity, large displacement, complex components and difficult to deal with. Therefore, it is of great significance for environmental protection to treat and reuse it. In this paper, Yangzhou shale gas is taken as an object to study the treatment of shale gas fracturing flowback fluid. The results shown that the viscosity of the fracturing flowback fluid before treatment was 16.75mPa·s, and when the pH was adjusted to 3.5, with Cerium(III) sulfate and ferrous sulfate as catalyst and the dosage were 60mg/L and 120 mg/L respectively, and hydrogen peroxide dosage was 0.5%, the viscosity of fracturing folwback fluid was reduced from 16.75mPa·s to 1.97mPa·s After the oxidation treatment, adjusting pH to 7.5, and treating it with inorganic flocculant and organic flocculant, the water quality met the reinjection requirement of the average air permeability of less than or equal to 0.01 μm2.

  5. Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

    2008-07-01

    A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

  6. Test results from the GA Technologies engineering-scale off-gas treatment system

    International Nuclear Information System (INIS)

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1985-01-01

    Test results are available from the GA Technologies (GA) off-gas treatment facilities using gas streams from both the graphite fuel element burner system and from the spent fuel dissolver. The off-gas system is part of a pilot plant for development of processes for treating spent fuel from high temperature gas-cooled reactors (HTGRs). One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constituents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Integrated testing of major BOG system components confirmed the performance of units evaluated in individual tests. Design decontamination and conversion factors were maintained for up to 72 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  7. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    Science.gov (United States)

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  9. Removal of CO2 in closed loop off-gas treatment systems

    International Nuclear Information System (INIS)

    Clemens, M.K.; Nelson, P.A.; Swift, W.M.

    1994-01-01

    A closed loop test system has been installed at Argonne National Laboratory (ANL) to demonstrate off-gas treatment, absorption, and purification systems to be used for incineration and vitrification of hazardous and mixed waste. Closed loop systems can virtually eliminate the potential for release of hazardous or toxic materials to the atmosphere during both normal and upset conditions. In initial tests, a 250,000 Btu/h (75 kW thermal) combustor was operated in an open loop to produce a combustion product gas. The CO 2 in these tests was removed by reaction with a fluidized bed of time to produce CaCO 3 . Subsequently, recirculation system was installed to allow closed loop operation with the addition of oxygen to the recycle stream to support combustion. Commercially marketed technologies for removal of CO 2 can be adapted for use on closed loop incineration systems. The paper also describes the Absorbent Solution Treatment (AST) process, based on modifications to commercially demonstrated gas purification technologies. In this process, a side loop system is added to the main loop for removing CO 2 in scrubbing towers using aqueous-based CO 2 absorbents. The remaining gas is returned to the incinerator with oxygen addition. The absorbent is regenerated by driving off the CO 2 and water vapor, which are released to the atmosphere. Contaminants are either recycled for further treatment or form precipitates which are removed during the purification and regeneration process. There are no direct releases of gases or particulates to the environment. The CO 2 and water vapor go through two changes of state before release, effectively separating these combustion products from contaminants released during incineration. The AST process can accept a wide range of waste streams. The system may be retrofitted to existing Facilities or included in the designs for new installations

  10. Thermal treatment and non-thermal technologies for remediation of manufactured gas plant sites

    International Nuclear Information System (INIS)

    McGowan, T.F.; Greer, B.A.; Lawless, M.

    1996-01-01

    More than 1,500 manufactured gas plant (MGP) sites exist throughout the US. Many are contaminated with coal tar from coal-fueled gas works which produced town gas from the mid-1800s through the 1950s. Virtually all old US cities have such sites. Most are in downtown areas as they were installed for central distribution of manufactured gas. While a few sites are CERCLA/Superfund, most are not. However, the contaminants and methods used for remediation are similar to those used for Superfund clean-ups of coal tar contamination from wood-treating and coke oven facilities. Clean-up of sites is triggered by regulatory pressure, property transfers and re-development as well as releases to the environment--in particular, via groundwater migration. Due to utility de-regulation, site clean-ups may also be triggered by sale of a utility or of a specific utility site to other utilities. Utilities have used two approaches in dealing with their MGP sites. The first is do nothing and hope for the best. History suggests that, sooner or later, these sites become a bigger problem via a release, citizen lawsuit or regulatory/public service commission intervention. The second, far better approach is to define the problem now and make plans /for waste treatment or immobilization. This paper describes recent experience with a high capacity/low cost thermal desorption process for this waste and reviews non-thermal technology, such as bio-treatment, capping, recycling, and dig and haul. Cost data are provided for all technologies, and a case study for thermal treatment is also presented

  11. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  12. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  13. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  14. Effect of Additions of Ceramic Nanoparticles and Gas-Dynamic Treatment on Al Casting Alloys

    Directory of Open Access Journals (Sweden)

    Konstantin Borodianskiy

    2015-12-01

    Full Text Available In recent years, improving the mechanical properties of metals has become the main challenge in the modern materials and metallurgical industry. An alloying process is usually used to achieve advanced performance of metals. This paper, however, describes an alternative approach. Modification with ceramic nanoparticles, gas-dynamic treatment (GDT and a combined treatment were investigated on a hypoeutectic Al-Si A356 alloy. Microstructural studies revealed the refinement of coarse α-Al grains and the formation of distributed eutectic Si particles. Subsequent testing of the mechanical properties revealed improvement after applying each of the treatments. The best results were obtained after modification with TiCN nanoparticles followed by GDT; the tensile strength and elongation of the A356 alloys increased by 18% and 19%, respectively.

  15. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Mønster, Jacob; Scheutz, Charlotte

    2014-01-01

    Wastewater treatment plants (WWTPs) contribute to anthropogenic greenhouse gas (GHG) emissions. Due to its spatial and temporal variation in emissions, whole plant characterization of GHG emissions from WWTPs face a number of obstacles. In this study, a tracer dispersion method was applied...... experiencing operational problems, such as during foaming events in anaerobic digesters and during sub-optimal operation of biological nitrogen removal in the secondary treatment of wastewater. Methane emissions detected during measurement campaigns corresponded to 2.07-32.7% of the methane generated...... in the plant. As high as 4.27% of nitrogen entering the WWTP was emitted as nitrous oxide under the sub-optimal operation of biological treatment processes. The study shows that the unit process configuration, as well as the operation of the WWTP, determines the rate of GHG emission. The applied plant...

  16. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    Science.gov (United States)

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  17. Greenhouse gas production : a comparison between aerobic and anaerobic wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, F.Y.; Stenstrom, M.K. [Univ. of California at Los Angeles, Los Angles, CA (United States). Dept. of Civil and Environmental Engineering

    2004-07-01

    Human activities in the last 200 years have increased the atmospheric content of greenhouse gases. Wastewater treatment contributes carbon dioxide and methane. Sewage treatment contributes approximately 5 per cent of global methane emissions. In this paper, the authors attempt to estimate greenhouse gas production from domestic wastewater treatment, both aerobic and anaerobic. In anaerobic processes, complex wastes are stabilized in three basic steps: hydrolysis, acid fermentation, and methanogenesis. Anaerobic processes studied include the upflow anaerobic sludge blanket reactor. For low strength wastewater anaerobic processes will produce more greenhouse gases, mainly methane. At higher strengths the aerobic method is more polluting, with the crossover point depending on the relative efficiency of the aerobic system. If the evolved methane can be recovered, the anaerobic system would have less emissions for all strengths. 6 refs., 5 figs.

  18. Thermal and Hydrothermal Treatment of Silica Gels as Solid Stationary Phases in Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available Silica gel was prepared and treated thermally and hydrothermally and was characterized as solid stationary phase in gas chromatography. The characteristics have been evaluated in terms of polarity, selectivity, and separation efficiencies. These parameters were used to assess the outer silica surface contributions and the degree of surface deactivation brought about by different treatment techniques. The parent silica elutes the paraffinic hydrocarbons with high efficiency of separation and elutes aromatic hydrocarbons with nearly good separation and has bad separation of alcohols. The calcined silica at 500°C and 1000°C has a pronounced effect on the separation of aromatic hydrocarbons compared with the parent silica and hydrothermal treatment of silica. With respect to alcohols separation, the obtained bad separations using treated and untreated silica reflect the little effect of the thermal and hydrothermal treatment on the silica surface deactivation.

  19. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  20. Numerical Investigation of a Liquid-Gas Ejector Used for Shipping Ballast Water Treatment

    Directory of Open Access Journals (Sweden)

    Xueguan Song

    2014-01-01

    Full Text Available Shipping ballast water can have significant ecological and economic impacts on aquatic ecosystems. Currently, water ejectors are widely used in marine applications for ballast water treatment owing to their high suction capability and reliability. In this communication, an improved ballast treatment system employing a liquid-gas ejector is introduced to clear the ballast water to reduce environmental risks. Commonly, the liquid-gas ejector uses ballast water as the primary fluid and chemical ozone as the secondary fluid. In this study, high-pressure water and air, instead of ballast water and ozone, are considered through extensive numerical and experimental research. The ejector is particularly studied by a steady three-dimensional multiphase computational fluid dynamics (CFD analysis with commercial software ANSYS-CFX 14.5. Different turbulence models (including standard k-ε, RNG k-ε, SST, and k-ω with different grid size and bubble size are compared extensively and the experiments are carried out to validate the numerical design and optimization. This study concludes that the RNG k-ε turbulence model is the most efficient and effective for the ballast water treatment system under consideration and simple change of nozzle shape can greatly improve the ejector performance under high back pressure conditions.

  1. Developments in odour control and waste gas treatment biotechnology: a review.

    Science.gov (United States)

    Burgess, J E; Parsons, S A; Stuetz, R M

    2001-02-01

    Waste and wastewater treatment processes produce odours, which can cause a nuisance to adjacent populations and contribute significantly to atmospheric pollution. Sulphurous compounds are responsible for acid rain and mist; many organic compounds of industrial origin contribute to airborne public health concerns, as well as environmental problems. Waste gases from industry have traditionally been treated using physicochemical processes, such as scrubbing, adsorption, condensation, and oxidation, however, biological treatment of waste gases has gained support as an effective and economical option in the past few decades. One emergent technique for biological waste gas treatment is the use of existing activated sludge plants as bioscrubbers, thus treating the foul air generated by other process units of the wastewater treatment system on site, with no requirement for additional units or for interruption of wastewater treatment. Limited data are available regarding the performance of activated sludge diffusion of odorous air in spite of numerous positive reports from full-scale applications in North America. This review argues that the information available is insufficient for precise process design and optimization, and simultaneous activated sludge treatment of wastewater and airborne odours could be adopted worldwide.

  2. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption

  3. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  4. An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water.

    Science.gov (United States)

    Silva, Tânia L S; Morales-Torres, Sergio; Castro-Silva, Sérgio; Figueiredo, José L; Silva, Adrián M T

    2017-09-15

    Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  6. A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads.

    Science.gov (United States)

    Li, Lin; Lian, Jing; Han, Yunping; Liu, Junxin

    2012-05-01

    Biofiltration for volatile organic compound control in waste gas streams is best operated at steady contaminant loadings. To provide long-term stable operation of a biofilter under adverse contaminant feeding conditions, an integrated bioreactor system with a gas separation membrane module installed after a biofilter was proposed for styrene treatment. Styrene was treated effectively, with average styrene effluent concentrations maintained at less than 50 mg m(-3) and a total removal efficiency of over 96% achieved when the biofiltration column faced fluctuating loads. The maximum elimination capacity of the integrated bioreactor system was 93.8 g m(-3)h(-1), which was higher than that obtained with the biofiltration column alone. The combination of these two processes (microbial and chemical) led to more efficient elimination of styrene and buffering of the fluctuating loads. The factors on gas membrane separation, microbial characteristics in the integrated bioreactor and membrane fouling were also investigated in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Generalized data stacking programming model with applications

    Directory of Open Access Journals (Sweden)

    Hala Samir Elhadidy

    2016-09-01

    Full Text Available Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identification technique are proposed to extract the different layers between images and identify the stack class the object follows; respectively. The general multi-stacking network is presented including the interaction between various stack-based layering of some applications. The experiments prove that the concept of stack matrix gives average accuracy of 99.45%.

  8. Stability assessment of gas mixtures containing monoterpenes in varying cylinder materials and treatments.

    Science.gov (United States)

    Rhoderick, George C; Lin, Janice

    2013-05-07

    Studies of climate change increasingly recognize the diverse influences exerted by monoterpenes in the atmosphere, including roles in particulates, ozone formation, and oxidizing potential. Measurements of key monoterpenes suggest atmospheric mole fractions ranging from low pmol/mol (parts-per-trillion; ppt) to nmol/mol (parts-per-billion; ppb), depending on location and compound. To accurately establish the mole fraction trends, assess the role of monoterpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for monoterpenes at the nmol/mol level was previously tested using treated (Aculife IV) aluminum gas cylinders at NIST. Results for 4 of the 11 monoterpenes, monitored versus an internal standard of benzene, indicated stability in these treated aluminum gas cylinders for over 6 months and projected long-term (years) stability. However, the mole fraction of the key monoterpene β-pinene decreased, while the mole fractions of α-pinene, d-limonene (R-(+)-limonene), p-cymene, and camphene (a terpene not present in the initial gas mixture) increased, indicating a chemical transformation of β-pinene to these species. A similar pattern of decreasing mole fraction was observed in α-pinene where growth of d-limonene, p-cymene, and camphene has been observed in treated gas cylinders prepared with a mixture of just α-pinene and benzene as the internal standard. The current research discusses the testing of other cylinders and treatments for the potential of long-term stability of monoterpenes in a gas mixture. In this current study, a similar pattern of decreasing mole fraction, although somewhat improved short-term stability, was observed for β-pinene and α-pinene, with growth of d-limonene, p-cymene, and camphene, in nickel-plated carbon steel cylinders. β-Pinene and α-pinene showed

  9. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  10. Hydrogen Embrittlement And Stacking-Fault Energies

    Science.gov (United States)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  11. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    Science.gov (United States)

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Application of Irradiation. Application to polymer processing, exhaust gas treatment, sterilization of medical instruments and food

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, Takeshi; Sawai, Teruko

    2000-03-01

    Many fields such as industry, agriculture, medical treatment and environment use radiation. This report explained some examples of irradiation applications. Radiation source is {sup 60}Co {gamma}-ray. Polymer industry use radiation for radiation curing (thermally stable polymer), tire, expanded polymer, radiation induced graft copolymerization and electron beam curing. On environmental conservation, radiation is used for elimination of NOx and SOx in exhaust combustion gas. In the medical treatment, radiation is applied to sterilization of medical instruments, that occupied about 50% volume, and blood for transfusion, which is only one method to prevent GVHD after transfusion. On agriculture, irradiation to spice, dry vegetable, frozen kitchen, potato and garlic are carried out in 30 countries. However, potato is only a kind food in Japan. Radiation breeding and pest control are put in practice. (S.Y.)

  13. Effects of H2/O2 mixed gas plasma treatment on electrical and optical property of indium tin oxide

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Dong-Min; Kim, Jae-Kwan; Yang, Su-Hwan; Lee, Ji-Myon

    2013-01-01

    Highlights: ► The specific resistivity of ITO was enhanced by H 2 + O 2 mixed gas plasma treatment. ► The transmittance was same as that of untreated ITO after plasma treatment. ► The process was carried out at room temperature without any step of post-treatment. - Abstract: This study examined the effects of H 2 and H 2 + O 2 mixed gas plasma treatment on the properties of ITO films. The films were deposited on corning glass by RF magnetron sputtering under Ar and Ar/O 2 mixed gas ambient. After a H 2 plasma treatment, the ITO films showed an improved specific resistance due to the formation of oxygen vacancies acting as shallow donors, but showed quenched transmittance due to the formation of agglomerated metals on the surface. After an H 2 + O 2 mixed gas plasma treatment, the specific resistance of the film was improved without deteriorating transmittance. The enhanced specific resistance by mixed gas plasma treatment was attributed to the formation of free electrons by the incorporation of H in the lattice.

  14. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    Science.gov (United States)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  15. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang

    2013-11-01

    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16Citation: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16

  16. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    Science.gov (United States)

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  17. The analysis of technical and economical aspects of electron beam flue gas treatment

    International Nuclear Information System (INIS)

    Sudjatmoko

    2008-01-01

    Environmental problems caused by the increased world energy demands have become a serious problem in many countries. The emission of SO 2 and NO x from fossil fuel burning for electricity generation and industrial plants is one of the major sources of environmental pollution. These pollutants are named as acid gases causing acid rain and also indirect greenhouse gases contributing greenhouse effect. These toxic components sometimes travel more than thousand kilometers and make a trouble in other places, in some cases, even in other countries. Therefore, the problem of the air pollution became world-wide problem. Today many countries are introducing more strict emission control regulations to solve environmental problem. Electron beam flue gas treatment technology is one of the most advanced technologies among new generation processes for air pollution control. This electron beam process is dry scrubbing process and simultaneously removes SO 2 and NO x and useful by-product for agriculture fertilizer. In this study, the technical and economical aspects of electron beam flue gas treatment process are discussed. Economically, the technology is competitive with the conventional ones. (author)

  18. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  19. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  20. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Madden, Thomas [Lockheed Martin Corporation; Wood III, David L [ORNL; Muth, Thomas R [ORNL; Warrington, Curtis [Lockheed Martin Corporation; Ozcan, Soydan [ORNL; Manson, Hunter [Oak Ridge National Laboratory (ORNL); Tekinalp, Halil L [ORNL; Smith, Mark A [ORNL; Lu, Yuan [ORNL; Loretz, Jeremy [Oak Ridge National Laboratory (ORNL)

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  1. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  2. Impact of gas emboli and hyperbaric treatment on respiratory function of loggerhead sea turtles (Caretta caretta).

    Science.gov (United States)

    Portugues, Cyril; Crespo-Picazo, Jose Luis; García-Párraga, Daniel; Altimiras, Jordi; Lorenzo, Teresa; Borque-Espinosa, Alicia; Fahlman, Andreas

    2018-01-01

    Fisheries interactions are the most serious threats for sea turtle populations. Despite the existence of some rescue centres providing post-traumatic care and rehabilitation, adequate treatment is hampered by the lack of understanding of the problems incurred while turtles remain entrapped in fishing gears. Recently it was shown that bycaught loggerhead sea turtles ( Caretta caretta ) could experience formation of gas emboli (GE) and develop decompression sickness (DCS) after trawl and gillnet interaction. This condition could be reversed by hyperbaric O 2 treatment (HBOT). The goal of this study was to assess how GE alters respiratory function in bycaught turtles before recompression therapy and measure the improvement after this treatment. Specifically, we assessed the effect of DCS on breath duration, expiratory and inspiratory flow and tidal volume ( V T ), and the effectiveness of HBOT to improve these parameters. HBOT significantly increased respiratory flows by 32-45% while V T increased by 33-35% immediately after HBOT. Repeated lung function testing indicated a temporal increase in both respiratory flow and V T for all bycaught turtles, but the changes were smaller than those seen immediately following HBOT. The current study suggests that respiratory function is significantly compromised in bycaught turtles with GE and that HBOT effectively restores lung function. Lung function testing may provide a novel means to help diagnose the presence of GE, be used to assess treatment efficacy, and contribute to sea turtle conservation efforts.

  3. Wetland treatment of oil and gas well waste waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  4. Study on component interface evolution of a solid oxide fuel cell stack after long term operation

    Science.gov (United States)

    Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian

    2018-05-01

    A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.

  5. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  6. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  7. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  8. 40 CFR 61.44 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled, during...

  9. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  10. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  11. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  12. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  13. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  14. Oxidation behavior of metallic interconnect in solid oxide fuel cell stack

    Science.gov (United States)

    Li, Jun; Zhang, Wenying; Yang, Jiajun; Yan, Dong; Pu, Jian; Chi, Bo; Jian, Li

    2017-06-01

    Oxidation behavior of integrated interconnect with bipolar plate and corrugated sheet made by ferrite steel SUS430 is investigated and compared in simulated environment and in a realistic stack. Electrical current is found to have a direction-related impact on the thickness of the Cr2O3/MnCr2O4 composite oxide scale. Oxide scale of the interconnect aged in the stack exhibits a dual-layered structure of a complex Mn-Cr oxide layer covered by iron oxide. The oxidation rates vary greatly depending on its local environment, with different thermal, electrical density, as well as gas composition conditions. By analyzing the thickness distribution of oxide scale and comparing them with the simulated test result, the oxidation behavior of interconnect in stack is described in high definition. ASR distribution is also conducted by calculation, which could help further understanding the behavior of stack degradation.

  15. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  16. Limestone/adipic acid FGD and stack opacity reduction pilot plant tests at Big Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Laslo, D.; Bakke, E.; Chisholm, E.

    1984-01-01

    Big Rivers Electric Corporation (BREC) contracted Peabody Process Systems, Inc. (PPSI) to install a flue gas cleaning (FGC) pilot plant at the BREC R.D. Green Station Unit No. 2 located at Sebree, KY. A six month test program was completed demonstrating technology for: alternatives to using lime as an alkali; methods for improving cake dewatering; identification of the causes of high stack opacity; and methods for the reduction of high stack opacity. This paper presents highlights extracted from the reports submitted by PPSI to BREC on this test program. BREC was primarily interested in reduction of operating costs, if possible, by using an alkali less expensive than lime, and by improving the poor dewatering characteristic inherent in a dolomitic lime system. BREC was also within compliance for particulate emissions and opacity in the duct after the dry electrostatic precipitator, but not in compliance with the stack opacity regulation, and therefore wanted to investigate methods for stack opacity reduction.

  17. An assessment of off-gas treatment technologies for application to thermal treatment of Department of Energy wastes

    International Nuclear Information System (INIS)

    Dalton, J.D.; Gillins, R.L.; Harris, T.L.; Wollerman, A.L.

    1992-09-01

    The purpose of this report is to describe available air pollution control technologies for pollutants generated by thermal treatment of DOE wastes. A basic process for selecting air pollution control devices is summarized. Types of air pollutants generated by thermal treatment units are described, as well as the factors that influence the types and quantities of pollutants generated. This report also reviews applicable regulatory emission requirements. A listing of available and emerging air pollution control technologies and a brief introduction to the basic engineering principles involved in collecting each of the pollutants are presented. Section 7 of this report contains two types of evaluations for air pollution control devices. First, comparative evaluations of individual technologies are presented, based upon criteria generally relevant to DOE facilities. Using this evaluation system, the spray dryer absorber received the highest rating for acid-gas removal; high-efficiency particulate air (HEPA) filters received the highest rating for particulate removal; activated carbon adsorption received the highest rating for the removal of both toxic metals and residual hydrocarbons; and selective catalytic reduction received the highest rating for nitrogen oxide abatement. Also evaluated in Sect. 7 is the expected performance of different types of pollution control systems on two hypothetical waste streams. The waste streams were defined based upon typical DOE wastes and thermal treatment technologies. Section 8 presents conclusions for this report. Two appendixes are included with this report. The first appendix contains a brief description of all the technologies evaluated and the second lists of some of the vendors for each of the technologies that was evaluated

  18. Pilot plant experience in electron-beam treatment of iron-ore sintering flue gas and its application to coal boiler flue gas cleanup

    Science.gov (United States)

    Kawamura, K.; Shui, V. H.

    The peresent development status of the electron-beam flue gas treatment process, which is a dry process capable of removing SOx and NOx simultaneously, is described. The most advanced demonstration of this process was accomplished with a pilot plant in Japan where the maximum gas flow rate of 10,000 Nm 3/h of an iron-ore sintering machine flue gas was successfully treated. The byproduct produced in this process is collected as a dry powder which is a mixture of ammonia sulfate and ammonium nitrate and is salable as a fertilizer or a fertilizer component. A preliminary economic projection showed that this process costs less than the lime scrubber which removes SOx but does not remove NOx. Tests using simulated coal combustion gases suggest that this process will be applicable to coal-fired boiler flue gas treatment as well. However, test on actual coal-fired flue gases are still required for commercial application decisions. A process development unit program consisting of the design, construction and testing of actual coal-fired power station flue gases is underway in the U.S.A. The design and engineering of the test plant is far advanced and the construction phase will be launched in the very near future.

  19. Treatment of back flow fluids from shale gas exploration with recovery of uranium

    International Nuclear Information System (INIS)

    Gajda, D.; Zakrzewska-Koltuniewicz, G.; Abramowska, A.; Kiegiel, K.; Niescior-Borowinska, P.; Miskiewicz, A.; Olszewska, W.; Kulisa, K.; Samszynski, Z.; Drzewicz, P.; Konieczynska, M.

    2015-01-01

    Shale gas exploitation is the cause of many social protests. According to the protesters gas extraction technology threatens the environment: it consumes huge amounts of water, creates danger of poisoning drinking water, the formation of toxic wastewater, air contamination, noise, etc. Hydro-fracturing fluids could also leach radioactive isotopes e.g. uranium from the rock. The upper content of the main elements found in examined back flow fluids in Poland are the following: chlorine: 100.00 Kg/m 3 , sodium: 40.00 kg/m 3 , potassium: 0.90 kg/m 3 , lithium: 0.15 kg/m 3 , magnesium: 2.00 kg/m 3 , calcium: 20.00 kg/m 3 , strontium: 0.80 kg/m 3 and cesium: 0.06 kg/m 3 while the upper content of trace elements are the following: uranium: 3.5 g/m 3 , lanthanum: 12.4 g/m 3 , vanadium: 1.3 g/m 3 , yttrium: 1.3 g/m 3 , molybdenum: 2.0 g/m 3 and manganese: 9.7 g/m 3 . The recovery of uranium, and other valuable metals, from back flow fluids will reduce an environmental impact of hydro-fracturing process. This poster details the treatment of back flow fluids in Poland allowing rare earth elements and uranium recovery

  20. Shale gas produced water treatment using innovative microbial capacitive desalination cell.

    Science.gov (United States)

    Stoll, Zachary A; Forrestal, Casey; Ren, Zhiyong Jason; Xu, Pei

    2015-01-01

    The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A hybrid plasma-chemical system for high-NOx flue gas treatment

    Science.gov (United States)

    Chmielewski, Andrzej G.; Zwolińska, Ewa; Licki, Janusz; Sun, Yongxia; Zimek, Zbigniew; Bułka, Sylwester

    2018-03-01

    The reduction of high concentrations of NOx and SO2 from simulated flue gas has been studied. Our aim was to optimise energy consumption for NOx and SO2 removal from off-gases from a diesel generator using heavy fuel oil. A hybrid process: electron beam (EB) plasma and wet scrubber has been applied. A much higher efficiency of NOx and SO2 removal was achieved in comparison to dry, ammonia free, electron beam flue gas treatment (EBFGT). A recorded removal from a concentration of 1500 ppm NOx reached 49% at a low dose of 6.5 kGy, while only 2% NOx was removed at the same dose if EB only was applied. For SO2, removal efficiency at a dose of 6.5 kGy increased from 15% (EB only) to 84% when sea water was used as a wet scrubber agent for 700 ppm SO2. The results of this study indicate that EB combined with wet scrubber is a very promising technology to be applied for removal of high concentrations of NOx and SO2 emitted from diesel engines operated e.g. on cargo ships, which are the main sources of SO2 and NOx pollution along their navigation routes.

  2. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  3. Laser gas assisted treatment of steel 309: Corrosion and scratch resistance of treated surface

    Science.gov (United States)

    Toor, Ihsan-ul-Haq; Yilbas, B. S.; Ahmed, Junaid; Karatas, C.

    2017-10-01

    Laser gas assisted surface treatment of steel 309 is carried out and the characteristics of the resulting surface are analyzed using the analytical tools. Scanning electron and 3-D optical microscopes are used to assess the morphological and metallurgical changes in the laser treated layer. Energy spectroscopy and X-ray diffraction are carried out to determine the elemental composition and compounds formed on the laser treated surface. The friction coefficient of the laser treated surface is measured using the micro-tribometer and compared to that of the as received surface. The corrosion resistance of the laser treated and as received surfaces is measured incorporating the electrochemical tests. It is found that laser treatment results in a dense layer and formation of nitride compounds at the surface. This enhances the microhardness at the laser treated surface. The friction coefficient attains lower values at the laser treated surface than that corresponding to the as received surface. The corrosion rate of the surface reduces significantly after the laser treatment process, which can be attributed to the passive layer at the surface via formation of a dense layer and nitride compounds in the surface vicinity. In addition, the number of pit sites decreased for the laser treated surface than that of as received surface.

  4. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    Science.gov (United States)

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  5. Challenges of Membrane Filtration for Produced Water Treatment in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian

    2016-01-01

    the Water Flooding Technology (WFT) is employed. The quality requirements for WFT and the increasing environmental concerns for produced water discharge lead to increased interest in zero-pollutant discharge. Traditional Produced Water Treatment (PWT) technologies(such as hydrocyclones) are already......Tremendous amount of produced water are discharged into the sea from offshore oil & gas installations. Along with every barrel of oil three barrels of water are produced and this is only worsen as the fields mature. Enhanced oil recovery (EOR) is employed to increase production, as a part of EOR...... struggling to their fundamental limit, therefore the membrane filtration technology turns to be a potential candidate for zero pollutant discharge. Membrane filtration technology suffers from the notorious fouling problem, where many methods for fouling prevention and removal are explored, the general idea...

  6. Industrial applications of electron beam flue gas treatment - From laboratory to the practice

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.

    2007-01-01

    The electron beam technology for flue gas treatment (EBFGT) has been developed in Japan in the early 1980s. Later on, this process was investigated in pilot scale in the USA, Germany, Japan, Poland, Bulgaria and China. The new engineering and process solutions have been developed during the past two decades. Finally industrial plants have been constructed in Poland and China. The high efficiency of SO x and NO x removal was achieved (up to 95% for SO x and up to 70% for NO x ) and by-product is a high quality fertilizer. Since the power of accelerators applied in industrial installation is over 1 MW and requested operational availability of the plant is equal to 8500 h in year, it is a new challenge for radiation processing applications

  7. Demonstration test of electron beam flue gas treatment pilot plant of a coal fired thermal power station

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Hayashi, Kazuaki; Izutsu, Masahiro; Watanabe, Shigeharu; Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi.

    1995-01-01

    The Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation jointly constructed a pilot plant for electron beam flue gas treatment (dry process) capable of treating 12,000 m 3 /h (NTP) of flue gas from a coal fired boiler, at Shin-Nagoya Thermal Power Station, Chubu Electric Power Company. Various tests carried out at the plant over a period extending one year verified the followings. By appropriately controlling parameters such as electron beam dosage, flue gas temperature, and ammonia stoichiometric amount, highly efficient simultaneous SO 2 and NOx removal from flue gas was achieved under all gas conditions, equal to or more efficient than that by the highest level conventional treatment. The operation of the pilot plant was stable and trouble-free over a long term, and the operation and the process was easy to operate and control. By-products (ammonium sulfate and ammonium nitrate) produced by the flue gas treatment were proven to have superior quality, equivalent to that of market-available nitrogen fertilizers. These by-products had been registered as by-product nitrogen fertilizers. (author)

  8. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard

    2016-01-01

    Solid oxide cells (SOCs) can be operated either as fuel cells (SOFC) to convert fuels to electricity or as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane. Pressurized operation of SOCs provide several benefits on both cell and system level. If successfully matured...... (electrode performance) increases for thermodynamic and kinetic reasons, respectively. Further, the summit frequency of the gas concentration impedance arc and the pressure difference across the stack and heat exchangers is seen to decrease with increasing pressure following a power-law expression. Finally...

  9. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    Science.gov (United States)

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Démonstration du procédé IFP de désulfuration des fumées de centrales Demonstration of the Ifp Stack-Gas Desulfurization Process

    Directory of Open Access Journals (Sweden)

    Busson C.

    2006-11-01

    Full Text Available Les produits pétroliers et le charbon continueront à couvrir les besoins énergétiques pendant plusieurs décennies. La pollution par le SOZ, provenant de la combustion de ces combustibles fossiles, devient une préoccupation pour la population et les Pouvoirs publics. La désulfuration des fumées de combustion devrait, à plus ou moins longue échéance, se développer. L'Institut Français du Pétrole (IFP, mettant à profit ses travaux dans le domaine de la désulfuration, a développé un procédé de traitement des fumées. L'IFP, en collaboration avec Électricité de France (EDF, a effectué en 1976 une opération de démonstration à une échelle pilote (30 MW dans la Centrale de Champagne-sur-Oise. Le procédé consiste à éliminer le S02 des fumées par lavage avec une solution ammoniacale, à produire du soufre à partir de la liqueur obtenue et à recycler l'ammoniaque dans l'étape de lavage. Après quelques modifications d'ordre technologique, l'unité de démonstration a fonctionné d'une manière continue pendant une période de trois mois, correspondant à l'objectif fixé. Les résultats obtenus permettent, actuellement, d'envisager une application de cette technique à une échelle de 250 MW. Oil and coal productswill continue to fulfill energy needs for several more decades. Pollution by SO2 coming from the combustion of such fossil fuels is becoming a preoccupation for the population and the public authorities. The desulfurization of combustion fumes should continue ta develop in the more or less long run. Institut Français du Pétrole (IFP has taken advantage of its research in the fixed of desulfurization to develop a stock-gas treating process. In collaboration with Électricite de Fronce (EDF, IFP carried out a demonsiration operation in 1976 on a pilot-plant scale (30MW in a power plant at Champagne-sur-Oise. The process consists in removing S02 from stock gases by scrubbing them with an ammonia solution

  11. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  12. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  13. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  14. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  16. Greenhouse Gas Emissions from Green Infrastructure vs. Conventional Wastewater Treatment Plants

    Science.gov (United States)

    Morse, N.; Walter, T.

    2017-12-01

    The need for resilient infrastructure and cities in the face of climate change has prompted an expansion of green infrastructure (GI) in suburban and urban areas. However, some researchers have begun to question if these engineered and vegetated systems could be contributing excess greenhouse gas (GHG) emissions. They theorize that the often inundated GI practices may be hot-spots for biogeochemical processes emitting GHGs. However, no studies have compared passive GI to the only available alternative for water treatment: conventional wastewater treatment plants (WWTPs). This study monitored the nitrous oxide (N2O) and methane (CH4) emissions from two GI detention basins in Ithaca, NY and compared these emissions with reported and modeled on-site emissions from WWTPs. One basin was often saturated ("Wet Basin"), while the other drained quickly and was rarely saturated ("Dry Basin"). The Wet Basin emitted more GHGs than nearby reference turfgrass (92 vs. 5 mg CO2 eq m-2 hr-), while the Dry Basin emitted less than reference turfgrass (0.9 vs 4 mg CO2 eq m-2 hr-). However, both basins emitted far less GHGs than conventional WWTPs. According to EPA calculations, aerobic WWTPs emit approximately 1,079 mg CO2 eq L-1, and the Wet and Dry Basin emitted roughly 117-516 and 0.28-2.56 mg CO2 eq L-1, respectively. Thus, on a per volume of water treated basis, conventional WWTPs are emitting approximately 3 and 750 times more GHGs than GI Wet and Dry Basins, respectively. This study highlights how passive GI provides a valuable ecosystem service (i.e., stormwater treatment) while producing less GHGs than WWTPs.

  17. Stacking faults in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Hermida, J.D. [CNEA, San Martin (Argentina). Dept. de Materiales

    1996-06-01

    During last decade, Austempered Ductile Iron (ADI) has been successfully used as an acceptable replacement material for steel in many applications, due to the relatively high strength and reasonable ductility obtained. These properties are the result of the special microstructure exhibited by this material at the end of the upper bainite reaction: ferrite platelets surrounded by high carbon stabilized austenite. However, at the beginning of the austempering treatment, the existence of interdendritic low carbon austenite is revealed by its transformation to martensite when cooling the sample or during subsequent deformation. The completion of the upper bainite reaction is of decisive importance to mechanical properties because the remaining martensite reduces ductility. It was observed that the rate of the upper bainite reaction is governed by the carbon content difference between the low and high carbon austenites. The carbon content is obtained by the lattice parameter measurement, because there exists a known expression that relates both magnitudes. Several works have used X-ray diffraction to measure the lattice parameter and phase concentrations as a function of austempering time. In these works, the lattice parameters were obtained directly from the {l_brace}220{r_brace} and {l_brace}311{r_brace} peaks position. The purpose of this work is to show more precise lattice parameters measurement and, very closely related to this, the existence of stacking faults in austenite, even at times within the processing window.

  18. Wearable solar cells by stacking textile electrodes.

    Science.gov (United States)

    Pan, Shaowu; Yang, Zhibin; Chen, Peining; Deng, Jue; Li, Houpu; Peng, Huisheng

    2014-06-10

    A new and general method to produce flexible, wearable dye-sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal-textile electrode that was made from micrometer-sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire-shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  20. Stack-Based Typed Assembly Language

    National Research Council Canada - National Science Library

    Morrisett, Greg

    1998-01-01

    .... This paper also formalizes the typing connection between CPS based compilation and stack based compilation and illustrates how STAL can formally model calling conventions by specifying them as formal translations of source function types to STAL types.

  1. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  2. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H

    2016-01-01

    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  3. Stacking for Cosmic Magnetism with SKA Surveys

    OpenAIRE

    Stil, J. M.; Keller, B. W.

    2015-01-01

    Stacking polarized radio emission in SKA surveys provides statistical information on large samples that is not accessible otherwise due to limitations in sensitivity, source statistics in small fields, and averaging over frequency (including Faraday synthesis). Polarization is a special case because one obvious source of stacking targets is the Stokes I source catalog, possibly in combination with external catalogs, for example an SKA HI survey or a non-radio survey. We point out the signific...

  4. Environmental Modeling Framework using Stacked Gaussian Processes

    OpenAIRE

    Abdelfatah, Kareem; Bao, Junshu; Terejanu, Gabriel

    2016-01-01

    A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of quantities of interest with quantified uncertainties. The main applications of the StackedGP framework are to integrate different datasets through model composition, enhance predictions of quantities of interest through a cascade of intermediate predictions, and to propagate uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first an...

  5. Generalized data stacking programming model with applications

    OpenAIRE

    Hala Samir Elhadidy; Rawya Yehia Rizk; Hassen Taher Dorrah

    2016-01-01

    Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP) model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identif...

  6. Representations of stack triangulations in the plane

    OpenAIRE

    Selig, Thomas

    2013-01-01

    Stack triangulations appear as natural objects when defining an increasing family of triangulations by successive additions of vertices. We consider two different probability distributions for such objects. We represent, or "draw" these random stack triangulations in the plane $\\R^2$ and study the asymptotic properties of these drawings, viewed as random compact metric spaces. We also look at the occupation measure of the vertices, and show that for these two distributions it converges to som...

  7. Engineering of Mixed Matrix Membranes for Water Treatment, Protective Coating and Gas Separation

    KAUST Repository

    Hammami, Mohamed Amen

    2017-11-01

    Mixed Matrix Membranes (MMMs) have received worldwide attention during the last decades. This is due to the fact that the resulting materials can combine the good processability and low cost of polymer membranes with the diverse functionality, high performance and thermal properties of the fillers. This work explores the fabrication and application of MMMs. We focused on the design and fabrication of nanofillers to impart target functionality to the membrane for water treatment, protective coating and gas separation. This thesis is divided into three sections according to the application including: I- Water Treatment: This part is divided into three chapters, two related to the membrane distillation (MD) and one related to the oil spill. Three different nanofillers have been used: Periodic mesoporous organosilica (PMO), graphene and carbon nanotube (CNT). Those nanofillers were homogeneously incorporated into polyetherimide (PEI) electrospun nanofiber membranes. The doped nanoparticle not only improved the mechanical properties and thermal stability of the pristine fiber but also enhanced the MD and oil spill performance due to the functionality of those nanofillers. II- Protective coating: This part includes two chapters describing the design and the fabrication of a smart antibacterial and anti-corrosion coating. In the first project, we fabricated colloidal lysozyme-templated gold nanoclusters gating antimicrobial-loaded silica nanoparticles (MSN-AuNCs@lys) as nano-fillers in poly(ethylene oxide)/poly(butylene terephthalate) polymer matrix. MSN-AuNCs@lys dispersed homogeneously within the polymer matrix with zero NPs leaching. The system was coated on a common radiographic dental imaging device that is prone to oral bacteria contamination. This coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. In the second project, the coaxial electrospinning approach has been applied to

  8. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  9. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    Science.gov (United States)

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  10. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  11. Head capsule stacking by caterpillars: morphology complements behaviour to provide a novel defence

    OpenAIRE

    Low, Petah A.; McArthur, Clare; Hochuli, Dieter F.

    2016-01-01

    Herbivores employ a variety of chemical, behavioural and morphological defences to reduce mortality from natural enemies. In some caterpillars the head capsules of successive instars are retained and stacked on top of each other and it has been suggested that this could serve as a defence against natural enemies. We tested this hypothesis by comparing the survival of groups of the gumleaf skeletoniser Uraba lugens Walker caterpillars, allocated to one of three treatments: “−HC,” where stacked...

  12. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to le...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures.......Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...

  13. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, determination of the limits of safe operation and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires applica...... out at a range of ac perturbation amplitudes in order to investigate linearity of the response and the signal-to-noise ratio. Separation of the measured impedance into series and polarisation resistances was possible....... to analyse in detail. Today one is forced to use mathematical modelling to extract information about existing gradients and cell resistances in operating stacks, as mature techniques for local probing are not available. This type of spatially resolved information is essential for model refinement...... and validation, and helps to further the technological stack development. Further, more detailed information obtained from operating stacks is essential for developing appropriate process monitoring and control protocols for stack and system developers. An experimental stack with low ohmic resistance from Topsoe...

  14. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  15. A new argon gas-based device for the treatment of keloid scars with the use of intralesional cryotherapy

    NARCIS (Netherlands)

    van Leeuwen, M.C.E.; Bulstra, A.E.J.; van Leeuwen, P.A.M.; Niessen, F.B.

    2014-01-01

    Background: Intralesional (IL) cryotherapy is a new promising technique for the treatment of keloid scars, in which the scar is frozen from inside. Multiple devices are available, mostly based on a simple liquid nitrogen Dewar system, which have a limited freezing capacity. Argon gas-based systems

  16. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre for Nano...

  17. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  18. [The effectiveness of the treatment in Gelenzhik resort for arterial hypertension patients engaged into gas industry of Far North].

    Science.gov (United States)

    Buganov, A A; Popova, O Iu; Cherepanova, V G

    2000-01-01

    Conducted in Gelenjik resort, treatment of arterial hypertension in gas workers of Far North appears quite effective, in spite of different geographic zone. 14-days stay in the resort place with approved complex of therapeutic measures induces stable decrease of systolic and diastolic blood pressure.

  19. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-23

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

  20. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  1. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  2. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  3. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  4. A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology

    International Nuclear Information System (INIS)

    Basfar, A.A.; Fageeha, O.I.; Kunnummal, N.; Chmielewski, A.G.; Pawelec, A.; Zimek, Z.; Licki, J.; Warych, J.

    2010-01-01

    Implemented on an industrial scale in two thermal power plants in China and at the Electropower Station (EPS) Pomorzany in Poland. The plants in China have been designed mainly for desulfurization while the plant in Poland for a simultaneous removal of SO 2 and NO x from flue gases. The successful operation of these plants has demonstrated the advantages of using this technology for removing SO 2 and NO x from flue gas under varying conditions. At present, the plant in Poland is the only operational installation at an international level. Recent tests performed at an EBFGT industrial pilot plant in Bulgaria have demonstrated feasibility of application of this technology for treatment of high sulfur and high humidity lignite fired boilers. Further laboratory tests have been performed for model flue gases similar to those emitted from a copper smelter and flue gases originated from different types of high sulfur heavy fuel oils. In all cases, dry-scrubbing process with ammonia addition has been tested. The removal efficiency of pollutants is as high as 95% for SO 2 and 70-80% for NO x . The by-product of this process is a high quality fertilizer component. Additional laboratory studies have shown that volatile organic compounds (VOCs) emitted during combustion of fossil fuels, can be degraded as well. Therefore, EBFGT can be considered as a multicomponent air pollution control technology which can be applied to flue gases treatment from coal, lignite and heavy fuel oil-fired boilers. Other thermal processes like metallurgy and municipal waste incinerators are potential candidates for EBFGT technology application. (authors)

  5. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  6. Dose distribution effect on optimal geometry for industrial flue gas treatment system

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Dobrowolski, A.; Tyminski, B.

    1998-01-01

    Dose distribution in a flue gas irradiation vessel is not uniform due to the absorption of electron energy in the gas phase. This phenomenon influences the overall NO x removal efficiency. The remarkable increase in the NO x removal efficiency can be achieved by a multistage gas irradiation system and location of accelerators which enables improvement of dose distribution uniformity in the process vessel. These problems are analysed in this report. (author)

  7. Head capsule stacking by caterpillars: morphology complements behaviour to provide a novel defence

    Directory of Open Access Journals (Sweden)

    Petah A. Low

    2016-02-01

    Full Text Available Herbivores employ a variety of chemical, behavioural and morphological defences to reduce mortality from natural enemies. In some caterpillars the head capsules of successive instars are retained and stacked on top of each other and it has been suggested that this could serve as a defence against natural enemies. We tested this hypothesis by comparing the survival of groups of the gumleaf skeletoniser Uraba lugens Walker caterpillars, allocated to one of three treatments: “−HC,” where stacked head capsules were removed from all individuals, “+HC,” where the caterpillars retained their stacked head capsules, and “mixed,” where only half of the caterpillars in a group had their stacked head capsules removed. We found no difference in predation rate between the three treatments, but within the mixed treatment, caterpillars with head capsules were more than twice as likely to survive. During predator choice trials, conducted to observe how head capsule stacking acts as a defence, the predatory pentatomid bug attacked the −HC caterpillar in four out of six trials. The two attacks on +HC caterpillars took over 10 times longer because the bug would poke its rostrum through the head capsule stack, while the caterpillar used its head capsule stack to deflect the bug’s rostrum. Our results support the hypothesis that the retention of moulted head capsules by U. lugens provides some protection against their natural enemies and suggest that this is because stacked head capsules can function as a false target for natural enemies as well as a weapon to fend off attackers. This represents the first demonstration of a defensive function.

  8. Head capsule stacking by caterpillars: morphology complements behaviour to provide a novel defence.

    Science.gov (United States)

    Low, Petah A; McArthur, Clare; Hochuli, Dieter F

    2016-01-01

    Herbivores employ a variety of chemical, behavioural and morphological defences to reduce mortality from natural enemies. In some caterpillars the head capsules of successive instars are retained and stacked on top of each other and it has been suggested that this could serve as a defence against natural enemies. We tested this hypothesis by comparing the survival of groups of the gumleaf skeletoniser Uraba lugens Walker caterpillars, allocated to one of three treatments: "-HC," where stacked head capsules were removed from all individuals, "+HC," where the caterpillars retained their stacked head capsules, and "mixed," where only half of the caterpillars in a group had their stacked head capsules removed. We found no difference in predation rate between the three treatments, but within the mixed treatment, caterpillars with head capsules were more than twice as likely to survive. During predator choice trials, conducted to observe how head capsule stacking acts as a defence, the predatory pentatomid bug attacked the -HC caterpillar in four out of six trials. The two attacks on +HC caterpillars took over 10 times longer because the bug would poke its rostrum through the head capsule stack, while the caterpillar used its head capsule stack to deflect the bug's rostrum. Our results support the hypothesis that the retention of moulted head capsules by U. lugens provides some protection against their natural enemies and suggest that this is because stacked head capsules can function as a false target for natural enemies as well as a weapon to fend off attackers. This represents the first demonstration of a defensive function.

  9. From Multi to Single Stack Automata

    Science.gov (United States)

    Atig, Mohamed Faouzi

    We investigate the issue of reducing the verification problem of multi-stack machines to the one for single-stack machines. For instance, elegant (and practically efficient) algorithms for bounded-context switch analysis of multi-pushdown systems have been recently defined based on reductions to the reachability problem of (single-stack) pushdown systems [10,18]. In this paper, we extend this view to both bounded-phase visibly pushdown automata (BVMPA) [16] and ordered multi-pushdown automata (OMPA) [1] by showing that each of their emptiness problem can be reduced to the one for a class of single-stack machines. For these reductions, we introduce effective generalized pushdown automata (EGPA) where operations on stacks are (1) pop the top symbol of the stack, and (2) push a word in some (effectively) given set of words L over the stack alphabet, assuming that L is in some class of languages for which checking whether L intersects regular languages is decidable. We show that the automata-based saturation procedure for computing the set of predecessors in standard pushdown automata can be extended to prove that for EGPA too the set of all predecessors of a regular set of configurations is an effectively constructible regular set. Our reductions from OMPA and BVMPA to EGPA, together with the reachability analysis procedure for EGPA, allow to provide conceptually simple algorithms for checking the emptiness problem for each of these models, and to significantly simplify the proofs for their 2ETIME upper bounds (matching their lower-bounds).

  10. Start-Stop Test Procedures on the PEMFC Stack Level

    DEFF Research Database (Denmark)

    Mitzel, Jens; Nygaard, Frederik; Veltzé, Sune

    The test is addressed to investigate the influence on stack durability of a long stop followed by a restart of a stack. Long stop should be defined as a stop in which the anodic compartment is fully filled by air due to stack leakages. In systems, leakage level of the stack is low and time to fil...

  11. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data

    DEFF Research Database (Denmark)

    Hansen, Jens Aage; Poulsen, Tjalfe

    2009-01-01

    Historical data on organic waste and wastewater treatment during the period of 1970ĝ€"2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper......, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970ĝ€"2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power...

  12. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  13. Quantification of greenhouse gas emissions from a biological waste treatment facility.

    Science.gov (United States)

    Jensen, Morten Bang; Møller, Jacob; Mønster, Jacob; Scheutz, Charlotte

    2017-09-01

    Whole-site emissions of methane and nitrous oxide, from a combined dry anaerobic digestion and composting facility treating biowaste, were quantified using a tracer dispersion technique that combines a controlled tracer gas release from the treatment facility with time-resolved concentration measurements downwind of the facility. Emission measurements were conducted over a period of three days, and in total, 80 plume traverses were obtained. On-site screening showed that important processes resulting in methane emissions were aerobic composting reactors, anaerobic digester reactors, composting windrows and the site's biofilter. Average whole-site methane emissions measured during the three days were 27.5±7.4, 28.5±6.1 and 30.1±11.4kg CH 4 h -1 , respectively. Turning the windrows resulted in an increase in methane emission from about 26.3-35.9kg CH 4 h -1 . Lower emissions (21.5kg CH 4 h -1 ) were measured after work hours ended, in comparison to emissions measured during the facility's opening hours (30.2kg CH 4 h -1 ). Nitrous oxide emission was too small for a downwind quantification. Direct on-site measurements, however, suggested that the main part of the emitted nitrous oxide came from the biofilter (about 1.4kg N 2 O h -1 ). Whole-site emissions were compared to emissions previously measured at different point sources on-site. Whole-site fugitive emissions were three to eight times higher than the sum of emissions measured at on-site sources. The magnitude of the emissions had a significant influence on the overall environmental impact of the treatment facility, assessed by consequential life cycle assessment. Including the higher whole-site fugitive emissions led to an increase in global warming potential, from a saving of 97kgCO 2 -eq.tonne -1 of treated waste (wet weight) to a loading of 71kg CO 2 -eq. tonne -1 , ultimately flipping the environmental profile of the treatment facility. Copyright © 2017. Published by Elsevier Ltd.

  14. Impact of mine wastewaters on greenhouse gas emissions from northern peatlands used for mine water treatment

    Science.gov (United States)

    Palmer, Katharina; Ronkanen, Anna-Kaisa; Klöve, Björn; Hynynen, Jenna; Maljanen, Marja

    2015-04-01

    The amount of wastewaters generated during mining operations is increasing along with the increasing number of operation mines, which poses great challenges for mine water management and purification. Mine wastewaters contain high concentrations of nitrogen compounds such as nitrate (NO3-) and ammonium (NH4+) originating from remnant explosives as well as sulfate (SO42-) originating from the oxidation of sulfidic ores. At a mine site in Finnish Lapland, two natural peatlands have been used for cost-effective passive wastewater treatment. One peatland have been used for the treatment of drainage waters (TP 1), while the other has been used for the treatment of process-based wastewaters (TP 4). In this study, the impact of mine water derived nitrogen compounds as well as SO42- on the emission of the potent greenhouse gases methane (CH4) and nitrous oxide (N2O) from those treatment peatlands was investigated. Contaminant concentrations in the input and output waters of the treatment peatlands were monitored which allowed for the calculation of contaminant-specific retention efficiencies. Treatment peatlands showed generally good retention efficiencies for metals and metalloids (e.g. nickel, arsenic, antimony, up to 98% reduction in concentration) with rather low input-concentrations (i.e., in the μg/l-range). On the other hand, retention of contaminants with high input-concentrations (i.e., in mg/l-range) such as NO3-, NH4+ and SO42- was much lower (4-41%, 30-60% and -42-30%, respectively), indicating the limited capability of the treatment peatlands to cope with such high input concentrations. NO3- and NH4+ concentrations were determined in surface and pore water from TP 4 in July 2013 as well as in surface water from TP 1 and TP 4 in October 2013. Up to 720 μM NO3- and up to 600 μM NH4+ were detected in surface water of TP 4 in July 2013. NO3- and NH4+ concentrations in surface waters were highest near the mine wastewater distribution ditch and decreased with

  15. Study on Influence to Waste Water Treatment Plant’s Sludge by Low-carbon Catalytic Combustion Furnace of Natural Gas

    OpenAIRE

    Ren TianQi; Fang Kai; Zhang Shihong

    2016-01-01

    There are two parts in this experiment. One of is about the concentration of Variation of exhaust gas while heating sludge of waste water treatment plant. The other one is about introduce the problems of the traditional incineration processes of sludge of waste water treatment as compared between the sludge heated by natural gas catalytic combustion furnace and the tradition’s. We can see that natural gas low-carbon catalytic combustion furnace realize the near-zero emission of contaminates.

  16. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    Science.gov (United States)

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. Copyright © 2015. Published by Elsevier B.V.

  17. Data Quality Objectives Summary Report for the Demolition of the 116-D and 116-DR Stacks

    International Nuclear Information System (INIS)

    Adler, J. G.

    1999-01-01

    This data quality objective (DQO) summary report has been developed to support demolition and disposal of the 116-D and 116-DR stacks in the 100-D Area of the Hanford Site. This project-specific summary was developed to meet the requirements in BHI-EE-01, Environmental Investigations Procedures, Procedure 1.2, ''Data Quality Objectives,'' using a simplified DQO process. The pathway for disposal of the 116-D and 116-DR stacks is the Environmental Restoration Disposal Facility (ERDF), which requires the development of a waste profile. A combination of process knowledge, history, and existing analogous data will be used to build a waste profile to dispose of the stack and plenum debris in the ERDF. Additional sample data are not necessary for waste designation. This report also addresses the Resources, Conservation, and Recovery Act of 1976 treatment, storage, and disposal closure requirements associated with the 116-DR stack

  18. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  19. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  20. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  1. Contemporary sample stacking in analytical electrophoresis.

    Science.gov (United States)

    Malá, Zdena; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    This contribution is a methodological review of the publications about the topic from the last 2 years. Therefore, it is primarily organized according to the methods and procedures used in surveyed papers and the origin and type of sample and specification of analytes form the secondary structure. The introductory part about navigation in the architecture of stacking brings a brief characterization of the various stacking methods, with the description of mutual links to each other and important differences among them. The main body of the article brings a survey of publications organized according to main principles of stacking and then according to the origin and type of the sample. Provided that the paper cited gave explicitly the relevant data, information about the BGE(s) used, procedure, detector employed, and reached LOD and/or concentration effect is given. The papers where the procedure used is a combination of diverse fragments and parts of various stacking techniques are mentioned in a special section on combined techniques. The concluding remarks in the final part of the review evaluate present state of art and the trends of sample stacking in CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced dynamical stability with harmonic slip stacking

    Directory of Open Access Journals (Sweden)

    Jeffrey Eldred

    2016-10-01

    Full Text Available We develop a configuration of radio-frequency (rf cavities to dramatically improve the performance of slip stacking. Slip stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out the resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99% slip stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip stacking simulation. We demonstrate that the harmonic rf cavity can not only reduce particle loss during slip stacking, but also reduce the final longitudinal emittance.

  3. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  4. GRS/ISTec strategy for the treatment of gas-related issues for repositories located in rock salt

    International Nuclear Information System (INIS)

    Muller-Lyda, I.; Javeri, V.; Muller, W.

    2001-01-01

    The treatment of gas-related issues for repositories located in rock salt by GRS and ISTec has followed a strategy which has been developed with increasing complexity and degree of detail in the past. The strategy today clearly indicates the direction to establish a comprehensive safety case and the work that remains to be done. For gas generation mainly long-term aspects are an issue to increase accuracy of predictions. Physical modelling especially for HLW is still incomplete with regard to the coupling of fluid flow with geomechanics, solution/precipitation effects and geochemistry. The appropriate tools to transform the physical models into numerical solutions are at hand in principle but have to be further developed collaterally to the physical modelling. The first full-scale demonstration of safety regarding gas issues in rock salt will have to be provided for the licensing of the Morsleben repository shut-down in the near future. (authors)

  5. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z.; Scherer, G.G.; Marmy, Ch.; Glaus, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  6. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; E.J. Sullivan; R.S. Bowman

    2000-10-31

    Whereas most water produced from onshore oil and gas operations is disposed via reinjection, some waters, such as those from offshore production platforms, coastal production, and some onshore wells, must be treated to remove organic constituents before the water is discharged. Current methods for reducing residual free phases and dissolved organic carbon are not always fully effective in meeting regulatory limits. In addition, cost, space requirements, and ease of use are important factors in any treatment system. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. This research will use laboratory batch and column studies to design a field system that will be used to treat produced waters to reduce dissolved and free-phase organic constituents. The system will be designed to operate simply and to have low operating costs. Methods for regeneration of the spent zeolite will also be tested, as will the treatment system at a field production site in the final project task. Research over the past six months has focused on the method development, batch adsorption studies to demonstrate removal of target organic constituents, and the selection of a likely test site and characterization of produced waters from the site. Current contacts for selection, and ultimately, testing of example oil field waters include Phillips Petroleum Corp. (offshore location, Gulf of Mexico); MCA Petroleum Corporation in Flatonia, Texas; Amoco production in Farmington, New Mexico; and the New Mexico Bureau of Mines and Mineral Resources (mining operators for coal bed waters from the Farmington area). Water from Phillips Petroleum was received in August and analyzed at the University of Texas. These waters are being used in the laboratory to evaluate interactions between oil field waters and the SMZ. A site visit to MCA Petroleum operations was undertaken on October 12, 2000, and the analyses of samples taken

  7. A pilot study for the extraction and treatment of groundwater from a manufactured gas plant site. Final report

    International Nuclear Information System (INIS)

    1997-12-01

    This report describes a pilot study involving treatment of contaminated groundwater at a former manufactured gas plant site on the eastern seaboard of the US. The work was performed in order to provide the design basis for a full-scale groundwater extraction and treatment system at the site, as well as to develop a generic approach to selection of groundwater treatment sequences at other MGP sites. It included three main components: hydrogeologic investigations, bench-scale treatability studies, and pilot-scale treatability studies. Technologies evaluated in bench-scale work included gravity settling, filtration, and dissolved air flotation (DAF) for primary treatment of nonaqueous phase materials; biological degradation, air stripping, and carbon adsorption for secondary treatment of dissolved organics; and carbon adsorption as tertiary treatment of remaining dissolved contaminants. Pilot-scale studies focused on collecting system performance data fore three distinct levels of contamination. Two treatment trains were evaluated. One consisted of DAF, fluidized-bed biotreatment, and filtration plus carbon adsorption; the other used the same steps except to substitute air stripping for fluidized bed treatment. The final effluents produced by both treatment sequences were similar and demonstrated complete treatment of the groundwater. Besides detailing system design and performance for the treatability studies, the report includes an analysis of groundwater treatment applications to MGP sites in general, including a discussion of capital and operating costs

  8. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  9. Greenhouse gas emissions from the mineralisation process in a Sludge Treatment Reed Bed system: Seasonal variation and environmental impact

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen; Scheutz, Charlotte

    2017-01-01

    Greenhouse gas emission data from the mineralisation process in Sludge Treatment Reed Bed systems (STRB) are scarce. The aim of this study was to quantify the emission rates of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and to investigate seasonal variations in order to estimate...... the annual greenhouse gas emission rate of the mineralisation process. The full-scale STRB at Helsinge wastewater treatment plant (WWTP) in Denmark was chosen as the study site. Gas emission rates were measured using static surface flux chambers. The measurements were carried out in October/November 2014......, March/April 2015, June/July 2015 and January/February 2016. We found that the emission rates of all included gas species were significantly affected by season. For CO2 and CH4, the highest emission rates were recorded in summer, being138 and 5.2 g m−2 d−1, respectively, while the lowest rates were...

  10. Effects of Endwall Geometry and Stacking on Two-Stage Supersonic Turbine Performance

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank W.; Sondak, Douglas L.; Turner, Jim (Technical Monitor)

    2002-01-01

    The drive towards high-work turbines has led to designs which can be compact, transonic, supersonic, counter rotating, or use a dense drive gas. These aggressive designs can lead to strong secondary flows and airfoil flow separation. In many cases the secondary and separated flows can be minimized by contouring the hub/shroud endwalls and/or modifying the airfoil stacking. In this study, three-dimensional unsteady Navier-Stokes simulations were performed to study three different endwall shapes between the first-stage vanes and rotors, as well as two different stackings for the first-stage vanes. The predicted results indicate that changing the stacking of the first-stage vanes can significantly impact endwall separation (and turbine performance) in regions where the endwall profile changes.

  11. Design Handbook for a Stack Foundation

    OpenAIRE

    Tuominen, Vilma

    2011-01-01

    This thesis was made for Citec Engineering Oy Ab as a handbook and as a design tool for concrete structure designers. Handbook is about the Wärtsilä Power Plant stack structure, which is a base for about 40 meters high stack pipe. The purpose is to make a calculation base to support the design work, which helps the designer to check the right dimensions of the structure. Thesis is about to be for the concrete designers and also other designers and authorities. As an example I have used an...

  12. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel

    1993-01-01

    A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local-density ......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...

  13. Symptomatic gas-containing herniated disc with the vacuum phenomenon: mechanism and treatment. Case report.

    Science.gov (United States)

    Lee, Chang-Hyun; Cho, Jae Hoon; Hyun, Seung-Jae; Yoon, Sang Hoon; Kim, Ki-Jeong; Kim, Hyun-Jib

    2012-01-01

    A 76-year-old woman presented with an extremely rare case of symptomatic gas-containing disc herniation manifesting as left posterolateral thigh pain and ankle dorsiflexion motor weakness. The diagnosis was L3-4 vacuum disc associated with epidural pneumorrhachis. The patient underwent partial hemilaminectomy and cyst incision. After incising the cyst, the thecal sac and root were decompressed sufficiently. Vacuum disc is a common phenomenon in the elderly rarely associated with pneumorrhachis and is usually asymptomatic. Symptomatic epidural gas-containing herniated discs with the vacuum phenomenon are very rare. Gas aspiration should be considered, but excision of the gas-containing herniated disc should be performed in patients with neurological deficits, frequent recurrence, or difficult location to approach.

  14. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  15. Prototype particulate stack sampler with single-cut nozzle and microcomputer calculating/display system

    International Nuclear Information System (INIS)

    Eler, J.C.; Littlefield, L.G.; Tillery, M.I.

    1979-01-01

    A prototype particulate stack sampler (PPSS) has been developed to improve on the existing EPA Method 5 sampling apparatus. Its primary features are (1) higher sampling rate (56 1/min); (2) display (on demand) of all required variables and calculated values by a microcomputer-based calculating and display system; (3) continuous stack gas moisture determination; (4) a virtual impactor nozzle with 3 μm mass median diameter cutpoint which collects fine and coarse particle fractions on separate glass fiber filters; (5) a variable-area inlet to maintain isokinetic sampling conditions; and (6) conversion to stainless steel components from the glass specified by EPA Method 5. The basic sampling techniques of EPA Method 5 have been retained; however, versatility in the form of optional in-stack filters and general modernization of the stack sampler have been provided in the prototype design. Laboratory testing with monodisperse dye aerosols has shown the present variable inlet, virtual impactor nozzle to have a collection efficiency which is less than 77% and significant wall losses. This is primarily due to lack of symmetry in this rectangular jet impactor and short transition lengths dictated by physical design constraints (required passage of the nozzle through a 7.6 cm (3 in) diameter stack port). Electronic components have shown acceptable service in laboratory testing although no field testing of the prototype under a broad range of temperature, humidity, and SO 2 concentration has been undertaken

  16. [Clinical study on treatment of secondary keratoconus with special designed rigid gas permeable contact lens].

    Science.gov (United States)

    Wang, Dan; Xie, Pei-ying; Zhou, Jian-lan

    2013-04-01

    To investigate the clinical effects of special designed rigid gas permeable contact lens (RGPCL) in the treatment of secondary keratoconus. Retrospective study. The results of correction of secondary keratoconus by the RGPCL in 89 cases (102 eyes) at the Optometry & Ophthalmology Center were analyzed, including history, slit lamp microscope, computer assisted corneal topography, phoropter, corneal endothelial cell examinations and A-scan corneal thickness measurements. We selected and designed the contact lens with different materials for refractive correction according to different corneal deformations. Visual stability and corneal changes were regularly observed. We compared corrected vision, corneal curvature and corneal topography before and after wearing spectacles and RGPCL by using a paired-t test. Secondary keratoconus after keratorefractive operation in 56 cases (67 eyes), including post-LASIK in 53 eyes, post-PRK in 4 eyes and post-RK in 10 eyes were observed. The cornea thickness in the lesion region was less than 0.4 mm, with nebula or macula. Corneal topography showed different local protrusions, Steep K ranged 47.56 D to 69.72 D, corneal astigmatism ranged 4.00 D to 14.00 D, with irregular deformations, visible different degrees matrix strips pattern changes and Fleischer ring. Secondary keratoconus in 31 cases (31 eyes) was developed after corneal injury. The lesions included opaque scar, decrease of corneal endothelial density, multi-deformations and aphakia in 15 eyes. In addition, there were different degrees of damage in pupil, iris, vitreous and retina. Secondary keratoconus in one case (2 eyes) was developed after anti-glaucoma and pediatric cataract extraction operations (with intraocular lens implantation). Another case was secondary to repeated bilateral keratitis episodes, with large macula, mild thinning of cornea, neovascularization and roughness of corneal surface. The uncorrected visual acuity in these eyes was poor. After wearing the

  17. Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data.

    Science.gov (United States)

    de Haas, D W; Pepperell, C; Foley, J

    2014-01-01

    Primary operating data were collected from forty-six wastewater treatment plants (WWTPs) located across three states within Australia. The size range of plants was indicatively from 500 to 900,000 person equivalents. Direct and indirect greenhouse gas emissions were calculated using a mass balance approach and default emission factors, based on Australia's National Greenhouse Energy Reporting (NGER) scheme and IPCC guidelines. A Monte Carlo-type combined uncertainty analysis was applied to the some of the key emission factors in order to study sensitivity. The results suggest that Scope 2 (indirect emissions due to electrical power purchased from the grid) dominate the emissions profile for most of the plants (indicatively half to three quarters of the average estimated total emissions). This is only offset for the relatively small number of plants (in this study) that have significant on-site power generation from biogas, or where the water utility purchases grid electricity generated from renewable sources. For plants with anaerobic digestion, inventory data issues around theoretical biogas generation, capture and measurement were sometimes encountered that can skew reportable emissions using the NGER methodology. Typically, nitrous oxide (N(2)O) emissions dominated the Scope 1 (direct) emissions. However, N(2)O still only accounted for approximately 10 to 37% of total emissions. This conservative estimate is based on the 'default' NGER steady-state emission factor, which amounts to 1% of nitrogen removed through biological nitrification-denitrification processing in the plant (or indicatively 0.7 to 0.8% of plant influent total nitrogen). Current research suggests that true N(2)O emissions may be much lower and certainly not steady-state. The results of this study help to place in context research work that is focused on direct emissions from WWTPs (including N(2)O, methane and carbon dioxide of non-biogenic origin). For example, whereas non-biogenic CO(2

  18. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  19. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  20. Testing of Electrodes, Cells and Short Stacks

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg

    2017-01-01

    The present contribution describes the electrochemical testing and characterization of electrodes, cells, and short stacks. To achieve the maximum insight and results from testing of electrodes and cells, it is obviously necessary to have a good understanding of the fundamental principles...

  1. OpenStack Object Storage (Swift) essentials

    CERN Document Server

    Kapadia, Amar; Varma, Sreedhar

    2015-01-01

    If you are an IT administrator and you want to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Basic knowledge of Linux and server technology is beneficial to get the most out of the book.

  2. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  3. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  4. The data type variety of stack algebras

    NARCIS (Netherlands)

    Bergstra, J.A.; Tucker, J.V.

    1995-01-01

    We define and study the class of all stack algebras as the class of all minimal algebras in a variety defined by an infinite recursively enumerable set of equations. Among a number of results, we show that the initial model of the variety is computable, that its equational theory is decidable,

  5. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  6. 40 CFR 61.53 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...

  7. 40 CFR 61.33 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...

  8. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin

    2013-01-01

    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  9. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases.

  10. A UNIFIED MONTE CARLO TREATMENT OF GAS-GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. II. A MULTIPHASE GAS-SURFACE-LAYERED BULK MODEL

    International Nuclear Information System (INIS)

    Vasyunin, A. I.; Herbst, Eric

    2013-01-01

    The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth- and first-order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on the warm-up chemistry is explored. The use of a multilayer ice structure has a mixed impact on the abundances of organic species formed during the warm-up phase. For example, the abundance of gaseous HCOOCH 3 is lower in the multilayer model than in previous grain models that do not distinguish between layers (so-called two phase models). Other gaseous organic species formed in the warm-up phase are affected slightly. Finally, we find that the entrapment of volatile species in water ice can explain the two-jump behavior of H 2 CO previously found in observations of protostars.

  11. Investigations on electron beam flue gas treatment held in the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Zimek, Z.; Licki, J.

    1992-01-01

    Two different research installations have been built. The first one, laboratory unit has a flow capacity of approx. 400 Nm 3 /h of flue gas from two gas fired boilers. The composition of gas can be adjusted. An irradiator, accelerator ILU-6, is used with electron beam energy in the range 600-1000 keV. The unit is mostly used for aerosol formation and filtration research. This laboratory installation is being adapted for electron beam/microwave combined gas molecule excitation. The second unit, a pilot with a plant of flow rate up to 20 000 Nm 3 /h has been constructed in EPS Kaweczyn. Pit coal is used as a fuel in a boiler from which flue gas is purified. Two accelerators, ELW-3, of beam power 40-50 kW and electrons energy 700 keV are applied. The arrangement of accelerators in series allows cascade, step by step gas mixture irradiation. The installation is equipped in a spray cooler, ammonia dosage system and bag filter. The irradiation/reaction part of the plant was put in operation in April 1991. Separately, laboratory research on grain bed aerosol filtration is performed to study the possibility of such filtration unit as a prefilter application. Agriculture tests of the byproduct have been performed. Two types of the byproduct with and without additive were tested. Comparative vegetation tests have shown that application of the pure product gives similar results as application of market fertilizer - ammonia sulfate. The elemental analysis have shown that content of the heavy metals do not exceed acceptable value. For both systems dosimetric measurements were performed. The electron penetration depth and dose distribution profiles were established. The results of preliminary tests both laboratory and pilot plant units have proved high efficiency of SO 2 and NO X removal. (J.P.N.)

  12. Experiences of membrane technique in flue gas condensate treatment applications; Utvaerdering av erfarenheter av membranteknik foer rening av roekgaskondensat

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Ekdahl, Emma; Hellman, Mats

    2009-07-01

    Investing in a flue gas condensate treatment plant often turns out to be very profitable. The profitability comes from savings in energy and water consumption when treated waste water is recirculated, and also from savings in the NO{sub x} fee as condensate treatment allows for higher ammonia injection rates in the SNCR (NO{sub x} reduction) system. The membrane based technologies for flue gas treatment, which were investigated in this report, have proven to be successful and are operating well. However, they require that the project management is committed and acquaint themselves with the technology to avoid problems during commissioning and operation. In this project, experience with membrane based flue gas condensate treatment at ten different plants was investigated and evaluated. The ten plants are either biomass fired plants or co-combustion plants using a mixture of biomass and industrial waste. Membrane based flue gas condensate treatment is used by circa ten Swedish plants (Ultra Filtration membranes and/or Reverse Osmosis membranes, and at some plants also membranes for ammonia and carbon dioxide removal). All plants are biomass fired plants or co-combustion plants using a mixture of biomass and industrial waste. In Sweden, no plant firing municipal waste has yet been equipped with membrane based flue gas condensate treatment. These plants usually use precipitation and filtration technologies instead. Also the purpose of the condensation step is primarily to operate as a wet flue gas cleaning step. The heat recovery is of subordinate importance. Typical for these plants is also that they use condensation in several steps. The condensates from the different steps are often treated separately, as they may be of very different qualities. The RO unit is the main equipment in a membrane based water treatment plant. Pre-treatment and post-treatment of the RO water is adjusted to the incoming condensate quality, and to the requirements on the effluent. The

  13. From non-disposable to disposable, treatment of pyrophoric or gas forming waste forms for disposal - Thermal treatment of pyrophoric or gas-forming metals

    International Nuclear Information System (INIS)

    Oesterberg, Carl; Lindberg, Maria

    2014-01-01

    In order to dispose of waste in either a deep geological disposal or in a shallower repository there are several demands that the waste and its package must fulfil, one is that it is not to react with oxygen or the waste package or backfill in the repository, i.e. concrete or grout. The waste forms that do not fulfil this particular criterion must be treated in some way to render the waste non-reactive. One of these waste are metallic uranium. Metallic uranium is not only an issue originating from the nuclear industry, as old types of fuel, it is also present in, for example, transport flasks and as samples used in schools, which all has to be disposed of sooner or later. Another waste that arise is magnesium doped with thorium, originating from the aviation, aerospace and missile industry. These alloys are now being replaced with others without thorium so they are in need of handling and possibly treatment before disposal. Magnesium metal is also pyrophoric, in particular in molten or powder form. In order to evaluate thermally treating these metals in a very controlled environment, such as a pyrolysis vessel, experimental work has been performed. The aim of the thermal treatment is to oxidise the metals and obtain an oxide with low leachability. Inactive trials were performed, first using small amount of magnesium tape followed by using Cerium instead of uranium, to check the ability of controlling the process. After the process had been deemed safe the next step was to test the process first with metallic uranium and thereafter with magnesium thorium alloy. The first results show that the oxidation process can be totally controlled and safe. The results show that the metals are oxidised and no longer reactive and can in principle be disposed of. The test will continue and further results will be reported. (authors)

  14. New ultrasonographic evaluation of stool and/or gas distribution for treatment of chronic constipation.

    Science.gov (United States)

    Manabe, Noriaki; Kamada, Tomoari; Hata, Jiro; Haruma, Ken

    2018-03-01

    The first aim of this study was to develop a new ultrasonographic method (US) to evaluate stool and/or gas distribution. The second aim was to apply this method to compare stool and/or gas distribution between healthy subjects and patients with chronic constipation and evaluate whether US parameters could be an alternative to the colonic transit time (CTT). We enrolled seven healthy volunteers (four men, three women; mean age 29.3 ± 5.2 years) who underwent US and computed tomography (CT) on the same day to evaluate the reproducibility of US results. We then enrolled 268 patients with chronic constipation (94 men, 174 women; mean age 63.3 ± 4.2 years) and 66 age- and sex-matched healthy subjects (controls). The transverse diameters of four segments of the colon [ascending (AC), transverse (TC), descending (DC), and sigmoid (SC)] and the rectum (R) were measured, and their stool and/or gas distribution was evaluated using the constipation index (CI) [AC + TC + DC + SC + R/5] and left/right (L/R) distribution [(DC + SC)/(AC + TC)]. The CTT was assessed using radiopaque markers. All healthy subjects underwent US and CT successfully, with a sufficiently high reproducibility coefficient for this method and significant correlation between the US and CT parameters. The stool and/or gas distribution evaluated by US showed a significant difference in one of the US parameters between healthy subjects and patients, and the CI was an indirect indicator for the CTT. These findings may assist physicians evaluate stool and/or gas distribution of patients with chronic constipation, which is an indirect indicator for CTT.

  15. Experimental study on the influence of the porosity of parallel plate stack on the temperature decrease of a thermoacoustic refrigerator

    International Nuclear Information System (INIS)

    Setiawan, Ikhsan; Utomo, Agung Bambang Setio; Mitrayana; Katsuta, Masafumi; Nohtomi, Makoto

    2013-01-01

    Thermoacoustic refrigerators are cooling devices which are environmentally friendly because they don't use hazardous gases like chlorofuorocarbons (CFCs) or hydrofuorocarbons (HFCs) but rather air or inert gases as working medium. They apply sound wave with high intensity to pump heat from the cold to hot the regions through a stack in a resonator tube. One of the important parameters of thermoacoustic refrigerators is the porosity (blockage ratio) of stack which is a fraction of cross sectional area of the resonator unblocked for the gas movement by the stack. This paper describes an experimental study on how the porosity of parallel plate stack affects the temperature decrease of a thermoacoustic refrigerator. The porosity of parallel plate stack is specified by the thickness of plates and the spacing between plates. We measured the maximum temperature decreases of thermacoustic refrigerator using stacks with various porosities in the range of 0.5 – 0.85, with plate spacing from 0.5 mm to 1.5 mm and plate thicknesses 0.3 mm, 0.4 mm, and 0.5 mm. The measurements were done with two resonators with length of 0.8 m and 1.0 m, with air at atmospheric pressure and room temperature, correspond to thermal penetration depths (δ κ ) of 0.26 mm and 0.29 mm, respectively. It was found that there is an optimum porosity which gives the largest temperature decreases, and there is a tendency that the optimum porosity shifts to a larger value and the temperature decrease become larger when we used a stack with thinner plates. On the other hand, the study on the dependence of the temperature decrease on the plate thickness and the plate spacing reveals more useful information than that on the stack porosity itself. We found that stack with thinner plates tends to give larger temperature decrease, and the plate spacing of around 4δ κ leads to the largest temperature decrease.

  16. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  17. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  18. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    2006-01-01

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  19. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.I. [British Nuclear Fuels, Sellafield (United Kingdom); Buckley, C.P.; Miller, W.W. [British Nuclear Fuels, Risley (United Kingdom)

    1995-02-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant`s discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation.

  20. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-21

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  1. DEVS Models of Palletized Ground Stacking in Storeyed Grain Warehouse

    Directory of Open Access Journals (Sweden)

    Hou Shu-Yi

    2016-01-01

    Full Text Available Processed grain stored in storeyed warehouse is generally stacked on the ground without pallets. However, in order to improve the storing way, we developed a new stacking method, palletized ground stacking. Simulation should be used to present this new storing way. DEVS provides a formalized way to describe the system model. In this paper, DEVS models of palletized ground stacking in storeyed grain warehouse are given and a simulation model is developed by AutoMod.

  2. Gas treatment of Cr(VI)-contaminated sediment samples from the North 60's pits of the chemical waste landfill

    International Nuclear Information System (INIS)

    Thornton, E.C.; Amonette, J.E.

    1997-12-01

    Twenty sediment samples were collected at depths ranging from 5 to 100 ft (1.5 to 30 m) beneath a metal-contaminated plating-waste site and extensively characterized for Cr(VI) content and environmental availability. Three samples were selected for treatment with diluted gas mixtures with the objective of converting Cr(VI) to Cr(III), which is relatively nontoxic and immobile. These tests were designed to provide information needed to evaluate the potential application of gas injection as an in situ remediation technique. Gas treatment was performed in small columns (4.9-cm ID, 6.4- to 13.9-cm long) using 100 ppm (μL L -1 ) H 2 S or ethylene mixtures in N 2 . Treatment progress during the tests involving H 2 S was assessed by monitoring the breakthrough of H 2 S. Evaluation of H 2 S treatment efficacy included (1) water-leaching of treated and untreated columns for ten days, (2) repetitive extraction of treated and untreated subsamples by water, 0.01 M phosphate (pH 7) or 6 M HCl solutions, and (3) Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy of treated and untreated subsamples. Results of the water-leaching studies showed that the H 2 S treatment decreased Cr(VI) levels in the column effluent by 90% to nearly 100%. Repetitive extractions by water and phosphate solutions echoed these results, and the extraction by HCl released only 35-40% as much Cr in the treated as in the untreated samples. Analysis by XANES spectroscopy showed that a substantial portion of the Cr in the samples remained as Cr(VI) after treatment, even though it was not available to the water and phosphate extracting solutions. These results suggest that this residual Cr(VI) is present in low solubility phases such as PbCrO 4 or sequestered in unreacted grain interiors under impermeable coatings formed during H 2 S treatment. However, this fraction is essentially immobile and thus unavailable to the environment

  3. Sport stacking motor intervention programme for children with ...

    African Journals Online (AJOL)

    The purpose of this study was to explore sport stacking as an alternative intervention approach with typically developing children and in addition to improve DCD. Sport stacking consists of participants stacking and unstacking 12 specially designed plastic cups in predetermined sequences in as little time as possible.

  4. Notes on G-theory of Deligne-Mumford stacks

    OpenAIRE

    Toen, B.

    1999-01-01

    Based on the methods used by the author to prove the Riemann-Roch formula for algebraic stacks, this paper contains a description of the rationnal G-theory of Deligne-Mumford stacks over general bases. We will use these results to study equivariant K-theory, and also to define new filtrations on K-theory of algebraic stacks.

  5. Treatment of Nematodes with Ozone Gas: A Sustainable Alternative to Nematicides

    Science.gov (United States)

    Msayleb, Nahed; Ibrahim, Saiid

    This study tests Ozone as a Nematicides' alternative. Nematode-infected soil samples were treated with ascending doses of O3 by submerging the outlet of an "MB1000 Ozone Generator" in the 40 ml samples; then to test the O3 nematicidal effect by gas fumigation, Ozone gas was released into a sealed bag containing 80 g of each of the 6 nematode-infected soil samples with ascending doses and a repetition of each. With water-ozonation, 900 mg O3 were needed to kill 100% of nematodes, and the O3-Nematodes LD50 was identified by 420 mg. With the second experiment, O3 soil fumigation for 50 minutes at a dose of 1,125 mg in an air volume of 5 litres, were needed to control 95% of living nematodes.

  6. Ab initio treatment of gas phase GeO{sup 2+} doubly charged ion

    Energy Technology Data Exchange (ETDEWEB)

    Mogren Al Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Ben Abdallah, D. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Department of General Studies, Riyadh Corporation of Technology, Technical and Vocational Training Corporation, PO Box 42826, Riyadh 11551 (Saudi Arabia); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2015-01-13

    Highlights: • Theoretical investigation of the novel gas-phase molecular species GeO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of GeO. - Abstract: Using multi reference configuration interaction methodology in connection with a large basis set, we show that GeO{sup 2+} is a metastable species either in the ground or in the electronically excited states. This confirms the observation of this dication in gas phase by mass spectrometry. In addition, we derived a set of accurate spectroscopic terms for GeO{sup 2+} bound states. At the MRCI/aug-cc-pV5Z level of theory, the adiabatic double ionization energy of GeO is computed to be ∼28.93 eV.

  7. Learning algorithms for stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Zimmer, Beate G [TEXAS A& M

    2009-01-01

    Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.

  8. Industrial stacks design; Diseno de chimeneas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cacheux, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Instituto de Investigaciones Electricas (IIE) though its Civil Works Department, develops, under contract with CFE`s Gerencia de Proyectos Termoelectricos (Management of Fossil Power Plant Projects), a series of methods for the design of stacks, which pretends to solve the a present day problem: the stack design of the fossil power plants that will go into operation during the next coming years in the country. [Espanol] El Instituto de Investigaciones Electricas (IIE), a traves del Departamento de Ingenieria Civil, desarrolla, bajo contrato con la Gerencia de Proyectos Termoelectricos, de la Comision Federal de Electricidad (CFE), un conjunto de metodos para el diseno de chimeneas, con el que se pretende resolver un problema inmediato: el diseno de las chimeneas de las centrales termoelectricas que entraran en operacion durante los proximos anos, en el pais.

  9. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  10. System for inspection of stacked cargo containers

    Science.gov (United States)

    Derenzo, Stephen [Pinole, CA

    2011-08-16

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  11. Multistage Force Amplification of Piezoelectric Stacks

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  12. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    Science.gov (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  13. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  14. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  15. Syngas Treatment Unit for Small Scale Gasification - Application to IC Engine Gas Quality Requirement

    OpenAIRE

    L.C Laurence; D. Ashenafi

    2012-01-01

    Gasification is a process that converts carbonaceous materials (coal, biomass, organic waste) into carbon monoxide and hydrogen by reacting the raw material at high temperatures with a controlled amount of oxygen and/or steam. The resulting gas mixture: syngas, can be used in energy production process. Syngas may be burned directly in internal combustion engines, used to produce methanol and hydrogen, or converted via the Fischer-Tropsch process into synthetic fuel. In add...

  16. Control and monitoring systems for electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Licki, J.; Mazurekc, J.; Nelskic, L.; Sobolewskic, L.

    2011-01-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO 2 and NO x removal efficiencies by control of amount of spray water at the spray cooler, amount of NH 3 injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO 2 and NO x removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  17. CAM and stack air sampler design guide

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1994-01-01

    About 128 air samplers and CAMs presently in service to detect and document potential radioactive release from 'H' and 'F' area tank farm ventilation stacks are scheduled for replacement and/or upgrade by Projects S-5764, S-2081, S-3603, and S-4516. The seven CAMs scheduled to be upgraded by Project S-4516 during 1995 are expected to provide valuable experience for the three remaining projects. The attached document provides design guidance for the standardized High Level Waste air sampling system

  18. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2011-01-01

    Roč. 32, č. 1 (2011), s. 116-126 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  19. Stacked Switched Capacitor Energy Buffer Architecture

    OpenAIRE

    Chen, Minjie; Perreault, David J.; Afridi, Khurram

    2012-01-01

    Electrolytic capacitors are often used for energy buffering applications, including buffering between single-phase ac and dc. While these capacitors have high energy density compared to film and ceramic capacitors, their life is limited. This paper presents a stacked switched capacitor (SSC) energy buffer architecture and some of its topological embodiments, which when used with longer life film capacitors overcome this limitation while achieving effective energy densities comparable to elect...

  20. Use of dilute ammonia gas for treatment of 1,2,3-trichloropropane and explosives-contaminated soils.

    Science.gov (United States)

    Coyle, Charles G; Waisner, Scott A; Medina, Victor F; Griggs, Chris S

    2017-12-15

    Laboratory studies were performed to test a novel reactive gas process for in-situ treatment of soils containing halogenated propanes or explosives. A soil column study, using a 5% ammonia-in-air mixture, established that the treatment process can increase soil pH from 7.5 to 10.2. Batch reactor experiments were performed to demonstrate contaminant destruction in sealed jars exposed to ammonia. Comparison of results from batch reactors that were, and were not, exposed to ammonia demonstrated reductions in concentrations of 1,2,3-trichloropropane (TCP), 1,3-dichloropropane (1,3-DCP), 1,2-dicholoropropane (1,2-DCP) and dibromochloropropane (DBCP) that ranged from 34 to 94%. Decreases in TCP concentrations at 23° C ranged from 37 to 65%, versus 89-94% at 62° C. A spiked soil column study was also performed using the same set of contaminants. The study showed a pH penetration distance of 30 cm in a 2.5 cm diameter soil column (with a pH increase from 8 to > 10), due to treatment via 5% ammonia gas at 1 standard cubic centimeter per minute (sccm) for 7 days. Batch reactor tests using explosives contaminated soils exhibited a 97% decrease in 2,4,6-trinitrotoluene (TNT), an 83% decrease in nitrobenzene, and a 6% decrease in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A biotransformation study was also performed to investigate whether growth of ammonia-oxidizing microorganisms could be stimulated via prolonged exposure of soil to ammonia. Over the course of the 283 day study, only a very small amount of nitrite generation was observed; indicating very limited ammonia monooxygenase activity. Overall, the data indicate that ammonia gas addition can be a viable approach for treating halogenated propanes and some types of explosives in soils. Published by Elsevier Ltd.

  1. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  2. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  3. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; Buckley Walsh

    2003-08-01

    In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression

  4. Guanine base stacking in G-quadruplex nucleic acids

    Science.gov (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  5. Quantification of greenhouse gas (GHG) emissions from wastewater treatment plants using a ground-based remote sensing approach

    Science.gov (United States)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2016-04-01

    The direct release of nitrous oxide (N2O) and methane (CH4) from wastewater treatment plants (WWTP) is important because it contributes to the global greenhouse gases (GHGs) release and strongly effects the WWTP carbon footprint. Biological nitrogen removal technologies could increase the direct emission of N2O (IPCC, 2006), while CH4 losses are of environmental, economic and safety concern. Currently, reporting of N2O and CH4 emissions from WWTPs are performed mainly using methods suggested by IPCC which are not site specific (IPCC, 2006). The dynamic tracer dispersion method (TDM), a ground based remote sensing approach implemented at DTU Environment, was demonstrated to be a novel and successful tool for full-scale CH4 and N2O quantification from WWTPs. The method combines a controlled release of tracer gas from the facility with concentration measurements downwind of the plant (Mønster et al., 2014; Yoshida et al., 2014). TDM in general is based on the assumption that a tracer gas released at an emission source, in this case a WWTP, disperses into the atmosphere in the same way as the GHG emitted from process units. Since the ratio of their concentrations remains constant along their atmospheric dispersion, the GHG emission rate can be calculated using the following expression when the tracer gas release rate is known: EGHG=Qtr*(CGHG/Ctr)*(MWGHG/MWtr) EGHG is the GHG emission in mass per time, Qtr is the tracer release in mass per time, CGHG and Ctr are the concentrations measured downwind in parts per billion subtracted of their background values and integrated over the whole plume, and MWGHG and MWtr are the molar weights of GHG and tracer gas respectively (Mønster et al. 2014). In this study, acetylene (C2H2) was used as tracer. Downwind plume concentrations were measured driving along transects with two cavity ring down spectrometers (Yoshida et al., 2014). TDM was successfully applied in different seasons at several Scandinavian WWTPs characterized by

  6. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  7. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.

    Science.gov (United States)

    Luo, Shuangjiang; Zhang, Qinnan; Zhang, Yizhou; Weaver, Kevin P; Phillip, William A; Guo, Ruilan

    2018-04-16

    Rigid H-shaped pentiptycene units, with an intrinsic hierarchical structure, were employed to fabricate a highly microporous organic polymer sorbent via Friedel-Crafts reaction/polymerization. The obtained microporous polymer exhibits good thermal stability, a high BET surface area of 1604 m2 g-1, outstanding CO2, H2 and CH4 storage capacities, as well as good adsorption selectivities for the separation of CO2/N2 and CO2/CH4 gas pairs. The CO2 uptake reached values as high as 5.00 mmol g-1 (1.0 bar and 273 K), which, along with high adsorption selectivity values (e.g., 47.1 for CO2/N2), make the pentiptycene-based microporous organic polymer (PMOP) a promising sorbent material for carbon capture from flue gas and natural gas purification. Moreover, the PMOP material displayed superior absorption capacities for organic solvents and dyes. For example, the maximum adsorption capacities for Methylene Blue and Congo Red were 394 and 932 mg g-1, respectively, promoting the potential of the PMOP as an excellent sorbent for environmental remediation and water treatment.

  8. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Haruhisa [Department of Pathology, The Ohio State University, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210 (United States); Guan, Jianjun [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Tamama, Kenichi, E-mail: kenichi.tamama@osumc.edu [Department of Pathology, The Ohio State University, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210 (United States); Center for Stem Cell and Regenerative Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.

  9. Study on Influence to Waste Water Treatment Plant’s Sludge by Low-carbon Catalytic Combustion Furnace of Natural Gas

    Directory of Open Access Journals (Sweden)

    Ren TianQi

    2016-01-01

    Full Text Available There are two parts in this experiment. One of is about the concentration of Variation of exhaust gas while heating sludge of waste water treatment plant. The other one is about introduce the problems of the traditional incineration processes of sludge of waste water treatment as compared between the sludge heated by natural gas catalytic combustion furnace and the tradition’s. We can see that natural gas low-carbon catalytic combustion furnace realize the near-zero emission of contaminates.

  10. Method of detecting stacks with leaky fuel elements in liquid-metal-cooled reactor and apparatus for effecting same

    International Nuclear Information System (INIS)

    Aristarkhov, N.N.; Efimov, I.A.; Zaistev, B.I.; Peters, I.G.; Tymosh, B.S.

    1976-01-01

    Described is a method of detecting stacks with leaky fuel elements in a liquid-metal-cooled reactor, consisting in that prior to withdrawing a coolant sample, gas is accumulated in the coolant of the stack being controlled, the reactor being shut down, separated from the sample by means of an inert carrier gas, and the radioactivity of the separated gas is measured. An apparatus for carrying out said method comprises a sampler in the form of a tube parallel to the reactor axis in the hole of a rotating plug and adapted to move along the reactor axis. Made in the top portion of the tube are holes for the introduction of the inert carrier gas and the removal thereof together with the gases evolved from the coolant, while the bottom portion of the tube is provided with a sealing member

  11. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial...

  12. Weakly nonlinear thermoacoustics for stacks with slowly varying pore cross-sections

    NARCIS (Netherlands)

    Panhuis, in 't P.H.M.W.; Rienstra, S.W.; Molenaar, J.; Slot, J.J.M.

    2009-01-01

    A general theory of thermoacoustics is derived for arbitrary stack pores. Previous theoretical treatments of porous media are extended by considering arbitrarily shaped pores with the only restriction that the pore cross-sections vary slowly in the longitudinal direction. No boundary-layer

  13. Treatment and disposal of naturally occurring radioactive material (NORM) in the oil and gas industry. A review

    International Nuclear Information System (INIS)

    Richter, Ruediger B.; Schmuelling, Marcus; Hosemann, Peter

    2014-01-01

    Concerning naturally occurring radioactive material (NORM) from the oil/ and gas industry most of the industrial countries were lacking clear regulatory frameworks in waste legislation for many years. In the meanwhile on several places in Europe, but also in some of the GCC states in the Middle East such as in the United Arab Emirates and in Oman specialized treatment facilities are either in the stage of construction or already in operation. In particular, pilot plants for the decontamination of NORM-contaminated equipment have been tested recently. The paper reflects on the generation and the technical characterization of NORM but also the legislation compared on international level. Particularly an overview was provided by comparing the common practice on disposal in the North American Countries in comparison to Germany, the UK but also Australia. In addition the successful treatment of produced water from crude oil separation in a ''Constructed Wetland'' in the Sultanate Oman is briefly highlighted.

  14. Long-term operation of a solid oxide cell stack for coelectrolysis of steam and CO2

    DEFF Research Database (Denmark)

    Agersted, Karsten; Chen, Ming; Blennow, Peter

    2016-01-01

    High temperature electrolysis based on solid oxide electrolysis cells (SOECs) is a promising technology for production of synthetic fuels. The SOEC units can be used for co-electrolysis of steam and CO2 to produce synthesis gas (syngas, CO+H2), which can be further processed to a variety...... consists of Ni/YSZ electrode supported SOEC cells with a footprint of 12X12 cm2. The co-electrolysis operation was carried out by supplying a mixture of 45 % CO2 + 45 % H2O + 10 % H2 to the stack operating with a fixed conversion of 39 % for steam and CO2. The stack was operated at different conditions...... of synthetic fuels such as methane, methanol or DME. Previously we have reported electrolysis operation of solid oxide cell stacks for periods up to about 1000 hours. In this work, operation of a Haldor Topsoe 8-cell stack (stack design of 2014) in co-electrolysis mode for 6000 hours is reported. The stack...

  15. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    Science.gov (United States)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  16. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases.

    Science.gov (United States)

    Iman, Maryam; Rezaei, Ramazan; Azimzadeh Jamalkandi, Sadegh; Shariati, Parvin; Kheradmand, Farrah; Salimian, Jafar

    2017-12-01

    Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4 + T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.

  17. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    Science.gov (United States)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  18. Study on the Control of Polluted Odour Gas by Biological Treatment Technology

    Directory of Open Access Journals (Sweden)

    Wen Dong

    2017-07-01

    Full Text Available In order to improve the quality of the environment as well as its purification capacity, to reduce environmental costs and achieve clean and efficient management of malodorous gas pollution, on the basis of fully understanding the theory of biotechnology, this paper presents the research of biotechnology to control the pollution of malodorous pollutants. In this research, the biofiltration method was used to control the odour gas ammonia produced in waste composting, which can effectively purify gases, with a high ammonia removal rate. One week after the ammonia removal experiment, the removal rate was detected to be around 79.3 %. Twenty-four days after the experiment, the removal rate stabilized at around 98 %. Through the test of pH value of nutrient solution, it was found that the change in pH value corresponded to the increase in removal rate. There are many advantages of applying biotechnology to filter malodorous polluted gases, such as low energy consumption, high degree of purification, good environmental compatibility, simple operation and maintenance, and no secondary pollution. Therefore, it has good application prospects.

  19. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment.

    Science.gov (United States)

    Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa

    2016-01-01

    A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.

  20. Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions.

    Science.gov (United States)

    Fuchs, Valerie J; Mihelcic, James R; Gierke, John S

    2011-02-01

    Life cycle assessment (LCA) is used to compare the environmental impacts of vertical flow constructed wetlands (VFCW) and horizontal flow constructed wetlands (HFCW). The LCAs include greenhouse gas (N(2)O, CO(2) and CH(4)) emissions. Baseline constructed wetland designs are compared to different treatment performance scenarios and to conventional wastewater treatment at the materials acquisition, assembly and operation life stages. The LCAs suggest that constructed wetlands have less environmental impact, in terms of resource consumption and greenhouse gas emissions. The VFCW is a less impactful configuration for removing total nitrogen from domestic wastewater. Both wetland designs have negligible impacts on respiratory organics, radiation and ozone. Gaseous emissions, often not included in wastewater LCAs because of lack of data or lack of agreement on impacts, have the largest impact on climate change. Nitrous oxide accounts for the increase in impact on respiratory inorganic, and the combined acidification/eutrophication category. The LCAs were used to assess the importance of nitrogen removal and recycling, and the potential for optimizing nitrogen removal in constructed wetlands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  2. Monitoring the degradation of a solid oxide fuel cell stack during 10,000 h via electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Comminges, C.; Fu, Q.X.; Zahid, M.; Steiner, N. Yousfi; Bucheli, O.

    2012-01-01

    Highlights: ► Short SOFC stack tested during 10,000 h (simulated reformate gas, fuel utilization 73%). ► In situ electrochemical impedance spectroscopy (EIS) used for diagnosis. ► Stack degradation is mainly attributed to the increased ohmic resistance. ► Incidents happened with the setup accelerated the stack degradation. - Abstract: A 5-cell solid oxide fuel cell stack was tested during 10,000 h of continuous operation with simulated reformate gas as fuel (71 vol.% H 2 , 20.7 vol.% CO 2 and 8.3 vol.% steam) under high fuel utilization (73%) and constant current load (0.5 A cm −2 or 25 A) at 750 °C. In situ electrochemical impedance spectroscopy was used to monitor the evolution of ohmic and polarisation resistances of individual cells in the stack without interrupting the current load. Impedance spectra were recorded on each cell periodically (every 1000 h) or after uncontrolled incidents happened with the test setup. It has been found that the stack degradation is mainly attributed to the increased ohmic resistance, pointing to possible causes such as interconnect corrosion and reduced effective contact areas between cells and interconnects. The degradation rate during the first 5000 h was about 1% kh −1 , but increased afterwards up to 1.5% kh −1 due to the impact of incidents. Both types of incidents (fuel supply fluctuations and overloading failure of the electronic load) were complicated by inhomogeneous fuel distribution among cells, leading to most probably partial re-oxidation of the anode, accelerating the stack degradation.

  3. A Development of 2 kW Molten Carbonate Fuel Cell Stack

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jung, Jong Soo [SAMSUNG HEAVY INDUSTRY (Korea, Republic of); Hong, Sung Ahn [Korea Institute of science and Technology, Seoul (Korea, Republic of)

    1997-12-31

    The molten carbonate fuel cell (MCFC) has been under intensive development during the last decade as the second generation fuel cell, since it has high efficiency at its operating temperature of 650 deg. C and coal gas can be utilized as the fuel. A 2 kW MCFC stack, consisted of 20 cells, was fabricated with 1,000 cm{sup 2}-area electrode and showed 16 volt at 150 A, producing stable power more than 2.4 kW. The test facility was constructed for the evaluation of the stack. The followings are included in this study : 1. Establishment of the scale-up technology of MCFC components. 2. Settling of the unit cell technology and its long term operation. 3. Manufacturing of a small scale stack and establishment of the stack operation. The feasibility study was carried out for the 100 kW class MCFC pilot plant system through the concept design. (author). 12 refs., figs. tabs.

  4. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  5. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  6. Tail gas treatment of sour-SEWGS CO2 product. Public version

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-06-15

    This literature review covers the technologies suitable for the CO2-H2S separation within the context of CO2 purification of a pre-combustion captured stream intended for storage or reuse. The technologies considered cover existing industrially applied processes, emerging processes as well as processes in development. Several technologies capable of achieving the desired CO2-H2S separation were identified. Among them are liquid scrubbing processes Thiopaq and CrystaSulf producing elemental sulphur, selective oxidation to elemental sulphur such as MODOP or based on novel catalysts and sorbent-based (reactive) separations using low-, medium- or high-temperature (reactive) sorbents. SEWGS stands for Sorption Enhanced Water Gas Shift process.

  7. Improved Direct Methanol Fuel Cell Stack

    Science.gov (United States)

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  8. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  9. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  10. Effects of combustible stacking in large compartments

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    This paper focuses on the modelling of fire in case of various distributions of combustible materials in a large compartment. Large compartments often represent a challenge for structural fire safety, because of lack of prescriptive rules to follow and difficulties of taking into account the effect...... to different stacking configurations of the pallets with the avail of a CFD code. The results in term of temperatures of the hot gasses and of the steel elements composing the structural system are compared with simplified analytical model of localized and post-flashover fires, with the aim of highlighting...

  11. Displacive phase transformations and generalized stacking faults

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Ostapovets, Andriy; Duparc, O. H.; Khalfallah, O.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 490-492 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : ab-initio calculations * close-packed structures * generalized stacking faults * homogeneous deformation * lattice deformation * many-body potentials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  12. Integrated treatment process using a natural Wyoming clinoptilolite for remediating produced waters from coalbed natural gas operations

    Science.gov (United States)

    Zhao, H.; Vance, G.F.; Urynowicz, M.A.; Gregory, R.W.

    2009-01-01

    Coalbed natural gas (CBNG) development in western U.S. states has resulted in an increase in an essential energy resource, but has also resulted in environmental impacts and additional regulatory needs. A concern associated with CBNG development relates to the production of the copious quantities of potentially saline-sodic groundwater required to recover the natural gas, hereafter referred to as CBNG water. Management of CBNG water is a major environmental challenge because of its quantity and quality. In this study, a locally available Na-rich natural zeolite (clinoptilolite) from Wyoming (WY) was examined for its potential to treat CBNG water to remove Na+ and lower the sodium adsorption ratio (SAR, mmol1/2 L- 1/2). The zeolite material was Ca-modified before being used in column experiments. Column breakthrough studies indicated that a metric tonne (1000??kg) of Ca-WY-zeolite could be used to treat 60,000??L of CBNG water in order to lower SAR of the CBNG water from 30 to an acceptable level of 10??mmol1/2 L- 1/2. An integrated treatment process using Na-WY-zeolite for alternately treating hard water and CBNG water was also examined for its potential to treat problematic waters in the region. Based on the results of this study, use of WY-zeolite appears to be a cost-effective water treatment technology for maximizing the beneficial use of poor-quality CBNG water. Ongoing studies are evaluating water treatment techniques involving infiltration ponds lined with zeolite. ?? 2008 Elsevier B.V. All rights reserved.

  13. Sampled-time control of a microbial fuel cell stack

    Science.gov (United States)

    Boghani, Hitesh C.; Dinsdale, Richard M.; Guwy, Alan J.; Premier, Giuliano C.

    2017-07-01

    Research into microbial fuel cells (MFCs) has reached the point where cubic metre-scale systems and stacks are being built and tested. Apart from performance enhancement through catalysis, materials and design, an important research area for industrial applicability is stack control, which can enhance MFCs stack power output. An MFC stack is controlled using a sampled-time digital control strategy, which has the advantage of intermittent operation with consequent power saving, and when used in a hybrid series stack connectivity, can avoid voltage reversals. A MFC stack comprising four tubular MFCs was operated hydraulically in series. Each MFC was connected to an independent controller and the stack was connected electrically in series, creating a hybrid-series connectivity. The voltage of each MFC in the stack was controlled such that the overall series stack voltage generated was the algebraic sum (1.26 V) of the individual MFC voltages (0.32, 0.32, 0.32 and 0.3). The controllers were able to control the individual voltages to the point where 2.52 mA was drawn from the stack at a load of 499.9 Ω (delivering 3.18 mW). The controllers were able to reject the disturbances and perturbations caused by electrical loading, temperature and substrate concentration.

  14. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  15. Quantification of greenhouse gas emissions from a biological waste treatment facility

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Mønster, Jacob

    2017-01-01

    influence on the overall environmental impact of the treatment facility, assessed by consequential life cycle assessment. Including the higher whole-site fugitive emissions led to an increase in global warming potential, from a saving of 97kgCO2-eq.tonne-1 of treated waste (wet weight) to a loading of 71kg...

  16. Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2012-03-01

    Full Text Available Titanium dioxide (TiO2) nanostructures were synthesized by microwave-assisted and conventionally heated hydrothermal treatment of TiO2 powder. The tubular structures were converted to a rodlike shape by sintering the samples at various temperatures...

  17. Feasibility and Treatment of Oil and Gas Produced Water as a Medium for Nannochloropsis Salina cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Yoshida, Thomas M. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory; Laur, Paul A. [Eldorado Biofuels; Visolay, Alfonz [VM Technologies

    2012-06-06

    Some conclusions of this paper are: (1) How much PW is available - (a) Lots, but probably not enough to support the largest estimates of algae production needed, (b) Diluent water is likely needed to support cultivation in some cases, (c) An assessment of how much PW is really available for use is needed; (2) Where is it available - (a) In many places near other resources (land, CO{sub 2}, sunlight, nutrients) and infrastructure (pipelines, refineries, disposal operations/wells); (3) Is the water chemistry acceptable for use - (a) Yes, in many cases with minimal treatment, (b) Additional constituents of value exist in PW for media; (4) Does it need treatment prior to use - (a) Yes, it may often need treatment for organics, some metals, and biological contaminants, (b) Source control and monitoring can reduce need for treatment; (5) How much does it cost to treat it - (a) If desalination is not needed, from <$0.01-$0.60 per m3 is a starting estimate; and (6) Can you grow algae in it - (a) Yes, but we need more experimentation to optimize field conditions, media mixing, and algae types.

  18. AC impedance diagnosis of a 500 W PEM fuel cell stack . Part I: Stack impedance

    Science.gov (United States)

    Yuan, Xiaozi; Sun, Jian Colin; Blanco, Mauricio; Wang, Haijiang; Zhang, Jiujun; Wilkinson, David P.

    Diagnosis of stack performance is of importance to proton exchange membrane (PEM) fuel cell research. This paper presents the diagnostic testing results of a 500 W Ballard Mark V PEM fuel cell stack with an active area of 280 cm 2 by electrochemical impedance spectroscopy (EIS). The EIS was measured using a combination of a FuelCon test station, a TDI loadbank, and a Solartron 1260 Impedance/Gain-Phase Analyzer operating in the galvanostatic mode. The method described in this work can obtain the impedance spectra of fuel cells with a larger geometric surface area and power, which are normally difficult to measure due to the limitations on commercial load banks operating at high currents. By using this method, the effects of temperature, flow rate, and humidity on the stack impedance spectra were examined. The results of the electrochemical impedance analysis show that with increasing temperature, the charge transfer resistance decreases due to the slow oxygen reduction reaction (ORR) process at low temperature. If the stack is operated at a fixed air flow rate, a low frequency arc appears and grows with increasing current due to the shortage of air. The anode humidification cut-off does not affect the spectra compared to the cut-off for cathode humidification.

  19. Stray field interaction of stacked amorphous tapes

    International Nuclear Information System (INIS)

    Guenther, Wulf; Flohrer, Sybille

    2008-01-01

    In this study, magnetic cores made of amorphous rectangular tape layers are investigated. The quality factor Q of the tape material decreases rapidly, however, when stacking at least two tape layers. The hysteresis loop becomes non-linear, and the coercivity increases. These effects are principally independent of the frequency and occur whether tape layers are insulated or not. The Kerr-microscopy was used to monitor local hysteresis loops by varying the distance of two tape layers. The magnetization direction of each magnetic domain is influenced by the anisotropy axis, the external magnetic field and the stray field of magnetic domains of the neighboring tape layers. We found that crossed easy axes (as the extreme case for inclined axes) of congruent domains retain the remagnetization and induce a plateau of the local loop. Summarizing local loops leads to the observed increase of coercivity and non-linearity of the inductively measured loop. A high Q-factor can be preserved if the easy axes of stacked tape layers are identical within the interaction range in the order of mm

  20. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  1. Stacking Analysis of Binary Systems with HAWC

    Science.gov (United States)

    Brisbois, Chad; HAWC Collaboration

    2017-01-01

    Detecting binary systems at TeV energies is an important problem because only a handful of such systems are currently known. The nature of such systems is typically thought to be composed of a compact object and a massive star. The TeV emission from these systems does not obviously correspond to emission in GeV or X-ray, where many binary systems have previously been found. This study focuses on a stacking method to detect TeV emission from LS 5039, a known TeV binary, to test its efficacy in HAWC data. Stacking is a widely employed method for increasing signal to noise ratio in optical astronomy, but has never been attempted previously with HAWC. HAWC is an ideal instrument to search for TeV binaries, because of its wide field of view and high uptime. Applying this method to the entire sky may allow HAWC to detect binary sources of very short or very long periods not sensitive to current analyses. NSF, DOE, Los Alamos, Michigan Tech, CONACyt, UNAM, BUAP.

  2. High performance zinc air fuel cell stack

    Science.gov (United States)

    Pei, Pucheng; Ma, Ze; Wang, Keliang; Wang, Xizhong; Song, Mancun; Xu, Huachi

    2014-03-01

    A zinc air fuel cell (ZAFC) stack with inexpensive manganese dioxide (MnO2) as the catalyst is designed, in which the circulation flowing potassium hydroxide (KOH) electrolyte carries the reaction product away and acts as a coolant. Experiments are carried out to investigate the characteristics of polarization, constant current discharge and dynamic response, as well as the factors affecting the performance and uniformity of individual cells in the stack. The results reveal that the peak power density can be as high as 435 mW cm-2 according to the area of the air cathode sheet, and the influence factors on cell performance and uniformity are cell locations, filled state of zinc pellets, contact resistance, flow rates of electrolyte and air. It is also shown that the time needed for voltages to reach steady state and that for current step-up or current step-down are both in milliseconds, indicating the ZAFC can be excellently applied to vehicles with rapid dynamic response demands.

  3. Generalized stacking fault energies of alloys.

    Science.gov (United States)

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  4. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  5. Pressurized reversible operation of a 30-cell solid oxide cell stack using carbonaceous gases

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Langnickel, Hendrik; Hintzen, N.

    2017-01-01

    Recent theoretical studies show that reversible electrochemical conversion of H2O and CO2 to CH4 inside pressurized solid oxide cells (SOCs) combined with subsurface storage of the produced gases can facilitate seasonal electricity storage with a round-trip efficiency reaching 70-80% and a storag...... in electrolysis mode. The degradation rates in both fuel cell and electrolysis mode were comparable to previously reported SOFCMAN stack degradation rates measured at ambient pressure operation with H2/H2O gas mixtures.......Recent theoretical studies show that reversible electrochemical conversion of H2O and CO2 to CH4 inside pressurized solid oxide cells (SOCs) combined with subsurface storage of the produced gases can facilitate seasonal electricity storage with a round-trip efficiency reaching 70-80% and a storage...... cost below 3 ¢/kWh. Here we show test results with a 30-cell SOFCMAN 301 stack operated with carbonaceous gases at 18.7 bar and 700 ˚C in both electrolysis and fuel cell mode. The CH4 content in the stack outlet gas increased from 0.22% at open circuit voltage (OCV) to 18% at -0.17 A cm-2...

  6. Development of Osaka gas type planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Iha, M.; Shiratori, A.; Chikagawa, O. [Murata Mfg. Co., Ltd., Shiga (Japan)] [and others

    1996-12-31

    Osaka Gas Co. has been developing a planar type SOFC (OG type SOFC) which has a suitable structure for stacking. Murata Mfg. Co. has begun to develop the OG type SOFC stack through joint program since 1993. Figure 1 shows OG type cell structure. Because each cell is sustained by cell holders acting air manifold, the load of upper cell is not put on the lower cells. Single cell is composed of 3-layered membrane and LaCrO{sub 3} separator. 5 single cells are mounted on the cell holder, connected with Ni felt electrically, and bonded by glassy material sealant. We call the 5-cell stack a unit. Stacking 13 units, we succeeded 870 W generation in 1993. But the power density was low, 0.11 Wcm{sup -2} because of crack in the electrolyte and gas leakage at some cells.

  7. Investigation on etch characteristics of nanometer-sized magnetic tunnel junction stacks using a HBr/Ar plasma.

    Science.gov (United States)

    Kim, Eun Ho; Xiao, Yu Bin; Kong, Seon Mi; Chung, Chee Won

    2011-07-01

    The etch characteristics of CoFeB magnetic films and magnetic-tunnel-junction (MTJ) stacks masked with Ti films were investigated using an inductively coupled plasma reactive ion etching in a HBr/Ar gas mix. The etch rate, etch selectivity, and etch profile of the CoFeB films were obtained as a function of the HBr concentration. As the HBr gas was added to Ar, the etch rate of the CoFeB films, and the etch selectivity to the Ti hard mask, gradually decreased, but the etch profile of the CoFeB films was improved. The effects of the HBr concentration and etch parameters on the etch profile of the MTJ stacks with a nanometer-sized 70 x 100 nm2 pattern were explored. At 10% HBr concentration, low ICP RF power, and low DC-bias voltage, better etch profiles of the MTJ stacks were obtained without redeposition. It was confirmed that the protective layer containing hydrogen, and the surface bombardment of the Ar ions, played a key role in obtaining a steep sidewall angle in the etch profile. Fine-pattern transfer of the MTJ stacks with a high degree of anisotropy was achieved using a HBr/Ar gas chemistry.

  8. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography

    Science.gov (United States)

    Khajeh-Hosseini-Dalasm, Navvab; Sasabe, Takashi; Tokumasu, Takashi; Pasaogullari, Ugur

    2014-11-01

    The microstructure of a TGP-H-120 Toray paper gas diffusion layer (GDL) was investigated using high resolution X-ray computed tomography (CT) technique, with a resolution of 1.8 μm and a field of view (FOV) of ∼1.8 × 1.8 mm. The images obtained from the tomography scans were further post processed, and image thresholding and binarization methodologies are presented. The validity of Otsu's thresholding method was examined. Detailed information on bulk porosity and porosity distribution of the GDL at various Polytetrafluoroethylene (PTFE) treatments and uniform/non-uniform compression pressures was provided. A sample holder was designed to investigate the effects of non-uniform compression pressure, which enabled regulating compression pressure between 0, and 3 MPa at a gas channel/current collector rib configuration. The results show the heterogeneous and anisotropic microstructure of the GDL, non-uniform distribution of PTFE, and significant microstructural change under uniform/non-uniform compression. These findings provide useful inputs for numerical models to include the effects of microstructural changes in the study of transport phenomena within the GDL and to increase the accuracy and predictability of cell performance.

  9. Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant.

    Science.gov (United States)

    Spiegel, R J; Preston, J L

    2003-01-01

    This paper summarizes the results of a 2-year field test to assess the performance of a specially modified commercial phosphoric acid 200-kW fuel cell power plant to recover energy from anaerobic digester gas (ADG) which has been cleansed of contaminants (sulfur and halide compounds) using a patented gas pretreatment unit (GPU). Specific project goals include characterization of the fuel cell power plant emissions and verification of the GPU performance for removing sulfur contaminants. To remove halide contaminants from the ADG, a halide guard, consisting of a vessel with a metal oxide supported on alumina, was incorporated into the fuel cell reactant supply. This first-of-a-kind demonstration was conducted at the Yonkers, NY, wastewater treatment plant, a sewage processing facility owned and operated by Westchester County. Results have demonstrated that the ADG fuel cell power plant can produce electrical output levels close to full power (200 kW) with negligible air emissions of CO, NO(x), and SO(2). The GPU removed virtually 100% of H(2)S and 88% of organic sulfur, bringing the overall sulfur removal efficiency of the GPU to over 99%. The halide guard removed up to 96% of the halides exiting the GPU.

  10. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  11. Surface treatment of non-ferrous metals for the purpose of gas analysis

    International Nuclear Information System (INIS)

    Quaglia, L.; Weber, G.; Triffaux, J.; Geerts, J.; Audenhove, J. van; Pauwels, J.

    1979-01-01

    The present report is an updating of earlier reports published in 1972 and 1976. Its major improvement compared to the earlier reports is that greater importance has been devoted to quantify the parameters of mechanical shaping techniques to be used with or without subsequent chemical etching. Surface treatments have been studied and standardized for a number of non-ferrous metals. Recommendations were generally made on the basis of the following: the proposed treatment must give a minimum surface content; it must exhibit good reproducibility; it must be easy to perform with equipment normally available in analytical laboratories. The recommended treatments are presented in the form of sheets. They give full information on mechanica shaping parameters if these are important, and -if needed- the subsequent chemical etching conditions. Typical residual surface contents are given for oxygen carbon and nitrogen. They refer to samples freshly prepared. The metals or alloys concerned are: aluminium, aluminium alloyed with 3%, 7% and 13% silicon, copper, lead, nickel, titanium, TiAl 6 V 4 zirconium, tungsten and molybdenum

  12. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  13. Water recovery from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Heijboer, R.; Van Deelen-Bremer, M.H.; de Vos, F.; Zeijseink, A.G.L. [KEMA Nederland B.V. (Netherlands)

    2007-07-01

    In the power generation process a large amount of water is needed, for steam generation, flue gas cleaning etc. On the other hand a large amount of water is emitted to the atmosphere via the stack. For example a 400 MW coal fired power plant with a flue gas desulfurisation plant emits about 1,500,000 m{sup 3} per hour with a water concentration of about 11%. The emitted water has a rather good quality compared to surface water and needs less effort to be treated for use as make-up water. As the available amount of water in the flue gas from the earlier mentioned power plant is about 150 tons per hour, recovering 20% of this amount covers the make-up water needs of this 400 MW power plant. Direct condensation of the flue gas needs large cooling power and the condensed water is acidic and corrosive and needs cleanup treatment before it can be used in the water/steam cycle. KEMA developed a technology based on gas separation membranes which makes it possible to recover water from flue gas. The process is covered by a wide patent. The principle of the membrane is comparable to the material that is used in fabric like SympaTex{reg_sign} and GORE-TEX{reg_sign}. The GORE-TEX material is permeable to water vapor but rejects liquid water. The driving force is the water vapor pressure close to the human skin which is the higher than the water vapor pressure open the outside of the clothing. The selectivity of the GORE-TEX material however is not good enough to be used at the temperature of flue gas. The University of Twente (Netherlands) developed a membrane material based on modified PEEK which is highly selective of water vapor at flue gas temperatures. Based on the fact that flat membranes have an uneconomical surface to volume ratio, the choice has been made to use hollow fibre membranes. 6 figs.

  14. Optical technologies applied alongside on-site and remote approaches for climate gas emission quantification at a wastewater treatment plant

    DEFF Research Database (Denmark)

    Samuelsson, Jerker; Delre, Antonio; Tumlin, Susanne

    2018-01-01

    Plant-integrated and on-site gas emissions were quantified from a Swedish wastewater treatment plant by applying several optical analytical techniques and measurement methods. Plant-integrated CH4 emission rates, measured using mobile ground-based remote sensing methods, varied between 28.5 and 33......, corresponding to an average emission factor of 0.11% as kg NH3-N (kg TN removed) −1. On-site emission measurements showed that the largest proportions of CH4 (70%) and NH3 (66%) were emitted from the sludge treatment line (mainly biosolid stockpiles and the thickening and dewatering units), while most of the N2...... in the digesters. Lower CH4 emissions and generally higher N2O and NH3 emissions were observed when the digesters were operated in series. Loading biosolids onto trucks for off-site treatment generally resulted in higher CH4, N2O, and NH3 emissions from the biosolid stockpiles. On-site CH4 and N2O emission...

  15. A greenhouse gas source of surprising significance: anthropogenic CO2emissions from use of methanol in sewage treatment.

    Science.gov (United States)

    Willis, John L; Al-Omari, Ahmed; Bastian, Robert; Brower, Bill; DeBarbadillo, Christine; Murthy, Sudhir; Peot, Christopher; Yuan, Zhiguo

    2017-05-01

    The impact of methanol (CH 3 OH) as a source of anthropogenic carbon dioxide (CO 2 ) in denitrification at wastewater treatment plants (WWTPs) has never been quantified. CH 3 OH is the most commonly purchased carbon source for sewage denitrification. Until recently, greenhouse gas (GHG) reporting protocols consistently ignored the liberation of anthropogenic CO 2 attributable to CH 3 OH. This oversight can likely be attributed to a simplifying notion that CO 2 produced through activated-sludge-process respiration is biogenic because most raw-sewage carbon is un-sequestered prior to entering a WWTP. Instead, a biogenic categorization cannot apply to fossil-fuel-derived carbon sources like CH 3 OH. This paper provides a summary of how CH 3 OH use at DC Water's Blue Plains Advanced Wastewater Treatment Plant (AWTP; Washington, DC, USA) amounts to 60 to 85% of the AWTP's Scope-1 emissions. The United States Environmental Protection Agency and Water Environment Federation databases suggest that CH 3 OH CO 2 likely represents one quarter of all Scope-1 GHG emissions attributable to sewage treatment in the USA. Finally, many alternatives to CH 3 OH use exist and are discussed.

  16. Organic Pollutants in Shale Gas Flowback and Produced Waters: Identification, Potential Ecological Impact, and Implications for Treatment Strategies.

    Science.gov (United States)

    Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A E; Rijnaarts, Huub H M; Van Wezel, Annemarie P

    2017-05-02

    Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined.

  17. Quadratic forms and Clifford algebras on derived stacks

    OpenAIRE

    Vezzosi, Gabriele

    2013-01-01

    In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...

  18. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  19. Status of Slip Stacking at Fermilab Main Injector

    CERN Document Server

    Seiya, Kiyomi; Chase, Brian; Dey, Joseph; Kourbanis, Ioanis; MacLachlan, James A; Meisner, Keith G; Pasquinelli, Ralph J; Reid, John; Rivetta, Claudio H; Steimel, Jim

    2005-01-01

    In order to increase proton intensity on anti proton production cycle of the Main Injector we are going to use the technique of 'slip stacking' and doing machine studies. In slip stacking, one bunch train is injected at slightly lower energy and second train is at slightly higher energy. Afterwards they are aligned longitudinally and captured with one rf bucket. This longitudinal stacking process is expected to double the bunch intensity. The required intensity for anti proton production is 8·1012

  20. A novel design for solid oxide fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qattan, A.M.; Chmielewski, D.J.; Al-Hallaj, S.; Selman, J.R. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering

    2004-01-01

    Conventional fuel cell stack designs suffer from severe spatial nonuniformity in both temperature and current density. Such variations are known to create damaging thermal stresses within the stack and thus, impact overall lifespan. In this work, we propose a novel stack design aimed at reducing spatial variations at the source. We propose a mechanism of distributed fuel feed in which the heat generation profile can be influenced directly. Simulation results are presented to illustrate the potential of the proposed scheme. (author)

  1. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  2. Assessment of the Revised 3410 Building Filtered Exhaust Stack Sampling Probe Location

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Ying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Recknagle, Kurtis P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    In order to support the air emissions permit for the 3410 Building, Pacific Northwest National Laboratory performed a series of tests in the exhaust air discharge from the reconfigured 3410 Building Filtered Exhaust Stack. The objective was to determine whether the location of the air sampling probe for emissions monitoring meets the applicable regulatory criteria governing such effluent monitoring systems. In particular, the capability of the air sampling probe location to meet the acceptance criteria of ANSI/HPS N13.1-2011 , Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities was determined. The qualification criteria for these types of stacks address 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity of tracer particle concentration. Testing was performed to conform to the quality requirements of NQA-1-2000. Fan configurations tested included all fan combinations of any two fans at a time. Most of the tests were conducted at the normal flow rate, while a small subset of tests was performed at a slightly higher flow rate achieved with the laboratory hood sashes fully open. The qualification criteria for an air monitoring probe location are taken from ANSI/HPS N13.1-2011 and are paraphrased as follows with key results summarized: 1. Angular Flow—The average air velocity angle must not deviate from the axis of the stack or duct by more than 20°. Our test results show that the mean angular flow angles at the center two-thirds of the ducts are smaller than 4.5% for all testing conditions. 2. Uniform Air Velocity—The acceptance criterion is that the COV of the air velocity must be ≤ 20% across the center two thirds of the area of the stack. Our results show that the COVs of the air velocity across the center two-thirds of the stack are smaller than 2.9% for all testing conditions. 3

  3. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  4. Design and development of an automated uranium pellet stacking system

    International Nuclear Information System (INIS)

    Reiss, B.S.; Nokleby, S.B.

    2010-01-01

    A novel design for an automated uranium pellet stacking system is presented. This system is designed as a drop-in solution to the current production line to enhance the fuel pellet stacking process. The three main goals of this system are to reduce worker exposure to radiation to as low as reasonable achievable (ALARA), improve product quality, and increase productivity. The proposed system will reduce the potential for human error. This single automated system will replace the two existing pellet stacking stations while increasing the total output, eliminating pellet stacking as a bottleneck in the fuel bundle assembly process. (author)

  5. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  6. Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush

    2018-03-30

    Reprocessing of used nuclear fuel (UNF) is expected to play an important role for sustainable development of nuclear energy by increasing the energy extracted from the fuel and reducing the generation of the high level waste (HLW). However, aqueous reprocessing of UNF is accompanied by emission of off-gas streams containing radioactive nuclides including iodine, krypton, xenon, carbon, and tritium. Volatile iodine (129I), and krypton (85Kr) are long lived isotopes which have adverse effects on the environment as well as human health. Development of methods for the capture and long-term storage of radioactive gases is of crucial importance in order to manage their emissions that are anticipated to increase significantly with the growth of nuclear energy. For more than 70 years, porous solid sorbents have been in the forefront of radioactive contaminant removal due to promising results and their advantages such as high removal efficiency, low maintenance cost, simple equipment design and operation over other techniques. The research conducted in this project has focused on development of a novel nanostructured sorbent and its application for the capture of the above two contaminants of interest. Nanostructured carbon polyhedrons supported on Engelhard Titanosilicate-10 sorbent was synthesized using hydrothermal methods and subjected to structural and compositional characterization using various techniques including electron microscopy, Raman, x-ray diffraction and BET surface area analysis. Dynamic sorption experiments conducted using a flow-through column setup yielded information on the thermodynamics and kinetics of sorption in single-contaminant and multi-contaminant streams. Parameters varied in the study included carbon loading, temperature, contact time, contaminant concentration and humidity. The behavior of the system was modeled using models available in literature as well as development of a mass-transfer model from fundamental principles. Experimental

  7. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. © 2013 Elsevier Ltd.

  8. Experiment and numerical simulation on the performance of a kw-scale molten carbonate fuel cell stack

    Directory of Open Access Journals (Sweden)

    L. J. Yu

    2007-12-01

    Full Text Available A high-temperature molten carbonate fuel cell stack was studied experimentally and computationally. Experimental data for fuel cell temperature was obtained when the stack was running under given operational conditions. A 3-D CFD numerical model was set up and used to simulate the central fuel cell in the stack. It includes the mass, momentum and energy conservation equations, the ideal gas law and an empirical equation for cell voltage. The model was used to simulate the transient behavior of the fuel cell under the same operational conditions as those of the experiment. Simulation results show that the transient temperature and current and power densities reach their maximal values at the channel outlet. A comparison of the modeling results and the experimental data shows the good agreement.

  9. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production

    Energy Technology Data Exchange (ETDEWEB)

    El Afifi, E.M. [Analytical Chemistry and Environmental Control Department, Hot Laboratories and Waste Management Center (HLWMC), Atomic Energy Authority, Post Office No. 13759, Cairo (Egypt); Awwad, N.S. [Analytical Chemistry and Environmental Control Department, Hot Laboratories and Waste Management Center (HLWMC), Atomic Energy Authority, Post Office No. 13759, Cairo (Egypt)], E-mail: nsawwad20@yahoo.com; Hilal, M.A. [Analytical Chemistry and Environmental Control Department, Hot Laboratories and Waste Management Center (HLWMC), Atomic Energy Authority, Post Office No. 13759, Cairo (Egypt)

    2009-01-30

    This paper is dedicated to the treatment of sludge occurring in frame of the Egyptian produced from oil and gas production. The activity levels of three radium isotopes: Ra-226 (of U-series), Ra-228 and Ra-224 (of Th-series) in the solid TENORM waste (sludge) were first evaluated and followed by a sequential treatment for all radium species (fractions) presented in TENORM. The sequential treatment was carried out based on two approaches 'A' and 'B' using different chemical solutions. The results obtained indicate that the activity levels of all radium isotopes (Ra-226, Ra-228 and Ra-224) of the environmental interest in the TENORM waste sludge were elevated with regard to exemption levels established by IAEA [International Atomic Energy Agency (IAEA), International basic safety standards for the protection against ionizing radiation and for the safety of radiation sources. GOV/2715/Vienna, 1994]. Each approach of the sequential treatment was performed through four steps using different chemical solutions to reduce the activity concentration of radium in a large extent. Most of the leached radium was found as an oxidizable Ra species. The actual removal % leached using approach B was relatively efficient compared to A. It is observed that the actual removal percentages (%) of Ra-226, Ra-228 and Ra-224 using approach A are 78 {+-} 2.8, 64.8 {+-} 4.1 and 76.4 {+-} 5.2%, respectively. Whereas in approach A, the overall removal % of Ra-226, Ra-228 and Ra-228 was increased to {approx}91 {+-} 3.5, 87 {+-} 4.1 and 90 {+-} 6.2%, respectively.

  10. Greenhouse gas emissions from wastewater treatment plants: measurements and carbon footprint assessment

    DEFF Research Database (Denmark)

    Delre, Antonio

    anthropogenic GHG emissions. Wastewater treatment plants (WWTPs) emit two potent GHGs, namely methane (CH4) and nitrous oxide (N2O), but also carbon dioxide (CO2), which is not accounted as a GHG, due to its biogenic origin (IPCC, 2006). Currently, CH4 and N2O emissions from WWTPs are estimated according...... and technologies could require different applications of the method, further investigations are needed to identify how MTDM can be best applied at WWTPs. In addition to fugitive emissions of CH4 and N2O, WWTPs indirectly emit GHGs, mainly CO2, due to the consumption of chemicals and energy. The carbon footprint...... assessment allows the quantification of the overall contribution of a WWTP to climate change. The principal aim of this PhD thesis was to implement the MTDM application at WWTPs, in order to quantify plant-integrated CH4 and N2O emissions. Additionally, the influence of analytical instrument characteristics...

  11. Design of a low-cost, compact SRF accelerator for flue gas and wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222439. The proposed project consists of the design of a novel superconducting continuous-wave accelerator capable of providing a beam current of ~1 A at an energy of 1-2 MeV for the treatment of flue gases and wastewater streams. The novel approach consists on studying the feasibility of using a single-cell Nb cavity coated with a thin Nb3Sn layer of the inner surface and conductively cooled by to 4.2 K by cryocoolers inside a compact cryomodule. The proposed study will include beam transport simulations, thermal and mechanical engineering analysis of the cryomodule and a cost analysis for both the fabrications costs and the operational and maintenance costs of such accelerator. The outcome of the project will be a report summarizing the analysis and results from the design study.

  12. Directive Stacked Patch Antenna for UWB Applications

    Directory of Open Access Journals (Sweden)

    Sharif I. Mitu Sheikh

    2013-01-01

    Full Text Available Directional ultrawideband (UWB antennas are popular in wireless signal-tracking and body-area networks. This paper presents a stacked microstrip antenna with an ultrawide impedance bandwidth of 114%, implemented by introducing defects on the radiating patches and the ground plane. The compact (20×34 mm antenna exhibits a directive radiation patterns for all frequencies of the 3–10.6 GHz band. The optimized reflection response and the radiation pattern are experimentally verified. The designed UWB antenna is used to maximize the received power of a software-defined radio (SDR platform. For an ultrawideband impulse radio system, this class of antennas is essential to improve the performance of the communication channels.

  13. ATLAS software stack on ARM64

    Science.gov (United States)

    Smith, Joshua Wyatt; Stewart, Graeme A.; Seuster, Rolf; Quadt, Arnulf; ATLAS Collaboration

    2017-10-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  14. ATLAS software stack on ARM64

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00529764; The ATLAS collaboration; Stewart, Graeme; Seuster, Rolf; Quadt, Arnulf

    2017-01-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  15. Stacked generalization: an introduction to super learning.

    Science.gov (United States)

    Naimi, Ashley I; Balzer, Laura B

    2018-04-10

    Stacked generalization is an ensemble method that allows researchers to combine several different prediction algorithms into one. Since its introduction in the early 1990s, the method has evolved several times into a host of methods among which is the "Super Learner". Super Learner uses V-fold cross-validation to build the optimal weighted combination of predictions from a library of candidate algorithms. Optimality is defined by a user-specified objective function, such as minimizing mean squared error or maximizing the area under the receiver operating characteristic curve. Although relatively simple in nature, use of Super Learner by epidemiologists has been hampered by limitations in understanding conceptual and technical details. We work step-by-step through two examples to illustrate concepts and address common concerns.

  16. Graphite stack corrosion of BUGEY-1 reactor (synthesis)

    International Nuclear Information System (INIS)

    Petit, A.; Brie, M.

    1996-01-01

    The definitive shutdown date for the BUGEY-1 reactor was May 27th, 1994, after 12.18 full power equivalent years and this document briefly describes some of the feedback of experience from operation of this reactor. The radiolytic corrosion of graphite stack is the major problem for BUGEY-1 reactor, despite the inhibition of the reaction by small quantities of CH 4 added to the coolant gas. The mechanical behaviour of the pile is predicted using the ''INCA'' code (stress calculation), which uses the results of graphite weight loss variation determined using the ''USURE'' code. The weight loss of graphite is determined by annually taking core samples from the channel walls. The results of the last test programme undertaken after the definitive shutdown of BUGEY-1 have enabled an experimental graph to be established showing the evolution of the compression resistance (perpendicular and parallel direction to the extrusion axis) as a function of the weight loss. The numerous analyses, made on the samples carried out in the most sensitive regions, have allowed to verify that no brutal degradation of the mechanical properties of graphite happens for the high value of weight loss up to 40% (maximum weight loss reached locally). (author). 10 refs, 3 figs, 4 tabs

  17. Actuators Using Piezoelectric Stacks and Displacement Enhancers

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Lee, Hyeong Jae; Walkenmeyer, Phillip; Lih, Shyh-Shiuh

    2015-01-01

    Actuators are used to drive all active mechanisms including machines, robots, and manipulators to name a few. The actuators are responsible for moving, manipulating, displacing, pushing and executing any action that is needed by the mechanism. There are many types and principles of actuation that are responsible for these movements ranging from electromagnetic, electroactive, thermo-mechanic, piezoelectric, electrostrictive etc. Actuators are readily available from commercial producers but there is a great need for reducing their size, increasing their efficiency and reducing their weight. Studies at JPL’s Non Destructive Evaluation and Advanced Actuators (NDEAA) Laboratory have been focused on the use of piezoelectric stacks and novel designs taking advantage of piezoelectric’s potential to provide high torque/force density actuation and high electromechanical conversion efficiency. The actuators/motors that have been developed and reviewed in this paper are operated by various horn configurations as well as the use of pre-stress flexures that make them thermally stable and increases their coupling efficiency. The use of monolithic designs that pre-stress the piezoelectric stack eliminates the use of compression stress bolt. These designs enable the embedding of developed solid-state motors/actuators in any structure with the only macroscopically moving parts are the rotor or the linear translator. Finite element modeling and design tools were used to determine the requirements and operation parameters and the results were used to simulate, design and fabricate novel actuators/motors. The developed actuators and performance will be described and discussed in this paper.

  18. Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry.

    Science.gov (United States)

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2013-03-01

    Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid-anaerobic/aerobic-biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ± 30, ± 19, and ± 17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ± 6, ± 7, and ± 4 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design.

  19. Application of biological activated carbon as a low pH biofilter medium for gas mixture treatment.

    Science.gov (United States)

    Liang, Juan; Chiaw, Lawrence Koe Choon; Ning, Xiaogang

    2007-04-15

    Packing material is a crucial component of a bioreactor as it is the microbial population's habitat. This study assessed potential improvements to current biofiltration processes by investigating use of a novel support medium. Biological activated carbon (BAC) with microorganisms growing on granular activated carbon can produce a novel medium in which both adsorption and biodegradation contribute to pollutants removal. Investigation of carbon characteristics demonstrated that BAC was an ideal packing medium for biofiltration. The application of the novel packing medium for gas mixture treatment was evaluated in a low pH biofilter. Results demonstrated that BAC biofilter obtained high removal efficiency for both H(2)S and toluene. The removal mechanisms of BAC were investigated after the biofilter operation and it demonstrated that the performance of the BAC system was mainly controlled by the additive contributions of two removal mechanisms - adsorption and biodegradation. This study also indicated the potential for simultaneous treatment of hydrogen sulfide and toluene at low pH condition. (c) 2006 Wiley Periodicals, Inc.

  20. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution

    Science.gov (United States)

    Cho, Yung-Da; Fey, George Ting-Kuo

    The shape change and redistribution of zinc anode material over the electrode during repeated cycling have been identified as the main factors that can limit the life of alkaline zinc-air batteries. Li 2O-2B 2O 3 (lithium boron oxide, LBO) glass with high Li + conductivity and stability can be coated on the surface of zinc powders. The structures of the surface-treated and pristine zinc powders were characterized by XRD, SEM, TEM, ESCA and BET analyses. XRD patterns of LBO-coated zinc powders revealed that the coating did not affect the crystal structure. TEM images of LBO-coated on the zinc particles were compact with an average passivation layer of about 250 nm. The LBO layer can prevent zinc from coming into direct contact with the KOH electrolyte and minimize the side reactions within the batteries. The 0.1 wt.% LBO-coated zinc anode material provided an initial discharge capacity of 1.70 Ah at 0.5 V, while the pristine zinc electrode delivered only 1.57 Ah. A surface-treated zinc electrode can increase discharge capacity, decrease hydrogen evolution reaction, and reduce self-discharge. The results indicated that surface treatment should be effective for improving the comprehensive properties of anode materials for zinc-air batteries.

  1. A Software Managed Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Jordan, Alexander; Abbaspourseyedi, Sahar; Schoeberl, Martin

    2016-01-01

    In a real-time system, the use of a scratchpad memory can mitigate the difficulties related to analyzing data caches, whose behavior is inherently hard to predict. We propose to use a scratchpad memory for stack allocated data. While statically allocating stack frames for individual functions to ...

  2. Calculation of AC losses in large HTS stacks and coils

    DEFF Research Database (Denmark)

    Zermeno, Victor; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work, we present a homogenization method to model a stack of HTS tapes under AC applied transport current or magnetic field. The idea is to find an anisotropic bulk equivalent for the stack of tapes, where the internal alternating structures of insulating, metallic, superconducting and su...

  3. Efficient Context Switching for the Stack Cache: Implementation and Analysis

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar; Brandner, Florian; Naji, Amine

    2015-01-01

    , the analysis of the stack cache was limited to individual tasks, ignoring aspects related to multitasking. A major drawback of the original stack cache design is that, due to its simplicity, it cannot hold the data of multiple tasks at the same time. Consequently, the entire cache content needs to be saved...

  4. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    International Nuclear Information System (INIS)

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH) 2 hydrate flakes for the removal of an acid gas, CO 2 , from air that contains approx. 330 ppM/sub v/ CO 2 . Areas of investigation encompassed: (1) an extensive literature review of Ba(OH) 2 hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH) 2 .8H 2 O flakes at ambient temperatures to be capable of high CO 2 -removal efficiencies (effluent concentrations 99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH) 2 .8H 2 O was determined to be more reactive toward CO 2 than either Ba(OH) 2 .3H 2 O or Ba(OH) 2 .1H 2 O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems

  5. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  6. The behaviour of stacking fault energy upon interstitial alloying.

    Science.gov (United States)

    Lee, Jee-Yong; Koo, Yang Mo; Lu, Song; Vitos, Levente; Kwon, Se Kyun

    2017-09-11

    Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.

  7. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  8. Direct methanol fuel cell stack based on MEMS technology

    Science.gov (United States)

    Zhang, Yufeng; Tang, Xiaochuan; Yuan, Zhenyu; Liu, Xiaowei

    2008-10-01

    This paper presents a design configuration of silicon-based micro direct methanol fuel cell (DMFC) stack in a planar array. The integrated series connection is oriented in a "flip-flop" configuration with electrical interconnections made by thin-film metal layers that coat the flow channels etched in the silicon substrate. The configuration features small connection space and low contact resistance. The MEMS fabrication process was utilized to fabricate the silicon plates of DMFC stack. This DMFC stack with an active area of 64mm x 11mm was characterized at room temperature and normal atmosphere. Experimental results show that the prototype stack is able to generate an open-circuit voltage of 2.7V and a maximum power density of 2.2mW/cm2, which demonstrate the feasibility of this new DMFC stack configuration.

  9. Deformation Induced Microtwins and Stacking Faults in Aluminum Single Crystal

    Science.gov (United States)

    Han, W. Z.; Cheng, G. M.; Li, S. X.; Wu, S. D.; Zhang, Z. F.

    2008-09-01

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  10. Physical Sciences Laboratory 1 Rooftop Stack Mixing Study

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    To address concerns about worker exposures on the Physical Science Laboratory (PSL) rooftop, a tracer study was conducted to measure gaseous tracer concentrations downwind of six stacks on the southern half of the PSL building (PSL-1). These concerns were raised, in part, due to the non-standard configuration of the stacks on this building. Five of the six stacks were only about 8 feet tall, with one shorter stack that was essentially level with the roof deck. These stacks were reconfigured in August 2016, and these exhaust points on PSL-1 are now 18 feet tall. This report describes the objectives of the tracer tests performed on PSL-1, provides an overview of how the tests were executed, and presents results of the tests. The tests on the PSL rooftop were a follow-on project from a similar study performed on the LSL-II ventilation exhaust (Flaherty and Antonio, 2016).

  11. Electrochemical Impedance Spectroscopy on Industrially-Relevant Solid Oxide Electrolyzer Cell Stacks: A Powerful Tool for in-Situ Investigations of Degradation Mechanisms

    DEFF Research Database (Denmark)

    Zielke, Philipp; Høgh, Jens Valdemar Thorvald; Chen, Ming

    2016-01-01

    .g. transportation, or at high demands converted back to electricity by either conventional power plants or fuel cells. One of today’s biggest hurdles for a successful commercialization of solid oxide electrolyzers is the stack’s lifetime with current industry targets in the order of five to ten years. To identify...... that energy services can be covered in a stable and affordable manner. One promising solution is the synthetic fuel production by solid oxide electrolyzers. Electricity can be stored in a power-to-gas process during times of excess electricity production and then further converted to liquid fuels for e...... stack (Delta design) specifically optimized for EIS measurements, while the other stack was an 8-cell stack (TSP-1 design), where impedance measurements were carried out without major modifications to the stack. The individual cell voltages were monitored simultaneously by EIS during up to 2000 hours...

  12. Greenhouse Gas (CH4, CO2 and N2O) Emission Levels by Wastewater Treatment Plant (WWTP) Ponds in Brazil

    Science.gov (United States)

    Rossete, A. L. M.; Sundefeld Junior, G.; Aparicio, C.; Baldi, G. G.; Montes, C. R.; Piveli, R. P.; Melfi, A. J.

    2015-12-01

    This study measured greenhouse gas emissions (GHG) by Facultative Ponds on Wastewater Treatment Plants. The most studied GHGs include CO2, CH4and N2O. The level of GHG (CO2, CH4 and N2O) emissions by WWTPs in Australian-type stabilization ponds was measured in the city of Lins (22º21'S, 49º50'W), state of São Paulo (SP), Brazil. GHG collection was carried outusing a collection chamber installed at the center of the facultative pond's final third. The effluent's pH and temperature (ET) were registered by probes, and meteorological information regarding air temperature (AT) and solar radiation (SR) were obtained from INMET, Brazil. GHG collection was carried out for 72 consecutive hours in June 2014, on an hourly basis, once every 5 minutes, for the first 30 minutes, and once every 10 minutes from 30 to 50 minutesand subsequently analyzed by gas chromatograph (GC).After three days of data collection, the average AT, SR, ET and pH values were, respectively, 18oC, 2583kJm-2, 23oC and 8.2. Average values for GHG emission levels (CH4, CO2 and N2O) were 79.01; 100.65 and 0.0 mg m-2 h-1, respectively. GHG emission levels were divided into light periods (morning, afternoon and evening)in order to verify the periods with the highest GHG emissions.The highest CH4 emission levels were measured between morning and early afternoon. The maximum CO2 emissions were observed from evening to early morning. N2O emissions were constant and values were close to the ones found in the atmosphere, which shows the emission of N2O by facultative ponds does not contribute to greenhouse gases emissions.The results enabled us to characterize and quantify GHG emission levels per Facultative Pond on Wastewater Treatment Plant. Acknowledgment to FAPESP and SABESP, Brazil.

  13. Development of a 'wet' variant of electron beam gas treatment technology adapted to economic and technological conditions of developing countries to remove NOx, SO2 and particulates from flue gas and produce fertilizers

    International Nuclear Information System (INIS)

    Fainchtein, O.L.; Piotrovskiy, V.V.; Savenkov, A.S.; Smirnov, I.K.; Salimov, R.A.

    1998-01-01

    The Institute Energostal with its co-authors has carried out real gas tests of the EB flue gas treatment technology at a 1000 m 3 /h experimental installation at Lipetsk Metallurgical Plant (Lipetsk, Russia), including agricultural tests to utilize the by-product. On the basis of the results obtained, a ''wet'' variant of the EB technology has been developed. A conceptual, basic and working design was engineered for a 100,000 m 3 /h EB demonstration unit at Slavyanskaya Power Plant (Donbass, Ukraine). In a ''wet'' variant of the technology, the following problems are believed to be harmoniously solved: reduction of power consumption for irradiation due to heterogenous reactions based on the so-called droplet mechanism, efficiency and reliability of collecting ammonia salts by wet dust catchers, wet granulation of the by-product using traditional equipment. A ''wet'' variant of the EB technology has a low capital cost and requires less floor area. Therefore, despite all its disadvantages typical for any wet method of gas purification, the ''wet'' EB technology can find its application in developing countries with low levels of economy. In many countries of this type, in particular, in the countries of the former Soviet Union, wet methods of gas treatment and fertilizer granulation are still widely used. As a matter of fact, it is a conventionally ''wet'' method (hence the inverted commas), since no waste water is discharged into the environment

  14. Reflector imaging by diffraction stacking with stacking velocity analysis; Jugo sokudo kaiseki wo tomonau sanran jugoho ni yoru hanshamen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J.; Rokugawa, S.; Kato, Y. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T. [Japan National Oil Corp., Tokyo (Japan); Miyazaki, T. [Geological Survey of Japan, Tsukuba (Japan)

    1997-10-22

    Concerning seismic reflection survey for geometrical arrangement between pits, the scattering stacking method with stacking velocity analysis is compared with the CDP (common depth point horizontal stacking method). The advantages of the CDP supposedly include the following. Since it presumes an average velocity field, it can determine velocities having stacking effects. The method presumes stratification and, since such enables the division of huge quantities of observed data into smaller groups, more data can be calculated in a shorter time period. The method has disadvantages, attributable to its presuming an average velocity field, that accuracy in processing is lower when the velocity field contrast is higher, that accuracy in processing is low unless stratification is employed, and that velocities obtained from stacking velocity analysis are affected by dipped structures. Such shortcomings may be remedied in the scattering stacking method with stacking velocity analysis. Possibilities are that, as far as the horizontal reflection plane is concerned, it may yield stack records higher in S/N ratio than the CDP. Findings relative to dipped reflection planes will be introduced at the presentation. 6 refs., 12 figs.

  15. Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Simon Araya, Samuel; Andreasen, Søren Juhl

    2017-01-01

    their effects on a reformate-operated stack. Polarization curves were also recorded to complement the impedance analysis of the researched phenomena. An equivalent circuit model was used to estimate the different resistances at varying parameters. It showed a significantly higher low frequency resistance......, λanode= 1.6 for reformate operation and λcathode= 4.The work also compared dry hydrogen, steam reforming and autothermal reforming gas feeds at160 ◦Cand showed appreciably lower performance in the case of autothermal reforming at the same stoichiometry, mainly attributable to mass transport related...

  16. Development and characterisation of a portable direct methanol fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, A.

    2005-11-21

    This thesis deals with the development and characterisation of a portable direct methanol fuel cell stack. In addition, calculations of the transport of methanol and water in the membrane are compared with experimentally determined values. It also includes investigations of the behaviour of single-cells and some of its components, as the anode gas diffusion layer and the anode flow-field. For the addition of methanol to the anode feed loop, a passive concept based on a permeable tube was developed and verified by both experiments and simulations. (orig.)

  17. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  18. Analysis of the effect of dissimilar welding in a high pressure flare stack

    International Nuclear Information System (INIS)

    Mahdi Ezwan Mahmoud; Mohd Harun; Zaifol Samsu; Norasiah Kasim; Zaiton Selamat; Alahuddin, K.H.

    2010-01-01

    A flare stack is an elevated vertical stack found in a natural gas processing plant, used primarily for combusting waste gases released by pressure relief valves. The materials used for our high pressure flare tip are carbon steel (CS) type A516 Gr. 55 for its lower portion, and stainless steel (SS) 310 for its upper portion. Both were combined into a single unit by arc welding (dissimilar welding), with SS310 as a base metal. After 5 years of operations, few mechanical deformations were observed on the flare stack, along with corrosion deposit on the CS portion of the flare. Detailed analysis shows the presence of toe and shrinkage cracks, along with spheroidization of pearlite in the CS. These are caused by factors such as mismatched welding and coefficient of thermal expansion (CTE) between the metals. These factors helped exacerbate crack initiation and propagation. Based on the evidence collected, it is recommended that the CS A516 be replaced with SS310. (author)

  19. Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack

    International Nuclear Information System (INIS)

    James O'Brien; Carl Stoots; Steve Herring; J. Hartvigsen

    2005-01-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900 C. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte supported, with scandia-stabilized zirconia electrolytes (∼140 (micro)m thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1-0.6), gas flow rates (1000-4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate

  20. Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.

    Science.gov (United States)

    Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.

  1. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  2. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge.

    Science.gov (United States)

    Chen, Wei-Hsiang; Yang, Jun-Hong; Yuan, Chung-Shin; Yang, Ying-Hsien

    2016-10-01

    Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N 2 O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N 2 O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m 2 -day). The total emission in the WWTP (including carbon dioxide, methane, and N 2 O) would decrease by 46 % (from 0.67 to 0.36 kg CO 2 -equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  3. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1992--February 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kadlec, R.H.; Srinivasan, K.R.

    1993-04-02

    During the first quarter of the above contract, all the elements of Task 1 were completed. The first quarterly report presented an overview of a wetland and its increasing use in industrial wastewater treatment. An idealized, reaction engineering description of wetlands was presented to demonstrate how the various processes that occur in a wetland can be modeled. Previous work on the use of wetlands to remove BOD, TSS, Phosphorus and Nitrogen was reviewed. Recent literature on the application of wetland technology to the treatment of petroleum-related wastewater was critically evaluated and an outline of the research plans for the first year was delineated. Further, our literature search (nominally completed under Task 1) unearthed more recent studies (some unpublished) and a summary was included in the second quarterly report. In the second quarterly report, results of our efforts on the construction of a laboratory-type wetland were also reported. Initial studies on the use of wetland amendments such as modified-clays and algae cells were presented and discussed. Adsorption of heavy metal ions, Cu{sup 2+} and Cr(VI) onto soils drawn from the laboratory-type wetland built as a part of this contract has been undertaken and these results are presented and discussed in this quarterly report. A number of studies on the design and preparation of modified-clays for the adsorption of Cr(VI) and {beta}-naphthoic acid (NA) has been carried out during this quarter and these are also described and discussed in this report. The choice of {beta}-naphthoic acid (NA) as an ionogenic organic compound was made on the basis of a recent personal communication to the Project Director that NA is a major contaminant in many oil and gas well wastewaters.

  4. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  5. ATLAS software stack on ARM64

    CERN Document Server

    Smith, Joshua Wyatt; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment explores new hardware and software platforms that, in the future, may be more suited to its data intensive workloads. One such alternative hardware platform is the ARM architecture, which is designed to be extremely power efficient and is found in most smartphones and tablets. CERN openlab recently installed a small cluster of ARM 64-bit evaluation prototype servers. Each server is based on a single-socket ARM 64-bit system on a chip, with 32 Cortex-A57 cores. In total, each server has 128 GB RAM connected with four fast memory channels. This paper reports on the port of the ATLAS software stack onto these new prototype ARM64 servers. This included building the "external" packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adj...

  6. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  7. Lithiation-induced shuffling of atomic stacks

    KAUST Repository

    Nie, Anmin

    2014-09-10

    In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

  8. Weyl magnons in noncoplanar stacked kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-03-01

    Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.

  9. Extensive Use of Gas Chromatography – Mass Spectrometry for the Characterization of the Effects of Radiation Treatment of Wastewater

    International Nuclear Information System (INIS)

    Virgolici, M.; Stanculescu, I.R.; Ponta, C.C.; Moise, I.V.; Cutrubinis, M.; Negut, D.C.; Manea, M.M.; Alexandru, M.

    2012-01-01

    An ongoing radiolytic study is currently carried out on model wastewater samples spiked with organochlorine insecticides (e.g. hexachlorobenzene (HCB)) and polychlorinated byphenils (PCB, e.g. PCB 52). To identify the most convenient irradiation conditions for wastewater treatment, samples were irradiated at different doses: 1.3, 4.5 and 13 kGy (1.3 kGy/h dose rate). The dependence of organochlorine insecticides and PCB’s concentration of the absorbed dose was monitored by gas chromatography (GC) with simultaneous micro electron capture detection (ECD) and mass spectrometric detection (MS, in single ion monitoring (SIM) mode); using ISO 6468:1996 protocols for sample preparation. The molecular structure confirmation of target compounds and possible persistent organic pollutant (POP) radiolysis products was also performed with the mass spectrometric detector in SCAN mode. A molecular modelling study is developed to predict the most probable radiolysis products and it is correlated with the GC/MS results to suggest some preferential radiolysis pathways. (author)

  10. The effect of nightly nasal CPAP treatment on nocturnal hypoxemia and sleep disorders in mustard gas-injured patients.

    Science.gov (United States)

    Vahedi, Ensieh; Fazeli Varzaneh, Ali Reza; Ghanei, Mostafa; Afsharpaiman, Shahla; Poursaleh, Zohre

    2014-12-01

    Sleep-related breathing disorders are associated with unusual respiratory pattern or an abnormal reduction in gas exchange during sleep that is common in sulfur mustard (SM) exposure. We compared 57 Iranian male patients injured with SM and had any complaints of sleep problems with an age-matched group of 21 Iranian male patients who had complaints of sleep problems and were not chemically injured; this group had Epworth Sleepiness Scale (ESS) above 10 and whom referred for polysomnography. Split-night studies were performed for patients with diagnostic polysomnography for obstructive sleep apnea (OSA) and respiratory events. We then studied respiratory events including episodes of OSA, apnea-hypopnea index (AHI) and respiratory disturbance index (RDI). The mean age in mustard-exposed patients was 48.14±8.04 years and in age-matched group, 48.19±8.39 years. In mustard exposed patients, there were statistical differences for the episodes of OSA (p=0.001), AHI (p=0.001), and RDI (p=0.001) between two segments of split-night studies. In the age-matched group, there were statistically differences for each parameter (episodes of OSA (p=0.001), AHI (p=0.001), and RDI (p=0.001)). There were no significant differences between two groups. This study indicated that the incidence of respiratory events and nocturnal hypoxemia during sleep in mustard-exposed patients were high and treatment with CPAP significantly reduced all these events.

  11. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    Science.gov (United States)

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage

    Science.gov (United States)

    Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.

    2007-01-01

    The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.

  13. Efficiency of Polymer Electrolyte Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hans Bosma

    2011-08-01

    Full Text Available This paper applies a feedforward control of optimal oxygen excess ratio that maximize net power (improve efficiency of a NedStack P8.0-64 PEM fuel cell stack (FCS system. Net powers profile as a function of oxygen excess ratio for some points of operation are analyzed by using FCS model. The relationships between stack current and the corresponding control input voltage that gives an optimal oxygen excess ratio are used to design a feedforward control scheme. The results of this scheme are compared to the results of a feedforward control using a constant oxygen excess ratio. Simulation results show that optimal oxygen excess ratio improves fuel cell performance compared to the results of constant oxygen excess ratio. The same procedures are performed experimentally for the FCS system. The behaviour of the net power of the fuel cell stack with respect to the variation of oxygen excess ratio is analyzed to obtain optimal values. Data of stack current and the corresponding voltage input to the compressor that gives optimal values of oxygen excess ratio are used to develop a feedforward control. Feedforward control based on constant and optimal oxygen excess ratio control, are implemented in the NedStack P8.0-64 PEM fuel cell stack system by using LabVIEW. Implementation results shows that optimal oxygen excess ratio control improves the fuel cell performance compared to the constant oxygen excess ratio control.

  14. Assessment of blood gas parameters and the degree of inflammation in noninvasive positive pressure ventilation combined with aminophylline treatment of COPD complicated with type II respiratory failure

    Directory of Open Access Journals (Sweden)

    Jin-Ru Zhang

    2016-10-01

    Full Text Available Objective: To analyze the effect of noninvasive positive pressure ventilation combined with aminophylline therapy on blood gas parameters and the degree of inflammation in patients with COPD and type II respiratory failure. Methods: A total of 80 patients with COPD and type Ⅱ respiratory failure were randomly divided into observation group and control group (n=40, control group received symptomatic treatment + aminophylline treatment, observation group received symptomatic treatment + aminophylline + noninvasive positive pressure ventilation treatment, and then differences in blood gas parameters, pulmonary function parameters, hemorheology parameters and inflammatory factor levels were compared between two groups of patients after treatment. Results: Radial artery pH and PO2 values of observation group after treatment were higher than those of control group while PCO2, Cl- and CO2CP values were lower than those of control group; pulmonary function parameters FVC, FEV1, FEF25-75, MMF, PEF and FRC values of observation group after treatment were higher than those of control group; whole blood viscosity (150 s- and 10 s-, plasma viscosity, fibrinogen, erythrocyte aggregation index and erythrocyte rigidity index values in peripheral venous blood of observation group after treatment were lower than those of control group; serum IL-17, IL-33, TREM-1, sICAM-1 and PGE2 levels of observation group after treatment were lower than those of control group. Conclusion: Noninvasive positive pressure ventilation combined with aminophylline can optimize the respiratory function of patients with COPD and type II respiratory failure and improve blood gas parameters and the degree of inflammation.

  15. Laboratory Optimization Tests of Decontamination of Cs, Sr, and Actinides from Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-06

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also substantially decrease the LAW vitrification mission duration and quantity of glass waste.

  16. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  17. Consolidity: Stack-based systems change pathway theory elaborated

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah

    2014-06-01

    Full Text Available This paper presents an elaborated analysis for investigating the stack-based layering processes during the systems change pathway. The system change pathway is defined as the path resulting from the combinations of all successive changes induced on the system when subjected to varying environments, activities, events, or any excessive internal or external influences and happenings “on and above” its normal stands, situations or set-points during its course of life. The analysis is essentially based on the important overall system paradigm of “Time driven-event driven-parameters change”. Based on this paradigm, it is considered that any affected activity, event or varying environment is intelligently self-recorded inside the system through an incremental consolidity-scaled change in system parameters of the stack-based layering types. Various joint stack-based mathematical and graphical approaches supported by representable case studies are suggested for the identification, extraction, and processing of various stack-based systems changes layering of different classifications and categorizations. Moreover, some selected real life illustrative applications are provided to demonstrate the (infinite stack-based identification and recognition of the change pathway process in the areas of geology, archeology, life sciences, ecology, environmental science, engineering, materials, medicine, biology, sociology, humanities, and other important fields. These case studies and selected applications revealed that there are general similarities of the stack-based layering structures and formations among all the various research fields. Such general similarities clearly demonstrate the global concept of the “fractals-general stacking behavior” of real life systems during their change pathways. Therefore, it is recommended that concentrated efforts should be expedited toward building generic modular stack-based systems or blocks for the mathematical

  18. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  19. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  20. On $k$-stellated and $k$-stacked spheres

    OpenAIRE

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  1. Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Zak K

    2002-08-01

    The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.

  2. Optimized stacked RADFETs for milli-rad dose measurement

    International Nuclear Information System (INIS)

    O'Connell, B.; Lane, B.; Mohammadzadeh, A.

    1999-01-01

    This paper details the improvements in the design of stacked RADFETs for increased radiation sensitivity. The issues of high read-out voltage has been shown to be a draw-back. It is the body (bulk)effect factor that is responsible for the increased overall stack Threshold voltage (V T ), which is greater than the sum of the individual devices V T . From extensive process and device simulation and resultant circuit simulation, modified stack structures have been proposed and designed. New and exciting result of lower initial (pre-irradiation) output voltage as well as increased radiation sensitivity will be presented. (author)

  3. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  4. Simulation of magnetization and levitation characteristics of HTS tape stacks

    Science.gov (United States)

    Anischenko, I. V.; Pokrovskii, S. V.; Mineev, N. A.

    2017-12-01

    In this work it is presented a computational model of a magnetic levitation system based on stacks of high-temperature second generation superconducting tapes (HTS) GdBa2Cu3O7-x. Calculated magnetic field and the current distributions in the system for different stacks geometries in the zero-field cooling mode are also presented. The magnetization curves of the stacks in the external field of a permanent NdFeB magnet and the levitation force dependence on the gap between the magnet and the HTS tapes stack were obtained. A model of the magnetic system, oriented to levitation application, is given. Results of modeling were compared with the experimental data.

  5. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  6. Static analysis of worst-case stack cache behavior

    DEFF Research Database (Denmark)

    Jordan, Alexander; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Utilizing a stack cache in a real-time system can aid predictability by avoiding interference that heap memory traffic causes on the data cache. While loads and stores are guaranteed cache hits, explicit operations are responsible for managing the stack cache. The behavior of these operations can......-graph, the worst-case bounds can be efficiently yet precisely determined. Our evaluation using the MiBench benchmark suite shows that only 37% and 21% of potential stack cache operations actually store to and load from memory, respectively. Analysis times are modest, on average running between 0.46s and 1.30s per...... be analyzed statically. We present algorithms that derive worst-case bounds on the latency-inducing operations of the stack cache. Their results can be used by a static WCET tool. By breaking the analysis down into subproblems that solve intra-procedural data-flow analysis and path searches on the call...

  7. A Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Nielsen, Carsten

    2016-01-01

    Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related to local......Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related...... to locality, lifetime, and static analyzability of access addresses comparedto static or heap allocated data. Therefore, caching of stack allocateddata benefits from having its own cache. In this paper we present a cache architecture optimized for stack allocateddata. This cache is additional to the normal...

  8. DBaaS with OpenStack Trove

    CERN Document Server

    Giardini, Andrea

    2013-01-01

    The purpose of the project was to evaluate the Trove component for OpenStack, understand if it can be used with the CERN infrastructure and report the benefits and disadvantages of this software. Currently, databases for CERN projects are provided by a DbaaS software developed inside the IT-DB group. This solution works well with the actual infrastructure but it is not easy to maintain. With the migration of the CERN infrastructure to OpenStack the Database group started to evaluate the Trove component. Instead of mantaining an own DbaaS service it can be interesting to migrate everything to OpenStack and replace the actual DbaaS software with Trove. This way both virtual machines and databases will be managed by OpenStack itself.

  9. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    Science.gov (United States)

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  10. SEE on Different Layers of Stacked-SRAMs

    CERN Document Server

    Gupta, V; Tsiligiannis, G; Rousselet, M; Mohammadzadeh, A; Javanainen, A; Virtanen, A; Puchner, H; Saigné, F; Wrobel, F; Dilillo, L

    2015-01-01

    This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The impact of the stacked structure on the proton SEE rate is investigated.

  11. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  12. Modeling of a Stacked Power Module for Parasitic Inductance Extraction

    Science.gov (United States)

    2017-09-15

    ARL-TR-8138 ● SEP 2017 US Army Research Laboratory Modeling of a Stacked Power Module for Parasitic Inductance Extraction by...not return it to the originator. ARL-TR-8138 ● SEP 2017 US Army Research Laboratory Modeling of a Stacked Power Module for...aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if

  13. National Spherical Torus Experiment (NSTX) Center Stack Upgrade

    International Nuclear Information System (INIS)

    Neumeyer, C.; Avasarala, S.; Chrzanowski, J.; Dudek, L.; Fan, H.; Hatcher, H.; Heitzenroeder, P.; Menard, J.; Ono, M.; Ramakrishnan, S.; Titus, P.; Woolley, R.; Zhan, H.

    2009-01-01

    The purpose of the NSTX Center Stack Upgrade project is to expand the NSTX operational space and thereby the physics basis for next-step ST facilities. The plasma aspect ratio (ratio of plasma major to minor radius) of the upgrade is increased to 1.5 from the original value of 1.26, which increases the cross sectional area of the center stack by a factor of ∼ 3 and makes possible higher levels of performance and pulse duration.

  14. A new method for beam stacking in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2008-06-01

    Recently, I developed a new beam stacking scheme for synchrotron storage rings called 'longitudinal phase-space coating' (LPSC). This scheme has been convincingly validated by multi-particle beam dynamics simulations and has been demonstrated with beam experiments at the Fermilab Recycler. Here, I present the results from both simulations and experiments. The beam stacking scheme presented here is the first of its kind.

  15. Stacking faults and phase transformations in silicon nitride

    Science.gov (United States)

    Milhet, X.; Demenet, J.-L.; Rabier, J.

    1998-11-01

    From observations of extended dislocation nodes in β silicon nitride, possible stacking fault structures in the basal plane of this compound have been investigated. It has been found that stacking fault structure is locally analogous to α silicon nitride. A phase transformation α to β or β to α can also be achieved by cooperative shear of partial dislocations with 1/3<~ngle1bar{1}00rangle Burgers vectors.

  16. LOFT diesel generator ''A'' exhaust stack seismic analysis

    International Nuclear Information System (INIS)

    Blandford, R.K.

    1978-01-01

    A stress analysis of the LOFT Diesel Generator ''A'' Exhaust Stack was performed to determine its reaction to Safe-Shutdown Earthquake loads. The exhaust stack silencer and supporting foundation was found to be inadequate for the postulated seismic accelerations. Lateral support is required to prevent overturning of the silencer pedestal and reinforcement of the 4'' x 0.5'' silencer base straps is necessary. Basic requirements for this additional support are discussed

  17. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  18. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-28

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  19. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  20. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    . This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell......High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  1. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  2. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Science.gov (United States)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  3. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Directory of Open Access Journals (Sweden)

    Gravel Jean-Francois Y.

    2016-01-01

    Full Text Available There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  4. Contaminant Characterization of Effluent from Pennsylvania Brine Treatment, Inc., Josephine Facility: Implications for Disposal of Oil and Gas Flowback Fluids from Brine Treatment Plants

    Science.gov (United States)

    The PBT-Josephine Facility accepts only wastewater from the oil and gas industry. This report describes the concentrations of selected contaminants in the effluent water and compares the contaminant effluent concentrations to state and federal standards.

  5. Study of post-weld heat treatment cracking of Nickel base super alloy (Udimet 520) in gas tungsten arc welding method

    International Nuclear Information System (INIS)

    Kokabi, A. H.; Nematzadeh, F.

    2003-01-01

    In this paper, the mechanism and the cause and the ways for eliminating the decrease of post-weld heat treatment cracking in welding of Nickel base super alloy (Udimet 520) in gas tungsten arc welding method has been studied. For this study, X-ray diffraction machine and quantometery has been used. Increasing of Al, Ti percentage and residual stress are the main causes of cracking post-weld heat treatment. The results from quantometery tests demonstrate that decreasing tendency to post-weld heat treatment cracking is due to the decrease of Al, Ti percentage of welding. Result of X-ray diffraction tests show the tendency toward increasing of post-weld heat treatment cracking for existing of strenghed residual stresses. Finally, it is illustrated that alloy welding Udimet 520 in Ti G method is not sensitive to post-weld heat treatment cracking

  6. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  7. Stacking and Analysis of Melamine in Milk Products with Acetonitrile-Salt Stacking Technique in Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yu Kong

    2014-01-01

    Full Text Available Melamine was measured in real milk products with capillary electrophoresis (CE based on acetonitrile-salt stacking (ASS method. Real milk samples were deproteinized with acetonitrile at a final concentration of 60% (v/v and then injected hydrodynamically at 50 mBar for 40.0 s. The optimized buffer contains 80.0 mmol/L pH 2.8 phosphates. Melamine could be detected within 20.0 min at +10 kV with a low limit of detection (LOD of 0.03 μmol/L. Satisfactory reproducibility (inter- and intraday RSD% both for migration time and peak area was lower than 5.0% and a wide linearity range of 0.05 μmol/L ~ 10.0 μmol/L were achieved. The proposed method was suitable for routine assay of MEL in real milk samples that was subjected to a simple treatment step.

  8. An electron beam flue gas treatment plant for a coal fired thermal power station. EBA demonstration plant in Chengdu thermal power station (China EBA Project)

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Nakanishi, Ikuo; Shi, Jingke

    1999-01-01

    Ebara's electron beam flue gas treatment plant was installed and is being demonstrated in Chengdu Thermal Power Station, Sichuan, China. The demonstration is proving that this plant is fully capable of meeting the target removal of sulfur dioxides from flue gas (flow rate : 300-thousand m 3 /h). Recovered by-products, namely ammonium sulfate and ammonium nitrate, from the treatment were actually tested as fertilizers, the result of which was favorable. The sale and distribution of these by-products are already underway. In May 1995, this plant was presented the certificate of authorization by China's State Power Corporation. It is noted that this was the first time a sulfur dioxide removal plant was certified as such in China. (author)

  9. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  10. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack

    KAUST Repository

    Hatzell, Marta C.

    2013-11-01

    Ammonium bicarbonate has recently been demonstrated to be an excellent thermolytic solution for energy generation in reverse electrodialysis (RED) stacks. However, operating RED stacks at room temperatures can promote gaseous bubble (CO2, NH3) accumulation within the stack, reducing overall system performance. The management and minimization of bubbles formed in RED flow fields is an important operational issue which has yet to be addressed. Flow fields with and without spacers in RED stacks were analyzed to determine how both fluid flow and the buildup and removal of bubbles affected performance. In the presence of a spacer, the membrane resistance increased by ~50Ω, resulting in a decrease in power density by 30% from 0.140Wm-2 to 0.093Wm-2. Shorter channels reduced concentration polarization affects, and resulted in 3-23% higher limiting current density. Gas accumulation was minimized through the use of short vertically aligned channels, and consequently the amount of the membrane area covered by bubbles was reduced from ~20% to 7% which caused a 12% increase in power density. As ammonium bicarbonate RED systems are scaled up, attention to channel aspect ratio, length, and alignment will enable more stable performance. © 2013 Elsevier B.V.

  11. Regulatory Off-Gas Analysis from the Evaporator of Hanford Simulated Waste Spiked with Organic Compounds

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, remaining low activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation prior to being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile and pesticide compounds, and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River Technology Center. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using EPA SW-846 Methods

  12. Clinical significance of changes of serum gastrin (gas) transforming growth factor-alpha (TGF-α) and interleukin-8 (IL-8) levels after treatment in patients with peptic ulcer

    International Nuclear Information System (INIS)

    Zhou Yuyang

    2007-01-01

    Objective: To explore the clinical significance of changes of serum Gas, TGF-α and IL-8 levels in patients with peptic ulcer. Methods: Serum Gas, TGF-α (with RIA), IL-8 (with ELISA) levels were determined in 56 patients with peptic ulcer both before and after treatment as well as in 35 controls. Results: Before treatment the serum Gas and IL-8 levels were significantly higher than those in controls (P 0.05). Conclusion: Serum Gas, TGF-α and IL-8 levels were closely related to the diseases process of peptic ulcer and were of prognostic values. (authors)

  13. Characteristics of naturally occurring radioactive materials (NORMs) in the oil and gas industries and their behaviour under thermal treatment: an overview

    International Nuclear Information System (INIS)

    Mohamad Puad Ali; Shamsuddin A H; Muhd Noor Muhd Yunus

    1999-01-01

    Activities and work practices in which radiation exposure of workers and members of the public is increased due to the presence of NORM are receiving increased attention from regulatory agencies and, to lesser extent, from the general public. In Malaysia the main sources of NORM are from the technological activities of tin mining, ore and heavy mineral processing, combustion of coal to generate power, and oil and gas extraction. Sludge that contains NORM arising from the oil and gas extraction activities lately has received special attention by the Malaysian regulatory authorities. These sludge are considered as scheduled waste (contains heavy metals) by Department of Environmental (DOE) and low level radioactive waste (contains NORM) by the Atomic Energy Licensing Board (AELB), and its cannot be disposed freely without proper control. From literature, the present methods of treatment practiced via land farming and storing are not recommended and will have long term impact to the environment. The other possible method can be considered to treat this sludge is by using thermal treatment technology but before this technology can be fully applied, a study has to be carried out to determine the behaviour of the various elements present in the sludge. This paper reviewed the radiological characteristic of NORMs in relation with the oil and gas production activities in Malaysia and also their behaviour when under going thermal treatment at certain temperature and combustion time. (Author)

  14. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  15. The conceptual flowsheet of effluent treatment during total gelation of uranium process for preparing ceramic UO2 particles of high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Quan Ying; Chen Xiaotong; Wang Yang; Liu Bing; Tang Yaping; Tang Chunhe

    2014-01-01

    Today, more and more people pay attention to the environmental protection and ecological environment. Along with the development of nuclear industry, many radioactive effluents may be discharged into environment, which can lead to the pollutions of water, atmosphere and soil. So radioactive effluents including low-activity and medium-level wastes solution treatments have been becoming one of significant subjects. High temperature gas-cooled reactor (HTR) is one of advanced nuclear reactors owing to its reliability, security and broad application in which the fabrication of spherical fuel element is a key technology. During the production of spherical fuel elements, the radioactive effluent treatment is necessary. Referring to the current treatment technologies and methods, the conceptual flowsheet of low-level radioactive effluent treatment during preparing spherical fuel elements was summarized which met the 'Zero Emission' demand. (authors)

  16. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method.

    Science.gov (United States)

    Pinnock, Cameron B; Xu, Zhengfan; Lam, Mai T

    2017-03-27

    Coronary artery disease remains a leading cause of death, affecting millions of Americans. With the lack of autologous vascular grafts available, engineered grafts offer great potential for patient treatment. However, engineered vascular grafts are generally not easily scalable, requiring manufacture of custom molds or polymer tubes in order to customize to different sizes, constituting a time-consuming and costly practice. Human arteries range in lumen diameter from about 2.0-38 mm and in wall thickness from about 0.5-2.5 mm. We have created a method, termed the "Ring Stacking Method," in which variable size rings of tissue of the desired cell type, demonstrated here with vascular smooth muscle cells (SMCs), can be created using guides of center posts to control lumen diameter and outer shells to dictate vessel wall thickness. These tissue rings are then stacked to create a tubular construct, mimicking the natural form of a blood vessel. The vessel length can be tailored by simply stacking the number of rings required to constitute the length needed. With our technique, tissues of tubular forms, similar to a blood vessel, can be readily manufactured in a variety of dimensions and lengths to meet the needs of the clinic and patient.

  17. Plasma treatment of hydrophobic sub-layers to prepare uniform multi-layered films and high-performance gas separation membranes

    International Nuclear Information System (INIS)

    Ren, Xiuxiu; Kanezashi, Masakoto; Nagasawa, Hiroki; Tsuru, Toshinori

    2015-01-01

    Highlights: • TEOS and BTESE films were improved by coating sols on plasma-treated Me-SiO 2 films. • BTESO sols were well coated on Me-SiO 2 films with and without plasma treatment. • The gas performance of BTESE/Me-SiO 2 membrane was improved with plasma treatment. - Abstract: Uniform and defect-free silica films were prepared by spin-coating silica sols on plasma-treated hydrophobic sub-layers. Three kinds of silica films were prepared using tetraethoxysilane (TEOS), bis(triethoxysilyl)ethane (BTESE) and bis(triethoxysily)octane (BTESO) via sol–gel method. First, hydrophobic sub-layers were pre-coated on silicon wafers with Me-SiO 2 sols prepared from mixtures of methyltrimethoxysilane (MTMS) and TEOS. After firing at 400 °C, the films showed water contact angles of 120°. Then TEOS- and BTESE-derived sols were directly spin-coated on the Me-SiO 2 films, resulting in separated and scattered coatings. A H 2 O/N 2 plasma modification method was used to change the properties of the Me-SiO 2 films from hydrophobicity to hydrophilicity without damaging either the surface morphology or the bulk chemistry. After the treatment, the TEOS- and BTESE-derived sols formed homogenous films. On the other hand, the Me-SiO 2 films were fully coated with BTESO either with or without plasma treatment. This was probably due to both the polar (–OH) and non-polar (long –CH 2 ) portions of the BTESO-derived sols. For gas separation applications, the corresponding BTESE membranes showed great improvement in gas selectivity after the plasma treatment of hydrophobic Me-SiO 2 layers

  18. Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California’s municipal solid waste

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Horvathc, Arpad

    2011-01-01

    strongly on a number of model assumptions: the type of electricity displaced by waste-derived energy, how biogenic carbon is counted as a contributor to atmospheric carbon stocks, and the landfill gas collection rate. Assuming that natural gas is displaced by waste-derived energy, that 64% of landfill gas...... (landfilling), Anaerobic Digestion, Incineration, 40% Reduction, and MaxEnergy (both incineration and anaerobic digestion). Because recycling efforts in California are already strong, this analysis focuses on non-recyclables and asks what else can be done with the material fractions that are currently reaching...... landfills. Using two different waste LCA models, EASEWASTE (a Danish model) and WARM (a U.S. model), we find that improved biogenic waste management through anaerobic digestion and waste reduction can lead to life-cycle GHG savings when compared to Business As Usual. The magnitude of the benefits depends...

  19. Three-Dimensional Modeling of the Detonation of a Munitions Stack and the Loading on an Adjacent Stack Protected by a Water Barricade

    National Research Council Canada - National Science Library

    Lottero, Richard

    2001-01-01

    This report describes the results of three-dimensional (3-D) hydrocode computations modeling the detonation of a donor munitions stack and the loading on and response of a protective water barricade and a nearby acceptor munitions stack...

  20. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.