WorldWideScience

Sample records for stably transfected human

  1. Persistent human cardiac Na+ currents in stably transfected mammalian cells

    Science.gov (United States)

    Wang, Ging Kuo; Russell, Gabriella; Wang, Sho-Ya

    2013-01-01

    Miniature persistent late Na+ currents in cardiomyocytes have been linked to arrhythmias and sudden death. The goals of this study are to establish a stable cell line expressing robust persistent cardiac Na+ currents and to test Class 1 antiarrhythmic drugs for selective action against resting and open states. After transient transfection of an inactivation-deficient human cardiac Na+ channel clone (hNav1.5-CW with L409C/A410W double mutations), transfected mammalian HEK293 cells were treated with 1 mg/ml G-418. Individual G-418-resistant colonies were isolated using glass cylinders. One colony with high expression of persistent Na+ currents was subjected to a second colony selection. Cells from this colony remained stable in expressing robust peak Na+ currents of 996 ± 173 pA/pF at +50 mV (n = 20). Persistent late Na+ currents in these cells were clearly visible during a 4-second depolarizing pulse albeit decayed slowly. This slow decay is likely due to slow inactivation of Na+ channels and could be largely eliminated by 5 μM batrachotoxin. Peak cardiac hNav1.5-CW Na+ currents were blocked by tetrodotoxin with an IC50 value of 2.27 ± 0.08 μM (n = 6). At clinic relevant concentrations, Class 1 antiarrhythmics are much more selective in blocking persistent late Na+ currents than their peak counterparts, with a selectivity ratio ranging from 80.6 (flecainide) to 3 (disopyramide). We conclude that (1) Class 1 antiarrhythmics differ widely in their resting- vs. open-channel selectivity, and (2) stably transfected HEK293 cells expressing large persistent hNav1.5-CW Na+ currents are suitable for studying as well as screening potent open-channel blockers. PMID:23695971

  2. Stably transfected human cell lines as fluorescent screening assay for nuclear factor KB activation dependent gene expression

    Science.gov (United States)

    Hellweg, Christine E.; Baumstark-Khan, Christa; Horneck, Gerda

    2004-06-01

    Activation of the Nuclear Factor kappaB (NF-kappaB) pathway as a possible antiapoptotic route represents one important cellular stress response. For identifying conditions which are capable to modify this pathway, a screening assay for detection of NF-kappaB-dependent gene activation using the reporter proteins Enhanced Green Fluorescent Protein (EGFP) and its destabilized variant (d2EGFP) has been developed. Human Embryonic Kidney (HEK/293) cells were stably transfected with a vector carrying EGFP or d2EGFP under control of a synthetic promoter containing four copies of the NF-kappaB response element. Treatment with tumor necrosis factor alpha (TNF-alpha) gave rise to substantial EGFP / d2EGFP expression in up to 90 % of the cells and was therefore used to screen different stably transfected clones for induction of NF-kappaB dependent gene expression. The time course of d2EGFP expression after treatment with TNF-alpha or phorbol ester was measured using flow cytometry. Cellular response to TNF-alpha was faster than to phorbol ester. Treatment of cells with TNF-alpha and DMSO revealed antagonistic interactions of these substances in the activation NF-kappaB dependent gene expression. The detection of d2EGFP expression required FACS analysis or fluorescence microscopy, while EGFP could also be measured in the microplate reader, rendering the assay useful for high-throughput screening.

  3. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    International Nuclear Information System (INIS)

    Morgan, Kevin; Meyer, Colette; Miller, Nicola; Sims, Andrew H; Cagnan, Ilgin; Faratian, Dana; Harrison, David J; Millar, Robert P; Langdon, Simon P

    2011-01-01

    Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125 I-ligand binding and stimulation of 3 H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3 H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of

  4. Persistent human cardiac Na+ currents in stably transfected mammalian cells: Robust expression and distinct open-channel selectivity among Class 1 antiarrhythmics.

    Science.gov (United States)

    Wang, Ging Kuo; Russell, Gabriella; Wang, Sho-Ya

    2013-01-01

    Miniature persistent late Na(+) currents in cardiomyocytes have been linked to arrhythmias and sudden death. The goals of this study are to establish a stable cell line expressing robust persistent cardiac Na(+) currents and to test Class 1 antiarrhythmic drugs for selective action against resting and open states. After transient transfection of an inactivation-deficient human cardiac Na(+) channel clone (hNav1.5-CW with L409C/A410W double mutations), transfected mammalian HEK293 cells were treated with 1 mg/ml G-418. Individual G-418-resistant colonies were isolated using glass cylinders. One colony with high expression of persistent Na(+) currents was subjected to a second colony selection. Cells from this colony remained stable in expressing robust peak Na(+) currents of 996 ± 173 pA/pF at +50 mV (n = 20). Persistent late Na(+) currents in these cells were clearly visible during a 4-second depolarizing pulse albeit decayed slowly. This slow decay is likely due to slow inactivation of Na(+) channels and could be largely eliminated by 5 μM batrachotoxin. Peak cardiac hNav1.5-CW Na(+) currents were blocked by tetrodotoxin with an IC(50) value of 2.27 ± 0.08 μM (n = 6). At clinic relevant concentrations, Class 1 antiarrhythmics are much more selective in blocking persistent late Na(+) currents than their peak counterparts, with a selectivity ratio ranging from 80.6 (flecainide) to 3 (disopyramide). We conclude that (1) Class 1 antiarrhythmics differ widely in their resting- vs. open-channel selectivity, and (2) stably transfected HEK293 cells expressing large persistent hNav1.5-CW Na(+) currents are suitable for studying as well as screening potent open-channel blockers.

  5. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa Stably Transfected with SPARC.

    Directory of Open Access Journals (Sweden)

    Andrea Slusser-Nore

    Full Text Available This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3 and cadmium (Cd(+2-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2-and As(+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice.Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3-and Cd(+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF. Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres.It was shown that the As(+3-and Cd(+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3-and Cd(+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells.Tumor initiating cells isolated from SPARC-transfected As(+3-and Cd(+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.

  6. Effects of recombinant plasmid pEgr-p53 transfected stably in combination with X-irradiation on cell cycle progression and proliferation in human SKOV-3 tumor cells in vitro

    International Nuclear Information System (INIS)

    Dong Lihua; Liu Feng; Li Yanbo; Fu Shibo; Gong Shouliang

    2008-01-01

    Objective: To investigate the effect of recombinant plasmid pEgr-hp53 transfected stably in combination with X-ray irradiation on the cell cycle progression and the proliferation in human SKOV-3 tumor cells. Methods: pEgr-hp53 and pcDNA3.1 packaged with liposome were stably transfected into SKOV-3 cells in vitro. SKOV-3-hp53 and SKOV-3-vect were irradiated with 0, 0.5, 2.0 and 5.0 Gy X-rays, respectively, i.e. 8 experimental groups. The SKOV-3 cell proliferation and the cell cycle progression were measured with flow cytometry and cell growth curve, respectively. Results: Compared with 0 Gy group, the cell counts in SKOV-3- hp53 plus different doses of irradiation groups 2 d after irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased in varying degrees. The cell counts in SKOV-3-hp53 plus irradiation group were significantly lower than those in corresponding SKOV-3-vect plus irradiation group, the cell counts 4-8 d after irradiation with 0.5 Gy, 2 d after 2.0 Gy irradiation and 6 d after 5.0 Gy irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased significantly (P 1 arrest in SKOV-3 cells and inhibits the cell proliferation. Ionizing radiation can activate early growth response-1 (Egr-1) gene promoter and increase the expression of p53 gene, and enhance the inhibition of tumor cell growth. (authors)

  7. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  8. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  9. Colony polymerase chain reaction of stably transfected Trypanosoma cruzi grown on solid medium

    Directory of Open Access Journals (Sweden)

    Wagner G dos Santos

    2000-01-01

    Full Text Available Tools for the genetic manipulation of Trypanosoma cruzi are largely unavailable, although several vectors for transfection of epimastigotes and expression of foreign or recombinant genes have been developed. We have previously constructed several plasmid vectors in which recombinant genes are expressed in T. cruzi using the rRNA promoter. In this report, we demonstrate that one of these vectors can simultaneously mediate expression of neomycin phosphotransferase and green fluorescent protein when used to stably transfect cultured epimastigotes. These stably transfected epimastigotes can be selected and cloned as unique colonies on solid medium. We describe a simple colony PCR approach to the screening of these T. cruzi colonies for relevant genes. Thus, the methodologies outlined herein provide important new tools for the genetic dissection of this important parasite.

  10. Assembly of homotrimeric type XXI minicollagen by coexpression of prolyl 4-hydroxylase in stably transfected Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Li, Hsiu-Chuan; Huang, Chuan-Chuan; Chen, Sung-Fang; Chou, Min-Yuan

    2005-10-21

    We established stably transfected insect cell lines containing cDNAs encoding the alpha and beta subunits of human prolyl 4-hydroxylase in both Trichoplusia ni and Drosophila melanogaster S2 cells. The expression level and enzymatic activity of recombinant prolyl 4-hydroxylase produced in the Drosophila expression system were significantly higher than those produced in the T. ni system. We further characterized the involvement of prolyl 4-hydroxylase in the assembly of the three alpha chains to form trimeric type XXI minicollagen, which comprises the intact C-terminal non-collagenous (NC1) and collagenous domain (COL1), in the Drosophila system. When minicollagen XXI was stably expressed in Drosophila S2 cells alone, negligible amounts of interchain disulfide-bonded trimers were detected in the culture media. However, minicollagen XXI was secreted as disulfide-bonded homotrimers by coexpression with prolyl 4-hydroxylase in the stably transfected Drosophila S2 cells. Minicollagen XXI coexpressed with prolyl 4-hydroxylase contained sufficient amounts of hydroxyproline to form thermal stable pepsin-resistant triple helices consisting of both interchain and non-interchain disulfide-bonded trimers. These results demonstrate that a sufficient amount of active prolyl 4-hydroxylase is required for the assembly of type XXI collagen triple helices in Drosophila cells and the trimeric assembly is governed by the C-terminal collagenous domain.

  11. Establishment of Stably Transfected Cells Constitutively Expressing the Full-Length and Truncated Antigenic Proteins of Two Genetically Distinct Mink Astroviruses

    DEFF Research Database (Denmark)

    Bidokhti, Mehdi R. M.; Ullman, Karin; Jensen, Trine Hammer

    2013-01-01

    to circumvent this drawback, we have developed stably transfected mink fetal cells and BHK21 cells constitutively expressing the full-length and truncated capsid proteins of two distinct genotypes of mink astrovirus. Protein expression in these stably transfected cells was demonstrated by strong signals...

  12. Targeted surface expression of an exogenous antigen in stably transfected babesia bovis

    Science.gov (United States)

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. Here we propose using transfected ...

  13. THE EVALUATION OF PEPTIDE/HISTIDINE TRANSPORTER 1 (PHT1) FUNCTION: UPTAKE KINETICS UTILIZING A COS-7 STABLY TRANSFECTED CELL LINE.

    Science.gov (United States)

    Lindley, David J; Carl, Stephen M; Mowery, Stephanie A; Knipp, Gregory T

    2011-10-01

    There have been relatively few studies focused on the proton-dependent oligopeptide transporter (POT) superfamily member, Peptide/Histidine Transporter 1 (PHT1), with respect to its contribution to the ADME of peptides and peptide-based drugs. These studies were conducted to determine hPHT1-mediated, H + -dependent uptake kinetics of histidine, carnosine, Gly-Sar and valacyclovir in stably transfected hPHT1-COS-7 cells comparative to kinetics determined in an empty vector (Mock) stably transfected cell line. The results suggest that Gly-Sar appears to be a substrate for PHT1 based on efflux from the stably transfected hPHT1 COS-7 cells. Histidine and Gly-Sar concentration- and time-dependent studies suggest mixed-uptake kinetics. These studies suggest that stably transfected hPHT1-COS-7 cells exhibit different uptake kinetics than those observed in our previous studies and illustrate the requirement for experiments to delineate the physiological role of hPHT1.

  14. Extracellular matrix and hormones transcriptionally regulate bovine. beta. -casein 5 prime sequences in stably transfected mouse mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmidhauser, C. Bissell, M.J. (Univ. of California, Berkeley (United States)); Myers, C.A.; Casperson, G.F. (Monsanto Corporate Research, St. Louis, MO (United States))

    1990-12-01

    Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with a series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.

  15. Transfecting Human Monocytes with RNA.

    Science.gov (United States)

    Dannull, Jens; Nair, Smita K

    2016-01-01

    Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.

  16. Generation and preclinical immunogenicity study of dengue type 2 virus-like particles derived from stably transfected mosquito cells.

    Science.gov (United States)

    Suphatrakul, Amporn; Yasanga, Thippawan; Keelapang, Poonsook; Sriburi, Rungtawan; Roytrakul, Thaneeya; Pulmanausahakul, Rojjanaporn; Utaipat, Utaiwan; Kawilapan, Yanee; Puttikhunt, Chunya; Kasinrerk, Watchara; Yoksan, Sutee; Auewarakul, Prasert; Malasit, Prida; Charoensri, Nicha; Sittisombut, Nopporn

    2015-10-13

    Recent phase IIb/III trials of a tetravalent live attenuated vaccine candidate revealed a need for improvement in the stimulation of protective immunity against diseases caused by dengue type 2 virus (DENV-2). Our attempts to develop particulate antigens for possibly supplementing live attenuated virus preparation involve generation and purification of recombinant DENV-2 virus-like particles (VLPs) derived from stably (prM+E)-expressing mosquito cells. Two VLP preparations generated with either negligible or enhanced prM cleavage exhibited different proportions of spherical particles and tubular particles of variable lengths. In BALB/c mice, VLPs were moderately immunogenic, requiring adjuvants for the induction of strong virus neutralizing antibody responses. VLPs with enhanced prM cleavage induced higher levels of neutralizing antibody than those without, but the stimulatory activity of both VLPs was similar in the presence of adjuvants. Comparison of EDIII-binding antibodies in mice following two adjuvanted doses of these VLPs revealed subtle differences in the stimulation of anti-EDIII binding antibodies. In cynomolgus macaques, VLPs with enhanced prM cleavage augmented strongly neutralizing antibody and EDIII-binding antibody responses in live attenuated virus-primed recipients, suggesting that these DENV-2 VLPs may be useful as the boosting antigen in prime-boost immunization. As the levels of neutralizing antibody induced in macaques with the prime-boost immunization were comparable to those infected with wild type virus, this virus-prime VLP-boost regimen may provide an immunization platform in which a need for robust neutralizing antibody response in the protection against DENV-2-associated illnesses could be tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The antagonistic effect of antipsychotic drugs on a HEK293 cell line stably expressing human alpha(1A1)-adrenoceptors

    DEFF Research Database (Denmark)

    Nourian, Zahra; Mulvany, Michael J; Nielsen, Karsten Bork

    2008-01-01

    Antipsychotic drugs often cause orthostatic hypotension, probably through antagonist action on resistance vessel alpha(1A)-adrenoceptors. Here we have tested this possibility directly using cells transfected with a relevant human alpha(1A)-adrenoceptor splice variant. To determine a splice variant...... a cell line stably expressing a functional form of this splice variant. The expression of recombinant alpha(1A1)-adrenoceptor subtype was confirmed by Western immunoblot analysis, and its functionality demonstrated using a Fura-2 assay by a rise in intracellular calcium concentration ([Ca(2+)](i)) when...... human alpha(1A1)-adrenoceptors in competition binding studies confirmed much higher antagonist affinity of sertindole and risperidone than haloperidol for these receptors. In summary, it can be concluded that there is an approximately 10-fold higher adrenoceptor affinity of risperidone and sertindole...

  18. Highly efficient transfection of human THP-1 macrophages by nucleofection.

    Science.gov (United States)

    Maeß, Marten B; Wittig, Berith; Lorkowski, Stefan

    2014-09-02

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.

  19. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  20. Stable transfection of provirus of human immunodeficiency virus into a murine packaging cell line.

    Science.gov (United States)

    Rozera, C; Baccarini, S; Gentile, M; Torrisi, M R; Proietti, E; Federico, M; Pulciani, S

    1997-04-01

    In order to generate HIV (murine leukemia virus (MuLV)) pseudotypes, HIV genome was transfected into the ecotropic murine packaging cell line (GP+E86) and four of the nine transfected clones were extensively characterized. One clone (801), harbouring a full copy of integrated HIV sequences, exhibited a detectable level of intracellular HIV p24 antigen expression. Northern blot analysis revealed that clone 801 expressed all three classes of HIV mRNAs. Multispliced 2 kb mRNAs were detected in another clone (8.14). Two other clones (1.31 and 1.32) also exhibited a complete HIV provirus, but did not show any viral expression, as evaluated by Northern blot analysis or HIV p24 ELISA. Reverse transcription-polymerase chain reaction (RT-PCR) experiments revealed the presence of full length genomic RNA in four transfected clones, which were extensively characterized. A co-cultivation of clone 801 with human CD4' cells resulted in syncytia formation. By electron microscopy, mature HIV particles were observed after co-cultivation of uninfected C8166 cells with 801 cells. These results demonstrated that the murine clone was stably transfected with the complete HIV genome and was capable of shuttling infectious HIV to human cells. Clone 801 was co-cultivated with murine NIH-3T3 fibroblasts. In several experiments, HIV infection of NIH-3T3 cells was revealed by PCR technique. Thus, 801 cells appear to produce low levels of HIV (MuLV) pseudotypes capable of transferring the HIV genome into mouse cells.

  1. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency.

    Science.gov (United States)

    Tailor, Jignesh; Kittappa, Raja; Leto, Ketty; Gates, Monte; Borel, Melodie; Paulsen, Ole; Spitzer, Sonia; Karadottir, Ragnhildur Thora; Rossi, Ferdinando; Falk, Anna; Smith, Austin

    2013-07-24

    Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.

  2. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  3. Enhanced Nanomagnetic Gene Transfection of Human Prenatal Cardiac Progenitor Cells and Adult Cardiomyocytes

    Science.gov (United States)

    Subramanian, Mahendran; Lim, Jenson; Dobson, Jon

    2013-01-01

    Magnetic nanoparticle-based gene transfection has been shown to be an effective, non-viral technique for delivery of both plasmid DNA and siRNA into cells in culture. It has several advantages over other non-viral delivery techniques, such as short transfection times and high cell viability. These advantages have been demonstrated in a number of primary cells and cell lines. Here we report that oscillating magnet array-based nanomagnetic transfection significantly improves transfection efficiency in both human prenatal cardiac progenitor cells and adult cardiomyocytes when compared to static magnetofection, cationic lipid reagents and electroporation, while maintaining high cell viability. In addition, transfection of adult cardiomyocytes was improved further by seeding the cells onto Collagen I-coated plates, with transfection efficiencies of up to 49% compared to 24% with lipid reagents and 19% with electroporation. These results demonstrate that oscillating nanomagnetic transfection far outperforms other non-viral transfection techniques in these important cells. PMID:23936108

  4. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and Biodentine.

    Science.gov (United States)

    Rodrigues, E M; Gomes-Cornélio, A L; Soares-Costa, A; Salles, L P; Velayutham, M; Rossa-Junior, C; Guerreiro-Tanomaru, J M; Tanomaru-Filho, M

    2017-12-01

    To evaluate the effect of MTA and Biodentine on viability, osteogenic differentiation and BMP-2 expression in osteogenic cells. Saos-2 cells were used as a model of osteoblastic cells. Overexpression of BMP-2 was induced by transfection of a CMV-driven plasmid construct including the human BMP-2 coding sequence, and stably transfected cells were selected. Cell viability was assessed by the mitochondrial dehydrogenase enzymatic (MTT) assay. The bioactivity of the materials was evaluated by the alkaline phosphatase (ALP) assay and detection of calcium deposits with alizarin red staining (ARS). The gene expression of BMP-2 and ALP was quantified with real-time PCR. Statistical analysis was performed with analysis of variance and Bonferroni or Tukey post-test (α = 0.05). Viability tests revealed that MTA and Biodentine were not cytotoxic at the higher dilution (1 : 8) to BMP-2-transfected cells. MTA and Biodentine exhibited the highest ALP activity when compared to the Saos-BMP-2-unexposed control group (P Biodentine and MTA had a significant stimulatory effect on the formation of mineralized nodules (P Biodentine in non-osteogenic medium in relation to Saos-BMP-2-unexposed control cells (P Biodentine showed biocompatibility and bioactivity in Saos-BMP-2 overexpressing cells. Biodentine had a significantly greater effect on mineralization than MTA. Both MTA and Biodentine enhanced BMP-2 mRNA expression in the transfected system. Both MTA and Biodentine are suitable materials to improve osteoblastic cell mineralization. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  6. High-Efficient Transfection of Human Embryonic Stem Cells by Single-Cell Plating and Starvation.

    Science.gov (United States)

    Liu, Hui; Ren, Caiping; Zhu, Bin; Wang, Lei; Liu, Weidong; Shi, Jia; Lin, Jianxing; Xia, Xiaomeng; Zeng, Fei; Chen, Jiawen; Jiang, Xingjun

    2016-03-15

    Nowadays, the low efficiency of small interfering RNA (siRNA) or plasmid DNA (pDNA) transfection is a critical issue in genetic manipulation of human embryonic stem (hES) cells. Development of an efficient transfection method for delivery of siRNAs and plasmids into hES cells becomes more and more imperative. In this study, we tried to modify the traditional transfection protocol by introducing two crucial processes, single-cell plating and starvation, to increase the transfection efficiency in hES cells. Furthermore, we comparatively examined the transfection efficiency of some commercially available siRNA or pDNA transfection reagents in hES cells. Our results showed that the new developed method markedly enhanced the transfection efficiency without influencing the proliferation and pluripotency of hES cells. Lipofectamine RNAiMAX exhibited much higher siRNA transfection efficiency than the other reagents, and FuGENE HD was identified as the best suitable reagent for efficient pDNA transfection of hES cells among the tested reagents.

  7. [Effects of transfection of human epidermal growth factor gene with adenovirus vector on biological characteristics of human epidermal cells].

    Science.gov (United States)

    Yin, Kai; Ma, Li; Shen, Chuan'an; Shang, Yuru; Li, Dawei; Li, Longzhu; Zhao, Dongxu; Cheng, Wenfeng

    2016-05-01

    To investigate the suitable transfection condition of human epidermal cells (hECs) with human epidermal growth factor (EGF) gene by adenovirus vector (Ad-hEGF) and its effects on the biological characteristics of hECs. hECs were isolated from deprecated human fresh prepuce tissue of circumcision by enzyme digestion method and then sub-cultured. hECs of the third passage were used in the following experiments. (1) Cells were divided into non-transfection group and 5, 20, 50, 100, 150, and 200 fold transfection groups according to the random number table (the same grouping method below), with 3 wells in each group. Cells in non-transfection group were not transfected with Ad-hEGF gene, while cells in the latter six groups were transfected with Ad-hEGF gene in multiplicities of infection (MOI) of 5, 20, 50, 100, 150, and 200 respectively. The morphology of the cells was observed with inverted phase contrast microscope, and expression of green fluorescent protein of the cells was observed with inverted fluorescence microscope at transfection hour (TH) 24, 48, and 72. (2) Another three batches of cells were collected, grouped, and treated as above, respectively. Then the transfection rate of Ad-hEGF gene was detected by flow cytometer (n=3), the mass concentration of EGF in culture supernatant of cells was detected by enzyme-linked immunosorbent assay (n=6), and the proliferation activity of cells was detected by cell counting kit 8 (CCK8) and microplate reader (n=6) at TH 24, 48, and 72, respectively. (3) Cells were collected and divided into non-transfection group and transfection group, with 6 wells in each group. Cells in non-transfection group were cultured with culture supernatant of cells without transfection, while cells in transfection group were cultured with culture supernatant of cells which were transfected with Ad-hEGF gene in the optimum MOI (50). CCK8 and microplate reader were used to measure the biological activity of EGF secreted by cells on culture

  8. Biphasic action of cyclic adenosine 3',5'- monophosphate in gonadotropin-releasing hormone (GnRH) analog-stimulated hormone release from GH3 cells stably transfected with GnRH receptor complementary deoxyribonucleic acid.

    Science.gov (United States)

    Stanislaus, D; Arora, V; Awara, W M; Conn, P M

    1996-03-01

    GH3 cells are a PRL-secreting adenoma cell line derived from pituitary lactotropes. These cells have been stably transfected with rat GnRH receptor complementary DNA to produce four cell lines: GGH(3)1', GGH(3)2', GGH(3)6', and GGH(3)12'. In response to either GnRH or Buserelin (a metabolically stable GnRH agonist), these cell lines synthesize PRL in a cAMP-dependent manner. Only GGH(3)6' cells desensitize in response to persistent treatment with 10(-7) g/ml Buserelin. GGH(3)1', GGH(3)2', and GGH(3)12' cells, however, can be made refractory to Buserelin stimulation by raising cAMP levels either by the addition of (Bu)2cAMP to the medium or by treatment with cholera toxin. In GGH(3) cells, low levels of cAMP fulfill the requirements for a second messenger, whereas higher levels appear to mediate the development of desensitization. The observation that in GGH(3)6' cells, cAMP production persists after the onset of desensitization is consistent with the view that the mechanism responsible for desensitization is distal to the production of cAMP. Moreover, the absence of any significant difference in the amount of cAMP produced per cell in GGH(3)2', GGH(3)6', or GGH(3)12' cells suggests that elevated cAMP production per cell does not explain the development of desensitization in GGH(3)6' cells. We suggest that Buserelin-stimulated PRL synthesis in GGH(3)6' cells is mediated by a different cAMP-dependent protein kinase pool(s) than that in nondesensitizing GGH(3) cells. Such a protein kinase A pool(s) may be more susceptible to degradation via cAMP-mediated mechanisms than the protein kinase pools mediating the Buserelin response in nondesensitizing GGH(3) cells. A similar mechanism has been reported in other systems.

  9. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...... basement membrane. However, when injected into nude mice, both control and NCAM-expressing cell lines produced equally invasive tumors. Tumors generated from NCAM-transfected cells were heterogeneous, containing NCAM-positive as well as NCAM-negative areas, indicating the existence of host factors capable...

  10. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    Science.gov (United States)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  11. Environmental parameters influence non-viral transfection of human mesenchymal stem cells for tissue engineering applications

    Science.gov (United States)

    King, William J.; Kouris, Nicholas A.; Choi, Siyoung; Ogle, Brenda M.; Murphy, William L.

    2012-01-01

    Non-viral transfection is a promising technique which could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density, and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density, and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105, and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity, and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications. PMID:22277991

  12. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...... basement membrane. However, when injected into nude mice, both control and NCAM-expressing cell lines produced equally invasive tumors. Tumors generated from NCAM-transfected cells were heterogeneous, containing NCAM-positive as well as NCAM-negative areas, indicating the existence of host factors capable...... of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth...

  13. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  14. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection.

    Directory of Open Access Journals (Sweden)

    Lin-Lin Liu

    Full Text Available Reverse transcription-quantitative polymerase chain reaction (RT-qPCR is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct, and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2 expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.

  15. Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells

    Science.gov (United States)

    Kelly, Abby M; Plautz, Sarah A; Zempleni, Janos; Pannier, Angela K

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4–15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6–10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells. PMID:26478250

  16. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  17. Characterization of new cell line stably expressing CHI3L1 oncogene

    Directory of Open Access Journals (Sweden)

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  18. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization

    International Nuclear Information System (INIS)

    Hashiguchi, Kohtaro; Ozaki, Masumi; Kuraoka, Isao; Saitoh, Hisato

    2013-01-01

    Highlights: ► A human cell line expressing a mouse Nip45 has facilitated Nip45 analysis. ► Nip45 does not effectively inhibit polySUMOylation in vivo. ► Nip45 interacts directly with SUMO and SUMO chains. ► Nip45 accumulates at PML bodies in response to proteasome inhibition. -- Abstract: The nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 interacting protein, Nfatc2ip (Nip45), has been implicated as a crucial coordinator of the immune response and of cellular differentiation in humans and mice, and contains SUMO-like domains in its C-terminal region. However, the significance of its N-terminal region and its correlation to the SUMO modification pathway remain largely uncharacterized. In this study, a human cultured cell line was established, in which FLAG-tagged mouse Nip45 (FLAG-mNip45) was stably overexpressed. Under standard, non-stressful conditions, we detected FLAG-mNip45 diffusely distributed in the nucleus. Intriguingly, proteasome inhibition by MG132 caused FLAG-mNip45, together with SUMOylated proteins, to localize in nuclear domains associated with promyelocytic leukemia protein. Finally, using an in vitro binding assay, we showed interaction of the N-terminal region of mNip45 with both free SUMO-3 and SUMO-3 chains, indicating that Nip45 may, in part, exert its function via interaction with SUMO/SUMOylated proteins. Taken together, our study provides novel information on a poorly characterized mammalian protein and suggests that our newly established cell line will be useful for elucidating the physiological role of Nip45.

  19. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Lacoste, J.; Cohen, L.; Hiscott, J.

    1991-01-01

    The effect of constitutive Tax expression on the interaction of NF-κ B with its recognition sequence and on NF-κ B-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-κ B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-κ B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters

  20. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines...

  1. Effect on radiosensitivity in human umbilical vein endothelial cells after transfection of pcDNA3.1 + Apel plasmid

    International Nuclear Information System (INIS)

    Tan Yonghong; Xiang Debing; Shi Xikai; Yin Xiaoling; Wang Dong

    2008-01-01

    Objective: To investigate the possible effects on radiosensitivity in human umbilical vein endothelial cells after transfection of pcDNA3.1 + Apel plasmid. Methods: The expressing vector pcDNA3.1 + Apel, the control vector pcDNA3.1 + or non-transfection cells was irradiated by 2, 4, 6, and 8 Gy photon beam at 48 h post-transfection. The value of initial and residual Oliver tail moment (OTM) under the alkaline single cell gelelectrophoresis assay and the colony forming test were utilized as the markers for the evaluation of cells intrinsic radiosensitivity. The effect on radiosensitivity in human umbilical vein endothelial cells after transfection of the expressing vector pcDNA3.1 + Apel was analyzed according to the radio-dose, compared to the empty vecor control and non-transfection cells. Results: The initial and residual OTM value of endothelial cells transfected by 3 μg pcDNA3.1 + Apel plasmid was lower significantly than ones of endothelial cells untransfected at 2 Gy irradiation (P 0.05), and SF 2 was higher remarkably in transfected cells than one in untransfected cells (P 4 , SF 6 and SF 8 were no significant differences (all of P>0.05). Conclusions: The transfection of pcDNA3.1 + Apel plasmid could enhance radioresistance of endothelial cells to the low-dose irradiation. (authors)

  2. Polyethyleneimine-mediated transfection of cultured postmitotic neurons from rat sympathetic ganglia and adult human retina

    Directory of Open Access Journals (Sweden)

    Higgins Dennis

    2001-02-01

    Full Text Available Abstract Background Chemical methods of transfection that have proven successful with cell lines often do not work with primary cultures of neurons. Recent data, however, suggest that linear polymers of the cation polyethyleneimine (PEI can facilitate the uptake of nucleic acids by neurons. Consequently, we examined the ability of a commercial PEI preparation to allow the introduction of foreign genes into postmitotic mammalian neurons. Sympathetic neurons were obtained from perinatal rat pups and maintained for 5 days in vitro in the absence of nonneuronal cells. Cultures were then transfected with varying amounts of a plasmid encoding either E. coli β-galactosidase or enhanced green fluorescence protein (EGFP using PEI. Results Optimal transfection efficiency was observed with 1 μg/ml of plasmid DNA and 5 μg/ml PEI. Expression of β-galactosidase was both rapid and stable, beginning within 6 hours and lasting for at least 21 days. A maximum yield was obtained within 72 hours with ∼ 9% of the neurons expressing β-galactosidase, as assessed by both histochemistry and antibody staining. Cotransfection of two plasmids encoding reporter genes was achieved. Postmitotic neurons from adult human retinal cultures also demonstrated an ability to take up and express foreign DNA using PEI as a vector. Conclusions These data suggest that PEI is a useful agent for the stable expression of plasmid-encoded genes in neuronal cultures.

  3. Abrogation of radiation-inducible telomerase upregulation in HPV16 E6 transfectants of human lymphoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Neuhof, D.; Auberger, F.; Ruess, A.; Weber, K.J. [Radiobiology Research Lab., Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); Wenz, F. [Section for Radiation Oncology, Univ. Clinic Mannheim (Germany)

    2004-01-01

    Background: telomerase activity in a human lymphoblastoid cell line with wild-type p53 status (TK6) was previously shown to be rapidly induced by ionizing radiation doses as low as 10 cgy. Since this low-dose response was absent in a closely related cell line overexpressing a mutant form of p53 (WTK1), the putative involvement of p53 was further investigated using stable human papillomavirus 16 (HPV16) E6 transfectants of these cell lines. The E6 product mediates rapid degradation of wild-type p53, but has also been found to upregulate telomerase. Material and methods: telomerase activity in HPV16 E6 transfectants of the human lymphoblastoid cell lines TK6 and WTK1 was measured by PCR/ELISA and was quantified using internal standards (titration by cell number) run within each separate assay. Mean telomere length was determined by southern hybridization of terminal restriction fragments with a biotin-labeled telomeric DNA probe. Results: the TK6E6 and the WTK1E6 cells exhibited higher baseline telomerase activities than the parental cells. This was also accompanied by increased telomere lengths. Radiation exposure (up to 10 gy) was unable to significantly further enhance telomerase activities, although the dynamic range of the assay would have allowed to record higher signals. Conclusion: the lacking radiation induction of telomerase activities in the E6 transfectants could reflect saturation, if E6 and radiation would share a common pathway of telomerase upregulation. Present evidence from the literature, however, suggests that E6 mediates telomerase reverse transcriptase (TERT) subunit transcriptional activation, whereas radiation signals to posttranscriptional/posttranslational control of telomerase activity. Therefore, the present data enforce the previous hypothesis of a p53 dependence of telomerase upregulation by low doses of radiation and its abrogation, likely due to p53 degradation, in E6-expressing cells. (orig.)

  4. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  5. Inhibition of human colorectal adenocarcinoma cells with AdCMV-p53 gene transfection induced by irradiation

    International Nuclear Information System (INIS)

    Liu Bing; Min Fengling; Xie Yi; Zhou Qingming; Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjian; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2006-01-01

    The effect of AdCMV-p53 gene transfection induced by γ-ray irradiation on human colorectal adenocarcinoma cells was investigated. The HT-29 cells were irradiated by 0.5, 1.0, 2.0 Gy 60 Co γ-rays, then were transfected with AdCMV-GFP (a replication of deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein) or AdCMV-p53 (a replication of deficient recombinant adenoviral vector containing a CMV promoter and carrying human wild p53 gene). Cytotoxity was measured by clonogenic survival assay; apoptosis and the p53 expression were determined by flow cytometry. The results show that the pre-exposure of 0.5 Gy 60 Co γ-rays significantly enhanced the inhibition of HT-29 cells with AdCMV-53 transfection and promoted cell apoptosis. The inhibition rates for the groups of pre-exposure with 0.5 Gy and transfection with 40 and 80 MOI AdCMV-p53 were 50% and 20% higher than those for the groups of the mere transfection, and 40% more than the mere irradiation group. In the case of higher than 0.5 Gy pre-exposure, no significant difference was found between the pre-exposure with transfection group and the mere irradiation group. So 0.5 Gy pre-irradiation and AdCMV-p53 transfection obviously increases the inhibition of HT-29 cells with AdCMV-p53 transfection. The optimum condition is the lower than 1.0 Gy pre-exposure combined with the lower than 80 MOI AdCMV-p53 transfection. (authors)

  6. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  7. Improving the Gene Transfection in Human Embryonic Stem Cells: Balancing with Cytotoxicity and Pluripotent Maintenance.

    Science.gov (United States)

    Luo, Chunhua; Lü, Dongyuan; Pan, Jun; Long, Mian

    2016-04-06

    Manipulation of genes in human embryonic stem cells (hESCs) is imperative for their highly potential applications; however, the transduction efficiency remains very low. Although existing evidence revealed the type, size, and zeta potential of vector affect gene transfection efficiency in cells, the systematic study in hESCs is scarce. In this study, using poly(amidoamine) (PAMAM) dendrimers ended with amine, hydroxyl, or carboxyl as model, we tested the influences of size and surface group as well as cytotoxicity and endocytosis on hESC gene transfection. We found that in culture medium of mTeSR the particle sizes of G5, G7, G4.5COOH, and G5OH were around 5 nm and G1 had a smaller size of 3.14 nm. G5 and G7 had a slight and significant positive zeta potential, respectively, whereas G1 was slightly negative, and G4.5COOH and G5OH were significantly negative. We demonstrated that only amine-terminated dendrimers accomplished gene transfection in hESCs, which is greater than that from Lipofectamine 2000 transfection. Ten micromolar G5 had the greatest efficiency and was better than 1000 μM G1. Only a low concentration (0.5 and 1 μM) of G7 realized gene delivery. Amine-ended dendrimers, especially with higher generations, were detrimental to the growth and pluripotent maintenance of hESCs. In contrast, similarly sized hydroxyl- and carboxyl-terminated dendrimers exerted much lower cytotoxicity, in which carboxyl-terminated dendrimer maintained pluripotency of hESCs. We also confirmed the endocytosis into and significant exocytosis from hESCs using FITC-labeled G5 dendrimer. These results suggested that careful considerations of size, concentration, and zeta potential, particularly the identity and position of groups, as well as minimized exocytosis in the design of a vector for hESC gene delivery are necessary, which helps to better design an effective vector in hESC gene transduction.

  8. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    International Nuclear Information System (INIS)

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-01-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified

  9. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells.

    Science.gov (United States)

    Inada, Emi; Saitoh, Issei; Watanabe, Satoshi; Aoki, Reiji; Miura, Hiromi; Ohtsuka, Masato; Murakami, Tomoya; Sawami, Tadashi; Yamasaki, Youichi; Sato, Masahiro

    2015-09-14

    The ability of human deciduous tooth dental pulp cells (HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a PiggyBac (PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing tdTomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine.

  10. Tec kinase stimulates cell survival in transfected Hek293T cells and is regulated by the anti-apoptotic growth factor IGF-I in human neutrophils.

    Science.gov (United States)

    Himpe, E; Abdul Rahim, S A; Verdood, P; Mano, H; Kooijman, R

    2013-03-01

    Previously, we showed that the phosphatidylinositol-3 kinase (PI(3)K) pathway mediates the anti-apoptotic effects of IGF-I in human neutrophils independently of its down-stream target Akt. In this study, we investigated whether IGF-I regulates Tec kinase, an alternative down-stream target of PI(3)K, in neutrophils and whether this molecule is able to affect apoptosis. We investigated the translocation of Tec kinases in neutrophils after stimulation with IGF-I. Furthermore, we transiently and stably transfected Hek293T cells with constructs expressing different forms of Tec kinase and measured the level of cell survival and apoptosis/necrosis through trypan blue exclusion test and Annexin-V/propidium iodide labelling, respectively. We show that IGF-I stimulates the translocation of Tec kinase to the membrane in neutrophils in a PI(3)K dependent matter. Overexpression of Tec kinase augments cell survival by inhibition of necrosis. The pro-survival effect is attenuated by the deletion of the kinase domain but not by inactivation of this domain by a single amino acid substitution. Tec kinase can act as a prosurvival factor and is regulated by IGF-I in human neutrophils through PI(3)K activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  12. Suppression of mRNA Nanoparticle Transfection in Human Fibroblasts by Selected Interferon Inhibiting Small Molecule Compounds.

    Science.gov (United States)

    Liu, Yang; Krishnan, Manoj N; Phua, Kyle K L

    2017-07-31

    In vitro transcribed (IVT) mRNA is increasingly applied in lieu of DNA to deliver reprogramming genes to fibroblasts for stem cell derivation. However, IVT mRNA induces interferon (IFN) responses from mammalian cells that reduces transfection efficiency. It has been previously suggested that small molecule inhibitors of IFN are a viable strategy to enhance mRNA transfection efficiency. Herein, we screen a list of commercially available small molecules, including published IFN inhibitors, for their potential to enhance mRNA transfection in BJ fibroblasts. Transfection enhancement is quantified by relative mean fluorescence intensity of translated green fluorescent protein (GFP) in treated cells compared to dimethyl sulfoxide treated controls. Within toxicological constrains, all tested small molecules did not enhance mRNA transfection in BJ fibroblasts while a third of the tested compounds unexpectedly inhibited GFP expression even though IFN-β production is inhibited. Based on the results of our study, we conclude that small molecule inhibitors, including IFN inhibitors, tested in this study do not enhance in vitro mRNA transfection efficiency in human fibroblasts.

  13. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture.

    Science.gov (United States)

    Majumdar, M; Ratho, R; Chawla, Y; Singh, M P

    2014-01-01

    The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs) were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA) and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P Centrifugation enhanced transfection (CET) technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  14. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture

    Directory of Open Access Journals (Sweden)

    M Majumdar

    2014-01-01

    Full Text Available The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P < 0.0001, even at a low concentration of 40 picomoles without affecting the cell viability. Centrifugation enhanced transfection (CET technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  15. Increased radiosensitivity of p16 gene-deleted human glioma cells after transfection with wild-type p16 gene

    International Nuclear Information System (INIS)

    Miyakoshi, Junji; Kitagawa, Kaori; Yamagishi, Nobuyuki; Ohtsu, Shuji; Takebe, Hikaru; Day, R.S. III.

    1997-01-01

    The A1235 and T98 cell lines derived from human gliomas have homozygous deletions in their p16 genes and are radiosensitive and radioresistant, respectively, with respect to other established glioma cell lines. These differences in radiosensitivity may be due to variations to some extent among cell lines, rather than genetically defined resistance or sensitivity. We examined the effect on radiation sensitivity of introducing a wild-type p16 gene into both p16-deficient glioma cell lines. The plasmid pOPMTS containing human wild-type p16 cDNA and a neomycin resistance gene, or the control plasmid pOPRSV1, were transfected into these cells. Clones from both cell lines, which expressed wild-type p16 mRNA constitutively after transfection with pOPMTS, were more radiosensitive than the parental cells and clones obtained after transfection with the negative control plasmid. (author)

  16. Human mast cell line-1 (HMC-1) cells transfected with FcεRIα are sensitive to IgE/antigen-mediated stimulation demonstrating selectivity towards cytokine production.

    Science.gov (United States)

    Xia, YuXiu C; Sun, ShanShan; Kuek, Li Eon; Lopata, Andreas L; Hulett, Mark D; Mackay, Graham A

    2011-08-01

    Mast cells play important roles in allergic and inflammatory diseases. Efforts to better understand human mast cell activation and develop novel inhibitory agents have been hampered by the lack of suitable human mast cell lines. The HMC-1 mast cell line has been extensively used, but lacks native expression of the human high-affinity IgE receptor FcεRI limiting its applications. We have stably transfected HMC-1 cells with the IgE-binding α-subunit of FcεRI to generate HMCα cells that are antigen-responsive. We have used flow cytometry, cell signaling assays, pharmacological pathway inhibitors and cell functional assays to characterize the properties of HMCα cells. IgE/antigen responses were compared with those of the adenosine receptor agonist NECA. Surface expression of FcεRI in HMCα cells was demonstrated and was enhanced by prior sensitization with IgE. Activation of HMCα cells with IgE/antigen did not produce degranulation, but did lead to release of numerous cytokines. Whilst there was no measurable increase of intracellular Ca(2+) or marked general changes in protein tyrosine phosphorylation, IgE/antigen stimulation of HMCα cells enhanced phosphorylation of p38(MAPK) and Erk. Inhibitors of these pathways, as well as the src kinase inhibitor PP2, attenuated IgE/antigen-induced cytokine release. In summary, we have generated and characterized HMCα cells and show that they are a useful and relevant human mast cell model to examine FcεRI stabilization, signaling and mediator release. We envisage that HMCα cells will have utility in understanding the importance of mast cells in human allergic disease and in assessing the activity of novel anti-allergic compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Exploring polyamine regulation by nascent histamine in a human-transfected cell model.

    Science.gov (United States)

    Abrighach, H; Fajardo, I; Sánchez-Jiménez, F; Urdiales, J L

    2010-02-01

    There are multiple lines of evidence suggesting interplay between histamine and polyamines in several mammalian cell types. However, the complex metabolic context makes it difficult to elucidate the mechanisms involved. Histamine's effects can be elicited after its binding to any of the four subtypes of G-protein coupled histamine membrane receptors. In addition, intracellular histamine can also interfere with polyamine metabolism, since there are several metabolic connections between the synthesis and degradation pathways of both types of amines. In order to dissect the metabolic effects of intracellular histamine on polyamine metabolism, we chose a well-known cell culture line, i.e., the human embryonic kidney 293 cells (HEK-293 cells). Initially, we show that HEK-293 cells lack a polyamine metabolic response to extracellular histamine, even over a wide range of histamine concentrations. HEK-293 cells were transfected with active and inactive versions of human histidine decarboxylase, and changes in many of the overlapping metabolic factors and limiting steps were tested. Overall, the results indicate a regulatory effect of histamine on the post-transcriptional expression of ornithine decarboxylase and suggest that this effect is primarily responsible for the decrease in polyamine synthesis and partial blockade of cell-cycle progression, which should affect cell proliferation rate.

  18. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  19. Evaluation of the Expression of Amyloid Precursor Protein and the Ratio of Secreted Amyloid Beta 42 to Amyloid Beta 40 in SH-SY5Y Cells Stably Transfected with Wild-Type, Single-Mutant and Double-Mutant Forms of the APP Gene for the Study of Alzheimer's Disease Pathology.

    Science.gov (United States)

    Pahrudin Arrozi, Aslina; Shukri, Siti Nur Syazwani; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Ahmad Damanhuri, Mohd Hanafi; Makpol, Suzana

    2017-11-01

    Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aβ). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aβ42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aβ42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aβ42 alone and that more extensive Aβ formation, such as accumulation of intraneuronal Aβ, Aβ plaques, soluble oligomeric Aβ (oAβ), and insoluble fibrillar Aβ (fAβ) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aβ42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aβ2/40 ratio compared to wild-type and single-mutant cells.

  20. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ebrahim Shahbazi

    2016-04-01

    Full Text Available Direct conversion of somatic cells into neural stem cells (NSCs by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.

  1. Effects of sodium lactate Ringer's injection on transfection of human protein kinase C-α antisense oligonucleotide in A549 lung cancer cells.

    Science.gov (United States)

    Wang, Z H; Sun, W W; Han, Y L; Ma, Z

    2016-08-26

    In the present study, we evaluated the effects of four solutions [Dulbecco's modified Eagle's medium (DMEM), sodium lactate Ringer's injection (SLRI), phosphate-buffered saline (PBS), and NaCl] on the transfection of the human protein kinase C-a antisense oligonucleotide (PKC-a ASO) aprinocarsen in human lung carcinoma A549 cells. Specifically, SLRI, DMEM, PBS, or NaCl were used as the growth solutions for A549 cells, and OPTI-MEM was used as the PKC-a ASO diluent for transfection. Additionally, SLRI, DMEM, PBS, or NaCl were used as both the growth solutions and diluents for transfection. The cell viability and transfection efficiency were determined. The results demonstrated that when SLRI was used as either the growth solution or both the growth solution and diluent for aprinocarsen transfection in A549 cells, the effects were close to the best effects observed with DMEM as the growth solution and OPTI-MEM as the diluent, which supported the transfection of aprinocarsen into the cells. Moreover, SLRI resulted in higher transfection efficiency than those of PBS and NaCl. In in vitro experiments, aprinocarsen effectively induced apoptosis in A549 cells. In conclusion, SLRI may replace PBS or NaCl in clinical trials as a transfection solution readily accepted by the human body. To our knowledge, this is the first report demonstrating the use of SLRI as a transfection solution in lung-cancer cell lines.

  2. Characterization of calcium signals in human induced pluripotent stem cell-derived dentate gyrus neuronal progenitors and mature neurons, stably expressing an advanced calcium indicator protein.

    Science.gov (United States)

    Vőfély, Gergő; Berecz, Tünde; Szabó, Eszter; Szebényi, Kornélia; Hathy, Edit; Orbán, Tamás I; Sarkadi, Balázs; Homolya, László; Marchetto, Maria C; Réthelyi, János M; Apáti, Ágota

    2018-04-01

    Pluripotent stem cell derived human neuronal progenitor cells (hPSC-NPCs) and their mature neuronal cell culture derivatives may efficiently be used for central nervous system (CNS) drug screening, including the investigation of ligand-induced calcium signalization. We have established hippocampal NPC cultures derived from human induced PSCs, which were previously generated by non-integrating Sendai virus reprogramming. Using established protocols these NPCs were differentiated into hippocampal dentate gyrus neurons. In order to study calcium signaling without the need of dye loading, we have stably expressed an advanced calcium indicator protein (GCaMP6fast) in the NPCs using the Sleeping Beauty transposon system. We observed no significant effects of the long-term GCaMP6 expression on NPC morphology, gene expression pattern or neural differentiation capacity. In order to compare the functional properties of GCaMP6-expressing neural cells and the corresponding parental cells loaded with calcium indicator dye Fluo-4, a detailed characterization of calcium signals was performed. We found that the calcium signals induced by ATP, glutamate, LPA, or proteases - were similar in these two systems. Moreover, the presence of the calcium indicator protein allowed for a sensitive, repeatable detection of changes in calcium signaling during the process of neurogenesis and neuronal maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Pharmacological and functional characterisation of the wild-type and site-directed mutants of the human H1 histamine receptor stably expressed in CHO cells.

    Science.gov (United States)

    Moguilevsky, N; Varsalona, F; Guillaume, J P; Noyer, M; Gillard, M; Daliers, J; Henichart, J P; Bollen, A

    1995-01-01

    A cDNA clone for the human histamine H1 receptor was isolated from a lung cDNA library and stably expressed in CHO cells. The recombinant receptor protein present in the cell membranes, displayed the functional and binding characteristics of histamine H1 receptors. Mutation of Ser155 to Ala in the fourth transmembrane domain did not significantly change the affinity of the receptor for histamine and H1 antagonists. However, mutation of the fifth transmembrane Asn198 to Ala resulted in a dramatic decrease of the affinity for histamine binding, and for the histamine-induced polyphosphoinositides breakdown, whereas the affinity towards antagonists was not significantly modified. In addition, mutation of another fifth transmembrane amino acid, Thr194 to Ala also diminished, but to a lesser extent, the affinity for histamine. These data led us to propose a molecular model for histamine interaction with the human H1 receptor. In this model, the amide moiety of Asn198 and the hydroxyl group of Thr194 are involved in hydrogen bonding with the nitrogen atoms of the imidazole ring of histamine. Moreover, mutation of Thr194 to Ala demonstrated that this residue is responsible for the discrimination between enantiomers of cetirizine.

  4. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines......, two binding sites were observed with Kd values of 0.5 and 5 nM in CHO cells and 0.05 and 1.6 nM in BHK cells, respectively. Neither of the receptors affected Ca2+ metabolism whereas they both were coupled in a stimulatory fashion to adenylyl cyclase. The pharmacological profile of both the D1a and D1b...... for these receptors. Besides SCH 23390, only NNC 112, fluphenazine and bulbocapnine were able to discriminate between the two states of the D1b receptor. In case of the D1a receptor, the Ki values obtained in binding experiments were very similar to Ki values obtained from inhibition of dopamine stimulated adenylyl...

  5. Optical reprogramming of human cells in an ultrashort femtosecond laser microfluidic transfection platform.

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2016-09-01

    Induced pluripotent stem cell (iPS cell) technology can be used to produce unlimited numbers of functional cells for both research and therapeutic purposes without ethical controversy. Typically, viruses are applied for efficient intracellular delivery of genes/transcription factors to generate iPS cells. However, the viral genomic integration may cause a risk of mutation as well as tumor formation therefore limits its clinical application. Here we demonstrate that spatially shaped extreme ultrashort laser pulses of sub-20 femtoseconds induce transient membrane permeabilisation which enables contamination-free transfection of cells in a microfluidic tube with multiple genes at the individual cell level in order to achieve optical reprogramming of large cell populations. We found that the ultrashort femtosecond laser-microfluidic cell transfection platform enhanced the efficacy of iPS-like colony-forming following merely a single transfection. Illustration of the spatially shaped femtosecond laser-assisted microfluidic cell transfection platform for production of iPS cell colonies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In vivo molecular imaging and radionuclide (131I) therapy of human nasopharyngeal carcinoma cells transfected with a lentivirus expressing sodium iodide symporter.

    Science.gov (United States)

    Shi, Shuo; Zhang, Min; Guo, Rui; Miao, Ying; Hu, Jiajia; Xi, Yun; Li, Biao

    2015-01-01

    Despite recent improvements in the survival rates for nasopharyngeal carcinoma (NPC), novel treatment strategies are required to improve distant metastasis-free survival. The sodium iodine symporter (NIS) gene has been applied for in vivo imaging and cancer therapy. In this study, we examined the potential of NIS gene therapy as a therapeutic approach in NPC by performing non-invasive imaging using 125I and 131I therapy in vivo. We constructed a lentiviral vector expressing NIS and enhanced green fluorescent protein (EGFP) under the control of the human elongation factor-1α (EF1α) promoter, and stably transfected the vector into CNE-2Z NPC cells to create CNE-2Z-NIS cells. CNE-2Z and CNE-2Z-NIS tumor xenografts were established in nude mice; 125I uptake, accumulation and efflux were measured using micro-SPECT/CT imaging; the therapeutic effects of treatment with 131I were assessed over 25 days by measuring tumor volume and immunohistochemical staining of the excised tumors. qPCR, immunofluorescence and Western blotting confirmed that CNE-2Z-NIS cells expressed high levels of NIS mRNA and protein. CNE-2Z-NIS cells and xenografts took up and accumulated significantly more 125I than CNE-2Z cells and xenografts. In vitro, 131I significantly reduced the clonogenic survival of CNE-2Z-NIS cells. In vivo, 131I effectively inhibited the growth of CNE-2Z-NIS xenografts. At the end of 131I therapy, CNE-2Z-NIS xenograft tumor cells expressed higher levels of NIS and caspase-3 and lower levels of Ki-67. Lentiviruses effectively delivered and mediated long-lasting expression of NIS in CNE-2Z cells which enabled uptake and accumulation of radioisotopes and provided a significant therapeutic effect in an in vivo model of NPC. NIS-mediated radioiodine treatment merits further investigation as a potentially effective, low toxicity therapeutic strategy for NPC.

  7. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    Directory of Open Access Journals (Sweden)

    Lough John W

    2010-08-01

    Full Text Available Abstract Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development.

  8. Conditions for gene transfection into the HL-60 human leukaemia cell line by electroporation

    Czech Academy of Sciences Publication Activity Database

    Pacherník, Jiří; Janík, Robert; Hofmanová, Jiřina; Bryja, Vítězslav; Kozubík, Alois

    2002-01-01

    Roč. 48, č. 4 (2002), s. 154-156 ISSN 0015-5500 R&D Projects: GA ČR GA524/99/0694; GA AV ČR IBS5004009; GA AV ČR KSK5011112 Institutional research plan: CEZ:AV0Z5004920 Keywords : leukaemia cell line HL-60 * electroporation * gene transfection Subject RIV: BO - Biophysics Impact factor: 0.615, year: 2002

  9. [Expression of human Jagged-1 protein on eukaryotic cells and establishment of stable transfectant cell line].

    Science.gov (United States)

    Gan, Zhi-Hua; Chen, Yu; Yan, Hua; Wang, Kan-Kan

    2010-08-01

    Jagged-1 protein is one of the ligands belonging to Notch signaling pathway. Notch signaling pathway is one of the major signaling pathways mediated by contact between cells and plays an important role to regulate the process of proliferation and differentiation of hematopoietic cells in the hematopoietic microenvironment. To study the biological effect after the combination of receptor and ligand in Notch signaling pathway and the mechanism of Notch signaling pathway in bone marrow stromal cells mediated-drug resistance, a NIH-3T3 cell line over-expressing Jagged-1 protein was constructed for further research purposes. A full coding region of Jagged-1 gene was cloned and inserted into eukaryotic expression plasmid to construct pEGFP-IRES2-Jagged-1 eukaryotic expression vector, then transfected into NIH-3T3 cell line, a mammalian cells. As a result Western blot analysis confirmed that the transfectant NIH-3T3 cells highly expressed Jagged-1 protein and flow cytometry analysis confirmed that the NIH-3T3-pEGFP-IRES2-Jagged-1 cell line over-expressed Jagged-1 protein was monoclonal after screened by selective medium and limiting dilution analysis. It is concluded that the pEGFP-IRES2-Jagged-1 eukaryotic expression vector and a stable transfectant monoclonal NIH-3T3 cell line are successfully established. The construction of the stable transfectant monoclonal NIH-3T3 cell line which overexpressed Jagged-1 protein, provides the conditions to further study the mechanism of the bone marrow stromal cell-mediated drug resistance and to discover the new drug targets.

  10. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata.

    Science.gov (United States)

    Diao, Jin-Mei; Pang, Xin; Qiu, Yue; Miao, Ying; Yu, Miao-Miao; Fan, Ting-Jun

    2015-03-01

    A tissue-engineered human corneal stroma (TE-HCS) has been developed as a promising equivalent to the native corneal stroma for replacement therapy. However, there is still a crucial need to improve the current approaches to render the TE-HCS equivalent more favorable for clinical applications. At the present study, we constructed a TE-HCS by incubating non-transfected human corneal stromal (HCS) cells in an acellular porcine corneal stromata (aPCS) scaffold in 20% fetal bovine serum supplemented DMEM/F12 (1:1) medium at 37 °C with 5% CO2in vitro. After 3 days of incubation, the constructed TE-HCS had a suitable tensile strength for transplantation, and a transparency that is comparable to native cornea. The TE-HCS had a normal histological structure which contained regularly aligned collagen fibers and differentiated HCS cells with positive expression of marker and functional proteins, mimicking a native HCS. After transplantation into rabbit models, the TE-HCS reconstructed normal corneal stroma in vivo and function well in maintaining corneal clarity and thickness, indicating that the completely biological TE-HCS could be used as a HCS equivalent. The constructed TE-HCS has promising potentials in regenerative medicine and treatment of diseases caused by corneal stromal disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Microporation is a valuable transfection method for efficient gene delivery into human umbilical cord blood-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ahn Jae

    2010-05-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP and brain-derived neurotropfic factor (BDNF plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells. Results Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83% and only minimal cell damage than when conventional liposome-based reagent (in vitro and in vivo. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their in vitro differentiation into neural cells. Conclusion Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy.

  12. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with SV40 T-antigen mutants defective in RB and P53 binding domains

    International Nuclear Information System (INIS)

    LingNah Su; Little, J.B.

    1992-01-01

    A series of human diploid fibroblast cell clones were developed by DNA transfection with either wild-type SV40 T-antigen (SV40T) or T-antigen mutants defective in its various functional domains. Cell clones expressing the wild-type SV40 T were significantly radioresistant as compared with clones transfected with the neo gene only (D o 192 ± 13 vs 127 ± 19). This radioresistance persisted in post-crisis, immortalized cell lines. A series of mutants with point or deletion mutations within each functionally active domain of SV40 T were also examined for their ability to alter radiosensitivity and induce morphological transformation. Cell clones transfected with T-antigen mutants defective in nuclear localization or origin binding showed increased radioresistance similar to clones transfected with wild-type T-antigen, and expressed morphological changes characteristic of SV40 T-transfected cells. (author)

  13. PHARMACOLOGICAL IN VITRO MODELS IN PRE-CLINICAL DRUG TESTING - EXAMPLE OF hSERT TRANSFECTED HUMAN EMBRYONIC KIDNEY CELLS

    Directory of Open Access Journals (Sweden)

    Mihajlo Jakovljević

    2012-06-01

    Full Text Available Preclinical drug testing should be considered an important stage during examinations of its efficiency and safety in any likely indication observed. Purpose of the process is acquisition of substantial amount of particular drug-related data before approaching clinical trials in humans. Historical preclinical testing relied on available testing in microbe cultures and animal models. During recent decades laboratory techniques of human cell lines cultivation have been developed and improved. These provide unique possibility of drug acting mechanism testing in a simplified environment lacking basic homeostatic mechanisms. Some examples of these are measuring drug impact to biochemical transport, signaling or anabolic processes. Humane cell lines of embrional kidney 293 are an example of easy-to-grow and disseminate and quite endurable cell line. This methodological article notices some of the details of HEK293 cells cultivation and breading. We took transfection as an example of in vitro model creation for drug testing. Transfection refers to gene introduction into HEK293 cellular genome in order to achieve membrane expression of coded protein. In our case it would be human serotonin transporter. Article contains description of one particular methodological approach in measuring human serotonin transporter expression. The role and importance of serotonin pump in affective disorders genesis was already widely recognized. Aim of the paper was to emphasize feasibility of cell cultivation and its advantages in comparison with alternative traditional methods.

  14. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    Science.gov (United States)

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  15. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  16. Differential effects of natural flavonoids on growth and iodide content in a human Na*/I- symporter-transfected follicular thyroid carcinoma cell line

    NARCIS (Netherlands)

    Schröder-van der Elst, Janny P.; van der Heide, Daan; Romijn, Johannes A.; Smit, Jan W. A.

    2004-01-01

    Natural flavonoids (plant pigments) have been shown to inhibit thyroid peroxidase (TPO) in vitro and the growth of thyroid cancer cell lines. We have studied the role of flavonoids on the iodide transport and the growth of the human follicular thyroid cancer cell line (FTC133) which was stably

  17. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  18. The M1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    International Nuclear Information System (INIS)

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated [ 3 H]IP 1 accumulation in the SH-SY5Y cells was decreased in the presence of 1μg/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M 1 mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m 1 gene. The transfected B82 cells (cTB10) showed specific [ 3 H](-)QNB binding activity. The mAChRs in these cells are of the M 1 type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M 1 mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M 1 mAChR densities in these cells characterized by [ 3 H](-)MQNB binding ranged from 12 fmol/10 6 cells in LK3-1 cells to 260 fmol/10 6 cells in the LK3-8 cells

  19. In vivo molecular imaging and radionuclide (131I therapy of human nasopharyngeal carcinoma cells transfected with a lentivirus expressing sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Shuo Shi

    Full Text Available Despite recent improvements in the survival rates for nasopharyngeal carcinoma (NPC, novel treatment strategies are required to improve distant metastasis-free survival. The sodium iodine symporter (NIS gene has been applied for in vivo imaging and cancer therapy. In this study, we examined the potential of NIS gene therapy as a therapeutic approach in NPC by performing non-invasive imaging using 125I and 131I therapy in vivo.We constructed a lentiviral vector expressing NIS and enhanced green fluorescent protein (EGFP under the control of the human elongation factor-1α (EF1α promoter, and stably transfected the vector into CNE-2Z NPC cells to create CNE-2Z-NIS cells. CNE-2Z and CNE-2Z-NIS tumor xenografts were established in nude mice; 125I uptake, accumulation and efflux were measured using micro-SPECT/CT imaging; the therapeutic effects of treatment with 131I were assessed over 25 days by measuring tumor volume and immunohistochemical staining of the excised tumors.qPCR, immunofluorescence and Western blotting confirmed that CNE-2Z-NIS cells expressed high levels of NIS mRNA and protein. CNE-2Z-NIS cells and xenografts took up and accumulated significantly more 125I than CNE-2Z cells and xenografts. In vitro, 131I significantly reduced the clonogenic survival of CNE-2Z-NIS cells. In vivo, 131I effectively inhibited the growth of CNE-2Z-NIS xenografts. At the end of 131I therapy, CNE-2Z-NIS xenograft tumor cells expressed higher levels of NIS and caspase-3 and lower levels of Ki-67.Lentiviruses effectively delivered and mediated long-lasting expression of NIS in CNE-2Z cells which enabled uptake and accumulation of radioisotopes and provided a significant therapeutic effect in an in vivo model of NPC. NIS-mediated radioiodine treatment merits further investigation as a potentially effective, low toxicity therapeutic strategy for NPC.

  20. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  1. Human breast adipose-derived stem cells transfected with the stromal cell-derived factor-1 receptor CXCR4 exhibit enhanced viability in human autologous free fat grafts.

    Science.gov (United States)

    Xu, Fang-tian; Li, Hong-mian; Yin, Qing-Shui; Liu, Da-lie; Nan, Hua; Zhao, Pei-ran; Liang, Shuang-wu

    2014-01-01

    The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1) and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4) are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs) and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs) transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. Human breast adipose-derived stem cells (HBASCs) were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP) and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A), GFP-labeled HBASCs (group B), the known vascularization-promoting agent VEGF (group C), or medium (group D) and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR). The data revealed that the control (group D) transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A) and untransfected (group B) HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively), whereas VEGF-transfected HBASCs (group C) were less effective (41.2 ± 5.1%). Histological analysis revealed that both types

  2. The effects of transfection reagent polyethyleneimine (PEI) and non-targeting control siRNAs on global gene expression in human aortic smooth muscle cells.

    Science.gov (United States)

    Raof, Nurazhani A; Rajamani, Deepa; Chu, Hsun-Chieh; Gurav, Aniket; Johnson, Joel M; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Bhasin, Manoj

    2016-01-05

    RNA interference (RNAi) is a powerful platform utilized to target transcription of specific genes and downregulate the protein product. To achieve effective silencing, RNAi is usually applied to cells or tissue with a transfection reagent to enhance entry into cells. A commonly used control is the same transfection reagent plus a "noncoding RNAi". However, this does not control for the genomic response to the transfection reagent alone or in combination with the noncoding RNAi. These control effects while not directly targeting the gene in question may influence expression of other genes that in turn alter expression of the target. The current study was prompted by our work focused on prevention of vascular bypass graft failure and our experience with gene silencing in human aortic smooth muscle cells (HAoSMCs) where we suspected that off target effects through this mechanism might be substantial. We have used Next Generation Sequencing (NGS) technology and bioinformatics analysis to examine the genomic response of HAoSMCs to the transfection reagent alone (polyethyleneimine (PEI)) or in combination with commercially obtained control small interfering RNA (siRNAs) (Dharmacon and Invitrogen). Compared to untreated cells, global gene expression of HAoSMcs after transfection either with PEI or in combination with control siRNAs displayed significant alterations in gene transcriptome after 24 h. HAoSMCs transfected by PEI alone revealed alterations of 213 genes mainly involved in inflammatory and immune responses. HAoSMCs transfected by PEI complexed with siRNA from either Dharmacon or Invitrogen showed substantial gene variation of 113 and 85 genes respectively. Transfection of cells with only PEI or with PEI and control siRNAs resulted in identification of 20 set of overlapping altered genes. Further, systems biology analysis revealed key master regulators in cells transfected with control siRNAs including the cytokine, Interleukin (IL)-1, transcription factor GATA

  3. Efficient propagation of progressive multifocal leukoencephalopathy-type JC virus in COS-7-derived cell lines stably expressing Tat protein of human immunodeficiency virus type 1.

    Science.gov (United States)

    Nukuzuma, Souichi; Nakamichi, Kazuo; Kameoka, Masanori; Sugiura, Shigeki; Nukuzuma, Chiyoko; Miyoshi, Isao; Takegami, Tsutomu

    2010-12-01

    The high incidence of progressive multifocal leukoencephalopathy (PML) in AIDS patients compared with many other immunosuppressive diseases suggests that HIV-1 infection is strictly related to the activation of JC virus (JCV) propagation. In this report, propagation of PML-type JCV in COS-7-derived cell lines stably expressing HIV-1 Tat (COS-tat cells) has been examined. In COS-tat cells, production of viral particles and replication of genomic DNA were markedly increased compared to COS-7 cells, as judged by HA and real-time PCR analyses. These results demonstrate that COS-tat cells provide a useful model system for studying HIV-1 Tat-mediated propagation of PML-type JCV. © 2010 The Societies and Blackwell Publishing Asia Pty Ltd.

  4. Transfection of oral squamous cell carcinoma with human papillomavirus-16 induces proliferative and morphological changes in vitro

    Directory of Open Access Journals (Sweden)

    O'Malley Susan

    2006-05-01

    Full Text Available Abstract Background Human papillomavirus has been implicated in virtually all cervical cancers and is believed to be the primary etiological factor that transforms cervical epithelia. The presence of HPV in oral cancers suggests that HPV may play a similar role in transforming the oral epithelia. The prevalence of HPV in oral cancers is highly variable, however, presenting problematic issues regarding the etiology of oral cancers, which must be investigated more thoroughly. Past analyses of HPV in cancers of the oral cavity have largely been confined to retrospective studies of cancer patients. The purpose of this study was to examine the potential for HPV16 infection to alter the proliferative phenotype of oral squamous cell carcinoma in vitro. Results This study found that the oral squamous cell carcinoma cell line, CAL27, transfected with HPV16, exhibited significantly increased proliferation, compared with non-transfected CAL27. The increased proliferation was observed under low density conditions, even in the absence of serum. Moreover, these effects were specific to proliferation, adhesion, and morphology, while cell viability was not affected. Conclusion This study represents one of the first investigations of the effects of HPV16 infection on the proliferation, adhesion, and morphology of an oral squamous cell carcinoma cell line in vitro. The finding that HPV16 has the ability to measurably alter adhesion and proliferative potential is significant, indicating that HPV may have multiple influences on precancerous and cancerous lesions and should be explored as a risk factor and mediator of cancer phenotypes. These measurements and observations will be of benefit to researchers interested in elucidating the mechanisms of oral cancer transformation and the factors governing carcinogenesis and progression.

  5. An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells.

    Science.gov (United States)

    Le Bivic, A; Sambuy, Y; Patzak, A; Patil, N; Chao, M; Rodriguez-Boulan, E

    1991-11-01

    A cDNA encoding the full-length 75-kD human nerve growth factor receptor was transfected into MDCK cells and its product was found to be expressed predominantly (80%) on the apical membrane, as a result of vectorial targeting from an intracellular site. Apical hNGFR bound NGF with low affinity and internalized it inefficiently (6% of surface bound NGF per hour). Several mutant hNGFRs were analyzed, after transfection in MDCK cells, for polarized surface expression, ligand binding, and endocytosis. Deletionof juxta-membrane attachment sites for a cluster of O-linked sugars did not alter apical localization. A mutant receptor lacking the entire cytoplasmic tail (except for the five proximal amino acids) was also expressed on the apical membrane, suggesting that information for apical sorting was contained in the ectoplasmic or transmembrane domains. However, a 58 amino acid deletion in the hNGFR tail that moved a cytoplasmic tyrosine (Tyr 308) closer to the membrane into a more charged environment resulted in a basolateral distribution of the mutant receptor and reversed vectorial (basolateral) targeting. The basolateral mutant receptor also internalized 125I-NGF rapidly (90% of surface bound NGF per hour), exhibited a larger intracellular fraction and displayed a considerably shortened half-life (approximately 3 h). We suggest that hNGFR with the internal cytoplasmic deletion expresses a basolateral targeting signal, related to endocytic signals, that is dominant over apical targeting information in the ecto/transmembrane domains. These results apparently contradict a current model that postulates that basolateral targeting is a default mechanism.

  6. The radio-sensitivity effect of E1A gene transfected by PEI on colon carcinoma cell in vitro

    International Nuclear Information System (INIS)

    Wu Yinxia; Liu Dongfang; Liu Yongbiao; Xu Dongmei; Yao Side; Sheng Kanglong

    2011-01-01

    As a neotype nonviral vector, (Polyethylenimine, PEI) has been studied in gene transfection experiment. This study was investigated the growth inhibition and radio-sensitizing effect of E1A gene transfected by PEI on human colon carcinoma cell in vitro. The PSV-E1A recombinant plasmid, which was designed for high-level expression of E1A gene in a variety of eukaryotic cell lines, was transfected into SW480 cells by PEI. The transfection was confirmed by RT-PCR and G418 was used to get colon carcinoma cells stably expressed E1A gene. The cell growth curve were investigated to observe the growth inhibition induced by E1A gene. The redistributions of cell cycle were analyzed by flow cytometry. Cells before and after transfection were treated with irradiation, then the changes of radiation-sensitivity were tested by MTT assay after 24 h meanwhile the expression of HER-2 gene in SW480 cells before and after transfection was detected by western-blot. As results, (1) the colon carcinoma cells expressed E1A gene was confirmed by G418. (2) The result of RT-PCR demonstrated that PEI could transfect plasmid psv-E1A and the cells could stably express E1A gene. (3) Flow cytometry revealed that E1A gene transfected into human colon carcinoma cell could induce S stage suppression (p<0.001) and G2/M stage arrest (p<0.001). (4) Compared with the Non-transfected cells, the E1A-transfected cells (SW480-E1A cells) grew slowly observed by MTT assay which was used to get the absorbance of SW480 cell and SW480-E1A cell. (5) The radiation-sensitivity of SW480 cells transfected with E1A gene was up-regulated obviously (p<0.001). (6) The E1A gene obviously down-regulated HER-2 protein expression in colon carcinoma cells. Anyway, PEI can transfect plasmid psv-E1A gene which can significantly inhibit the growth rate of SW480 cell. Moreover, it also obviously enhanced the cell sensitivity to irradiation. (authors)

  7. Gene transfection using lipid-mediated TGFβ1 sense and antisense gene expression vectors and its effects on TGFβ1 and procollagen I mRNA expression in 60Co-irradiated human embryo lung fibroblasts

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan

    2001-01-01

    Objective: To investigate the effects on gene expression of 60 Co-irradiated human embryo lung fibroblasts after gene transfection using lipid-mediated TGFβ1 sense and antisense gene expression vectors. Methods: TGFβ1 sense and antisense gene expression vectors were transfected using a lipid-mediated method. Gene expression was analysed by RNA dot blot. Results: HELFs irradiated with 5 Gy were transfected with an expression vector encoding the human TGFβ1 sense or antisense gene under control of the mouse mammary tumor virus long terminal repeat(MMTV-LTR) promoter/enhance sequence (pMAMneo-TGFβ1, or pMAMneo-anti-TGFβ1). The transfected cells elected by G418 resistance were cultured in DMEM containing dexamethasone. The chromosomal DNA and RNA were extracted. Positive reaction was showed from chromosomal DNA by a PCR method of neo-specific primers and DNA dot blot with Dig-labelling neo-specific probe. RNA dot blot analysis showed that TGFβ1 mRNA level of the cells transfected with pMAM neo-anti TGFβ1 decreased, but that of transfected with pMAM neo-TGFβ1 increasing. For procollagen I mRNA, the transfected pMAM neo-anti TGFβ1 was lower than un-transfected cells and the transfected pMAM neo-TGFβ1 was higher. Conclusion: After TGFβ1 sense and antisense gene transfection, TGFβ1 mRNA level of the cells transfected with TGFβ1 antisense gene decreased, but that with TGFβ1 sense gene increased. For procollagen I mRNA, the cells transfected with TGFβ1 antisense gene was lower than un-transfected cells and the cells transfected with TGFβ1 sense gene was higher than un-transfected cells

  8. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    Science.gov (United States)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  9. Human cystatin C forms an inactive dimer during intracellular trafficking in transfected CHO cells

    DEFF Research Database (Denmark)

    Merz, G S; Benedikz, Eirikur; Schwenk, V

    1997-01-01

    To define the cellular processing of human cystatin C as well as to lay the groundwork for investigating its contribution to lcelandic Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA-I), we have characterized the trafficking, secretion, and extracellular fate of human cystatin C...... that the cystatin C dimer, formed during intracellular trafficking, is converted to monomer at or before secretion. Cells in which exit from the endoplasmic reticulum (ER) was blocked with brefeldin A contained the 33 kDa species, indicating that cystatin C dimerization occurs in the ER. After removal of brefeldin......, presumably as a consequence of the low pH of late endosome/lysosomes. As a dimer, cystatin C would be prevented from inhibiting the lysosomal cysteine proteases. These results reveal a novel mechanism, transient dimerization, by which cystatin C is inactivated during the early part of its trafficking through...

  10. AGONIST ANTAGONIST INTERACTIONS WITH CLONED HUMAN 5-HT1A RECEPTORS - VARIATIONS IN INTRINSIC ACTIVITY STUDIED IN TRANSFECTED HELA-CELLS

    NARCIS (Netherlands)

    BODDEKE, HWGM; FARGIN, A; RAYMOND, J.; SCHOEFFTER, P; HOYER, D

    The characteristics of 5-HT1A-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT1A receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond et

  11. Agonist/antagonist interactions with cloned human 5-HT(1A) receptors: Variations in intrinsic activity studied in transfected HeLa cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Fargin, A.; Raymond, J.R.; Schoeffter, P.; Hoyer, D.

    1992-01-01

    The characteristics of 5-HT(1A)-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT(1A) receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond

  12. Gene transfection of human mesenchymal stem cells with a nano-hydroxyapatite-collagen scaffold containing DNA-functionalized calcium phosphate nanoparticles.

    Science.gov (United States)

    Tenkumo, Taichi; Vanegas Sáenz, Juan Ramón; Takada, Yukyo; Takahashi, Masatoshi; Rotan, Olga; Sokolova, Viktoriya; Epple, Matthias; Sasaki, Keiichi

    2016-07-01

    This study aimed to fabricate a growth factor-releasing biodegradable scaffold for tissue regeneration. We prepared multishell calcium phosphate (CaP) nanoparticles functionalized with DNA, polyethyleneimine (PEI), protamine and octa-arginine (R8) and compared their respective transfection activity and cell viability measures using human mesenchymal stem cells. DNA-protamine complexes improved the transfection efficiency of CaP nanoparticles with the exception of those functionalized with R8. These complexes also greatly reduced the cytotoxicity of PEI. In addition, we also fabricated DNA-protamine-functionalized CaP nanoparticle-loaded nano-hydroxyapatite-collagen scaffolds and investigated their gene transfection efficiencies. These experiments showed that the scaffolds were associated with moderate hMSC cell viability and were capable of releasing the BMP-2 protein into hMSCs following gene transfection. In particular, the scaffold loaded with protamine-containing CaP nanoparticles showed the highest cell viability and transfection efficiency in hMSCs; thus, it might be suitable to serve as an efficient growth factor-releasing scaffold. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  13. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    DEFF Research Database (Denmark)

    Adler, Andrew F; Speidel, Alessondra T; Christoforou, Nicolas

    2011-01-01

    Optimization of nonviral gene delivery typically focuses on the design of particulate carriers that are endowed with desirable membrane targeting, internalization, and endosomal escape properties. Topographical control of cell transfectability, however, remains a largely unexplored parameter...... of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM...... and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems....

  14. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  15. Processing of high-molecular-weight form adrenocorticotropin in human adrenocorticotropin-secreting tumor cell line (DMS-79) after transfection of prohormone convertase 1/3 gene.

    Science.gov (United States)

    Tateno, T; Kato, M; Tani, Y; Yoshimoto, T; Oki, Y; Hirata, Y

    2010-02-01

    Ectopic ACTH-producing tumors preferentially secrete biologically inactive ACTH precursors and ACTH-related fragments. DMS-79 is known to secrete unprocessed high-molecular-weight (HMW) form ACTH. To determine whether prohormone convertase (PC) 1/3 is involved in the abnormal processing of proopiomelanocortin (POMC), we studied whether PC1/3 and 2 genes are expressed in DMS-79, and whether overexpression of PC1/3 gene affects POMC processing pattern. Steady-state mRNA levels of PC1/3 and 2 were determined by real-time RT-PCR. Molecular weights of ACTH-related peptides were determined by chromatographical analyses coupled with ACTH and beta-endorphin (beta-END) radioimmunoassays. PC1/3 gene was transfected into DMS-79 by retrovirus transduction using pMX-IP vector encoding PC1/3 cDNA. The steady-state mRNA levels of PC1/3 and 2 in DMS-79 were lower than those in ACTH-secreting and nonfunctioning pituitary tumors. DMS-79 predominantly secreted HMW form with both ACTH and beta-END immunoreactivities by size-exclusion chromatography. After purification by immunoaffinity chromatography with anti-ACTH antibody, the apparent molecular weight of HMW form ACTH was estimated to be 16 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. After retroviral transfection of PC1/3 cDNA into DMS-79 and puromycin selection, PC1/3 stably-expressing cell line (DMS-79T) secreted two immunoreactive ACTH components, a major one coeluting with ACTH(1-39) and a minor one as a HMW form as well as two beta- END immunoreactive components coeluting with beta-lipotropic hormone and beta-END, respectively. Thus, we have established PC1/3 stably-expressing cell line (DMS-79T) capable of proteolytically processing ACTH precursor molecule(s) into mature ACTH and beta-END.

  16. Nerve growth factor (NGF) induces neuronal differentiation in neuroblastoma cells transfected with the NGF receptor cDNA

    International Nuclear Information System (INIS)

    Matsushima, H.; Bogenmann, E.

    1990-01-01

    Human nerve growth factor (NGF) receptor (NGFR) cDNA was transfected into a neuroblastoma cell line (HTLA 230) which does not express a functional NGF-NGFR signal transduction cascade. Short-term treatment of stably transfected cells (98-3) expressing membrane-bound NGF receptor molecules resulted in a cell cycle-dependent, transient expression of the c-fos gene upon treatment with NGF, suggesting the presence of functional high-affinity NGFR. Extensive outgrowth of neurites and cessation of DNA synthesis occurred in transfectants grown on an extracellular matrix after long-term treatment with NGF, suggesting terminal differentiation. Our data support the idea that introduction of a constitutively expressed NGFR cDNA into cells with neuronal background results in the assembly of a functional NGF-NGFR signal cascade in a permissive extracellular environment

  17. The effect of aloe emodin–encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells

    International Nuclear Information System (INIS)

    Li, Kai-Ting; Duan, Qin-Qin; Chen, Qing; He, Juan-Wen; Tian, Si; Lin, Hai-Dan; Gao, Qing; Bai, Ding-Qun

    2015-01-01

    Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)–encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm 2 ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human

  18. Enhanced dentin-like mineralized tissue formation by AdShh-transfected human dental pulp cells and porous calcium phosphate cement.

    Science.gov (United States)

    Xia, Lunguo; Zhang, Maolin; Chang, Qing; Wang, Lizhen; Zeng, Deliang; Zhang, Xiuli; Zhang, Zhiyuan; Jiang, Xinquan

    2013-01-01

    The aim of the present study was to investigate the effect of Sonic hedgehog (Shh) on human dental pulp cells (hDPCs) and the potential of complexes with Shh gene modified hDPCs and porous calcium phosphate cement (CPC) for mineralized tissue formation. hDPCs were cultured and transfected with adenoviral mediated human Shh gene (AdShh). Overexpression of Shh and cell proliferation was tested by real-time PCR analysis, western blotting analysis, and MTT analysis, respectively. The odontoblastic differentiation was assessed by alkaline phosphatase (ALP) activity and real-time PCR analysis on markers of Patched-1 (Ptc-1), Smoothened (Smo), Gli 1, Gli 2, Gli 3, osteocalcin (OCN), dentin matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP). Finally, AdShh-transfected hDPCs were combined with porous CPC and placed subcutaneously in nude mice for 8 and 12 weeks, while AdEGFP-transfected and untransfected hDPCs were treated as control groups. Results indicated that Shh could promote proliferation and odontoblastic differentiation of hDPCs, while Shh/Gli 1 signaling pathway played a key role in this process. Importantly, more mineralized tissue formation was observed in combination with AdShh transfected hDPCs and porous CPC, moreover, the mineralized tissue exhibited dentin-like features such as structures similar to dentin-pulp complex and the positive staining for DSPP protein similar to the tooth tissue. These results suggested that the constructs with AdShh-transfected hDPCs and porous CPC might be a better alternative for dental tissue regeneration.

  19. [Construction of the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene.].

    Science.gov (United States)

    Ye, Sujuan; Feng, Zhihua; Zhu, Wen; Cai, Chunji; Li, Lu; Sun, Liya; Wan, Haisu; Ma, Li; Zhou, Qinghua

    2008-08-20

    It has been proven that nm23-H1 gene is an important metastaticsuppressed gene of lung cancer. In order to screen the differential expression genes related to nm23-H1 , we constructed the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene by suppression subtractive hybridization (SSH) in this study, which lay a solid foundation for further screening and cloning metastatic-related genes of nm23-H1. The forward and reverse suppression subtractive cDNA libraries were constructed in the human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene (L9981 and L9981-nm23-H1) by SSH method. The positive clones were preliminarily screened by bluewhite colony, and precisely identified by PCR. The suppression subtractive cDNA libraries were successfully constructed in the human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981). After the blue-white screening, about three hundred positive clones in the forward subtracted library and four hundred positive clones in the reverse subtracted library were obtained. Ramdom analysis of 96 clones in each library with colony PCR methods showed that 84 clones in the forward subtracted library and 83 clones in the reverse subtracted library contained (300-750) bp inserts. SSH is proved to be an efficient tool for differential expression gene cloning. The forward and reverse suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981) are successfully constructed by SSH and T/A cloning technology. The expression of nm23-H1 gene in the human large cell lung cancer cell lines may affect the differential expression of some metastatic-related genes.

  20. The effects of human TSH receptor gene transfection on iodide uptake and thyroid-specific gene expression in poorly differentiated thyroid carcinoma cell line

    International Nuclear Information System (INIS)

    Hou Shasha; Wang Hui; Feng Fang; Lin Ning; Fu Hongliang; Du Xueliang; Wu Jingchuan

    2011-01-01

    Objective: To investigate the changes of iodide uptake and the expression of thyroid-specific genes in poorly differentiated follicular thyroid carcinoma (FTC) cells after transfection of human TSH receptor (hTSHR) gene in vitro. Methods: The recombinant eukaryotic expression plasmid PcDNA3.1/hTSHR-cDNA was transformed into DH 5a bacterial for amplification and then the recombinant plasmid was extracted. The recombinant was identified with PCR amplifying, restriction enzyme digestion analysis and DNA sequencing. The recombinant plasmid pcDNA3.1/hTSHR was transfected into FTC-133 cell line by lipofectin method in vitro. Immunofluorescence, iodide uptake studies and real time-PCR were applied to detect target protein expression. Statistical analysis was performed with t-test using SPSS 13.0 software. Results: Kpn I and Xba I restriction enzyme digestion, PCR amplifying and DNA sequencing confirmed that pcDNA3.1/hTSHR was successfully constructed. After transfection of the recombinant plasmid pcDNA3.1/hTSHR-cDNA and the stimulation of hTSH, the tumor cells displayed the expression of hTSHR protein at cell surface and cytoplasm. The iodine uptake in pcDNA3.1/hTSHR transfected cells was 2.9 times higher than that of control(pcDNA3.1(+) transfected cells) group(t = 28.63, P<0.01). The expression of TSHR, NIS, TPO and Tg (mRNA levels) in pcDNA3.1/hTSHR transfected cells were also significantly elevated by 1.74 (t =5.959, P<0.01), 7.2 (t =3.807, P<0.05), 2.88 (t=4.769, P<0.01) and 2.67 times (t=6.388, P<0.01) respectively compared to those of the control group. Conclusion: The study demonstrates that iodide uptake may be reactivated by hTSHR receptor gene transfection in poorly differentiated FTC cell. (authors)

  1. Improved fat transplantation survival by using the conditioned medium of vascular endothelial growth factor transfected human adipose-derived stem cells.

    Science.gov (United States)

    Zhang, Yang; Xiao, Li-Ling; Li, Jiang-Xuan; Liu, Hong-Wei; Li, Sheng-Hong; Wu, Yan-Yun; Liao, Xuan; Rao, Cong-Qiang

    2017-08-01

    Autologous fat transplantation has been applied widely in clinic. However, the low survival rate is still a problem to be solved. Studies shows that the human adipose-derived stem cells (ADSCs) transfected by vascular endothelial growth factor (VEGF) can improve the survival rate of autologous fat transplantation. Our study is to evaluate the effects of the conditioned medium of VEGF-transfected human adipose-derived stem cells (VEGF-ADSCs-CM) on fat transplantation. ADSCs were isolated and transfected with MOI = 40. The study was divided into three groups, VEGF-ADSCs-CM group, normal-ADSCs-CM group and control group. The conditioned media for VEGF-ADSCs-CM group and normal-ADSCs-CM group were collected, and then mixed with fat, with the mixtures being injected into the back of nude mice. On 4, 7, 15, 30, 60 days after transplantation, the grafts were evaluated on the wet weight, histology, ELISA and western blot. As the results revealed, the survival rate of VEGF-ADSCs-CM group was highest with the best fat cell morphology, and the VEGF secretion of VEGF-ADSCs-CM group was also highest. Therefore, our study demonstrates that VEGF-ADSCs-CM can improve the survival rate of fat transplantation effectively, and VEGF-ADSCs-CM can be regarded as an effective assisted method for fat transplantation. Copyright © 2017 Kaohsiung Medical University. Published by Elsevier Taiwan. All rights reserved.

  2. Accumulation of a soluble form of human nectin-2 is required for exerting the resistance against herpes simplex virus type 2 infection in transfected cells.

    Science.gov (United States)

    Fujimoto, Y; Ozaki, K; Iwamori, N; Takakuwa, H; Ono, E

    2016-03-01

    Cell entry of herpes simplex virus type 2 (HSV-2) requires the interaction of viral glycoprotein D (gD) with the receptor nectin-1 and herpesvirus entry mediator (HVEM). In addition, it is known that nectin-2 is also functional as a receptor for HSV-2, although the binding to the gD is weak. To examine an antiviral potential of a soluble form of human nectin-2 (hNectin-2Ig), transfected Vero cells expressing the entire ectodomain of nectin-2 fused to the Fc portion of human IgG were established. Specific binding of hNectin-2Ig to HSV-2 gD was confirmed by ELISA. Competitive ELISA demonstrated that accumulation of hNectin-2Ig in transfected cells increased significantly in a cell culture time dependent manner. Viral growth of several HSV-2 strains was significantly inhibited in the transfected cells that were cultured for 72 hr compared with control Vero cells, but not in cells that were cultured for 24 hr. These results indicate that accumulation of a soluble form of nectin-2 is required for exerting the resistance against HSV-2 infection.

  3. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey (Macaca mulatta) brains.

    Science.gov (United States)

    Wu, Shi-Hao; Liao, Zhi-Xing; D Rizak, Joshua; Zheng, Na; Zhang, Lin-Heng; Tang, Hen; He, Xiao-Bin; Wu, Yang; He, Xia-Ping; Yang, Mei-Feng; Li, Zheng-Hui; Qin, Dong-Dong; Hu, Xin-Tian

    2017-03-18

    Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca 2+ /calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.

  4. Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl- polyethylenimine -containing nanoplexes.

    Science.gov (United States)

    Oroojalian, Fatemeh; Rezayan, Ali Hossein; Shier, Wayne Thomas; Abnous, Khalil; Ramezani, Mohammad

    2017-05-15

    Non-viral vectors are of interest as therapeutic gene delivery agents in gene therapy, because they are simple to prepare, easy to modify and have definable safety profiles compared to viral vectors. The potential of gene therapy in the treatment of renal diseases is limited by a lack of effective kidney-targeted gene delivery systems. Aminoglycoside antibiotics gentamicin and neomycin were connected by amide linkages to carboxyl groups on carboxyalkylated-PEI 25 (25kDa PEI) or carboxyalkylated-PEI 10 (10kDa PEI). Aminoglycoside-carboxyalkylated-PEI conjugates were characterized with respect to size, surface charge density, DNA condensation ability, and buffering capacity. Polyplexes prepared by electrostatic interaction between aminoglycoside-carboxyalkylated-PEIs and enhanced green fluorescent protein-expressing (EGFP) plasmid DNA had appropriate nano-scale size (143-173nm). Their targeting potential was investigated in cultured HK-2 immortalized human cortex/proximal tubule kidney epithelial cells, which expresses megalin, a scavenger receptor that mediates endocytosis of a diverse group of ligands, including aminoglycoside antibiotics. Aminoglycoside-carboxyalkylated-PEIs significantly increased EGFP gene transfection efficiency in HK-2 cells by ∼13-fold for aminoglycoside-carboxyalkylated-PEI 25 and ∼7-fold increase for aminoglycoside-carboxyalkylated-PEI 10 relative to the corresponding PEIs without aminoglycosides. The transfection efficiency of polyplexes was dependent on the weight ratio of aminoglycoside-containing ligand in the carrier. In the presence of a range of concentrations of human serum albumin, which competes for megalin binding, aminoglycoside-carboxyalkylated-PEI-mediated transfection was reduced to background levels. These results suggest that aminoglycoside-carboxyalkylated-PEI polyplexes can target megalin-expressing kidney-derived cells in vitro resulting in improved transfection efficiency with low cytotoxicity. Copyright © 2017

  5. Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4

    Directory of Open Access Journals (Sweden)

    Tamotsu Kiyoshima

    2014-01-01

    Full Text Available Previous studies have shown that the recombination of cells liberated from developing tooth germs develop into teeth. However, it is difficult to use human developing tooth germ as a source of cells because of ethical issues. Previous studies have reported that thymosin beta 4 (Tmsb4x is closely related to the initiation and development of the tooth germ. We herein attempted to establish odontogenic epithelial cells from non-odontogenic HaCaT cells by transfection with TMSB4X. TMSB4X-transfected cells formed nodules that were positive for Alizarin-red S (ALZ and von Kossa staining (calcium phosphate deposits when cultured in calcification-inducing medium. Three selected clones showing larger amounts of calcium deposits than the other clones, expressed PITX2, Cytokeratin 14, and Sonic Hedgehog. The upregulation of odontogenesis-related genes, such as runt-related transcription factor 2 (RUNX2, Amelogenin (AMELX, Ameloblastin (AMBN and Enamelin (ENAM was also detected. These proteins were immunohistochemically observed in nodules positive for the ALZ and von Kossa staining. RUNX2-positive selected TMSB4X-transfected cells implanted into the dorsal subcutaneous tissue of nude mice formed matrix deposits. Immunohistochemically, AMELX, AMBN and ENAM were observed in the matrix deposits. This study demonstrated the possibility of induction of dental epithelial cell differentiation marker gene expression in non-odontogenic HaCaT cells by TMSB4X.

  6. Cholesterol Domains Enhance Transfection

    Science.gov (United States)

    Betker, Jamie L.; Kullberg, Max; Gomez, Joe; Anchordoquy, Thomas J.

    2014-01-01

    The formation of cholesterol domains in lipoplexes has been associated with enhanced serum stability and transfection rates both in cell culture and in vivo. This study utilizes the ability of saturated phosphatidylcholines to promote the formation of cholesterol domains at much lower cholesterol contents than have been utilized in previous work. The results show that lipoplexes with identical cholesterol and cationic lipid contents exhibit significantly improved transfection efficiencies when a domain is present, consistent with previous work. In addition, studies assessing transfection rates in the absence of serum demonstrate that the ability of domains to enhance transfection is not dependent on interactions with serum proteins. Consistent with this hypothesis, characterization of the adsorbed proteins composing the corona of these lipoplex formulations did not reveal a correlation between transfection and the adsorption of a specific protein. Finally, we show that the interaction with serum proteins can promote domain formation in some formulations, and thereby result in enhanced transfection only after serum exposure. PMID:23557286

  7. Stable transfection of Acanthamoeba.

    Science.gov (United States)

    Yin, J; Henney, H R

    1997-03-01

    The promoter activity of an Acanthamoeba polyubiquitin gene was analyzed in its homologous system. A modified calcium phosphate transfection method using a neomycin marker vector was developed to achieve highly efficient transfection of the Acanthamoeba polyubiquitin gene into Acanthamoeba cells. In this transfection procedure, the calcium phosphate-DNA complex was formed gradually in the medium during incubation with cells and precipitated on the cells. The crucial factors for obtaining efficient transfection were the pH (6.95) of the transfection buffer used for the calcium phosphate precipitation and the amount (25 micrograms/96-well tissue culture plate) and form (circular) of transfecting DNA. Under these conditions, Acanthamoeba isolate 1B6 was transfected at an efficiency of about 40% with the constructed vector pOPSBU, a pOP13CAT-based polyubiquitin gene incorporated neomycin resistance vector. Acanthamoeba polyphaga was transfected at an efficiency of about 10% with this vector. Transfection of both Acanthamoeba strains appeared to result in low copy plasmid integration (about two copies per cell are suggested). The chloramphenicol acetyltransferase (CAT) assays showed that the promoter of the Acanthamoeba polyubiquitin gene in the constructed vector was especially strong in A. polyphaga, thus the pOPSBU-Acanthamoeba system may be useful for the construction of cDNA expression libraries, as well as for the expression of cloned genes.

  8. Construction of the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene

    Directory of Open Access Journals (Sweden)

    Sujuan YE

    2008-08-01

    Full Text Available Background and objective It has been proven that nm23-H1 gene is an important metastatic-suppressed gene of lung cancer. In order to screen the differential expression genes related to nm23-H1, we constructed the suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene by suppression subtractive hybridization (SSH in this study, which lay a solid foundation for further screening and cloning metastatic-related genes of nm23-H1. Methods The forward and reverse suppression subtractive cDNA libraries were constructed in the human large cell lung cancer line L9981 before and after transfection with nm23-H1 gene (L9981 and L9981-nm23-H1 by SSH method. The positive clones were preliminarily screened by blue-white colony, and precisely identified by PCR. Results The suppression subtractive cDNA libraries were successfully constructed in the human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981. After the blue-white screening, about three hundred positive clones in the forward subtracted library and four hundred positive clones in the reverse subtracted library were obtained. Ramdom analysis of 96 clones in each library with colony PCR methods showed that 84 clones in the forward subtracted library and 83 clones in the reverse subtracted library contained (300-750 bp inserts. Conclusion SSH is proved to be an efficient tool for differential expression gene cloning. The forward and reverse suppression subtractive cDNA libraries of human large cell lung cancer line L9981 transfected and untransfected with nm23-H1 gene (L9981-nm23-H1 and L9981 are successfully constructed by SSH and T/A cloning technology. The expression of nm23-H1 gene in the human large cell lung cancer cell lines may affect the differential expression of some metastatic-related genes.

  9. Modulation of glutathione peroxidase expression by selenium: effect on human MCF-7 breast cancer cell transfectants expressing a cellular glutathione peroxidase cDNA and doxorubicin-resistant MCF-7 cells.

    OpenAIRE

    Chu, F F; Esworthy, R S; Akman, S; Doroshow, J H

    1990-01-01

    We have studied the effect of selenium on the expression of a cellular glutathione peroxidase, GSHPx-1, in transfected MCF-7 cells and in doxorubicin-resistant (Adrr) MCF-7 cells. A GSHPx-1 cDNA with a Rous Sarcoma virus promoter was transfected into a human mammary carcinoma cell line, MCF-7, which has very low endogenous cytosolic glutathione (GSH) peroxidase activity and no detectable message. The transfectant with the highest GSH peroxidase activity among the isolates, MCF-7H6, was charac...

  10. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  11. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Karimi, Mohammad Hosein

    2014-09-01

    Diabetes mellitus is characterized by either the inability to produce insulin or insensitivity to insulin secreted by the body. Islet cell replacement is an effective approach for diabetes treatment; however, it is not sufficient for all the diabetic patients. MicroRNAs (miRNAs) are a class of small noncoding RNAs that play an important role in mediating a broad and expanding range of biological activities, such as pancreas development. The present study aimed to develop a protocol to efficiently differentiate human induced pluripotent stem (iPS) cells into islet-like cell clusters (ILCs) in vitro by using miR-186 and miR-375. The human iPS colonies were transfected with hsa-miR-186 and hsa-miR-375 by using siPORT™ NeoFX™ Transfection Agent, and the differentiation was compared to controls. Total RNA was extracted 24 and 48 h after transfection. The gene expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, Glucagon, and OCT4 were then evaluated through real-time qPCR. On the third day, the potency of the clusters was assessed in response to high glucose levels. Dithizone (DTZ) was used to identify the existence of the β-cells. Besides, the presence of insulin and NGN3 proteins was investigated by immunocytochemistry. Morphological changes were observed on the first day after the chemical transfection, and cell clusters were formed on the third day. The expression of pancreatic specific transcription factors was increased on the first day and significantly increased on the second day. The ILCs were positive for insulin and NGN3 proteins in the immunocytochemistry. Besides, the clusters were stained with DTZ and secreted insulin in glucose challenge test. Overexpression of miR-186 and miR-375 can be an alternative strategy for producing ILCs from the iPS cells in a short time. This work provides a new approach by using patient-specific iPSCs for β-cell replacement therapy in diabetic patients.

  12. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy.

    Science.gov (United States)

    Hung, Chien-Fu; Xu, Xuequn; Li, Linhong; Ma, Ying; Jin, Qiu; Viley, Angelia; Allen, Cornell; Natarajan, Pachai; Shivakumar, Rama; Peshwa, Madhusudan V; Emens, Leisha A

    2018-04-02

    CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 9 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival

  13. Stably-stratified wall-bounded turbulence

    Science.gov (United States)

    Hadi Sichani, Pejman; Zonta, Francesco; Obabko, Aleksandr; Soldati, Alfredo

    2017-11-01

    Stably-stratified (bottom-up cooling) turbulent flows are encountered in a number of industrial applications, environmental processes and geophysical flows. Turbulent entrainment and mixing across density interfaces in terrestrial water bodies (oceans, lakes and rivers) and in industrial heat transfer equipments are just some important examples of stably-stratified flows. In this work we use Direct Numerical Simulation to investigate the fundamental physics of stably-stratified channel turbulence under Boussinesq and Non-Oberbeck-Boussinesq (NOB) conditions. Compared to the neutrally-buoyant case, in the stably-stratified case active turbulence survives only in the near-wall region and coexists with internal gravity waves (IGW) moving in the core region of the channel. This induces a general suppression of turbulence levels, momentum and buoyancy fluxes. Our results show also that NOB effects may be important when the flow is subject to large temperature gradients. The most striking feature observed in case of NOB conditions is the generation of a strong flow asymmetry with possible local flow laminarization in the near wall region.

  14. Transfection of Platyhelminthes

    Directory of Open Access Journals (Sweden)

    Bárbara Moguel

    2015-01-01

    Full Text Available Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.

  15. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    Science.gov (United States)

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  16. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  17. Graphene based gene transfection

    Science.gov (United States)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  18. Large eddy simulation of stably stratified turbulence

    International Nuclear Information System (INIS)

    Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao

    2011-01-01

    Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.

  19. Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells

    DEFF Research Database (Denmark)

    Yang, Hsiao Yin; Vonk, Lucienne A.; Licht, Ruud

    2014-01-01

    The application of RNA interference (RNAi) has great therapeutic potential for degenerative diseases of cartilaginous tissues by means of fine tuning the phenotype of cells used for regeneration. However, possible non-specific effects of transfection per se might be relevant for future clinical...... application. In the current study, we selected two synthetic transfection reagents, a cationic lipid-based commercial reagent Lipofectamine RNAiMAX and polyethylenimine (PEI), and two naturally-derived transfection reagents, namely the polysaccharides chitosan (98% deacetylation) and hyaluronic acid (20...... 3 and day 6 post-transfection. In addition to silencing efficiency, non-specific effects such as cytotoxicity, change in DNA content and differentiation potential of cells were evaluated. Among the four transfection reagents, the commercial liposome-based agent was the most efficient reagent for si...

  20. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...

  1. Modification of the radiosensitivity of human cells to which Simian virus 40 T-antigen was transfected

    International Nuclear Information System (INIS)

    Yamagishi, Nobuyuki; Miyakoshi, Junji; Ohtsu, Shuji; Takebe, Hikaru; Day, R.S. III.

    1995-01-01

    Effects of the introduction of the Simian virus 40 T-antigen (SV40 T-Ag) gene to cultured human cells were examined in relation to radiosensitivity. Two relatively radioresistant tumor cell lines (T98 and G361) became significantly radiosensitive after the introduction of SV40 T-Ag, whereas radiosensitive tumor cell lines did not show a change in radiosensitivity. In contrast, a human fibroblast cell line became radioresistant after SV40 T-Ag introduction. T98 cells which have a mutation at codon 237 in the p53 gene were unable to form a complex between p53 protein and SV40 T-Ag, whereas G361, which became radiosensitive by a SV40 T-Ag introduction, formed the complex. This indicates that the status of p53 is independent of the change in radiosensitivity in the cell lines studied. (author)

  2. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C

    1992-01-01

    is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...

  3. Assessment of three human FcεRI-transfected RBL cell-lines for identifying IgE induced degranulation utilizing peanut-allergic patient sera and peanut protein extract

    NARCIS (Netherlands)

    Ladics, G.S.; Bilsen, J.H.M. van; Brouwer, H.M.H.; Vogel, L.; Vieths, S.; Knippels, L.M.J.

    2008-01-01

    Specific IgE sera screening studies are employed to investigate protein cross-reactivity. Such nonfunctional immunochemical methods cannot measure the biological activity of proteins. Therefore, an assay using RBL cells transfected with human FcεRI was developed. Our objective was to evaluate the

  4. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  5. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    Energy Technology Data Exchange (ETDEWEB)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-02-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate.

  6. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA.

    Science.gov (United States)

    Tsurimoto, T; Fujiyama, A; Matsubara, K

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes.

  7. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA-21-loaded chitosan/hyaluronic acid nanoparticles via reverse transfection

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zhongshan Wang,1 Guangsheng Wu,2,3 Mengying Wei,4 Qian Liu,1 Jian Zhou,1 Tian Qin,1 Xiaoke Feng,1 Huan Liu,1 Zhihong Feng,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, 2State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, 4Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, People’s Republic of China Abstract: Cell sheet engineering has emerged as a novel approach to effectively deliver seeding cells for tissue regeneration, and developing human bone marrow mesenchymal stem cell (hBMMSC sheets with high osteogenic ability is a constant requirement from clinics for faster and higher-quality bone formation. In this work, we fabricated biocompatible and safe chitosan (CS/hyaluronic acid (HA nanoparticles (NPs to deliver microRNA-21 (miR-21, which has been proved to accelerate osteogenesis in hBMMSCs; then, the CS/HA/miR-21 NPs were cross-linked onto the surfaces of culture plates with 0.2% gel solution to fabricate miR-21-functionalized culture plates for reverse transfection. hBMMSC sheets were induced continuously for 14 days using a vitamin C-rich method on the miR-21-functionalized culture plates. For the characterization of CS/HA/miR-21 NPs, the particle size, zeta potential, surface morphology, and gel retardation were sequentially investigated. Then, the biological effects of hBMMSC sheets on the miR-21-functionalized culture plates were evaluated. The assay results demonstrated that the hBMMSC sheets could be successfully induced via the novel

  8. Efficient transfection of MG-63 osteoblasts using magnetic nanoparticles and oscillating magnetic fields.

    Science.gov (United States)

    Fouriki, A; Clements, M A; Farrow, N; Dobson, J

    2014-03-01

    To examine the potential of magnetic nanoparticles (MNPs) in transfecting human osteosarcoma fibroblasts (MG-63) and investigate the effects of a novel non-viral oscillating nanomagnetic gene transfection system (magnefect-nano™) in enhancing transfection efficiency (TE). MG-63 cells were transfected using MNPs coupled with a GFP-carrying plasmid. The magnefect-nano system was evaluated for transfection efficiency and potential associated effects on cell viability. MG-63 cells were efficiently transfected using MNPs and the magnefect-nano system significantly enhanced overall transfection efficiency. MNPs were not found to affect cell viability and/or function of the cells. Non-viral transfection using MNPs and the magnefect-nano system can be used to transfect MG-63 cells and assist reporter gene delivery on a single cell basis, highlighting the wide potential of nanomagnetic gene transfection in gene therapy. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Improved transfection of HUVEC and MEF cells using DNA ...

    Indian Academy of Sciences (India)

    Cells such as mouse embryonic fibroblasts (MEFs) and human umbilical vein endothelial cells (HUVECs) used in stem cell research and endothelial cell physiology and pathology studies are difficult to transfect using 'standard' nonviral transfection methods. We have developed a novel gene delivery technique, which uses ...

  10. [Construction and transfection of eucaryotic expression recombinant vector containing truncated region of UL83 gene of human cytomegalovirus and it's sheltered effect as DNA vaccine].

    Science.gov (United States)

    Gao, Rong-Bao; Li, Yan-Qiu; Wang, Ming-Li

    2006-06-01

    To construct eucaryotic expression recombinant vector containing vivo truncated region of UL83 gene of human cytomegalovirus, realize its steady expression in Hep-2 cell, and study sheltered effect of the eucaryotic expression recombinant vector as DNA vaccine. A vivo truncated UL83 gene fragment encoding for truncated HCMV pp65 was obtained by PCR from human cytomegalovirus AD169 stock genome. By gene recombinant ways, the truncated UL83 gene fragment was cloned into eucaryotic expression vector pEGFP-C1 with reported gene coding GFP to construct recombinant vector pEGFP-C1-UL83. The recombinant vector pEGFP-C1-UL83 was tested by different methods including PCR, restriction digestion and gene sequencing. Test results showed the recombinant vector was constructed successfully. After pEGFP-C1-UL83 was transfected into Hep-2 cell by lipofectin mediation, expression of GFP and truncated pp65 fusion protein in Hep-2 cell was observed at different time points by fluorescence microscope. Results showed that quantity of fusion protein expression was the highest at 36h point. Then, Hep-2 cell was cultured selectively by RPMI-1640 containing G418 (200 microg/mL) to obtain a new cell stock of expressing truncated UL83 Gene fragment steadily. RT-PCR and Western blot results showed the truncated fragment of UL83 gene could be expressed steadily in Hep-2 cell. The result showed a new cell stock of expressing Tpp65 was established. This cell stock could be useful in some HCMV research fields, for example, it could be a tool in study of pp65 and HCMV infection, and it could provide a platform for the research into the therapy of HCMV infection. Immune sheltered effect of pEGFP-C1-UL83 as DNA vaccine was studied in vivo of HCMV congenital infection mouse model. The mouse model was immunized solely by pEGFP-C1-UL83, and was immunized jointly by pEGFP-C1-UL83 and its expression product. When the mouse was pregnant and brought to bed, differential antibody of anti-HCMV pp65 was

  11. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  12. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C

    1992-01-01

    is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...... of insulin-producing cells showed highly differential expression at the cellular level of the three proinsulin C-peptide immunoreactivities, as follows: C-peptide I greater than human C-peptide greater than C-peptide II. The fractions of cells expressing human C-peptide and C-peptide II decreased in time...... species of proinsulin-C-peptide immunoreactivity but still at high levels. However, rat C-peptide II and human C-peptide were often colocalized, even in later passages. In situ hybridization studies combined with the immunocytochemical data suggest that the differential expression occurs at the level...

  13. Expression of intracellular interferon-alpha confers antiviral properties in transfected bovine fetal fibroblasts and does not affect the full development of SCNT embryos.

    Science.gov (United States)

    Yu, Dawei; Zhang, Shoufeng; Du, Weihua; Zhang, Jinxia; Fan, Zongxing; Hao, Haisheng; Liu, Yan; Zhao, Xueming; Qin, Tong; Zhu, Huabin

    2014-01-01

    Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α) (without secretory signal sequence) gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT). Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9%) became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR) and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS), which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.

  14. Expression of intracellular interferon-alpha confers antiviral properties in transfected bovine fetal fibroblasts and does not affect the full development of SCNT embryos.

    Directory of Open Access Journals (Sweden)

    Dawei Yu

    Full Text Available Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α (without secretory signal sequence gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT. Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9% became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS, which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.

  15. Expression of calmodulin and calmodulin binding proteins in rat fibroblasts stably transfected with protein kinase C and oncogenes

    DEFF Research Database (Denmark)

    Ye, Q; Wei, Y; Fischer, R

    1997-01-01

    Molecular mechanisms leading to elevated calmodulin (CaM) expression in cancer have not yet been discovered. We have quantitated the levels of transcripts derived from all three CaM genes in a variety of the same origin rat fibroblasts transformed with oncogenes in combination with gene for prote...

  16. Expression of calmodulin and calmodulin binding proteins in rat fibroblasts stably transfected with protein kinase C and oncogenes

    DEFF Research Database (Denmark)

    Ye, Q; Wei, Y; Fischer, R

    1997-01-01

    Molecular mechanisms leading to elevated calmodulin (CaM) expression in cancer have not yet been discovered. We have quantitated the levels of transcripts derived from all three CaM genes in a variety of the same origin rat fibroblasts transformed with oncogenes in combination with gene for protein...

  17. Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells.

    Science.gov (United States)

    Palchetti, Sara; Pozzi, Daniela; Marchini, Cristina; Amici, Augusto; Andreani, Cristina; Bartolacci, Caterina; Digiacomo, Luca; Gambini, Valentina; Cardarelli, Francesco; Di Rienzo, Carmine; Peruzzi, Giovanna; Amenitsch, Heinz; Palermo, Rocco; Screpanti, Isabella; Caracciolo, Giulio

    2017-02-01

    To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine - the gold standard among transfection reagents - was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  19. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells.

    Directory of Open Access Journals (Sweden)

    Cecilia González

    Full Text Available The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs, which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories.We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua. High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment.TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies.Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs.

  20. Causal boundary for stably causal space-times

    International Nuclear Information System (INIS)

    Racz, I.

    1987-12-01

    The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs

  1. Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells

    DEFF Research Database (Denmark)

    Kim, Che Lin; Kwang Ha, Tae; Min Lee, Gyun

    2016-01-01

    Cl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and qp enhancement during TGE (post-treatment) was examined. For the TGE...

  2. [Optimization of triple plasmids transfection into HEK293 cells mediated by polyethylenimine].

    Science.gov (United States)

    Fu, Qiang; Li, Yan; Zheng, Zhaofen; Liu, Aizhong; Yuan, Zhenhua; Peng, Jianqiang; He, Jin

    2015-02-01

    In the present study, packaging system composed of pAAV-CMV-GFP, pAAV-RC and pHelper were transfected into human embryonic kidney 293 cells (HEK293 cells) mediated by polyethyleneimine (PEI) to explore an optimal transfection condition. Different total plasmid DNA dosages (1, 2, 3, 4, 5, 6 μg) and different PEI/Plasmid ratios (1:1, 3:1, 5:1, 7:1) were tested with detection of green fluorescence protein (GFP) with ImagePro Plus6. 0 Software. Then transfection efficiency of the optimized transfection system was further observed for different time periods(12, 24, 36, 48, 60, 72 h). The results showed that total plasmid dosage of 4 μg/well with PEI/plasmid ratio of 3 : 1-5 : 1 was an efficient transfection condition. Transfection efficiency-time curve was an S-shaped curve. Transfection efficiency reached a plateau at 60 h after transfection. The optimized conditions for PEI-mediated transfection at the optimal time result in enhanced transfection efficiency of triple plasmid into HEK293 cells.

  3. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels

    International Nuclear Information System (INIS)

    Cotten, M.; Laengle-Rouault, F.; Kirlappos, H.; Wagner, E.; Mechtler, K.; Zenke, M.; Beug, H.; Birnstiel, M.L.

    1990-01-01

    The authors have subverted a receptor-mediated endocytosis event to transport genes into human leukemic cells. By coupling the natural iron-delivery protein transferrin to the DNA-binding polycations polylysine or protamine, they have created protein conjugates that bind nucleic acids and carry them into the cell during the normal transferrin cycle. They demonstrate here that this procedure is useful for a human leukemic cell line. They enhanced the rate of gene delivery by (i) increasing the transferrin receptor density through treatment of the cells with the cell permeable iron chelator desferrioxamine, (ii) interfering with the synthesis of heme with succinyl acetone treatment, or (iii) stimulating the degradation of heme with cobalt chloride treatment. Consistent with gene delivery as an endocytosis event, they show that the subsequent expression in K-562 cells of a gene included in the transported DNA depends upon the cellular presence of the lysosomotropic agent chloroquine. By contrast, monensin blocks transferrinfection, as does incubation of the cells at 18 degree C

  4. Epizone: Interlaboratory Ring Trial to Compare Dna Transfection Efficiencies

    DEFF Research Database (Denmark)

    Dory, Daniel; Albina, Emmanuel; Kwiatek, Olivier

    of viruses by reverse genetics and/or generation of mutated viruses. A large number of transfection chemicals like calcium phospate, branched organic compounds, liposomes, cationic polymers etc. are available on the market which are used by different laboratories for different cell lines. To obtain...... an overview on the efficiencies of varying transfection procedures, an interlaboratory ring trial was initiated within EPIZONE theme 5. A total of 15 participitating laboratories from 7 member institutions received RK13 cells, plasmid DNA encoding firefly luciferase under the transcriptional control...... of the human cytomegalovirus major immediate early promoter, a specially developed lysis buffer and a detailed protocol. Transfected cells were harvested in the laboratories of the participants, frozen and sent to the FLI where both the luciferase activity and protein content of the individual samples were...

  5. Enhanced efflux of [3H]vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene

    International Nuclear Information System (INIS)

    Hammond, J.R.; Johnstone, R.M.; Gros, P.

    1989-01-01

    Multidrug-resistant Chinese hamster ovary cell clones stably transfected with, and overexpressing, the mouse mdr1 complementary DNA clone along with drug-sensitive Chinese hamster ovary control cells were characterized for their capacities to accumulate and retain [ 3 H]vinblastine. Multidrug-resistant mdr1 transfectants show a 3-4-fold decrease in [ 3 H]vinblastine accumulation, compared to their drug-sensitive counterparts. After ATP depletion, this difference in [ 3 H]vinblastine accumulation between mdr1 transfectants and control cells effectively disappears. This ATP-dependent decreased drug accumulation is paralleled in mdr1 transfectants by an enhanced capacity of these cells to extrude the drug in an ATP-dependent manner. In medium containing glucose and glutamine, the mdr1 transfectants release preloaded drug at a rate five times that of control, drug-sensitive cells. In ATP-depleted control and mdr1-transfected cells, there is little difference in the rate or extent of [ 3 H]vinblastine release. The observation that the mdr1 transfectants show a decreased [ 3 H]vinblastine accumulation and an increased vinblastine release, both of which are abolished when cellular ATP levels are reduced, provides a direct demonstration that the product of the transfected mdr1 gene is responsible for a mechanism controlling cellular drug levels in an ATP-dependent manner. However, attempts to establish competition for [ 3 H]vinblastine transport by vincristine, daunomycin, and actinomycin D were only partly successful in mdr1 transfectants

  6. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...

  7. Optimal energy growth in a stably stratified shear flow

    Science.gov (United States)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  8. Abeta production as consequence of cellular death of a human neuroblastoma overexpressing APP.

    Science.gov (United States)

    Recuero, María; Serrano, Elena; Bullido, María J; Valdivieso, Fernando

    2004-07-16

    In human brain the Abeta peptide is produced mainly by neurons and the overexpression of amyloid precursor protein (APP) that involves an increase in Abeta secretion, has been observed in some areas of the Alzheimer's disease patients brain. We have generated two stably transfected human neuroblastoma lines which overexpress APP; both of them secreted Abeta and showed morphological changes and cell death with apoptotic program characteristics. Interestingly, coculture experiments with the untransfected human neuroblastoma cell line showed that the Abeta peptide was not responsible for the death in those cell lines; additionally, we indicate that upon cell death, Abeta peptide is secreted into cell medium.

  9. A robust transfection reagent for the transfection of CHO and HEK293 cells and production of recombinant proteins and lentiviral particles - PTG1.

    Science.gov (United States)

    Gonçalves, Cristine; Gross, Fabian; Guégan, Philippe; Cheradame, Hervé; Midou, Patrick

    2014-11-01

    Bioproduction of recombinant proteins (r-proteins) and recombinant lentiviral particles (r-lentiviral particles) requires robust transfections consisting of efficient protocols that are easy to implement, with good reproducibility for a maximum production of proteins and lentiviral particles in a short time with low cytotoxicity. This study evaluates the capacity of histidinylated polyethyleneimine I (PTG1) to facilitate robust DNA transfection, with low cytotoxicity, of Chinese hamster ovary (CHO) and human embryonic kidney (HEK293T) cells for the production of r-proteins and r-lentiviral particles. We report that PTG1 transfection of cells in suspension with a plasmid DNA encoding enhanced green fluorescent protein leads to 72 and 97% of transfected CHO and HEK293T cells respectively, and does not significantly affect cell viability. PTG1 transfection of 100 mL of CHO-S cell culture in suspension at a cell density of 2 × 10(6) cells /mL resulted in a high level of transfected cells and protein expression after transfection with 0.75 μg/mL plasmid DNA. Transfection with PTG1 is more efficient than LipofectAmine2000™, and gene expression is higher than observed with FreeStyle™ and JetPEI®. Tri-transfection of HEK293T packaging cells leads to the production of a higher level of r-lentiviral particles compared to the calcium phosphate method, and permits two harvests of viral particles within three days. These results show that PTG1 is a powerful new transfection reagent for cell lines frequently used for recombinant protein and lentiviral particle production. PTG1 could be used in protocols for bioproduction of therapeutic proteins such as antibodies for cancer treatments and viral vectors for gene therapy applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent.

    Science.gov (United States)

    Chernousova, S; Epple, M

    2017-05-01

    The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2-3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.

  11. A novel rapid and reproducible flow cytometric method for optimization of transfection efficiency in cells.

    Science.gov (United States)

    Homann, Stefanie; Hofmann, Christian; Gorin, Aleksandr M; Nguyen, Huy Cong Xuan; Huynh, Diana; Hamid, Phillip; Maithel, Neil; Yacoubian, Vahe; Mu, Wenli; Kossyvakis, Athanasios; Sen Roy, Shubhendu; Yang, Otto Orlean; Kelesidis, Theodoros

    2017-01-01

    Transfection is one of the most frequently used techniques in molecular biology that is also applicable for gene therapy studies in humans. One of the biggest challenges to investigate the protein function and interaction in gene therapy studies is to have reliable monospecific detection reagents, particularly antibodies, for all human gene products. Thus, a reliable method that can optimize transfection efficiency based on not only expression of the target protein of interest but also the uptake of the nucleic acid plasmid, can be an important tool in molecular biology. Here, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency at the single cell level while overcoming limitations of prior established methods that quantify transfection efficiency. By using optimized ratios of transfection reagent and a nucleic acid (DNA or RNA) vector directly labeled with a fluorochrome, this method can be used as a tool to simultaneously quantify cellular toxicity of different transfection reagents, the amount of nucleic acid plasmid that cells have taken up during transfection as well as the amount of the encoded expressed protein. Finally, we demonstrate that this method is reproducible, can be standardized and can reliably and rapidly quantify transfection efficiency, reducing assay costs and increasing throughput while increasing data robustness.

  12. Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation.

    Science.gov (United States)

    Fietz, D; Markmann, M; Lang, D; Konrad, L; Geyer, J; Kliesch, S; Chakraborty, T; Hossain, H; Bergmann, M

    2015-12-29

    Androgens play an important role for the development of male fertility and gained interest as growth and survival factors for certain types of cancer. Androgens act via the androgen receptor (AR/Ar), which is involved in various cell biological processes such as sex differentiation. To study the functional mechanisms of androgen action, cell culture systems and AR-transfected cell lines are needed. Transfection of AR into cell lines and subsequent gene expression analysis after androgen treatment is well established to investigate the molecular biology of target cells. However, it remains unclear how the transfection with AR itself can modulate the gene expression even without androgen stimulation. Therefore, we transfected Ar-deficient rat Sertoli cells 93RS2 by electroporation using a full length human AR. Transfection success was confirmed by Western Blotting, immunofluorescence and RT-PCR. AR transfection-related gene expression alterations were detected with microarray-based genome-wide expression profiling of transfected and non-transfected 93RS2 cells without androgen stimulation. Microarray analysis revealed 672 differentially regulated genes with 200 up- and 472 down-regulated genes. These genes could be assigned to four major biological categories (development, hormone response, immune response and metabolism). Microarray results were confirmed by quantitative RT-PCR analysis for 22 candidate genes. We conclude from our data, that the transfection of Ar-deficient Sertoli cells with AR has a measurable effect on gene expression even without androgen stimulation and cause Sertoli cell damage. Studies using AR-transfected cells, subsequently stimulated, should consider alterations in AR-dependent gene expression as off-target effects of the AR transfection itself.

  13. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    International Nuclear Information System (INIS)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-01-01

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  14. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    Science.gov (United States)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  15. Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization.

    Science.gov (United States)

    Li, Junwei; Yoon, Soon Joon; Hsieh, Bao-Yu; Tai, Wanyi; O'Donnell, Matthew; Gao, Xiaohu

    2015-12-09

    Despite broad applications ranging from electronics to biomedical sensing and imaging, a long-standing problem of conducting polymers is the poor resistance to dedoping, which directly affects their signature electrical and optical properties. This problem is particularly significant for biomedical uses because of fast leaching of dopant ions in physiological environments. Here, we describe a new approach to engineer multimodal core-shell nanoparticles with a stably doped conductive polymer shell in biological environments. It was achieved by making a densely packed polymer brush rather than changing its molecular structure. Polyaniline (PANI) was used as a model compound due to its concentrated near-infrared (NIR) absorption. It was grafted onto a magnetic nanoparticle via a polydopamine intermediate layer. Remarkably, at pH 7 its conductivity is ca. 2000× higher than conventional PANI nanoshells. Similarly, its NIR absorption is enhanced by 2 orders of magnitude, ideal for photothermal imaging and therapy. Another surprising finding is its nonfouling property, even outperforming polyethylene glycol. This platform technology is also expected to open exciting opportunities in engineering stable conductive materials for electronics, imaging, and sensing.

  16. A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells.

    Science.gov (United States)

    Hemmi, S; Böhni, R; Stark, G; Di Marco, F; Aguet, M

    1994-03-11

    Expression of the human interferon gamma receptor (IFN-gamma R) in mouse cells is not sufficient to confer biological responsiveness to human IFN-gamma and vice versa. An additional species-specific component is required for signal transduction. We identified this cofactor by expression cloning in simian COS cells stably transfected with the nonfunctional murine IFN-gamma R and a IFN-gamma-inducible reporter construct encoding the human Tac antigen (interleukin-2 receptor alpha chain, CD25). A cDNA clone was obtained that, upon stable transfection, rendered human HEp-2 cells expressing the murine IFN-gamma R fully responsive to murine IFN-gamma. This cDNA encodes a novel 332 amino acid type I transmembrane protein that belongs to the IFN receptor family and that we designate IFN-gamma R beta chain.

  17. Optimization of renal transfection using a renal suction-mediated transfection method in mice.

    Science.gov (United States)

    Taniguchi, Yota; Kawakami, Shigeru; Fuchigami, Yuki; Oyama, Natsuko; Yamashita, Fumiyoshi; Konishi, Satoshi; Shimizu, Kazunori; Hashida, Mitsuru

    2016-01-01

    We previously developed a suction-mediated transfection method in mice. The purpose of this study was to optimize the suction-mediated transfection conditions using a pressure-controlled computer system for efficient and safe kidney-targeted gene delivery in mice. Naked pCMV-Luc was injected into the tail vein in mice, and then the right kidney was suctioned by a device of the suction pressure-controlled system. The effects of renal transfection conditions, such as the suction pressure degree, suction pressure waveform and device area were evaluated by measuring luciferase expression. In addition, renal injury was examined. The renal suction-mediated transfection method at -30 kPa showed high transgene expression. The renal suction waveform did not affect the transfection activity. Under the optimized conditions, the high transgene expression was mostly observed at the renal suctioned site. The transfection conditions used did not induce histological defects or increases in two renal injury biomarkers (Kidney injury molecule-1 mRNA and Clusterin mRNA). We have clarified the transfection conditions for efficient and safe transfection in the kidney using the suction-mediated transfection method in mice.

  18. Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs.

    Science.gov (United States)

    Lu, Yongbo; Kamel-El Sayed, Suzan A; Wang, Kun; Tiede-Lewis, LeAnn M; Grillo, Michael A; Veno, Patricia A; Dusevich, Vladimir; Phillips, Charlotte L; Bonewald, Lynda F; Dallas, Sarah L

    2018-02-20

    Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel

  19. Dynamics of mixed convective-stably-stratified fluids

    Science.gov (United States)

    Couston, L.-A.; Lecoanet, D.; Favier, B.; Le Bars, M.

    2017-09-01

    We study the dynamical regimes of a density-stratified fluid confined between isothermal no-slip top and bottom boundaries (at temperatures Tt and Tb) via direct numerical simulation. The thermal expansion coefficient of the fluid is temperature dependent and chosen such that the fluid density is maximum at the inversion temperature Tb>Ti>Tt . Thus, the lower layer of the fluid is convectively unstable while the upper layer is stably stratified. We show that the characteristics of the convection change significantly depending on the degree of stratification of the stable layer. For strong stable stratification, the convection zone coincides with the fraction of the fluid that is convectively unstable (i.e., where T >Ti ), and convective motions consist of rising and sinking plumes of large density anomaly, as is the case in canonical Rayleigh-Bénard convection; internal gravity waves are generated by turbulent fluctuations in the convective layer and propagate in the upper layer. For weak stable stratification, we demonstrate that a large fraction of the stable fluid (i.e., with temperature T phenomenological description of the transition between the regimes of plume-dominated and entrainment-dominated convection through analysis of the differences in the heat transfer mechanisms, kinetic energy density spectra, and probability density functions for different stratification strengths. Importantly, we find that the effect of the stable layer on the convection decreases only weakly with increasing stratification strength, meaning that the dynamics of the stable layer and convection should be studied self-consistently in a wide range of applications.

  20. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  1. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production.

    Science.gov (United States)

    Yang, Shaozhe; Zhou, Xiaoling; Li, Rongxiang; Fu, Xiuhong; Sun, Pingnan

    2017-09-14

    Polyethyleneimine (PEI), a cationic polymer vehicle, forms a complex with DNA which then can carry anionic nucleic acids into eukaryotic cells. PEI-based transfection is widely used for transient transfection of plasmid DNA. The efficiency of PEI-based transfection is affected by numerous factors, including the way the PEI/DNA complex is prepared, the ratio of PEI to DNA, the concentration of DNA, the storage conditions of PEI solutions, and more. Considering the major influencing factors, PEI-based transfection has been optimized to improve its efficiency, reproducibility, and consistency. This protocol outlines the steps for ordinary transient transfection and lentiviral production using PEI. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  2. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Clark-Lewis, Ian; Jensen, Peter Østrup

    2003-01-01

    calcium mobilization as efficiently as the endogenous chemokine ligand CCL2 through the CCR2 receptor, whereas the virally encoded chemokine did not affect any of the other 17 human chemokine receptors tested. Mutual cross-desensitization between CCL2 and vCCL4 was demonstrated in the CCR2-transfected...... cells. The affinity of vCCL4 for the CCR2 receptor was 79 nm as determined in competition binding against radioactively labeled CCL2. In the murine pre-B lymphocyte cell line L1.2 stably transfected with the CCR2 receptor, vCCL4 acted as a relatively low potency but highly efficacious chemoattractant...... being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages...

  3. [RECOMBINANT ADENOVIRUS-MEDIATED BONE MORPHOGENETIC PROTEIN 9 AND ERYTHROPOIETIN GENES CO-TRANSFECTION IN PROMOTING OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED STEM CELLS IN VITRO].

    Science.gov (United States)

    Zhang, Guangde; Su, Chengshuai; Jin, Xia; Yang, Shimao; Fang, Dianji; Guo, Yanwei

    2016-03-01

    To investigate the effect of recombinant adenovirus-mediated bone morphogenetic protein 9 (BMP-9) and erythropoietin (EPO) genes co-transfection on osteogenic differentiation of adipose-derived stem cells (ADSCs) in vitro. The inguinal adipose tissue was harvested from 4-month-old New Zealand rabbits, ADSCs were isolated with enzyme digestion and adherence method, and multipotent differentiation capacity was identified. The 3rd generation ADSCs were divided into 5 groups: normal cells (group A), empty plasmid control group (group B), BMP-9 or EPO recombinant adenovirus transfected cells (groups C and D), BMP-9 and EPO recombinant adenovirus co-transfected cells (group E). The inverted phase contrast microscope was used to observe the cell growth at 7 days; the expression of cell fluorescence was observed under a fluorescence microscope at 14 days, and viral transfection efficiency was calculated at 48 hours; Western blot was used to detect the expressions of BMP-9 and EPO proteins at 14 days. The expression of alkaline phosphatase (ALP) activity was detected at 3, 7, and 14 days after osteogenic induction, and alizarin red staining was used to detect calcium nodules formation and real-time fluorescence quantitative PCR to detect the expressions of osteopontin (OPN) and osteocalcin (OCN) at 3 weeks. At 7 days after transfected, some cells showed oval, round, and irregular shape under the inverted phase contrast microscope in groups A and B; a few fusiform cells were observed in groups C and D; oval cells increased obviously, and there were only few round cells in group E. The fluorescence microscope observation showed that BMP-9 and EPO, BMP-9/EPO recombinant adenovirus could stably transfected ADSCs, with transfection efficiency of 80%-93%. The expressions of BMP-9 and EPO proteins significantly higher in group E than the other groups by Western blot (P transfect ADSCs, which can stably express in ADSCs, BMP-9/EPO genes co-transfection can more promote the

  4. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure.

    Science.gov (United States)

    Liu, Ying; Yan, Jing; Santangelo, Philip J; Prausnitz, Mark R

    2016-07-28

    Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. TIMP-1 protects the human breast carcinoma cell line MCF-7 S1 against antracycline-induced cell death by activation of the akt survival pathway

    DEFF Research Database (Denmark)

    Würtz, Sidse Ørnbjerg; Rasmussen, Anne-Sofie Schrohl; Brunner, Nils

    an in vitro approach. Methods. We stably transfected the human breast carcinoma cell line MCF-7 S1 with the human TIMP-1 gene and established single cell clones expressing different levels of TIMP-1. We then compared the sensitivity of these cells to epirubicin and taxol using a cell death assay. In addition...... treatment. Conclusion.  TIMP-1 protects the MCF-7 S1 cells against antracycline-induced cell death but not against taxol. Thus, TIMP-1 may be used to discriminate between patients likely to benefit from antracyclines and patients who should be offered an alternative drug. Furthermore, we found...

  6. An in vivo transfection system for inducible gene expression and gene silencing in murine hepatocytes.

    Science.gov (United States)

    Hubner, Eric K; Lechler, Christian; Kohnke-Ertel, Birgit; Zmoos, Anne-Flore; Sage, Julien; Schmid, Roland M; Ehmer, Ursula

    2017-01-01

    Hydrodynamic tail vein injection (HTVI) of transposon-based integration vectors is an established system for stably transfecting mouse hepatocytes in vivo that has been successfully employed to study key questions in liver biology and cancer. Refining the vectors for transposon-mediated hepatocyte transfection will further expand the range of applications of this technique in liver research. In the present study, we report an advanced transposon-based system for manipulating gene expression in hepatocytes in vivo. Transposon-based vector constructs were generated to enable the constitutive expression of inducible Cre recombinase (CreER) together with tetracycline-inducible transgene or miR-small hairpin RNA (shRNA) expression (Tet-ON system). Transposon and transposase expression vectors were co-injected into R26R-mTmG reporter mice by HTVI. Cre-mediated gene recombination was induced by tamoxifen, followed by the administration of doxycycline to drive tetracycline-inducible gene or shRNA expression. Expression was visualized by immunofluorescence staining in livers of injected mice. After HTVI, Cre recombination by tamoxifen led to the expression of membrane-bound green fluorescent protein in transfected hepatocytes. Activation of inducible gene or shRNA expression was detected by immunostaining in up to one-third of transfected hepatocytes, with an efficiency dependent on the promoter driving the Tet-ON system. Our vector system combines Cre-lox mediated gene mutation with inducible gene expression or gene knockdown, respectively. It provides the opportunity for rapid and specific modification of hepatocyte gene expression and can be a useful tool for genetic screening approaches and analysis of target genes specifically in genetically engineered mouse models. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Fibronectin enhances transfection of Staphylococcus aureus.

    OpenAIRE

    Thompson, N E; Bergdoll, M S; Pattee, P A

    1985-01-01

    The factor in normal sera primarily responsible for the enhancement of transfection (and transformation) of Staphylococcus aureus was identified as fibronectin. Serum samples which were depleted of fibronectin by affinity chromatography showed a marked decrease in enhancing activity. Fibronectin isolated from sera of several animal species demonstrated enhancing activity.

  8. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs

    DEFF Research Database (Denmark)

    Khan, Aly A; Betel, Doron; Miller, Martin L

    2009-01-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition...... among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets...... of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites...

  9. Optomizing Transfection Efficiency of Cervical Cancer Cells Transfected by Cationic Liposomes LipofectamineTM2000.

    Science.gov (United States)

    Huang, Fei; Zhao, Feng; Liang, Li-Ping; Zhou, Mei; Qu, Zhi-Ling; Cao, Yan-Zhen; Lin, Chen

    2015-01-01

    Currently, cationic liposome has become the commonly used vehicles for gene transfection. Furthermore, one of the most significant steps in microRNAs expression studies is transferring microRNAs into cell cultures successfully. In this study we aim to approach the feasibility of transfection of cervical cancer cell lines mediated by liposome and to obtain the optimized transfection condition for cervical cancer cell lines. Lipofectamine(TM)2000 as the carrier, miR-101 mimic was transfected into Hela cells and Siha cells. Using green fluorescent protein as reporter gene, to set different groups according to cell seeding density, the amount of miRNA , miRNA and the proportion of Liposomes, Whether to add serum into medium to study their impact on the liposomal transfection efficiency. Finally, MTT assay was used to analyze the relative minimal cell toxicity of liposome reagents. The seeding density of Hela cell line and Siha are 1.5 x 10(4) (per well of 24 well plates), miRNA amount is 1ul of both, the ratio of miRNA and liposome is 1:0.5 of Hela cell line; 1:0.7 of Siha cell line respectively, after 24 hours we can get the highest transfection efficiency. Compared with serum medium, only Siha cells cultured with serum-free medium obtained higher transfection efficiency before transfection (Ptransfected is a suitable way and it can be an efficient reagent for miRNA delivery for Hela cells and Siha cells in vitro. It may serve as a reference for the further research or application.

  10. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...... membrane distribution when the deltaE9 over-expressing cells were compared to control cells. Intracellular retention of Kv3.1 is consistent with the notion that PS1 can modulate the activity and trafficking of ion channels in central neurones and implicates a compromise in electrical signalling...

  11. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Helena Sork

    2016-01-01

    Full Text Available The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

  12. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  13. Novel mechanism of gene transfection by low-energy shock wave

    Science.gov (United States)

    Hoon Ha, Chang; Cheol Lee, Seok; Kim, Sunghyen; Chung, Jihwa; Bae, Hasuk; Kwon, Kihwan

    2015-01-01

    Extracorporeal shock wave (SW) therapy has been studied in the transfection of naked nucleic acids into various cell lines through the process of sonoporation, a process that affects the permeation of cell membranes, which can be an effect of cavitation. In this study, siRNAs were efficiently transfected into primary cultured cells and mouse tumor tissue via SW treatment. Furthermore SW-induced siRNA transfection was not mediated by SW-induced sonoporation, but by microparticles (MPs) secreted from the cells. Interestingly, the transfection effect of the siRNAs was transferable through the secreted MPs from human umbilical vein endothelial cell (HUVEC) culture medium after treatment with SW, into HUVECs in another culture plate without SW treatment. In this study, we suggest for the first time a mechanism of gene transfection induced by low-energy SW through secreted MPs, and show that it is an efficient physical gene transfection method in vitro and represents a safe therapeutic strategy for site-specific gene delivery in vivo. PMID:26243452

  14. Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance

    International Nuclear Information System (INIS)

    Pardo, F.S.; Su, M.; Gerweck, L.; Schmidt, E.V.; Borek, C.; Preffer, F.; Dombkowski, D.

    1994-01-01

    Dominant oncogenic sequences have been shown to modulate the intrinsic radiation sensitivity of cells of both human and murine tumor cell lines. Whether transfection with candidate tumor-suppressor genes can modulate intrinsic radiation sensitivity is unknown. The data presented here demonstrate that transfection of rat embryo cells with a mutant p53 allele can increase the intrinsic radiation resistance of cells in vitro. First, transfection with mutant p53 resulted in transformed cellular morphology. Second, the transfected clone and the corresponding pooled population of transfected clones were more resistant to ionizing radiation in vitro. Last, analyses of the parameters of cell kinetics suggested that the radiobiological effects were unlikely to be due to altered parameters of cell kinetics at the time of irradiation, suggesting that mutant p53 altered the intrinsic radiation resistance of transfected cells by a more direct mechanism. Further experimentation will be necessary to develop a mechanistic approach for the study of these alterations. 29 refs., 3 figs., 2 tabs

  15. Toward Contactless Biology: Acoustophoretic DNA Transfection

    Science.gov (United States)

    Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo

    2016-02-01

    Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.

  16. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available ). Transfection efficiencies between 40 - 63 % are recorded. We show for the first time that, due to their different sensitivity, surface receptors and membrane structure the cell lines mentioned above displayed varying photo-transfection efficiencies at different...

  17. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  18. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  19. Polyethyleneimine-poly(ethylene glycol)-star-copolymers as efficient and biodegradable vectors for mammalian cell transfection.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Gray, Peter; Max Lu, G Q

    2014-07-01

    High molecular weight (MW) polyethyleneimine (PEI) has been successfully used for the transfection of a broad variety of cell lines. In contrast to low MW PEI, which exhibits low transfection efficiencies but also low cytotoxicity, high MW PEI-mediated transfection achieves much higher efficiencies but at the cost of cell viability; therefore its use in commercial scale transfection and clinical application is limited. In this work we address this problem by constructing biodegradable high MW PEI mimics built from low MW PEI building blocks. The end-groups of small 5-arm star polyethylene glycol (PEG) prepolymers were decorated with linear oligo-ethyleneimine (OEI)/PEI arms of various MW via azomethine linkages. The resultant PEI-PEG-star-copolymers were investigated for their ability to complex plasmid DNA. Polymer/DNA complexes were characterized using techniques such as dynamic light scattering and transmission electron microscopy. Having established their cytotoxicity limits, they were tested as gene delivery vehicles for the transfection of suspension adapted Chinese hamster ovary (CHO-S) cells under serum-free conditions and adherent human embryonic kidney cells (HEK293T) in serum containing medium. Our PEI-PEG-star-copolymers showed a reduced cytotoxicity compared to high MW PEI while maintaining the ability to complex plasmid DNA and transfect mammalian cells, with significant transfection efficiencies. The effects of the optimum parameters on the transfection of mammalian cells using such novel polymers are discussed. © 2013 Wiley Periodicals, Inc.

  20. The Ig heavy chain switch region is a hotspot for insertion of transfected DNA

    Energy Technology Data Exchange (ETDEWEB)

    Baar, J.; Shulman, M.J. [Univ. of Toronto, Ontario (Canada)

    1995-08-15

    The Ig heavy chain switch usually occurs by breaking and rejoining DNA in the switch (S) regions, which consist of tandemly repeated sequences 5{prime} of the constant region exons. Various studies have suggested that S DNA can also recombine with non-S sequences. To measure the frequency of such recombination events, the hybridoma cell line igm692, a deletion mutant that lacks the C{mu}1 and C{mu}2 exons and the 3{prime} end of the S{mu} region, was transfected with a fragment bearing the C{mu}1-2 exons, but no S{mu} DNA. Insertion of this fragment into the residual VDJ-C{mu} intron of igm692 can restore a functional {mu} gene, yielding a transformant that is detected as a plaque-forming cell (PFC). PFCs comprise {approximately}8 x 10{sup -7} of the surviving transfected cells. In 10 of 12 PFCs, the C{mu}1-2 fragment inserted into the 2.5-kb residual S{mu} region, whereas insertion in two cases occurred in the 3.5-kb segment 5{prime} of S{mu}. Using a PCR assay to measure the frequency of insertion of the tranferred fragment elsewhere in the hybridoma genome, we found that {approximately}9% of the surviving tranfected cells had stably acquired the C{mu}1-2 fragment. These results indicate that the S{mu} region is {approximately}100-fold more recombinogenic than the average genomic site, and {approximately}7-fold more recombinogenic than the non-S{mu} segment of the residual VDJ-C{mu}, i.e., the S{mu} region is a hotspot for insertion of transfected DNA.

  1. Hydrophobic modification of polyethyleneimine for gene transfectants

    International Nuclear Information System (INIS)

    Kim, Sung Tae; Choi, Joon Sig; Jang, Hyung Suk; Suh, Hea Ran; Park, Jong Sang

    2001-01-01

    A new gene transfer system was developed by using polylipoplexes, which were prepared by hydrophobic modification of polyethyleneimine (PEI, MW 2000). PEI 25kDa is well known for its excellent transfection efficiency but it has extreme cytotoxicity; therefore, its application for medical use is strictly limited. PEI 2kDa is able to form complexes with DNA and has low cytotoxicity. However, unfortunately, it shows no transfection efficiency so it can not be a candidate carrier for gene therapy. We designed novel polycationic amphilphiles by conjugating hydrophobic moieties, such as cholesterol and myristate, to PEI 2kDa. Cholesterol-conjugated PEI (PEI-Chol: P10C, P17C and P30C) and myristate-conjugated PEI (PEI-Myr:P10M, P16M and P26M) are different from the other cationic lipids in that they can form lipopolyplexes with plasmid DNA that have extra multi-positive charges in their hydrophilic parts. From a different point of view, they are also considered to be PEI derivatives with a small proportion of hydrophobic moiety. As a result of the modification, PEI-Chol and PEI-Myr showed much enhanced transfection activity but somewhat increased cytotoxicity. We also examined the effect of the amount of hydrophobic moiety on lipopolyplex-mediated gene transfer and observed that P17C and P26M are the most effective carriers in the series of two groups. MTT assay indicated that the more myristyl groups were attached to PEI, the more injurious results were observed. In the case of PEI-Chol, however, the opposite tendency was observed

  2. Polymer nanoassemblies with hydrophobic pendant groups in the core induce false positive siRNA transfection in luciferase reporter assays.

    Science.gov (United States)

    Rheiner, Steven; Reichel, Derek; Rychahou, Piotr; Izumi, Tadahide; Yang, Hsin-Sheng; Bae, Younsoo

    2017-08-07

    Poly(ethylene glycol)-conjugated polyethylenimine (PEG-PEI) is a widely studied cationic polymer used to develop non-viral vectors for siRNA therapy of genetic disorders including cancer. Cell lines stably expressing luciferase reporter protein typically evaluate the transfection efficacy of siRNA/PEG-PEI complexes, however recent findings revealed that PEG-PEI can reduce luciferase expression independent of siRNA. This study elucidates a cause of the false positive effect in luciferase assays by using polymer nanoassemblies (PNAs) made from PEG, PEI, poly-(l-lysine) (PLL), palmitate (PAL), and deoxycholate (DOC): PEG-PEI (2P), PEG-PEI-PAL (3P), PEG-PLL (2P'), PEG-PLL-PAL (3P'), and PEG-PEI-DOC (2PD). In vitro transfection and western blot assays of luciferase using a colorectal cancer cell line expressing luciferase (HT29/LUC) concluded that 2P and 2P' caused no luciferase expression reduction while hydrophobically modified PNAs induced a 35-50% reduction (3P'transfection in the luciferase assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection.

    Science.gov (United States)

    Teo, Pei Yun; Yang, Chuan; Hedrick, James L; Engler, Amanda C; Coady, Daniel J; Ghaem-Maghami, Sadaf; George, Andrew J T; Yang, Yi Yan

    2013-10-01

    Hydrophobic modification of low molecular weight (LMW) polyethylenimine (PEI) is known to increase gene transfection efficiency of LMW PEI. However, few studies have explored how the conjugated hydrophobic groups influence the properties of the modified LMW PEI mainly due to difficulties in obtaining well defined final product compositions and limitations in current chemical synthesis routes. The aim of this study was to modify LMW PEI (Mn 1.8 kDa, PEI-1.8) judiciously with different hydrophobic functional groups and to investigate how hydrophobicity, molecular structure and inclusion of hydrogen bonding properties in the conjugated side groups as well as the conjugation degree (number of primary amine groups of PEI-1.8 modified with hydrophobic groups) influence PEI-1.8 gene transfection efficiency. The modified polymers were characterized for DNA binding ability, particle size, zeta potential, in vitro gene transfection efficiency and cytotoxicity in SKOV-3 human ovarian cancer and HepG2 human liver carcinoma cell lines. The study shows that modified PEI-1.8 polymers are able to condense plasmid DNA into cationic nanoparticles, of sizes ~100 nm, whereas unmodified polymer/DNA complexes display larger particle sizes of 2 μm. Hydrophobic modification also increases the zeta potential of polymer/DNA complexes. Importantly, modified PEI-1.8 shows enhanced transfection efficiency over the unmodified counterpart. Higher transfection efficiency is obtained when PEI-1.8 is modified with shorter hydrophobic groups (MTC-ethyl) as opposed to longer ones (MTC-octyl and MTC-deodecyl). An aromatic structured functional group (MTC-benzyl) also enhances transfection efficiency more than an alkyl functional group (MTC-octyl). An added hydrogen-bonding urea group in the conjugated functional group (MTC-urea) does not enhance transfection efficiency over one without urea (MTC-benzyl). The study also demonstrates that modification degree greatly influences gene transfection, and

  4. A mechanistic investigation exploring the differential transfection efficiencies between the easy-to-transfect SK-BR3 and difficult-to-transfect CT26 cell lines.

    Science.gov (United States)

    Figueroa, Elizabeth; Bugga, Pallavi; Asthana, Vishwaratn; Chen, Allen L; Stephen Yan, J; Evans, Emily Reiser; Drezek, Rebekah A

    2017-05-02

    Gold-polyamidoamine (AuPAMAM) has previously been shown to successfully transfect cells with high efficiency. However, we have observed that certain cell types are more amenable to Au-PAMAM transfection than others. Here we utilized two representative cell lines-a "difficult to transfect" CT26 cell line and an "easy to transfect" SK-BR3 cell line-and attempted to determine the underlying mechanism for differential transfection in both cell types. Using a commonly established poly-cationic polymer similar to PAMAM (polyethyleneimine, or PEI), we additionally sought to quantify the relative transfection efficiencies of each vector in CT26 and SK-BR3 cells, in the hopes of elucidating any mechanistic differences that may exist between the two transfection vectors. A comparative time course analysis of green fluorescent protein reporter-gene expression and DNA uptake was conducted to quantitatively compare PEI- and AuPAMAM-mediated transfection in CT26 and SK-BR3, while flow cytometry and confocal microscopy were used to determine the contribution of cellular uptake, endosomal escape, and cytoplasmic transport to the overall gene delivery process. Results from the time course analysis and flow cytometry studies revealed that initial complex uptake and cytoplasmic trafficking to the nucleus are likely the two main factors limiting CT26 transfectability. The cell type-dependent uptake and intracellular transport mechanisms impacting gene therapy remain largely unexplored and present a major hurdle in the application-specific design and efficiency of gene delivery vectors. This systematic investigation offers insights into the intracellular mechanistic processes that may account for cell-to-cell differences, as well as vector-to-vector differences, in gene transfectability.

  5. A germline chromothripsis event stably segregating in 11 individuals through three generations

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Nazaryan-Petersen, Lusine; Sun, Wei

    2016-01-01

    PURPOSE: Parentally transmitted germ-line chromothripsis (G-CTH) has been identified in only a few cases. Most of these rearrangements were stably transmitted, in an unbalanced form, from a healthy mother to her child with congenital abnormalities probably caused by de novo copy-number changes of...

  6. Repeated Aurora-A siRNA Transfection Results in Effective Apoptosis of A549 Cells Compared to Single Transfection.

    Science.gov (United States)

    Wang, Zhonghua; Sun, Wenwu; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-01-01

    Suppression of Aurora kinase A (Aurora-A, AURKA) by Aurora-A siRNA has been proposed for lung tumor treatment. However, protocols using single administration have shown little benefit in some types of lung tumor. Given that transfection efficiency of Aurora-A siRNA is low due to tightly packed cells in the tumor, we hypothesized that repeated administration would result in efficient cell apoptosis. We compared single vs. repeated transfection (thrice) in A549 cells by transfecting Aurora-A siRNA (siA) on the 1st or 1st, 2nd and 3rd day after cell seeding. A random sequence was used as the negative siRNA control (siC). Cells in the single transfection group received only transfection reagent without siRNAs on the 2nd and 3rd day. Two days after the third transfection, both single and repeated siA administration decreased mRNA expression of Aurora-A and cell viability compared to no administration and siC single administration. However, the decrease in these two indices with repeated transfection was more obvious than that following single administration: cell viability decreased to 72.8 ± 3.05% (p transfection and to 64.2 ± 1.99% (p transfection, compared with normal control cells, respectively. Gene expression decreased to 17 ± 16.6% (p transfection and to 43.2 ± 13.0% (p transfection. Compared to single transfection, repeated Aurora-A siRNA transfection decreased Aurora-A, which, in turn, resulted in effective apoptosis of A549 cells.

  7. pEGFP transfection into murine skeletal muscle by electrosonoporation

    Science.gov (United States)

    Tamošiūnas, Mindaugas; Jakovels, Dainis; Rubins, Uldis; Kadikis, Roberts; Petrovska, Ramona; Šatkauskas, Saulius

    2017-12-01

    In this study, we aimed to determine whether the combination of electroporation (EP) and ultrasound (US) waves (sonoporation) can affect the plasmid DNA transfection to mice tibialis cranialis muscle. Multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) fluorescence, providing information on location and duration of EGFP expression. We found that electrosonoporation, commonly enhancing pDNA transfection in vitro, had no positive effect on EGFP transfection efficiency increase in vivo with respect to electroporation alone. We presume that this may be associated with decreased viability of transfected fibers.

  8. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...... transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  9. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  10. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  11. [Comparison of efficiency and cytotoxicity of different transfection reagents in transfecting RIP140-siRNA into Kupffer cells].

    Science.gov (United States)

    Li, Ji; Liu, Zuojin

    2015-12-01

    To compare the efficiency and cytotoxicity of different transfection reagents used in transfection of RIP140-siRNA into Kupffer cells to optimize the transfection conditions. Kupffer cells were transfected with RIP140-siRNA labeled with GFP as the reporter gene using lipofectamine 2000, Roche reagent (X-treme GENE siRNA Transfection Reagent) and puro screening lentivirus (1.0×10(8) TU/mL) as the transfection reagents. The transfection effect was observed under a fluorescent inverted microscope, and laser scanning confocal microscopy was used to analyze RIP140 expression in trasnfected Kupffer cells. Flow cytometry was performed to detect cell apoptosis, and CCK-8 test was used to evaluate the cell proliferation inhibition. RT-RCR and Western blotting were performed to detect the expressions of RIP140 mRNA and protein in the trasnfected cells. Puro screening lentivirus yielded the highest cell transfection efficiency, which exceeded 90%, followed by Roche reagent and then by lipofectamine 2000. Flow cytometry and CCK-8 test showed that the cytotoxicity was the mildest with Roche reagent, moderate with lentivirus, and severe with lipofectamine 2000. The cells trasnfected with lentivirus showed a significantly lower RIP140 expression than cells trasnfected with lipofectamine 2000 and Roche reagent (Ptransfection, as compared with the other two trasnfection reagents, can achieve good transfection efficiency with a relativelty low cytotoxicity, and allows for better controllability and stability of the trasnfectiion conditions.

  12. Abundant constitutive expression of the immediate-early 94K protein from cytomegalovirus (Colburn) in a DNA-transfected mouse cell line

    International Nuclear Information System (INIS)

    Jeang, K.T.; Cho, M.S.; Hayward, G.S.

    1984-01-01

    A 94-kilodalton phosphoprotein known as IE94 is the only viral polypeptide synthesized in abundance under immediate-early conditions after infection by cytomegalovirus (CMV) strain Colburn in either permissive primate or nonpermissive rodent cells. The authors isolated a clonal Ltk/sup +/ cell line which expressed the /sup 35/methionine-labeled IE94 polypeptide in sufficient abundance to be visualized directly in autoradiographs after gel electrophoresis of total-cell-culture protein extracts. The IE94 polypeptide synthesized in the transfected cells was indistinguishable in size and overall net charge from that produced in virus-infected cells. In addition, the IE94 protein expressed in LH/sub 2/p198-3 cells was phosphorylated (presumably by a cellular protein kinase) and generated similar phosphopeptide patterns after partial tryptic digestion to those obtained with the CMV IE94 protein from infected cells. The cell line contained two to four stably integrated copies of the IE94 gene and synthesized a single virus-specific mRNA of 2.5 kilobases detectable on Northern blots. A new antigen, detectable by indirect anticomplement immunofluorescence with monoclonal antibody against the human CMV IE68 protein, was present in the nuclei of more than 95% of the LH/sub 2/l198-3 cells. This evidence suggests that (unlike most herpesvirus genes) the CMV IE94 gene, together with its complex promoter and spliced mRNA structure, may contain all of the regulatory elements necessary for strong constitutive expression in mammalian cells in the absence of other viral factors

  13. Syngeneic lysis of reticuloendotheliosis virus-transformed cell lines transfected with Marek's disease virus genes by virus-specific cytotoxic T cells.

    Science.gov (United States)

    Uni, Z; Pratt, W D; Miller, M M; O'Connell, P H; Schat, K A

    1994-12-01

    Cell-mediated immune responses against Marek's disease virus (MDV) antigens were examined using reticuloendotheliosis virus (REV)-transformed cell lines of two haplotypes (B19B19 and B13B13). These cell lines were stably transfected with cloned fragments of MDV DNA resulting in the expression of the MDV-specific phosphoprotein pp38. Effector cells were obtained from P2a (B19B19) and S13 (B13B13) chickens at 7 days post inoculation with REV, oncogenic or attenuated serotype 1 MDV (JM-16/O and JM-16/A, respectively), serotype 2 MDV (SB-1), or herpesvirus of turkeys (HVT). Transfection of MDV genes did not influence the expression of Class I major histocompatibility complex antigens. The optimal effector to target cell ratio was determined to be 100:1. REV-sensitized effector cells lysed REV cell lines and REV cell lines transfected with MDV DNA in a syngeneic fashion. Effector cells from chickens inoculated with JM-16/O, JM-16/A, SB-1 or HVT lysed only the syngeneic, transfected cell lines, but not the parent REV cell lines. The percentage specific release caused by the MDV-sensitized effector cells was low, but statistically significant.

  14. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  15. Correlation between cationic lipid-based transfection and cell division.

    Science.gov (United States)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. Copyright © 2016. Published by Elsevier Inc.

  16. Transfection of isolated rainbow trout, Oncorhynchus mykiss, granulosa cells through chemical transfection and electroporation at 12°C.

    Science.gov (United States)

    Marivin, E; Mourot, B; Loyer, P; Rime, H; Bobe, J; Fostier, A

    2015-09-15

    Over-expression or inhibition of gene expression can be efficiently used to analyse the functions and/or regulation of target genes. Modulation of gene expression can be achieved through transfection of exogenous nucleic acids into target cells. Such techniques require the development of specific protocols to transfect cell cultures with nucleic acids. The aim of this study was to develop a method of transfection suitable for rainbow trout granulosa cells in primary culture. After the isolation of rainbow trout granulosa cells, chemical transfection of cells with a fluorescent morpholino oligonucleotide (MO) was tested using FuGENE HD at 12 °C. Electroporation was also employed to transfect these cells with either a plasmid or MO. Transfection was more efficient using electroporation (with the following settings: 1200 V/40 ms/1p) than chemical transfection, but electroporation by itself was deleterious, resulting in a decrease of the steroidogenic capacity of the cells, measured via estradiol production from its androgenic substrate. The disturbance of cell biology induced by the transfection method per se should be taken into account in data interpretation when investigating the effects of under- or over-expression of candidate genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. MicroRNA-143 Downregulates Interleukin-13 Receptor Alpha1 in Human Mast Cells

    Directory of Open Access Journals (Sweden)

    Jianqiu Cheng

    2013-08-01

    Full Text Available MicroRNA-143 (miR-143 was found to be downregulated in allergic rhinitis, and bioinformatics analysis predicted that IL-13Rα1 was a target gene of miR-143. To understand the molecular mechanisms of miR-143 involved in the pathogenesis of allergic inflammation, recombinant miR-143 plasmid vectors were constructed, and human mast cell-1(HMC-1 cells which play a central role in the allergic response were used for study. The plasmids were transfected into HMC-1 cells using a lentiviral vector. Expression of IL-13Rα1 mRNA was then detected by reverse transcriptase polymerase chain reaction (RT-PCR and Western Blotting. The miR-143 lentiviral vector was successfully stably transfected in HMC-1 cells for target gene expression. Compared to the control, the target gene IL-13Rα1 was less expressed in HMC-1 transfected with miR-143 as determined by RT-PCR and Western Blotting (p < 0.05; this difference in expression was statistically significant and the inhibition efficiency was 71%. It indicates that miR-143 directly targets IL-13Rα1 and suppresses IL-13Rα1 expression in HMC-1 cells. Therefore, miR-143 may be associated with allergic reaction in human mast cells.

  18. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    Science.gov (United States)

    Chow, Yu Ting; Chen, Shuxun; Wang, Ran; Liu, Chichi; Kong, Chi-Wing; Li, Ronald A.; Cheng, Shuk Han; Sun, Dong

    2016-04-01

    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desired.

  19. Enhanced gene transfection by photochemical internalization of protomine sulfate/DNA complexes

    Science.gov (United States)

    Hirschberg, Henry; Mathews, Marlon B.; Shih, En-Chung; Madsen, Steen J.; Kwon, Young Jik

    2012-02-01

    Introduction: One of many limitations for cancer gene therapy is the inability of the therapeutic gene to transfect a sufficient number of tumor cells. Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. The utility of PCI for the delivery of the GFP indicator gene on the same plasmid as a tumor suppressor gene (PTEN) was investigated in monolayers of U251 human glioma cells. Materials and Methods: U251 monolayers were incubated in AlPcS2a for 18 h. The monolayers were incubated with non-viral vectors for either 4 or 18 hrs. In all cases, light treatment was performed with a diode laser at a wavelength of 670 nm. The non-viral transfection agents, branched PEI or protomine sulfate (PS), were used with the plasmid construct (GFP-PTEN). Results: PS was much less toxic to the gliomas cells compared to BPEI but was highly inefficient at gene transfection. PCI resulted in a 5-10 fold increase in GFP protein expression compared to controls. Conclusions: Collectively, the results suggest that AlPcS2a-mediated PCI can be used to enhance transfection of tumor suppressor genes in glioma cells.

  20. Transfection of Bacillus subtilis protoplasts by bacteriophage phi do7 DNA.

    OpenAIRE

    Perkins, J B; Dean, D H

    1983-01-01

    DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.

  1. Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease.

    Science.gov (United States)

    Ye, Lei; Haider, Husnain Kh; Esa, Wahidah Bte; Su, Liping; Law, Peter K; Zhang, Wei; Lim, Yeanteng; Poh, Kian Keong; Sim, Eugene K W

    2010-01-01

    The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.

  2. Modulated protonation of side chain aminoethylene repeats in N-substituted polyaspartamides promotes mRNA transfection.

    Science.gov (United States)

    Uchida, Hirokuni; Itaka, Keiji; Nomoto, Takahiro; Ishii, Takehiko; Suma, Tomoya; Ikegami, Masaru; Miyata, Kanjiro; Oba, Makoto; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-09-03

    Fine-tuning of chemical structures of polycation-based carriers (polyplexes) is an attractive strategy for safe and efficient mRNA transfaction. Here, mRNA polyplexes comprising N-substituted polyaspartamides with varied numbers of side chain aminoethylene repeats were constructed, and their transfection ability against human hepatoma cells was examined. Transfection efficacy clearly correlated with the number of aminoethylene repeats: polyplexes with odd number repeats (PA-Os) produced sustained increases in mRNA expression compared with those with even number repeats (PA-Es). This predominant efficacy of PA-Os over PA-Es was contradictory to our previous findings for pDNA polyplexes prepared from the same N-substituted polyaspartamides, that is, PA-Es revealed superior transfection efficacy of pDNA than PA-Os. Intracellular FRET analysis using flow cytometry and polyplex tracking under confocal laser scanning microscopy revealed that overall transfection efficacy was determined through the balance between endosomal escaping capability and stability of translocated mRNA in cytoplasm. PA-Es efficiently transported mRNA into the cytoplasm. However, their poor cytoplasmic stability led to facile degradation of mRNA, resulting in a less durable pattern of transfection. Alternatively, PA-Os with limited capability of endosomal escape eventually protect mRNA in the cytoplasm to induce sustainable mRNA expression. Higher cytoplasmic stability of pDNA compared to mRNA may shift the limiting step in transfection from cytoplasmic stability to endosomal escape capacity, thereby giving an opposite odd-even effect in transfection efficacy. Endosomal escaping capability and nuclease stability of polyplexes are correlated with the modulated protonation behavior in aminoethylene repeats responding to pH, appealing the substantial importance of chemistry to design polycation structures for promoted mRNA transfection.

  3. Acoustic Liquid Handling for Rapid siRNA Transfection Optimization.

    Science.gov (United States)

    Xiao, Andrew S; Lightcap, Eric S; Bouck, David C

    2015-09-01

    Gene knockdown by small interfering RNA (siRNA) has been used extensively to investigate the function of genes in targeted and genome-wide studies. One of the primary challenges of siRNA studies of any scale is to achieve sufficient gene knockdown to produce the biological changes that lead to measurable phenotypes. Reverse, lipid-based transfection efficiency minimally requires the optimization of the following parameters: cell number, knockdown duration, siRNA oligonucleotide concentration, type/brand of transfection lipid, and transfection lipid concentration. In this study, we describe a methodology to utilize the flexibility and low-volume range of the Echo acoustic liquid handler to rapidly screen a matrix of transfection conditions. The matrix includes six different transfection lipids from three separate vendors across a broad range of concentrations. Our results validate acoustic liquid transfer for the delivery of siRNAs and transfection reagents. Finally, this methodology is applied to rapidly optimize transfection conditions across many tissue culture cell lines derived from various originating tissues. © 2015 Society for Laboratory Automation and Screening.

  4. Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core-shell magnetic nanoparticles

    Science.gov (United States)

    Tencomnao, Tewin; Klangthong, Kewalin; Pimpha, Nuttaporn; Chaleawlert-umpon, Saowaluk; Saesoo, Somsak; Woramongkolchai, Noppawan; Saengkrit, Nattika

    2012-01-01

    Background The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate) (PMMA) core/polyethyleneimine (PEI) shell (mag-PEI) nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2) gene was also investigated in cultured neuronal LAN-5 cells. Methods The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the surfaces of the mag-PEI nanoparticles via electrostatic interaction. Finally, the mag-PEI nanoparticle magnetoplex was delivered into LAN-5 cells. Reverse-transcriptase polymerase chain reaction was performed to evaluate TPH-2 expression in a quantitative manner. Results The study demonstrated the role of newly synthesized high-magnetization mag-PEI nanoparticles for gene transfection in vitro. The expression signals of a model gene, luciferase, and a therapeutic gene, TPH-2, were enhanced under magnetic-assisted transfection. An in vitro study in neuronal cells

  5. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  6. Marked transfection enhancement by the DPL (DNA/peptide/lipid) complex.

    Science.gov (United States)

    Moon, Ik-Jae; Kang, Hyungu; Seu, Young-Bae; Chang, Byeong-Churl; Song, Dae-Kyu; Park, Jong-Gu

    2007-10-01

    A short peptide, corresponding to the nuclear localization signal of the human immunodeficiency virus-1 Tat protein, Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg, was modified by adding a cysteine residue at the COOH terminus. The peptide was mixed with a reporter plasmid, and then with cationic lipids, to form a tripartite complex, DNA/peptide/lipid (DPL). Various cell lines were treated with the DPL complex and compared for transfection efficiency with those of the conventional DNA/lipid (DL) complex. With the simple inclusion of the peptide, the DPL complex showed much enhanced transfection. Meanwhile, the plasmid DNA mixed only with the peptide exhibited some improvement but with much lower transfection than the DPL complex. When the DPL complex was formed with various cationic lipids, the DOSPA/DOPE exhibited superior transfection efficiency than the other cationic lipids tested at the optimal ratio of 1:3:5 (w:w:w) in many cell types. At the optimal ratio of the DPL components, transfection efficiency was routinely shown to be approximately 10-fold higher for reporter gene expression than that of the conventional DL complex. Furthermore, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with antisense oligos, k-ras-RiAS, delivered as a DPL complex, tumor growth was markedly suppressed. This study shows that the DPL complex, which is easy to formulate by ordered mixing, can be employed for a much enhanced cellular uptake of a transgene both in vitro and in vivo.

  7. Failure to detect a DNA repair-related defect in the transfection of ataxia-telangiectasia cells by enzymatically restricted plasmid

    International Nuclear Information System (INIS)

    Green, M.H.L.; Lowe, J.E.

    1987-01-01

    Two SV40-transformed human fibroblast cell lines were transfected with plasmids in which double-strand breaks had been introduced by restriction enzymes, within or near the selected gene. Restriction of pSV2gpt with KpnI reduced the frequency of transfection more in the ionizing radiation-sensitive ataxia-telangiectasia line AT5BIVA than in the resistant line MRC5V1. When the related plasmid pSV2neo was restricted with SmaI, the reduction in transfection was less in the ataxia-telangiectasia than in the normal cells. The apparent defect in transfection of AT5BIVA by pSV2gpt appeared to be a result of the unusual sensitivity of the repair-deficient recipient to the selective agent. Loss of potential transfectants is exacerbated when transient gene expression is reduced by restriction of the plasmid. It is suggested that a reduction in yield of transfectants with restricted plasmid in ataxia-telangiectasia cells cannot readily be used as evidence of a defect in DNA repair. The results are also relevant to standard transfection experiments; they emphasize the importance of optimizing selection when transient expression may be reduced, to ensure that potential transfectants are not killed by the selection regime. (author)

  8. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    Science.gov (United States)

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  9. Optical sorting and photo-transfection of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-02-01

    Full Text Available ), embryonic kidney, Chinese hamster ovary as well as pluripotent stem cells using a tightly focused titanium sapphire femtosecond pulsed laser beam spot. These investigations permitted advanced biological studies in femtosecond laser transfection: firstly...

  10. Reduction of vertical transport in two-dimensional stably stratified forced shear flows

    Science.gov (United States)

    Toqué, Nathalie; Lignières, François; Vincent, Alain

    2006-04-01

    The effect of stable stratification on the vertical transport of passive contaminants in forced, stationary, two-dimensional (2D) and inhomogeneous shear turbulence is investigated numerically. The mean flow consists of several superimposed parallel sheared layers in a stably stratified medium. We find that, as stratification increases, the vertical transport decreases much faster than predicted by mixing length estimates. For the highest stratification, particles vertical dispersion nearly vanishes. The proposed interpretation emphasizes the role of weakly sheared layers where the relative increase of the mean horizontal velocity with respect to the root-mean-square (rms) vertical velocity causes the decrease of the Lagrangian correlation timescale.

  11. Antibody transfection into neurons as a tool to study disease pathogenesis.

    Science.gov (United States)

    Douglas, Joshua N; Gardner, Lidia A; Lee, Sangmin; Shin, Yoojin; Groover, Chassidy J; Levin, Michael C

    2012-09-26

    Antibodies provide the ability to gain novel insight into various events taking place in living systems. The ability to produce highly specific antibodies to target proteins has allowed for very precise biological questions to be addressed. Importantly, antibodies have been implicated in the pathogenesis of a number of human diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), paraneoplastic syndromes, multiple sclerosis (MS) and human T-lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP). How antibodies cause disease is an area of ongoing investigation, and data suggests that interactions between antibodies and various intracellular molecules results in inflammation, altered cellular messaging, and apoptosis. It has been shown that patients with MS and HAM/TSP produce autoantibodies to the intracellular RNA binding protein heterogeneous ribonuclear protein A1 (hnRNP A1). Recent data indicate that antibodies to both intra-neuronal and surface antigens are pathogenic. Thus, a procedure that allows for the study of intracellular antibody:protein interactions would lend great insight into disease pathogenesis. Genes are commonly transfected into primary cells and cell lines in culture, however transfection of antibodies into cells has been hindered by alteration of antibody structure or poor transfection efficiency. Other methods of transfection include antibody transfection based on cationic liposomes (consisting of DOTAP/DOPE) and polyethylenimines (PEI); both of which resulted in a ten-fold decrease in antibody transfection compared to controls. The method performed in our study is similar to cationic lipid-mediated methods and uses a lipid-based mechanism to form non-covalent complexes with the antibodies through electrostatic and hydrophobic interactions. We utilized Ab-DeliverIN reagent, which is a lipid formulation capable of capturing antibodies through non-covalent electrostatic and

  12. Highly Branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate for High Performance Gene Transfection

    Directory of Open Access Journals (Sweden)

    Ming Zeng

    2017-05-01

    Full Text Available The top-performing linear poly(β-amino ester (LPAE, poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate (C32, has demonstrated gene transfection efficiency comparable to viral-mediated gene delivery. Herein, we report the synthesis of a series of highly branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate (HC32 and explore how the branching structure influences the performance of C32 in gene transfection. HC32 were synthesized by an “A2 + B3 + C2” Michal addition strategy. Gaussia luciferase (Gluciferase and green fluorescent protein (GFP coding plasmid DNA were used as reporter genes and the gene transfection efficiency was evaluated in human cervical cancer cell line (HeLa and human recessive dystrophic epidermolysis bullosa keratinocyte (RDEBK cells. We found that the optimal branching structure led to a much higher gene transfection efficiency in comparison to its linear counterpart and commercial reagents, while preserving high cell viability in both cell types. The branching strategy affected DNA binding, proton buffering capacity and degradation of polymers as well as size, zeta potential, stability, and DNA release rate of polyplexes significantly. Polymer degradation and DNA release rate played pivotal parts in achieving the high gene transfection efficiency of HC32-103 polymers, providing new insights for the development of poly(β-amino esters-based gene delivery vectors.

  13. A targeted ultrasound contrast agent carrying gene and cell-penetrating peptide: preparation and gene transfection in vitro.

    Science.gov (United States)

    Ren, Jianli; Zhang, Ping; Tian, Ju; Zhou, Zhiyi; Liu, Xingzhao; Wang, Dong; Wang, Zhigang

    2014-09-01

    Targeted and high efficient gene delivery is a main issue in gene treatment. Taking advantage of ischemic memory target P-selectin and our previous study-synergistic effects of ultrasound-targeted microbubble destruction (UTMD) and TAT peptide on gene transfection, which were characterized by targeted aggregation and high efficient gene transfection, we set up a 'smart' gene delivery system-targeted ultrasound contrast agent (UCA) carrying gene and cell-permeable peptides (CPP). Such UCA had a strong binding force with DNA which was protected from being hydrolysed by nuclease. Moreover, synergistic effects of UTMD and TAT peptide increased gene transfection. Specifically, the UCA were reacted with an ischemic memory target P-selectin overexpressed by ischemic issues (including ischemic heart disease) and loaded with gene and CPP, which enabled targeted localization and gene delivery to ischemic cells overexpressing P-selectin. We demonstrated their targeting affinity for hypoxia human umbilical vein endothelial cell (HUVEC) and gene transfection in vitro. The results of confocal laser scanning microscopy (CLSM) showed that gene and CPP were distributed on the shell of UCA. Red fluorescence was observed on the surface of targeted UCA using immunofluorescent microscopy, which demonstrated that the antibody was successfully connected to the UCA. The targeted UCA was specifically and tightly binded to hypoxia HUVEC, while there were no or little non-targeted UCA binding around hypoxia HUVEC. 24h after transfection, gene transfection efficiency detected by FCM was higher in targeted group than non-targeted group. Overall, the targeted UCA carrying gene and CPP was prepared successfully. It had a strong target binding capacity to hypoxia HUVEC and high efficient gene transfection, which maybe provide a novel strategy for gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Regulation of translocated c-myc genes transfected into plasmacytoma cells

    International Nuclear Information System (INIS)

    Feo, S.; Harvey, R.; Showe, L.; Croce, C.M.

    1986-01-01

    The authors have transfected two translocated c-myc oncogene clones, derived from two human lymphomas carrying the t(8;14) chromosome translocation, into mouse plasmacytoma cells to study the regulation of their expression. In one case, the transfected clone contained the two coding exons of the c-myc oncogene translocated to an immunoglobulin heavy-chain switch region; in the other case, the two coding exons were translocated 5' of the enhancer element located between the heavy-chain joining region (J/sub H/) and the switch region S/sub μ/. Nuclease S1 protection experiments indicate that only the c-myc translocated 5' of the enhancer element is transcribed in the plasmacytoma cells. Thus, 5'-truncation of the c-myc gene per se does not lead to c-myc deregulation. Further, since the level of c-myc transcripts in the parental human lymphoma cells was 3- to 4-fold higher than in the transfectants, it seems likely that additional elements within the heavy-chain locus may play a role in the enhancement of c-myc gene transcription in lymphoma cells

  15. Stable expression and characterization of human PN1 and PN3 sodium channels.

    Science.gov (United States)

    Akiba, Isamu; Seki, Tetsuo; Mori, Masayuki; Iizuka, Masaki; Nishimura, Seiichiro; Sasaki, Sachie; Imoto, Keiji; Barsoumian, Edward L

    2003-01-01

    Nociceptive transduction in inflammatory and neuropathic pain involves peripherally expressed voltage-gated sodium channels, such as tetrodotoxin (TTX)-sensitive PN1 and TTX-resistant PN3. We generated recombinant cell lines stably expressing the human PN1 and PN3 sodium channels in Chinese hamster ovary (CHO) cells using inducible expression vectors. The PN1 and PN3 cDNAs were isolated from human adrenal gland and heart poly(A)+ RNAs, respectively. The recombinant human PN1 currents exhibited rapid activation and inactivation kinetics and were blocked by TTX with a half-maximal inhibitory concentration (IC50) of 32.6 nM. The human PN3 channel expressed in stable transfectants showed TTX-resistant inward currents with slow inactivation kinetics. The IC50 value for TTX was 73.3 microM. The voltage-dependence of activation of the PN3 channel was shifted to the depolarizing direction, compared to that of the PN1 channel. Lidocaine and mexiletine exhibited tonic and use-dependent block of PN1 and PN3 channels. The PN1 channel was more susceptible to inhibition by mexiletine than PN3. These results suggest that stable transfectants expressing the human PN1 and PN3 sodium channels will be useful tools to define subtype selectivity for sodium channel blockers.

  16. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  17. Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring

    DEFF Research Database (Denmark)

    de Los Milagros Bassani Molinas, Maria; Beer, Christiane; Hesse, F

    2014-01-01

    Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon...... polyethyleneimine (PEI)-mediated transient gene delivery into HEK-293 cells cultured in suspension was investigated to understand the effect of different culture and transfection conditions as well as the significance of the culture age and the quality of the cell line used. Based on two different bicistronic model...... plasmids expressing the human erythropoietin gene (rHuEPO) in the first position and green fluorescent protein as reporter gene in the second position and vice versa, a completely serum-free transient transfection process was established. The process makes use of a 1:1 mixture of a special calcium...

  18. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Science.gov (United States)

    Fouriki, A.; Farrow, N.; Clements, M.A.; Dobson, J.

    2010-01-01

    The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency. Methods non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™. PMID:22110859

  19. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Directory of Open Access Journals (Sweden)

    A. Fouriki

    2010-07-01

    Full Text Available The objective of this work was to examine the effects of magnet distance (and by proxy, field strength on nanomagnetic transfection efficiency. Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results: Fluorescence intensity (firefly luciferase of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.

  20. Modulation of microfilament protein composition by transfected cytoskeletal actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S.Y.; Erba, H.; Latter, G.; Kedes, L.; Leavitt, J.

    1988-04-01

    HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of ..beta..-actin due to coding mutations in one of two ..beta..-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional ..beta..-actin gene but not following transfection of the functional ..gamma..-actin gene. In ..gamma..-actin gene-transfected substrains that have increased rates of ..gamma..-actin synthesis, ..beta..-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both ..beta..- and ..gamma..-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal ..beta..-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.

  1. Turbulent Mechanical Energy Budget in Stably Stratified Baroclinic Flows over Sloping Terrain

    Science.gov (United States)

    Łobocki, Lech

    2017-09-01

    Analysis of second-moment budget equations in a slope-oriented coordinate frame exhibits the pathways of exchange between the potential energy of mean flow and the total turbulent mechanical energy. It is shown that this process is controlled by the inclination of the potential temperature gradient. Hence, this parameter should be considered in studies of turbulence in slope flows as well as the slope inclination. The concept of turbulent potential energy is generalized to include baroclinicity, and is used to explain the role of along-slope turbulent heat flux in energy conversions. A generalization of static stability criteria for baroclinic conditions is also proposed. In addition, the presence of feedback between the turbulent heat flux and the temperature variance in stably-stratified flows is identified, which implies the existence of oscillatory modes characterized by the Brunt-Väisäla frequency.

  2. HeLa-LAV, an epithelial cell line stably infected with HIV-1.

    Science.gov (United States)

    Berg, J; Doe, B; Steimer, K S; Wabl, M

    1991-01-01

    An HeLa-LAV cell line was established by infecting and subcloning previously described CD4-expressing HeLa cells with HIV-1. Cells of this line stably synthesize all major HIV proteins, release infectious particles of HIV-1, but do not die even after long term culture. More than 90% of the cells express the envelope protein gp120 on the surface. The cells can be easily and efficiently labeled with 51chromium, and exhibit a low spontaneous release. Because they are susceptible to killing by allogeneic cytotoxic T cells (CTL) when targeted to gp120, they ought to be a useful source of target cells in any kind of HIV-specific killing assays. The cells may also help studies on HIV replication in non-lymphatic/non-monocytic cells. The HeLa-LAV cell line will be freely available from the AIDS Research and Reference Reagent Program.

  3. Numerical Simulations of Stably Stratified Fluid Flow Using Compact Finite-Difference Schemes

    Science.gov (United States)

    Bodnár, T.; Fraunié, Ph.; Kozel, K.

    2010-09-01

    The aim of this paper is to present the class of high order compact schemes in the context of numerical simulation of stratified flow. The numerical schemes presented here are based on the approach outlined in Lele [1]. The numerical model presented in this contribution is based on the solution of the Boussinesq approximation by a finite-difference scheme. The numerical scheme itself follows the principle of semi-discretization, with high order compact discretization in space, while the time integration is carried out by suitable Runge-Kutta time-stepping scheme. In the case presented here the steady flow was considered and thus the artificial compressibility method was used to resolve the pressure from the modified continuity equation. The test case used to demonstrate the capabilities of the selected model consists of the flow of stably stratified fluid over low, smooth hill.

  4. Establishment of transient and stable transfection systems for Babesia ovata.

    Science.gov (United States)

    Hakimi, Hassan; Yamagishi, Junya; Kegawa, Yuto; Kaneko, Osamu; Kawazu, Shin-Ichiro; Asada, Masahito

    2016-03-23

    Bovine babesiosis is a tick-borne disease caused by several species of Babesia which produce acute and fatal disease in cattle and affect livestock industry worldwide. Babesia ovata is a benign species widespread in east Asian countries and causes anemia, particularly in cattle which are co-infected with Theileria orientalis. The development of genetic manipulation methods is necessary to improve our understanding of the basic biology of protozoan pathogens toward a better control of disease. Such tools have not been developed for B. ovata, and are the aim of this study. In this study we transfected constructs that were designed to evaluate the ability of several B. ovata promoter candidates to drive expression of a reporter luciferase. We found that the elongation factor-1 alpha intergenic region (ef-1α IG) and the actin 5' non-coding region (NR) had highest promoter activities. To establish a stable transfection system, we generated a plasmid construct in which the ef-1α IG promoter drives gfp expression, and the actin 5' NR mediates expression of the selectable marker hdhfr. The plasmid was designed for episomal transfection, as well as to integrate by double cross-over homologous recombination into the ef-1α locus. Circular or linearized plasmid was transfected by electroporation into in vitro cultured B. ovata and retention of the plasmid was facilitated by drug selection with 5 nM WR99210 initiated 48 h after transfection. After one-week cultivation with WR99210, GFP-expressing parasites were observed by fluorescence microscopy. Integration of the plasmid construct into the ef-1α locus was confirmed by PCR, Southern blot analysis, and sequencing of recombination sites. These results confirm successful development of a stable transfection system for B. ovata. The current study provides a fundamental molecular tool to aid in molecular and cellular studies of B. ovata.

  5. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    of cellular function that mimic those of the endogenous GHR. GHR cDNA transfected cells also offer a system where the mechanism of GH action can be studied. Such a system has been used to demonstrate that the GHR itself becomes tyrosine phosphorylated and that further phosphorylation of downstream proteins...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  6. The Effect of Environmental pH on Polymeric Transfection Efficiency

    OpenAIRE

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2011-01-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of comple...

  7. Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism.

    Science.gov (United States)

    Bhaskaracharya, Archana; Dao-Ung, Phuong; Jalilian, Iman; Spildrejorde, Mari; Skarratt, Kristen K; Fuller, Stephen J; Sluyter, Ronald; Stokes, Leanne

    2014-01-01

    P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor.

  8. Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism.

    Directory of Open Access Journals (Sweden)

    Archana Bhaskaracharya

    Full Text Available P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor.

  9. Enhanced effect of nuclear localization signal peptide during ultrasound‑targeted microbubble destruction‑mediated gene transfection.

    Science.gov (United States)

    Cao, Sheng; Zhou, Qing; Chen, Jin-Ling; Jiang, Nan; Wang, Yi-Jia; Deng, Qing; Hu, Bo; Guo, Rui-Qiang

    2017-07-01

    Ultrasound‑targeted microbubble destruction (UTMD) can promote the entry of plasmid DNA (pDNA) into the cell cytoplasm, by increasing the permeability of the cell membrane. But the transfection efficiency remains low due to inability of the pDNA to enter the nucleus. Various methods have been explored to improve the UTMD transfection efficiency, but with little success. In cells, the classic nuclear localization signal (cNLS) peptide is an amino acid sequence that signals proteins that are due for nuclear transport. The present study aimed to investigate whether binding of a cNLS peptide to the pDNA may improve the transfection efficiency of UTMD. Four experimental groups were analyzed: Control group (UTMD + pDNA), group with cNLS (UTMD + pDNA + cNLS), group with mutated NLS (mNLS; UTMD + pDNA + mNLS), and group with cNLS and the nuclear import blocker, wheat germ agglutinin (WGA; UTMD + pDNA + cNLS + WGA). The NLS was labeled by fluorescein isothiocyanate, whereas pDNA was labeled with Cy3. Different molar ratios were tested for the NLS and pDNA combination in order to achieve optimal binding of the two molecules. Human umbilical vein endothelial cells were then transfected using the optimum ultrasonic irradiation parameters and NLS/pDNA molar ratio. At 6 h post‑transfection, the rates of Cy3‑labeled pDNA inside the cells and their nuclei were detected by flow cytometry and laser confocal microscopy, and the cellular vs. nuclear uptake of pDNA was calculated. In order to further evaluate the effect of NLS on UTMD‑mediated gene transfection, the transfection efficiency and relative expression levels of mRNA and protein were detected at 48 h post‑transfection. The results demonstrated that the optimal molar ratio of NLS with pDNA was 104:1. The rates of pDNA successful entry into the cell and nucleus were significantly higher in the cNLS group compared with the control group. The transfection efficiency, and relative expression levels of mRNA and protein

  10. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Panozzo, J.; Libertin, C.R.; Schreck, S.; South Carolina Univ., Columbia, SC

    1994-01-01

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  11. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  12. Optimization of in vitro culture and transfection condition of bovine ...

    African Journals Online (AJOL)

    The present study aimed to optimize the in vitro culture and transfection efficiency of bovine primary spermatogonial stem cells (SSCs). To this end, SSCs were obtained from newborn Holstein bull calves by two-step enzymatic digestion. After enrichment and culture, SSCs were characterized by using alkaline phosphatase ...

  13. D-Glucosamine Promotes Transfection Efficiency during Electroporation

    Directory of Open Access Journals (Sweden)

    Kazunari Igawa

    2014-01-01

    Full Text Available D-Glucosamine is a useful medicament in various fields of medicine and dentistry. With respect to stability of the cell membrane, it has been reported that bradykinin-induced nociceptive responses are significantly suppressed by the direct application of D-glucosamine. Electroporation is usually used to effectively introduce foreign genes into tissue culture cells. Buffers for electroporation with or without D-glucosamine are used in experiments of transfection vectors. This is the first study to indirectly observe the stability and protection of the osteoblast membrane against both electric stress and gene uptake (the proton sponge hypothesis: osmotic rupture during endosomes prior to fusion with lysosomes in electroporation with D-glucosamine application. The transfection efficiency was evaluated as the fluorescence intensity of the transfected green fluorescent protein (GFP in the cultured cells (osteoblasts; NOS-1 cells. The transfection efficiency increased over 30% in the electroporation samples treated with D-glucosamine-supplemented buffer after one day. The membrane absorption of D-glucosamine is the primary mechanism of membrane stress induced by electric stress. This new function of D-glucosamine is useful and meaningful for developing more effective transformation procedures.

  14. Influence of nanoparticle-mediated transfection on proliferation of primary immune cells in vitro and in vivo.

    Science.gov (United States)

    Przybylski, Susanne; Gasch, Michaela; Marschner, Anne; Ebert, Marcus; Ewe, Alexander; Helmig, Gisa; Hilger, Nadja; Fricke, Stephan; Rudzok, Susanne; Aigner, Achim; Burkhardt, Jana

    2017-01-01

    One of the main obstacles in the widespread application of gene therapeutic approaches is the necessity for efficient and safe transfection methods. For the introduction of small oligonucleotide gene therapeutics into a target cell, nanoparticle-based methods have been shown to be highly effective and safe. While immune cells are a most interesting target for gene therapy, transfection might influence basic immune functions such as cytokine expression and proliferation, and thus positively or negatively affect therapeutic intervention. Therefore, we investigated the effects of nanoparticle-mediated transfection such as polyethylenimine (PEI) or magnetic beads on immune cell proliferation. Human adherent and non-adherent PBMCs were transfected by various methods (e.g. PEI, Lipofectamine® 2000, magnetofection) and stimulated. Proliferation was measured by lymphocyte transformation test (LTT). Cell cycle stages as well as expression of proliferation relevant genes were analyzed. Additionally, the impact of nanoparticles was investigated in vivo in a murine model of the severe systemic immune disease GvHD (graft versus host disease). The proliferation of primary immune cells was influenced by nanoparticle-mediated transfection. In particular in the case of magnetic beads, proliferation inhibition coincided with short-term cell cycle arrest and reduced expression of genes relevant for immune cell proliferation. Notably, proliferation inhibition translated into beneficial effects in a murine GvHD model with animals treated with PEI-nanoparticles showing increased survival (pPEI = 0.002) most likely due to reduced inflammation. This study shows for the first time that nanoparticles utilized for gene therapeutic transfection are able to alter proliferation of immune cells and that this effect depends on the type of nanoparticle. For magnetic beads, this was accompanied by temporary cell cycle arrest. Notably, in GvHD this nonspecific anti-proliferative effect might

  15. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, M.; Kraemer, K.H.

    1985-01-01

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D 0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  16. Transfection of Babesia bovis by Double Selection with WR99210 and Blasticidin-S and Its Application for Functional Analysis of Thioredoxin Peroxidase-1.

    Directory of Open Access Journals (Sweden)

    Masahito Asada

    Full Text Available Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using selectable markers blasticidin-S deaminase (bsd or human dihydrofolate reductase (hdhfr. In this work, we combine these two selectable markers in a sequential transfection system. Specifically, a parent transgenic B. bovis line which episomally expresses green fluorescent protein (GFP and human dihydrofolate reductase (hDHFR, was transfected with a plasmid encoding a fusion protein consisting of red fluorescent protein (RFP and blasticidin-S deaminase (BSD. Selection with WR99210 and blasticidin-S resulted in the emergence of parasites double positive for GFP and RFP. We then applied this method to complement gene function in a parasite line in which thioredoxin peroxidase-1 (Bbtpx-1 gene was knocked out using hDHFR as a selectable marker. A plasmid was constructed harboring both RFP-BSD and Bbtpx-1 expression cassettes, and transfected into a Bbtpx-1 knockout (KO parasite. Transfectants were independently obtained by two transfection methods, episomal transfection and genome integration. Complementation of Bbtpx-1 resulted in full recovery of resistance to nitrosative stress, via the nitric oxide donor sodium nitroprusside, which was impaired in the Bbtpx-1 KO parasites. In conclusion, we developed a sequential transfection method in B. bovis and subsequently applied this technique in a gene complementation study. This method will enable broader genetic manipulation of Babesia toward enhancing our understanding of the biology of this parasite.

  17. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    Directory of Open Access Journals (Sweden)

    Nina Svensson

    2017-01-01

    Full Text Available Streaky structures of narrow (8-9 km high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.

  18. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Science.gov (United States)

    Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong

    2017-08-01

    We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  19. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Directory of Open Access Journals (Sweden)

    Miao Tan

    2017-08-01

    Full Text Available We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i the work function of the transparent conductive oxide layer, (ii the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si interface, (iii the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H layer, and (iv the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  20. The turbulent decay of trailing vortex pairs in stably stratified environments

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Baumann, R.

    2000-03-01

    The decay of trailing vortex pairs in thermally stably stratified environments is investigated by means of large eddy simulations. Results of in-situ measurements in the wakes of different aircraft are used to find appropriate intitializations for the simulation of wake turbulence in the quiescent atmosphere. Furthermore, cases with weak atmospheric turbulence are investigated. It is shown that the early development of the vortices is not affected by turbulence and develops almost identically as in 2D simulations. In a quiescent atmosphere the subsequent vortex decay is controlled by the interaction of short-wave disturbances, owing to the aircraft induced turbulence, and baroclinic vorticity, owing to stable stratification. As a consequence, vertical vorticity streaks between the vortices are induced which are substantially intensified by vortex stretching and finally lead to rapid turbulent wake-vortex decay. When in addition also atmospheric turbulence is present, the long-wave instability is dominantly promoted. For very strong stratification (Fr < 1) it is observed that wake vortices may rebound but lose most of their strength before reaching the flight level. Finally, the simulation results are compared to the predictive capabilities of Greene's approximate model. (orig.)

  1. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles

    Science.gov (United States)

    Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi

    2017-01-01

    Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB. PMID:29145481

  2. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  3. Photoporation and cell transfection using a violet diode laser

    Science.gov (United States)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  4. Preliminary study of a novel transfection modality for in vivo siRNA delivery to vocal fold fibroblasts.

    Science.gov (United States)

    Kraja, Iv; Bing, Renjie; Hiwatashi, Nao; Rousseau, Bernard; Nalband, Danielle; Kirshenbaum, Kent; Branski, Ryan C

    2017-07-01

    An obstacle to clinical use of RNA-based gene suppression is instability and inefficiency of current delivery modalities. Nanoparticle delivery likely holds great promise, but the kinetics and transfection conditions must be optimized prior to in vivo utility. We investigated a RNA nanoparticle complex incorporating a lipitoid transfection reagent in comparison to a commercially available reagent. In vitro. We investigated which variables influence transfection efficiency of lipitoid oligomers and a commercially available reagent across species, in vitro. These variables included duration, dose, and number of administrations, as well as serum and media conditions. The target gene was Smad3, a signaling protein in the transforming growth factor-β cascade implicated in fibroplasia in the vocal folds and other tissues. The two reagents suppressed Smad3 mRNA for up to 96 hours; lipitoid performed favorably and comparably. Both compounds yielded 60% to 80% mRNA knockdown in rat, rabbit, and human vocal fold fibroblasts (P transfection conditions. These preliminary data are encouraging, and lipitoid warrants further investigation with the goal of clinical utility. NA. Laryngoscope, 127:E231-E237, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    Science.gov (United States)

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Deep sequencing reveals complex spurious transcription from transiently transfected plasmids

    Czech Academy of Sciences Publication Activity Database

    Nejepínská, Jana; Malík, Radek; Moravec, Martin

    2012-01-01

    Roč. 7, č. 8 (2012), e43283 E-ISSN 1932-6203 R&D Projects: GA ČR GA204/09/0085 Grant - others:EMBO(XE) 0001488 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : transient plasmid transfection * deep sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  7. Transient transfection and expression of firefly luciferase in Giardia lamblia.

    OpenAIRE

    Yee, J; Nash, T E

    1995-01-01

    We have developed a gene transfer system for the protozoan parasite Giardia lamblia. This organism is responsible for many cases of diarrhea worldwide and is considered to be one of the most primitive eukaryotes. Expression of a heterologous gene was detected in this parasite after electroporation with appropriate DNA constructs. We constructed a series of transfection plasmids using flanking sequences of the Giardia glutamate dehydrogenase (GDH) gene to drive expression of the firefly lucife...

  8. Uptake of DNA by cancer cells without a transfection reagent.

    Science.gov (United States)

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  9. PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Sun, C-G; Zhuang, J; Teng, W-J; Wang, Z; Du, S-S

    2015-05-29

    We explored whether p53 upregulated modulator of apoptosis (PUMA) gene transfection could enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells. The liposome-mediated recombinant eukaryotic expression vector PU-MA-pCDNA3 and empty vector plasmid were stably transfected into MCF-7 cells. Epirubicin (0.01-100 μM) was applied to MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells for 72 h. The MTT assay was used to calculate the cell survival rate in each group, and the 50% inhibitory concentration (IC50) was calculated. The IC50 values of epirubicin in MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells were 13 ± 1.4, 1.8 ± 0.2, and 10.7 ± 1.3 μM, respectively. The sensitivity of MCF-7/PUMA cells to epirubicin increased 7.2-fold. Epirubicin induced apoptosis in MCF-7 cells dose-dependently, but MCF-7/PUMA cell-induced apoptosis was more significant compared to controls. Low concentrations of epirubicin (0.1 μM) caused low levels of apoptosis of MCF-7/pCDNA3 (1.15 ± 0.26%) and MCF-7 cells (0.9 ± 0.24%), but significantly induced apoptosis of MCF-7/PUMA cells (6.44 ± 1.46%). High epirubicin concentration (1 μM) induced apoptosis in each group, but the epirubicin MCF-7/PUMA apoptosis rate (35.47 ± 9.36%) was significantly higher than that of MCF-7 (12.6 ± 3.73%) and MCF-7/ pCDNA3 (15.2 ± 5.17%) cells (P PUMA protein expression in MCF-7/PUMA cells was significantly higher than that in MCF-7 and MCF-7/pCDNA3 cells by Western blot analysis. There-fore, stable transfection of PUMA can significantly enhance epirubicin-induced apoptosis sensitivity of MCF-7 breast cancer cells.

  10. Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment

    Energy Technology Data Exchange (ETDEWEB)

    Ishay, Liel [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Bieder, Ulrich [Commissariat à l’énergie atomique et aux énergies alternatives, Centre de SACLAY DEN/SAC/DANS/DM2S/STMF/LMSF, F-91191 Gif-sur-Yvette (France); Ziskind, Gennady [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rashkovan, Alex, E-mail: rashbgu@gmail.com [Physics Department, Nuclear Research Center Negev (NRCN), PO Box 9001, Beer-Sheva 84190 (Israel)

    2015-10-15

    Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable

  11. Direct numerical simulations of stably-stratified sheared turbulence: Implications for oceanic mixing

    Science.gov (United States)

    Itsweire, E. C.; Holt, S. E.; Koseff, J. R.; Ferziger, J. H.

    1990-01-01

    Direct numerical simulations of the time evolution of homogeneous stably stratified turbulent shear flows have been performed for several Richardson numbers Ri and Reynolds numbers R(sub lambda) in earlier works. The results show excellent agreement with length scale models developed from laboratory experiments to characterize oceanic turbulence. When the Richardson number Ri is less than the stationary value Ri(sub s), the turbulence intensity grows at all scales, and the growth rate appears to be a function of Ri. The size of the vertical density inversions also increases. On the other hand, when Ri is greater than or equal to Ri(sub s) the largest turbulent eddies become vertically constrained by buoyancy when the Ellison (turbulence) scale L(sub E) and the Ozmidov (buoyancy) scale L(sub O) are equal. At this point, the mixing efficiency is maximal and corresponds to a flux Richardson number R(sub f) = 0.20. The vertical mass flux becomes counter-gradient when epsilon = 19(nu)N(exp 2) and vertical density overturns are suppressed in less than half a Brunt-Vaisala period. The results of the simulations were also recast in terms of the Hydrodynamic Phase Diagram introduced in fossil turbulence models. The so-called point of fossilization occurs when epsilon = 4DCN(exp 2); Gibson proposed 13DCN(exp 2). This value is in agreement with indirect laboratory observations and field observations. Finally, the validity of the steady-state models to estimate vertical eddy diffusivities in the oceanic thermocline is discussed.

  12. Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment

    International Nuclear Information System (INIS)

    Ishay, Liel; Bieder, Ulrich; Ziskind, Gennady; Rashkovan, Alex

    2015-01-01

    Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable

  13. Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing

    KAUST Repository

    Kumar, Abhishek

    2017-01-11

    In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.

  14. Delivery of episomal vectors into primary cells by means of commercial transfection reagents.

    Science.gov (United States)

    Han, Na Rae; Lee, Hyun; Baek, Song; Yun, Jung Im; Park, Kyu Hyun; Lee, Seung Tae

    2015-05-29

    Although episomal vectors are commonly transported into cells by electroporation, a number of electroporation-derived problems have led to the search for alternative transfection protocols, such as the use of transfection reagents, which are inexpensive and easy to handle. Polyplex-mediated transport of episomal vectors into the cytoplasm has been conducted successfully in immortalized cell lines, but no report exists of successful transfection of primary cells using this method. Accordingly, we sought to optimize the conditions for polyplex-mediated transfection for effective delivery of episomal vectors into the cytoplasm of primary mouse embryonic fibroblasts. Episomal vectors were complexed with the commercially available transfection reagents Lipofectamine 2000, FuGEND HD and jetPEI. The ratio of transfection reagent to episomal vectors was varied, and the subsequent transfection efficiency and cytotoxicity of the complexes were analyzed using flow cytometry and trypan blue exclusion assay, respectively. No cytotoxicity and the highest transfection yield were observed when the ratio of transfection reagent to episomal vector was 4 (v/wt) in the cases of Lipofectamine 2000 and FuGENE HD, and 2 in the case of jetPEI. Of the three transfection reagents tested, jetPEI showed the highest transfection efficiency without any cytotoxicity. Thus, we confirmed that the transfection reagent jetPEI could be used to effectively deliver episomal vectors into primary cells without electroporation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection

    Science.gov (United States)

    Wang, Yan-Hsung; Fu, Yin-Chih; Chiu, Hui-Chi; Wang, Chau-Zen; Lo, Shao-Ping; Ho, Mei-Ling; Liu, Po-Len; Wang, Chih-Kuang

    2013-11-01

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA- phe-PEG- qDETA (PPD), phe-PEG- qDETA-PLGA (PDP), and PLGA- phe-PEG- qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH2), phenylalanine ( phe), and poly(lactic- co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of 217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  16. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    International Nuclear Information System (INIS)

    Wang, Yan-Hsung; Fu, Yin-Chih; Chiu, Hui-Chi; Wang, Chau-Zen; Lo, Shao-Ping; Ho, Mei-Ling; Liu, Po-Len; Wang, Chih-Kuang

    2013-01-01

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH 2 ), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle

  17. Tumor priming enhances siRNA delivery and transfection in intraperitoneal tumors

    Science.gov (United States)

    Wang, Jie; Lu, Ze; Yeung, Bertrand Z.; Wientjes, M. Guillaume; Cole, David J.; Au, Jessie L.-S.

    2014-01-01

    Cancers originating from digestive system account for 290,000 or ~20% of all new cancer cases annually in the US. We previously developed paclitaxel-loaded tumor-penetrating microparticles (TPM) for intraperitoneal (IP) treatment of peritoneal tumors [1–3]. TPM is undergoing NIH-supported IND-enabling studies for clinical evaluation. The present study evaluated the hypothesis that TPM, via inducing apoptosis and expanding the interstitial space, promotes the delivery and transfection of lipid vectors containing siRNA. The in vivo model was the metastatic human Hs766T pancreatic tumor that, upon IP injection, produced widely distributed solid tumors and ascites in the peritoneal cavity in 100% animals. The target gene was survivin, an anti-apoptotic protein induced by chemotherapy and associated with metastases and poor prognosis of patients with gastric and colorectal cancer. The siRNA carrier was pegylated liposomes comprising cationic and neutral lipids plus a fusogenic lipid (PCat). PCat-loaded with survivin siRNA (PCat-siSurvivin) was active in cultured cells (decreased survivin mRNA and protein levels, reduced cell clonogenicity, enhanced paclitaxel activity), but lost its activity in vivo; this difference is consistent with the well-known problem of inadequate delivery and transfection of siRNA in vivo. In comparison, single agent TPM prolonged animal survival and, as expected, induced survivin expression in tumors. Addition of PCat-siSurvivin reversed the TPM-induced survivin expression and enhanced the antitumor activity of TPM. The finding that in vivo survivin knockdown by PCat-siSurvivin was successful only when it was given in combination with TPM provides the proof-of-concept that tumor priming promotes the delivery and transfection of liposomal siRNA. The data further suggest the TPM/PCat-siSurvivin combination as a potentially useful chemo-gene therapy for peritoneal cancer. PMID:24462901

  18. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    Science.gov (United States)

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (ppriming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection

    OpenAIRE

    Aras Rafiee; Mohammad Hossein Alimohammadian; TaranehGazori; Farhad Riazi-rad; Seyed Mohammad Reza Fatemi; Amirabbas Parizadeh; Ismaeil Haririan; Mohammad Havaskary

    2014-01-01

    Objective: To to compare the chitosan/alginate, chitosan and alginate nanoparticles as plasmid vectors, to determine the morphological characteristics, size and physicochemical properties of nanoparticle-pEGFP complexes and to evaluate the potential of these nanoparticles in transfection of pEGFP plasmid in to a cultured the human embryonic kidney cell line (HEK 293 cells). Methods: Nanoparticles comprising chitosan, alginate and both chitosan-alginate polymers were formed t...

  20. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection

    International Nuclear Information System (INIS)

    Min, Jung-Jun; Iyer, Meera; Gambhir, Sanjiv S.

    2003-01-01

    Earlier studies involving comparison of different reporter probes have shown conflicting results between pyrimidine nucleosides [e.g., 2'-fluoro-2'-deoxy-1-β-d-arabinofuranosyl-5-iodouracil (FIAU)] and acycloguanosine derivatives [e.g., penciclovir (PCV), 9-(4-fluoro-3-hydroxymethylbutyl)guanine (FHBG)]. We hypothesized that this reported discrepancy may be related to how the reporter gene is delivered to the cells - stably transfected vs adenoviral infection. We directly compared the uptake characteristics of [ 18 F]FHBG, [ 3 H]PCV, and [ 14 C]FIAU in cell culture and in vivo using an adenoviral mediated gene transfer model and stably transfected cells. We further compared the uptake of three reporter probes using both HSV1-tk and a mutant HSV1-sr39tk expressing cells to assess the optimal reporter probe/reporter gene combination. [ 14 C]FIAU accumulation was greater than that of [ 3 H]PCV and [ 18 F]FHBG in control cells and in HSV1-tk stably transfected cells (P 8 pfu), [ 18 F]FHBG and [ 3 H]PCV accumulation was significantly greater than that of [ 14 C]FIAU (P 18 F]FHBG and [ 3 H]PCV accumulated to a significantly greater extent than [ 14 C]FIAU in C6-stb-sr39tk+ and AdCMV-HSV1-sr39tk infected C6 cells (P 14 C]FIAU led to significantly higher %ID/g in C6-stb-tk+ xenografts than [ 18 F]FHBG (P 14 C]FIAU, [ 18 F]FHBG led to as high %ID/g in HSV1-tk expressing hepatocytes and to significantly greater %ID/g in C6-stb-sr39tk+ xenografts and HSV1-sr39tk expressing hepatocytes. Dynamic sequential images showed that [ 18 F]FHBG was well retained in HSV1-sr39tk expressing cells (C6-stb-sr39tk+) for at least 4 h after injection, while it was rapidly cleared from HSV1-tk expressing cells (MH3924A-stb-tk+). [ 14 C]FIAU accumulated in HSV1-tk stably expressing cells to a greater extent than either [ 3 H]PCV or [ 18 F]FHBG. However, the accumulation of [ 3 H]PCV and [ 18 F]FHBG in adenoviral infected C6 cells or hepatocytes was equivalent to or greater than that of [ 14 C

  1. Apo B100 similarities to viral proteins suggest basis for LDL-DNA binding and transfection capacity.

    Science.gov (United States)

    Guevara, Juan; Prashad, Nagindra; Ermolinsky, Boris; Gaubatz, John W; Kang, Dongcheul; Schwarzbach, Andrea E; Loose, David S; Guevara, Natalia Valentinova

    2010-07-01

    LDL mediates transfection with plasmid DNA in a variety of cell types in vitro and in several tissues in vivo in the rat. The transfection capacity of LDL is based on apo B100, as arginine/lysine clusters, suggestive of nucleic acid-binding domains and nuclear localization signal sequences, are present throughout the molecule. Apo E may also contribute to this capacity because of its similarity to the Dengue virus capsid proteins and its ability to bind DNA. Synthetic peptides representing two apo B100 regions with prominent Arg/Lys clusters were shown to bind DNA. Region 1 (0014Lys-Ser0160) shares sequence motifs present in DNA binding domains of Interferon Regulatory Factors and Flaviviridae capsid/core proteins. It also contains a close analog of the B/E receptor ligand of apo E. Region 1 peptides, B1-1 (0014Lys-Glu0054) and B1-2 (0055Leu-Ala0096), mediate transfection of HeLa cells but are cytotoxic. Region 2 (3313Asp-Thr3431), containing the known B/E receptor ligand, shares analog motifs with the human herpesvirus 5 immediate-early transcriptional regulator (UL122) and Flaviviridae NS3 helicases. Region 2 peptides, B2-1 (3313Asp-Glu3355), and B2-2 (3356Gly-Thr3431) are ineffective in cell transfection and are noncytotoxic. These results confirm the role of LDL as a natural transfection vector in vivo, a capacity imparted by the apo B100, and suggest a basis for Flaviviridae cell entry.

  2. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  3. Identifying stably expressed housekeeping genes in the endometrium of fertile women, women with recurrent implantation failure and recurrent miscarriages

    OpenAIRE

    Stocker, Linden; Cagampang, Felino; Cheong, Ying

    2017-01-01

    Housekeeping genes (HKG) are presumed to be constitutively expressed throughout tissue types but recent studies have shown they vary with pathophysiology. Often, validation of appropriate HKG is not made. There is no consensus on which HKGs are most stably expressed in endometrial tissue so this study aimed to identify the most stable HKG in the endometrium of women with recurrent implantation failure (RIF) and recurrent miscarriages (RM). Inclusion criteria were women between 25-45 years (...

  4. Graphene and carbon nanotube nanocomposite for gene transfection.

    Science.gov (United States)

    Hollanda, L M; Lobo, A O; Lancellotti, M; Berni, E; Corat, E J; Zanin, H

    2014-06-01

    Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The Effect of Environmental pH on Polymeric Transfection Efficiency

    Science.gov (United States)

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2011-01-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6~7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1~2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. PMID:22130563

  6. Enhancing oligodendrocyte differentiation by transient transcription activation via DNA nanoparticle-mediated transfection.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Zamboni, Camila Gadens; Koliatsos, Vassilis E; Ming, Guo-Li; Green, Jordan J; Mao, Hai-Quan

    2017-05-01

    Current approaches to derive oligodendrocytes from human pluripotent stem cells (hPSCs) need extended exposure of hPSCs to growth factors and small molecules, which limits their clinical application because of the lengthy culture time required and low generation efficiency of myelinating oligodendrocytes. Compared to extrinsic growth factors and molecules, oligodendrocyte differentiation and maturation can be more effectively modulated by regulation of the cell transcription network. In the developing central nervous system (CNS), two basic helix-loop-helix transcription factors, Olig1 and Olig2, are decisive in oligodendrocyte differentiation and maturation. Olig2 plays a critical role in the specification of oligodendrocytes and Olig1 is crucial in promoting oligodendrocyte maturation. Recently viral vectors have been used to overexpress Olig2 and Olig1 in neural stem/progenitor cells (NSCs) to induce the maturation of oligodendrocytes and enhance the remyelination activity in vivo. Because of the safety issues with viral vectors, including the insertional mutagenesis and potential tumor formation, non-viral transfection methods are preferred for clinical translation. Here we report a poly(β-amino ester) (PBAE)-based nanoparticle transfection method to deliver Olig1 and Olig2 into human fetal tissue-derived NSCs and demonstrate efficient oligodendrocyte differentiation following transgene expression of Olig1 and Olig2. This approach is potentially translatable for engineering stem cells to treat injured or diseased CNS tissues. Current protocols to derive oligodendrocytes from human pluripotent stem cells (hPSCs) require lengthy culture time with low generation efficiencies of mature oligodendrocytes. We described a new approach to enhance oligodendrocyte differentiation through nanoparticle-mediated transcription modulation. We tested an effective transfection method using cell-compatible poly (β-amino ester) (PBAE)/DNA nanoparticles as gene carrier to deliver

  7. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  8. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  9. Establishing malaria parasite transfection technology in South Africa.

    CSIR Research Space (South Africa)

    Van Brummelen, AC

    2010-01-01

    Full Text Available stream_source_info van Brummelen_2010.pdf.txt stream_content_type text/plain stream_size 3034 Content-Encoding UTF-8 stream_name van Brummelen_2010.pdf.txt Content-Type text/plain; charset=UTF-8 Oral ( ) / Poster (X...@csir.co.za Keywords: transfection, malaria, Plasmodium Topic: Genomics Biochemistry and Molecular Biology The most important contributing factor to the current malaria crisis is the rapid spread of parasite resistance to available anti-malarial drugs. Anti...

  10. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin

    Science.gov (United States)

    Hu, Li-Zhong; Wan, Ning; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-03-01

    Polyethylenimine (PEI), a commercially available gene transfection reagent, is a promising nonviral vector due to its inherent ability to efficiently condense genetic materials and its successful transfection performance in vitro. However, its low transfection efficiency in vivo, along with its high cytotoxicity, limit any further applications in gene therapy. To enhance the gene transfection performance and reduce the cytotoxicity of linear polyethylenimine, pseudopolyrotaxane PEI25k/CD and the polyrotaxanes PEI25k/CD-PA and PEI25k/CD-PB were prepared and their transfection efficiencies were then evaluated. The pseudopolyrotaxane PEI25k/CD exhibited better transfection efficiency and lower cytotoxicity than the transfection reagent linear PEI25k, even in the presence of serum. It also showed a remarkably higher cell viability, similar DNA protecting capability, and better DNA decondensation and release ability, and could be useful for the development of novel and safe nonviral gene delivery vectors for gene therapy.

  11. Improvement of efficiency and viability in plasma gene transfection by plasma minimization and optimization electrode configuration

    Science.gov (United States)

    Jinno, Masafumi; Tachibana, Kunihide; Motomura, Hideki; Saeki, Noboru; Satoh, Susumu

    2016-07-01

    Plasma gene transfection is expected as a safe and useful method of gene transfection. However, in this method, there is difficulty in keeping both high transfection efficiency and less cell damage simultaneously. The authors have evaluated transfection efficiency and cell viability using four different plasma sources, such as arc discharge, plasma jet, dielectric barrier discharge (DBD), and microplasma. A high transfection efficiency was achieved by discharge forms in which the electric current flows via the cells. This suggested that an electric current plays an important role in plasma gene transfection. The total volume of gas flow must be small or zero and the area in which the cells are directly irradiated by plasma must be small in order to achieve a higher cell viability. The microplasma that satisfies these conditions achieved both the highest transfection efficiency and the highest cell viability simultaneously.

  12. Preparation of gene gun bullets and biolistic transfection of neurons in slice culture.

    Science.gov (United States)

    Woods, Georgia; Zito, Karen

    2008-02-13

    Biolistic transfection is a physical means of transfecting cells by bombarding tissue with high velocity DNA coated particles. We provide a detailed protocol for biolistic transfection of rat hippocampal slices, from the initial preparation of DNA coated bullets to the final shooting of the organotypic slice cultures using a gene gun. Gene gun transfection is an efficient and easy means of transfecting neurons and is especially useful for fluorescently labeling a small subset of cells in tissue slice. In this video, we first outline the steps required to coat gold particles with DNA. We next demonstrate how to line the inside of plastic tubing with the gold/DNA bullets, and how to cut this tubing to obtain the plastic cartridges for loading into the gene gun. Finally, we perform biolistic transfection of rat hippocampal slice cultures, demonstrating handling of the Bio-Rad Helios gene gun, and offering trouble shooting advice to obtain healthy and optimally transfected tissue slices.

  13. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  14. Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: efficiency and cytotoxicity

    Science.gov (United States)

    2011-01-01

    Background Reproducibly high transfection rates with low methodology-induced cytotoxic side effects are essential to attain the required effect on targeted cells when exogenous DNA is transfected. Different approaches and modifications such as the use of nanoparticles (NPs) are being evaluated to increase transfection efficiencies. Several studies have focused on the attained transfection efficiency after NP-mediated approaches. However, data comparing toxicity of these novel approaches with conventional methods is still rare. Transfection efficiency and methodology-induced cytotoxicity were analysed after transfection with different NP-mediated and conventional approaches. Two eukaryotic DNA-expression-plasmids were used to transfect the mammalian cell line MTH53A applying six different transfection protocols: conventional transfection reagent (FuGENE HD, FHD), FHD in combination with two different sizes of stabilizer-free laser-generated AuNPs (PLAL-AuNPs_S1,_S2), FHD and commercially available AuNPs (Plano-AuNP), and two magnetic transfection protocols. 24 h post transfection efficiency of each protocol was analysed using fluorescence microscopy and GFP-based flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of propidium iodide (PI%) positive cells. Expression of the respective recombinant proteins was evaluated by immunofluorescence. Results The addition of AuNPs to the transfection protocols significantly increased transfection efficiency in the pIRES-hrGFPII-eIL-12 transfections (FHD: 16%; AuNPs mean: 28%), whereas the magnet-assisted protocols did not increase efficiency. Ligand-free PLAL-AuNPs had no significant cytotoxic effect, while the ligand-stabilized Plano-AuNPs induced a significant increase in the PI% and lower cell proliferation. For pIRES-hrGFPII-rHMGB1 transfections significantly higher transfection efficiency was observed with PLAL-AuNPs (FHD: 31%; PLAL-AuNPs_S1: 46%; PLAL-AuNPs_S2: 50%), while the magnet

  15. Green fluorescent protein (GFP) color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1) transfected endothelial modification.

    Science.gov (United States)

    Wurster, Thomas; Pölzelbauer, Catharina; Schönberger, Tanja; Paul, Angela; Seizer, Peter; Stellos, Konstantinos; Schuster, Andreas; Botnar, Rene M; Gawaz, Meinrad; Bigalke, Boris

    2012-01-01

    Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; PGFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; PGFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (PGFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  16. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  17. Towards optical cell transfection inside a micro flow cell

    Science.gov (United States)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-03-01

    For optical transfection, cells are shortly subjected to intense, focused laser radiation which leads to a temporary opening in the cell membrane. Although the method is very efficient and ensures high cell viability, the targeting of single cells with laser pulses is a tedious and slow approach. We present first measurements aiming at an experimental setup which is suitable for high throughput and automated optical cell transfection. In our setup, cells flow through a micro flow cell where they are spatially confined. The laser radiation is focused into the cell in a way that an elongated focal region is realized. This makes the time consuming aiming of the laser beam at individual cells unnecessary and opens the possibility to develop a completely automated system. The elongated laser focal region is realized by a quasi-Bessel beam which is generated by an axicon lens setup and continuously scanned from side to side of the cell. We present test measurements of the newly employed setup and discuss its suitability to be fully integrated into a flow cell sequencing system.

  18. The regulation of human hepatic drug transporter expression by activation of xenobiotic-sensing nuclear receptors.

    Science.gov (United States)

    Amacher, David E

    2016-12-01

    If a drug is found to be an inducer of hepatic drug metabolizing enzymes via activation of nuclear receptors such as pregnane X receptor (PXR) or constitutive androstane receptor (CAR), it is likely that drug transporters regulated through these same receptors will be induced as well. This review highlights what is currently known about the molecular mechanisms that regulate transporter expression and where the research is directed. Areas covered: This review is focused on publications that describe the role of activated hepatic nuclear receptors in the subsequent regulation of drug uptake and/or efflux transporters following exposure to xenobiotics. Expert opinion: Many of the published studies on the role of nuclear receptors in the regulation of drug transporters involve non-human test animals. But due to species response differences, these associations are not always applicable to humans. For this reason, some relevant human in vitro models have been developed, such as primary or cryopreserved human hepatocytes, human liver slices, or HepG2 or HuH7 cell lines transiently or stably transfected with PXR expression and reporter constructs as well as in vivo models such as PXR-humanized mice. These human-relevant test systems will continue to be developed and applied for the testing of investigational drugs.

  19. Fast and Efficient Transfection of Mouse Embryonic Stem Cells Using Non-Viral Reagents.

    Science.gov (United States)

    Tamm, Christoffer; Kadekar, Sandeep; Pijuan-Galitó, Sara; Annerén, Cecilia

    2016-10-01

    Reliable and efficient DNA and RNA transfection methods are required when studying the role of individual genes in mouse pluripotent stem cells. However, these cells usually grow in tight clusters and are therefore more difficult to transfect than many other cell lines. We have found that transfection is especially challenging when mouse embryonic stem (mES) cells are cultured in the newly described 2i medium, which is based on two chemical inhibitors of differentiation pathways. In the present study we have performed a side-by-side comparison of commercially available, non-viral transfection reagents with regard to their ability to deliver plasmid DNA and siRNA into adherent and/or trypsinized mES cells cultured in 2i medium, assessing transfection rates, plasmid gene expression, siRNA mediated knockdown of Oct4 and viability. Finally, we present a fast and efficient method for transfection of trypsinized mES cells using the liposomal-based Lipofectamine 2000. With only a five-minute long transfection time we obtained at least 85 % transfected cells with 80 % maintained viability. Moreover, this protocol saves up to a day of experimental time since the cells are in suspension at the time of transfection, which allows for immediately re-plating into the appropriate format. This fast, simplified and highly efficient transfection method will be valuable for both basic research and high-throughput applications.

  20. Differential expression of cellular microRNAs in HPV-11 transfected cells. An analysis by three different array platforms and qRT-PCR

    DEFF Research Database (Denmark)

    Dreher, Anita; Rossing, Maria; Kaczkowski, Bogumil

    2010-01-01

    . The changes of cellular microRNAs by HPV-11 gene expression were investigated in a cell culture model of HaCaT cells transfected with HPV-11, with the goal of understanding which cellular processes were affected by the virus. Human microRNA profiling was conducted on three different array platform systems...

  1. Transforming Growth Factor Beta-Induced Factor 2-Linked X (TGIF2LX Regulates Two Morphogenesis Genes, Nir1 and Nir2 in Human Colorectal

    Directory of Open Access Journals (Sweden)

    Gholam Reza Mobini

    2016-05-01

    Full Text Available A member of homeodomain protein namely TGIF2LX has been implicated as a tumor suppressor gene in human malignancy as well as in spermatogenesis. However, to our knowledge, dynamic functional evidence of the TGIF2LX has not yet been provided. The aim of the present study was to investigate the human TGIF2LX target gene(s using a cDNA-AFLP as a differential display method. A pEGFP-TGIF2LX construct containing the wild-type TGIF2LX cDNA was stably transfected into SW48 cells. UV microscopic analysis and Real-time RT-PCR were used to confirm TGIF2LX expression. The mRNA expressions of TGIF2LX in transfected SW48 cells, the cells containing empty vector (pEGFP-N, and untransfected cells were compared. Also, a Real-time PCR technique was applied to validate cDNA-AFLP results. The results revealed a significant down-regulation and up-regulationby TGIF2LX of Nir1 and Nir2 genes, respectively. The genes are engaged in the cell morphogenesis process. Our findings may provide new insight into the complex molecular pathways underlying colorectal cancer development.

  2. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  3. Repair of ionizing radiation damage in primate αDNA transfected into rat cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1992-01-01

    The time-course of repair of irradiated primate αDNA was studied after transfection and recovery from rat NRK cells. Rat cells were chosen for transfection because they have no αDNA. Plasmid pBUC4α10, containing 10 tandem 172 bp αDNA subunits in its 5kbp DNA, was irradiated and introduced into the rat cells by electroporation. The transfected αDNA was then recovered from NRK nuclei free of extraneous rat DNA, permitting study of the fate of the transfected αDNA in time-course experiments. αDNA continuously entered nuclei for processing in the first 2.5h after transfection. The pool of damaged bases in αDNA in NRK nuclei was detectable 2.5 h after transfection. (author)

  4. Antiangiogenic and Neurogenic Activities of Sleeping Beauty-Mediated PEDF-Transfected RPE Cells In Vitro and In Vivo.

    Science.gov (United States)

    Johnen, Sandra; Djalali-Talab, Yassin; Kazanskaya, Olga; Möller, Theresa; Harmening, Nina; Kropp, Martina; Izsvák, Zsuzsanna; Walter, Peter; Thumann, Gabriele

    2015-01-01

    Pigment epithelium-derived factor (PEDF) is a potent multifunctional protein that inhibits angiogenesis and has neurogenic and neuroprotective properties. Since the wet form of age-related macular degeneration is characterized by choroidal neovascularization (CNV), PEDF would be an ideal candidate to inhibit CNV and support retinal pigment epithelial (RPE) cells. However, its short half-life has precluded its clinical use. To deliver PEDF to the subretinal space, we transfected RPE cells with the PEDF gene using the Sleeping Beauty transposon system. Transfected cells expressed and secreted biologically active recombinant PEDF (rPEDF). In cultures of human umbilical vein endothelial cells, rPEDF reduced VEGF-induced cumulative sprouting by ≥47%, decreased migration by 77%, and increased rate of apoptosis at least 3.4 times. rPEDF induced neurite outgrowth in neuroblastoma cells and protected ganglion and photoreceptor cells in organotypic retinal cultures. In a rat model of CNV, subretinal transplantation of PEDF-transfected cells led to a reduction of the CNV area by 48% 14 days after transplantation and decreased clinical significant lesions by 55% and 40% after 7 and 14 days, respectively. We showed that transplantation of pigment epithelial cells overexpressing PEDF can restore a permissive subretinal environment for RPE and photoreceptor maintenance, while inhibiting choroidal blood vessel growth.

  5. In vitro studies of magnetically enhanced transfection in COS-7 cells

    International Nuclear Information System (INIS)

    Ang, D.; Tay, C.Y.; Tan, L.P.; Preiser, P.R.; Ramanujan, R.V.

    2011-01-01

    In the magnetically enhanced gene delivery technique, DNA complexed with polymer coated aggregated magnetic nanoparticles (AMNPs) is used for effecting transfection. The aim of this study is to examine the relationship between transfection efficiency and the physical characteristics of the polymer coated AMNPs. In vitro studies of transfection efficiency in COS-7 cells were carried out using pEGFP-N1 and pMIR-REPORT complexed polyethylenimine (PEI) coated iron oxide magnetic nanoparticles. PEI coated AMNPs (PEI-AMNPs) with average individual particle diameters in the range of 8 nm to 30 nm were studied and characterized by transmission electron microscopy, vibrating sample magnetometry, X-ray diffractometry, thermal gravimetric analysis and photon correlation spectroscopy methods. PEI-A8MNP and PEI-A30MNP yielded higher transfection efficiency compared to commercial polyMAG particles as well as PEI of equivalent molar ratio of nitrogen/phosphorous (N/P ratio). The transfection efficiency was related to the physical characteristics of the PEI-AMNPs and its complexes: transfection efficiency was strongly positively correlated with saturation magnetization (Ms) and susceptibility (χ), strongly negatively correlated with N/P ratio, moderately positively correlated to zeta potential and moderately negatively correlated to hydrodynamic diameter of the complex. PEI-A8MNP and PEI-A30MNP possessing higher Ms, χ, lower N/P ratio and smaller complex size exhibited higher transfection efficiency compared to PEI-A16MNP which have weaker magnetic properties, higher N/P ratio and larger complex size. We have demonstrated that optimization of the physical properties of PEI-AMNPs is needed to maximize transfection efficiency. - Research highlights: →The transfection efficiency in magnetically enhanced gene delivery was studied. →Transfection efficiency was strongly positively correlated to magnetic properties. →Transfection efficiency was strongly negatively correlated with

  6. Efficient propagation of archetype JC polyomavirus in COS-7 cells: evaluation of rearrangements within the NCCR structural organization after transfection.

    Science.gov (United States)

    Prezioso, Carla; Scribano, Daniela; Bellizzi, Anna; Anzivino, Elena; Rodio, Donatella Maria; Trancassini, Maria; Palamara, Anna Teresa; Pietropaolo, Valeria

    2017-12-01

    John Cunningham virus (JCPyV) is an ubiquitous human pathogen that causes disease in immunocompromised patients. The JCPyV genome is composed of an early region and a late region, which are physically separated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robustness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rearrangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after transfection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitro replication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidney.

  7. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection

    Directory of Open Access Journals (Sweden)

    Aras Rafiee

    2014-10-01

    Full Text Available Objective: To to compare the chitosan/alginate, chitosan and alginate nanoparticles as plasmid vectors, to determine the morphological characteristics, size and physicochemical properties of nanoparticle-pEGFP complexes and to evaluate the potential of these nanoparticles in transfection of pEGFP plasmid in to a cultured the human embryonic kidney cell line (HEK 293 cells. Methods: Nanoparticles comprising chitosan, alginate and both chitosan-alginate polymers were formed through pregel preparation method. The ability of plasmid-complexes in preventing DNA migration were assessed by the agarose gel assay. The efficiency of nanoparticles in transfection of pEGFP plasmid in the cultured HEK 293 cells was measured by flow cytometry. The effect of the nanoparticle-plasmid complexes on the cell viability was determined using cytotoxicity assay. Results: Chitosan, alginate and alginate/chitosan nanoparticles had a mean Z-average diameter of 620 nm, 235.8 nm and 161.8 nm and mean zeta potential of 45 mV, -18.6 mV and 29.3 mV, respectively. Chitosan and chitosan/alginate nanoparticles have greater capacity to maintain plasmid than alginate nanoparticles. Alginate nanoparticles had the greater transfection in comparison to the others. Cell viability assays indicated that nanoparticles had no toxic effect on HEK 293 cells after 4 h or 24 h. Conclusions: The combination of particle surface, hydrophobicity size and zeta potential can influence on transfection efficiency and the cellular uptake of the nanoparticles. Our suitable candidate for gene delivery would be alginate/chitosan nanoparticles.

  8. Inhibition of STAT-3 results in radiosensitization of human squamous cell carcinoma

    International Nuclear Information System (INIS)

    Bonner, James A.; Trummell, Hoa Q.; Willey, Christopher D.; Plants, Brian A.; Raisch, Kevin P.

    2009-01-01

    Background: Signal transducer and activator of transcription-3 (STAT-3) is a downstream component of the Epidermal Growth Factor Receptor (EGFr) signaling process that may facilitate the resistance of tumor cells to conventional cancer treatments. Studies were performed to determine if inhibition of this downstream protein produces radiosensitization. Methods/Results: A431 cells (human squamous cell carcinoma cells with EGFr overexpression) were found to be sensitized to radiation after treatment with STAT-3 small interfering RNA (siRNA). Therefore, a short hairpin RNA (shRNA) against STAT-3 was designed and cloned into a pBABE vector system modified for shRNA expression. Following transfection, clone 2.1 was selected for further study as it showed a dramatic reduction of STAT-3 protein (and mRNA) when compared to A431 parental cells or a negative control shRNA cell line (transfected with STAT-3 shRNA with 2 base pairs mutated). A431 2.1 showed doubling times of 25-31 h as compared to 18-24 h for the parental cell line. The A431 shRNA knockdown STAT-3 cells A431 were more sensitive to radiation than A431 parental or negative STAT-3 control cells. Conclusion: A431 cells stably transfected with shRNA against STAT-3 resulted in enhanced radiosensitivity. Further work will be necessary to determine whether the inhibition of STAT-3 phosphorylation is a necessary step for the radiosensitization that is induced by the inhibition of EGFr.

  9. Combinational use of lipid-based reagents for efficient transfection of primary fibroblasts and hepatoblasts.

    Science.gov (United States)

    Ishiguro, Kazuhiro; Watanabe, Osamu; Nakamura, Masanao; Yamamura, Takeshi; Matsushita, Masanobu; Goto, Hidemi; Hirooka, Yoshiki

    2017-07-01

    Commercially available lipid-based transfection reagents are widely used to deliver DNA to cells. However, these lipid-based transfection reagents show poor gene transfer efficiency in primary cells. Here, we demonstrate a simple method to improve gene transfer efficiency in primary fibroblasts and hepatoblasts using a combination of lipid-based transfection reagents. Our data show that combined use of Lipofectamine LTX and FuGENE HD increases the efficiency of gene transfer compared with the use of either reagent alone, and this combination achieves the best result of any pairwise combination of Lipofectamine LTX, FuGENE HD, TransFectin, and Fibroblast Transfection Reagent.

  10. A comprehensive high-throughput FTIR spectroscopy-based method for evaluating the transfection event: estimating the transfection efficiency and extracting associated metabolic responses.

    Science.gov (United States)

    Rosa, Filipa; Sales, Kevin C; Cunha, Bernardo R; Couto, Andreia; Lopes, Marta B; Calado, Cecília R C

    2015-10-01

    Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R (2) ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R (2) = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.

  11. Subcloning, expression, purification, and characterization of recombinant human leptin-binding domain.

    Science.gov (United States)

    Sandowski, Yael; Raver, Nina; Gussakovsky, Eugene E; Shochat, Suzan; Dym, Orly; Livnah, Oded; Rubinstein, Menachem; Krishna, Radha; Gertler, Arieh

    2002-11-29

    A subdomain of the human leptin receptor encoding part of the extracellular domain (amino acids 428 to 635) was subcloned, expressed in a prokaryotic host, and purified to homogeneity, as evidenced by SDS-PAGE, with over 95% monomeric protein. The purified leptin-binding domain (LBD) exhibited the predicted beta structure, was capable of binding human, ovine, and chicken leptins, and formed a stable 1:1 complex with all mammalian leptins. The binding kinetics, assayed by surface plasmon resonance methodology, showed respective k(on) and k(off) values (mean +/- S.E.) of 1.20 +/- 0.23 x 10(-5) mol(-1) s(-1) and 1.85 +/- 0.30 x 10(-3) s(-1) and a K(d) value of 1.54 x 10(-8) m. Similar results were achieved with conventional binding experiments. LBD blocked leptin-induced, but not interleukin-3-induced, proliferation of BAF/3 cells stably transfected with the long form of human leptin receptor. The modeled LBD structure and the known three-dimensional structure of human leptin were used to construct a model of 1:1 LBD.human leptin complex. Two main residues, Phe-500, located in loop L3, and Tyr-441, located in L1, are suggested to contribute to leptin binding.

  12. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-01-01

    Highlights: ► Hsp90 is over-expressed in human breast cancer. ► The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. ► Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. ► The tumor growth ratio was decline due to Hsp90 silencing. ► The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  13. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    2011-04-01

    Full Text Available Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  14. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    Science.gov (United States)

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Acute and persistent infection by a transfected Mo7 strain of Babesia bovis

    Science.gov (United States)

    Stable transfection of the Mo7 strain of Babesia bovis and expression of an exogenous gene has been demonstrated in long term culture. However, the use of transfected parasites as marker vaccines or vehicles for expressing exogenous antigens in vivo requires demonstration of acute and persistent inf...

  16. [An experimental study on recombinant adenovirus p53 transfected in oral dysplastic epithelial cells].

    Science.gov (United States)

    Xu, Bo; Zhang, Song-Tao; Li, Long-Jiang; Han, Bo; Zhao, Hong-Wei; Pan, Jian

    2009-04-01

    To investigate and evaluate the appropriate virus titer and transfection efficiency of recombinant adenovirus p53 into the oral dysplastic epithelial cells (POE-9n) and provide reference for oral precancerosis research. The transfection sensitivity of adenovirus into oral dysplastic epithelial cells was evaluated by the recombinant adenovirus p53 containing green fluorescent protein (rAd-GFP). Different titre rAd -p53 was transfected into oral dysplastic epithelial cells to evaluate the effects of rAd-p53 on cell proliferation inhibition by MIT assay. The expression of exogenous p53 gene in POE-9n cells was detected by immunocytochemistry. More than 95% POE-9n cells were transfected by rAd-GFP with MOI from 100 to 500 and there was no statistical difference between different MOI values (r=-0.124, P>0.05). It was found that rAd-p53 had significant inhibition effects on POE-9n cell proliferation with MOI from 100 to 500, and there were no significant differences at 96 h and 120 h after the transfection on cell proliferation inhibition (P>0.05). P53 protein was well expressed in rAd-p53 transfected POE-9n cells. Exogenous p53 can be successfully transfected into POE-9n cells by rAd-p53 and the virus titer of MOI 100 was high enough to ensure efficient transfection.

  17. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process...

  18. Migratory, invasive and metastatic capacity of NCAM transfected rat glioma cells

    DEFF Research Database (Denmark)

    Edvardsen, K; Brünner, N; Spang-Thomsen, M

    1993-01-01

    A cDNA encoding a transmembrane 140 kDa isoform of the neural cell adhesion molecule, NCAM, was transfected into the rat glioma cell line BT4Cn. Transfectants with a homogeneously high expression of NCAM-B showed a decreased capacity for penetration of an artificial basement membrane when compared...

  19. Nucleic acid transfection and transgenesis in parasitic nematodes.

    Science.gov (United States)

    Lok, James B

    2012-04-01

    Transgenesis is an essential tool for assessing gene function in any organism, and it is especially crucial for parasitic nematodes given the dwindling armamentarium of effective anthelmintics and the consequent need to validate essential molecular targets for new drugs and vaccines. Two of the major routes of gene delivery evaluated to date in parasitic nematodes, bombardment with DNA-coated microparticles and intragonadal microinjection of DNA constructs, draw upon experience with the free-living nematode Caenorhabditis elegans. Bombardment has been used to transiently transfect Ascaris suum, Brugia malayi and Litomosoides sigmodontis with both RNA and DNA. Microinjection has been used to achieve heritable transgenesis in Strongyloides stercoralis, S. ratti and Parastrongyloides trichosuri and for additional transient expression studies in B. malayi. A third route of gene delivery revisits a classic method involving DNA transfer facilitated by calcium-mediated permeabilization of recipient cells in developing B. malayi larvae and results in transgene inheritance through host and vector passage. Assembly of microinjected transgenes into multi-copy episomal arrays likely results in their transcriptional silencing in some parasitic nematodes. Methods such as transposon-mediated transgenesis that favour low-copy number chromosomal integration may remedy this impediment to establishing stable transgenic lines. In the future, stable transgenesis in parasitic nematodes could enable loss-of-function approaches by insertional mutagenesis, in situ expression of inhibitory double-stranded RNA or boosting RNAi susceptibility through heterologous expression of dsRNA processing and transport proteins.

  20. Size Specific Transfection to Mammalian Cells by Micropillar Array Electroporation

    Science.gov (United States)

    Zu, Yingbo; Huang, Shuyan; Lu, Yang; Liu, Xuan; Wang, Shengnian

    2016-12-01

    Electroporation serves as a promising non-viral gene delivery approach, while its current configuration carries several drawbacks associated with high-voltage electrical pulses and heterogeneous treatment on individual cells. Here we developed a new micropillar array electroporation (MAE) platform to advance the electroporation-based delivery of DNA and RNA probes into mammalian cells. By introducing well-patterned micropillar array texture on the electrode surface, the number of pillars each cell faces varies with its plasma membrane surface area, despite their large population and random locations. In this way, cell size specific electroporation is conveniently carried out, contributing to a 2.5~3 fold increase on plasmid DNA transfection and an additional 10-55% transgene knockdown with siRNA probes, respectively. The delivery efficiency varies with the number and size of micropillars as well as their pattern density. As MAE works like many single cell electroporation are carried out in parallel, the electrophysiology response of individual cells is representative, which has potentials to facilitate the tedious, cell-specific protocol screening process in current bulk electroporation (i.e., electroporation to a large population of cells). Its success might promote the wide adoption of electroporation as a safe and effective non-viral gene delivery approach needed in many biological research and clinical treatments.

  1. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering

    Science.gov (United States)

    2017-01-01

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  2. [3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    International Nuclear Information System (INIS)

    Branchek, T.; Adham, N.; Macchi, M.; Kao, H.T.; Hartig, P.R.

    1990-01-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to [3H]ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both [3H]DOB and [3H]ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] to this system caused a rightward shift and steepening of agonist competition curves for [3H] ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity [3H]DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that [3H]DOB and [3H]ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein

  3. A simple, rapid method for evaluation of transfection efficiency based on fluorescent dye.

    Science.gov (United States)

    Peng, Lin; Xiong, Wendian; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2017-05-04

    Enhanced transfection efficiency of transient gene expression (TGE) and electroporation is a useful approach for improvement of recombinant therapeutic proteins in mammalian cells. A novel method is described here in which CHO cells expressing recombinant FVII (rFVII) were labeled with fluorescent dye and analyzed by confocal microscopy. Cells with or without rFVII encoding gene were detectable by flow cytometry. Thus, we were able to distinguish positive cells (with rFVII encoding gene) and quantify their percentages. We evaluated the effects of varying electroporation conditions (voltage, number of repetitions, plasmid amount, carrier DNA) in order to optimize transfection efficiency. The highest transfection efficiency achieved was ∼86%. The method described here allows rapid evaluation of transfection efficiency without co-expression of reporter genes. In combination with appropriate antibodies, the method can be extended to evaluation of transfection efficiency in cells expressing other recombinant proteins.

  4. Analysis of acquired resistance to cis-diamminedichloroplatinum(II) in oncogene transfected SHOK cells

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Masunaga, Shinichiro; Suzuki, Minoru; Ono, Koji; Akaboshi, Mitsuhiko; Watanabe, Masami.

    1998-01-01

    SHOK (Syrian hamster Osaka-Kanazawa) cells were transfected with activated oncogenes (v-mos, c-myc, N-ras, H-ras, K-ras). These oncogene transfected cells were treated with 195m Pt-cis-diamminedichloroplatinum(II) (CDDP). Clonogenic cell survival assay showed that oncogene-transfected cells exhibited a 1.3-4.8 fold increases resistance to cisplatin compared to the parental SHOK cells. The CDDP concentration binding to DNA, RNA and protein were measured by counting the 195m Pt-radioactivity. The CDDP uptake was decreased in these oncogene transfected cells. The CDDP uptake in DNA of H-ras transfected cells decreased faster than control SHOK cells. (author)

  5. A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing

    Science.gov (United States)

    Woodruff, Kristina; Maerkl, Sebastian J.

    2016-01-01

    Mammalian synthetic biology could be augmented through the development of high-throughput microfluidic systems that integrate cellular transfection, culturing, and imaging. We created a microfluidic chip that cultures cells and implements 280 independent transfections at up to 99% efficiency. The chip can perform co-transfections, in which the number of cells expressing each protein and the average protein expression level can be precisely tuned as a function of input DNA concentration and synthetic gene circuits can be optimized on chip. We co-transfected four plasmids to test a histidine kinase signaling pathway and mapped the dose dependence of this network on the level of one of its constituents. The chip is readily integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time. These features make the transfection chip applicable to high-throughput mammalian protein and synthetic biology studies. PMID:27030663

  6. NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection.

    Science.gov (United States)

    Ueno, Yoshinobu; Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2007-11-20

    Gene transfection is a fundamental technology for molecular and cell biology, and also clinical gene therapy. A variety of non-viral vectors have been investigated for gene transfection, but their gene delivery had remained an inefficient process. Recently, we found that a biosurfactant, mannosylerythritol lipid (MEL)-A, dramatically increased the efficiency in transfection of plasmid DNA mediated by cationic liposomes. However, its mechanism has not been understood yet. Here we examined the mechanism of the transfection mediated by cationic liposomes with NBD-conjugated MEL-A. We found that MEL-A first gradually distributed on the intracellular membranes through the plasma membranes of target cells, while the cationic liposomes with MEL-A fused to the plasma membranes in 20-35 min. Thereafter, the oligonucleotide released from the vesicles was immediately transferred to the nucleus. The present results showed a new role of non-viral vectors in transfection.

  7. Increases in doxorubicin sensitivity and radioiodide uptake by transfecting shMDR and sodium/iodide symporter gene in cancer cells expressing multidrug resistance

    International Nuclear Information System (INIS)

    Ahn, Sohn Joo; Lee, Yong Jin; Lee, You La; Choi, Chang Ik; Lee, Sang Woo; Yoo, Jeong Soo; Ahn, Byeong Cheol; Lee, In Kyu; Lee, Jae Tae

    2007-01-01

    Multidrug resistance (MDR) of the cancer cells related to mdr1 gene expression can be effectively treated by selective short hairpin RNA for mdr1 gene (shMDR). Sodium/iodide symporter (NIS) gene is well known to have both reporter and therapeutic gene characteristics. We have co-transfected both shMDR and NIS gene into colon cancer cells (HCT15 cell) expressing MDR and Tc-99m sestamibi and I-125 uptake were measured. In addition, cytotoxic effects of doxorubicin and I-131 therapy were also assessed after transfection. At first, shMDR was transfected with liposome reagent into human embryonic kidney cells (HEK293) and HCT cells. shMDR transfection was confirmed by RT-PCR and western blot analysis. Adenovirus expressing NIS (Ad-NIS) gene and shMDR (Ad-shMDR) were co-transfected with Ad-NIS into HCT15 cells. Forty-eight hours after infection, inhibition of P-gycoprotein (Pgp) function by shMDR was analyzed by a change of Tc-99m sestamibi uptake and doxorubicin cytotoxicity, and functional activity of induced NIS gene expression was assessed with I-125 uptake assay. In HEK293 cells transfected with shMDR, mdr1 mRNA and Pgp protein expressions were down regulated. HCT15 cells infected with 20 MOI of Ad-NIS was higher NIS protein expression than control cells. After transfection of 300 MOI of Ad-shMDR either with or without 10 MOI of Ad-NIS, uptake of Tc-99m sestamibi increased up to 1.5-fold than control cells. HCT15 cells infected with 10 MOI of Ad-NIS showed approximately 25-fold higher I-125 uptake than control cells. Cotransfection of Ad-shMDR and Ad-NIS resulted in enhanced cytotoxic by doxorubicin in HCT15 cells. I-131 treatment on HCT15 cells infected with 20 MOI of Ad-NIS revealed increased cytotoxic effect. Suppression of mdr1 gene expression, retention of Tc-99m sestamibi, enhanced doxorubicin cytotoxicity and increases in I-125 uptake were achieved in MDR expressing cancer cell by co-transfection of shMDR and NIS gene. Dual therapy with doxorubicin and

  8. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival.

    Science.gov (United States)

    Mertani, H C; Zhu, T; Goh, E L; Lee, K O; Morel, G; Lobie, P E

    2001-06-15

    By use of cDNA array technology we have screened 588 genes to determine the effect of autocrine production of human growth hormone (hGH) on gene expression in human mammary carcinoma cells. We have used a previously described cellular model to study autocrine hGH function in which the hGH gene or a translation-deficient hGH gene was stably transfected into MCF-7 cells. Fifty two of the screened genes were regulated, either positively () or negatively (), by autocrine production of hGH. We have now characterized the role of one of the up-regulated genes, chop (gadd153), in the effect of autocrine production of hGH on mammary carcinoma cell number. The effect of autocrine production of hGH on the level of CHOP mRNA was exerted at the transcriptional level as autocrine hGH increased chloramphenicol acetyltransferase production from a reporter plasmid containing a 1-kilobase pair fragment of the chop promoter. The autocrine hGH-stimulated increase in CHOP mRNA also resulted in an increase in CHOP protein. As a consequence, autocrine hGH stimulation of CHOP-mediated transcriptional activation was increased. Stable transfection of human CHOP cDNA into mammary carcinoma cells demonstrated that CHOP functioned not as a mediator of hGH-stimulated mitogenesis but rather enhanced the protection from apoptosis afforded by hGH in a p38 MAPK-dependent manner. Thus transcriptional up-regulation of chop is one mechanism by which hGH regulates mammary carcinoma cell number.

  9. Membrane Drug Transporters and Chemoresistance in Human Pancreatic Carcinoma

    International Nuclear Information System (INIS)

    Hagmann, Wolfgang; Faissner, Ralf; Schnolzer, Martina; Lohr, Matthias; Jesnowski, Ralf

    2010-01-01

    Pancreatic cancer ranks among the tumors most resistant to chemotherapy. Such chemoresistance of tumors can be mediated by various cellular mechanisms including dysregulated apoptosis or ineffective drug concentration at the intracellular target sites. In this review, we highlight recent advances in experimental chemotherapy underlining the role of cellular transporters in drug resistance. Such contribution to the chemoresistant phenotype of tumor cells or tissues can be conferred both by uptake and export transporters, as demonstrated by in vivo and in vitro data. Our studies used human pancreatic carcinoma cells, cells stably transfected with human transporter cDNAs, or cells in which a specific transporter was knocked down by RNA interference. We have previously shown that 5-fluorouracil treatment affects the expression profile of relevant cellular transporters including multidrug resistance proteins (MRPs), and that MRP5 (ABCC5) influences chemoresistance of these tumor cells. Similarly, cell treatment with the nucleoside drug gemcitabine or a combination of chemotherapeutic drugs can variably influence the expression pattern and relative amount of uptake and export transporters in pancreatic carcinoma cells or select for pre-existing subpopulations. In addition, cytotoxicity studies with MRP5-overexpressing or MRP5-silenced cells demonstrate a contribution of MRP5 also to gemcitabine resistance. These data may lead to improved strategies of future chemotherapy regimens using gemcitabine and/or 5-fluorouracil

  10. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    International Nuclear Information System (INIS)

    Gaibelet, Gérald; Tercé, François; Bertrand-Michel, Justine; Allart, Sophie; Azalbert, Vincent; Lecompte, Marie-France; Collet, Xavier; Orlowski, Stéphane

    2013-01-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  11. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    Energy Technology Data Exchange (ETDEWEB)

    Gaibelet, Gérald [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France); Tercé, François [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Bertrand-Michel, Justine [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Lipidomic Platform Metatoul, Toulouse (France); Allart, Sophie [Plateau Technique d’Imagerie Cellulaire, INSERM U1043, Toulouse (France); Azalbert, Vincent [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Lecompte, Marie-France [INSERM U563, Faculté de Médecine de Rangueil, Toulouse (France); Collet, Xavier [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Orlowski, Stéphane, E-mail: stephane.orlowski@cea.fr [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France)

    2013-11-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  12. Comparing the immunosuppressive potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Dao Mo A

    2011-10-01

    Full Text Available Abstract Background SB623 cells are expanded from marrow stromal cells (MSCs transfected with a Notch intracellular domain (NICD-expressing plasmid. In stroke-induced animals, these cells reduce infarct size and promote functional recovery. SB623 cells resemble the parental MSCs with respect to morphology and cell surface markers despite having been in extended culture. MSCs are known to have immunosuppressive properties; whether long-term culture of MSCs impact their immunomodulatory activity has not been addressed. Methods To assess the possible senescent properties of SB623 cells, we performed cell cycle related assays and beta-galactosidase staining. To assess the immunomodulatory activity of these expanded NICD-transfected MSCs, we performed co-cultures of SB623 cells or MSCs with either enriched human T cells or monocytes and assessed cytokine production by flow cytometry. In addition, we monitored the immunosuppressive activity of SB623 cells in both allogenic and xenogenic mixed lymphocyte reaction (MLR. Results Compared to MSCs, we showed that a small number of senescent-like cells appear in each lot of SB623 cells. Nevertheless, we demonstrated that these cells suppress human T cell proliferation in both the allogeneic and xenogeneic mixed lymphocyte reaction (MLR in a manner comparable to MSCs. IL-10 producing T cells were generated and monocyte-dendritic cell differentiation was dampened by co-culture with SB623 cells. Compared to the parental MSCs, SB623 cells appear to exert a greater inhibitory impact on the maturation of dendritic cells as demonstrated by a greater reduction in the surface expression of the co-stimulatory molecule, CD86. Conclusion The results demonstrated that the immunosuppressive activity of the expanded NICD-transfected MSCs is comparable to the parental MSCs, in spite of the appearance of a small number of senescent-like cells.

  13. [Effect of Nm23-H1 Nuclear Localization on Proliferation of 
Human Lung Adenocarcinoma Cell Line A549].

    Science.gov (United States)

    Sheng, Ya; Xiong, Yanli; Xu, Mingfang; Kuang, Xunjie; Wang, Dong; Yang, Xueqin

    2017-04-20

    Recent studies have indicated that Nm23-H1 is found in the nucleus, but previous studies have been based on the overexpression or suppression of Nm23-H1 in the cytoplasm. Due to the lacking nuclear localization signal of Nm23-H1, these results cannot reflect or repeat cells in which Nm23-H1 mainly positioned in nuclei and whether they cause clinical biological effects. Therefore, to explore the effects of transposing Nm23-H1 from the cytoplasm to the nucleus during lung cancer cell proliferation, a vector with a nuclear localization signal of Nm23-H1 was constructed and A549 cells were transfected. Gene recombination technology was used to construct pLentis-CMV-NME1-IRES2-PURO lentiviral vectors using a nuclear localization signal sequence, and the recombinant plasmid was verified using restriction enzyme analysis and sequencing. Nm23-H1 positioning and expression were performed after the stably transfected A549 cells were assessed by Western blot and confocal laser scanning microscope. The A549 cell proliferation was assessed using a cell counting kit-8. Flow cytometry was performed to assess the cell cycle distribution of A549 cells. The directional Nm23-H1 lentiviral vector was successfully constructed within the nucleus. Compared with that of the empty vector group, the proliferation rates of the transfection groups at 72 h, 96 h, and 120 h were remarkably increased (PA549 cells in the G0/G1 phase proportion was 35.69%, which was higher than the 28.28% of the transfection group (t=1.461, P=0.217); furthermore, the transfection group of A549 cells in the G2/M phase proportion was 58.7% and that of the empty vector group was 31.30% (t=4.560, P=0.010). Human lung adenocarcinoma cell line A549 cells of Nm23-H1 nuclear localized mainly in the G2/M phase and the nuclear Nm23-H1 promoted A549 cell proliferation in vitro.

  14. Adaptive Impedance Controller for a Robot Astronaut to Climb Stably in a Space Station

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2016-05-01

    Full Text Available Maintaining stability is a significant challenge during the control of a robot astronaut while climbing with human-like dual-arm action in a space station. This challenge is caused by conflicting force generated by dynamic internal forces in the closed chain during dual-arm climbing. In general, an impedance controller is suitable for solving this problem. However, the conflicting force in the rigid closed chain is stored in the virtual spring of the impedance controller (especially in microgravity, where even small disturbances cause a significant change in robot astronaut movements. As such, it is difficult to select suitable control parameters for the stable climbing of a robot astronaut. This paper proposes an adaptive algorithm to optimize the impedance controller parameters. This eliminates conflicting force disturbances, with one arm in compliance with the motion of the other. It provides scope for achieving stable motion without the need for precise control parameters. Finally, the stability of the proposed algorithm is demonstrated by Lyapunov theory using a robot called ASTROBOT. The experimental results show the validity of the proposed algorithm.

  15. Stably Integrated luxCDABE for Assessment of Salmonella Invasion Kinetics

    Directory of Open Access Journals (Sweden)

    Kelly N. Flentie

    2008-09-01

    Full Text Available Salmonella Typhimurium is a common cause of gastroenteritis in humans and also localizes to neoplastic tumors in animals. Invasion of specific eukaryotic cells is a key mechanism of Salmonella interactions with host tissues. Early stages of gastrointestinal cell invasion are mediated by a Salmonella type III secretion system, powered by the adenosine triphosphatase invC. The aim of this work was to characterize the invC dependence of invasion kinetics into disparate eukaryotic cells traditionally used as models of gut epithelium or neoplasms. Thus, a nondestructive real-time assay was developed to report eukaryotic cell invasion kinetics using lux+ Salmonella that contain chromosomally integrated luxCDABE genes. Bioluminescence-based invasion assays using lux+ Salmonella exhibited inoculum dose-response correlation, distinguished invasion-competent from invasion-incompetent Salmonella, and discriminated relative Salmonella invasiveness in accordance with environmental conditions that induce invasion gene expression. In standard gentamicin protection assays, bioluminescence from lux+ Salmonella correlated with recovery of colony-forming units of internalized bacteria and could be visualized by bioluminescence microscopy. Furthermore, this assay distinguished invasion-competent from invasion-incompetent bacteria independent of gentamicin treatment in real time. Bioluminescence reported Salmonella invasion of disparate eukaryotic cell lines, including neoplastic melanoma, colon adenocarcinoma, and glioma cell lines used in animal models of malignancy. In each case, Salmonella invasion of eukaryotic cells was invC dependent.

  16. [Yeast (Saccharomyces cerevisiae) secretory expression vector maintained stably in Pro3+ transformants in rich medium].

    Science.gov (United States)

    Xie, H Y; Tang, Y; Jiang, W D; He, H Y; Liu, M; Kuang, D R

    2000-01-01

    A yeast (Saccharomyces cerevisiae) secretory expression vector containing PRO3 gene was constructed (pCBy310). beta HCG(Human choriogonadotropin beta subunit)-cDNA was inserted into pCBy310 to form a recombinant plasmid pCBy314. Since yeast proline auxotroph will not survive in rich medium (YPD), YPD could be used as a selection pressure, and pCBy314 could be maintained mitotically stable in transformants of yeast Pro3- auxotroph (MB299-7A) in rich medium. At an improved, yet not optimized cultural condition, the expression of beta HCG in culture medium was 650 micrograms/L. Our results showed not only that YPD could be used as a selection medium, but also that yeast grew better in YPD so as to increase the gene expression product, and that the component of YPD was simple and cheap. Our data suggested that PRO genes might be used widely in constructing vectors to clone and express foreign genes in yeast so that rich medium can be used as a selection pressure for direct selection.

  17. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  18. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  19. Efficient transfection of Xenobiotic Responsive Element-biosensor plasmid using diether lipid and phosphatidylcholine liposomes in differentiated HepaRG cells.

    Science.gov (United States)

    Demazeau, Maxime; Quesnot, Nicolas; Ripoche, Nicolas; Rauch, Claudine; Jeftić, Jelena; Morel, Fabrice; Gauffre, Fabienne; Benvegnu, Thierry; Loyer, Pascal

    2017-05-30

    In this study, we evaluated cationic liposomes prepared from diether-NH 2 and egg phosphatidylcholine (EPC) for in vitro gene delivery. The impact of the lipid composition, i.e. the EPC and Diether-NH 2 molar ratio, on in vitro transfection efficiency and cytotoxicity was investigated using the human HEK293T and hepatoma HepaRG cells known to be permissive and poorly permissive cells for liposome-mediated gene transfer, respectively. Here, we report that EPC/Diether-NH 2 -based liposomes enabled a very efficient transfection with low cytotoxicity compared to commercial transfection reagents in both HEK293T and proliferating progenitor HepaRG cells. Taking advantage of these non-toxic EPC/Diether-NH 2 -based liposomes, we developed a method to efficiently transfect differentiated hepatocyte-like HepaRG cells and a biosensor plasmid containing a Xenobiotic Responsive Element and a minimal promoter driving the transcription of the luciferase reporter gene. We demonstrated that the luciferase activity was induced by a canonical inducer of cytochrome P450 genes, the benzo[a]pyrene, and two environmental contaminants, the fluoranthene, a polycyclic aromatic hydrocarbon, and the endosulfan, an organochlorine insecticide, known to induce toxicity and genotoxicity in differentiated HepaRG cells. In conclusion, we established a new efficient lipofection-mediated gene transfer in hepatocyte-like HepaRG cells opening new perspectives in drug evaluation relying on xenobiotic inducible biosensor plasmids. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dectin-1 Is Expressed in Human Lung and Mediates the Proinflammatory Immune Response to Nontypeable Haemophilus influenzae

    Science.gov (United States)

    Heyl, Kerstin A.; Klassert, Tilman E.; Heinrich, Annina; Müller, Mario M.; Klaile, Esther; Dienemann, Hendrik; Grünewald, Christiane; Bals, Robert; Singer, Bernhard B.

    2014-01-01

    ABSTRACT The C-type lectin receptor Dectin-1 is expressed mainly on myeloid cells mediating the immune response targeting respiratory pathogens such as Aspergillus fumigatus and Mycobacterium tuberculosis. The pulmonary epithelium serves as an important interface for interactions between these pathogens and the respiratory tract. Therefore, we analyzed the expression pattern of Dectin-1 in the human lung. Immunohistochemically stained human lung sections from 17 out of 19 individuals were positive for Dectin-1, which was expressed mainly apically on bronchial and alveolar epithelium. Our results showed no correlation with chronic obstructive pulmonary disease (COPD) or the smoking habits of the patients. Nontypeable Haemophilus influenzae (NTHI), an important bacterial pathogen of the respiratory tract with significant importance in COPD, has also been proposed to be recognized by Dectin-1, suggesting a possible impact on the NTHI-dependent immune response in human airways. Therefore, the involvement of Dectin-1 in NTHI-triggered cytokine responses was investigated in primary normal human bronchial epithelial (NHBE) cells and in the A549 cell line stably transfected with Dectin-1. The presence of Dectin-1 significantly increased cytokine release in response to NTHI in NHBE and A549 cells. In addition, phosphorylation of the Dectin-1 hem-immunoreceptor tyrosine-based activation motif (hemITAM) was essential for the Dectin-1-triggered response to NTHI in A549 cells. In conclusion, in human airways, epithelium-expressed Dectin-1 may play a significant role in generating an NTHI-mediated, proinflammatory immune response. PMID:25161190

  1. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  2. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    International Nuclear Information System (INIS)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-01-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism

  3. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. (Univ. of Missouri-Columbia (USA))

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  4. Optimization of transfection of green fluorescent protein in pursuing mesenchymal stem cells in vivo

    Directory of Open Access Journals (Sweden)

    Pınar Elçi

    2008-12-01

    Full Text Available OBJECTIVE: Green Fluorescent Protein (GFP has been used as a marker of gene expression and a single cell marker in living organisms in cell biology studies. The important areas that GFP is used are expression levels of different genes in different organisms by inserting GFP in these genes and as a marker in living cells. In this study, we tried to optimize transfection of mesenchymal stem cells, (MSCs used for regeneration of damaged tissues in animals, by GFP containing plasmid vector by which MSCs can be followed in vivo.METHODS: To this aim, phM-GFP plasmid vector carrying GFP gene and effectene transfection reagent were used. RESULTS: The data revealed that twice transfection of MSCs resulted in higher expression of GFP for longer times as compared to once transfected MSCs. On the other hand, leaving the chemical transfection agents in the medium induced apoptosis after a while. CONCLUSION: As a conclusion we suggest the transfection of MSCs twice with 48 hours interval and removal of transfection agents after 8 hours which removed toxic and apoptotic effects of the chemicals.

  5. Factors that affect the efficiency of antisense oligodeoxyribonucleotide transfection by insonated gas-filled lipid microbubbles

    International Nuclear Information System (INIS)

    Zhao Yingzheng; Lu Cuitao

    2008-01-01

    Objective: To investigate the factors that affect the efficiency of antisense oligodeoxyribonucleotide(AS-ODNs) transfection by insonated gas-filled lipid microbubbles. Methods: Lipid microbubbles filled with two types of gases-air and C 3 F 8 , were prepared respectively. An AS-ODNs sequence HA824 and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of insonated microbubbles. Two mixing methods, three levels of mixing speed, different mixing durations and various ultrasound initiation time after mixing were examined respectively. Transfection efficiency was detected by fluorescence microscopy. Results: C 3 F 8 microbubbles gave higher levels of AS-ODNs transfection efficiency than air microbubbles in all test conditions. Transfection efficiency resulted from mixing method A (incubation of HA824 and microbubbles before mixing cells) did not show significant difference with that of mixing method B (without incubation of HA824 and microbubbles before mixing cells). Mixing speed, duration of mixing and ultrasound initiation time after mixing were central to determining HA824 transfection efficiency in vitro. The optimum parameters for SK-BR-3 cells were found at a mixing speed of 40-50 rpm for 30-60 s with less than 60 s delay before ultrasound. Conclusion: Ultrasound-mediated AS-ODNs transfection enhanced by C 3 F 8 -filled lipid microbubbles represents an effective avenue for AS-ODNs transfer

  6. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. DNA Targeting Sequence Improves Magnetic Nanoparticle-Based Plasmid DNA Transfection Efficiency in Model Neurons.

    Science.gov (United States)

    Vernon, Matthew M; Dean, David A; Dobson, Jon

    2015-08-17

    Efficient non-viral plasmid DNA transfection of most stem cells, progenitor cells and primary cell lines currently presents an obstacle for many applications within gene therapy research. From a standpoint of efficiency and cell viability, magnetic nanoparticle-based DNA transfection is a promising gene vectoring technique because it has demonstrated rapid and improved transfection outcomes when compared to alternative non-viral methods. Recently, our research group introduced oscillating magnet arrays that resulted in further improvements to this novel plasmid DNA (pDNA) vectoring technology. Continued improvements to nanomagnetic transfection techniques have focused primarily on magnetic nanoparticle (MNP) functionalization and transfection parameter optimization: cell confluence, growth media, serum starvation, magnet oscillation parameters, etc. Noting that none of these parameters can assist in the nuclear translocation of delivered pDNA following MNP-pDNA complex dissociation in the cell's cytoplasm, inclusion of a cassette feature for pDNA nuclear translocation is theoretically justified. In this study incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid improved transfection efficiency in model neurons, presumably from increased nuclear translocation. This observation became most apparent when comparing the response of the dividing SH-SY5Y precursor cell to the non-dividing and differentiated SH-SY5Y neuroblastoma cells.

  8. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  9. Synergistic effect of electrical and chemical factors on endocytosis in micro-discharge plasma gene transfection

    Science.gov (United States)

    Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.

    2017-06-01

    We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.

  10. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    International Nuclear Information System (INIS)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E.; Ramos, S.G.; Silva, C.L.; Coelho-Castelo, A.A.M.

    2012-01-01

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis

  11. Preliminary study on the mechanism of radioresistance of SHG44 cells transfected by PKB

    International Nuclear Information System (INIS)

    Liu Fenju; Sun Zhiqiang; Yang Xueqin; Jiang Yaqi; Xue Jing

    2007-01-01

    Objective: To explore the radiosensitivity of SHG44 cells increased by suppressing the protein kinase B (PKB), in order to prove whether the PKB activity is related to the radioresistance of SHG44 cells. Methods: PKB gene(pCMV5.HA-m/p-PKBα(PKB), pCMV5.HA-PKBα-DD (T308D/S473D) (PKBD)) were transfected into SHG44 cells by electroporation, the cell proliferation rate was observed among the control, PKB transfected and irradiated groups by MTT assay. The laser confocal microscope was used to detect the changes of cell apoptosis and its microstructure in control, control + radiation, PKB transfected + radiation, PKBD transfected + radiation group. The proliferation of PKB transfected SHG44 cells and the relative factors of inducing apoptosis were analyzed. Results: The plasmid containing extrinsic PKB was successfully transfected into SHG44 cells and expressed PKB mRNA, while there was no expression in the control group; the proliferation rate of transfected SHG44 cells was significantly different from the control group (P 60 Co γ rays could induce SHG44 cell apoptosis with the changes of cell nuclei shape. The SHG44 cells transfected by PKB in the PKB + control group were complete, with few apoptosis cells seen, while the apoptosis was more significant in PKBD + irradiation group comparing to the control-irradiation group. Conclusions: SHG44 cells transfected by PKB could resist the cell apoptosis induced by radiation, suggesting that there were some relations between PKB activity and SHG44 cells radioresistance. (authors)

  12. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  13. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  14. Hematopoietic stem cell (CD34+) uptake of superparamagnetic iron oxide is enhanced by but not dependent on a transfection agent.

    Science.gov (United States)

    England, Timothy J; Bath, Philip M W; Abaei, Maryam; Auer, Dorothee; Jones, D Rhodri E

    2013-03-01

    Tracking the fate of cells after infusion would be a valuable asset for many stem cell therapies, but very few (cell) labels are approved for human therapeutic use. Superparamagnetic iron oxide particles (SPIO) can be internalized into stem cells in vitro to allow real-time tracking with gradient echo magnetic resonance imaging, but SPIO are approved for (diagnostic) imaging and not for (therapeutic) cell labeling in vivo. In this study, we investigated the possibility of labeling stem cells with an SPIO approved for patient use, albeit in a novel manner by enhancing uptake with the use of a transfection agent, also approved for patient use. Although there are many reports of hematopoietic stem cells being labeled with SPIO, there is some controversy regarding the efficiency of this and whether undifferentiated CD34+ progenitor (stem) cells are able to take up iron in the absence of a transfection agent to enhance the process. Human CD34+ cells were treated in vitro as follows: incubation with (i) medium only (control), (ii) ferumoxide (Endorem) and (iii) ferumoxide (Endorem) plus exposure to a transfection agent (protamine sulfate). Cells were incubated for 2, 4 and 24 hours and assessed for viability, differentiation capacity and visualized in vitro with 3-T magnetic resonance imaging. The cells were also analyzed by means of flow cytometry and morphology examined by electron microscopy. CD34+ hematopoietic progenitor cells can internalize ferumoxide (Endorem) independently of a transfection agent. However, uptake of ferumoxide is enhanced after exposure to protamine sulfate. Iron labeling of CD34+ cells in this manner does not affect cell viability and does not appear to affect the potential of the cells to grow in culture. Iron-labeled CD34+ cells can be visualized in vitro on 3-T magnetic resonance image scanning. Endorem and protamine sulfate can be combined to promote iron oxide nanoparticle uptake by CD34+ cells, and this methodology can potentially be used

  15. Migratory, invasive and metastatic capacity of NCAM transfected rat glioma cells

    DEFF Research Database (Denmark)

    Edvardsen, K; Brünner, N; Spang-Thomsen, M

    1993-01-01

    A cDNA encoding a transmembrane 140 kDa isoform of the neural cell adhesion molecule, NCAM, was transfected into the rat glioma cell line BT4Cn. Transfectants with a homogeneously high expression of NCAM-B showed a decreased capacity for penetration of an artificial basement membrane when compared...... to cells transfected with expression-vector alone or untransfected cells. However, when injected subcutaneously into nude mice, both NCAM expressing cells and control cells produced invasive tumors. Nude mice injected with NCAM positive cells developed tumors with slower growth rates as compared to those...

  16. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method

    Directory of Open Access Journals (Sweden)

    Anastasia Zotova

    2017-11-01

    Full Text Available Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ or homology recombination (HDR. Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO and knockin (KI generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases. Using zinc finger nuclease (ZFN, we have engineered Jurkat and CEM cells with the 8.2 kb human immunodeficiency virus type 1 (HIV-1 ∆Env genome integrated at the adeno-associated virus integration site 1 (AAVS1 locus that stably produce virus particles and mediate infection upon transfection with helper vectors. Knockouts generated by ZFN or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 double nicking techniques were comparably efficient in lymphoid cells. However, unlike polyclonal sorted cells, gene-edited cells selected by cloning exerted tremendous deviations in functionality as estimated by replication of HIV-1 and human T cell leukemia virus type 1 (HTLV-1 in these cells. Notably, the recently reported high-fidelity eCas9 1.1 when combined to the nickase mutation displayed gene-dependent decrease in on-target activity. Thus, the balance between off-target effects and on-target efficiency of nucleases, as well as choice of the optimal method of edited cell selection should be taken into account for proper gene function validation in lymphoid cells.

  17. A high density CHO-S transient transfection system: Comparison of ExpiCHO and Expi293.

    Science.gov (United States)

    Jain, Nina K; Barkowski-Clark, Susan; Altman, Richard; Johnson, Krista; Sun, Fang; Zmuda, Jonathan; Liu, Chao Yan; Kita, Adriana; Schulz, Ryan; Neill, Alyssa; Ballinger, Robert; Patel, Rekha; Liu, Jian; Mpanda, Alinafe; Huta, Brian; Chiou, Henry; Voegtli, Walter; Panavas, Tadas

    2017-06-01

    Chinese Hamster Ovary (CHO) cells are the principal mammalian host used for stable cell line generation and biotherapeutic protein production. Until recently, production of milligrams to grams of protein in CHO transient systems was challenging. As such, Human Embryonic Kidney (HEK293) cells are the most common mammalian cell type used for transient transfection. The post-translational modifications (PTMs) of a protein are dictated in part by the cell line used for expression, and changes in PTMs have been shown to affect both the activity and biophysical properties of proteins. Therefore, it is potentially advantageous to keep the host cell type consistent throughout drug discovery and development. To this end, we compared the ExpiCHO system, a high density CHO-S transient transfection system, to the Expi293 and FreeStyle MAX CHO transient systems. Fourteen proteins were expressed in both the Expi293 and ExpiCHO systems. For a majority of proteins tested, the protein titers observed with the ExpiCHO system were higher than those seen with both the FreeStyle MAX CHO and Expi293 systems. Antibodies expressed using the ExpiCHO system had glycosylation patterns more similar to antibodies produced in stable CHO cell lines than Expi293-derived antibodies. However, culture duration and temperature were found to affect protein titer, monodispersity, enzyme activity, and PTMs and should be carefully selected when using the ExpiCHO system. The ExpiCHO transient transfection systems allows for facile production of milligrams to grams of protein in CHO cells and de-risks the transition from transient to stable material during drug development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine.

    Science.gov (United States)

    Park, Eulsoon; Cho, Hong-Baek; Takimoto, Koichi

    2015-05-01

    Adipose-derived stem cells have the ability to turn into several clinically important cell types. However, it is difficult to transfect these cells with the use of conventional cationic lipid-based reagents. Polyethylenimine (PEI) is considered to be an inexpensive and effective tool for delivery of nucleic acids into mammalian cells. We used a linear PEI conjugated with the nuclear localization signal (NLS) peptide of Simian vacuolating virus 40 large T antigen (PEI-NLS) for transfection of plasmid DNA into adipose-derived cells. We also tested if transfection of cells in suspension might improve the degree and duration of exogenous gene expression. Transfection of cells in suspension with the use of a PEI conjugated with an NLS peptide resulted in high levels of reporter gene expression for an extended period of time in clonal 3T3-L1 preadipocytes and native human adipose-derived stem cells. The reporter gene expression increased for 3 days after the addition of the PEI-NLS peptide-DNA mixture in cell suspension and remained significant for at least 7 days. Cell density did not influence the level of reporter gene expression. Thus, the suspension method with the use of an NLS peptide-conjugated PEI leads to a robust and sustained expression of exogenous genes in adipose-derived cells. The devised transfection method may be useful for reprogramming of adipose-derived stem cells and cell-based therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we......-octaarginine conjugate upon varying the cell culture transfection volume (and cell density) at fixed PNA concentration. The results show that for all delivery modalities the cellular antisense activity increases (less than proportionally) with increasing volume (in some cases accompanied with increased toxicity...

  20. DEVELOPMENT OF AN ENVIRONMENTAL ESTROGEN SCREEN USING TRANSIENTLY TRANSFECTED RAINBOW TROUT CELL LINES

    Science.gov (United States)

    Rainbow troutp hepatoma (RTH-149) and gonad cells (RTG-2) were used to develop a screening protocol for estrogen disrupting chemicals. Transfection of an estrogen-responsive luciferase reporter plasmid into...

  1. Oncogene transfection of mink lung cells: effect on growth characteristics in vitro and in vivo.

    Science.gov (United States)

    Khan, M Z; Spandidos, D A; Kerr, D J; McNicol, A M; Lang, J C; De Ridder, L; Freshney, R I

    1991-01-01

    Three sublines have been derived from the parental line Mv1Lu by transfection with normal and mutated Ha-ras, and myc oncogenes, and subsequent cloning. All the oncogenes have increased the growth rate of the cell in vitro, increased their plating efficiency in monolayer and suspension, and reduced their serum dependence. Growth in vivo as xenografts in nude mice has also been increased. Very few tumours were generated from the parental line and those that did form did so after a prolonged lag period, while the transfected lines produced tumours with 100% efficiency, and a short lag period. In general the effects of ras transfection were more extreme, with the highest growth rates and plating efficiencies in vitro and the shortest lag period and doubling times in vivo. There was no increase in plasminogen activator activity as a result of transfection, and the invasive behaviour of the lines in organotypic culture was broadly similar.

  2. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available This presentation is about the photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses. It outlines the background on embryonic stem cells (ES) and phototransfection....

  3. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available disease- iPS, dopaminergic neurons Transplantation • Autologous- bone marrow, tissue defects, leukemia • Haematopoietic- blood dieases, autoimmune disorders • Mesenchymal- neurological disorders Phototransfection • Transfection refers...

  4. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  5. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    the surface of MSN and utilize them to complex cationic DNA. The p-EGFP-CI gene-coated MSN nanocomposite was able to transfect cancer cell lines, such as human HeLa and CHO cancer cell lines. The gene carrier ability of MSNs was further proved by transfecting primary cells and cotransfecting of two different genes in cancer cell lines. In sum, MSN are versatile partners in several types of applications.

  6. Acidity-responsive gene delivery for "superfast" nuclear translocation and transfection with high efficiency.

    Science.gov (United States)

    Zhu, Jing-Yi; Zeng, Xuan; Qin, Si-Yong; Wan, Shuang-Shuang; Jia, Hui-Zhen; Zhuo, Ren-Xi; Feng, Jun; Zhang, Xian-Zheng

    2016-03-01

    In principle, not only efficient but rapid transfection is required since it can maximize the bioavailability of vector-carried gene prior to the cellular excretion. However, the "rapid" goal has been paid few attentions so far in the research field of vector-aided transfection. As a pioneering attempt, the present study designed a lysosome-targeting acidity-responsive nanoassembly as gene vectors, which proved the amazing potency to mediate the "Superfast" transnuclear gene transport and gene transfection with high efficiency in vitro and in vivo. The nanoassembly was constructed on the pH-reversible covalent boronic acid-diol coupling between 1,3-diol-rich oligoethylenimine (OEI-EHDO) and phenylboronic acid modified cholesterol (Chol-PBA). The rapid and efficient nuclei-tropic delivery and transfection was demonstrated to highly rely on the lysosome-acidity induced assembly destruction followed by the easy liberation of gene payloads inside cells. The nanoassembly-mediated transfection at 8 h can afford the outcome even comparable to that achieved at 48 h by the golden standard of PEI25k, and the transfection efficiency can still remain at a high level during 48 h. In contrast, time-dependent efficiency enhancement was identified for the transfections using PEI25k and OEI-EHDO as delivery vectors. Moreover, owing to the hydroxyl-rich surface, this delivery nanosystem presented strong tolerance to the serum-induced transfection inhibition that frequently occurred for the polycationic gene vectors such as PEI25k. The in vitro and in vivo results manifested the low toxicity of this bio-decomposable nanoassembly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [EFFECT OF Akt1 GENE TRANSFECTION ON HYPOXIA TOLERANCE OF BONE MARROW MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Yu, Fengxu; Chen, Yongen; Chen, Feng; Xia, Jiyi; Liu, Hongduan; Fu, Yong; Li, Miaoling; Liao, Bin

    2016-04-01

    To investigate whether Akt1 gene transfection mediated by recombinant lentivirus (LVs) in the bone marrow mesenchymal stem cells (BMSCs) could enhance the ability of hypoxia tolerance so as to provide a theoretical basis for improving the effectiveness of stem cells transplantation. LVs was used as transfection vector, enhanced green fluorescent protein (EGFP) was used as markers to construct the pLVX-EGFP-3FLAG virus vector carrying the Akt1 gene. The 3rd generation BMSCs from 3-5 weeks old Sprague Dawley rats were transfected with pLVX-EGFP virus solution as group B and with pLVX-EGFP-3PLAG virus solution as group C; and untransfected BMSCs served as control group (group A). At 2-3 days after transfection, the expression of green fluorescent was observed by fluorescence microscope; and at 48 hours after transfection, Western blot method was used to detect the expression of Akt1 protein in groups B and C. BMSCs of groups B and C were given hypoxia intervention with 94% N₂, 1% O₂, and 5% CO₂ for 0, 3, 6, 9, and 12 hours (group B1 and group C1). The flow cytometry was used to analyze the cell apoptosis rate and cell death rate, and the MTT method to analyze the cell proliferation, and Western blot to detect the expression of apoptosis related gene Caspase-3. After transfection, obvious green fluorescence was observed in BMSCs under fluorescence microscopy in groups B and C, the transfection efficiency was about 60%. Akt1 expression of group C was significantly higher than that of group B (t = 17.525, P = 0.013). The apoptosis rate and cell death rate of group B1 increased gradually with time, and difference was significant (P transfection mediated by recombinant LVs could significantly improve hypoxia tolerance of BMSCs by inhibiting the apoptosis, which could provide new ideas for improving the effectiveness of stem cells transplantation.

  8. Evaluation of the transfection efficacies of quaternary ammonium salts prepared from sophorolipids

    OpenAIRE

    Delbeke, E,; Lozach, Olivier; Le Gall, T; Berchel, Mathieu,; Montier, T,; Jaffres, Paul-Alain; Van Geem, K,; Stevens, C,

    2016-01-01

    International audience; Five quaternary ammonium amphiphilic compounds were synthesized from sophorolipid 1. These compounds were formulated in aqueous media and some of them (5 and 6) produced well-defined supra-molecular aggregates which were characterized by DLS and zeta measurements. Their capacity to transfect four different eukaryotic cell lines in vitro was assessed. To evaluate the influence of the carbohydrate head group from the sophorolipids on the transfection efficacies, their de...

  9. [Screening of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) by cDNA microarray and influence of overexpression of PAG1 on biologic behavior of human metastatic prostatic cancer cell line in vitro].

    Science.gov (United States)

    Yu, Wen-juan; Wang, Yue-wei; Xie, Zhi-gang; You, Jiang-feng; Wang, Jie-liang; Cui, Xiang-lin; Pei, Fei; Zheng, Jie

    2010-02-01

    To screen for novel gene(s) associated with tumor metastasis, and to investigate the effect of overexpression of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) on the biological behaviors of human prostatic cancer cell line PC-3M-1E8 in vitro. Four cDNA microarrays were constructed using cDNA library of prostatic cancer cells PC-3M-1E8 (high metastatic potential), PC-3M-2B4 (low metastatic potential), lung cancer cells PG-BE1 (high metastatic potential)and PG-LH7 (low metastatic potential)to screen genes which were differentially expressed according to their different metastatic properties. From a battery of differentially expressed genes, PAG1, which was markedly downregulated in both high metastatic sublines of PC-3M and PG was chosen for further investigation. Real-time PCR and Western blot were used to confirm the gene expression of PAG1 at mRNA and protein levels. Full-length coding sequence of human PAG1 was subcloned into plasmid pcDNA3.0 and the recombinant plasmids were stably transfected into PC-3M-1E8. The cell proliferation ability, anchorage-independent growth, cell cycle distribution, apoptosis rates and invasive ability were detected by MTT, and in addition, soft agar colony formation, flow cytometry analysis and matrigel invasion assay using Boyden chamber were also carried out respectively. All experiments contained pcDNA3.0-PAG1-transfected clones, vector transfected clones and non-transfected parental cells. A total of 327 differentially expressed genes were obtained between the high and low metastatic sublines of PC-3M cells, including 123 upregulated and 204 downregulated genes in PC-3M-1E8. A total of 281 genes, including 167 upregulated and 114 downregulated genes were obtained in PG-BE1 cells. Nine genes were simultaneously downregulated and 8 genes were upregulated in both high metastatic cell lines of PC-3M and PG. The expression of PAG1 at mRNA and protein level were decreased in the high metastatic subline PC-3M-1

  10. Bioactive polyphenols from muscadine grape and blackcurrant stably concentrated onto protein-rich matrices for topical applications.

    Science.gov (United States)

    Plundrich, N; Grace, M H; Raskin, I; Ann Lila, M

    2013-08-01

    Natural botanical agents that are antimicrobial, or that modulate skin hyperpigmentation via tyrosinase inhibition, are increasingly sought in the cosmetic industry. In this study, an efficient tactic is demonstrated for concentrating and stabilizing skin-beneficial bioactive compounds from muscadine grape and blackcurrant juice or muscadine pomace, into hemp flour (HF), hemp protein isolate (HPI) and soy protein isolate (SPI) matrices suitable for cosmetic applications. Anthocyanins were most efficiently captured from blackcurrant juice into HF (8.39 mg g(-1) ). HPI most effectively captured total phenolics from muscadine pomace (72.32 and 77.32 mg g(-1) from Noble and Carlos, respectively), while the three matrices incorporated highest levels of ellagic acid, gallic acid, and PAC B1 from Noble muscadine grape juice. The enriched matrices demonstrated effective in vitro inhibition of tyrosinase (up to 57.29% for blackcurrant juice-HPI matrix), and in general, juice sources provided greater inhibition on L-dopamine oxidation by tyrosinase than pomace sources. The polyphenol-enriched matrices effectively inhibited microbial proliferation in a screening assay against Staphylococcus aureus bacteria, whereas untreated HF, HPI or SPI did not inhibit bacterial growth. The technology of combining and stably concentrating phytoactive polyphenols with proteins has potential use for cosmetic topical applications. © 2013 John Wiley & Sons Ltd.

  11. Identifying stably expressed housekeeping genes in the endometrium of fertile women, women with recurrent implantation failure and recurrent miscarriages.

    Science.gov (United States)

    Stocker, Linden; Cagampang, Felino; Cheong, Ying

    2017-11-01

    Housekeeping genes (HKG) are presumed to be constitutively expressed throughout tissue types but recent studies have shown they vary with pathophysiology. Often, validation of appropriate HKG is not made. There is no consensus on which HKGs are most stably expressed in endometrial tissue so this study aimed to identify the most stable HKG in the endometrium of women with recurrent implantation failure (RIF) and recurrent miscarriages (RM). Inclusion criteria were women between 25-45 years (n = 45) suffering recurrent miscarriage (RM), recurrent implantation failure (RIF) or fertile controls. Endometrial biopsies were taken and total RNA extraction, cDNA synthesis and PCR was performed using 10 candidate HKG. The genes were arranged in terms of stability and normalisation was determined. Several HKGs not previously tested in endometrial samples were found to be more stable than those previously identified as the most stable. Of these, the 5 most stable HKG (in order of stability) were Prdm4 (PR domain 4) > Ube4a (Ubiquitin-Conjugating Enzyme 4a) > Enox2 (Ecto-NOX Disulfide-Thiol Exchanger 2) > Ube2d2 (Ubiquitin-conjugating enzyme E2D 2) > Actb (Actin beta). We therefore recommend using at least four of the aforementioned HKG for normalisation of endometrial tissues taken from patients with RM and RIF.

  12. Antinociceptive effects of morphine and naloxone in mu-opioid receptor knockout mice transfected with the MORS196A gene

    Directory of Open Access Journals (Sweden)

    Tao Pao-Luh

    2010-04-01

    Full Text Available Abstract Background Opioid analgesics such as morphine and meperidine have been used to control moderate to severe pain for many years. However, these opioids have many side effects, including the development of tolerance and dependence after long-term use, which has limited their clinical use. We previously reported that mutations in the mu-opioid receptors (MOR S196L and S196A rendered them responsive to the opioid antagonist naloxone without altering the agonist phenotype. In MORS196A knock-in mice, naloxone and naltrexone were antinociceptive but did not cause tolerance or physical dependence. In this study we delivery this mutated MOR gene into pain related pathway to confirm the possibility of in vivo transfecting MORS196A gene and using naloxone as a new analgesic agent. Methods The MOR-knockout (MOR-KO mice were used to investigate whether morphine and naloxone could show antinociceptive effects when MORS196A gene was transfected into the spinal cords of MOR-KO mice. Double-stranded adeno-associated virus type 2 (dsAAV2 was used to deliver the MORS196A-enhanced green fluorescence protein (EGFP gene by microinjected the virus into the spinal cord (S2/S3 dorsal horn region. Tail-flick test was used to measure the antinociceptive effect of drugs. Results Morphine (10 mg/kg, s.c. and naloxone (10 mg/kg, s.c. had no antinociceptive effects in MOR-KO mice before gene transfection. However, two or three weeks after the MOR-S196A gene had been injected locally into the spinal cord of MOR-KO mice, significant antinociceptive effects could be induced by naloxone or morphine. On the other hand, only morphine but not naloxone induced significant tolerance after sub-chronic treatment. Conclusion Transfecting the MORS196A gene into the spinal cord and systemically administering naloxone in MOR-KO mice activated the exogenously delivered mutant MOR and provided antinociceptive effect without causing tolerance. Since naloxone will not activate natural

  13. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  14. Spatio-temporally controlled transfection by quantitative injection into a single cell.

    Science.gov (United States)

    Kwon, Hyosung; Park, Hang-soo; Yu, Jewon; Hong, Sunghoi; Choi, Yeonho

    2015-10-01

    Transfection-based cellular control has been widely used in biology; however, conventional transfection methods cannot control spatio-temporal differences in gene expression or the quantity of delivered materials such as external DNA or RNA. Here, we present a non-viral and spatio-temporally controlled transfection technique of a quantitative injection into a single cell. DNA was quantitatively injected into a single cell at a desired location and time, and the optimal gene delivery and expression conditions were determined based on the amount of the delivered DNA and the transfection efficacy. Interestingly, an injection of 1500 DNAs produced an about average 30% gene expression efficiency, which was the optimal condition, and gene expression was sustained for more than 14 days. In a single cell, fluorescent intensity and polymerase chain reaction (PCR) results were compared for the quantity of gene expression. The high coincidence of both results suggests that the fluorescence intensity can reveal gene expression level which was investigated by PCR. In addition, 3 multiple DNA genes were successfully expressed in a single cell with different ratio. Overall, these results demonstrate that spatio-temporally controlled transfection by quantitative transfection is a useful technique for regulating gene expression in a single cell, which suggests that this technique may be used for stem cell research, including the creation of induced pluripotent stem (iPS) cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites.

    Science.gov (United States)

    Vankayala, Raviraj; Chiang, Chi-Shiun; Chao, Jui-I; Yuan, Chiun-Jye; Lin, Shyr-Yeu; Hwang, Kuo Chu

    2014-09-01

    Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modulating polyplex-mediated gene transfection by small-molecule regulators of autophagy.

    Science.gov (United States)

    Zhong, Xiao; Panus, David; Ji, Weihang; Wang, Chun

    2015-03-02

    Nonviral gene transfection mediated by cationic polymer/DNA polyplexes often imposes stress and toxicity to cells. To better understand the relationship between cellular stress responses and polyplex-mediated transfection, polyplex-induced early autophagy in mouse fibroblasts was characterized and the impact of autophagy modulation on transgene expression evaluated. Transmission electron microscopy revealed the formation of double-membraned autophagosome in the cytoplasm of polyplex-transfected cells. Immunofluorescence staining and microscopy revealed intracellular LC3 punctation that was characteristic of early autophagy activation. Elevated expression of autophagosome-associated LC3 II protein was also detected by Western blot. When cells were treated with small-molecule modulators of autophagy, polyplex-mediated gene transfection efficiency was significantly affected. 3-Methyladenine (3-MA), an early autophagy inhibitor, reduced transfection efficiency, whereas rapamycin, an autophagy inducer, enhanced transgene expression. Importantly, the observed functional impact on gene transfection by autophagy modulation was decoupled from that of other modes of cellular stress response (apoptosis/necrosis). Treatment of cells by 3-MA or rapamycin did not affect the level of intracellular reactive oxygen species (ROS) but did decrease or increase, respectively, nuclear localization of polyplex-delivered plasmid DNA. These findings suggest new possibilities of enhancing polyplex-mediated gene delivery by codelivery of small-molecule regulators of autophagy.

  17. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    International Nuclear Information System (INIS)

    Lu Qin; Niu Huanzhang; Zhu Guangyu; An Yanli; Qiu Dinghong; Teng Gaojun

    2007-01-01

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 μg)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 μg, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  18. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts.

    Science.gov (United States)

    Wu, Yihang; Li, Linxian; Chen, Qing; Su, Yi; Levkin, Pavel A; Davidson, Gary

    2016-01-11

    Cationic lipid-like molecules (lipidoids) are widely used for in vitro and in vivo gene delivery. Nearly all lipidoids developed to date employ double-tail or multiple-tail structures for transfection. Single-tail lipidoids are seldom considered for transfection as they have low efficiency in gene delivery. So far, there is no detailed study on the contribution to transfection efficiency of single-tail lipidoids when combined with standard double-tail lipidoids. Here, we use combinatorial chemistry to synthesize 17 double-tail and 17 single-tail lipidoids using thiol-yne and thiol-ene click chemistry, respectively. HEK 293T cells were used to analyze transfection efficiency by fluorescence microscopy and calculated based on the percentage of cells transfected. The size and zeta potential of liposomes and lipoplexes were characterized by dynamic light scattering (DLS). Intracellular DNA delivery and trafficking was further examined using confocal microscopy. Our study shows that combining single with double-tail lipidoids increases uptake of lipoplexes, as well as cellular transfection efficiency.

  19. Toward establishing model organisms for marine protists: Successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata).

    Science.gov (United States)

    Gomaa, Fatma; Garcia, Paulo A; Delaney, Jennifer; Girguis, Peter R; Buie, Cullen R; Edgcomb, Virginia P

    2017-09-01

    We developed protocols for, and demonstrated successful transfection of, the free-living kinetoplastid flagellate Parabodo caudatus with three plasmids carrying a fluorescence reporter gene (pEF-GFP with the EF1 alpha promoter, pUB-GFP with Ubiquitin C promoter, and pEYFP-Mitotrap with CMV promoter). We evaluated three electroporation approaches: (1) a square-wave electroporator designed for eukaryotes, (2) a novel microfluidic transfection system employing hydrodynamically-controlled electric field waveforms, and (3) a traditional exponential decay electroporator. We found the microfluidic device provides a simple and efficient platform to quickly test a wide range of electric field parameters to find the optimal set of conditions for electroporation of target species. It also allows for processing large sample volumes (>10 ml) within minutes, increasing throughput 100 times over cuvettes. Fluorescence signal from the reporter gene was detected a few hours after transfection and persisted for 3 days in cells transfected by pEF-GFP and pUB-GFP plasmids and for at least 5 days post-transfection for cells transfected with pEYFP-Mitotrap. Expression of the reporter genes (GFP and YFP) was also confirmed using reverse transcription-PCR (RT-PCR). This work opens the door for further efforts with this taxon and close relatives toward establishing model systems for genome editing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. A study on the transfection of antisense oligonucletide into kidney mediated by lipid microbubbles.

    Science.gov (United States)

    Li, Huiling; Chen, Jinwen; Xu, Xuan; Yang, Ruhao; Xiang, Xudong; Zhang, Dongshan

    2016-02-01

    To study the safety and efficiency of the transfection of antisense oligonucletide into kidney mediated by lipid microbubbles, and to evaluate its potential clinical application. The potential and conditions regarding the transfection self-made lipid microbubbles (CY5)-labeled-oligonucleotide (ODN) or CY5-labeled-ODN connective tissue growth factor (CTGF) into the rat kidney were evaluated. Th e safety was evaluated by HE staining, liver and renal function tests. The transfection efficiency was evaluated by fluorescence microscopy. Th e expression of CTGF was detected by RT-PCR and Western blot. Self-made lipid microbubble and/or ultrasound significantly enhanced the efficiency of gene transfer and expression in the kidney. Especially, 85%-90% of total glomerular could be transfected. CY5-labeled-ODN expression could be observed in glomerular, tubular and interstitial area. Th ere was no significant change in blood tests aft er gene transfer. Levels of LDH in 7 days were decreased compared with that at the fi rst day aft er the transfection (Ptransfection of CTGF-antisense-ODN into kidney. The ultrasound-mediated gene transfer by self-made lipid microbubble could enhance the efficiency of ODN and expression in the rat kidney. Th is self-made lipid microbubbles supplement may be use for transfection of target genes.

  1. Ultrasound-mediated gene transfection: A comparison between cells irradiated in suspension and attachment status

    Science.gov (United States)

    Zhang, Yiwei; Azuma, Takashi; Sasaki, Akira; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2012-10-01

    Sonoporation, in the presence of microbubbles, is a promising nonviral gene transfection method. Although the mechanism is not yet fully understood, shock waves emitted by cavitation bubbles have been known to play an important role in creating pores on cell membranes. This work investigates the gene transfection efficiency and influencing parameters of cells in two different statuses: attachment and suspension based on the fact that cells in suspension have more bubbles surrounding them and that shock wave has distinct effects on hit objects whether the object is attached to a rigid wall or not. Fibroblast cells (NIH3T3), both in attachment and suspension, and green fluorescent protein (GFP) plasmid were exposed to variations in acoustic pressure (0.6-1.2 MPa) and 10% duty cycle at fixed settings of 2 MHz central frequency, 5 kHz pulse repetition frequency and 1 minute insonation time, in the presence of 10% v/v microbubbles (Sonazoid, a commercialized product of ultrasound contrast agent). The transfection efficiency and cell viability are compared for two statuses and a distribution map of GFP transfected cells as well as viable cells over the well bottom is given for attachment status. The results show that cells irradiated in suspension status has higher transfection ratio as well as viability than those irradiated in attachment status with the same intensity and that the transfected cells of attachment status experiment are highly concentrated near the center of the well.

  2. Exploring the Correlation Between Lipid Packaging in Lipoplexes and Their Transfection Efficacy

    Science.gov (United States)

    Moghaddam, Behfar; McNeil, Sarah E.; Zheng, Qinguo; Mohammed, Afzal R.; Perrie, Yvonne

    2011-01-01

    Whilst there is a large body of evidence looking at the design of cationic liposomes as transfection agents, correlates of formulation to function remain elusive. In this research, we investigate if lipid packaging can give further insights into transfection efficacy. DNA lipoplexes composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method. Each of the formulations was prepared by hydration in dH2O or phosphate buffer saline (PBS) to investigate the effect of buffer salts on lipoplex physicochemical characteristics and in vitro transfection. In addition, Langmuir monolayer studies were performed to investigate any possible correlation between lipid packaging and liposome attributes. Using PBS, rather than dH2O, to prepare the lipoplexes increased the size of vesicles in most of formulations and resulted in variation in transfection efficacies. However, one combination of lipids (DSPE:DOTAP) could not form liposomes in PBS, whilst the DSPE:DSTAP combination could not form liposomes in either aqueous media. Monolayer studies demonstrated saturated lipid combinations offered dramatically closer molecular packing compared to the other combinations which could suggest why this lipid combination could not form vesicles. Of the lipoplexes prepared, those formulated with DSTAP showed higher transfection efficacy, however, the effect of buffer on transfection efficiency was formulation dependent. PMID:24309311

  3. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  4. Isolation of a XP-A cell clone with intermediate UV sensitivity following transfection with genomic mouse DNA. Isolation and characterization of transfected sequences

    International Nuclear Information System (INIS)

    Blum, M.

    1987-04-01

    The work presented here describes an attempt to restore repair proficiency in xp cells of the most UV sensitive complementation group A by DNA mediated gene transfer. The transfection conditions employed for the cell line used here (XP12Rotk - 1) have been optimized. (orig./MG) [de

  5. Microvesicle-mediated release of soluble LH/hCG receptor (LHCGR from transfected cells and placenta explants

    Directory of Open Access Journals (Sweden)

    Randeva Harpal

    2011-05-01

    Full Text Available Abstract Placental hCG and pitutary LH transduce signals in target tissues through a common receptor (LHCGR. We demonstrate that recombinant LHCGR proteins which include the hormone-binding domain are secreted from transfected cells and that natural LHCGR is also secreted from human placental explants. LHCGR recombinant proteins representing varying lengths of the N-terminal extracellular domain were expressed in Chinese Hamster Ovary cells in suspension culture. Secretion was minimal up to 72h but by 96h 24-37% of the LHCGR had been released into the culture medium. The secreted proteins were folded and sensitive to glycosidases suggesting N-linked glycosylation. Secretion was independent of recombinant size and was mediated via structurally defined membrane vesicles (50-150nm. Similarly cultured human early pregnancy placental explants also released LHCGR via microvesicles. These studies provide the first experimental evidence of the possible mechanistic basis of the secretion of LHCGR.

  6. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    Science.gov (United States)

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  7. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    Science.gov (United States)

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Transfection of a retroviral construct carrying a non producer HIV-1 variant induces HIV-1 resistance in CD4+ CEMss cells.

    Science.gov (United States)

    Federico, M; Taddeo, B; Nappi, F; Nicolini, A; Rossi, G B; Verani, P

    1993-01-01

    The phenotype of Human Immunodeficiency Virus-1 (HIV)-infected HUT-78 cell clone (F12) has been described (Federico et al, AIDS Res Hum Retrov 1989; 5: 365-96). Briefly, F12 cells are: i) CD4 down-regulated, ii) non producer and iii) fully resistant to homologous superinfection. We tested whether this phenotype was dependent upon the expression of the HIV-1 genome integrated therein. The SstI/SstI F12 provirus was cloned and inserted in the pLj retroviral vector bearing the neomycin (neo)-Geneticine resistance gene. CD4+ HIV-susceptible CEMss cells were transfected with this construct in the sense orientation. Neo-resistant clones exhibited an integrated viral DNA, low viral mRNA expression and (as in F12 cells) the presence of uncleaved gp160, no gp41 and a small amount of p55 gag precursor. Superinfection of the F12/HIV-DNA-transfected CEMss clones showed that these CD4+ cells had acquired a significant (0.7-1.5 logs) resistance towards superinfection with HIV-1. This was observed in all four transfected clones where the F12/HIV DNA was expressed, but not in the control clone that was transfected with the pLj vector alone. These results confirm those that were obtained with human CD4+ CEMss cells infected with a recombinant retrovirus bearing the same SstI/SstI F12/HIV genome (Federico et al, J Gen Virol, 1993, in press). Both sets of results indicate that the expression of this genome in bio-engineered CD4+ human cells results in their intracellular immunization against HIV-1.

  9. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  10. Helios(®) Gene Gun-Mediated Transfection of the Inner Ear Sensory Epithelium: Recent Updates.

    Science.gov (United States)

    Belyantseva, Inna A

    2016-01-01

    The transfection of vertebrate inner ear hair cells has proven to be challenging. Therefore, many laboratories attempt to use and improve different transfection methods. Each method has its own advantages and disadvantages. A particular researcher's skills in addition to available equipment and the type of experiment (in vivo or in vitro) likely determine the transfection method of choice. Biolistic delivery of exogenous DNA, mRNA, or siRNA, also known as Helios(®) Gene Gun-mediated transfection, uses the mechanical energy of compressed helium gas to bombard tissue with micron- or submicron-sized DNA or RNA-coated gold particles, which can penetrate and transfect cells in vitro or in vivo. Helios(®) Gene Gun-mediated transfection has several advantages: (1) it is simple enough to learn in a short time; (2) it is designed to overcome cell barriers even as tough as plant cell membrane or stratum corneum in the epidermis; (3) it can transfect cells deep inside a tissue such as specific neurons within a brain slice; (4) it can accommodate mRNA, siRNA, or DNA practically of any size to be delivered; and (5) it works well with various cell types including non-dividing, terminally differentiated cells that are difficult to transfect, such as neurons or mammalian inner ear sensory hair cells. The latter advantage is particularly important for inner ear research. The disadvantages of this method are: (1) low efficiency of transfection due to many variables that have to be adjusted and (2) potential mechanical damage of the tissue if the biolistic shot parameters are not optimal. This chapter provides a step-by-step protocol and critical evaluation of the Bio-Rad Helios(®) Gene Gun transfection method used to deliver green fluorescent protein (GFP)-tagged full-length cDNAs of myosin 15a, whirlin, β-actin, and Clic5 into rodent hair cells of the postnatal inner ear sensory epithelia in culture.

  11. A family of cationic polyamides for in vitro and in vivo gene transfection.

    Science.gov (United States)

    Zhang, Chengnan; Jin, Rong; Zhao, Peng; Lin, Chao

    2015-08-01

    The purpose of this study is to develop biodegradable cationic polyamides for non-viral gene delivery and elucidate their structural effects on gene transfection activity. To this end, a group of novel cationic polyamides were synthesized by polycondensation reaction between different di-p-nitrophenyl esters and tertiary amine-containing primary diamines. These linear polyamides have flexible alkylene group (ethylene or propylene), protonable amino group and bioreducible disulfide linkage in the polyamide main chain. The alkylene group and disulfide linkage in these polyamides have a distinct effect on their gene delivery properties including buffering capacity, gene binding ability and intracellular gene release profile. Those cationic polyamides containing disulfide linkage and 1,4-bis(3-aminopropyl)piperazine (BAP) residue exhibited high buffering capacity (endosomal escape ability), high gene binding ability, and intracellular gene release ability, thus inducing fast gene nucleus translocation and robust gene transfection in vitro against different cell lines and rat bone marrow mesenchymal stem cells. Moreover, the transfection efficiencies in vitro were comparable or higher than those of 25 kDa branched polyethylenimine and Lipofectamine 2000 transfection agent as positive controls. These cationic polyamides and their polyplexes were of low cytotoxicity when an optimal transfection efficacy was achieved. In vivo transfection tests showed that bioreducible BAP-based polyamides were applicable for intravenous gene delivery in a mouse model, leading to higher level of transgene expression in the liver as compared to 22 kDa linear polyethylenimine as a positive control. These cationic polyamides provide a useful platform to elucidate the relationship between chemical functionalities and gene transfection activity. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Combining polyethylenimine and Fe(III) for mediating pDNA transfection.

    Science.gov (United States)

    Jorge, Andreia F; Röder, Ruth; Kos, Petra; Dias, Rita S; Wagner, Ernst; Pais, Alberto A C C

    2015-06-01

    The potential use of Fe(III) ions in biomedical applications may predict the interest of its combination with pDNA-PEI polyplexes. The present work aims at assessing the impact of this metal on pDNA complex properties. Variations in the formation of complexes were imposed by using two types of biological buffers at different salt conditions. The incorporation of pDNA in complexes was characterised by gel electrophoresis and dynamic light scattering. Transfection efficiency and cytotoxicity were evaluated in HeLa and HUH-7 cell lines, supported by flow cytometry assays. Fe(III) enhances pDNA incorporation in the complex, irrespective of the buffer used. Transfection studies reveal that the addition of Fe(III) to complexes at low ionic strength reduces gene transfection, while those prepared under high salt content do not affect or, in a specific case, increase gene transfection up to 5 times. This increase may be a consequence of a favoured interaction of polyplexes with cell membrane and uptake. At low salt conditions, results attained with chloroquine indicate that the metal may inhibit polyplex endosomal escape. A reduction on the amount of PEI (N/P 5) formed at intermediary ionic strength, complemented by Fe(III), reduces the size of complexes while maintaining a transfection efficiency similar to that obtained to N/P 6. Fe(III) emerges as a good supporting condensing agent to modulate pDNA-PEI properties, including condensation, size and cytotoxicity, without a large penalty on gene transfection. This study highlights important aspects that govern pDNA transfection and elucidates the benefits of incorporating the versatile Fe(III) in a gene delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  14. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  15. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  16. Construction of stably maintained non-mobilizable derivatives of RSF1010 lacking all known elements essential for mobilization

    Directory of Open Access Journals (Sweden)

    Tokmakova Irina L

    2007-11-01

    Full Text Available Abstract Background RSF1010 is a well-studied broad-host-range plasmid able to be mobilized to different bacteria and plants. RSF1010-derived plasmid vectors are widely used in both basic research and industrial applications. In the latter case, exploiting of mobilizable plasmids or even the plasmids possessing negligible mobilization frequency, but containing DNA fragments that could promote conjugal transfer, is undesirable because of biosafety considerations. Previously, several mutations significantly decreasing efficiency of RSF1010 mobilization have been selected. Nevertheless, construction of the RSF1010 derivative lacking all known loci involved in the conjugal transfer has not been reported yet. Results Novel non-mobilizable derivatives of RSF1010 lacking all known DNA sequences involved in the mobilization process have been obtained due to the exploiting of λRed-driven recombination between the plasmid and a constructed in vitro linear DNA fragment. To provide auto-regulated transcription of the essential replication gene, repB, the plasmid loci oriT, mobC and mobA were substituted by the DNA fragment containing PlacUV5→lacI. Mobilization of the obtained RSFmob plasmid was not detected in standard tests. The derivative of RSFmob with increased copy number has been obtained after lacI elimination. High stability of both constructed plasmids has been demonstrated in Escherichia coli and Pantoea ananatis. Design of RSFmob allows easy substitution of PlacUV5 by any desirable promoter for construction of novel derivatives with changed copy number or host range. Conclusion Novel non-mobilizable derivatives of RSF1010 lacking all known DNA sequences involved in the mobilization process and stably maintained at least in E. coli and P. ananatis have been constructed. The obtained plasmids became the progenitors of new cloning vectors answering all biosafety requirements of genetically modified organisms used in scale-up production.

  17. The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine.

    Science.gov (United States)

    Kisser, Beatrice; Mangelsen, Eva; Wingolf, Caroline; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Tannergren, Christer; Oswald, Stefan; Keiser, Markus

    2017-06-22

    The Ussing chamber is an old but still powerful technique originally designed to study the vectorial transport of ions through frog skin. This technique is also used to investigate the transport of chemical agents through the intestinal barrier as well as drug metabolism in enterocytes, both of which are key determinants for the bioavailability of orally administered drugs. More contemporary model systems, such as Caco-2 cell monolayers or stably transfected cells, are more limited in their use compared to the Ussing chamber because of differences in expression rates of transporter proteins and/or metabolizing enzymes. While there are limitations to the Ussing chamber assay, the use of human intestinal tissue remains the best laboratory test for characterizing the transport and metabolism of compounds following oral administration. Detailed in this unit is a step-by-step protocol for preparing human intestinal tissue, for designing Ussing chamber experiments, and for analyzing and interpreting the findings. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Tec protein tyrosine kinase inhibits CD25 expression in human T-lymphocyte.

    Science.gov (United States)

    Susaki, Kentaro; Kitanaka, Akira; Dobashi, Hiroaki; Kubota, Yoshitsugu; Kittaka, Katsuharu; Kameda, Tomohiro; Yamaoka, Genji; Mano, Hiroyuki; Mihara, Keichiro; Ishida, Toshihiko

    2010-01-04

    The Tec protein tyrosine kinase (PTK) belongs to a group of structurally related nonreceptor PTKs that also includes Btk, Itk, Rlk, and Bmx. Previous studies have suggested that these kinases play important roles in hematopoiesis and in the lymphocyte signaling pathway. Despite evidence suggesting the involvement of Tec in the T-lymphocyte activation pathway via T-cell receptor (TCR) and CD28, Tec's role in T-lymphocytes remains unclear because of the lack of apparent defects in T-lymphocyte function in Tec-deficient mice. In this study, we investigated the role of Tec in human T-lymphocyte using the Jurkat T-lymphoid cell line stably transfected with a cDNA encoding Tec. We found that the expression of wild-type Tec inhibited the expression of CD25 induced by TCR cross-linking. Second, we observed that LFM-A13, a selective inhibitor of Tec family PTK, rescued the suppression of TCR-induced CD25 expression observed in wild-type Tec-expressing Jurkat cells. In addition, expression of kinase-deleted Tec did not alter the expression level of CD25 after TCR ligation. We conclude that Tec PTK mediates signals that negatively regulate CD25 expression induced by TCR cross-linking. This, in turn, implies that this PTK plays a role in the attenuation of IL-2 activity in human T-lymphocytes.

  19. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    Science.gov (United States)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  20. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  1. Cationic, amphiphilic copolymer micelles as nucleic acid carriers for enhanced transfection in rat spinal cord.

    Science.gov (United States)

    Gwak, So-Jung; Nice, Justin; Zhang, Jeremy; Green, Benjamin; Macks, Christian; Bae, Sooneon; Webb, Ken; Lee, Jeoung Soo

    2016-04-15

    Spinal cord injury commonly leads to permanent motor and sensory deficits due to the limited regenerative capacity of the adult central nervous system (CNS). Nucleic acid-based therapy is a promising strategy to deliver bioactive molecules capable of promoting axonal regeneration. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to its cytotoxicity and low transfection efficiency in the presence of serum proteins. In this study, we synthesized cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), by grafting low molecular weight PLGA (4kDa) to bPEI (25kDa) at approximately a 3:1 ratio as an efficient nonviral vector. We show that PgP micelle is capable of efficiently transfecting plasmid DNA (pDNA) and siRNA in the presence of 10% serum in neuroglioma (C6) cells, neuroblastoma (B35) cells, and primary E8 chick forebrain neurons (CFN) with pDNA transfection efficiencies of 58.8%, 75.1%, and 8.1%, respectively. We also show that PgP provides high-level transgene expression in the rat spinal cord in vivo that is substantially greater than that attained with bPEI. The combination of improved transfection and reduced cytotoxicity in vitro in the presence of serum and in vivo transfection of neural cells relative to conventional bPEI suggests that PgP may be a promising nonviral vector for therapeutic nucleic acid delivery for neural regeneration. Gene therapy is a promising strategy to overcome barriers to axonal regeneration in the injured central nervous system. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to cytotoxicity and low transfection efficiency in the presence of serum proteins. Here, we report cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) that are capable of efficiently transfecting reporter

  2. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  3. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior.

    Directory of Open Access Journals (Sweden)

    Daniele Pezzoli

    Full Text Available BACKGROUND: Successful non-viral gene delivery currently requires compromises to achieve useful transfection levels while minimizing toxicity. Despite high molecular weight (MW branched polyethylenimine (bPEI is considered the gold standard polymeric transfectant, it suffers from high cytotoxicity. Inversely, its low MW counterpart is less toxic and effective in transfection. Moreover, chitosan is a highly biocompatible and biodegradable polymer but characterized by very low transfection efficiency. In this scenario, a straightforward approach widely exploited to develop effective transfectants relies on the synthesis of chitosan-graft-low MW bPEIs (Chi-g-bPEI(x but, despite the vast amount of work that has been done in developing promising polymeric assemblies, the possible influence of the degree of grafting on the overall behavior of copolymers for gene delivery has been largely overlooked. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of providing a comprehensive evaluation of the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of copolymeric vectors, we have synthesized seven Chi-g-bPEI(x derivatives with a variable amount of bPEI grafts (minimum: 0.6%; maximum: 8.8%. Along the Chi-g-bPEI(x series, the higher the degree of grafting, the greater the ζ-potential and the cytotoxicity of the resulting polyplexes. Most important, in all cell lines tested the intermediate degree of grafting of 2.7% conferred low cytotoxicity and higher transfection efficiency compared to other Chi-g-bPEI(x copolymers. We emphasize that, in transfection experiments carried out in primary articular chondrocytes, Chi-g-bPEI(2.7% was as effective as and less cytotoxic than the gold standard 25 kDa bPEI. CONCLUSIONS/SIGNIFICANCE: This work underlines for the first time the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of Chi-g-bPEI(x copolymers. Crucially, we have demonstrated

  4. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior.

    Science.gov (United States)

    Pezzoli, Daniele; Olimpieri, Francesca; Malloggi, Chiara; Bertini, Sabrina; Volonterio, Alessandro; Candiani, Gabriele

    2012-01-01

    Successful non-viral gene delivery currently requires compromises to achieve useful transfection levels while minimizing toxicity. Despite high molecular weight (MW) branched polyethylenimine (bPEI) is considered the gold standard polymeric transfectant, it suffers from high cytotoxicity. Inversely, its low MW counterpart is less toxic and effective in transfection. Moreover, chitosan is a highly biocompatible and biodegradable polymer but characterized by very low transfection efficiency. In this scenario, a straightforward approach widely exploited to develop effective transfectants relies on the synthesis of chitosan-graft-low MW bPEIs (Chi-g-bPEI(x)) but, despite the vast amount of work that has been done in developing promising polymeric assemblies, the possible influence of the degree of grafting on the overall behavior of copolymers for gene delivery has been largely overlooked. With the aim of providing a comprehensive evaluation of the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of copolymeric vectors, we have synthesized seven Chi-g-bPEI(x) derivatives with a variable amount of bPEI grafts (minimum: 0.6%; maximum: 8.8%). Along the Chi-g-bPEI(x) series, the higher the degree of grafting, the greater the ζ-potential and the cytotoxicity of the resulting polyplexes. Most important, in all cell lines tested the intermediate degree of grafting of 2.7% conferred low cytotoxicity and higher transfection efficiency compared to other Chi-g-bPEI(x) copolymers. We emphasize that, in transfection experiments carried out in primary articular chondrocytes, Chi-g-bPEI(2.7%) was as effective as and less cytotoxic than the gold standard 25 kDa bPEI. This work underlines for the first time the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of Chi-g-bPEI(x) copolymers. Crucially, we have demonstrated that, along the copolymer series, the fine tuning of the degree of grafting

  5. The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection.

    Science.gov (United States)

    Abdalkader, Rodi; Kawakami, Shigeru; Unga, Johan; Higuchi, Yuriko; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2017-11-01

    In this study, stable nano-sized bubbles (nanobubbles [NBs]) were produced using the mechanical agitation method in the presence of perfluorocarbon gases. NBs made with perfluoropropane had a smaller size (around 400 nm) compared to that of those made with perfluorobutane or nitrogen gas. The lipid concentration in NBs affected both their initial size and post-formulation stability. NBs formed with a final lipid concentration of 0.5 mg/ml tended to be more stable, having a uniform size distribution for 24 h at room temperature and 50 h at 4 °C. In vitro gene expression revealed that NBs/pDNA in combination with ultrasound (US) irradiation had significantly higher transfection efficacy in colon C26 cells. Moreover, for in vivo gene transfection in mice left limb muscles, there was notable local transfection activity by NBs/pDNA when combined with US irradiation. In addition, the aged NBs kept at room temperature or 4 °C were still functional at enhancing gene transfection in mice. We succeeded in preparing stable NBs for efficient in vivo gene transfection, using the mechanical agitation method.

  6. Photoenhanced gene transfection by a curcumin loaded CS-g-PZLL micelle.

    Science.gov (United States)

    Lin, Jian-Tao; Pan, Wen-Jia; Zhang, Jun-Ai; Wang, Wei; Zhong, Jia; Su, Jia-Min; Li, Tong; Zou, Ying; Wang, Guan-Hai

    2017-09-01

    The codelivery of drug and gene is a promising method for cancer treatment. In our previous works, we prepared a cationic micelles based on chitosan and poly-(N-3-carbobenzyloxylysine) (CS-g-PZLL), but transfection ratio of CS-g-PZLL to Hela cell was low. Herein, to improve the transfection efficiency of CS-g-PZLL, curcumin was loaded in the CS-g-PZLL micelle. After irradiation, the obtained curcumin loaded micelle showed a better transfection, and the p53 protein expression in Hela cells was higher. The apoptosis assay showed that the complex could induce a more significant apoptosis to Hela cells than that of curcumin or p53 used alone, and the curcumin loaded micelle inducing apoptosis was best after irradiation. Therefore, CS-g-PZLL is a safe and effective carrier for the codelivery of drug/gene, and curcumin could be used as a photosensitizer to induce a photoenhanced gene transfection, which should be encouraged in improving transfection and tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  7. In vivo and in vitro recombination of lambda DNA in CaC12 transfection.

    Science.gov (United States)

    Betcke, A; Pfeifer, M; Pöhlmann, C H; Kurth, M; Hartmann, M; Liebscher, D H

    1980-01-01

    Using CaCl2 mediated transfection with Lambda DNA fragments, in vitro joining by ligase and in vivo recombination with helper phage DNA are effective systems for generating artificial recombinants. Recombination efficiencies are 20--30% in the in vitro and in vivo recombination systems. At 30 to 37 degree C T4 ligase mainly joins natural cohesive alpha ends, while at 12 degrees C the EcoRI-generated termini are preferentially ligated to form biologically active molecules, if the cloning vector alpha 401 is used, which has only one EcoRI target. The ligation products were characterized by gel electrophoresis and CaCl2 transfection. For in vivo recombination a new CaCl2 transfection system was developed, termed postinfection-dependent CaCl2 transfection system, which is based on the infection of recipient cells with helper phages after transfection. In marker rescue experiments using this method not only single but also double recombination occurred between two independent alpha DNA fragments and the helper phage DNA.

  8. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  9. Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes.

    Science.gov (United States)

    Pappalardo, Juan Sebastián; Quattrocchi, Valeria; Langellotti, Cecilia; Di Giacomo, Sebastián; Gnazzo, Victoria; Olivera, Valeria; Calamante, Gabriela; Zamorano, Patricia I; Levchenko, Tatyana S; Torchilin, Vladimir P

    2009-02-20

    Antigen presenting cells (APC) are among the most important cells of the immune system since they link the innate and the adaptative immune responses, directing the type of immune response to be elicited. To modulate the immune response in immune preventing or treating therapies, gene delivery into immunocompetent cells could be used. However, APC are very resistant to transfection. To increase the efficiency of APC transfection, we have used liposome-based lipoplexes additionally modified with cell-penetrating TAT peptide (TATp) for better intracellular delivery of a model plasmid encoding for the enhanced-green fluorescent protein (pEGFP). pEGFP-bearing lipoplexes made of a mixture of PC:Chol:DOTAP (60:30:10 molar ratio) with the addition of 2% mol of polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate (plain-L) or TATp-PEG-PE (TATp-L) were shown to effectively protect the incorporated DNA from degradation. Uptake assays of rhodamine-labeled lipoplexes and transfections with the EGFP reporter gene were performed with APC derived from the mouse spleen. TATp-L-based lipoplexes allowed for significantly enhanced both, the uptake and transfection in APC. Such a tool could be used for the APC transfection as a first step in immune therapy.

  10. Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle

    International Nuclear Information System (INIS)

    Lee, Choongho; Wooldridge, Tonia R.; Laimins, Laimonis A.

    2007-01-01

    The E6 oncoproteins of high-risk human papillomaviruses provide important functions not only for malignant transformation but also in the productive viral life cycle. E6 proteins have been shown to bind to a number of cellular factors, but only a limited number of analyses have investigated the effects of these interactions on the viral life cycle. In this study, we investigated the consequences of HPV 31 E6 binding to E6TP1, a putative Rap1 GAP protein. HPV 16 E6 has been shown to bind as well as induce the rapid turnover of E6TP1, and similar effects were observed with HPV 31 E6. Mutation of amino acid 128 in HPV 31 E6 was found to abrogate the ability to bind and degrade E6TP1 but did not alter binding to another α-helical domain protein, E6AP. When HPV 31 genomes containing mutations at amino acid 128 were transfected into human keratinocytes, the viral DNAs were not stably maintained as episomes indicating the importance of this residue for pathogenesis. Many E6 binding partners including E6TP1 are cytoplasmic proteins, but E6 has been also reported to be localized to the nucleus. We therefore investigated the importance of E6 localization to the nucleus in the viral life cycle. Using a fusion of E6 to Green Fluorescent Protein, we mapped one component of the nuclear localization sequences to residues 121 to 124 of HPV 31 E6. Mutation of these residues in the context of the HPV 31 genome abrogated the ability for episomes to be stably maintained and impaired the ability to extend the life span of cells. These studies identify two activities of HPV 31 E6 that are important for its function in the viral life cycle and for extension of cell life span

  11. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells.

    Science.gov (United States)

    Batman, Gavin; Oliver, Anthony W; Zehbe, Ingeborg; Richard, Christina; Hampson, Lynne; Hampson, Ian N

    2011-01-01

    We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.

  12. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Sandeep; Agrawal, Ashish Kumar

    2013-01-01

    The present study reports the development, characterization, and evaluation of novel polyelectrolytes stabilized lipoplexes as a nonviral vector for gene delivery. In order to achieve the advantage of both DOTAP (1,2-dioleoyl-3-trimethylammonium propane) and PEI (high transfection efficiency...... size of 242.6 ± 9.4 nm and zeta potential of +23.1 ± 1.5 mV. Following development nanoplexes were evaluated for cellular uptake, nuclear colocalization, transfection efficiency, and cellular toxicity in MCF-7, HeLa, and HEK-293 cell lines. In support of our hypothesis nanoplexes exhibited higher...... uptake and nuclear colocalization in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, and PEI polyplexes. Nanoplexes also exhibited 50-80, 11-12, 6-7, and 5-6 fold higher transfection efficiency in comparison with DOTAP/PC-lipoplexes, DOTAP/DOPE-lipoplexes, PEI-polyplexes, and lipofectamine, respectively...

  13. Tetracycline-regulated transgene expression in hippocampal neurones following transfection with adenoviral vectors.

    Science.gov (United States)

    Harding, T C; Geddes, B J; Noel, J D; Murphy, D; Uney, J B

    1997-12-01

    A transfer system that enabled the efficient introduction of transgenes into neurones and the quantitative control of the expressed transgene would greatly facilitate studies into neuronal gene function. To develop such a system we incorporated the tetracycline (Tet)-responsive On/Off regulatory elements into type-5 adenoviral (Ad) vectors. Regulation of transgene expression following transfection was measured by placing the enhanced green fluorescent protein (EGFP) gene upstream of the Tet regulatory element. The results showed that cultures of primary hippocampal cells could be transfected with very high efficiency (<70%) by the AdTet-On and AdTet-Off systems. Following transfection with the AdTet-On system no EGFP-fluorescent cells could be detected until doxycycline was added. The AdTet-Off system showed the reverse transcriptional regulation, in that the addition of Tet caused EGFP fluorescence to be abolished.

  14. Purification of DNA for the transfection of a Spodoptera frugiperda cell line.

    Science.gov (United States)

    Slack, Jeffrey M; Lawrence, Susan D

    2002-01-01

    Spodoptera frugiperda (Sf-9) cells have been widely used in baculovirus expression systems, transient gene expression studies and transgenic cell lines. These applications commonly require the transfection of bacterial plasmid DNA. One of the most reliable methods of preparing transfection-quality plasmid DNA is cesium chloride (CsCl) density gradient centrifugation. However, the traditional CsCl DNA purification is a long and laborious process. We have made a series of modifications to the traditional method that makes it faster, safer and easier. In the current study we demonstrate that DNA prepared by our modified CsCl method was also better for the transfection of Sf-9 cells than DNA prepared by the traditional CsCl method.

  15. Use of cryopreserved transiently transfected cells in high-throughput pregnane X receptor transactivation assay.

    Science.gov (United States)

    Zhu, Zhengrong; Puglisi, Jaime; Connors, David; Stewart, Jeremy; Herbst, John; Marino, Anthony; Sinz, Michael; O'Connell, Jonathan; Banks, Martyn; Dickinson, Kenneth; Cacace, Angela

    2007-03-01

    Cryopreserved, transiently transfected HepG2 cells were compared to freshly transfected HepG2 cells for use in a pregnane X receptor (PXR) transactivation assay. Assay performance was similar for both cell preparations; however, cryopreserved cells demonstrated less interassay variation. Validation with drugs of different PXR activation potencies and efficacies demonstrated an excellent correlation (r(2) > 0.95) between cryopreserved and fresh cells. Cryopreservation did not change the effect of known CYP3A4 inducers that have poor cell permeability, indicating that cryopreservation had little effect on membrane permeability. In addition, cryopreserved HepG2 cells did not exhibit enhanced susceptibility to cytotoxic compounds compared to transiently transfected control cells. The use of cryopreserved cells enables this assay to run with enhanced efficiency.

  16. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium.

    Science.gov (United States)

    Prow, Tarl W; Bhutto, Imran; Kim, Sahng Y; Grebe, Rhonda; Merges, Carol; McLeod, D Scott; Uno, Koichi; Mennon, Mohamed; Rodriguez, Li; Leong, Kam; Lutty, Gerard A

    2008-12-01

    Chitosan, PCEP (poly{[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate}), and magnetic nanoparticles (MNPs) were evaluated for the safe delivery of genes in the eye. Rabbits were injected with nanoparticles either intravitreally (IV) or subretinally (SR) and sacrificed 7 days later. Eyes were grossly evaluated for retinal pigment epithelium abnormalities, retinal degeneration, and inflammation. All eyes were cryopreserved and sectioned for analysis of toxicity and expression of either enhanced green or red fluorescent proteins. All of the nanoparticles were able to transfect cells in vitro and in vivo. IV chitosan showed inflammation in 12/13 eyes, whereas IV PCEP and IV MNPs were not inflammatory and did not induce retinal pathology. SR PCEP was nontoxic in the majority of cases but yielded poor transfection, whereas SR MNPs were nontoxic and yielded good transfection. Therefore, we conclude that the best nanoparticle evaluated in vivo was the least toxic nanoparticle tested, the MNP.

  17. A comparative study of transfection methods for RNA interference in bone marrow-derived murine dendritic cells

    DEFF Research Database (Denmark)

    Pedersen, Charlotte Demuth; Fang, J J; Pedersen, Anders Elm

    2009-01-01

    Selective gene silencing using RNA interference (RNAi) has been shown to be an efficient method for manipulation of cellular functions. In this study, we compare three previously established methods for transfection of murine bone marrow-derived DC (BM-DC). We tested the efficacy of electroporation...... with the Mouse Nucleofector kit((R)) from Amaxa Biosystems and lipid-based transfection methods using transfection reagents from Santa Cruz Biotechnology or Genlantis. To analyse the transfection efficacy we used FITC-conjugated siRNA as a positive control together with CD80 and CD86 specific siRNA. We show...... that electroporation using the Mouse Nucleofector kit((R)) from Amaxa Biosystems was not an efficient method to transfect BM-DC with siRNA in our hands. Transfection with Santa Cruz Biotechnology reagents resulted in up to 59% FITC-siRNA positive cells, but did not result in effective silencing of CD80 surface...

  18. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids

    Science.gov (United States)

    Misra, Santosh K.; Biswas, Joydeep; Kondaiah, Paturu; Bhattacharya, Santanu

    2013-01-01

    Background Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies. PMID:23861884

  19. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [ 3 H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [ 3 H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES

  20. Chondrogenic effect of precartilaginous stem cells following NLS-TAT cell penetrating peptide-assisted transfection of eukaryotic hTGFβ3.

    Science.gov (United States)

    Guo, Xin; Chu, Xiangyu; Li, Wenkai; Pan, Qiyong; You, Hongbo

    2013-11-01

    Cell penetrating peptides (CPPs) are a series of promising carriers for delivering exogenous DNA to living cells. Among them, the combination of the human immunodeficiency virus TAT protein (TAT) with the SV40 large T protein nuclear localization signal (NLS) to form NLS-TAT performs well. In the present study, we took advantage of this new carrier to deliver transforming growth factor-beta 3 (TGFβ3) genes. TGFβ3 was expressed by the pEGFP-N1 vector following transfection of rat precartilaginous stem cells (PSCs), which promoted hTGFβ3 protein self-expression. At 24, 48, 72, and 120 h after transfection, the expression levels of hTGFβ3 were found to be elevated as compared with the control. The expression of hTGFβ3 was found to mediate the chondrogenic effect of PSCs. Thus, we determined the expression of the chondrogenesis-related genes type II collagen, Sox 9, and aggrecan in PSCs at 24, 48, 72, and 120 h after transfection. We found that their transcription and translation was augmented, which indicated a trend of active chondrogenesis in the PSCs. Our results demonstrated that NLS-TAT had the ability to deliver exogenous DNA into rat PSCs and could be actively expressed. This process successfully promoted PSC chondrogenesis. Additionally, PSC, may represent a new type of stem cells, and thus show great potential in regenerative repair following cartilage injury. © 2013 Wiley Periodicals, Inc.

  1. Intracellular characterization of Gag VLP production by transient transfection of HEK 293 cells.

    Science.gov (United States)

    Cervera, Laura; González-Domínguez, Irene; Segura, María Mercedes; Gòdia, Francesc

    2017-11-01

    Transient transfection is a fast, flexible, and cost-effective approach to produce biological products. Despite the continued interest in transient transfection, little is known regarding the transfection process at the intracellular level, particularly for complex products, such as virus-like particles (VLPs). The kinetics of PEI-mediated transfection following an established in-house protocol is reported in this work with the aim of characterizing and understanding the complete process leading to VLP generation and identifying important events driving process improvement. For this purpose, DNA/PEI polyplexes' internalization in cells was tracked using Cy3 DNA staining. The production of a fluorescently labeled Gag polyprotein (a Gag-GFP fusion construct that forms fluorescent Gag-VLPs) was monitored by flow cytometry and confocal microscopy, and the VLP concentration in supernatants was measured by fluorometry. DNA/PEI polyplexes interact with the cell membrane immediately after polyplex addition to the cell culture. A linear increase in the number of cells expressing the protein is observed during the first 60 min of contact between the cells and polyplexes. No additional improvement in the number of cells expressing the protein (up to 60%) or VLP production (up to 1 × 10 10 VLPs/mL) is observed with additional contact time between the cells and polyplexes. Polyplexes can be detected in the cytoplasm of transfected cells as early as 1.5 h post-transfection (hpt) and reach the nucleus approximately 4 hpt. GFP fluorescence is observed homogeneously in the cytoplasm of transfected cells 24 hpt, but generalized VLP budding is not observed by microscopy until 48 hpt. Although all cells have internalized a polyplex soon after transfection, only a fraction of cells (60%) express the fluorescent Gag protein. VLP production kinetics was also studied. Fluorescence in the supernatant (enveloped VLPs) is 40% less than total fluorescence, supernatant plus pellet

  2. Nonviral gene transfection nanoparticles: function and applications in the brain.

    Science.gov (United States)

    Roy, Indrajit; Stachowiak, Michal K; Bergey, Earl J

    2008-06-01

    In vivo transfer and expression of foreign genes allows for the elucidation of functions of genes in living organisms and generation of disease models in animals that more closely resemble the etiology of human diseases. Gene therapy holds promise for the cure of a number of diseases at the fundamental level. Synthetic "nonviral" materials are fast gaining popularity as safe and efficient vectors for delivering genes to target organs. Not only can nanoparticles function as efficient gene carriers, they also can simultaneously carry diagnostic probes for direct "real-time" visualization of gene transfer and downstream processes. This review has focused on the central nervous system (CNS) as the target for nonviral gene transfer, with special emphasis on organically modified silica (ORMOSIL) nanoparticles developed in our laboratory. These nanoparticles have shown robust gene transfer efficiency in brain cells in vivo and allowed to investigate mechanisms that control neurogenesis as well as neurodegenerative disorders.

  3. Transfection efficiency of normal and cancer cell lines and monitoring of promoter activity by single-cell bioluminescence imaging.

    Science.gov (United States)

    Horibe, Tomohisa; Torisawa, Aya; Akiyoshi, Ryutaro; Hatta-Ohashi, Yoko; Suzuki, Hirobumi; Kawakami, Koji

    2014-02-01

    The bioluminescence system (luciferase reporter assay system) is widely used to study gene expression, signal transduction and other cellular activities. Although transfection of reporter plasmid DNA to mammalian cell lines is an indispensable experimental step, the transfection efficiency of DNA varies among cell lines, and several cell lines are not suitable for this type of assay because of the low transfection efficiency. In this study, we confirm the transfection efficiency of reporter DNA to several cancer and normal cell lines after transient transfection by single-cell imaging. Luminescence images could be obtained from living single cells after transient transfection, and the calculated transfection efficiency of this method was similar to that of the conventional reporter assay using a luminometer. We attempted to measure the activity of the Bip promoter under endoplasmic reticulum stress conditions using both high and low transfection efficiency cells for plasmid DNA at the single-cell level, and observed activation of this promoter even in cells with the lowest transfection efficiency. These results show that bioluminescence imaging of single cells is a powerful tool for the analysis of gene expression based on a reporter assay using limited samples such as clinical specimens or cells from primary culture, and could provide additional information compared with the conventional assay. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    International Nuclear Information System (INIS)

    Staab, Adrian; Einsele, Hermann; Flentje, Michael; Vordermark, Dirk; Loeffler, Jürgen; Said, Harun M; Diehlmann, Désirée; Katzer, Astrid; Beyer, Melanie; Fleischer, Markus; Schwab, Franz; Baier, Kurt

    2007-01-01

    Hypoxia-inducible factor-1 (HIF-1) overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9) and vascular endothelial growth factor (VEGF) by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O 2 , 12 h) conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h). Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER') compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

  5. Gateway-compatible transposon vector to genetically modify human embryonic kidney and adipose-derived stromal cells.

    Science.gov (United States)

    Petrakis, Spyros; Raskó, Tamas; Mátés, Lajos; Ivics, Zoltan; Izsvák, Zsuzsanna; Kouzi-Koliakou, Kokkona; Koliakos, George

    2012-07-01

    The Gateway technology cloning system and transposon technology represent state-of-the-art laboratory techniques. Combination of these molecular tools allows rapid cloning of target genes into expression vectors. Here, we describe a novel Gateway technology-compatible transposon plasmid that combines the advantages of Gateway recombination cloning with the Sleeping Beauty (SB) transposon-mediated transgene integrations. In our system the transposition is catalyzed by the novel hyperactive SB100x transposase, and provides highly efficient and precise transgene integrations into the host genome. A Gateway-compatible transposon plasmid was generated in which the potential target gene can be fused with a yellow fluorescent protein (YFP) tag at the N-terminal. The vector utilizes the CAGGS promoter to control fusion protein expression. The transposon expression vector encoding the YFP-interferon-β protein (IFNB1) fusion protein together with the hyperactive SB100x transposase was used to generate stable cell lines in human embryonic kidney (HEK293) and rat adipose-derived stromal cells (ASC). ASCs and HEK293 cells stably expressed and secreted the human IFNB1 for up to 4 weeks after transfection. The generated Gateway-compatible transposon plasmid can be utilized for numerous experimental approaches, such as gene therapy or high-throughput screening methods in primary cells, representing a valuable molecular tool for laboratory applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    Directory of Open Access Journals (Sweden)

    Baier Kurt

    2007-11-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1 (HIF-1 overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Methods Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9 and vascular endothelial growth factor (VEGF by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O2, 12 h conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h. Results Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER' compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. Conclusion HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro.

  7. Characterization of a TK6-Bcl-xL gly-159-ala Human Lymphoblast Clone

    Energy Technology Data Exchange (ETDEWEB)

    Chyall, L.: Gauny, S.; Kronenberg, A.

    2006-01-01

    TK6 cells are a well-characterized human B-lymphoblast cell line derived from WIL-2 cells. A derivative of the TK6 cell line that was stably transfected to express a mutated form of the anti-apoptotic protein Bcl-xL (TK6-Bcl-xL gly-159- ala clone #38) is compared with the parent cell line. Four parameters were evaluated for each cell line: growth under normal conditions, plating efficiency, and frequency of spontaneous mutation to 6‑thioguanine resistance (hypoxanthine phosphoribosyl transferase locus) or trifluorothymidine resistance (thymidine kinase locus). We conclude that the mutated Bcl-xL protein did not affect growth under normal conditions, plating efficiency or spontaneous mutation frequencies at the thymidine kinase (TK) locus. Results at the hypoxanthine phosphoribosyl transferase (HPRT) locus were inconclusive. A mutant fraction for TK6‑Bcl-xL gly-159-ala clone #38 cells exposed to 150cGy of 160kVp x-rays was also calculated. Exposure to x-irradiation increased the mutant fraction of TK6‑Bcl-xL gly-159-ala clone #38 cells.

  8. Live cell imaging of in vitro human trophoblast syncytialization.

    Science.gov (United States)

    Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei

    2014-06-01

    Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.

  9. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  10. Transfection of myoblasts in primary culture with isomeric cationic cholesterol derivatives

    NARCIS (Netherlands)

    Bischoff, Rainer; Cordier, Y.; Perraud, F.; Thioudellet, C.; Braun, S.; Pavirani, A.

    1997-01-01

    Transfection of satellite cells from dog muscle (myoblasts) in primary culture has been optimized with respect to the position of the cholesteryl moiety along the polyamine chain of spermidine or spermine. Spermidine or spermine were derivatized with cholesterylchloroformate giving rise to three

  11. Transfection of tumor-infiltrating T cells with mRNA encoding CXCR2

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Eivind Per; Svane, Inge Marie

    2016-01-01

    infused T cells migrating to the tumor and the clinical response, but also that only a small fraction of adoptively transferred Tcells reach the tumor site. In this chapter, we describe a protocol for transfection of TILs with mRNA encoding the chemokine receptor CXCR2 transiently redirecting...

  12. Comparative Analysis of Non-viral Transfection Methods in Mouse Embryonic Fibroblast Cells.

    Science.gov (United States)

    Lee, Migi; Chea, Kathleen; Pyda, Rajyalakshmi; Chua, Melissa; Dominguez, Isabel

    2017-07-01

    Mouse embryonic fibroblast (MEF) cells are an important in vitro model for developmental biology, disease, and reprogramming studies. However, as with other primary cells, they are challenging to transfect. Although viral gene-delivery methods achieve high gene-delivery efficiency, challenges with cell mutagenesis and safety among others have led to the use and improvement of non-viral gene-delivery methods in MEF cells. Despite the importance of gene delivery in MEF cells, there is limited comparison of method/reagent efficacy. In this study, we compared the effectiveness of different gene-delivery methods and several reagents currently available in MEF cells by introducing a plasmid containing enhanced green fluorescent protein (EGFP). We analyze transfection efficiency by EGFP fluorescence. Our results suggest that two gene-delivery methods-electroporation and magnetofection in combination with a lipid reagent, are the most efficient transfection methods in MEF cells. This study provides a foundation for the selection of transfection methods or reagents when using MEF cells.

  13. Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro

    Science.gov (United States)

    Mestas, J. L.; Chettab, K.; Roux, S.; Prieur, F.; Lafond, M.; Dumontet, C.; Lafon, C.

    2015-12-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. We developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (peGFP- C1) in adherent and non-adherent cell lines. The frequency spectrum of the signal receive by a hydrophone is used to compute a cavitation index (CI) representative of the inertial cavitation activity. The influence of the CI on transfection efficiency, as well as reproducibility were determined. A real-time feedback loop control on CI was integrated in the process to regulate the cavitation level during sonoporation. In both adherent and non-adherent cell lines, the sonoporation device produced a highly efficient transfection of peGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. Moreover, the sonoporation of non-adherent cell lines Jurkat and K562 was found to be equivalent to nucleofection in terms of efficiency and toxicity while these two cell lines were resistant to transfection with lipofection.

  14. Efficient Transfection of siRNA by Peptide Dendrimer-Lipid Conjugates.

    Science.gov (United States)

    Kwok, Albert; Eggimann, Gabriela A; Heitz, Marc; Reymond, Jean-Louis; Hollfelder, Florian; Darbre, Tamis

    2016-12-02

    Efficient delivery of small interfering RNA (siRNA) into cells is the basis of target-gene-specific silencing and, ultimately, gene therapy. However, current transfection reagents are relatively inefficient, and very few studies provide the sort of systematic understanding based on structure-activity relationships that would provide rationales for their improvement. This work established peptide dendrimers (administered with cationic lipids) as siRNA transfection reagents and recorded structure-activity relationships that highlighted the importance of positive charge distribution in the two outer layers and a hydrophobic core as key features for efficient performance. These dendrimer-based transfection reagents work as well as highly optimised commercial reagents, yet show less toxicity and fewer off-target effects. Additionally, the degrees of freedom in the synthetic procedure will allow the placing of decisive recognition features to enhance and fine-tune transfection and cell specificity in the future. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  16. Transfection mediated by gemini surfactants : Engineered escape from the endosomal compartment

    NARCIS (Netherlands)

    Bell, PC; Bergsma, M; Dolbnya, IP; Bras, W; Stuart, MCA; Rowan, AE; Feiters, MC; Engberts, JBFN

    2003-01-01

    The structure of the lipoplex formed from DNA and the sugar-based cationic gemini surfactant 1, which exhibits excellent transfection efficiency, has been investigated in the pH range 8.8-3.0 utilizing small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-TEM). Uniquely, three

  17. Characterization of a tachykinin peptide NK sub 2 receptor transfected into murine fibroblast B82 cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Giersbergen, P.L.M. (Marion Merrell Dow Research Inst., Cincinnati, OH (United States) Univ. of Cincinnati, OH (United States)); Shatzer, S.A.; Buck, S.H. (Marion Merrell Dow Research Inst., Cincinnati, OH (United States)); Henderson, A.K.; Lai, J.; Yamamura, Henry, I. (Univ. of Arizona, Tucson (United States)); Nakanishi, Shigetada (Kyoto Univ. (Japan))

    1991-03-01

    Membranes isolated from a murine fibroblast B82 cell line (SKLKB82{number sign}3) transfected with the bovine stomach cDNA pSKR56S exhibited binding of (His({sup 125}I){sup 1})neurokinin A ({sup 125}I-NKA) to a single population of sites with a B{sub max} of 147 fmol/mg of protein and a K{sub d} of 0.59 nM. The ligand binding in SKLKB82{number sign}3 cells was reversible. Thus, SKLKB82{number sign}3 cells have been transfected with NK{sub 2} receptors that have become associated with an endogenous guanine nucleotide-binding protein. In comparison with membranes from the hamster urinary bladder, a tissue enriched in NK{sub 2} receptors, NK{sub 2} receptor antagonists displayed markedly different potencies, either more or less potent, in inhibiting specific binding in membranes of the transfected cells. Furthermore, inhibition of {sup 125}I-NKA binding by nucleotide analogues was markedly different in SKLKB82{number sign}3 cells compared with hamster bladder tissue. The different binding profile in the cells is not due to an artefact introduced during cDNA transfection because a similar profile was also observed in bovine stomach membranes. These results may indicate the existence of two distinct NK{sub 2} receptors.

  18. Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles

    Science.gov (United States)

    Chiang, Chen-Li; Sung, Ching-Shan

    2006-07-01

    The functionalized magnetic nanobeads were used to develop a rapid protocol for extracting and purifying transfection-grade plasmid DNA from bacterial culture. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical coprecipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe 3O 4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 819 μg of high-purity (A 260/A 280 ratio=1.86) plasmid DNA was isolated from 100 ml of overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and animal cell transfection applications with success. The PEI-modified magnetic nanobead delivers significant time-savings, overall higher yields and better transfection efficiencies compared to anion-exchange and other methods. The results presented in this report show that PEI-modified magnetic nanobeads are suitable for isolation and purification of transfection-grade plasmid DNA.

  19. Elevation of Transfection Efficiency by Conjugation of Poly(amindoamine)-diethylenetriamine (PAM-DET) with Dexamethasone

    International Nuclear Information System (INIS)

    Jeong, Yunseong; Park, Jihye; Jin, Geunwoo; Park, Jongsang

    2012-01-01

    We successfully conjugated hydrophobic group, dexamethasone onto the surface of PAM-DET to synthesize PAM-DET-DX to form polyplexes with enhanced stability against ionic strength. We evaluated its stability by measuring the size of its polyplexes; the conjugated PAM-DET polyplex showed decreased growth compared to the PAM-DET polyplex in an environment with increased ionic strength, which implies that the conjugated PAM-DET has enhanced stability against increased ionic strength. Furthermore, conjugation of hydrophobic group caused a slight increase in the transfection efficiency without inducing toxicity. Of course, it isn't a neglectable factor that nuclear localization effect of DX can drive the advanced transfection efficiency of PAM-DET-DX polyplex. It means that the hydrophobic moieties which have some other positive properties in transfection are good candidates that can be introduced to non-viral polymeric gene delivery carrier. This strongly indicates that the introduction of hydrophobic moiety on PAM-DET is a good method to enhance polyplex stability against ionic strength without diminishing its advantageous properties, such as high transfection efficiency and low cytotoxicity

  20. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA

    NARCIS (Netherlands)

    Olbrich, C; Bakowsky, U; Muller, RH; Kneuer, C

    2001-01-01

    The suitability of cationically modified solid-lipid nanoparticles (SLN) as a novel transfection agent was investigated. SLN were produced by hot homogenisation using either Compritol ATO 888 or paraffin as matrix lipid, a mixture of Tween 80 and Span 85 as tenside and either EQ1

  1. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  3. Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection.

    Science.gov (United States)

    Hagen, Lars; Sharma, Animesh; Aas, Per Arne; Slupphaug, Geir

    2015-01-01

    Transient transfection of mammalian cells with plasmid expression vectors and chemical transfection reagents is widely used to study protein transport and dynamics as well as phenotypic alterations mediated by the overexpressed protein. Despite the undisputed impact of this technique, surprisingly little is known about the cellular effects mediated by the transfection process per se. Conceivably, off-target effects could have implications upon proteins or processes being studied and understanding the molecular pathways affected would add value to the interpretation of experimental observations subsequent to cell transfection. Here we have used a SILAC-based proteomic approach to study differentially expressed proteins after transfection of HeLa cells with ECFP vector using a commonly employed non-liposome based transfection reagent, Fugene®HD. Whereas the transfection reagent itself mediated minimal effects upon protein expression, 11 proteins were found to be significantly upregulated after transfection, all of which were associated with an interferon type I/II response. The upregulated proteins might potentially inflict major cellular processes such as RNA splicing, chromatin remodeling, post-translational protein modification and cell cycle control. The results were validated by western analysis as well as quantitative RT-PCR and this demonstrated that an essentially identical response was induced in HeLa by transfection using an empty pUC18 vector, which does not contain a mammalian virus promoter, as well as a liposome-based transfection reagent, Lipofectamine(TM)2000. Notably, no induction of the interferon response was observed in HEK293 cells, suggesting that these cells might be preferable to HeLa to avoid undesired off-target effects in transfection studies encompassing interferon-signaling and antiviral responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A novel Leishmania infantum nuclear phosphoprotein Lepp12 which stimulates IL1-beta synthesis in THP-1 transfectants

    Directory of Open Access Journals (Sweden)

    Mograbi Baharia

    2003-04-01

    Full Text Available Abstract Background We report cloning and characterization of a novel Leishmania infantum protein which we termed Lepp12, and we examine its possible implication in the interference with intramacrophage signaling pathways. Results The protein Lepp12 contains 87 amino acid sequence and exhibits 5 potential phosphorylation sites by protein kinase C (PKC. Recombinant GST-Lepp12 is phosphorylated in vitro by exogenous PKC and by PKC-like activities present in promastigote and in the myelomonocytic THP-1 cell line, indicating that at least one phosphorylation site is functional on the recombinant Lepp12. The natural Lepp12 protein is present in L. infantum promastigotes, as evidenced using specific anti-Lepp12 antibodies produced by immunopurification from acute phase VL patient sera. Interestingly, human patient sera are strongly reactive with GST-Lepp12, demonstrating immunogenic properties of Lepp12 in man, but no immune response to Lepp12 is detectable in experimentally infected animals. When isolated from promastigotes, Lepp12 migrates as two species of apparent MW of 18.3 kDa (major and 14 kDa (minor, localizes in the nuclear fraction and appears constitutively phosphorylated. Natural Lepp12 is phosphorylable in vitro by both exogenous PKC and PKC-like activity present in THP-1 extracts. The intracellular Lepp12 transfected into THP-1 cells activates these cells to produce IL-1beta and induces an enhancing effect on PMA stimulated IL-1beta synthesis, as demonstrated using GST-Lepp12 transfectants. Conclusions Together these results indicate that Lepp12 represents a substrate for PKC or other PKC-like activities present in the promastigote form and the host cell and therefore may interfere with signal transduction pathways involving PKC.

  5. GENE TRANSFER ON Betta imbellis THROUGH TRANSFECTION METHOD WITH DIFFERENT DNA CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Eni Kusrini

    2016-12-01

    Full Text Available Big size betta (Giant have a high economic value compared to normal size betta, and over expression of growth hormone gene can produce giant fish.  As an initial step of giant transgenic betta productions, this study was conducted in order to obtain DNA plasmid concentration which provide higher hatching and survival rate of betta larvae.  Construction of PhGH pCcBA gene contains growth hormone gene of Siamese catfish (PhGH and it is controlled by the CCBA promoter. Betta imbellis broodstocks were spawned naturally, and embryos were collected 1-2 minutes after spawning time. One hundred embryos were dipped in 2 mL of transfectan X-treme gene which containp CcBA-PhGH construction genes (50 µg/mL, on room temperature for about 30 minutes. Treatments on this study were different transfectant : DNA plasmid ratiosnamely:A (0,75 µL: 0,25 µL; B (0,75 µL : 0,50 µL; C (0,75 µL: 0,75 µL, D as Control 1(without transfectant, 0,25 µL DNA; E.as Control 2(0,75 µL transfectant, without DNA, and Fas control 3 (without transfectant and without DNA. Every treatments was repeated three times.  Transfection embryos were hatched on a container (1L Volume. Study results showed that hatching rate and larvae survival rate  (4 days after hatching on treatment A were the same with the control, but slightly higher than B and C treatments. PCR analysis with DNA template showing that PhGH gene were found on embryos and larvae (pooled sample of treatment A, B and C. Furthermore, RT-PCR analysis showing the existence of mRNA PhGH expression on embryos and larvae (pooled sample. Therefore, embryo transfection with transfectant ratio 0,75 µL and  DNA 0,25 µLshowing the best results.

  6. Plasmid transfection in mammalian cells spatiotemporally tracked by a gold nanoparticle.

    Science.gov (United States)

    Muroski, Megan E; Carnevale, Kate J F; Riskowski, Ryan A; Strouse, Geoffrey F

    2015-01-27

    Recent advances in cell transfection have suggested that delivery of a gene on a gold nanoparticle (AuNP) can enhance transfection efficiency. The mechanism of transfection is poorly understood, particularly when the gene is appended to a AuNP, as expression of the desired exogenous protein is dependent not only on the efficiency of the gene being taken into the cell but also on efficient endosomal escape and cellular processing of the nucleic acid. Design of a multicolor surface energy transfer (McSET) molecular beacon by independently dye labeling a linearized plasmid and short duplex DNA (sdDNA) appended to a AuNP allows spatiotemporal profiling of the transfection events, providing insight into package uptake, disassembly, and final plasmid expression. Delivery of the AuNP construct encapsulated in Lipofectamine2000 is monitored in Chinese hamster ovary cells using live-cell confocal microscopy. The McSET beacon signals the location and timing of the AuNP release and endosomal escape events for the plasmid and the sdDNA discretely, which are correlated with plasmid transcription by fluorescent protein expression within the cell. It is observed that delivery of the construct leads to endosomal release of the plasmid and sdDNA from the AuNP surface at different rates, prior to endosomal escape. Slow cytosolic diffusion of the nucleic acids is believed to be the limiting step for transfection, impacting the time-dependent expression of protein. The overall protein expression yield is enhanced when delivered on a AuNP, possibly due to better endosomal escape or lower degradation prior to endosomal escape.

  7. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies

    Directory of Open Access Journals (Sweden)

    Morral Núria

    2011-01-01

    Full Text Available Abstract Background Primary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA or microRNA (miRNA. New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity. Findings We have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells as well as double stranded RNA (>90% with siRNA or microRNA. In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA. Conclusions We have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.

  9. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency.

    Science.gov (United States)

    de Jesus, Marcelo B; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dick; Zuhorn, Inge S

    2014-02-01

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that are suitable carriers for nucleic acids (DNA, siRNA). Considering the beneficial effect of helper lipids on the transfection efficiency with cationic liposomes, the effect of the helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) on transfection with cationic lipid-containing solid lipid nanoparticles was investigated in PC3 prostate cancer cells. The inclusion of DOPE in SLN formulations, instead of promoted, strongly inhibited SLN transfection efficiency, by frustrating the accommodation of DNA by the particles, as was revealed by biochemical analysis. SLNs devoid of DOPE maintained a homogenous size distribution of approximately 150 nm following lipoplex assembly and cellular delivery, and showed transfection efficiency comparable to that of Lipofectamine 2000' (LF2k). Moreover, the SLNs maintain their high transfection efficiency after lyophilization and long-term storage (1-2 years), an important asset for biomedical applications. There is even the possibility to lyophilize the SLN carrier together with its DNA cargo, which represents an interesting pharmaceutical advantage of the SLN formulations over LF2k. These results reflect marked differences between the physicochemical properties of cationic liposomes and SLNs, the latter requiring more critical lipid-depending properties for effective 'packaging' of DNA but displaying a higher storage stability than cationic lipid based carriers like LF2k.

  10. Gene therapy of transplant arteriopathy by liposome-mediated transfection of endothelial nitric oxide synthase.

    Science.gov (United States)

    Iwata, A; Sai, S; Moore, M; Nyhuis, J; de Fries-Hallstrand, R; Quetingco, G C; Allen, M D

    2000-11-01

    Transplant arteriopathy is the major factor limiting long-term survival after cardiac transplantation. We have previously demonstrated that liposome-mediated gene delivery of endothelial nitric oxide synthase (eNOS) to donor hearts reduces ischemia-reperfusion injury by blocking NFkappaB activation, adhesion molecule expression, and leukocyte infiltration. In this study, we used gene transfer of eNOS in a rabbit carotid transplant model to see whether these same effects would similarly ameliorate transplant arteriopathy. Liposomes complexed to the gene encoding eNOS were injected into donor carotid arterial segments that were transplanted orthotopically into recipient carotid arteries (n = 10). Controls included transplanted carotids transfected with liposomes complexed to empty plasmids (no functional gene) (n = 4) and transplanted carotids treated with saline (n = 6). Transplanted arteries were harvested for processing at 21 days. Intima/media (I/M) area ratios were calculated by computerized image analysis. Infiltrating T-lymphocytes and macrophages, and expression of VCAM-1 and ICAM-1 were quantified on immunocytochemistry. The I/M ratio was significantly reduced in eNOS-transfected arteries compared with arteries transfected with empty plasmids and saline-treated controls. Compared to transplanted control arteries, eNOS-transfected arteries demonstrated significantly reduced T-cell infiltration into the intima and significantly reduced macrophage infiltration into the media. Cell surface expression of VCAM-1 and ICAM-1 were both reduced in eNOS-transfected arteries. ENOS gene delivery can suppress neointimal lesion formation and T-lymphocyte and macrophage infiltration in transplanted arteries, associated with a reduction in relevant adhesion molecule expression. Thus, gene therapy with eNOS may not only reduce ischemia-reperfusion injury but may also ameliorate transplant arteriopathy in transplanted hearts.

  11. Expression of R132H mutational IDH1 in human U87 glioblastoma cells affects the SREBP1a pathway and induces cellular proliferation.

    Science.gov (United States)

    Zhu, Jian; Cui, Gang; Chen, Ming; Xu, Qinian; Wang, Xiuyun; Zhou, Dai; Lv, Shengxiang; Fu, Linshan; Wang, Zhong; Zuo, Jianling

    2013-05-01

    Sterol regulatory element-binding protein-1a (SREBP1a) is a member of the SREBP family of transcription factors, which mainly controls homeostasis of lipids. SREBP1a can also activate the transcription of isocitrate dehydrogenase 1 (IDH1) by binding to its promoter region. IDH1 mutations, especially R132H mutation of IDH1, are a common feature of a major subset of human gliomas. There are few data available on the relationship between mutational IDH1 expression and SREBP1a pathway. In this study, we investigated cellular effects and SREBP1a pathway alterations caused by R132H mutational IDH1 expression in U87 cells. Two glioma cell lines, stably expressing mutational (U87/R132H) or wild type (U87/wt) IDH1, were established. A cell line, stably transfected with pcDNA3.1(+) (U87/vector), was generated as a control. Click-iT EdU assay, sulforhodamine B assay, and wound healing assay respectively showed that the expression of R132H induced cellular proliferation, cell growth, and cell migration. Western blot revealed that SREBP1 was increased in U87/R132H compared with that in U87/wt. Elevated SREBP1a and several its target genes, but not SREBP1c, were detected by real-time polymerase chain reaction in U87/R132H. All these findings indicated that R132H mutational IDH1 is involved in the regulation of proliferation, growth, and migration of glioma cells. These effects may partially be mediated by SREBP1a pathway.

  12. Functional interaction between human papillomavirus type 16 E6 and E7 oncoproteins and cigarette smoke components in lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Muñoz

    Full Text Available The smoking habit is the most important, but not a sufficient cause for lung cancer development. Several studies have reported the human papillomavirus type 16 (HPV16 presence and E6 and E7 transcripts expression in lung carcinoma cases from different geographical regions. The possible interaction between HPV infection and smoke carcinogens, however, remains unclear. In this study we address a potential cooperation between tobacco smoke and HPV16 E6 and E7 oncoproteins for alterations in proliferative and tumorigenic properties of lung epithelial cells. A549 (alveolar, tumoral and BEAS-2B (bronchial, non-tumoral cell lines were stably transfected with recombinant pLXSN vectors expressing HPV16 E6 and E7 oncoproteins and exposed to cigarette smoke condensate (CSC at different concentrations. HPV16 E6 and E7 expression was associated with loss of p53 stability, telomerase (hTERT and p16(INK4A overexpression in BEAS-2B cells as demonstrated by quantitative real-time polymerase chain reaction (qRT-PCR and western blotting (WB. In A549 cells we observed downregulation of p53 but not a significant increase of hTERT transcripts. In addition, the HPV16 E6/E7 transfected cell lines showed an increased proliferation rate and anchorage-independent growth in a HPV16 E6 and E7 expression-dependent manner. Moreover, both HPV16 E6/E7 and mock transfected cells showed an increased proliferation rate and anchorage-independent growth in the presence of 0.1 and 10 µg/mL CSC. However, this increase was significantly greater in HPV16 E6/E7 transfected cells (p<0.001. Data were confirmed by FCSE proliferation assay. The results obtained in this study are suggestive of a functional interaction between tobacco smoke and HPV16 E6/E7 oncoproteins for malignant transformation and tumorigenesis of lung epithelial cells. More studies are warranted in order to dissect the molecular mechanisms involved in this cooperation.

  13. Transcriptomic analyses of genes differentially expressed by high-risk and low-risk human papilloma virus E6 oncoproteins.

    Science.gov (United States)

    Ganguly, Pooja; Ganguly, Niladri

    2015-09-01

    Human papilloma virus is the causative agent for cervical cancer with 99 % of cervical cancer cases containing HPV. The high risk HPV-16, 18 and 31 are the major causative agents. The low risk HPV-6, 11 have been reported to cause penile, laryngeal, bronchogenic and oesophageal cancer. Since E6 oncoprotein is frequently over expressed in cancers, we did gene expression studies to compare between the E6 genes of high-risk (HPV18) or low-risk (HPV11)stably transfected in epithelial cell line EPC-2 or mock transfected with the basic vector pCDNA3.1. Microarray studies showed a total of 697 genes showing differential expression between the samples. Genes involved in several key cellular processes such as cell adhesion, angiogenesis, transcription regulation, cell cycle regulation and cell division showed altered expression between the samples. Gene Ontology mapping of 44 genes according cellular pathways revealed 13 pathways namely angiogenesis, alzhemier's, Wnt, p53, interleukin, TGF-β, cadherin, integrin, PI3-kinase, catennin, insulin, chemokine and G protein signalling pathways. The microarray results were confirmed by quantitative real-time PCR for some representative genes like IFI27, CTNNA1, OSMR, CYP1B1, TNFSF13, LAMA2 and COL5A3. Analysis of differentially expressed genes by high-risk and low-risk HPV E6 proteins might help in identification of potential biomarkers for diagnosis, progression and therapy of oesophageal cancer. The understanding of mechanisms of activation of these genes as well as the function of gene products will give a further insight into their roles in oesophageal cancer.

  14. Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches.

    Directory of Open Access Journals (Sweden)

    Li Xia

    Full Text Available Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs and 17% of outer hair cells (OHCs were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively was slightly higher, but the difference was not significant.

  15. Enhancement of the response to purinergic agonists in P2Y1 transfected 1321N1 cells by antagonists suramin and PPADS

    OpenAIRE

    Brown, Colin A; Charlton, Steven J; Boarder, Michael R

    1997-01-01

    We have previously shown that both suramin and pyridoxal-phosphate-6-azophenyl-2′, 4′ disulphonic acid (PPADS) act as antagonists at transfected P2Y1 receptors. Here we show that under certain experimental conditions these two P2 antagonists can enhance the response to agonists acting at these receptors.The expression of either P2Y1 or P2Y2 receptors in 1321N1 human astrocytoma cells results, on a change of medium, in an elevation of basal (no added agonist) accumulation of [3H]-inositol(poly...

  16. Improvement of AdCMV-GFP gene transfection efficiency induced by heavy-ion beam irradiation on murine melanoma cells

    International Nuclear Information System (INIS)

    Duan Xin; Min Fengling; Liu Bing; Zhou Qingming; Li Xiaoda; Wang Yanling; Chinese Academy of Sciences, Beijing; Zhang Hong; Qiu Rong; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2007-01-01

    The effect of 12 C 6+ beam irradiation on AdCMV-GFP (a replication deficient recombinant adenoviral vector containing CMV promoter and green fluorescent protein) gene transfection efficiency for murine melanoma cell B16 has been investigated. B16 cells infected with AdCMV-GFP were irradiated by different doses of 12 C 6+ beam. The transfection efficiency was assessed by flow cytometry (FCM). Results show that 12 C 6+ beam irradiation can improve transfection efficiency of AdCMV-GFP on murine melanoma cell B16 in a dose-dependent manner. In addition, the transfection efficiency in pre-tranfection plus irradiation group is higher than that in pre-irradiation plus transfection group at the same dose irradiation dose. (authors)

  17. Butyrate Produced by Commensal Bacteria Potentiates Phorbol Esters Induced AP-1 Response in Human Intestinal Epithelial Cells

    Science.gov (United States)

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M.

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs) produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells. PMID:23300800

  18. Up-regulation of hepatitis C virus replication by human T cell leukemia virus type I-encoded Tax protein.

    Science.gov (United States)

    Zhang, Jing; Yamada, Osamu; Kawagishi, Kenji; Yoshida, Hiroshi; Araki, Hiromasa; Yamaoka, Shoji; Hattori, Toshio; Shimotohno, Kunitada

    2007-12-05

    Co-infection of hepatitis C virus (HCV) with other blood-borne pathogens such as human T cell leukemia virus (HTLV) is common in highly endemic areas. Clinical evidence showing a correlation between HTLV-I co-infection and rapid progression of HCV-associated liver disease promoted us to investigate the effect of HTLV-I-encoded Tax protein on HCV replication. Reporter assay showed that HCV replicon-encoded luciferase expression was significantly augmented by co-transfection of the Tax-expressing plasmid. Further, HCV RNA replication in replicon cells was increased either by co-culture with cells stably expressing Tax protein (Huhtax) or by culture in the presence of Huhtax-conditioned medium, indicating that Tax could also modulate HCV replication of adjacent cells in a paracrine manner. Additionally, HCV replication in Huhtax exhibited a reduced responsiveness to interferon-alpha-induced antiviral activity. This study demonstrates the facilitation of HCV replication by Tax protein, which may partially account for severer clinical consequences of HCV-related disease in HCV/HTLV co-infected individuals.

  19. Optimization of transfection conditions and analysis of siRNA potency using real-time PCR.

    Science.gov (United States)

    Cheng, Angie; Magdaleno, Susan; Vlassov, Alexander V

    2011-01-01

    RNA interference (RNAi) is a mechanism by which the introduction of small interfering RNAs (siRNAs) into cultured cells causes degradation of the complementary mRNA. Applications of RNAi include gene function analysis, pathway analysis, and target validation. While RNAi experiments have become common practice in research labs, multiple factors can influence the extent of siRNA-induced knockdown (and thus biological outcome). A properly designed and selected siRNA sequence, siRNA modification format, choice of transfection reagent/technique, optimized protocols of siRNA in vitro delivery, and an appropriate and optimized readout are all critical for ensuring a successful experiment. In this chapter, we describe a typical in vitro siRNA experiment with optimization of transfection conditions and analysis of siRNA potency, i.e., mRNA knockdown with quantitative real-time PCR.

  20. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  1. Developing a puncture-free in ovo chicken transfection strategy based on bypassing albumen nucleases.

    Science.gov (United States)

    Amini, Hamid-Reza; Pakdel, Abbas; Shahr-Babak, Hossein Moradi; Eghbalsaied, Shahin

    2017-03-15

    Chicken is a dual-purpose animal important from both agricultural and medical aspects. Even though significant improvements have been made in chicken transgenesis technologies, chicken genome manipulation has not been widely used in developmental biology. This study was aimed to evaluate chicken egg white nuclease properties and thereof plausibility of devising an in vivo transfection technology without causing physical damage to the embryo. First, the nuclease activity of egg albumen was assessed. The egg white nucleases were strongly active in degrading DNA and RNA. The egg white DNase activity was comparable to commercially available DNase-I. Nuclease activities were also assessed after heating, proteinase K, or EDTA treatment. Unlike proteinase K, both heating and EDTA were noticeably effective for the nuclease inactivation. Simultaneous application of lipoplex form of DNA (1 μg pDB2: 3 μl Lipofectamine2000) and EDTA showed a synergistic effect in protection against egg white nucleases. Finally, we injected the lipoplexes with or without EDTA close to the embryo at day0, but outside the embryonic epiblast. Implementation of a scrutinized PCR assay indicated that transfection took place only when EDTA was complemented to the lipoplexes. The transfection rate of day4 embryos and the hatched chicks were 54.5 and 30.0%, respectively. EGFP expression was detected in two out of three transgenic chicks. In conclusion, this study provided a detail analysis of chicken egg albumen nuclease properties and suggested the feasibility of developing a puncture-free handmade technology for transfection of the chicken embryo. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes.

    Science.gov (United States)

    Kim, Bieong-Kil; Hwang, Guen-Bae; Seu, Young-Bae; Choi, Jong-Soo; Jin, Kyeong Sik; Doh, Kyung-Oh

    2015-10-01

    The effects of lipid compositions on their physicochemical properties and transfection efficiencies were investigated. Four liposome formulations with different 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) to dioleoylphosphatidylethanolamine (DOPE) weight ratios were investigated, that is, weight ratios 1:0 (T1P0), 3:1 (T3P1), 1:1 (T1P1), and 1:3 (T1P3). Mean sizes of liposomes were influenced by their lipid composition and the preparation concentration at the time of sonication. Zeta potentials of liposomes were inversely correlated with their liposome sizes. However, neither liposome sizes nor zeta potentials were correlated with transfection efficiency. The optimum composition of liposomes was cell-line dependent (T1P0 and T3P1 for Huh7 and AGS, T3P1 and T1P1 for COS7, and T1P1 and T1P3 for A549). The shape of lipoplexes was changed from lamellar to inverted hexagonal structure according to the increased ratio of DOPE, but there was no definite advantage of specific structure in transfection efficiency throughout all used cell lines. However, cellular internalization was consistently faster in T1P0, T3P1, T1P1 compared to T1P3 in all cell lines, suggesting the importance of endosomal escape. Our findings show that the transfection efficiency of DOTAP liposomes is mainly influenced by lipid composition and cell type, and not by size or zeta potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    Science.gov (United States)

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  4. In vitro transfection of bone marrow-derived dendritic cells with TATp-liposomes

    Directory of Open Access Journals (Sweden)

    Pappalardo JS

    2014-02-01

    Full Text Available Juan Sebastián Pappalardo,1–3 Cecilia A Langellotti,2 Sebastián Di Giacomo,1 Valeria Olivera,1 Valeria Quattrocchi,2 Patricia I Zamorano,1,2 William C Hartner,3 Tatyana S Levchenko,3 Vladimir P Torchilin3 1Virology Institute, Center for Research in Veterinary and Agronomic Sciences, National Institute for Agricultural Technology (INTA, Hurlingham, BA, Argentina; 2National Council for Scientific and Technical Research (CONICET, Autonomous City of Buenos Aires, Argentina; 3Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA Abstract: Dendritic cells (DC are antigen-presenting cells uniquely capable of priming naïve T cells and cross-presenting antigens, and they determine the type of immune response elicited against an antigen. TAT peptide (TATp, is an amphipathic, arginine-rich, cationic peptide that promotes penetration and translocation of various molecules and nanoparticles into cells. TATp-liposomes (TATp-L used for DC transfection were prepared using TATp derivatized with a lipid-terminated polymer capable of anchoring in the liposomal membrane. Here, we show that the addition of TATp to DNA-loaded liposomes increased the uptake of DNA in DC. DNA-loaded TATp-L increased the in vitro transfection efficiency in DC cultures as evidenced by a higher expression of the enhanced green fluorescent protein and bovine herpes virus type 1 glycoprotein D (gD. The de novo synthesized gD protein was immunologically stimulating when transfections were performed with TATp-L, as indicated by the secretion of interleukin 6. Keywords: dendritic cell transfection, green fluorescent protein, bovine herpes virus 1 glycoprotein D, liposomes, TAT peptide, interleukin 6

  5. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius

    Science.gov (United States)

    Pinnapireddy, Shashank Reddy; Baghdan, Elias; Jedelská, Jarmila

    2017-01-01

    Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI). PMID:28239294

  6. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Konrad H. Engelhardt

    2017-01-01

    Full Text Available Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc at certain nitrogen-to-phosphorus (N/P ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3. Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS, atomic force microscopy (AFM, and scanning electron microscopy (Cryo-SEM, respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI.

  7. Effects of parameters, plasmid dosages and topological structures on transfection efficiency of porcine fetal fibroblasts using different electroporators.

    Science.gov (United States)

    Zhong, Cui-Li; Li, Guo-Ling; Mo, Jian-Xin; Quan, Rong; Wang, Hao-Qiang; Li, Zi-Cong; Wu, Zhen-Fang; Zhang, Xian-Wei

    2017-10-20

    To obtain an ideal transfection efficiency of porcine fetal fibroblasts, fluorescence activated cell sorting (FACS) was used to optimize parameters for transfection of porcine fetal fibroblasts (PFFs) with ECM? 830, NEPA 21 and Nucleofector? 2b in different conditions such as electroporation parameters, plasmid dosages and topological structures. The results show that the optimum poring pulse parameter of NEPA 21 is voltage 200 V, continuous 3 ms, interval 50 ms, 3 times, voltage attenuation range of 10%; and the transfection efficiency of Nucleofector? 2b is highest under U-023 program. Under the optimum conditions, FACS analysis demonstrates that Nucleofector? 2b and ECM? 830 have the highest transfection efficiency when transfecting 10 μg supercoiled plasmids into PFFs, and 8 μg for NEPA 21. Supercoiled plasmids show higher transfection efficiencies than linearized plasmids. Moreover, Nucleofector? 2b has the highest transfection efficiency among the three electroporation instruments. This study paves the way to generate transgenic or gene editing pigs with high efficiency.

  8. Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation.

    Science.gov (United States)

    Jensen, Kirsty; Anderson, Jennifer A; Glass, Elizabeth J

    2014-04-15

    The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Optimization of transfection parameters for ultrasound/SonoVue microbubble-mediated hAng-1 gene delivery in vitro.

    Science.gov (United States)

    Zhou, Qing; Chen, Jin-Ling; Chen, Qian; Wang, Xiao; Deng, Qing; Hu, Bo; Guo, Rui-Qiang

    2012-12-01

    This study aimed to explore the effects of microbubble concentration, gene dosage, cell-microbubble mixing mode and fetal bovine serum (FBS) on gene delivery. 293T cells were transfected with Sonovue microbubbles carrying the hAng-1 gene via ultrasound irradiation. Various ultrasound exposure parameters and microbubble and DNA concentrations were investigated. In addition, FBS and the cell suspension or adherent mode was explored. Transfection efficiency and cell viability were used to determine the optimal transfection parameters. hAng-1 gene transfection efficiency gradually increased with elongation of ultrasound exposure and increasing microbubble concentration. However, if ultrasound irradiation exceeded 1.5 W/cm² and 30 sec or the microbubble concentration was over 20%, hAng-1 gene expression was significantly decreased, coupled with extensive cell death. Gene transfection levels were low under DNA concentrations less than 15 µg/ml. Furthermore, the gene transfer rate was significantly increased under cell suspension mode; FBS had no effect on hAng-1 gene transfection. The integrity of hAng-1 DNA was not affected by ultrasonic irradiation under optimal conditions. The optimal transfection parameters for the hAng-1 gene and Sonovue microbubble were ultrasound exposure of 1.5 W/cm² and 30 sec, 20% microbubbles, 15 µg/ml of DNA and under cell suspension mode.

  10. In Vitro and In Vivo Characterization of a Dual-Function Green Fluorescent Protein–HSV1-Thymidine Kinase Reporter Gene Driven by the Human Elongation Factor 1α Promoter

    Directory of Open Access Journals (Sweden)

    Gary D. Luker

    2002-04-01

    Full Text Available Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK as a reporter gene driven by the promoter for human elongation factor 1α (EF-1α-EGFP-TK. Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV. As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutylguanine ([18F]FHBG ≈ 8-[3H]penciclovir (8-[3H]PCV < 2′-fluoro-2′-deoxy-5-iodouracil-beta-d-arabinofuranoside (2-[14C]FIAU. Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  11. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    Directory of Open Access Journals (Sweden)

    Zhen Jin

    Full Text Available The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane. We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes.

  12. Reduced repair of non-dimer photoproducts in a gene transfected into xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, Miroslava; Kraemer, K.H.

    1986-01-01

    Cells from patients with the sun sensitive cancer-prone disease, xeroderma pigmentosum (XP) have defective repair of UV damaged DNA with reduced excision of the major photoproduct, the cyclobutane type pyrimidine dimer. Other (non-dimer) photoproducts, have recently been implicated in UV mutagenesis. Utilizing an expression vector host cell reactivation assay, UV damaged transfecting DNA that was treated by in vitro photoreactivation to reverse pyrimidine dimers while not altering other photoproducts was studied. It was found that the reduced expression of a UV damaged transfecting plasmid in XP complementation group A cells is only partially reversed by photoreactivation. E. coli photolyase treatment of pSV2catSVgpt exposed to 100 or 200 J m -2 of 254 nm radiation removed 99% of the T4 endonuclease V sensitive sites. Transfection of XP12BE(SV40) cells with photoreactivated pSV2catSVgpt showed residual inhibition corresponding to 25 to 37% of the lethal hits to the cat gene. This residual inhibition corresponds to the fraction of non-dimer photoproducts induced by UV. This result implies that XP12BE(SV40) cells do not repair most of the non-dimer photoproducts in DNA. (author)

  13. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Jeggo, P.; Smith, J.

    1987-01-01

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  14. Extended gene expression by medium exchange and repeated transient transfection for recombinant protein production enhancement.

    Science.gov (United States)

    Cervera, Laura; Gutiérrez-Granados, Sonia; Berrow, Nicholas Simon; Segura, Maria Mercedes; Gòdia, Francesc

    2015-05-01

    Production of recombinant products in mammalian cell cultures can be achieved by stable gene expression (SGE) or transient gene expression (TGE). The former is based on the integration of a plasmid DNA into the host cell genome allowing continuous gene expression. The latter is based on episomal plasmid DNA expression. Conventional TGE is limited to a short production period of usually about 96 h, therefore limiting productivity. A novel gene expression approach termed extended gene expression (EGE) is explored in this study. The aim of EGE is to prolong the production period by the combination of medium exchange and repeated transfection of cell cultures with plasmid DNA to improve overall protein production. The benefit of this methodology was evaluated for the production of three model recombinant products: intracellular GFP, secreted GFP, and a Gag-GFP virus-like particles (VLPs). Productions were carried out in HEK 293 cell suspension cultures grown in animal-derived component free media using polyethylenimine (PEI) as transfection reagent. Transfections were repeated throughout the production process using different plasmid DNA concentrations, intervals of time, and culture feeding conditions in order to identify the best approach to achieve sustained high-level gene expression. Using this novel EGE strategy, the production period was prolonged between 192 and 240 h with a 4-12-fold increase in production levels, depending on the product type considered. © 2014 Wiley Periodicals, Inc.

  15. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  16. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  17. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  18. In vitro transfection of bone marrow-derived dendritic cells with TATp-liposomes.

    Science.gov (United States)

    Pappalardo, Juan Sebastián; Langellotti, Cecilia A; Di Giacomo, Sebastián; Olivera, Valeria; Quattrocchi, Valeria; Zamorano, Patricia I; Hartner, William C; Levchenko, Tatyana S; Torchilin, Vladimir P

    2014-01-01

    Dendritic cells (DC) are antigen-presenting cells uniquely capable of priming naïve T cells and cross-presenting antigens, and they determine the type of immune response elicited against an antigen. TAT peptide (TATp), is an amphipathic, arginine-rich, cationic peptide that promotes penetration and translocation of various molecules and nanoparticles into cells. TATp-liposomes (TATp-L) used for DC transfection were prepared using TATp derivatized with a lipid-terminated polymer capable of anchoring in the liposomal membrane. Here, we show that the addition of TATp to DNA-loaded liposomes increased the uptake of DNA in DC. DNA-loaded TATp-L increased the in vitro transfection efficiency in DC cultures as evidenced by a higher expression of the enhanced green fluorescent protein and bovine herpes virus type 1 glycoprotein D (gD). The de novo synthesized gD protein was immunologically stimulating when transfections were performed with TATp-L, as indicated by the secretion of interleukin 6.

  19. Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity.

    Science.gov (United States)

    Talento, A; Nguyen, M; Law, S; Wu, J K; Poe, M; Blake, J T; Patel, M; Wu, T J; Manyak, C L; Silberklang, M

    1992-12-15

    Murine CTL have seven serine proteases, known as granzymes, in their lytic granules. Despite considerable effort, convincing evidence that these enzymes play an obligatory role in the lytic process has not been presented. To investigate the function of one of these proteases, granzyme A (GA), we utilized an antisense expression vector to lower the level of the enzyme in the cells. An expression vector containing antisense cDNA for GA and the gene for hygromycin B resistance was constructed and electroporated into the murine CTL line, AR1. Transfectants were selected based on resistance to hygromycin B, and a number of stable lines were developed. One of the antisense lines had greatly reduced levels of GA mRNA, when compared to the parental cells or to control lines transfected with the vector lacking the antisense DNA. The message levels for two other CTL granule proteins, granzyme B and perforin, were unaffected by the antisense vector. The amount of GA, as measured by enzymatic activity, was 3- to 10-fold lower in the transfectant. Most significantly, this line also consistently showed 50 to 70% lower ability to lyse nucleated target cells and to degrade their DNA. Furthermore, it exhibited 90 to 95% lower lytic activity to anti-CD3-coated SRBC. Conjugate formation with target cells, however, was normal. These data provide strong evidence that GA plays an important role in the cytolytic cycle, and that the quantity of enzyme is a limiting factor in these cytolytic cells.

  20. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection.

    Science.gov (United States)

    Kuroda, Hitoshi; Kutner, Robert H; Bazan, Nicolas G; Reiser, Jakob

    2009-05-01

    During the past 12 years, lentiviral vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression. Despite significant progress, the production of high-titer high-quality lentiviral vectors is cumbersome and costly. The most commonly used method to produce lentiviral vectors involves transient transfection using calcium phosphate (CaP)-mediated precipitation of plasmid DNAs. However, inconsistencies in pH can cause significant batch-to-batch variations in lentiviral vector titers, making this method unreliable. This study describes optimized protocols for lentiviral vector production based on polyethylenimine (PEI)-mediated transfection, resulting in more consistent lentiviral vector stocks. To achieve this goal, simple production methods for high-titer lentiviral vector production involving transfection of HEK 293T cells immediately after plating were developed. Importantly, high titers were obtained with cell culture media lacking serum or other protein additives altogether. As a consequence, large-scale lentiviral vector stocks can now be generated with fewer batch-to-batch variations and at reduced costs and with less labor compared to the standard protocols.

  1. Drug Delivery and Cell Transfection Using Shock Waves Produced by Nanothermites

    Science.gov (United States)

    Gangopadhyay, Shubhra

    2009-06-01

    Shock waves have non-destructive life science applications in cell transfection and drug delivery. Based on molecular dynamics simulations, the shockwave causes transient compression of the cell membrane, which causes the hydrophobic interior of the lipid bilayer to become thinner. This allows diffusion of water molecules across the membrane. Recently, the nanothermite composition consisting of CuO nanorods and Al nanoparticles was shown to propagate at velocities in the same range as metallic azides and fulminates; however, the CuO/Al mixture produces lower pressure levels. An in vitro testing system was developed to deliver shock waves produced by nanothermites into cell suspensions and/or tissues. The plasmid encoded for production of green-fluorescent protein was delivered into cells including, among other types, chicken cardiomyocytes, cell lines (T47-D and Ins-1), and Arabidopsis plant cells. It was found that the nanothermite pressure impulses induced transfection resulting in production of green fluorescent protein in 99% of the cardiomyocytes. Additionally, transfected cell survival was evaluated, and the pressure impulses did not produce any elevated levels of cell death compared with control cell suspensions.

  2. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  3. The Effect of Linear PEI on Characteristics and Transfection Efficiency of PEI-Based Cationic Nanoliposomes

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2011-01-01

    Full Text Available Objective(sThe development of efficient and safe carrier system to transfer DNA into cells is essential in non-viral gene therapy. The aim of the present study was to evaluate the effect of linear polyetheneimine (lPEI (2500 Da on the physicochemical and biological properties of lipopolyplexes constructed from liposomes and lPEI. Materials and MethodsDifferent lipopolymers were synthesized from lPEI and acrylate derivatives. Nanocarriers were composed of the lipids (DOPE, DPPE and DOTAP and the synthesized lipopolymers. After characterization of the prepared vectors by determination of size and zeta potential, transfection activity was tested in Neuro2A cells. Ethidium bromide and MTT test were used to evaluate the DNA condensation ability and cytotoxicity of vectors, respectively. Results Vector’s size ranged from 95 to 337 nm and they had positive charge. The differences in DNA binding properties of lipopolyplexes were not significant. Among lipids, DOTAP showed better impact on transfection efficiency. The highest transfection activity was achieved by liposomal formulation consist of DOTAP and lipopolymer composed of lPEI and hexyl acrylate. The lipopolyplexes showed minimum cytotoxicity to the cultured cells in vitro. Conclusion The results of study