WorldWideScience

Sample records for stably transfected human

  1. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene

    International Nuclear Information System (INIS)

    Li, G.C.; Li, Ligeng; Liu, Yunkang; Mak, J.Y.; Chen, Lili; Lee, W.M.F.

    1991-01-01

    The major heat shock protein hsp70 is synthesized by cells of a wide variety of organisms in response to heat shock or other environmental stresses and is assumed to play an important role in protecting cells from thermal stress. The authors have tested this hypothesis directly by transfecting a constitutively expressed recombinant human hsp70-encoding gene into rat fibroblasts and examining the relationship between the levels of human hsp70 expressed and thermal resistance of the stably transfected rat cells. Successful transfection and expression of the gene for human hsp70 were characterized by RNA hybridization analysis, low-dimensional gel electrophoresis, and immunoblot analysis. When individual cloned cell lines were exposed to 45C and their thermal survivals were determined by colony-formation assay, they found that the expression of human hsp70 conferred heat resistance to the rat cells. These results reinforce the hypothesis that hsp70 has a protective function against thermal stress

  2. Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection.

    Science.gov (United States)

    Wajih, Nadeem; Owen, John; Wallin, Reidar

    2008-01-01

    Recombinant members of the vitamin K-dependent protein family (factors IX and VII and protein C) have become important pharmaceuticals in treatment of bleeding disorders and sepsis. However, because the in vivo gamma-carboxylation system in stable cell lines used for transfection has a limited capacity of post translational gamma-carboxylation, the recovery of fully gamma-carboxylated and functional proteins is low. In this work we have engineered recombinant factor VII producing HEK 293 cells to stably overexpress VKORC1, the reduced vitamin K gamma-carboxylase cofactor and in addition stably silenced the gamma-carboxylase inhibitory protein calumenin. Stable cell lines transfected with only a factor VII cDNA had a 9% production of functional recombinant factor VII. On the other hand, these recombinant factor VII producing cells when engineered to overexpress VKORC1 and having calumenin stably suppressed more than 80% by shRNA expression, produced 68% functional factor VII. The technology presented should be applicable to all vertebrae members of the vitamin K-dependent protein family and should lower the production cost of the clinically used factors VII, IX and protein C.

  3. Quantitative Evaluation of Myostatin Gene in Stably Transfected Caprine Fibroblast Cells by Anti-Myostatin shRNA.

    Science.gov (United States)

    Jain, Sudhir Kumar; Jain, Hemlata; Kumar, Dharmendra; Bedekar, Megha Kadam; Pandey, Akhilesh Kumar; Sarkhel, Bikash Chandra

    2015-09-01

    Skeletal muscle is the major component of lean tissue that is used for consumption, and myostatin is a negative regulator of skeletal muscle growth. Downregulation of this gene therefore offers a strategy for developing superior animals with enhanced muscle growth. Knockdown of myostatin was achieved by RNA interference technology. The anti-myostatin shRNA were designed and stably transfected in caprine fibroblast cells. The reduced expression of target gene was achieved and measured in clonal fibroblast cells by real-time PCR. Two single-cell clones induced significant decrease of myostatin gene expression by 73.96 and 72.66 %, respectively (P < 0.05). To ensure the appropriate growth of transfected cell, seven media were tested. The best suited media was used for transfected fibroblast cell proliferation. The findings suggest that shRNA provides a novel potential tool for gene knockdown and these stably transfected cells can be used as the donor cells for animal cloning.

  4. Construction of a CD147 Lentiviral Expression Vector and Establishment of Its Stably Transfected A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Shaoxing YANG

    2012-12-01

    Full Text Available Background and objective CD147, a type of transmembrane glycoprotein embedded on the surface of tumor cells, can promote tumor invasion and metastasis. This aim of this study is to construct a CD147 lentiviral expression vector, establish its stably transfected A549 cell line, and observe the effect of CD147 on MMP-9 proliferation as well as on the invasive ability of human lung adenocarcinoma cells. Methods Full-length CD147 gene was amplified by real-time polymerase chain reaction (RT-PCR, inserted into a pEGFP vector to construct pEGFP-CD147 and pEGFP vectors, and then transfected into 293FT cells to precede the lentivirus equipment package. Subsequently, we collected the lentivirus venom to infect the A549 cells and establish a stable, overexpressed cell line named A549-CD147. The mRNA expression of MMP-9 was examined by RT-PCR. The proliferation and invasive ability of the human lung cancer cells before and after transfection were examined by the CCK-8 and Transwell methods. Results A CD147 lentiviral expression vector (pEGFP-CD147 was successfully constructed by restrictive enzyme digestion and plasmid sequencing. RT-PCR and Western blot analyses revealed increased mRNA and protein expression of CD147 gene in cells transfected with pEGFP-CD147 compared with the control groups. Therefore, the A549-CD147 cell line was successfully established through the experiment. The mRNA expression of MMP-9 also significantly increased after the upregulation of CD147 expression. Meanwhile, CCK-8 and Transwell assays indicated that the proliferation and invasive ability significantly increased in the A549-CD147 cells. Conclusion A lentiviral CD147 expression vector and its A549 cell line (A549-CD14 were successfully constructed. CD147 overexpression upregulated the protein expression of MMP-9, and strengthened the proliferation and invasive ability of human lung adenocarcinoma cells.

  5. Effects of recombinant plasmid pEgr-p53 transfected stably in combination with X-irradiation on cell cycle progression and proliferation in human SKOV-3 tumor cells in vitro

    International Nuclear Information System (INIS)

    Dong Lihua; Liu Feng; Li Yanbo; Fu Shibo; Gong Shouliang

    2008-01-01

    Objective: To investigate the effect of recombinant plasmid pEgr-hp53 transfected stably in combination with X-ray irradiation on the cell cycle progression and the proliferation in human SKOV-3 tumor cells. Methods: pEgr-hp53 and pcDNA3.1 packaged with liposome were stably transfected into SKOV-3 cells in vitro. SKOV-3-hp53 and SKOV-3-vect were irradiated with 0, 0.5, 2.0 and 5.0 Gy X-rays, respectively, i.e. 8 experimental groups. The SKOV-3 cell proliferation and the cell cycle progression were measured with flow cytometry and cell growth curve, respectively. Results: Compared with 0 Gy group, the cell counts in SKOV-3- hp53 plus different doses of irradiation groups 2 d after irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased in varying degrees. The cell counts in SKOV-3-hp53 plus irradiation group were significantly lower than those in corresponding SKOV-3-vect plus irradiation group, the cell counts 4-8 d after irradiation with 0.5 Gy, 2 d after 2.0 Gy irradiation and 6 d after 5.0 Gy irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased significantly (P 1 arrest in SKOV-3 cells and inhibits the cell proliferation. Ionizing radiation can activate early growth response-1 (Egr-1) gene promoter and increase the expression of p53 gene, and enhance the inhibition of tumor cell growth. (authors)

  6. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    International Nuclear Information System (INIS)

    Morgan, Kevin; Meyer, Colette; Miller, Nicola; Sims, Andrew H; Cagnan, Ilgin; Faratian, Dana; Harrison, David J; Millar, Robert P; Langdon, Simon P

    2011-01-01

    Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125 I-ligand binding and stimulation of 3 H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3 H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of

  7. Characterization of new cell line stably expressing CHI3L1 oncogene

    Directory of Open Access Journals (Sweden)

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  8. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  9. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  10. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  11. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  12. Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix.

    Science.gov (United States)

    Villa-Diaz, Luis G; Garcia-Perez, Jose L; Krebsbach, Paul H

    2010-12-01

    Because human embryonic stem (hES) cells can differentiate into virtually any cell type in the human body, these cells hold promise for regenerative medicine. The genetic manipulation of hES cells will enhance our understanding of genes involved in early development and will accelerate their potential use and application for regenerative medicine. The objective of this study was to increase the transfection efficiency of plasmid DNA into hES cells by modifying a standard reverse transfection (RT) protocol of lipofection. We hypothesized that immobilization of plasmid DNA in extracellular matrix would be a more efficient method for plasmid transfer due to the affinity of hES cells for substrates such as Matrigel and to the prolonged exposure of cells to plasmid DNA. Our results demonstrate that this modification doubled the transfection efficiency of hES cells and the generation of clonal cell lines containing a piece of foreign DNA stably inserted in their genomes compared to results obtained with standard forward transfection. In addition, treatment with dimethyl sulfoxide further increased the transfection efficiency of hES cells. In conclusion, modifications to the RT protocol of lipofection result in a significant and robust increase in the transfection efficiency of hES cells.

  13. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  14. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  15. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  16. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324

  17. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Directory of Open Access Journals (Sweden)

    Kamel Chettab

    Full Text Available Sonoporation using low-frequency high-pressure ultrasound (US is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1 in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%, as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  18. Targeted surface expression of an exogenous antigen in stably transfected babesia bovis

    Science.gov (United States)

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. Here we propose using transfected ...

  19. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    International Nuclear Information System (INIS)

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang; Chan, F.L.

    2009-01-01

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  20. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection.

    Directory of Open Access Journals (Sweden)

    Lin-Lin Liu

    Full Text Available Reverse transcription-quantitative polymerase chain reaction (RT-qPCR is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct, and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2 expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.

  1. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  2. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  3. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  4. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  5. Restoration of u.v.-induced excision repair in Xeroderma D cells transfected with the denV gene of bacteriophage T4

    International Nuclear Information System (INIS)

    Arrand, J.E.; Squires, S.; Bone, N.M.; Johnson, R.T.

    1987-01-01

    The heritable DNA repair defect in human Xeroderma D cells, resulting in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for dominant marker plus resistance to killing by u.v. light, were shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation were correlated with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. Results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell. (author)

  6. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  7. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth......-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development.......A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...

  8. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a

  9. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    Science.gov (United States)

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  10. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  11. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    Science.gov (United States)

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  12. pSv3neo transfection and radiosensitivity of human cancer cell lines

    International Nuclear Information System (INIS)

    Parris, C.N.; Masters, J.R.W.; Green, M.H.L.

    1990-01-01

    Immortalisation of human fibroblasts by transfection with a plasmid, pSV3neo, results in an increase in their radioresistance. The change in radiosensitivity may either be a consequence of transformation or due to expression of the SV40 T-antigen in pSV3neo. To investigate these two possibilities, we transfected pSV3neo into cells already transformed and immortalised. The radiosensitivies of three human bladder cancer cell lines were unaltered in clones expressing T-antigen, indicating that the changes observed in fibroblasts probably are a consequence of transformation, and not the presence of SV40 T-antigen. (author)

  13. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  14. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  15. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Lacoste, J.; Cohen, L.; Hiscott, J.

    1991-01-01

    The effect of constitutive Tax expression on the interaction of NF-κ B with its recognition sequence and on NF-κ B-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-κ B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-κ B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters

  16. Inhibition of human colorectal adenocarcinoma cells with AdCMV-p53 gene transfection induced by irradiation

    International Nuclear Information System (INIS)

    Liu Bing; Min Fengling; Xie Yi; Zhou Qingming; Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjian; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2006-01-01

    The effect of AdCMV-p53 gene transfection induced by γ-ray irradiation on human colorectal adenocarcinoma cells was investigated. The HT-29 cells were irradiated by 0.5, 1.0, 2.0 Gy 60 Co γ-rays, then were transfected with AdCMV-GFP (a replication of deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein) or AdCMV-p53 (a replication of deficient recombinant adenoviral vector containing a CMV promoter and carrying human wild p53 gene). Cytotoxity was measured by clonogenic survival assay; apoptosis and the p53 expression were determined by flow cytometry. The results show that the pre-exposure of 0.5 Gy 60 Co γ-rays significantly enhanced the inhibition of HT-29 cells with AdCMV-53 transfection and promoted cell apoptosis. The inhibition rates for the groups of pre-exposure with 0.5 Gy and transfection with 40 and 80 MOI AdCMV-p53 were 50% and 20% higher than those for the groups of the mere transfection, and 40% more than the mere irradiation group. In the case of higher than 0.5 Gy pre-exposure, no significant difference was found between the pre-exposure with transfection group and the mere irradiation group. So 0.5 Gy pre-irradiation and AdCMV-p53 transfection obviously increases the inhibition of HT-29 cells with AdCMV-p53 transfection. The optimum condition is the lower than 1.0 Gy pre-exposure combined with the lower than 80 MOI AdCMV-p53 transfection. (authors)

  17. Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB.

    OpenAIRE

    Forsberg, K; Valyi-Nagy, I; Heldin, C H; Herlyn, M; Westermark, B

    1993-01-01

    Human WM9 melanoma cells, previously shown to be devoid of PDGF expression, were stably transfected with a PDGF-B cDNA under the transcriptional control of a cytomegalovirus promoter. Northern blot analysis revealed high expression of an mRNA of the expected size in the PDGF-B-transfected cells. Synthesis and secretion of PDGF-BB was confirmed by immunoprecipitation. Furthermore, conditioned medium from PDGF-B-transfected cells contained a mitogenic activity for fibroblasts. For analysis of t...

  18. siRNA Transfection and EMSA Analyses on Freshly Isolated Human Villous Cytotrophoblasts.

    Science.gov (United States)

    Lokossou, Adjimon Gatien; Toufaily, Chirine; Vargas, Amandine; Barbeau, Benoit

    2016-09-20

    Human primary villous cytotrophoblasts are a very useful source of primary cells to study placental functions and regulatory mechanisms, and to comprehend diseases related to pregnancy. In this protocol, human primary villous cytotrophoblasts freshly isolated from placentas through a standard DNase/trypsin protocol are microporated with small interfering RNA (siRNA). This approach provided greater efficiency for siRNA transfection when compared to a lipofection-based method. Transfected cells can subsequently be analyzed by standard Western blot within a time frame of 3-4 days post-transfection. In addition, using cultured primary villous cytotrophoblasts, Electrophoretic Mobility Shift Assay (EMSA) analysis was optimized and performed on extracts from days 1 to 4. The use of these cultured primary cells and the protocol described allow for an evaluation of the implication of specific genes and transcription factors in the process of villous cytotrophoblast differentiation into a syncytiotrophoblast-like cell layer. However, the limited time span allowable in culture precludes the use of methods requiring more time, such as generation of a stable cell population. Therefore testing of this cell population requires highly optimized gene transfer protocols.

  19. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  20. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  1. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  2. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  3. Pig BMSCs Transfected with Human TFPI Combat Species Incompatibility and Regulate the Human TF Pathway in Vitro and in a Rodent Model

    Directory of Open Access Journals (Sweden)

    Hongchen Ji

    2015-05-01

    Full Text Available Background: The activation of tissue factor (TF is one of the major reasons for coagulation dysregulation after pig-to-primate xenotransplantation. Tissue factor pathway inhibitor (TFPI is the most important inhibitor of TF. Studies have demonstrated species incompatibility between pig TFPI and human TF. Methods: A pig-to-macaque heterotopic auxiliary liver transplantation model was established to determine the origin of activated TF. Chimeric proteins of human and pig TFPI were constructed to assess the role of Kunitz domains in species incompatibility. Immortalised pig bone marrow mesenchymal stem cells transfected with human TFPI were tested for their ability to inhibit clotting in vitro. Results: TF from recipient was activated early after liver xenotransplantation. Pig TFPI Kunitz domain 2 bound human FXa, but Kunitz domain 1 did not effectively inhibit human TF/FVIIa. Immortalised pig bone marrow mesenchymal cells (BMSCs transfected with human TFPI showed a prolonged recalcification time in vitro and in a rodent model. Conclusion: Recipient TF is relevant to dysregulated coagulation after xenotransplantation. Kunitz domain 1 plays the most important role in species incompatibility between pig TFPI and human TF, and clotting can be inhibited by human TFPI-transfected pig BMSCs. Our study shows a possible way to resolve the incompatibility of pig TFPI.

  4. Expression of intracellular interferon-alpha confers antiviral properties in transfected bovine fetal fibroblasts and does not affect the full development of SCNT embryos.

    Directory of Open Access Journals (Sweden)

    Dawei Yu

    Full Text Available Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α (without secretory signal sequence gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT. Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9% became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS, which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.

  5. Enhancement of DNA-transfection frequency by X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi [Okayama University Medical School (Japan). Institute of Cellular and Molecular Biology

    1997-02-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  6. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  7. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system.

    Science.gov (United States)

    Nakayama, Asuka; Sato, Masahiro; Shinohara, Mariko; Matsubara, Shyuichiro; Yokomine, Takaaki; Akasaka, Eri; Yoshida, Mitsutoshi; Takao, Sonshin

    2007-01-01

    Porcine embryonic fibroblasts (PEF) are important as donor cells for nuclear transfer for generation of genetically modified pigs. In this study, we determined an optimal protocol for transfection of PEF with the Amaxa Nucleofection system, which directly transfers DNA into the nucleus of cells, and compared its efficiency with conventional lipofection and electroporation. Cell survival and transfection efficiency were assessed using dye-exclusion assay and a green fluorescent protein (GFP) reporter construct, respectively. Our optimized nucleofection parameters yielded survival rates above 60%. Under these conditions, FACS analysis demonstrated that 79% of surviving cells exhibited transgene expression 48 h after nucleofection when program U23 was used. This efficiency was higher than that of transfection of PEFs with electroporation (ca. 3-53%) or lipofection (ca. 3-8%). Transfected cells could be expanded as stably transgene-expressing clones over a month. When porcine nuclear transfer (NT) was performed using stable transformant expressing GFP as a donor cell, 5-6% of reconstituted embryos developed to blastocysts, from which 30-50% of embryos exhibited NT-embryo-derived green fluorescence. Under the conditions evaluated, nucleofection exhibited higher efficiency than conventional electroporation and lipofection, and may be a useful alternative for generation of genetically engineered pigs through nuclear transfer.

  8. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  9. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1989-01-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G 2 chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author)

  10. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    International Nuclear Information System (INIS)

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-01-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified

  11. Inhibitory effects of recombinant plasmid pshuttle-Egr1-shTRAIL transfection in combination with X-irradiation on growth of liver cancer cells SMMC7721

    International Nuclear Information System (INIS)

    Chen Zhiyong; Liu Min; Dong Lihua; Gong Shouliang

    2011-01-01

    Objective: To investigate the effect of recombinant plasmid pshuttle-Egr1-shTRAIL stable transfection in combination with X-ray irradiation on the TRAIL protein expression and the apoptosis in human SMMC7721 hepatoma cells. Methods: The pshuttle-Egr1-shTRAIL packaged with liposome was stably transfected into SMMC7721 cells in vitro. The shTRAIL protein expression were measured with ELISA assay, Annexin V-FITC kit was adopted to measure the apoptosis of pshuttle-Egr1-shTRAIL cells, and the changes in survival rate of SMMC7721 cells measured with cell cloning assay. Results: The TRAIL protein expressions in pshuttle-Egr1-shTRAIL plus different doses of irradiation groups were significantly increased compared with 0 Gy group (P<0.001). The percentage of apoptotic cells was significantly higher than that in 0 Gy group (P<0.05 or P<0.001), and the survival rate of SMMC7721 cells was decreased significantly (P<0.05 or P<0.001). Conclusion: The pshuttle-Egr1-shTRAIL stable transfection in combination with irradiation can significantly induce the apoptosis of SMMC7721 tumor cells and inhibit the cell proliferation. (authors)

  12. Glycosylphosphatidylinositol-anchored CD4 supports human immunodeficiency virus type 1 replication, but not cytopathic effect, in T-cell transfectants.

    OpenAIRE

    Marshall, W L; Mittler, E S; Avery, P; Lawrence, J P; Finberg, R W

    1994-01-01

    Despite equivalent p24 antigen production, HSB-2 T cells expressing glycosylphosphatidylinositol (GPi)-linked CD4 were productively infected without cell death or syncytium formation, unlike HSB-2 transfectants expressing wild-type CD4 (wtCD4). HSB-2 transfectants dually expressing wtCD4 and GPi-linked CD4 formed syncytia and died. Thus, wtCD4 expression is critical for human immunodeficiency virus cytopathic effect in HSB-2 transfectants.

  13. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...

  14. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  15. Molecular genetic transfection of the coccidian parasite Sarcocystis neurona.

    Science.gov (United States)

    Gaji, Rajshekhar Y; Zhang, Deqing; Breathnach, Cormac C; Vaishnava, Shipra; Striepen, Boris; Howe, Daniel K

    2006-11-01

    Sarcocystis neurona is an apicomplexan parasite that is the major cause of equine protozoal myeloencephalitis (EPM). The biology of this pathogen remains poorly understood in part due to unavailability of molecular genetic tools. Hence, with an objective to develop DNA transfection capabilities for S. neurona, the 5' flanking region of the SnSAG1 gene was isolated from a genomic library and used to construct expression plasmids. In transient assays, the reporter molecules beta-galactosidase (beta-gal) and yellow fluorescent protein (YFP) could be detected in electroporated S. neurona, thereby confirming the feasibility of transgene expression in this organism. Stable transformation of S. neurona was achieved using a mutant dihydrofolate reductase thymidylate synthase (DHFR-TS) gene of Toxoplasma gondii that confers resistance to pyrimethamine. This selection system was used to create transgenic S. neurona that stably express beta-gal and YFP. As shown in this study, these transgenic clones can be useful for analyzing growth rate of parasites in vitro and for assessing drug sensitivities. More importantly, the DNA transfection methods described herein should greatly facilitate studies examining intracellular parasitism by this important coccidian pathogen.

  16. In vitro expression of erythropoietin by transfected human mesenchymal stromal cells.

    Science.gov (United States)

    Mok, P-L; Cheong, S-K; Leong, C-F; Othman, A

    2008-01-01

    Mesenchymal stromal cells (MSC) are pluripotent progenitor cells that can be found in human bone marrow (BM). These cells have low immunogenicity and could suppress alloreactive T-cell responses. In the current study, MSC were tested for their capacity to carry and deliver the erythropoietin (EPO) gene in vitro. Expanded BM MSC was transfected with EPO-encoded plasmid pMCV1.2 and EPO-encoded MIDGE (minimalistic immunologically defined gene expression) vector by electroporation. The expressed EPO was used to induce hematopoietic stem cells (HSC) into erythroid colonies. The results showed that the MIDGE vector was more effective and stable than the plasmid (pMCV1.2) in delivering EPO gene into MSC. The supernatants containing EPO obtained from the transfected cell culture were able to induce the differentiation of HSC into erythroid colonies. MSC hold promise as a cell factory for the production of biologic molecules, and MIDGE vector is more effective and stable than the plasmid in nucleofection involving the EPO gene.

  17. Development of an androgen reporter gene assay (AR-LUX) utilizing a human cell line with an endogenously regulated androgen receptor

    NARCIS (Netherlands)

    Blankvoort, B.M.G.; Groene, E.M. de; Meeteren-Kreikamp, A.P. van; Witkamp, R.F.; Rodenburg, R.J.T.; Aarts, J.M.M.J.G.

    2001-01-01

    The aim of the work described in this report is to develop and characterize a cell-based androgen reporter assay. For this purpose, the androgen receptor (AR) expressing human breast cancer cell line T47D was stably transfected with a luciferase gene under transcriptional control of the PB-ARE-2

  18. Processing of high-molecular-weight form adrenocorticotropin in human adrenocorticotropin-secreting tumor cell line (DMS-79) after transfection of prohormone convertase 1/3 gene.

    Science.gov (United States)

    Tateno, T; Kato, M; Tani, Y; Yoshimoto, T; Oki, Y; Hirata, Y

    2010-02-01

    Ectopic ACTH-producing tumors preferentially secrete biologically inactive ACTH precursors and ACTH-related fragments. DMS-79 is known to secrete unprocessed high-molecular-weight (HMW) form ACTH. To determine whether prohormone convertase (PC) 1/3 is involved in the abnormal processing of proopiomelanocortin (POMC), we studied whether PC1/3 and 2 genes are expressed in DMS-79, and whether overexpression of PC1/3 gene affects POMC processing pattern. Steady-state mRNA levels of PC1/3 and 2 were determined by real-time RT-PCR. Molecular weights of ACTH-related peptides were determined by chromatographical analyses coupled with ACTH and beta-endorphin (beta-END) radioimmunoassays. PC1/3 gene was transfected into DMS-79 by retrovirus transduction using pMX-IP vector encoding PC1/3 cDNA. The steady-state mRNA levels of PC1/3 and 2 in DMS-79 were lower than those in ACTH-secreting and nonfunctioning pituitary tumors. DMS-79 predominantly secreted HMW form with both ACTH and beta-END immunoreactivities by size-exclusion chromatography. After purification by immunoaffinity chromatography with anti-ACTH antibody, the apparent molecular weight of HMW form ACTH was estimated to be 16 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. After retroviral transfection of PC1/3 cDNA into DMS-79 and puromycin selection, PC1/3 stably-expressing cell line (DMS-79T) secreted two immunoreactive ACTH components, a major one coeluting with ACTH(1-39) and a minor one as a HMW form as well as two beta- END immunoreactive components coeluting with beta-lipotropic hormone and beta-END, respectively. Thus, we have established PC1/3 stably-expressing cell line (DMS-79T) capable of proteolytically processing ACTH precursor molecule(s) into mature ACTH and beta-END.

  19. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    Science.gov (United States)

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  20. Tiamulin inhibits human CYP3A4 activity in an NIH/3T3 cell line stably expressing CYP3A4 cDNA.

    Science.gov (United States)

    De Groene, E M; Nijmeijer, S M; Horbach, G J; Witkamp, R F

    1995-09-07

    Tiamulin is an antibiotic frequently used in veterinary medicine. The drug has been shown to produce clinically important interactions with other compounds that are administered simultaneously. An NIH/3T3 cell line, stably expressing human cytochrome P450 (EC 1.14.14.1) cDNA (CYP3A4), was used to study the effect of tiamulin on CYP3A4 activity. The 6 beta-hydroxylation activity of testosterone, which is increased in CYP3A4-expressing cells compared to vector-transfected cells, showed reduced activity after incubation with 1 microM tiamulin and was completely reduced to background level after incubation with 2, 5 and 10 microM tiamulin. The CYP3A4-expressing cell line was used in combination with a shuttle vector containing the bacterial lacZ' gene to study the effect of tiamulin on CYP3A4-mediated mutagenicity of aflatoxin B1. The mutation frequency of aflatoxin B1 could be completely inhibited by tiamulin in CYP3A4-expressing cells, but no effect was observed on the mutation frequency of the direct mutagen ethylmethanesulphonate. Western blotting of homogenates of the CYP3A4-expressing cell line showed stabilization of CYP3A4 protein after incubation with tiamulin, supporting the hypothesis that the mechanism of inhibition is by binding of tiamulin to the cytochrome.

  1. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

    Science.gov (United States)

    Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi

    2017-07-01

    The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

  2. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  3. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  4. Upregulation of cellular glutathione levels in human ABCB5- and murine Abcb5-transfected cells.

    Science.gov (United States)

    Kondo, Shingo; Hongama, Keita; Hanaya, Kengo; Yoshida, Ryota; Kawanobe, Takaaki; Katayama, Kazuhiro; Noguchi, Kohji; Sugimoto, Yoshikazu

    2015-12-15

    Previously, we have demonstrated that human ABCB5 is a full-sized ATP-binding cassette transporter that shares strong homology with ABCB1/P-glycoprotein. ABCB5-transfected cells showed resistance to taxanes and anthracyclines. Herein, we further screened ABCB5 substrates, and explored the mechanism of resistance. Sensitivity of the cells to test compounds was evaluated using cell growth inhibition assay. Cellular levels of buthionine sulfoximine (BSO), glutathione and amino acids were measured using HPLC and an enzyme-based assay. Cellular and vesicular transport of glutathione was evaluated by a radiolabeled substrate. Expression levels of glutathione-metabolizing enzymes were assessed by RT-PCR. Human ABCB5-transfected 293/B5-11 cells and murine Abcb5-transfected 293/mb5-8 cells showed 6.5- and 14-fold higher resistance to BSO than the mock-transfected 293/mock cells, respectively. BSO is an inhibitor of gamma-glutamylcysteine ligase (GCL), which is a key enzyme of glutathione synthesis. 293/B5-11 and 293/mb5-8 cells also showed resistance to methionine sulfoximine, another GCL inhibitor. A cellular uptake experiment revealed that BSO accumulation in 293/B5-11 and 293/mb5-8 cells was similar to that in 293/mock cells, suggesting that BSO is not an ABCB5 substrate. The cellular glutathione content in 293/B5-11 and 293/mb5-8 cells was significantly higher than that in 293/mock cells. Evaluation of the BSO effect on the cellular glutathione content showed that compared with 293/mock cells the BSO concentration required for a 50 % reduction in glutathione content in 293/B5-11 and 293/mb5-8 cells was approximately 2- to 3-fold higher. This result suggests that the BSO resistance of the ABCB5- and Abcb5-transfected cells can be attributed to the reduced effect of BSO on the transfectants. Cellular and vesicular transport assays showed that the transport of radiolabeled glutathione in 293/B5-11 cells was similar to that in 293/mock cells. The mRNA expression of genes

  5. Transfection of normal human and Chinese hamster DNA corrects diepoxybutane-induced chromosomal hypersensitivity of Fanconi anemia fibroblasts

    International Nuclear Information System (INIS)

    Shaham, M.; Adler, B.; Ganguly, S.; Chaganti, R.S.K.

    1987-01-01

    Cultured cells from individuals affected with Fanconi anemia (FA) exhibit spontaneous chromosome breakage and hypersensitivity to the cell killing and clastogenic effects of the difunctional alkylating agent diepoxybutane (DEB). The authors report here the correction of both of these DEB-hypersensitivity phenotypes of FA cells achieved by cotransfection of normal placental of Chinese hamster lung cell DNA and the plasmid pSV2-neo-SVgpt. Transfectants were selected for clonogenic survival after treatment with DEB at a dose of 5 μgml. At this dose of DEB, the clonogenicity of normal fibroblasts was reduced to 50% and that of FA fibroblasts was reduced to zero. DEB-resistant (DEB/sup r/) colonies selected in this system exhibited a normal response to DEB-induced chromosome breakage and resistance to repeated DEB treatment. The neo and gpt sequences were detected by Southern blot analysis of DNA from one of four DEB/sup r/ colonies independently derived from transfection of human DNA and one of three DEB/sup r/ colonies independently derived from transfection of Chinese hamster DNA. The results demonstrate that DNA sequences that complement the two hallmark cellular phenotypes (cellular and chromosomal hypersensitivity to alkylating agents) of FA are present in human as well as Chinese hamster DNA. The cloning of these genes using transfection strategies can be expected to enable molecular characterization of FA

  6. Spermidine/spermine N1-acetyltransferase (SSAT) activity in human small-cell lung carcinoma cells following transfection with a genomic SSAT construct.

    Science.gov (United States)

    Murray-Stewart, Tracy; Applegren, Nancy B; Devereux, Wendy; Hacker, Amy; Smith, Renee; Wang, Yanlin; Casero, Robert A

    2003-07-15

    Spermidine/spermine N (1)-acetyltransferase (SSAT) activity is typically highly inducible in non-small-cell lung carcinomas in response to treatment with anti-tumour polyamine analogues, and this induction is associated with subsequent cell death. In contrast, cells of the small-cell lung carcinoma (SCLC) phenotype generally do not respond to these compounds with an increase in SSAT activity, and usually are only moderately affected with respect to growth. The goal of the present study was to produce an SSAT-overexpressing SCLC cell line to further investigate the role of SSAT in response to these anti-tumour analogues. To accomplish this, NCI-H82 SCLC cells were stably transfected with plasmids containing either the SSAT genomic sequence or the corresponding cDNA sequence. Individual clones were selected based on their ability to show induced SSAT activity in response to exposure to a polyamine analogue, and an increase in the steady-state SSAT mRNA level. Cells transfected with the genomic sequence exhibited a significant increase in basal SSAT mRNA expression, as well as enhanced SSAT activity, intracellular polyamine pool depletion and growth inhibition following treatment with the analogue N (1), N (11)-bis(ethyl)norspermine. Cells containing the transfected cDNA also exhibited an increase in the basal SSAT mRNA level, but remained phenotypically similar to vector control cells with respect to their response to analogue exposure. These studies indicate that both the genomic SSAT sequence and polyamine analogue exposure play a role in the transcriptional and post-transcriptional regulation and subsequent induction of SSAT activity in these cells. Furthermore, this is the first production of a cell line capable of SSAT protein induction from a generally unresponsive parent line.

  7. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells.

    Directory of Open Access Journals (Sweden)

    Cecilia González

    Full Text Available The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs, which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories.We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua. High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment.TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies.Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs.

  8. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Clark-Lewis, Ian; Jensen, Peter Østrup

    2003-01-01

    The chemokine-like, secreted protein product of the U83 gene from human herpesvirus 6, here named vCCL4, was chemically synthesized to be characterized in a complete library of the 18 known human chemokine receptors expressed individually in stably transfected cell lines. vCCL4 was found to cause...... being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages...

  9. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  10. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture.

    Science.gov (United States)

    Majumdar, M; Ratho, R; Chawla, Y; Singh, M P

    2014-01-01

    The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs) were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA) and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P Centrifugation enhanced transfection (CET) technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  11. Inorganic nanoparticles for transfection of mammalian cells and removal of viruses from aqueous solutions.

    Science.gov (United States)

    Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin

    2007-12-01

    Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.

  12. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture

    Directory of Open Access Journals (Sweden)

    M Majumdar

    2014-01-01

    Full Text Available The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P < 0.0001, even at a low concentration of 40 picomoles without affecting the cell viability. Centrifugation enhanced transfection (CET technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  13. Human Breast Adipose-Derived Stem Cells Transfected with the Stromal Cell-Derived Factor-1 Receptor CXCR4 Exhibit Enhanced Viability in Human Autologous Free Fat Grafts

    Directory of Open Access Journals (Sweden)

    Fang-tian Xu

    2014-11-01

    Full Text Available Background: The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1 and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4 are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. Methods: Human breast adipose-derived stem cells (HBASCs were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A, GFP-labeled HBASCs (group B, the known vascularization-promoting agent VEGF (group C, or medium (group D and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR. Results: The data revealed that the control (group D transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A and untransfected (group B HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively, whereas VEGF-transfected HBASCs (group C were less effective (41.2 ± 5.1%. Histological

  14. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells.

    Science.gov (United States)

    Baumgart, Judith; Humbert, Laure; Boulais, Étienne; Lachaine, Rémi; Lebrun, Jean-Jaques; Meunier, Michel

    2012-03-01

    A femtosecond laser based transfection method using off-resonance plasmonic gold nanoparticles is described. For human cancer melanoma cells, the treatment leads to a very high perforation rate of 70%, transfection efficiency three times higher than for conventional lipofection, and very low toxicity (transfection for skin cancer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with SV40 T-antigen mutants defective in RB and P53 binding domains

    International Nuclear Information System (INIS)

    LingNah Su; Little, J.B.

    1992-01-01

    A series of human diploid fibroblast cell clones were developed by DNA transfection with either wild-type SV40 T-antigen (SV40T) or T-antigen mutants defective in its various functional domains. Cell clones expressing the wild-type SV40 T were significantly radioresistant as compared with clones transfected with the neo gene only (D o 192 ± 13 vs 127 ± 19). This radioresistance persisted in post-crisis, immortalized cell lines. A series of mutants with point or deletion mutations within each functionally active domain of SV40 T were also examined for their ability to alter radiosensitivity and induce morphological transformation. Cell clones transfected with T-antigen mutants defective in nuclear localization or origin binding showed increased radioresistance similar to clones transfected with wild-type T-antigen, and expressed morphological changes characteristic of SV40 T-transfected cells. (author)

  16. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    DEFF Research Database (Denmark)

    Adler, Andrew F; Speidel, Alessondra T; Christoforou, Nicolas

    2011-01-01

    of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM....... Emerging literature has highlighted the influence of cell-topography interactions on modulation of many cell phenotypes, including protein expression and cytoskeletal behaviors implicated in endocytosis. Using high-throughput screening of primary human dermal fibroblasts cultured on a combinatorial library...... and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems....

  17. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Science.gov (United States)

    2011-01-01

    Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on hsp promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells. PMID:21663599

  18. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Directory of Open Access Journals (Sweden)

    Lisowska Katarzyna Marta

    2011-06-01

    Full Text Available Abstract Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1 gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA, Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i some cationic liposomes may not be suitable for functional studies on hsp promoters, ii lipofection may cause unintended changes in global gene expression in the transfected cells.

  19. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines...

  20. The 3' region of Human Papillomavirus type 16 early mRNAs decrease expression

    DEFF Research Database (Denmark)

    Vinther, J.; Rosenstierne, M.W.; Kristiansen, Karen

    2005-01-01

    Background: High risk human papillomavirus (HR-HPV) infects mucosal surfaces and HR-HPV infection is required for development of cervical cancer. Accordingly, enforced expression of the early HR-HPV proteins can induce immortalisation of human cells. In most cervical cancers and cervical cancer...... cell lines the HR-HPV double stranded DNA genome has been integrated into the host cell genome. Methods: We have used a retroviral GUS reporter system to generate pools of stably transfected HaCaT and SiHa cells. The HPV-16 early sequences that are deleted upon integration of the HPV-16 genome...

  1. Large eddy simulation of stably stratified turbulence

    International Nuclear Information System (INIS)

    Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao

    2011-01-01

    Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.

  2. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  3. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Helena Sork

    2016-01-01

    Full Text Available The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

  4. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    OpenAIRE

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize deliver...

  5. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    International Nuclear Information System (INIS)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-01-01

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  6. PHARMACOLOGICAL IN VITRO MODELS IN PRE-CLINICAL DRUG TESTING - EXAMPLE OF hSERT TRANSFECTED HUMAN EMBRYONIC KIDNEY CELLS

    Directory of Open Access Journals (Sweden)

    Mihajlo Jakovljević

    2012-06-01

    Full Text Available Preclinical drug testing should be considered an important stage during examinations of its efficiency and safety in any likely indication observed. Purpose of the process is acquisition of substantial amount of particular drug-related data before approaching clinical trials in humans. Historical preclinical testing relied on available testing in microbe cultures and animal models. During recent decades laboratory techniques of human cell lines cultivation have been developed and improved. These provide unique possibility of drug acting mechanism testing in a simplified environment lacking basic homeostatic mechanisms. Some examples of these are measuring drug impact to biochemical transport, signaling or anabolic processes. Humane cell lines of embrional kidney 293 are an example of easy-to-grow and disseminate and quite endurable cell line. This methodological article notices some of the details of HEK293 cells cultivation and breading. We took transfection as an example of in vitro model creation for drug testing. Transfection refers to gene introduction into HEK293 cellular genome in order to achieve membrane expression of coded protein. In our case it would be human serotonin transporter. Article contains description of one particular methodological approach in measuring human serotonin transporter expression. The role and importance of serotonin pump in affective disorders genesis was already widely recognized. Aim of the paper was to emphasize feasibility of cell cultivation and its advantages in comparison with alternative traditional methods.

  7. Suppression of the cell proliferation in stomach cancer cells by the ZNRD1 gene

    International Nuclear Information System (INIS)

    Hong Liu; Zhang Yumei; Liu Na; Liu Changjiang; Zhi Min; Pan Yanglin; Lan Mei; Sun Li; Fan Daiming

    2004-01-01

    Zinc ribbon domain-containing 1 (ZNRD1), a transcription-associated gene, was recently found to be downregulated in human gastric cancer tissues as compared to the matched adjacent nonneoplastic tissues. In this study, we constructed the siRNA eukaryotic expression vectors of ZNRD1 and transfected them into normal gastric epithelial cells (GES-1). We also introduced the ZNRD1 gene into gastric cancer cells that do (SGC7901) and do not (AGS) express ZNRD1 endogenously. GES-1 cells stably transfected with the ZNRD1-RNAi were found to exhibit significantly quicker proliferation than empty vector transfectants. AGS cells stably transfected with the ZNRD1 cDNA exhibited significantly decreased growth rate as compared to control vector transfectants, whereas SGC7901 cells did not. Furthermore, ZNRD1 suppresses growth of AGS cells in soft agar and tumor formation in athymic nude mice. This study clearly demonstrates that ZNRD1 may play an important role in the control of human gastric cancer development by regulating cell proliferation. These results provide new insights into the function of ZNRD1 and further validate ZNRD1 as a potential therapeutic target in gastric cancer

  8. Alterations of DNA content in human endometrial stromal cells transfected with a temperature-sensitive SV40: tetraploidization and physiological consequences.

    Science.gov (United States)

    Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G

    1992-01-01

    The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.

  9. [Experimental study on human periodontal ligament cells transfected with human amelogenin gene].

    Science.gov (United States)

    Yu, Guang; Shu, Rong; Sun, Ying; Cheng, Lan; Song, Zhong-Chen; Zhang, Xiu-Li

    2008-02-01

    To construct the recombinant lentiviral vector of human amelogenin gene, infect human periodontal ligament cells with the recombinant lentivirus, and evaluate the feasibility of applying modified PDLCs as seeds for a further periodontal reconstruction. The mature peptide of hAm cDNA was cloned and linked into the vector plasmid, the recombinant plasmid FUAmW was confirmed by double enzyme digestion and sequence analysis. Recombinant lentivirus was prepared from 293T cells by polytheylenimine (PEI)-mediated transient cotransfection. The hPDLCs and 293T cells were infected with the generated lentivirus. The infection efficiency was analysed by detection of green fluorescence protein (GFP) with fluorescent microscope and flow cytometer 72 hours later. The expression of hAm gene was detected by reverse transcription polymerase chain reaction (RT-PCR). The sequence of inserted fragment in recombinant plasmid was identical to the hAm sequence reported in Genebank. Green fluorescence was visible under fluorescent microscope, FCM assay showed that positive percentage was 69.46% and 33.99% in 293T and hPDLCs, respectively. The targeted gene was obtained in the experimental groups by RT-PCR. The recombinan lentiviral vector of hAm gene is constructed successfully and it could be transfected into cultured hPDLCs. hAm gene and seed cells may be used for further study in the fields periodontal tissue engineering. Supported by National Natural Science Foundation of China (Grant No. 30672315).

  10. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells

    International Nuclear Information System (INIS)

    Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, A.H.; Hedner, U.

    1988-01-01

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VII a , participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca 2+ and tissue factor. Three types of potential posttranslational modifications exist in the human factor VII a molecule, namely, 10 γ-carboxylated, N-terminally located glutamic acid residues, 1 β-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VII a as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VII a . By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VII a was found to be identical with human factor VII a . Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VII a . In the recombinant factor VII a , asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VII a and human plasma factor VII a . These results show that factor VII a as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VII a and that this cell line thus might represent an alternative source for human factor VII a

  11. The effect of aloe emodin–encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells

    International Nuclear Information System (INIS)

    Li, Kai-Ting; Duan, Qin-Qin; Chen, Qing; He, Juan-Wen; Tian, Si; Lin, Hai-Dan; Gao, Qing; Bai, Ding-Qun

    2015-01-01

    Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)–encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm 2 ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human

  12. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    Science.gov (United States)

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  13. Pharmaceutical studies for gene therapy: expression of human Cu, Zn-superoxide dismutase gene transfected by lipofection in rat skin fibroblasts.

    Science.gov (United States)

    Nishiguchi, K; Ishida, K; Nakajima, M; Maeda, T; Komada, F; Iwakawa, S; Tanigawara, Y; Okumura, K

    1996-08-01

    To evaluate whether lipofection using Lipofectin is suitable for delivering foreign genes into skin fibroblasts as target cells, we performed experiments using human superoxide dismutase (hSOD) and neomycin-resistance (Neo) genes as models in rat skin fibroblasts (FR and primary cells) in vitro. The amounts of DNA used in the lipofection procedure significantly affected the transfection efficiencies, and the optimal amounts were determined for all cells used. However, the efficiencies in rat skin fibroblasts were about 20-fold higher than that in rat lung epithelial-like cells (L2 cells). The differences in plasmid vectors (pRc/RSV-SOD and pRc/CMV-SOD) hardly affected the transfection efficiencies. The amounts of Lipofectin significantly affected the transfection efficiencies, and the optimal amounts were determined for both types of skin fibroblasts. However, cytotoxic effects in both skin fibroblasts were observed with high doses of Lipofectin. On the other hand, with optimal amounts of DNA and Lipofectin, the reporter gene (NeoT) introduced into cells was mainly integrated into the host cell chromosome. Western blot analysis showed the continuous expression of hSOD protein for at least 45 d in skin fibroblasts transfected with the expression plasmid for hSOD by Lipofectin under the optimal conditions, and the cellular SOD activity fluctuated in parallel with the expression of hSOD protein. Differences in the type of cells also affected the expression of hSOD. These results indicate that it is necessary to set up optimal conditions for transfection using Lipofectin for each cell type, and that transfection with Lipofectin under optimal conditions may be an efficient method for introduction of foreign genes into skin fibroblasts for use as a clinical delivery system of therapeutic protein.

  14. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells.

    Science.gov (United States)

    Kim, Jayoung; Sunshine, Joel C; Green, Jordan J

    2014-01-15

    Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.

  15. MicroRNA-143 Downregulates Interleukin-13 Receptor Alpha1 in Human Mast Cells

    Directory of Open Access Journals (Sweden)

    Jianqiu Cheng

    2013-08-01

    Full Text Available MicroRNA-143 (miR-143 was found to be downregulated in allergic rhinitis, and bioinformatics analysis predicted that IL-13Rα1 was a target gene of miR-143. To understand the molecular mechanisms of miR-143 involved in the pathogenesis of allergic inflammation, recombinant miR-143 plasmid vectors were constructed, and human mast cell-1(HMC-1 cells which play a central role in the allergic response were used for study. The plasmids were transfected into HMC-1 cells using a lentiviral vector. Expression of IL-13Rα1 mRNA was then detected by reverse transcriptase polymerase chain reaction (RT-PCR and Western Blotting. The miR-143 lentiviral vector was successfully stably transfected in HMC-1 cells for target gene expression. Compared to the control, the target gene IL-13Rα1 was less expressed in HMC-1 transfected with miR-143 as determined by RT-PCR and Western Blotting (p < 0.05; this difference in expression was statistically significant and the inhibition efficiency was 71%. It indicates that miR-143 directly targets IL-13Rα1 and suppresses IL-13Rα1 expression in HMC-1 cells. Therefore, miR-143 may be associated with allergic reaction in human mast cells.

  16. Optical sorting and photo-transfection of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-02-01

    Full Text Available and that the scattering force can enable sorting through axial guiding onto laminin coated glass coverslips upon which the selected cells adhere. Following this, I report on transient photo-transfection of mammalian cells including neuroblastomas (rat/mouse and human...

  17. Biphasic action of cyclic adenosine 3',5'- monophosphate in gonadotropin-releasing hormone (GnRH) analog-stimulated hormone release from GH3 cells stably transfected with GnRH receptor complementary deoxyribonucleic acid.

    Science.gov (United States)

    Stanislaus, D; Arora, V; Awara, W M; Conn, P M

    1996-03-01

    GH3 cells are a PRL-secreting adenoma cell line derived from pituitary lactotropes. These cells have been stably transfected with rat GnRH receptor complementary DNA to produce four cell lines: GGH(3)1', GGH(3)2', GGH(3)6', and GGH(3)12'. In response to either GnRH or Buserelin (a metabolically stable GnRH agonist), these cell lines synthesize PRL in a cAMP-dependent manner. Only GGH(3)6' cells desensitize in response to persistent treatment with 10(-7) g/ml Buserelin. GGH(3)1', GGH(3)2', and GGH(3)12' cells, however, can be made refractory to Buserelin stimulation by raising cAMP levels either by the addition of (Bu)2cAMP to the medium or by treatment with cholera toxin. In GGH(3) cells, low levels of cAMP fulfill the requirements for a second messenger, whereas higher levels appear to mediate the development of desensitization. The observation that in GGH(3)6' cells, cAMP production persists after the onset of desensitization is consistent with the view that the mechanism responsible for desensitization is distal to the production of cAMP. Moreover, the absence of any significant difference in the amount of cAMP produced per cell in GGH(3)2', GGH(3)6', or GGH(3)12' cells suggests that elevated cAMP production per cell does not explain the development of desensitization in GGH(3)6' cells. We suggest that Buserelin-stimulated PRL synthesis in GGH(3)6' cells is mediated by a different cAMP-dependent protein kinase pool(s) than that in nondesensitizing GGH(3) cells. Such a protein kinase A pool(s) may be more susceptible to degradation via cAMP-mediated mechanisms than the protein kinase pools mediating the Buserelin response in nondesensitizing GGH(3) cells. A similar mechanism has been reported in other systems.

  18. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  19. Causal boundary for stably causal space-times

    International Nuclear Information System (INIS)

    Racz, I.

    1987-12-01

    The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs

  20. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy.

    Science.gov (United States)

    Hung, Chien-Fu; Xu, Xuequn; Li, Linhong; Ma, Ying; Jin, Qiu; Viley, Angelia; Allen, Cornell; Natarajan, Pachai; Shivakumar, Rama; Peshwa, Madhusudan V; Emens, Leisha A

    2018-04-02

    CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 9 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival

  1. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  2. Visualization of mole fraction distribution of slow jet forming stably stratified field

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Hishida, Makoto

    1990-01-01

    An experimental study has been performed to investigate the behavior of flow and mass transfer in gaseous slow jet in which buoyancy force opposed the flow forming stably stratified field. The study has been performed to understand the basic features of air ingress phenomena at pipe rupture accident of the high temperature gas-cooled reactor. A displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the mole fraction distribution. As the result, the followings were obtained: (1) The stably stratified fields were formed in the vicinity of the outlet of the slow jet. The penetration distance of the stably stratified fields increased with Froude number. (2) Mass fraction distributions in the stably stratified fields were well correlated with the present model using the ramp mole velocity profile. (author)

  3. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients

    International Nuclear Information System (INIS)

    Kibitel, J.T.; Yee, V.; Yarosh, D.B.

    1991-01-01

    The phage T4 denV gene, coding for the pyrimidine-dimer specific T4 endonuclease V, was transfected into human repair-proficient fibroblasts, repair-deficient xeroderma pigmentosum fibroblasts, and wild type CHO hamster cells. Transfectants maintained denV DNA and expressed denV mRNA. Purified T4 endonuclease V encapsulated in liposomes was also used to treat repair-proficient and -deficient human cells. The denV transfected clones and liposome-treated cells showed increased unscheduled DNA synthesis and enhanced removal of pyrimidine dimers compared to controls. Both denV gene transfection and endonuclease V liposome treatment enhanced post-UV survival in xeroderma pigmentosum cells but had no effect on survival in repair-proficient human or hamster cells. The results demonstrate that an exogenous DNA repair enzyme can correct the DNA repair defect in xeroderma pigmentosum cells and enhance DNA repair in normal cells. (author)

  4. The effects of human TSH receptor gene transfection on iodide uptake and thyroid-specific gene expression in poorly differentiated thyroid carcinoma cell line

    International Nuclear Information System (INIS)

    Hou Shasha; Wang Hui; Feng Fang; Lin Ning; Fu Hongliang; Du Xueliang; Wu Jingchuan

    2011-01-01

    Objective: To investigate the changes of iodide uptake and the expression of thyroid-specific genes in poorly differentiated follicular thyroid carcinoma (FTC) cells after transfection of human TSH receptor (hTSHR) gene in vitro. Methods: The recombinant eukaryotic expression plasmid PcDNA3.1/hTSHR-cDNA was transformed into DH 5a bacterial for amplification and then the recombinant plasmid was extracted. The recombinant was identified with PCR amplifying, restriction enzyme digestion analysis and DNA sequencing. The recombinant plasmid pcDNA3.1/hTSHR was transfected into FTC-133 cell line by lipofectin method in vitro. Immunofluorescence, iodide uptake studies and real time-PCR were applied to detect target protein expression. Statistical analysis was performed with t-test using SPSS 13.0 software. Results: Kpn I and Xba I restriction enzyme digestion, PCR amplifying and DNA sequencing confirmed that pcDNA3.1/hTSHR was successfully constructed. After transfection of the recombinant plasmid pcDNA3.1/hTSHR-cDNA and the stimulation of hTSH, the tumor cells displayed the expression of hTSHR protein at cell surface and cytoplasm. The iodine uptake in pcDNA3.1/hTSHR transfected cells was 2.9 times higher than that of control(pcDNA3.1(+) transfected cells) group(t = 28.63, P<0.01). The expression of TSHR, NIS, TPO and Tg (mRNA levels) in pcDNA3.1/hTSHR transfected cells were also significantly elevated by 1.74 (t =5.959, P<0.01), 7.2 (t =3.807, P<0.05), 2.88 (t=4.769, P<0.01) and 2.67 times (t=6.388, P<0.01) respectively compared to those of the control group. Conclusion: The study demonstrates that iodide uptake may be reactivated by hTSHR receptor gene transfection in poorly differentiated FTC cell. (authors)

  5. Comparison of [{sup 18}F]FHBG and [{sup 14}C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung-Jun; Iyer, Meera [The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA School of Medicine, B3-399A BRI 700 Westwood Plaza, CA 90095-1770, Los Angeles (United States); Gambhir, Sanjiv S. [The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, UCLA School of Medicine, B3-399A BRI 700 Westwood Plaza, CA 90095-1770, Los Angeles (United States); Department of Radiology, Bio-X Program, Stanford University, Stanford, California (United States)

    2003-11-01

    Earlier studies involving comparison of different reporter probes have shown conflicting results between pyrimidine nucleosides [e.g., 2'-fluoro-2'-deoxy-1-{beta}-d-arabinofuranosyl-5-iodouracil (FIAU)] and acycloguanosine derivatives [e.g., penciclovir (PCV), 9-(4-fluoro-3-hydroxymethylbutyl)guanine (FHBG)]. We hypothesized that this reported discrepancy may be related to how the reporter gene is delivered to the cells - stably transfected vs adenoviral infection. We directly compared the uptake characteristics of [{sup 18}F]FHBG, [{sup 3}H]PCV, and [{sup 14}C]FIAU in cell culture and in vivo using an adenoviral mediated gene transfer model and stably transfected cells. We further compared the uptake of three reporter probes using both HSV1-tk and a mutant HSV1-sr39tk expressing cells to assess the optimal reporter probe/reporter gene combination. [{sup 14}C]FIAU accumulation was greater than that of [{sup 3}H]PCV and [{sup 18}F]FHBG in control cells and in HSV1-tk stably transfected cells (P<0.001). After infection of C6 cells with AdCMV-HSV1-tk (1.5 x 10{sup 8} pfu), [{sup 18}F]FHBG and [{sup 3}H]PCV accumulation was significantly greater than that of [{sup 14}C]FIAU (P<0.01). [{sup 18}F]FHBG and [{sup 3}H]PCV accumulated to a significantly greater extent than [{sup 14}C]FIAU in C6-stb-sr39tk+ and AdCMV-HSV1-sr39tk infected C6 cells (P<0.001). Results from the nude mice supported the results in cell culture. [{sup 14}C]FIAU led to significantly higher %ID/g in C6-stb-tk+ xenografts than [{sup 18}F]FHBG (P<0.05); however, compared with [{sup 14}C]FIAU, [{sup 18}F]FHBG led to as high %ID/g in HSV1-tk expressing hepatocytes and to significantly greater %ID/g in C6-stb-sr39tk+ xenografts and HSV1-sr39tk expressing hepatocytes. Dynamic sequential images showed that [{sup 18}F]FHBG was well retained in HSV1-sr39tk expressing cells (C6-stb-sr39tk+) for at least 4 h after injection, while it was rapidly cleared from HSV1-tk expressing cells (MH3924A

  6. Protocol for Lipid-Mediated Transient Transfection in A549 Epithelial Lung Cell Line.

    Science.gov (United States)

    Marcos-Vadillo, Elena; García-Sánchez, Asunción

    2016-01-01

    Trials of transfection in eukaryotic cells are essential tools for the study of gene and protein function. They have been used in a wide range of research fields. In this chapter, a method of transient transfection of the A549 cell line, human lung cells of alveolar epithelium, with an expression plasmid is described. In addition, the fundamental characteristics of this experimental procedure are addressed.

  7. Agonist/antagonist interactions with cloned human 5-HT(1A) receptors: Variations in intrinsic activity studied in transfected HeLa cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Fargin, A.; Raymond, J.R.; Schoeffter, P.; Hoyer, D.

    1992-01-01

    The characteristics of 5-HT(1A)-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT(1A) receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond

  8. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  9. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    Science.gov (United States)

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  10. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII

    Science.gov (United States)

    2011-01-01

    Background Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C. Results We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Conclusion Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability. PMID:22115125

  11. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175

  12. Non-viral transfection methods optimized for gene delivery to a lung cancer cell line.

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-04-01

    Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods.

  13. Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-09-01

    Full Text Available Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293 and two rodent (CHO-K1, L929 cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP was studied under the control of the human elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV, that of ZsYellow1 (yellow fluorescence and mCherry (red fluorescence for the CMV promoter. Results varied with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-transfections, YFP in case of YFP/RFP co-transfections. Only Jurkat cells were almost incapable of expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent effects on transfection efficiency and/or expression levels.

  14. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  15. Accumulation of a soluble form of human nectin-2 is required for exerting the resistance against herpes simplex virus type 2 infection in transfected cells.

    Science.gov (United States)

    Fujimoto, Y; Ozaki, K; Iwamori, N; Takakuwa, H; Ono, E

    2016-03-01

    Cell entry of herpes simplex virus type 2 (HSV-2) requires the interaction of viral glycoprotein D (gD) with the receptor nectin-1 and herpesvirus entry mediator (HVEM). In addition, it is known that nectin-2 is also functional as a receptor for HSV-2, although the binding to the gD is weak. To examine an antiviral potential of a soluble form of human nectin-2 (hNectin-2Ig), transfected Vero cells expressing the entire ectodomain of nectin-2 fused to the Fc portion of human IgG were established. Specific binding of hNectin-2Ig to HSV-2 gD was confirmed by ELISA. Competitive ELISA demonstrated that accumulation of hNectin-2Ig in transfected cells increased significantly in a cell culture time dependent manner. Viral growth of several HSV-2 strains was significantly inhibited in the transfected cells that were cultured for 72 hr compared with control Vero cells, but not in cells that were cultured for 24 hr. These results indicate that accumulation of a soluble form of nectin-2 is required for exerting the resistance against HSV-2 infection.

  16. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  17. Podoplanin increases migration and angiogenesis in malignant glioma

    OpenAIRE

    Grau, Stefan J; Trillsch, Fabian; Tonn, Joerg-Christian; Goldbrunner, Roland H; Noessner, Elfriede; Nelson, Peter J; von Luettichau, Irene

    2015-01-01

    Expression of podoplanin in glial brain tumors is grade dependent. While serving as a marker for tumor progression and modulating invasion in various neoplasms, little is known about podoplanin function in gliomas. Therefore we stably transfected two human glioma cell lines (U373MG and U87MG) with expression plasmids encoding podoplanin. The efficacy of transfection was confirmed by FACS analysis, PCR and immunocytochemistry. Cells were then sorted for highly podoplanin expressing cells (U373...

  18. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    Science.gov (United States)

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  19. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Transfection efficiency and uptake process of polyplexes in human lung endothelial cells: a comparative study in non-polarized and polarized cells.

    Science.gov (United States)

    Mennesson, Eric; Erbacher, Patrick; Piller, Véronique; Kieda, Claudine; Midoux, Patrick; Pichon, Chantal

    2005-06-01

    Following systemic administration, polyplexes must cross the endothelium barrier to deliver genes to the target cells underneath. To design an efficient gene delivery system into lung epithelium, we evaluated capture and transfection efficiencies of DNA complexed with either Jet-PEI (PEI-polyplexes) or histidylated polylysine (His-polyplexes) in human lung microvascular endothelial cells (HLMEC) and tracheal epithelial cells. After optimizing growth conditions to obtain a tight HLMEC monolayer, we characterized uptake of polyplexes by flow cytometry and evaluated their transfection efficiency. Polyplexes were formulated as small particles. YOYO-labelled plasmid fluorescence intensity and luciferase activity were used as readouts for uptake and gene expression, respectively. PEI-polyplexes were more efficiently taken up than His-polyplexes by both non-polarized (2-fold) and polarized HLMEC (10-fold). They were mainly internalized by a clathrin-dependent pathway whatever the cell state. In non-polarized cells, His-polyplexes entered also mainly via a clathrin-dependent pathway but with an involvement of cholesterol. The cell polarization decreased this way and a clathrin-independent pathway became predominant. PEI-polyplexes transfected more efficiently HLMEC than His-polyplexes (10(7) vs. 10(5) relative light units (RLU)/mg of proteins) with a more pronounced difference in polarized cells. In contrast, no negative effect of the cell polarization was observed with tracheal epithelial cells in which both polyplexes had comparable efficiency. We show that the efficiency of polyplex uptake by HLMEC and their internalization mechanism are polymer-dependent. By contrast with His-polyplexes, the HLMEC polarization has little influence on the uptake process and on the transfection efficiency of PEI-polyplexes. Copyright (c) 2005 John Wiley & Sons, Ltd.

  1. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  2. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells.

    Science.gov (United States)

    Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien

    2015-01-01

    The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. © 2015 American Institute of Chemical Engineers.

  3. Transfection in Primary Cultured Neuronal Cells.

    Science.gov (United States)

    Marwick, Katie F M; Hardingham, Giles E

    2017-01-01

    Transfection allows the introduction of foreign nucleic acid into eukaryotic cells. It is an important tool in understanding the roles of NMDARs in neurons. Here, we describe using lipofection-mediated transfection to introduce cDNA encoding NMDAR subunits into postmitotic rodent primary cortical neurons maintained in culture.

  4. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-01-01

    Highlights: ► Hsp90 is over-expressed in human breast cancer. ► The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. ► Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. ► The tumor growth ratio was decline due to Hsp90 silencing. ► The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  5. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Malik Mohammed T

    2005-01-01

    Full Text Available Abstract Background Pituitary tumor transforming gene1 (PTTG1 is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3 cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293 cells. Results We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. Conclusions Our results

  6. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    Fritz, E.

    1994-06-01

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.) [de

  7. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  8. Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background.

    Science.gov (United States)

    Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E

    1992-05-15

    A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes.

  9. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  10. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  11. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  12. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, Kohtaro; Ozaki, Masumi [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan); Kuraoka, Isao [Biological Chemistry Group, Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan); Department of New Frontier Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan); Global COE (Centers of Excellence) Program, Global Initiative Center for Pulsed Power Engineering, Kumamoto University, Kumamoto (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A human cell line expressing a mouse Nip45 has facilitated Nip45 analysis. Black-Right-Pointing-Pointer Nip45 does not effectively inhibit polySUMOylation in vivo. Black-Right-Pointing-Pointer Nip45 interacts directly with SUMO and SUMO chains. Black-Right-Pointing-Pointer Nip45 accumulates at PML bodies in response to proteasome inhibition. -- Abstract: The nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 interacting protein, Nfatc2ip (Nip45), has been implicated as a crucial coordinator of the immune response and of cellular differentiation in humans and mice, and contains SUMO-like domains in its C-terminal region. However, the significance of its N-terminal region and its correlation to the SUMO modification pathway remain largely uncharacterized. In this study, a human cultured cell line was established, in which FLAG-tagged mouse Nip45 (FLAG-mNip45) was stably overexpressed. Under standard, non-stressful conditions, we detected FLAG-mNip45 diffusely distributed in the nucleus. Intriguingly, proteasome inhibition by MG132 caused FLAG-mNip45, together with SUMOylated proteins, to localize in nuclear domains associated with promyelocytic leukemia protein. Finally, using an in vitro binding assay, we showed interaction of the N-terminal region of mNip45 with both free SUMO-3 and SUMO-3 chains, indicating that Nip45 may, in part, exert its function via interaction with SUMO/SUMOylated proteins. Taken together, our study provides novel information on a poorly characterized mammalian protein and suggests that our newly established cell line will be useful for elucidating the physiological role of Nip45.

  13. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  14. mRNA transfection of mouse and human neural stem cell cultures

    OpenAIRE

    McLenachan, Samuel; Zhang, D.; Palomo, A.B.; Edel, Michael John; Chen, F.K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has ...

  15. TIMP-1 overexpression does not affect sensitivity to HER2-targeting drugs in the HER2-gene-amplified SK-BR-3 human breast cancer cell line

    DEFF Research Database (Denmark)

    Deng, Xiaohong; Fogh, Louise; Lademann, Ulrik Axel

    2013-01-01

    affect sensitivity to the HER2-targeting drugs trastuzumab and lapatinib. SK-BR-3 human breast cancer cells were stably transfected with TIMP-1, characterized with regard to TIMP-1 protein expression, proliferation, and functionality of the secreted TIMP-1, and the sensitivity to trastuzumab...... and lapatinib was studied in five selected single-cell subclones expressing TIMP-1 protein at various levels plus the parental SK-BR-3 cell line. Both trastuzumab and lapatinib reduced cell viability, as determined by MTT assay, but the sensitivity to the drugs was not associated with the expression level...... to trastuzumab and lapatinib....

  16. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues.

    Science.gov (United States)

    Kumar, Ajay; Yellepeddi, Venkata K; Vangara, Kiran K; Strychar, Kevin B; Palakurthi, Srinath

    2011-11-01

    The aim of this study was to prepare and investigate the mechanism of uptake of the dendriplexes prepared with ornithine-conjugated polyamidoamine (PAMAM) G4 dendrimers. Ornithine-conjugated PAMAMG4 dendrimers were prepared by Fmoc synthesis. A comparative transfection study in NCI H157G cells and polyamine transport-deficient cell line NCI H157R was performed to confirm the role of the polyamine transporter system (PAT) in the dendriplex uptake. Transfection efficiency significantly increased with increase in generation number and extent of ornithine conjugation. Transfection efficiency of the PAMAMG4-ORN60 dendrimers significantly decreased in presence of excess of ornithine (P dendrimers. Transfection efficiency of PAMAMG4-ORN60 was significantly low in NCI H157R (31.66 ± 3.95%, RFU: 17.87 ± 1.34) as compared to NCI H157G cell line (63.07 ± 6.8%, relative fluorescence units (RFU): 23.28 ± 0.66). Results indicate the role of PAT in addition to charge-mediated endocytosis in the internalization of ornithine-conjugated PAMAMG4 dendrimers. Cytotoxicity analysis (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay) in human embryonic kidney cell line (HEK) 293T cells showed that the dendriplexes were non-toxic at N/P 10.

  17. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Karimi, Mohammad Hosein

    2014-09-01

    Diabetes mellitus is characterized by either the inability to produce insulin or insensitivity to insulin secreted by the body. Islet cell replacement is an effective approach for diabetes treatment; however, it is not sufficient for all the diabetic patients. MicroRNAs (miRNAs) are a class of small noncoding RNAs that play an important role in mediating a broad and expanding range of biological activities, such as pancreas development. The present study aimed to develop a protocol to efficiently differentiate human induced pluripotent stem (iPS) cells into islet-like cell clusters (ILCs) in vitro by using miR-186 and miR-375. The human iPS colonies were transfected with hsa-miR-186 and hsa-miR-375 by using siPORT™ NeoFX™ Transfection Agent, and the differentiation was compared to controls. Total RNA was extracted 24 and 48 h after transfection. The gene expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, Glucagon, and OCT4 were then evaluated through real-time qPCR. On the third day, the potency of the clusters was assessed in response to high glucose levels. Dithizone (DTZ) was used to identify the existence of the β-cells. Besides, the presence of insulin and NGN3 proteins was investigated by immunocytochemistry. Morphological changes were observed on the first day after the chemical transfection, and cell clusters were formed on the third day. The expression of pancreatic specific transcription factors was increased on the first day and significantly increased on the second day. The ILCs were positive for insulin and NGN3 proteins in the immunocytochemistry. Besides, the clusters were stained with DTZ and secreted insulin in glucose challenge test. Overexpression of miR-186 and miR-375 can be an alternative strategy for producing ILCs from the iPS cells in a short time. This work provides a new approach by using patient-specific iPSCs for β-cell replacement therapy in diabetic patients.

  18. Transfection of bone marrow derived cells with immunoregulatory proteins.

    Science.gov (United States)

    Khantakova, Julia N; Silkov, Alexander N; Tereshchenko, Valeriy P; Gavrilova, Elena V; Maksyutov, Rinat A; Sennikov, Sergey V

    2018-03-23

    In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  20. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    Science.gov (United States)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  1. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  2. [Establishment and application of a Vero cell line stably expressing raccoon dog SLAM, the cellular receptor of canine distemper virus].

    Science.gov (United States)

    Zhao, Jianjun; Yan, Ruxun; Zhang, Hailing; Zhang, Lei; Hu, Bo; Bai, Xue; Shao, Xiqun; Chai, Xiuli; Yan, Xijun; Wu, Wei

    2012-12-04

    The signaling lymphocyte activation molecule (SLAM, also known as CD150), is used as a cellular receptor by canine distemper virus (CDV). Wild-type strains of CDVs can be isolated and propagated efficiently in non-lymphoid cells expressing this protein. Our aim is to establish a Vero cells expressing raccoon dog SLAM (rSLAM) to efficiently isolate CDV from pathological samples. A eukaryotic expression plasmid, pIRES2-EGFP-rSLAMhis, containing rSLAM gene fused with six histidine-coding sequence, EGFP gene, and neomycin resistance gene was constructed. After transfection with the plasmid, a stable cell line, Vero-rSLAM, was screened from Vero cells with the identification of EGFP reporter and G418 resistance. Three CD positive specimens from infected foxes and raccoon dogs were inoculated to Vero-rSLAM cells for CDV isolation. Foxes and raccoon dogs were inoculated subcutaneously LN (10)fl strain with 4 x 10(2.39)TCID50 dose to evaluate pathogenicity of CDV isolations. The rSLAMh fused gene was shown to transcript and express stably in Vero-rSLAM cells by RT-PCR and Immunohistochemistry assay. Three CDV strains were isolated successfully in Vero-rSLAM cells 36 -48 hours after inoculation with spleen or lung specimens from foxes and raccoon dogs with distemper. By contrast, no CDV was recovered from those CD positive specimens when Vero cells were used for virus isolation. Infected foxes and raccoon dogs with LN(10)f1 strain all showed typical CD symptoms and high mortality (2/3 for foxes and 3/3 for raccoon dogs) in 22 days post challenge. Our results indicate that Vero-rSLAM cells stably expressing raccoon dog SLAM are highly sensitive to CDV in clinical specimens and the CDV isolation can maintain high virulence to its host animals.

  3. Direct and efficient transfection of mouse neural stem cells and mature neurons by in vivo mRNA electroporation.

    Science.gov (United States)

    Bugeon, Stéphane; de Chevigny, Antoine; Boutin, Camille; Coré, Nathalie; Wild, Stefan; Bosio, Andreas; Cremer, Harold; Beclin, Christophe

    2017-11-01

    In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons. © 2017. Published by The Company of Biologists Ltd.

  4. SPE-HPLC purification of endocrine disrupting compounds from human serum for assessment of xenoestrogenic activity

    DEFF Research Database (Denmark)

    Hjelmborg, P.S.; Ghisari, Mandana; Bonefeld-Jørgensen, Eva

    2006-01-01

    Assessment of xenoestrogenic activity in human serum samples requires the removal of endogenous sex hormones to assure that the activity measured originates from xenobiotic compounds only. Serum samples representing high, medium and lower accumulation of persistent organic pollutants (POPs) were...... measured by ERE-CALUX was validated and considered to be a valuable tool to assess the combined ER effect of lipophilic serum POPs where additive/synergistic and agonistic/antagonistic effects are integrated giving an overall estimate of exposure and bioactivity....... for the study. MVLN cells, stably transfected with an estrogen receptor (ER) luciferase reporter vector (ERE-CALUX), were exposed to the reconstituted SPE-HPLC extracts for determination of the integrated estrogenic activity. The effects of PCBs were analyzed by direct in vitro exposure of PCBs (138, 153...

  5. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Panozzo, J.; Libertin, C.R.; Schreck, S.; South Carolina Univ., Columbia, SC

    1994-01-01

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  6. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  7. Turbulent circulation above the surface heat source in stably stratified atmosphere

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  8. Transfection of bovine spermatogonial stem cells in vitro.

    Science.gov (United States)

    Tajik, P; Hoseini Pajooh, Kh; Fazle Elahi, Z; Javdani Shahedin, G; Ghasemzadeh-Nava, H

    2017-01-01

    Spermatogonial stem cells (SSCs) are the only stem cells in adults that can transfer genetic information to the future generations. Considering the fact that a single SSC gives rise to a vast number of spermatozoa, genetic manipulation of these cells is a potential novel technology with feasible application to various animal species. The aim of this study was to evaluate enhanced green fluorescent protein (EGFP) gene transfection into bovine SSCs via liposome carrier and assess the best incubation day in uptake exogenous gene by SSCs. Transfection efficiency of EGFP gene with lipofectamine 2000 was determined in days following each three day of transfection (day 4, 6 and 8 of the culture) by fluorescent microscope. Results showed that the transfected cells through lipofection increased significantly (Ptransfection in comparison with those of the control groups. The transfected SSCs were higher in comparison with those of the free exogenous gene carrier groups (Ptransfection proceeds at day four. It was concluded that lipofectamine can be used safely for direct loading exogenous DNA to SSCs particularly during the fourth day of culture.

  9. Inhibition of STAT-3 results in radiosensitization of human squamous cell carcinoma

    International Nuclear Information System (INIS)

    Bonner, James A.; Trummell, Hoa Q.; Willey, Christopher D.; Plants, Brian A.; Raisch, Kevin P.

    2009-01-01

    Background: Signal transducer and activator of transcription-3 (STAT-3) is a downstream component of the Epidermal Growth Factor Receptor (EGFr) signaling process that may facilitate the resistance of tumor cells to conventional cancer treatments. Studies were performed to determine if inhibition of this downstream protein produces radiosensitization. Methods/Results: A431 cells (human squamous cell carcinoma cells with EGFr overexpression) were found to be sensitized to radiation after treatment with STAT-3 small interfering RNA (siRNA). Therefore, a short hairpin RNA (shRNA) against STAT-3 was designed and cloned into a pBABE vector system modified for shRNA expression. Following transfection, clone 2.1 was selected for further study as it showed a dramatic reduction of STAT-3 protein (and mRNA) when compared to A431 parental cells or a negative control shRNA cell line (transfected with STAT-3 shRNA with 2 base pairs mutated). A431 2.1 showed doubling times of 25-31 h as compared to 18-24 h for the parental cell line. The A431 shRNA knockdown STAT-3 cells A431 were more sensitive to radiation than A431 parental or negative STAT-3 control cells. Conclusion: A431 cells stably transfected with shRNA against STAT-3 resulted in enhanced radiosensitivity. Further work will be necessary to determine whether the inhibition of STAT-3 phosphorylation is a necessary step for the radiosensitization that is induced by the inhibition of EGFr.

  10. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    Science.gov (United States)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  11. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library

    International Nuclear Information System (INIS)

    Teitz, T.; Naiman, T.; Avissar, S.S.; Bar, S.; Okayama, H.; Canaani, D.

    1987-01-01

    In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion

  12. Optical transfection using an endoscope-like system.

    Science.gov (United States)

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  13. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata.

    Science.gov (United States)

    Diao, Jin-Mei; Pang, Xin; Qiu, Yue; Miao, Ying; Yu, Miao-Miao; Fan, Ting-Jun

    2015-03-01

    A tissue-engineered human corneal stroma (TE-HCS) has been developed as a promising equivalent to the native corneal stroma for replacement therapy. However, there is still a crucial need to improve the current approaches to render the TE-HCS equivalent more favorable for clinical applications. At the present study, we constructed a TE-HCS by incubating non-transfected human corneal stromal (HCS) cells in an acellular porcine corneal stromata (aPCS) scaffold in 20% fetal bovine serum supplemented DMEM/F12 (1:1) medium at 37 °C with 5% CO2in vitro. After 3 days of incubation, the constructed TE-HCS had a suitable tensile strength for transplantation, and a transparency that is comparable to native cornea. The TE-HCS had a normal histological structure which contained regularly aligned collagen fibers and differentiated HCS cells with positive expression of marker and functional proteins, mimicking a native HCS. After transplantation into rabbit models, the TE-HCS reconstructed normal corneal stroma in vivo and function well in maintaining corneal clarity and thickness, indicating that the completely biological TE-HCS could be used as a HCS equivalent. The constructed TE-HCS has promising potentials in regenerative medicine and treatment of diseases caused by corneal stromal disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  15. Transfection of Platyhelminthes

    Directory of Open Access Journals (Sweden)

    Bárbara Moguel

    2015-01-01

    Full Text Available Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.

  16. In vitro studies of magnetically enhanced transfection in COS-7 cells

    International Nuclear Information System (INIS)

    Ang, D.; Tay, C.Y.; Tan, L.P.; Preiser, P.R.; Ramanujan, R.V.

    2011-01-01

    In the magnetically enhanced gene delivery technique, DNA complexed with polymer coated aggregated magnetic nanoparticles (AMNPs) is used for effecting transfection. The aim of this study is to examine the relationship between transfection efficiency and the physical characteristics of the polymer coated AMNPs. In vitro studies of transfection efficiency in COS-7 cells were carried out using pEGFP-N1 and pMIR-REPORT complexed polyethylenimine (PEI) coated iron oxide magnetic nanoparticles. PEI coated AMNPs (PEI-AMNPs) with average individual particle diameters in the range of 8 nm to 30 nm were studied and characterized by transmission electron microscopy, vibrating sample magnetometry, X-ray diffractometry, thermal gravimetric analysis and photon correlation spectroscopy methods. PEI-A8MNP and PEI-A30MNP yielded higher transfection efficiency compared to commercial polyMAG particles as well as PEI of equivalent molar ratio of nitrogen/phosphorous (N/P ratio). The transfection efficiency was related to the physical characteristics of the PEI-AMNPs and its complexes: transfection efficiency was strongly positively correlated with saturation magnetization (Ms) and susceptibility (χ), strongly negatively correlated with N/P ratio, moderately positively correlated to zeta potential and moderately negatively correlated to hydrodynamic diameter of the complex. PEI-A8MNP and PEI-A30MNP possessing higher Ms, χ, lower N/P ratio and smaller complex size exhibited higher transfection efficiency compared to PEI-A16MNP which have weaker magnetic properties, higher N/P ratio and larger complex size. We have demonstrated that optimization of the physical properties of PEI-AMNPs is needed to maximize transfection efficiency. - Research highlights: →The transfection efficiency in magnetically enhanced gene delivery was studied. →Transfection efficiency was strongly positively correlated to magnetic properties. →Transfection efficiency was strongly negatively correlated with

  17. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  18. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.; He, L.-S.; Wong, Y. H.; Yu, L.; Qian, P.-Y.

    2015-01-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  19. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, M.; Kraemer, K.H.

    1985-01-01

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D 0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  20. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.

    Directory of Open Access Journals (Sweden)

    Juan Ramón Vanegas Sáenz

    Full Text Available Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP, the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8, which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC and human osteoblasts (hOB in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.

  1. The M1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    International Nuclear Information System (INIS)

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated [ 3 H]IP 1 accumulation in the SH-SY5Y cells was decreased in the presence of 1μg/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M 1 mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m 1 gene. The transfected B82 cells (cTB10) showed specific [ 3 H](-)QNB binding activity. The mAChRs in these cells are of the M 1 type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M 1 mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M 1 mAChR densities in these cells characterized by [ 3 H](-)MQNB binding ranged from 12 fmol/10 6 cells in LK3-1 cells to 260 fmol/10 6 cells in the LK3-8 cells

  2. Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease.

    Science.gov (United States)

    Ye, Lei; Haider, Husnain Kh; Esa, Wahidah Bte; Su, Liping; Law, Peter K; Zhang, Wei; Lim, Yeanteng; Poh, Kian Keong; Sim, Eugene K W

    2010-01-01

    The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.

  3. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  4. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    International Nuclear Information System (INIS)

    Merkle, Thomas J.; O'Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H.

    2004-01-01

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage

  5. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

    2004-10-04

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

  6. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C

    1992-01-01

    is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...

  7. Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers

    International Nuclear Information System (INIS)

    Morita, Hidekazu; Katsuno, Tatsuro; Hoshimoto, Aihiro; Hirano, Noriaki; Saito, Yasushi; Suzuki, Yasuo

    2004-01-01

    In some cell types, gap junctional intercellular communication (GJIC) is associated with tight junctions. The present study was performed to determine the roles of GJIC in regulation of the barrier function of tight junctions. Caco-2 human colonic cells were used as a monolayer model, and barrier function was monitored by measuring mannitol permeability and transepithelial electrical resistance (TER). The monolayers were chemically disrupted by treatment with oleic acid and taurocholic acid. Western blotting analyses were performed to evaluate the protein levels of connexins, which are components of gap junctional intercellular channels. Cx26 expression was detected in preconfluent Caco-2 cells, and its level increased gradually after the monolayer reached confluency. These results prompted us to examine whether overexpression of Cx26 affects barrier function. Monolayers of Caco-2 cells stably expressing Cx26 showed significantly lower mannitol permeability and higher TER than mock transfectants when the monolayers were chemically disrupted. The levels of claudin-4, an important component of tight junctions, were significantly increased in the stable Cx26 transfectant. These results suggest that Cx26-mediated GJIC may play a crucial role in enhancing the barrier function of Caco-2 cell monolayers

  8. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  9. Unexpected transcellular protein crossover occurs during canonical DNA transfection.

    Science.gov (United States)

    Arsenault, Jason; Cuijpers, Sabine A G; Niranjan, Dhevahi; Davletov, Bazbek

    2014-12-01

    Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30-50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection. © 2014 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  10. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  11. Transfection of Babesia bovis by Double Selection with WR99210 and Blasticidin-S and Its Application for Functional Analysis of Thioredoxin Peroxidase-1.

    Directory of Open Access Journals (Sweden)

    Masahito Asada

    Full Text Available Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using selectable markers blasticidin-S deaminase (bsd or human dihydrofolate reductase (hdhfr. In this work, we combine these two selectable markers in a sequential transfection system. Specifically, a parent transgenic B. bovis line which episomally expresses green fluorescent protein (GFP and human dihydrofolate reductase (hDHFR, was transfected with a plasmid encoding a fusion protein consisting of red fluorescent protein (RFP and blasticidin-S deaminase (BSD. Selection with WR99210 and blasticidin-S resulted in the emergence of parasites double positive for GFP and RFP. We then applied this method to complement gene function in a parasite line in which thioredoxin peroxidase-1 (Bbtpx-1 gene was knocked out using hDHFR as a selectable marker. A plasmid was constructed harboring both RFP-BSD and Bbtpx-1 expression cassettes, and transfected into a Bbtpx-1 knockout (KO parasite. Transfectants were independently obtained by two transfection methods, episomal transfection and genome integration. Complementation of Bbtpx-1 resulted in full recovery of resistance to nitrosative stress, via the nitric oxide donor sodium nitroprusside, which was impaired in the Bbtpx-1 KO parasites. In conclusion, we developed a sequential transfection method in B. bovis and subsequently applied this technique in a gene complementation study. This method will enable broader genetic manipulation of Babesia toward enhancing our understanding of the biology of this parasite.

  12. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents.

    Science.gov (United States)

    Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin

    2015-12-08

    The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications.

  13. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    Science.gov (United States)

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  14. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    Science.gov (United States)

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  15. Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

    Science.gov (United States)

    Yan, C.; Stanley, S.

    2017-12-01

    The presence of a stably stratified layer at the top of the core has long been proposed for Earth, based on evidence from seismology and geomagnetic secular variation. Geodynamo modeling offers a unique window to inspect the properties and dynamics in Earth's core. For example, numerical simulations have shown that magnetic field morphology is sensitive to the presence of stably stratified layers in a planet's core. Here we use the mMoSST numerical dynamo model to investigate the effects of a thin stably stratified layer at the top of the fluid outer core in Earth on the resulting large-scale geomagnetic field morphology. We find that the existence of a stable layer has significant influence on the octupolar component of the magnetic field in our models, whereas the quadrupole doesn't show an obvious trend. This suggests that observations of the geomagnetic field can be applied to provide information of the properties of this plausible stable layer, such as how thick and how stable this layer could be. Furthermore, we have examined whether the dominant thermal signature from mantle tomography at the core-mantle boundary (CMB) (a degree & order 2 spherical harmonic) can influence our results. We found that this heat flux pattern at the CMB has no outstanding effects on the quadrupole and octupole magnetic field components. Our studies suggest that if there is a stably stratified layer at the top of the Earth's core, it must be limited in terms of stability and thickness, in order to be compatible with the observed paleomagnetic record.

  16. Structure-activity correlation in transfection promoted by pyridinium cationic lipids.

    Science.gov (United States)

    Parvizi-Bahktar, P; Mendez-Campos, J; Raju, L; Khalique, N A; Jubeli, E; Larsen, H; Nicholson, D; Pungente, M D; Fyles, T M

    2016-03-21

    The efficiency of the transfection of a plasmid DNA encoding a galactosidase promoted by a series of pyridinium lipids in mixtures with other cationic lipids and neutral lipids was assessed in CHO-K1 cells. We identify key molecular parameters of the lipids in the mixture - clog P, lipid length, partial molar volume - to predict the morphology of the lipid-DNA lipoplex and then correlate these same parameters with transfection efficiency in an in vitro assay. We define a Transfection Index that provides a linear correlation with normalized transfection efficiency over a series of 90 different lipoplex compositions. We also explore the influence of the same set of molecular parameters on the cytotoxicity of the formulations.

  17. Efficient transfection of DNA into primarily cultured rat sertoli cells by electroporation.

    Science.gov (United States)

    Li, Fuping; Yamaguchi, Kohei; Okada, Keisuke; Matsushita, Kei; Enatsu, Noritoshi; Chiba, Koji; Yue, Huanxun; Fujisawa, Masato

    2013-03-01

    The expression of exogenous DNA in Sertoli cells is essential for studying its functional genomics, pathway analysis, and medical applications. Electroporation is a valuable tool for nucleic acid delivery, even in primarily cultured cells, which are considered difficult to transfect. In this study, we developed an optimized protocol for electroporation-based transfection of Sertoli cells and compared its efficiency with conventional lipofection. Sertoli cells were transfected with pCMV-GFP plasmid by square-wave electroporation under different conditions. After transfection of plasmid into Sertoli cells, enhanced green fluorescent protein (EGFP) expression could be easily detected by fluorescent microscopy, and cell survival was evaluated by dye exclusion assay using Trypan blue. In terms of both cell survival and the percentage expressing EGFP, 250 V was determined to produce the greatest number of transiently transfected cells. Keeping the voltage constant (250 V), relatively high cell survival (76.5% ± 3.4%) and transfection efficiency (30.6% ± 5.6%) were observed with a pulse length of 20 μm. The number of pulses significantly affected cell survival and EGFP expression (P transfection methods, the transfection efficiency of electroporation (21.5% ± 5.7%) was significantly higher than those of Lipofectamine 2000 (2.9% ± 1.0%) and Effectene (1.9% ± 0.8%) in this experiment (P transfection of Sertoli cells.

  18. Large eddy simulation of turbulent and stably-stratified flows

    International Nuclear Information System (INIS)

    Fallon, Benoit

    1994-01-01

    The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr

  19. Optimal energy growth in a stably stratified shear flow

    Science.gov (United States)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  20. Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-1 Tax protein.

    Science.gov (United States)

    Alexandre, C; Verrier, B

    1991-04-01

    Expression of the human c-fos proto-oncogene is activated in trans by the Tax protein encoded by human T-cell leukemia virus type-1 (HTLV-1). Indeed, we show here that a HeLa clone stably transfected by Tax expresses Fos at a high level. We also show that multiple elements of the human c-fos promoter, i.e. the v-sis conditioned medium inducible element (SIE), the dyad symmetry element (DSE) necessary for growth factor induction, the octanucleotide direct repeat element (DR), and the cyclic AMP response element (CRE) centred at -60, can all mediate Tax transactivation. In the DSE, the 10bp central core that binds the serum response factor (SRF) is, by itself, sufficient to mediate Tax transactivation. Moreover, a CRE-binding protein is involved in Tax activation through the CRE-60 element. Since Fos is a transregulator of cellular genes, our results suggest that the oncoprotein plays a crucial role in T-cell transformation by HTLV-1 in conjunction with other Tax-inducible genes.

  1. The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases β-Amyloid Protein Levels

    Science.gov (United States)

    Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D.; Xia, Weiming; Marcantonio, Edward R.; Culley, Deborah J.; Crosby, Gregory; Tanzi, Rudolph E.; Xie, Zhongcong

    2009-01-01

    Objective: To assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on apoptosis and β-amyloid protein (Aβ) levels in vitro and in vivo. Subjects: Naive mice, H4 human neuroglioma cells, and H4 human neuroglioma cells stably transfected to express full-length amyloid precursor protein. Interventions: Human H4 neuroglioma cells stably transfected to express full-length amyloid precursor protein were exposed to 4.1% sevoflurane for 6 hours. Mice received 2.5% sevoflurane for 2 hours. Caspase-3 activation, apoptosis, and Aβ levels were assessed. Results: Sevoflurane induced apoptosis and elevated levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in vitro and in vivo. The caspase inhibitor Z-VAD decreased the effects of sevoflurane on apoptosis and Aβ. Sevoflurane-induced caspase-3 activation was attenuated by the γ-secretase inhibitor L-685,458 and was potentiated by Aβ. These results suggest that sevoflurane induces caspase activation which, in turn, enhances β-site amyloid precursor protein–cleaving enzyme and Aβ levels. Increased Aβ levels then induce further rounds of apoptosis. Conclusions: These results suggest that inhalational anesthetic sevoflurane may promote Alzheimer disease neuropathogenesis. If confirmed in human subjects, it may be prudent to caution against the use of sevoflurane as an anesthetic, especially in those suspected of possessing excessive levels of cerebral Aβ. PMID:19433662

  2. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    International Nuclear Information System (INIS)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-01-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate

  3. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.

    Science.gov (United States)

    Lattenmayer, Christine; Loeschel, Martina; Schriebl, Kornelia; Steinfellner, Willibald; Sterovsky, Thomas; Trummer, Evelyn; Vorauer-Uhl, Karola; Müller, Dethardt; Katinger, Hermann; Kunert, Renate

    2007-04-15

    In order to improve the current techniques of cell cultivation in the absence of serum, we have developed a protein-free transfection protocol for CHO cells, based on the Nucleofector technology. After starting with a heterogeneous pool of primary transfectants which express the fusion protein EpoFc, we isolated single clones and compared them with parallel clones generated by lipofection in serum-dependent cultivation. Our intensive characterization program was based on determination of specific productivity (q(p)) and analysis of genetic parameters. In two nucleofection experiments, transfection with 5 microg of DNA resulted in best productivities of the primary cell pools. After subcloning, the q(p) could be raised up to 27 pg x cells(-1) x day(-1). While the serum-dependent transfectants exhibited specific productivities up to 57 pg x cells(-1) x day(-1) in serum-dependent cultivation, a significant decrease that resulted in the range of q(p) of the protein-free transfectants was observed after switching to protein-free conditions. Investigation of genetic parameters revealed higher mRNA levels and gene copy numbers (GCN) for the protein-free adapted serum-dependent transfectants. Therefore, we assume that problems during protein-free adaptation (PFA) lead to a less efficient translation machinery after serum deprivation. We describe the generation of stable-producing recombinant CHO clones by protein-free transfection of a protein-free adapted host cell line, which reduces the risk of adverse clonal changes after PFA. The main advantage of this approach is the earlier predictability of clone behavior, which makes the generation of production clones by protein-free transfection, a viable and highly efficient strategy for recombinant cell line development. (c) 2006 Wiley Periodicals, Inc.

  4. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    Science.gov (United States)

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  5. Transfection in perfused microfluidic cell culture devices: A case study.

    Science.gov (United States)

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  6. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  7. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  8. Pharmacological and functional characterisation of the wild-type and site-directed mutants of the human H1 histamine receptor stably expressed in CHO cells.

    Science.gov (United States)

    Moguilevsky, N; Varsalona, F; Guillaume, J P; Noyer, M; Gillard, M; Daliers, J; Henichart, J P; Bollen, A

    1995-01-01

    A cDNA clone for the human histamine H1 receptor was isolated from a lung cDNA library and stably expressed in CHO cells. The recombinant receptor protein present in the cell membranes, displayed the functional and binding characteristics of histamine H1 receptors. Mutation of Ser155 to Ala in the fourth transmembrane domain did not significantly change the affinity of the receptor for histamine and H1 antagonists. However, mutation of the fifth transmembrane Asn198 to Ala resulted in a dramatic decrease of the affinity for histamine binding, and for the histamine-induced polyphosphoinositides breakdown, whereas the affinity towards antagonists was not significantly modified. In addition, mutation of another fifth transmembrane amino acid, Thr194 to Ala also diminished, but to a lesser extent, the affinity for histamine. These data led us to propose a molecular model for histamine interaction with the human H1 receptor. In this model, the amide moiety of Asn198 and the hydroxyl group of Thr194 are involved in hydrogen bonding with the nitrogen atoms of the imidazole ring of histamine. Moreover, mutation of Thr194 to Ala demonstrated that this residue is responsible for the discrimination between enantiomers of cetirizine.

  9. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure

    Science.gov (United States)

    Felgner, Philip L.; Gadek, Thomas R.; Holm, Marilyn; Roman, Richard; Chan, Hardy W.; Wenz, Michael; Northrop, Jeffrey P.; Ringold, Gordon M.; Danielsen, Mark

    1987-11-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA. DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to >100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.

  10. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  11. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  12. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    Science.gov (United States)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  13. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  14. The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine.

    Science.gov (United States)

    Kisser, Beatrice; Mangelsen, Eva; Wingolf, Caroline; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Tannergren, Christer; Oswald, Stefan; Keiser, Markus

    2017-06-22

    The Ussing chamber is an old but still powerful technique originally designed to study the vectorial transport of ions through frog skin. This technique is also used to investigate the transport of chemical agents through the intestinal barrier as well as drug metabolism in enterocytes, both of which are key determinants for the bioavailability of orally administered drugs. More contemporary model systems, such as Caco-2 cell monolayers or stably transfected cells, are more limited in their use compared to the Ussing chamber because of differences in expression rates of transporter proteins and/or metabolizing enzymes. While there are limitations to the Ussing chamber assay, the use of human intestinal tissue remains the best laboratory test for characterizing the transport and metabolism of compounds following oral administration. Detailed in this unit is a step-by-step protocol for preparing human intestinal tissue, for designing Ussing chamber experiments, and for analyzing and interpreting the findings. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  16. Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate core-shell magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Tencomnao T

    2012-06-01

    Full Text Available Tewin Tencomnao,1,* Kewalin Klangthong,2,* Nuttaporn Pimpha,3 Saowaluk Chaleawlert-umpon,3 Somsak Saesoo,3 Noppawan Woramongkolchai,3 Nattika Saengkrit,31Center for Excellence in Omics-Nano Medical Technology Development Project, 2Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 3National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand*Both authors contributed equally to this workBackground: The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate (PMMA core/polyethyleneimine (PEI shell (mag-PEI nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2 gene was also investigated in cultured neuronal LAN-5 cells.Methods: The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the

  17. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    Science.gov (United States)

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  18. Photoenhanced gene transfection by a curcumin loaded CS-g-PZLL micelle.

    Science.gov (United States)

    Lin, Jian-Tao; Pan, Wen-Jia; Zhang, Jun-Ai; Wang, Wei; Zhong, Jia; Su, Jia-Min; Li, Tong; Zou, Ying; Wang, Guan-Hai

    2017-09-01

    The codelivery of drug and gene is a promising method for cancer treatment. In our previous works, we prepared a cationic micelles based on chitosan and poly-(N-3-carbobenzyloxylysine) (CS-g-PZLL), but transfection ratio of CS-g-PZLL to Hela cell was low. Herein, to improve the transfection efficiency of CS-g-PZLL, curcumin was loaded in the CS-g-PZLL micelle. After irradiation, the obtained curcumin loaded micelle showed a better transfection, and the p53 protein expression in Hela cells was higher. The apoptosis assay showed that the complex could induce a more significant apoptosis to Hela cells than that of curcumin or p53 used alone, and the curcumin loaded micelle inducing apoptosis was best after irradiation. Therefore, CS-g-PZLL is a safe and effective carrier for the codelivery of drug/gene, and curcumin could be used as a photosensitizer to induce a photoenhanced gene transfection, which should be encouraged in improving transfection and tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  19. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  20. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  1. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    Science.gov (United States)

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  2. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties.

    Science.gov (United States)

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2016-03-14

    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity.

  3. Characterization of calcium signals in human induced pluripotent stem cell-derived dentate gyrus neuronal progenitors and mature neurons, stably expressing an advanced calcium indicator protein.

    Science.gov (United States)

    Vőfély, Gergő; Berecz, Tünde; Szabó, Eszter; Szebényi, Kornélia; Hathy, Edit; Orbán, Tamás I; Sarkadi, Balázs; Homolya, László; Marchetto, Maria C; Réthelyi, János M; Apáti, Ágota

    2018-04-01

    Pluripotent stem cell derived human neuronal progenitor cells (hPSC-NPCs) and their mature neuronal cell culture derivatives may efficiently be used for central nervous system (CNS) drug screening, including the investigation of ligand-induced calcium signalization. We have established hippocampal NPC cultures derived from human induced PSCs, which were previously generated by non-integrating Sendai virus reprogramming. Using established protocols these NPCs were differentiated into hippocampal dentate gyrus neurons. In order to study calcium signaling without the need of dye loading, we have stably expressed an advanced calcium indicator protein (GCaMP6fast) in the NPCs using the Sleeping Beauty transposon system. We observed no significant effects of the long-term GCaMP6 expression on NPC morphology, gene expression pattern or neural differentiation capacity. In order to compare the functional properties of GCaMP6-expressing neural cells and the corresponding parental cells loaded with calcium indicator dye Fluo-4, a detailed characterization of calcium signals was performed. We found that the calcium signals induced by ATP, glutamate, LPA, or proteases - were similar in these two systems. Moreover, the presence of the calcium indicator protein allowed for a sensitive, repeatable detection of changes in calcium signaling during the process of neurogenesis and neuronal maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes

    Science.gov (United States)

    Pozzi, Daniela; Cardarelli, Francesco; Salomone, Fabrizio; Marchini, Cristina; Amenitsch, Heinz; Barbera, Giorgia La; Caracciolo, Giulio

    2014-08-01

    Most lipid formulations need cholesterol for efficient transfection, but the precise motivation remains unclear. Here, we have investigated the effect of cholesterol on the transfection efficiency (TE) of cationic liposomes made of 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphocholine in Chinese hamster ovary cells. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by TE, synchrotron small angle X-ray scattering, and laser scanning confocal microscopy experiments. We prove that cholesterol-containing lipoplexes enter the cells using different endocytosis pathways. Formulations with high cholesterol content efficiently escape from endosomes and exhibit a lamellar-nonlamellar phase transition in mixture with biomembrane mimicking lipid formulations. This might explain both the DNA release ability and the high transfection efficiency. These studies highlight the enrichment in cholesterol as a decisive factor for transfection and will contribute to the rational design of lipid nanocarriers with superior TE.

  5. Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools

    Directory of Open Access Journals (Sweden)

    Holger eStark

    2012-03-01

    Full Text Available Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R have been designed, synthesized and characterized. Compounds described are non-imidazole analogues of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like that of the reference antagonist ciproxifan (hH3R pKi value of 7.2. Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be taken to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues.

  6. Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells

    DEFF Research Database (Denmark)

    Kim, Che Lin; Kwang Ha, Tae; Min Lee, Gyun

    2016-01-01

    Lithium chloride (LiCl), which induces cell cycle arrest at G2/M phase, is known as a specific production rate (qp)-enhancing additive in recombinant Chinese hamster ovary (CHO) cell culture. To determine the potential of LiCl as a chemical additive that enhances transient gene expression (TGE), Li......Cl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and qp enhancement during TGE (post-treatment) was examined. For the TGE...... of monoclonal antibody (mAb) in CHO-NK cells, pretreatment alone with 10 mM LiCl and post-treatment alone with 5 mM LiCl resulted in 1.2- and 3.4-fold increase of maximum mAb concentration (MMC), respectively, compared with the TGE without LiCl treatment. Furthermore, combinatorial treatment with LiCl (10 m...

  7. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  8. Lipoplex morphologies and their influences on transfection efficiency in gene delivery.

    Science.gov (United States)

    Ma, Baichao; Zhang, Shubiao; Jiang, Huiming; Zhao, Budiao; Lv, Hongtao

    2007-11-20

    Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and prospects for transfection efficiency of different morphologies of lipoplexes are discussed. High transfection activity will be acquired for H(C)(II) structure when membrane fusion is dominant, but when serum is present L(C)(alpha) lipoplexes show great superiority for their inhibition dissociation by serum during lipoplexes transporting. Increasing DOPE often gains high activity for the H(C)(II) structure promoted by DOPE. High lipofection will be gained from large lipoplexes when endocytosis is dominant, because large particles facilitate membrane contact and fusion. We suggest morphologies of lipoplex should be characterized at two levels, lipoplex size and self-assemble structures of lipoplexes, and understanding these would be very important for scientists to prepare novel cationic lipids and design novel formulations with high transfection efficiency.

  9. Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.

    Science.gov (United States)

    Endlich, B; Salavati, R; Sullivan, T; Ling, C C

    1992-12-01

    Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression

  10. Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice.

    Science.gov (United States)

    Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu

    2008-11-15

    Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.

  11. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Science.gov (United States)

    Fouriki, A.; Farrow, N.; Clements, M.A.; Dobson, J.

    2010-01-01

    The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency. Methods non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™. PMID:22110859

  12. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Directory of Open Access Journals (Sweden)

    A. Fouriki

    2010-07-01

    Full Text Available The objective of this work was to examine the effects of magnet distance (and by proxy, field strength on nanomagnetic transfection efficiency. Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results: Fluorescence intensity (firefly luciferase of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.

  13. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  14. Presenilin expression during induced differentiation of the human neuroblastoma SH-SY5Y cell line.

    Science.gov (United States)

    Flood, Fiona; Sundström, Erik; Samuelsson, Eva-Britt; Wiehager, Birgitta; Seiger, Ake; Johnston, Janet A; Cowburn, Richard F

    2004-06-01

    Human neuroblastoma SH-SY5Y cells stably transfected with both wild-type and exon-9 deleted (deltaE9) presenilin constructs were used to study the role of the presenilin proteins during differentiation. Cells transfected with either wild-type or deltaE9 PS1, of which the latter abolishes normal endoproteolytic cleavage of the protein, showed no obvious differences in their ability to differentiate to a neuronal-like phenotype upon treatment with retinoic acid (RA). A defined pattern of PS1 expression was observed during differentiation with both RA and the phorbol ester TPA. Full-length PS1 was shown to increase dramatically within 5-24 h of RA treatment. TPA gave an earlier and longer lasting increase in full-length PS1 levels. The intracellular distribution pattern of PS1 was markedly altered following RA treatment. Within 24h PS1 was highly up-regulated throughout the cell body around the nucleus. Between 2 and 4 weeks PS1 staining appeared punctate and also localised to the nucleus. Increases in PS1 expression upon treatment with RA and TPA were blocked by treatment with cycloheximide, indicating a role of de-novo protein synthesis in this effect. PS2 expression remained unchanged during differentiation. Levels of full-length PS1 were also seen to increase during neurogenesis and neuronal differentiation in the forebrain of first trimester human foetuses between 6.5 and 11 weeks. These combined observations support the idea that PS1 is involved in neuronal differentiation by a mechanism likely independent of endoproteolysis of the protein.

  15. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction.

    Science.gov (United States)

    Seizer, Peter; Borst, Oliver; Langer, Harald F; Bültmann, Andreas; Münch, Götz; Herouy, Yared; Stellos, Konstantinos; Krämer, Björn; Bigalke, Boris; Büchele, Berthold; Bachem, Max G; Vestweber, Dietmar; Simmet, Thomas; Gawaz, Meinrad; May, Andreas E

    2009-04-01

    The Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147, basigin) is an immunoglobulin-like receptor expressed in various cell types. During cellular interactions homotypic EMMPRIN-EMMPRIN interactions are known to induce the synthesis of matrix metalloproteinases. Recently, we have identified EMMPRIN as a novel receptor on platelets. To our knowledge EMMPRIN has not been shown to serve as adhesion receptor, yet. Here we characterise platelet glycoprotein VI (GPVI) as a novel adhesion receptor for EMMPRIN. Human platelets were prestimulated with ADP and perfused over immobilised recombinant EMMPRIN-Fc or Fc-fragments under arterial shear conditions. ADP-stimulated platelets showed significantly enhanced rolling (but not enhanced firm adhesion) on immobilised EMMPRIN-Fc compared to Fc. Pretreatment of platelets with blocking mAbs anti-EMMPRIN or anti-GPVI leads to a significant reduction of rolling platelets on immobilised EMMPRIN-Fc, whereas pretreatment with blocking mAbs anti-p-selectin, anti-alpha4-integrin or anti-GPIIb/IIIa complex (20 microg/ml each) had no effect. Consistently, chinese hamster ovary (CHO) cells stably transfected with GPVI showed enhanced rolling (but not adhesion) on immobilised EMMPRIN-Fc in comparison to non-transfected CHO cells. Similarly, CHO cells stably transfected with EMMPRIN showed enhanced rolling on immobilised GPVI-Fc (or EMMPRIN-Fc) compared to non transfected CHO-cells. Finally, specific binding of EMMPRIN to GPVI was demonstrated by a modified ELISA and surface plasmon resonance technology with a dissociation constant of 88 nM. Platelet GPVI is a novel receptor for EMMPRIN and can mediate platelet rolling via GPVI-EMMPRIN interaction.

  16. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Green fluorescent protein (GFP color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1 transfected endothelial modification.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND: Human Parvovirus B19 (PVB19 has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. METHODS AND FINDINGS: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP color reporter gene in the non-structural segment 1 (NS1 of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304. The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1 and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147 were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber. NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; P<0.05 and induces endothelial expression of EMMPRIN/CD147 (CD147: mean ± SEM: NS1-GFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; P<0.05 compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05. The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR analysis. CONCLUSIONS: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  18. Virally and physically transgenized equine adipose-derived stromal cells as a cargo for paracrine secreted factors

    Directory of Open Access Journals (Sweden)

    Cavirani Sandro

    2010-09-01

    Full Text Available Abstract Background Adipose-Derived Stromal Cells have been shown to have multiple lineage differentiation properties and to be suitable for tissues regeneration in many degenerative processes. Their use has been proposed for the therapy of joint diseases and tendon injuries in the horse. In the present report the genetic manipulation of Equine Adipose-Derived Stromal Cells has been investigated. Results Equine Adipose-Derived Stromal Cells were successfully virally transduced as well as transiently and stably transfected with appropriate parameters, without detrimental effect on their differentiation properties. Moreover, green fluorescent protein alone, fused to neo gene, or co-expressed as bi-cistronic reporter constructs, driven by viral and house-keeping gene promoters, were tested. The better expressed cassette was employed to stably transfect Adipose-Derived Stromal Cells for cell therapy purposes. Stably transfected Equine Adipose-Derived Stromal Cells with a heterologous secreted viral antigen were able to immunize horses upon injection into the lateral wall of the neck. Conclusion This study provides the methods to successfully transgenize Adipose-Derived Stromal Cells both by lentiviral vector and by transfection using optimized constructs with suitable promoters and reporter genes. In conclusion these findings provide a working platform for the delivery of potentially therapeutic proteins to the site of cells injection via transgenized Equine Adipose-Derived Stromal Cells.

  19. Characterization of a Madin-Darby canine kidney cell line stably expressing TRPV5.

    NARCIS (Netherlands)

    Dekker, E. den; Schoeber, J.P.H.; Topala, C.N.; Graaf, S.F.J. van de; Hoenderop, J.G.J.; Bindels, R.J.M.

    2005-01-01

    To provide a cell model for studying specifically the regulation of Ca2+ entry by the epithelial calcium channel transient receptor potential-vanilloid-5 (TRPV5), green fluorescent protein (GFP)-tagged TRPV5 was expressed stably in Madin-Darby canine kidney type I (MDCK) cells. The localization of

  20. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  1. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  2. Discovery of a Regulatory Motif for Human Satellite DNA Transcription in Response to BATF2 Overexpression.

    Science.gov (United States)

    Bai, Xuejia; Huang, Wenqiu; Zhang, Chenguang; Niu, Jing; Ding, Wei

    2016-03-01

    One of the basic leucine zipper transcription factors, BATF2, has been found to suppress cancer growth and migration. However, little is known about the genes downstream of BATF2. HeLa cells were stably transfected with BATF2, then chromatin immunoprecipitation-sequencing was employed to identify the DNA motifs responsive to BATF2. Comprehensive bioinformatics analyses indicated that the most significant motif discovered as TTCCATT[CT]GATTCCATTC[AG]AT was primarily distributed among the chromosome centromere regions and mostly within human type II satellite DNA. Such motifs were able to prime the transcription of type II satellite DNA in a directional and asymmetrical manner. Consistently, satellite II transcription was up-regulated in BATF2-overexpressing cells. The present study provides insight into understanding the role of BATF2 in tumours and the importance of satellite DNA in the maintenance of genomic stability. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. [VEGF165 transfected endothelial progenitor cells mediated by lentivirus alleviated ALI in rats].

    Science.gov (United States)

    He, Zhaohui; He, Huiwei; Lu, Yuanhua; Chen, Zhi; Xu, Fanghua; Wang, Rongsheng; Yang, Chunli

    2017-11-01

    To investigate the protective effects of vascular endothelial growth factor-165 (VEGF165) transfected the endothelial progenitor cells (EPCs) mediated by lentivirus on acute lung injury (ALI) in rats. The mononuclear cells from the male Sprague-Dawley (SD) rats were isolated and cultured to get the EPCs for study. The lentivirus vector carrying the human VEGF165 gene was constructed. According to the random number table method, 90 male SD rats were divided into ALI model group, phosphate buffer solution (PBS) group, EPCs treatment group, none transfected EPCs treatment group and VEGF165 transfected EPCs treatment group, and the rats in each group were subdivided into 4, 12 and 48 hours subgroups, with 6 rats in each subgroup. The rat model of ALI was reproduced by intravenous injection of oleic acid (0.15 μL/g). Then each treatment group was given PBS, EPCs, none transfected EPCs and VEGF165 transfected EPCs respectively with the same volume of 0.2 mL. For the groups with cells, about 1×10 6 cells were contained. Abdominal aortic blood and lung tissue were harvested at 4, 12 and 48 hours. Arterial blood gas analysis was performed. The lung wet/dry weight ratio (W/D) was calculated. The expressions of induced nitric oxide synthase (iNOS), endothelin-1 (ET-1) and VEGF165 were determined by enzyme-linked immunosorbent assay (ELISA). After dyed with hematoxylin-eosin (HE), the lung tissue pathology was observed and the lung injury score was performed. Compared with the ALI model group, the arterial partial pressure of oxygen (PaO 2 ) in EPCs, none transfected EPCs and VEGF165 transfected EPCs treatment groups was significantly increased from 4 hours, and lung W/D, expressions of iNOS and ET-1 were significantly decreased, and VEGF165 expression was significantly increased. Compared with the EPCs treatment group, the increase in PaO 2 , the decrease in lung W/D and expressions of iNOS and ET-1, and the increase in VEGF165 expression in VEGF165 transfected EPCs

  4. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  5. Exploring the Correlation Between Lipid Packaging in Lipoplexes and Their Transfection Efficacy

    Science.gov (United States)

    Moghaddam, Behfar; McNeil, Sarah E.; Zheng, Qinguo; Mohammed, Afzal R.; Perrie, Yvonne

    2011-01-01

    Whilst there is a large body of evidence looking at the design of cationic liposomes as transfection agents, correlates of formulation to function remain elusive. In this research, we investigate if lipid packaging can give further insights into transfection efficacy. DNA lipoplexes composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method. Each of the formulations was prepared by hydration in dH2O or phosphate buffer saline (PBS) to investigate the effect of buffer salts on lipoplex physicochemical characteristics and in vitro transfection. In addition, Langmuir monolayer studies were performed to investigate any possible correlation between lipid packaging and liposome attributes. Using PBS, rather than dH2O, to prepare the lipoplexes increased the size of vesicles in most of formulations and resulted in variation in transfection efficacies. However, one combination of lipids (DSPE:DOTAP) could not form liposomes in PBS, whilst the DSPE:DSTAP combination could not form liposomes in either aqueous media. Monolayer studies demonstrated saturated lipid combinations offered dramatically closer molecular packing compared to the other combinations which could suggest why this lipid combination could not form vesicles. Of the lipoplexes prepared, those formulated with DSTAP showed higher transfection efficacy, however, the effect of buffer on transfection efficiency was formulation dependent. PMID:24309311

  6. Method of stably radiolabeling antibodies with technetium and rhenium

    International Nuclear Information System (INIS)

    Paik, C.H.; Reba, R.C.; Eckelman, W.C.

    1987-01-01

    A method is described for labeling antibodies or antibody fragments with radionuclides of technetium or rhenium to obtain stable labeling, comprising: reacting a reduced radioisotope of technetium or rhenium with an antibody or antibody fragment, or a diethylenetriaminepentaacetic acid conjugated antibody or antibody fragment, in the presence of free or carrier-bound diethylenetriaminepentaacetic acid (DTPA). The amount of DTPA is sufficient to substantially completely inhibit binding of the reduced technetium or rhenium to nonstable binding sites of the antibody or antibody fragment, or the DTPA-conjugated antibody or antibody fragment. The resultant stably labeled antibody or antibody fragment, or DTPA[conjugated antibody or antibody fragment is recovered

  7. [3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    International Nuclear Information System (INIS)

    Branchek, T.; Adham, N.; Macchi, M.; Kao, H.T.; Hartig, P.R.

    1990-01-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to [3H]ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both [3H]DOB and [3H]ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] to this system caused a rightward shift and steepening of agonist competition curves for [3H] ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity [3H]DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that [3H]DOB and [3H]ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein

  8. Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo.

    Science.gov (United States)

    Browning, Richard J; Mulvana, Helen; Tang, Meng-Xing; Hajnal, Jo V; Wells, Dominic J; Eckersley, Robert J

    2012-06-01

    Ultrasound and microbubble mediated gene transfection has great potential for site-selective, safe gene delivery. Albumin-based microbubbles have shown the greatest transfection efficiency but have not been optimised specifically for this purpose. Additionally, few studies have highlighted desirable properties for transfection specific microbubbles. In this article, microbubbles were made with 2% or 5% (w/v) albumin and 20% or 40% (w/v) dextrose solutions, yielding four distinct bubble types. These were acoustically characterised and their efficiency in transfecting a luciferase plasmid (pGL4.13) into female, CD1 mice myocardia was measured. For either albumin concentration, increasing the dextrose concentration increased scattering, attenuation and resistance to ultrasound, resulting in significantly increased transfection. A significant interaction was noted between albumin and dextrose; 2% albumin bubbles made with 20% dextrose showed the least transfection but the most transfection with 40% dextrose. This trend was seen for both nonlinear scattering and attenuation behaviour but not for resistance to ultrasound or total scatter. We have determined that the attenuation behaviour is an important microbubble characteristic for effective gene transfection using ultrasound. Microbubble behaviour can also be simply controlled by altering the initial ingredients used during manufacture. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8 (Canada)

    2013-08-15

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blotting confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  10. CD36- and GPR120-mediated Ca²⁺ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice.

    Science.gov (United States)

    Ozdener, Mehmet Hakan; Subramaniam, Selvakumar; Sundaresan, Sinju; Sery, Omar; Hashimoto, Toshihiro; Asakawa, Yoshinori; Besnard, Philippe; Abumrad, Nada A; Khan, Naim Akhtar

    2014-04-01

    It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC). We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation. High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts. CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  12. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  13. Transfecting Human Monocytes with RNA.

    Science.gov (United States)

    Dannull, Jens; Nair, Smita K

    2016-01-01

    Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.

  14. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  15. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    International Nuclear Information System (INIS)

    Lu Qin; Niu Huanzhang; Zhu Guangyu; An Yanli; Qiu Dinghong; Teng Gaojun

    2007-01-01

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 μg)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 μg, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  16. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lu; Huanzhang, Niu; Guangyu, Zhu; Yanli, An; Dinghong, Qiu; Gaojun, Teng [Radiologic Department, Zhongda Hospital, Southeast Univ., Nanjing (China)

    2007-02-15

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 {mu}g)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 {mu}g, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  17. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    Science.gov (United States)

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into

  18. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  19. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  20. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  1. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Murua Escobar, Hugo; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  2. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  3. Nonviral transfection of adipose tissue stromal cells: an experimental study.

    Science.gov (United States)

    Lopatina, T V; Kalinina, N I; Parfyonova, E V

    2009-04-01

    Delivery of plasmid DNA and interfering RNA into adipose tissue stromal cells was carried out by the methods of lipofection, calcium phosphate method, and by electroporation. The percent of transfected cells after delivery of plasmid DNA by the calcium phosphate method and lipofection was 0 and 15%, respectively, vs. more than 50% after electroporation. Similar results were obtained for delivery of short-strand RNA into cells. These data indicate that electroporation is the most effective method of nonviral transfection of adipose tissue stromal cells.

  4. Multi-lipofection efficiently transfected genes into astrocytes in primary culture.

    Science.gov (United States)

    Wu, B Y; Liu, R Y; So, K L; Yu, A C

    2000-10-30

    This study demonstrated that liposome-mediated transfection - lipofection - is suitable for delivering genes into astrocytes. By repeatedly lipofecting the same astrocyte cultures, a process we call multi-lipofection, the transfection efficiency of the beta-galactosidase (beta-gal) gene was improved from 2.6+/-0.6 to 17. 4+/-1.1%. This is the highest efficiency ever reported in gene-transfer with Lipofectin(R) in a primary culture of mouse cerebral cortical astrocytes. Furthermore, multi-lipofection did not cause observable disturbance to astrocytes as indicated by insignificant changes in the glial fibrillary acidic protein content in the cultures. In order to demonstrate that the transfected gene achieved a physiologically relevant expression level, a plasmid containing the pEF-hsp70 protein gene was lipofected into astrocytes. This produced colonies of astrocytes showing an increased resistance to heat-induced cell death. A similar experiment was performed with the glial-derived neurotrophic factor (GDNF) gene. Control astrocytes had no detectable GDNF. In the transfected astrocytes, the GDNF protein could be identified intracellularly by immunocytochemistry. Western blot analysis revealed, as compared to astrocytes with one lipofection, a 2.9-fold increase of GDNF with four lipofections. GDNF remained detectable in astrocytes 2 weeks after four lipofections. Thus, multi-lipofection provides a mild and efficient means of delivering foreign genes into astrocytes in a primary culture, making astrocytes good candidate vehicle cells for gene/cell therapy in the CNS.

  5. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  6. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells.

    Science.gov (United States)

    Batman, Gavin; Oliver, Anthony W; Zehbe, Ingeborg; Richard, Christina; Hampson, Lynne; Hampson, Ian N

    2011-01-01

    We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.

  7. Efficient transfection of Xenobiotic Responsive Element-biosensor plasmid using diether lipid and phosphatidylcholine liposomes in differentiated HepaRG cells.

    Science.gov (United States)

    Demazeau, Maxime; Quesnot, Nicolas; Ripoche, Nicolas; Rauch, Claudine; Jeftić, Jelena; Morel, Fabrice; Gauffre, Fabienne; Benvegnu, Thierry; Loyer, Pascal

    2017-05-30

    In this study, we evaluated cationic liposomes prepared from diether-NH 2 and egg phosphatidylcholine (EPC) for in vitro gene delivery. The impact of the lipid composition, i.e. the EPC and Diether-NH 2 molar ratio, on in vitro transfection efficiency and cytotoxicity was investigated using the human HEK293T and hepatoma HepaRG cells known to be permissive and poorly permissive cells for liposome-mediated gene transfer, respectively. Here, we report that EPC/Diether-NH 2 -based liposomes enabled a very efficient transfection with low cytotoxicity compared to commercial transfection reagents in both HEK293T and proliferating progenitor HepaRG cells. Taking advantage of these non-toxic EPC/Diether-NH 2 -based liposomes, we developed a method to efficiently transfect differentiated hepatocyte-like HepaRG cells and a biosensor plasmid containing a Xenobiotic Responsive Element and a minimal promoter driving the transcription of the luciferase reporter gene. We demonstrated that the luciferase activity was induced by a canonical inducer of cytochrome P450 genes, the benzo[a]pyrene, and two environmental contaminants, the fluoranthene, a polycyclic aromatic hydrocarbon, and the endosulfan, an organochlorine insecticide, known to induce toxicity and genotoxicity in differentiated HepaRG cells. In conclusion, we established a new efficient lipofection-mediated gene transfer in hepatocyte-like HepaRG cells opening new perspectives in drug evaluation relying on xenobiotic inducible biosensor plasmids. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of a TK6-Bcl-xL gly-159-ala Human Lymphoblast Clone

    Energy Technology Data Exchange (ETDEWEB)

    Chyall, L.: Gauny, S.; Kronenberg, A.

    2006-01-01

    TK6 cells are a well-characterized human B-lymphoblast cell line derived from WIL-2 cells. A derivative of the TK6 cell line that was stably transfected to express a mutated form of the anti-apoptotic protein Bcl-xL (TK6-Bcl-xL gly-159- ala clone #38) is compared with the parent cell line. Four parameters were evaluated for each cell line: growth under normal conditions, plating efficiency, and frequency of spontaneous mutation to 6‑thioguanine resistance (hypoxanthine phosphoribosyl transferase locus) or trifluorothymidine resistance (thymidine kinase locus). We conclude that the mutated Bcl-xL protein did not affect growth under normal conditions, plating efficiency or spontaneous mutation frequencies at the thymidine kinase (TK) locus. Results at the hypoxanthine phosphoribosyl transferase (HPRT) locus were inconclusive. A mutant fraction for TK6‑Bcl-xL gly-159-ala clone #38 cells exposed to 150cGy of 160kVp x-rays was also calculated. Exposure to x-irradiation increased the mutant fraction of TK6‑Bcl-xL gly-159-ala clone #38 cells.

  9. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  10. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    Science.gov (United States)

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  12. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient

    International Nuclear Information System (INIS)

    Stark, M.; Naiman, T.; Canaani, D.

    1989-01-01

    In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced [ 3 H]thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line

  13. DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells.

    Science.gov (United States)

    Silva, J P Neves; Oliveira, A C N; Casal, M P P A; Gomes, A C; Coutinho, P J G; Coutinho, O P; Oliveira, M E C D Real

    2011-10-01

    DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine™ LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the

  14. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  15. Study on construction of pEgr-hPTEN expression vector induced by irradiation and its anti-tumor effect in vitro

    International Nuclear Information System (INIS)

    Tian Mei; Jin Guanghui; Piao Chunji; Li Xiuyi; Liu Linlin

    2003-01-01

    Objective: To clone the cDNA of human tumor suppressor gene-PTEN, construct pEgr-hPTEN expression vector induced by irradiation and study its inhibitory effect on proliferation of malignant glioma cell line SHG-44 transfected steadily with pEgr-hPTEN after different doses of X-ray irradiation. Methods: A DNA fragment about 1200 bp, PTEN, was amplified from human placenta tissues by using RT-nested PCR and was cloned into pUCm-T vector after automatic sequencing, then the fragment was inserted into a vector pcD-NA3.1-Egr to construct an expression vector pEgr-hPTEN. pEgr-hPTEN was transfected into SHG-44 cells in vitro. Stably transfected cell line SHG-44-sPTEN was selected through G418. The inhibitor effect on SHG-44-sPTEN was observed after different doses of X-ray irradiation in vitro. Results: The PTEN cDNA has been cloned correctly and its expression vector pEgr-hPTEN was also constructed. Growth of SHG-44 cells was inhibited significantly by stable pEgr-hPTEN transfection combined with X-ray irradiation. With the increase of dose, the inhibitory effect was enhanced within 5 Gy. Conclusion: Human tumor suppressor gene-PTEN cDNA has been cloned and its expression vector has been constructed. The tumor was inhibited significantly by gene-radiotherapy in vitro. The result provides the theoretical and experimental basis for improvement of clinical radiotherapeutic effect on tumors

  16. The impact of intragenic CpG content on gene expression.

    Science.gov (United States)

    Bauer, Asli Petra; Leikam, Doris; Krinner, Simone; Notka, Frank; Ludwig, Christine; Längst, Gernot; Wagner, Ralf

    2010-07-01

    The development of vaccine components or recombinant therapeutics critically depends on sustained expression of the corresponding transgene. This study aimed to determine the contribution of intragenic CpG content to expression efficiency in transiently and stably transfected mammalian cells. Based upon a humanized version of green fluorescent protein (GFP) containing 60 CpGs within its coding sequence, a CpG-depleted variant of the GFP reporter was established by carefully modulating the codon usage. Interestingly, GFP reporter activity and detectable protein amounts in stably transfected CHO and 293 cells were significantly decreased upon CpG depletion and independent from promoter usage (CMV, EF1 alpha). The reduction in protein expression associated with CpG depletion was likewise observed for other unrelated reporter genes and was clearly reflected by a decline in mRNA copy numbers rather than translational efficiency. Moreover, decreased mRNA levels were neither due to nuclear export restrictions nor alternative splicing or mRNA instability. Rather, the intragenic CpG content influenced de novo transcriptional activity thus implying a common transcription-based mechanism of gene regulation via CpGs. Increased high CpG transcription correlated with changed nucleosomal positions in vitro albeit histone density at the two genes did not change in vivo as monitored by ChIP.

  17. MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts

    Science.gov (United States)

    Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng

    2014-01-01

    Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645

  18. MicroRNA-mediated myostatin silencing in caprine fetal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Bushuai Zhong

    Full Text Available Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi mediated by microRNAs (miRNAs is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN response genes, such as interferon beta (IFN-β and 2'-5'-oligoadenylate synthetase 2 (OAS2, were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats.

  19. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  20. Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells.

    Science.gov (United States)

    Garofalo, Tina; Ferri, Alberto; Sorice, Maurizio; Azmoon, Pardis; Grasso, Maria; Mattei, Vincenzo; Capozzi, Antonella; Manganelli, Valeria; Misasi, Roberta

    2018-04-01

    Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-β-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    International Nuclear Information System (INIS)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-01-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism

  2. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. (Univ. of Missouri-Columbia (USA))

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  3. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    DEFF Research Database (Denmark)

    Wu, Kaimin; Xu, Jie; Liu, Mingzhe

    2013-01-01

    MicroRNA (miRNA) regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes...... of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection...... formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing...

  4. RNA processing and ribonucleoprotein assembly studied in vivo by RNA transfection

    International Nuclear Information System (INIS)

    Kleinschmidt, A.M.; Pederson, T.

    1990-01-01

    The authors present a method for studying RNA processing and ribonucleoprotein assembly in vivo, by using RNA synthesized in vitro. SP6-transcribed 32 P-labeled U2 small nuclear RNA precursor molecules were introduced into cultured human 293 cells by calcium phosphate-mediated uptake, as in standard DNA transfection experiments. RNase protection mapping demonstrated that the introduced pre-U2 RNA underwent accurate 3' end processing. The introduced U2 RNA was assembled into ribonucleoprotein particles that reacted with an antibody specific for proteins known to be associated with the U2 small nuclear ribonucleoprotein particle. The 3' end-processed, ribonucleoprotein-assembled U2 RNA accumulated in the nuclear fraction. When pre-U2 RNA with a 7-methylguanosine group at the 5' end was introduced into cells, it underwent conversion to a 2,2,7-trimethylguanosine cap structure, a characteristic feature of the U-small nuclear RNAs. Pre-U2 RNA introduced with an adenosine cap (Ap-ppG) also underwent processing, small nuclear ribonucleoprotein assembly, and nuclear accumulation, establishing that a methylated guanosine cap structure is not required for these steps in U2 small nuclear ribonucleprotein biosynthesis. Beyond its demonstrated usefulness in the study of small nuclear ribonucleoprotein biosynthesis, RNA transfection may be of general applicability to the investigation of eukaryotic RNA processing in vivo and may also offer opportunities for introducing therapeutically targeted RNAs (ribozymes or antisense RNA) into cells

  5. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  6. Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers

    Science.gov (United States)

    Watanabe, T.; Riley, J. J.; Nagata, K.

    2017-10-01

    The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.

  7. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro

    NARCIS (Netherlands)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection

  8. Transfection Agent Induced Nanoparticle Cell Loading

    Directory of Open Access Journals (Sweden)

    Karin Montet-Abou

    2005-07-01

    Full Text Available Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent assisted loading with the Feridex IV® nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV® and three internalization agents protamine (PRO, polylysine (PLL, and lipofectamine (LFA. Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 μg/mL Feridex and 3 μg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.

  9. Bcl-2 overexpression prevents 99mTc-MIBI uptake in breast cancer cell lines

    International Nuclear Information System (INIS)

    Aloj, Luigi; Zannetti, Antonella; Caraco, Corradina; Del Vecchio, Silvana; Salvatore, Marco

    2004-01-01

    We have previously shown a correlation between the absence of technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) uptake and overexpression of the anti-apoptotic protein Bcl-2 in human breast carcinoma. To establish a direct cause-effect relationship between Bcl-2 overexpression and reduced 99m Tc-MIBI uptake, MCF-7 and T47D breast cancer cell lines were stably transfected with the human Bcl-2 gene to increase intracellular protein levels and tested for 99m Tc-MIBI uptake. All clones overexpressing Bcl-2 showed a dramatic reduction of 99m Tc-MIBI uptake as compared with mock transfected control cells. Tracer uptake was promptly and partially restored by induction of apoptosis with staurosporine treatment. After 4.5 h of staurosporine treatment, a tenfold increase in 99m Tc-MIBI uptake was observed in treated as compared with untreated Bcl-2 overexpressing cells. Our findings provide a rational basis for the development of an in vivo test to detect Bcl-2 overexpression in human tumours. (orig.)

  10. Establishing malaria parasite transfection technology in South Africa

    CSIR Research Space (South Africa)

    Van Brummelen, AC

    2010-01-01

    Full Text Available -richness and intracellular location of the organism. As a result such successful transfection often requires prolonged periods (up to 2-3 months) of constant and patient culturing and selection. In addition, plasmids usually have a complicated composition and require lengthy...

  11. Towards gene therapy based on femtosecond optical transfection

    Science.gov (United States)

    Antkowiak, M.; Torres-Mapa, M. L.; McGinty, J.; Chahine, M.; Bugeon, L.; Rose, A.; Finn, A.; Moleirinho, S.; Okuse, K.; Dallman, M.; French, P.; Harding, S. E.; Reynolds, P.; Gunn-Moore, F.; Dholakia, K.

    2012-06-01

    Gene therapy poses a great promise in treatment and prevention of a variety of diseases. However, crucial to studying and the development of this therapeutic approach is a reliable and efficient technique of gene and drug delivery into primary cell types. These cells, freshly derived from an organ or tissue, mimic more closely the in vivo state and present more physiologically relevant information compared to cultured cell lines. However, primary cells are known to be difficult to transfect and are typically transfected using viral methods, which are not only questionable in the context of an in vivo application but rely on time consuming vector construction and may also result in cell de-differentiation and loss of functionality. At the same time, well established non-viral methods do not guarantee satisfactory efficiency and viability. Recently, optical laser mediated poration of cell membrane has received interest as a viable gene and drug delivery technique. It has been shown to deliver a variety of biomolecules and genes into cultured mammalian cells; however, its applicability to primary cells remains to be proven. We demonstrate how optical transfection can be an enabling technique in research areas, such as neuropathic pain, neurodegenerative diseases, heart failure and immune or inflammatory-related diseases. Several primary cell types are used in this study, namely cardiomyocytes, dendritic cells, and neurons. We present our recent progress in optimizing this technique's efficiency and post-treatment cell viability for these types of cells and discuss future directions towards in vivo applications.

  12. Lethal effects of 32P decay on transfecting activity of Bacillus subtillis phage phie DNA

    International Nuclear Information System (INIS)

    Loveday, K.S.

    1979-01-01

    Disintegration of 32 P present in the DNA of Bacillus subtilis phage phie (a phage containing double-strand DNA) results in the loss of viability of intact phage as well as transfecting activity of isolated DNA. Only 1/12 of the 32 P disintegrations per phage DNA equivalent inactivities the intact phage while nearly every disintegration inactivates the transfecting DNA. This result provides evidence for a single-strand intermediate in the transfection of B. subtilis by phie DNA

  13. New Transfection Agents Based on Liposomes Containing Biosurfactant MEL-A.

    Science.gov (United States)

    Nakanishi, Mamoru; Inoh, Yoshikazu; Furuno, Tadahide

    2013-08-16

    Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs) into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A) are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A.

  14. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Toward establishing model organisms for marine protists: Successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata).

    Science.gov (United States)

    Gomaa, Fatma; Garcia, Paulo A; Delaney, Jennifer; Girguis, Peter R; Buie, Cullen R; Edgcomb, Virginia P

    2017-09-01

    We developed protocols for, and demonstrated successful transfection of, the free-living kinetoplastid flagellate Parabodo caudatus with three plasmids carrying a fluorescence reporter gene (pEF-GFP with the EF1 alpha promoter, pUB-GFP with Ubiquitin C promoter, and pEYFP-Mitotrap with CMV promoter). We evaluated three electroporation approaches: (1) a square-wave electroporator designed for eukaryotes, (2) a novel microfluidic transfection system employing hydrodynamically-controlled electric field waveforms, and (3) a traditional exponential decay electroporator. We found the microfluidic device provides a simple and efficient platform to quickly test a wide range of electric field parameters to find the optimal set of conditions for electroporation of target species. It also allows for processing large sample volumes (>10 ml) within minutes, increasing throughput 100 times over cuvettes. Fluorescence signal from the reporter gene was detected a few hours after transfection and persisted for 3 days in cells transfected by pEF-GFP and pUB-GFP plasmids and for at least 5 days post-transfection for cells transfected with pEYFP-Mitotrap. Expression of the reporter genes (GFP and YFP) was also confirmed using reverse transcription-PCR (RT-PCR). This work opens the door for further efforts with this taxon and close relatives toward establishing model systems for genome editing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking.

    Science.gov (United States)

    Joshee, Nirmal; Bastola, Dhundy R; Cheng, Pi-Wan

    2002-11-01

    We previously showed that mixing transferrin with a cationic liposome prior to the addition of DNA, greatly enhanced the lipofection efficiency. Here, we report characterization of the transfection complexes in formulations prepared with transferrin, lipofectin, and DNA (pCMVlacZ) in various formulations. DNA in all the formulations that contain lipofectin was resistant to DNase I treatment. Transfection experiments performed in Panc 1 cells showed that the standard formulation, which was prepared by adding DNA to a mixture of transferrin and lipofectin, yielded highest transfection efficiency. There was no apparent difference in zeta potential among these formulations, but the most efficient formulation contained complexes with a mean diameter of three to four times that of liposome and the complexes in other gene delivery formulations. Transmission electron microscopic examination of the standard transfection complexes formulated using gold-labeled transferrin showed extended circular DNA decorated with transferrin as compared to extensively condensed DNA found in lipofectin-DNA complexes and heterogeneous structures in other formulations. By confocal microscopy, DNA and transferrin were found to colocalize at the perinuclear space and in the nucleus, suggesting cotransportation intracellularly, including nuclear transport. We propose that transferrin enhances the transfection efficiency of the standard lipofection formulation by preventing DNA condensation, and facilitating endocytosis and nuclear targeting.

  17. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  18. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    Science.gov (United States)

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  19. A germline chromothripsis event stably segregating in 11 individuals through three generations

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Nazaryan-Petersen, Lusine; Sun, Wei

    2016-01-01

    PURPOSE: Parentally transmitted germ-line chromothripsis (G-CTH) has been identified in only a few cases. Most of these rearrangements were stably transmitted, in an unbalanced form, from a healthy mother to her child with congenital abnormalities probably caused by de novo copy-number changes...... of the DNA damage response, may be related to G-CTH formation. CONCLUSION: G-CTH rearrangements are not always associated with abnormal phenotypes and may be misinterpreted as balanced two-way translocations, suggesting that G-CTH is an underdiagnosed phenomenon.Genet Med 18 5, 494-500....

  20. Live cell imaging of in vitro human trophoblast syncytialization.

    Science.gov (United States)

    Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei

    2014-06-01

    Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.

  1. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  2. NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency.

    Science.gov (United States)

    Campos, Vinicius Farias; de Leon, Priscila Marques Moura; Komninou, Eliza Rossi; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago

    2011-11-01

    The objectives were to investigate whether: 1) nanotransfectants are more effective than other common transfection methods for SMGT; 2) NanoSMGT is able to transmit exogenous DNA molecules to bovine embryos; and 3) halloysite clay nanotubes (HCNs) can be used as a transfection reagent to improve transgene transmission. Four transfection systems were used: naked DNA (without transfectant), lipofection, nanopolymer, and halloysite clay nanotubes. Plasmid uptake by sperm and its transfer to embryos were quantified by conventional and real-time PCR, as well as EGFP expression by fluorescence microscopy. Furthermore, sperm motility and viability, and embryo development were investigated. Mean number of plasmids taken up was affected (P < 0.05) by transfection procedure, with the nanopolymer being the most effective transfectant (∼ 153 plasmids per spermatozoon). None of the treatments affected sperm motility or viability. The mean number of plasmids transmitted to four-cell stage embryos was higher (P < 0.05) in nanopolymer and HCNs than liposomes and naked DNA groups. The number of embryos carrying the transgene increased from 8-10% using naked DNA or liposomes to 40-45% using nanopolymer or HCN as transfectants (P < 0.05). There were no significant differences among transfection procedures regarding blastocyst formation rate of resulting embryos. However, no EGFP-expressing embryo was identified in any treatment. Therefore, nanotransfectants improved transgene transmission in bovine embryos without deleterious effects on embryo development. To our knowledge, this was the first time that bovine embryos carrying a transgene were produced by NanoSMGT. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    Science.gov (United States)

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  4. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. New Transfection Agents Based on Liposomes Containing Biosurfactant MEL-A

    Directory of Open Access Journals (Sweden)

    Tadahide Furuno

    2013-08-01

    Full Text Available Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A.

  6. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    Science.gov (United States)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  7. Genetic induction of the gastrin releasing peptide receptor on tumor cells for radiolabeled peptide binding

    International Nuclear Information System (INIS)

    Raben, David; Stackhouse, Murray; Buchsbaum, Donald J.; Mikheeva, Galeena; Khazaeli, M.B.; McLean, Stephanie; Kirkman, Richard; Krasnykh, Victor; Curiel, David T.

    1996-01-01

    Purpose/Objective: To improve upon existing radioimmunotherapy (RAIT) approaches, we have devised a strategy to genetically induce high levels of new membrane-associated receptors on human cancer cells targetable by radiolabeled peptides. In this context, we report successful adenoviral-mediated transduction of tumor cells to express the murine gastrin releasing peptide receptor (mGRPr) as demonstrated by 125 I-labeled bombesin binding. Materials and Methods: To demonstrate the feasibility of our strategy and to provide rapid proof of principle, we constructed a plasmid encoding the mGRPr gene. We cloned the mGRPr gene into the adenoviral shuttle vector pACMVpLpARS+ (F. Graham). We then utilized the methodology of adenovirus-polylysine-mediated transfection (AdpLmGRPr) to accomplish transient gene expression of mGRPr in two human cancer cell lines including A427 non-small cell lung cancer cells and HeLa cervical cancer cells. Murine GRPr expression was then measured by a live-cell binding assay using 125 I-labeled bombesin. In order to develop this strategy further, it was necessary to construct a vector that would be more efficient for in vivo transduction. In this regard, we constructed a recombinant adenoviral vector (AdCMVGRPr) encoding the mGRPr under the control of the CMV promoter based on in vivo homologous recombination methods. The recombinant shuttle vector containing mGRPr was co-transfected with the adenoviral rescue plasmid pJM17 into the E1A trans complementing cell line 293 allowing for derivation of replication-incompetent, recombinant adenoviral vector. Individual plaques were isolated and subjected to two further rounds of plaque purification. The identity of the virus was confirmed at each step by PCR employing primers for mGRPr. The absence of wild-type adenovirus was confirmed by PCR using primers to the adenoviral E1A gene. SKOV3.ip1 human ovarian cancer cells and MDA-MB-231 human breast cancer cells were transduced in vitro with AdCMVGRPr at

  8. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)]. E-mail: shinjit@fmsrsa.fukui-med.ac.jp; Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)

    2005-11-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16{alpha}-[{sup 18}F]-fluoro-17{beta}-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [{sup 3}H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [{sup 3}H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES.

  9. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [ 3 H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [ 3 H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES

  10. Turbulent fluxes in stably stratified boundary layers

    International Nuclear Information System (INIS)

    L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii

    2008-01-01

    We present here an extended version of an invited talk we gave at the international conference 'Turbulent Mixing and Beyond'. The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations and dimensional estimates of the turbulent thermal flux, run into a well-known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction to observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here, we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations, removing the unphysical predictions of previous theories. We propose that the approach taken here is sufficient to describe the lower parts of the atmospheric boundary layer, as long as the Richardson number does not exceed an order of unity. For much higher Richardson numbers, the physics may change qualitatively, requiring careful consideration of the potential Kelvin-Helmoholtz waves and their interaction with the vortical turbulence.

  11. Elevation of Transfection Efficiency by Conjugation of Poly(amindoamine)-diethylenetriamine (PAM-DET) with Dexamethasone

    International Nuclear Information System (INIS)

    Jeong, Yunseong; Park, Jihye; Jin, Geunwoo; Park, Jongsang

    2012-01-01

    We successfully conjugated hydrophobic group, dexamethasone onto the surface of PAM-DET to synthesize PAM-DET-DX to form polyplexes with enhanced stability against ionic strength. We evaluated its stability by measuring the size of its polyplexes; the conjugated PAM-DET polyplex showed decreased growth compared to the PAM-DET polyplex in an environment with increased ionic strength, which implies that the conjugated PAM-DET has enhanced stability against increased ionic strength. Furthermore, conjugation of hydrophobic group caused a slight increase in the transfection efficiency without inducing toxicity. Of course, it isn't a neglectable factor that nuclear localization effect of DX can drive the advanced transfection efficiency of PAM-DET-DX polyplex. It means that the hydrophobic moieties which have some other positive properties in transfection are good candidates that can be introduced to non-viral polymeric gene delivery carrier. This strongly indicates that the introduction of hydrophobic moiety on PAM-DET is a good method to enhance polyplex stability against ionic strength without diminishing its advantageous properties, such as high transfection efficiency and low cytotoxicity

  12. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles

    Directory of Open Access Journals (Sweden)

    Lummis Sarah CR

    2011-06-01

    Full Text Available Abstract Background Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles - nanoparticles - in biolistic transfections to determine if they are a suitable alternative to microparticles. Results Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. Conclusions We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.

  13. Three-dimensional cell organization leads to almost immediate HRE activity as demonstrated by molecular imaging of MG-63 spheroids using two-photon excitation microscopy.

    Science.gov (United States)

    Indovina, Paola; Collini, Maddalena; Chirico, Giuseppe; Santini, Maria Teresa

    2007-02-20

    Hypoxia through HRE (hypoxia-responsive element) activity in MG-63 human osteosarcoma cells grown in monolayer and as very small, three-dimensional tumor spheroids was investigated using molecular imaging techniques. MG-63 cells were stably transfected with a vector constructed with multiple copies of the HRE sequence of the human vascular endothelial growth factor (VEGF) gene and with the enhanced green fluorescent protein (EGFP) coding sequence. During hypoxia when HIF-1alpha (hypoxia-inducible factor-1alpha) is stabilized, the binding of HIF-1 to the HRE sequences of the vector allows the transcription of EGFP and the appearance of fluorescence. Transfected monolayer cells were characterized by flow cytometric analysis in response to various hypoxic conditions and HIF-1alpha expression in these cells was assessed by Western blotting. Two-photon excitation (TPE) microscopy was then used to examine both MG-63-transfected monolayer cells and spheroids at 2 and 5 days of growth in normoxic conditions. Monolayer cells reveal almost no fluorescence, whereas even very small spheroids (HRE activation. This activation of the HRE sequences, which control a wide variety of genes, suggests that monolayer cells and spheroids of the MG-63 cell line have different genes activated and thus diverse functional activities.

  14. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.

    Science.gov (United States)

    Rodgers, K K; Villey, I J; Ptaszek, L; Corbett, E; Schatz, D G; Coleman, J E

    1999-07-15

    RAG1 and RAG2 are the two lymphoid-specific proteins required for the cleavage of DNA sequences known as the recombination signal sequences (RSSs) flanking V, D or J regions of the antigen-binding genes. Previous studies have shown that RAG1 alone is capable of binding to the RSS, whereas RAG2 only binds as a RAG1/RAG2 complex. We have expressed recombinant core RAG1 (amino acids 384-1008) in Escherichia coli and demonstrated catalytic activity when combined with RAG2. This protein was then used to determine its oligomeric forms and the dissociation constant of binding to the RSS. Electrophoretic mobility shift assays show that up to three oligomeric complexes of core RAG1 form with a single RSS. Core RAG1 was found to exist as a dimer both when free in solution and as the minimal species bound to the RSS. Competition assays show that RAG1 recognizes both the conserved nonamer and heptamer sequences of the RSS. Zinc analysis shows the core to contain two zinc ions. The purified RAG1 protein overexpressed in E.coli exhibited the expected cleavage activity when combined with RAG2 purified from transfected 293T cells. The high mobility group protein HMG2 is stably incorporated into the recombinant RAG1/RSS complex and can increase the affinity of RAG1 for the RSS in the absence of RAG2.

  15. Turbulent circulation above the surface heat source in a stably stratified environment

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-09-01

    The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.

  16. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  17. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    Science.gov (United States)

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  18. Epizone: Interlaboratory Ring Trial to Compare Dna Transfection Efficiencies

    DEFF Research Database (Denmark)

    Dory, Daniel; Albina, Emmanuel; Kwiatek, Olivier

    Chemical-based transfection of DNA into cultured cells is routinely used to study for example viral or cellular gene functions involved in virus replication, to analyse cellular defence mechanisms or develop specific strategies to interfere with virus replication. Other applications include rescu...

  19. Transplantation of periodontal ligament cell sheets expressing human β-defensin-3 promotes anti-inflammation in a canine model of periodontitis

    Science.gov (United States)

    Zhu, Minwen; Miao, Bo; Zhu, Jianhua; Wang, Haiyan; Zhou, Zengtong

    2017-01-01

    Periodontitis is a chronic oral inflammatory disease caused by microorganisms. Human β-defensin-3 (HBD-3) is an endogenous antimicrobial peptide that inhibits a broad spectrum of microorganisms. Cell sheet technology has been widely applied in tissue and organ reconstructions. In the current study, it was aimed to investigate the anti-inflammatory effect of periodontal tissue engineered by HBD-3 gene-modified periodontal ligament cell (PDLC) sheets, and to identify a suitable method of promoting the regeneration of periodontal tissues. Western blot analysis and antimicrobial tests were used to confirm the expression of HBD-3. The effect of the cell sheets on anti-inflammatory activity and bone remodeling in a dog model of periodontitis was demonstrated by immunohistochemistry. The results demonstrated that the transfected PDLCs stably expressed HBD-3. Periodontal pathogens were susceptible to the antimicrobial activity of the cell sheets. In addition, the cell sheets relieved the bone resorption caused by inflammation in the in vivo model. HBD-3 may potentially be applied in the treatment of periodontitis and may function as osteogenic promoter via its anti-inflammatory effect. PMID:28944821

  20. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    Science.gov (United States)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  1. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth

  2. Efficient propagation of archetype JC polyomavirus in COS-7 cells: evaluation of rearrangements within the NCCR structural organization after transfection.

    Science.gov (United States)

    Prezioso, Carla; Scribano, Daniela; Bellizzi, Anna; Anzivino, Elena; Rodio, Donatella Maria; Trancassini, Maria; Palamara, Anna Teresa; Pietropaolo, Valeria

    2017-12-01

    John Cunningham virus (JCPyV) is an ubiquitous human pathogen that causes disease in immunocompromised patients. The JCPyV genome is composed of an early region and a late region, which are physically separated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robustness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rearrangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after transfection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitro replication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidney.

  3. Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability.

    Science.gov (United States)

    Kraus, Armin; Täger, Joachim; Kohler, Konrad; Haerle, Max; Werdin, Frank; Schaller, Hans-Eberhard; Sinis, Nektarios

    2010-11-01

    To determine transfection efficiency of FuGENE HD© lipofection and AMAXA© nucleofection on rat Schwann cells (SC). The ischiadic and median nerves of 6-8 week old Lewis rats were cultured in modified melanocyte-growth medium. SCs were genetically transfected with green fluorescent protein (GFP) as reporter gene using FuGENE HD© lipofection and AMAXA© nucleofection. Transfection rates were determined by visualization of GFP fluorescence under fluorescence microscopy and cell counting. Transfected cell to non-transfected cell relation was determined. Purity of Schwann cell culture was 88% as determined by immunohistologic staining. Transfection rate of FuGENE HD© lipofection was 2%, transfection rate of AMAXA© nucleofection was 10%. With both methods, Schwann cells showed pronounced aggregation behavior which made them unfeasible for further cultivation. Settling of Schwann cells on laminin and poly-L-ornithine coated plates was compromised by either method. Non-viral transfection of rat SC with FuGENE HD© lipofection and AMAXA© nucleofection is basically possible with a higher transfection rate for nucleofection than for lipofection. As cell viability is compromised by either method however, viral transfection is to be considered if higher efficiency is required.

  4. Production of a Marfan cellular phenotype by expressing a mutant human fibrillin allele on a normal human or murine genetic background

    Energy Technology Data Exchange (ETDEWEB)

    Eldadah, Z.A.; Dietz, H.C. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Brenn, T. [Stanford Univ. Medical Center, CA (United States)] [and others

    1994-09-01

    The Marfan Syndrome (MFS) is a heritable disorder of connective tissue caused by defects in fibrillin (FBN1), a 350 kD glycoprotein and principal component of the extracellular microfibril. Previous correlations of mutant transcript level and disease severity suggested a dominant negative model of MFS pathogenesis. To address this hypothesis we assembled an expression construct containing the mutant allele from a patient with severe MFS. This mutation causes skipping of FBN1 exon 2 and a frame shift, leading to a premature termination codon in exon 4. The predicted peptide would thus consist of 55 wild type and 45 missense amino acids. The construct was stably transfected into cultured human and mouse fibroblasts, and several clonal cell populations were established. Human and mouse cells expressing the truncated peptide exhibited markedly diminished fibrillin deposition and disorganized microfibrillar architecture by immunofluorescence. Pulse-chase analysis of these cells demonstrated normal levels of fibrillin synthesis but substantially decreased fibrillin deposition into the extracellular matrix. These data illustrate that expression of a mutant FBN1 allele, on a background of two normal alleles, is sufficient to disrupt normal fibrillin aggregation and reproduce the MFS cellular phenotype. This provides confirmation of a dominant negative model of MFS pathogenesis and may offer mutant allele knockout as a strategy for gene therapy. In addition, these data underscore the importance of the FBN1 amino-terminus in normal multimer formation and suggest that expression of the human extreme 5{prime} FBN1 coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Indeed, transgenic mice harboring this mutant allele have been produced, and phenotype analysis is currently in progress.

  5. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA-21-loaded chitosan/hyaluronic acid nanoparticles via reverse transfection

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zhongshan Wang,1 Guangsheng Wu,2,3 Mengying Wei,4 Qian Liu,1 Jian Zhou,1 Tian Qin,1 Xiaoke Feng,1 Huan Liu,1 Zhihong Feng,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, 2State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, 4Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, People’s Republic of China Abstract: Cell sheet engineering has emerged as a novel approach to effectively deliver seeding cells for tissue regeneration, and developing human bone marrow mesenchymal stem cell (hBMMSC sheets with high osteogenic ability is a constant requirement from clinics for faster and higher-quality bone formation. In this work, we fabricated biocompatible and safe chitosan (CS/hyaluronic acid (HA nanoparticles (NPs to deliver microRNA-21 (miR-21, which has been proved to accelerate osteogenesis in hBMMSCs; then, the CS/HA/miR-21 NPs were cross-linked onto the surfaces of culture plates with 0.2% gel solution to fabricate miR-21-functionalized culture plates for reverse transfection. hBMMSC sheets were induced continuously for 14 days using a vitamin C-rich method on the miR-21-functionalized culture plates. For the characterization of CS/HA/miR-21 NPs, the particle size, zeta potential, surface morphology, and gel retardation were sequentially investigated. Then, the biological effects of hBMMSC sheets on the miR-21-functionalized culture plates were evaluated. The assay results demonstrated that the hBMMSC sheets could be successfully induced via the novel

  6. Uptake of DNA by cancer cells without a transfection reagent

    Directory of Open Access Journals (Sweden)

    Yanping Kong

    Full Text Available Abstract Background Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. Methods A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer and THLE3 (normal liver cells after incubation overnight by counting radioactivity of the cells’ genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of “label it fluorescence in situ hybridization (FISH” from Mirus (USA. Results The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA’s size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. Conclusions In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA

  7. Transplantation of periodontal ligament cell sheets expressing human β‑defensin‑3 promotes anti‑inflammation in a canine model of periodontitis.

    Science.gov (United States)

    Zhu, Minwen; Miao, Bo; Zhu, Jianhua; Wang, Haiyan; Zhou, Zengtong

    2017-11-01

    Periodontitis is a chronic oral inflammatory disease caused by microorganisms. Human β‑defensin‑3 (HBD‑3) is an endogenous antimicrobial peptide that inhibits a broad spectrum of microorganisms. Cell sheet technology has been widely applied in tissue and organ reconstructions. In the current study, it was aimed to investigate the anti‑inflammatory effect of periodontal tissue engineered by HBD‑3 gene‑modified periodontal ligament cell (PDLC) sheets, and to identify a suitable method of promoting the regeneration of periodontal tissues. Western blot analysis and antimicrobial tests were used to confirm the expression of HBD‑3. The effect of the cell sheets on anti‑inflammatory activity and bone remodeling in a dog model of periodontitis was demonstrated by immunohistochemistry. The results demonstrated that the transfected PDLCs stably expressed HBD‑3. Periodontal pathogens were susceptible to the antimicrobial activity of the cell sheets. In addition, the cell sheets relieved the bone resorption caused by inflammation in the in vivo model. HBD‑3 may potentially be applied in the treatment of periodontitis and may function as osteogenic promoter via its anti‑inflammatory effect.

  8. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  9. Signal transduction and HIV transcriptional activation after exposure to ultraviolet light and other DNA-damaging agents

    International Nuclear Information System (INIS)

    Valerie, K.; Laster, W.S.; Luhua Cheng; Kirkham, J.C.; Reavey, Peter; Kuemmerle, N.B.

    1996-01-01

    Short wavelength (254 nm) ultraviolet light (UVC) radiation was much more potent in activating transcription of human immunodeficiency virus 1 (HIV) reporter genes stably integrated into the genomes of human and monkey cells than ionizing radiation (IR) from a 137 Cs source at similarly cytotoxic doses. A similar differential was also observed when c-jun transcription levels were examined. However, these transcription levels do not correlate with activation of nuclear factor (NF)-kB and AP-1 measured by band-shift assays, i.e. both types of radiation produce similar increases in NF-kB and AP-1 activity, suggesting existence of additional levels of regulation during these responses. Because of the well-established involvement of cytoplasmic signaling pathways in the cellular response to tumor necrosis factor-α (TNF-α), UVC, and IR using other types of assays, the role of TNF-α in the UVC response of HIV and c-jun was investigated in our cell system. We demonstrate that UVC and TNF-α activate HIV gene expression in a synergistic fashion, suggesting that it is unlikely that TNF-α is involved in UVC activation of HIV transcription in stably transfected HeLa cells. Moreover, maximum TNF-α stimulation resulted in one order of magnitude lower levels of HIV expression than that observed after UVC exposure. We also observed an additive effect of UVC and TNF-α on c-jun steady-state mRNA levels, suggestive of a partial overlap in activation mechanism of c-jun by UVC and TNF-α; yet these responses are distinct to some extent. Our results indicate that the HIV, and to some extent also the c-jun, transcriptional responses to UVC are not the result of TNF-α stimulation and subsequent downstream cytoplasmic signaling events in HeLa cells. In addition to the new data, this report also summarizes our current views regarding UVC-induced activations of HIV gene expression in stably transfected cells. (Author)

  10. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    Science.gov (United States)

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  11. Highly Effective Gene Transfection In Vivo by Alkylated Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Jennifer A. Fortune

    2011-01-01

    Full Text Available We mechanistically explored the effect of increased hydrophobicity of the polycation on the efficacy and specificity of gene delivery in mice. N-Alkylated linear PEIs with varying alkyl chain lengths and extent of substitution were synthesized and characterized by biophysical methods. Their in vivo transfection efficiency, specificity, and biodistribution were investigated. N-Ethylation improves the in vivo efficacy of gene expression in the mouse lung 26-fold relative to the parent polycation and more than quadruples the ratio of expression in the lung to that in all other organs. N-Propyl-PEI was the best performer in the liver and heart (581- and 3.5-fold enhancements, resp. while N-octyl-PEI improved expression in the kidneys over the parent polymer 221-fold. As these enhancements in gene expression occur without changing the plasmid biodistribution, alkylation does not alter the cellular uptake but rather enhances transfection subsequent to cellular uptake.

  12. The density of GM1-enriched lipid rafts correlates inversely with the efficiency of transfection mediated by cationic liposomes.

    Science.gov (United States)

    Kovács, Tamás; Kárász, Andrea; Szöllosi, János; Nagy, Peter

    2009-08-01

    Although cationic liposome-mediated transfection has become a standard procedure, the mechanistic details of the process are unknown. It has been suggested that endocytic uptake of lipoplexes is efficient, and transfectability is largely determined by later steps. In this article, we stained GM1-enriched membrane microdomains, a subclass of lipid rafts, with subunit B of cholera toxin and correlated transfection efficiency with their density by quantitatively evaluating microscopic images. We found a strong anticorrelation between the density of GM1-enriched membrane microdomains and the efficacy of transfection monitored by measuring the expression level of GFP in different cell lines transfected by lipofection using two different transfection agents. These findings imply that GM1-enriched membrane microdomains interfere with the process of lipofection. The blocked step must be endocytosis since the accumulation of fluorescently labeled plasmids was lower in cells with high content of GM1-enriched membrane microdomains. Such a correlation was not observed in cells transfected by electroporation. By comparing the efficiency of lipofection in several cell lines we found that those with a high density of GM1-enriched membrane microdomains were the most resistant to transfection. We conclude that the inhibition of lipofection by GM1-enriched membrane microdomains is a general rule, and that endocytosis of lipoplexes can be rate limiting in cells with high density of GM1-enriched membrane rafts. Copyright 2009 International Society for Advancement of Cytometry.

  13. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    Science.gov (United States)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  14. High current relativistic beam propagates stably in gas surrounded by nonconducting walls

    International Nuclear Information System (INIS)

    Clark, J.C.

    1977-01-01

    LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations

  15. Experimental Model of Gene Transfection in Healthy Canine Myocardium: Perspectives of Gene Therapy for Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Renato A. K. Kalil

    2002-09-01

    Full Text Available OBJECTIVE: To assess the transfection of the gene that encodes green fluorescent protein (GFP through direct intramyocardial injection. METHODS: The pREGFP plasmid vector was used. The EGFP gene was inserted downstream from the constitutive promoter of the Rous sarcoma virus. Five male dogs were used (mean weight 13.5 kg, in which 0.5 mL of saline solution (n=1 or 0.5 mL of plasmid solution containing 0.5 µg of pREGFP/dog (n=4 were injected into the myocardium of the left ventricular lateral wall. The dogs were euthanized 1 week later, and cardiac biopsies were obtained. RESULTS: Fluorescence microscopy showed differences between the cells transfected and not transfected with pREGFP plasmid. Mild fluorescence was observed in the cardiac fibers that received saline solution; however, the myocardial cells transfected with pREGFP had overt EGFP expression. CONCLUSION: Transfection with the EGFP gene in healthy canine myocardium was effective. The reproduction of this efficacy using vascular endothelial growth factor (VEGF instead of EGFP aims at developing gene therapy for ischemic heart disease.

  16. Relationship between the supramolecular structure and the transfection efficiency for cationic micelle/DNA complexes

    International Nuclear Information System (INIS)

    Sakuragi, Mina; Kusuki, Shota; Hamada, Emi; Sakurai, Kazuo; Masunaga, Hiroyasu; Sasaki, Sono

    2009-01-01

    We synthesized a cationic lipid benzyl amine derivative bearing a primary amine as the head group and evaluated its transfection efficiency as a DNA carrier. A lipoplex (complex of DNA and lipid micelle) was prepared by mixing BA and two neutral colipids (DOPE and DLPC). When we compared the transfection efficiency at various compositions, we found that B-lipoplex (BA/DOPE/DLPC=1/2/1) was the most efficient while A-lipoplex (BA/DLPC=1/1) showed no transfection. We compared A-lipoplex with B-lipoplex by use of SAXS, fluorescence spectrum of ethidium bromide and pyrene. These results indicated that A-lipoplex formed a lamellar or cylinder structure within which DNA molecules were trapped in the lipid alkyl chain, while B-lipoplex formed cylinders where DNAs were intercalated between the lipid micelle cylinders. (author)

  17. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available on transient photo-transfection of ovary (CHO-Kl), neuroblastoma (NG-I08 & SKN-SH) and embryonic kidney (HEK-293) as well as primary non-differentiated stem cells (EI4g2a) using a tightly focused titanium sapphire laser beam (1.1 urn diameter spot size...

  18. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Sandeep; Agrawal, Ashish Kumar

    2013-01-01

    The present study reports the development, characterization, and evaluation of novel polyelectrolytes stabilized lipoplexes as a nonviral vector for gene delivery. In order to achieve the advantage of both DOTAP (1,2-dioleoyl-3-trimethylammonium propane) and PEI (high transfection efficiency...... uptake and nuclear colocalization in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, and PEI polyplexes. Nanoplexes also exhibited 50-80, 11-12, 6-7, and 5-6 fold higher transfection efficiency in comparison with DOTAP/PC-lipoplexes, DOTAP/DOPE-lipoplexes, PEI-polyplexes, and lipofectamine, respectively......, and significantly lower toxicity in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, PEI polyplexes, and commercial lipofectamine....

  19. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    Directory of Open Access Journals (Sweden)

    Wu K

    2013-05-01

    Full Text Available Kaimin Wu,1,* Jie Xu,2,* Mengyuan Liu,1 Wen Song,1 Jun Yan,1 Shan Gao,3 Lingzhou Zhao,2 Yumei Zhang1 1Department of Prosthetic Dentistry, 2Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3The Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; School of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China*Both authors contributed equally to this workAbstract: MicroRNA (miRNA regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes on a tissue culture plate. The lipoplexes can be immobilized on a tissue culture plate with an intact pseudospherical structure and lyophilization without any lyoprotectant. In this study, reverse transfection resulted in highly efficient cellular uptake of miRNA and enabled significant manipulation of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing osteogenic differentiation, as indicated by enhanced osteogenesis-related gene expression, amount of alkaline phosphatase present, production of collagen, and matrix mineralization. Overall

  20. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  1. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells.

    Science.gov (United States)

    Hornstein, Benjamin D; Roman, Dany; Arévalo-Soliz, Lirio M; Engevik, Melinda A; Zechiedrich, Lynn

    2016-01-01

    The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.

  3. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  4. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles.

    Science.gov (United States)

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R

    2012-12-01

    Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa

  5. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor.

    Science.gov (United States)

    Thumann, G; Stöcker, M; Maltusch, C; Salz, A K; Barth, S; Walter, P; Johnen, S

    2010-02-01

    Transplantation of pigment epithelial cells in patients with age-related macular degeneration and Parkinson's disease has the potential to improve functional rehabilitation. Genetic modification of cells before transplantation may allow the delivery of neuroprotective factors to achieve functional improvement. As transplantation of cells modified using viral vectors is complicated by the possible dissemination of viral particles and severe immune reactions, we have explored non-viral methods to insert genetic material in pigment epithelial cells. Using lipofection or nucleofection ARPE-19 cells, freshly isolated and primary retinal and iris pigment epithelial (IPE) cells were transfected with plasmids encoding green fluorescent protein (GFP) and with three plasmids encoding recombinant pigment epithelium-derived factor (PEDF) and GFP. Transfection efficiency was evaluated by fluorescence microscopy and stability of protein expression by immunoblotting. Pigment epithelial cells were successfully transfected with plasmid encoding GFP. Expression of GFP in ARPE-19 was transient, but was observed for up to 1 year in IPE cells. Analysis of pigment epithelial cells transfected with PEDF plasmids revealed that PEDF fusion proteins were successfully expressed and functionally active. In conclusion, efficient transfer of genetic information in pigment epithelial cells can be achieved using non-viral transfection protocols.

  6. Differential transfection efficiency rates of the GM-CSF gene into human renal cell carcinoma lines by lipofection.

    Science.gov (United States)

    Hernández, A; Zöller, K; Enczmann, J; Ebert, T; Schmitz-Draeger, B; Ackermann, R; Wernet, P

    1997-01-01

    One of the major questions in any gene therapy approach is the selection of the appropriate vector system. Here, the optimization of a gene transfer protocol for renal cell carcinoma using lipofection as a nonviral gene transduction system was evaluated. To select the promoter which gives the highest expression, different plasmids which are able to express Escherichia coli beta-galactosidase gene as a reporter gene under the control of different promoters were tested: human cytomegalovirus promoter (pCMVbeta), simian virus 40 promoter (pSVbeta), adenovirus promoter (ADbeta), and herpes simplex virus thymidine kinase promoter (TKbeta). The pCMVbeta revealed the highest expression of the beta-gal gene in the renal cell carcinoma (RCC) lines. Thus this CMV promoter was selected for the expression of the granulocyte-macrophage colony stimulator factor (GM-CSF) gene. Three different lipids (LipofectAmine, LipofectAce, and Lipofectin) were compared for their transduction efficiency, and the optimal conditions for quantitatively high lipofection rates were established. The consistently best results regarding gene expression as well as viability of the RCC lines were obtained when Lipofectin was used. Gene expression was monitored by a specific enzyme-linked immunosorbent assay and functionally validated by a cell proliferation test. The GM-CSF expression profile showed a peak at 48 hours after transfection and was still detectable after 5 days. Here the feasibility of efficient lipofection of the GM-CSF gene into RCC lines is demonstrated. Most importantly, considerable differences in the relative quantity of GM-CSF gene transfer into the different RCC lines was observed here. This may be of critical relevance for the design of any clinical gene transduction protocol in tumor cell vaccination attempts.

  7. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA......Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we...

  8. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection.

    Science.gov (United States)

    Kuroda, Hitoshi; Kutner, Robert H; Bazan, Nicolas G; Reiser, Jakob

    2009-05-01

    During the past 12 years, lentiviral vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression. Despite significant progress, the production of high-titer high-quality lentiviral vectors is cumbersome and costly. The most commonly used method to produce lentiviral vectors involves transient transfection using calcium phosphate (CaP)-mediated precipitation of plasmid DNAs. However, inconsistencies in pH can cause significant batch-to-batch variations in lentiviral vector titers, making this method unreliable. This study describes optimized protocols for lentiviral vector production based on polyethylenimine (PEI)-mediated transfection, resulting in more consistent lentiviral vector stocks. To achieve this goal, simple production methods for high-titer lentiviral vector production involving transfection of HEK 293T cells immediately after plating were developed. Importantly, high titers were obtained with cell culture media lacking serum or other protein additives altogether. As a consequence, large-scale lentiviral vector stocks can now be generated with fewer batch-to-batch variations and at reduced costs and with less labor compared to the standard protocols.

  9. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    DEFF Research Database (Denmark)

    Müller, Hanna; Nagel, Christian; Weiss, Christel

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well...... as with DMBT1 levels. To examine the effect of DMBT1 on VEGF and IL-6 expression we compared type II lung epithelial A549 cells stably transfected with a DMBT1 expression plasmid (DMBT1+ cells) to A549 cells stably transfected with an empty expression plasmid (DMBT1- cells). The concentrations of VEGF and IL-6...... that DMBT1 promotes VEGF and suppresses IL-6 production in alveolar tissues, which could point to DMBT1 having a possible role in the transition from inflammation to regeneration and being a potentially useful clinical marker....

  10. Electrotransfection and lipofection show comparable efficiency for in vitro gene delivery of primary human myoblasts.

    Science.gov (United States)

    Mars, Tomaz; Strazisar, Marusa; Mis, Katarina; Kotnik, Nejc; Pegan, Katarina; Lojk, Jasna; Grubic, Zoran; Pavlin, Mojca

    2015-04-01

    Transfection of primary human myoblasts offers the possibility to study mechanisms that are important for muscle regeneration and gene therapy of muscle disease. Cultured human myoblasts were selected here because muscle cells still proliferate at this developmental stage, which might have several advantages in gene therapy. Gene therapy is one of the most sought-after tools in modern medicine. Its progress is, however, limited due to the lack of suitable gene transfer techniques. To obtain better insight into the transfection potential of the presently used techniques, two non-viral transfection methods--lipofection and electroporation--were compared. The parameters that can influence transfection efficiency and cell viability were systematically approached and compared. Cultured myoblasts were transfected with the pEGFP-N1 plasmid either using Lipofectamine 2000 or with electroporation. Various combinations for the preparation of the lipoplexes and the electroporation media, and for the pulsing protocols, were tested and compared. Transfection efficiency and cell viability were inversely proportional for both approaches. The appropriate ratio of Lipofectamine and plasmid DNA provides optimal conditions for lipofection, while for electroporation, RPMI medium and a pulsing protocol using eight pulses of 2 ms at E = 0.8 kV/cm proved to be the optimal combination. The transfection efficiencies for the optimal lipofection and optimal electrotransfection protocols were similar (32 vs. 32.5%, respectively). Both of these methods are effective for transfection of primary human myoblasts; however, electroporation might be advantageous for in vivo application to skeletal muscle.

  11. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K, E-mail: Jamboor.vishwanatha@unthsc.edu [Department of Molecular Biology and Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-11-04

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high ({approx}97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  12. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Science.gov (United States)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  13. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    International Nuclear Information System (INIS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K

    2011-01-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (∼97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  14. A stably expressed llama single-domain intrabody targeting Rev displays broad-spectrum anti-HIV activity.

    Science.gov (United States)

    Boons, Eline; Li, Guangdi; Vanstreels, Els; Vercruysse, Thomas; Pannecouque, Christophe; Vandamme, Anne-Mieke; Daelemans, Dirk

    2014-12-01

    The HIV Rev protein mediates the transport of partially and unspliced HIV mRNA from the nucleus to the cytoplasm. Rev multimerizes on a secondary stem-loop structure present in the viral intron-containing mRNA species and recruits the cellular karyopherin CRM1 to export viral mRNAs from the nucleus to the cytoplasm. Previously we have identified a single-domain intrabody (Nb(190)), derived from a llama heavy-chain antibody, which efficiently inhibits Rev multimerization and suppresses the production of infectious virus. We recently mapped the epitope of this nanobody and demonstrated that Rev residues K20 and Y23 are crucial for interaction while residues V16, H53 and L60 are important to a lesser extent. Here, we generated cell lines stably expressing Nb(190) and assessed the capacity of these cell lines to suppress the replication of different HIV-1 subtypes. These cells stably expressing the single-domain antibody are protected from virus-induced cytopathogenic effect even in the context of high multiplicity of infection. In addition, the replication of different subtypes of group M and one strain of group O is significantly suppressed in these cell lines. Next, we analysed the natural variations of Rev amino acids in sequence samples from HIV-1 infected patients worldwide and assessed the effect of Nb(190) on the most prevalent polymorphisms occurring at the key epitope positions (K20 and Y23) in Rev. We found that Nb(190) was able to suppress the function of these Rev variants except for the K20N mutant, which was present in only 0.7% of HIV-1 sequence populations (n = 4632). Cells stably expressing the single-domain intrabody Nb(190) are protected against virus-induced cytopathogenic effect and display a selective survival advantage upon infection. In addition, Nb(190) suppresses the replication of a wide range of different HIV-1 subtypes. Large-scale sequence analysis reveals that the Nb(190) epitope positions in Rev are well conserved across major HIV-1

  15. Transfection of genetically encoded photoswitchable probes for STORM imaging.

    Science.gov (United States)

    Bates, Mark; Jones, Sara A; Zhuang, Xiaowei

    2013-06-01

    Conventional fluorescence microscopy is limited by its spatial resolution, leaving many biological structures too small to be studied in detail. Stochastic optical reconstruction microscopy (STORM) is a method for superresolution fluorescence imaging based on the high accuracy localization of individual fluorophores. It uses optically switchable fluorophores: molecules that can be switched between a nonfluorescent and a fluorescent state by exposure to light. This protocol describes the transfection of genetically encoded photoswitchable probes for STORM imaging. It includes a discussion of how to choose a photoswitchable fluorescent protein; standard molecular biology techniques should be used to generate a plasmid containing the sequence of the photoswitchable protein linked to the gene of interest. Once the plasmid has been generated and has been verified, it can be introduced into cells via any standard means of gene delivery, such as lipofection or electroporation. Optimal conditions will vary considerably for different cell lines and plasmids. Here, we present an example protocol for the transfection of BS-C-1 cells with an mEos2-vimentin plasmid using the lipid-based reagent FuGENE6.

  16. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro.

    Science.gov (United States)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H; Schmidt, H; Lehr, C M

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection complexes. In analogy to the terms lipoplex and polyplex, we propose to describe the nanoparticle-DNA complexes by the term "nanoplex". Three batches, Si10E, Si100E, and Si26H, sized between 10 and 100 nm and with zeta potentials ranging from +7 to +31 mV at pH 7.4 were evaluated. The galactosidase expression plasmid DNA pCMVbeta was immobilized on the particle surface and efficiently transfected Cos-1 cells. The transfection activity was accompanied by very low cytotoxicity, with LD(50) values in the milligrams per milliliter range. The most active batch, Si26H, was produced by modification of commercially available silica particles with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, yielding spherical nanoparticles with a mean diameter of 26 nm and a zeta potential of +31 mV at pH 7.4. Complexes of Si26H and pCMVbeta plasmid DNA formed at w/w ratios of 10 were most effective in promoting transfection of Cos-1 cells in the absence of serum. At this ratio, >90% of the DNA was associated with the particles, yielding nanoplexes with a net negative surface charge. When the transfection medium was supplemented with 10% serum, maximum gene expression was observed at a w/w ratio of 30, at which the resulting particle-DNA complexes possessed a positive surface charge. Transfection was strongly increased in the presence of 100 microM chloroquine in the incubation medium and reached approximately 30% of the efficiency of a 60 kDa polyethylenimine. In contrast to polyethylenimine, no toxicity was observed at the concentrations required. Atomic force microscopy of Si26H-DNA complexes revealed a spaghetti-meatball-like structure. The surface of complexes prepared at a w/w ratio of

  17. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies

    Directory of Open Access Journals (Sweden)

    Morral Núria

    2011-01-01

    Full Text Available Abstract Background Primary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA or microRNA (miRNA. New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity. Findings We have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells as well as double stranded RNA (>90% with siRNA or microRNA. In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA. Conclusions We have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.

  18. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    International Nuclear Information System (INIS)

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong; Wan, Min; Li, Yong-Qiang; Zhang, Rong-Ying; Zhao, Yuan-Di

    2012-01-01

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  19. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Wan, Min [Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Li, Yong-Qiang [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Zhang, Rong-Ying [Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Zhao, Yuan-Di, E-mail: zydi@mail.hust.edu.cn [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China)

    2012-11-15

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  20. Establishment of lipofection for studying miRNA function in human adipocytes.

    Science.gov (United States)

    Enlund, Eveliina; Fischer, Simon; Handrick, René; Otte, Kerstin; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2014-01-01

    miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNAs into these cells. To achieve this, we compared the efficiencies of three transfection agents, Lipofectamine 2000, ScreenFect A and BPEI 1.2 k in delivering fluorescent-labelled siRNA into human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes and adipocytes. Downregulation of a specific target gene in response to miRNA mimic overexpression was assayed in SGBS cells and also in ex vivo differentiated primary human adipocytes. Our results demonstrated that while all three transfection agents were able to internalize the oligos, only lipofection resulted in the efficient downregulation of a specific target gene both in SGBS cells and in primary human adipocytes. Lipofectamine 2000 outperformed ScreenFect A in preadipocytes, but in adipocytes the two reagents gave comparable results making ScreenFect A a notable new alternative for the gold standard Lipofectamine 2000.

  1. Cellular Injury of Cardiomyocytes during Hepatocyte Growth Factor Gene Transfection with Ultrasound-Triggered Bubble Liposome Destruction

    Directory of Open Access Journals (Sweden)

    Kazuo Komamura

    2011-01-01

    Full Text Available We transfected naked HGF plasmid DNA into cultured cardiomyocytes using a sonoporation method consisting of ultrasound-triggered bubble liposome destruction. We examined the effects on transfection efficiency of three concentrations of bubble liposome (1×106, 1×107, 1×108/mL, three concentrations of HGF DNA (60, 120, 180 μg/mL, two insonification times (30, 60 sec, and three incubation times (15, 60, 120 min. We found that low concentrations of bubble liposome and low concentrations of DNA provided the largest amount of the HGF protein expression by the sonoporated cardiomyocytes. Variation of insonification and incubation times did not affect the amount of product. Following insonification, cardiomyocytes showed cellular injury, as determined by a dye exclusion test. The extent of injury was most severe with the highest concentration of bubble liposome. In conclusion, there are some trade-offs between gene transfection efficiency and cellular injury using ultrasound-triggered bubble liposome destruction as a method for gene transfection.

  2. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  3. Role of P2X7 Receptor in Pancreatic Cancer Progression

    DEFF Research Database (Denmark)

    Giannuzzo, Andrea

    mouse model. Furthermore, we transplanted cells that were stably transfected with luciferase (PancTu-1 Luc), to monitor tumor growth through bioluminescence detection and confirmed in vivo the anti-proliferative effect of the allosteric inhibitor AZ10606120. In addition, staining of the primary tumor...

  4. Enhanced efficacy of radiation-induced gene therapy in mice bearing lung adenocarcinoma xenografts using hypoxia responsive elements

    International Nuclear Information System (INIS)

    Wang Wei-dong; Chen Zheng-tang; Li De-zhi; Duan Yu-zhong; Cao Zheng-huai; Li Rong

    2005-01-01

    The aim of the present study was to investigate whether the hypoxia responsive element (HRE) could be used to enhance suicide gene (HSV-tk) expression and tumoricidal activity in radiation-controlled gene therapy of human lung adenocarcinoma xenografts. A chimeric promoter, HRE-Egr, was generated by directly linking a 0.3-kb fragment of HRE to a 0.6-kb human Egr-1 promoter. Retroviral vectors containing luciferase or the HSV-tk gene driven by Egr-1 or HRE-Egr were constructed. A human adenocarcinoma cell line (A549) was stably transfected with the above vectors using the lipofectamine method. The sensitivity of transfected cells to prodrug ganciclovir (GCV) and cell survival rates were analyzed after exposure to a dose of 2 Gy radiation and hypoxia (1%). In vivo, tumor xenografts in BALB/c mice were transfected with the constructed retroviruses and irradiated to a total dose of 6 Gy, followed by GCV treatment (20 mg/kg for 14 days). When the HSV-tk gene controlled by the HRE-Egr promoter was introduced into A549 cells by a retroviral vector, the exposure to 1% O 2 and 2 Gy radiation induced significant enhancement of GCV cytotoxicity to the cells. Moreover, in nude mice bearing solid tumor xenografts, only the tumors infected with the hybrid promoter-containing virus gradually disappeared after GCV administration and radiation. These results indicate that HRE can enhance transgene expression and tumoricidal activity in HSV-tk gene therapy controlled by ionizing radiation in hypoxic human lung adenocarcinoma. (author)

  5. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    Science.gov (United States)

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point

  6. Flow-through electroporation based on constant voltage for large-volume transfection of cells.

    Science.gov (United States)

    Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang

    2010-05-21

    Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  8. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    Science.gov (United States)

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  9. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira

    2013-01-01

    Full Text Available Objective: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. Materials and Methods: Chitosan and thiolated chitosan nanoparticles (NPs were prepared in order to obtain a NH3 + :PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. Results: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. Conclusion: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery.

  11. Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro

    Science.gov (United States)

    Mestas, J. L.; Chettab, K.; Roux, S.; Prieur, F.; Lafond, M.; Dumontet, C.; Lafon, C.

    2015-12-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. We developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (peGFP- C1) in adherent and non-adherent cell lines. The frequency spectrum of the signal receive by a hydrophone is used to compute a cavitation index (CI) representative of the inertial cavitation activity. The influence of the CI on transfection efficiency, as well as reproducibility were determined. A real-time feedback loop control on CI was integrated in the process to regulate the cavitation level during sonoporation. In both adherent and non-adherent cell lines, the sonoporation device produced a highly efficient transfection of peGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. Moreover, the sonoporation of non-adherent cell lines Jurkat and K562 was found to be equivalent to nucleofection in terms of efficiency and toxicity while these two cell lines were resistant to transfection with lipofection.

  12. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  13. The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles.

    Science.gov (United States)

    Lobanova, Liubov M; Eng, Nelson F; Satkunarajah, Malathy; Mutwiri, George K; Rini, James M; Zakhartchouk, Alexander N

    2012-04-26

    Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses. The recombinant protein was purified from the culture supernatant of stably transfected HEK293T cells secreting a tagged version of the protein. Two subcutaneous immunizations with the purified recombinant protein alone resulted in the production of MV-specific serum IgG and neutralizing antibodies in mice. Formulation of the protein with adjuvants (polyphosphazene or alum) further enhanced the humoral immune response and in addition resulted in the induction of cell-mediated immunity as measured by the production of MV H-specific interferon gamma (IFN-γ) and interleukin 5 (IL-5) by in vitro re-stimulated splenocytes. Furthermore, the inclusion of polyphosphazene into the vaccine formulation induced a mixed Th1/Th2-type immune response. In addition, the purified recombinant protein retained its immunogenicity even after storage at 37°C for 2 weeks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Optimization of in vitro culture and transfection condition of bovine ...

    African Journals Online (AJOL)

    The present study aimed to optimize the in vitro culture and transfection efficiency of bovine primary spermatogonial stem cells (SSCs). To this end, SSCs were obtained from newborn Holstein bull calves by two-step enzymatic digestion. After enrichment and culture, SSCs were characterized by using alkaline phosphatase ...

  15. [EFFECT OF RECOMBINANT ADENOVIRUS-BONE MORPHOGENETIC PROTEIN 12 TRANSFECTION ON DIFFERENTIATION OF PERIPHERAL BLOOD MESENCHYMAL STEM CELLS INTO TENDON/LIGAMENT CELLS].

    Science.gov (United States)

    Fu, Weili; Chen, Gang; Tang, Xin; Li, Qi; Ll, Jian

    2015-04-01

    To research the effect of recombinant adenovirus-bone morphogenetic protein 12 (Ad-BMP-12) transfection on the differentiation of peripheral blood mesenchymal stem cells (MSCs) into tendon/ligament cells. Peripheral blood MSCs were isolated from New Zealand rabbits (3-4 months old) and cultured in vitro until passage 3. The recombinant adenoviral vector system was prepared using AdEasy system, then transfected into MSCs at passage 3 (transfected group); untransfected MSCs served as control (untransfected group). The morphological characteristics and growth of transfected cells were observed under inverted phase contrast microscope. The transfection efficiency and green fluorescent protein (GFP) expression were detected by flow cytometry (FCM) and fluorescence microscopy. After cultured for 14 days in vitro, the expressions of tendon/ligament-specific markers were determined by immunohistochemistry and real-time fluorescent quantitative PCR. GFP expression could be observed in peripheral blood MSCs at 8 hours after transfection. At 24 hours after transfection, the cells had clear morphology and grew slowly under inverted phase contrast microscope and almost all expressed GFP at the same field under fluorescence microscopy. FCM analysis showed that the transfection efficiency of the transfected group was 99.57%, while it was 2.46% in the untransfected group. The immunohistochemistry showed that the expression of collagen type I gradually increased with culture time in vitro. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of the tendon/ligament-specific genes (Tenomodulin, Tenascin-C, and Decorin) in the transfected group were significantly higher than those in untransfected group (0.061+/- 0.013 vs. 0.004 +/- 0.002, t = -7.700, P=0.031; 0.029 +/- 0.008 vs. 0.003 +/- 0.001, t = -5.741, P=0.020; 0.679 +/- 0.067 vs. 0.142 +/- 0.024, t = -12.998, P=0.000). Ad-BMP-12 can significantly promote differentiation of peripheral blood MSCs into

  16. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Patrick, Brad; Li Jie; Jeyabal, Prince V.S.; Reddy, Prasada M.R.V.; Yang Yusong; Sharma, Rajendra; Sinha, Mala; Luxon, Bruce; Zimniak, Piotr; Awasthi, Sanjay; Awasthi, Yogesh C.

    2005-01-01

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  17. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.

    Science.gov (United States)

    Castaneda, Francisco; Kinne, Rolf K-H

    2005-12-01

    The sodium-dependent D-glucose transporter (SGLT) family is involved in glucose uptake via intestinal absorption (SGLT1) or renal reabsorption (SGLT1 and SGLT2). Current methods for the screening of inhibitors of SGLT transporters are complex, expensive and very labor intensive, and have not been applied to human SGLT transporters. The purpose of the present study was to develop an alternative 96-well automated method to study the activity of human SGLT1 and SGLT2. Chinese hamster ovary (CHO) Flp-In cells were stably transfected with pcDNA5-SGLT1 or pcDNA5-SGLT2 plasmid and maintained in hygromycin-selection Ham's F12 culture medium until hygromycin-resistant clones were developed. SGLT1 and SGLT2 gene expression was evaluated by relative real-time reverse transcription-polymerase chain reaction (RT-PCR) quantification, Western blotting, and immunocytochemical analysis. The clones with higher expression of SGLT1 and SGLT2 were used for transport studies using [14C]-methyl-alpha-D-glucopyranoside ([14C]AMG). The advantage of using the 96-well format is the low amount of radioactive compounds and inhibitory substances required, and its ability to establish reproducibility because repetition into the assay. This method represents an initial approach in the development of transport-based high-throughput screening in the search for inhibitors of glucose transport. The proposed method can easily be performed to yield quantitative data regarding key aspects of glucose membrane transport and kinetic studies of potential inhibitors of human SGLT1 and SGLT2.

  18. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Science.gov (United States)

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  19. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    International Nuclear Information System (INIS)

    Staab, Adrian; Einsele, Hermann; Flentje, Michael; Vordermark, Dirk; Loeffler, Jürgen; Said, Harun M; Diehlmann, Désirée; Katzer, Astrid; Beyer, Melanie; Fleischer, Markus; Schwab, Franz; Baier, Kurt

    2007-01-01

    Hypoxia-inducible factor-1 (HIF-1) overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9) and vascular endothelial growth factor (VEGF) by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O 2 , 12 h) conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h). Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER') compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

  20. Establishment of lipofection for studying miRNA function in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Eveliina Enlund

    Full Text Available miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNAs into these cells. To achieve this, we compared the efficiencies of three transfection agents, Lipofectamine 2000, ScreenFect A and BPEI 1.2 k in delivering fluorescent-labelled siRNA into human Simpson-Golabi-Behmel syndrome (SGBS preadipocytes and adipocytes. Downregulation of a specific target gene in response to miRNA mimic overexpression was assayed in SGBS cells and also in ex vivo differentiated primary human adipocytes. Our results demonstrated that while all three transfection agents were able to internalize the oligos, only lipofection resulted in the efficient downregulation of a specific target gene both in SGBS cells and in primary human adipocytes. Lipofectamine 2000 outperformed ScreenFect A in preadipocytes, but in adipocytes the two reagents gave comparable results making ScreenFect A a notable new alternative for the gold standard Lipofectamine 2000.

  1. [Screening of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) by cDNA microarray and influence of overexpression of PAG1 on biologic behavior of human metastatic prostatic cancer cell line in vitro].

    Science.gov (United States)

    Yu, Wen-juan; Wang, Yue-wei; Xie, Zhi-gang; You, Jiang-feng; Wang, Jie-liang; Cui, Xiang-lin; Pei, Fei; Zheng, Jie

    2010-02-01

    To screen for novel gene(s) associated with tumor metastasis, and to investigate the effect of overexpression of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) on the biological behaviors of human prostatic cancer cell line PC-3M-1E8 in vitro. Four cDNA microarrays were constructed using cDNA library of prostatic cancer cells PC-3M-1E8 (high metastatic potential), PC-3M-2B4 (low metastatic potential), lung cancer cells PG-BE1 (high metastatic potential)and PG-LH7 (low metastatic potential)to screen genes which were differentially expressed according to their different metastatic properties. From a battery of differentially expressed genes, PAG1, which was markedly downregulated in both high metastatic sublines of PC-3M and PG was chosen for further investigation. Real-time PCR and Western blot were used to confirm the gene expression of PAG1 at mRNA and protein levels. Full-length coding sequence of human PAG1 was subcloned into plasmid pcDNA3.0 and the recombinant plasmids were stably transfected into PC-3M-1E8. The cell proliferation ability, anchorage-independent growth, cell cycle distribution, apoptosis rates and invasive ability were detected by MTT, and in addition, soft agar colony formation, flow cytometry analysis and matrigel invasion assay using Boyden chamber were also carried out respectively. All experiments contained pcDNA3.0-PAG1-transfected clones, vector transfected clones and non-transfected parental cells. A total of 327 differentially expressed genes were obtained between the high and low metastatic sublines of PC-3M cells, including 123 upregulated and 204 downregulated genes in PC-3M-1E8. A total of 281 genes, including 167 upregulated and 114 downregulated genes were obtained in PG-BE1 cells. Nine genes were simultaneously downregulated and 8 genes were upregulated in both high metastatic cell lines of PC-3M and PG. The expression of PAG1 at mRNA and protein level were decreased in the high metastatic subline PC-3M-1

  2. In Vitro and In Vivo Characterization of a Dual-Function Green Fluorescent Protein–HSV1-Thymidine Kinase Reporter Gene Driven by the Human Elongation Factor 1α Promoter

    Directory of Open Access Journals (Sweden)

    Gary D. Luker

    2002-04-01

    Full Text Available Toward the goal of monitoring activity of native mammalian promoters with molecular imaging techniques, we stably transfected DU145 prostate carcinoma cells with a fusion construct of enhanced green fluorescent protein (EGFP and wild-type herpes simplex virus-1 thymidine kinase (HSV1-TK as a reporter gene driven by the promoter for human elongation factor 1α (EF-1α-EGFP-TK. Using this model system, expression of EGFP was quantified by flow cytometry and fluorescence microscopy, while the HSV1-TK component of the reporter was quantified with 8-[3H]ganciclovir (8-[3H]GCV. As analyzed by flow cytometry, passage of EGFP-TK-DU145 transfected cells (ETK in vitro resulted in populations of cells with high and low expression of EGFP over time. High and low ETK cells retained 23-fold and 5-fold more GCV, respectively, than control. While differences in uptake and retention of GCV corresponded to relative expression of the reporter gene in each subpopulation of cells as determined by both flow cytometry (EGFP and quantitative RT-PCR, the correlation was not linear. Furthermore, in high ETK cells, net retention of various radiolabeled nucleoside analogues varied; the rank order was 8-[3H]GCV < 9-(4-fluoro-3-hydroxymethylbutylguanine ([18F]FHBG ≈ 8-[3H]penciclovir (8-[3H]PCV < 2′-fluoro-2′-deoxy-5-iodouracil-beta-d-arabinofuranoside (2-[14C]FIAU. Xenograft tumors of ETK cells in vivo accumulated 2.5-fold more 8-[3H]GCV per gram of tissue and showed greater fluorescence from EGFP than control DU145 cells, demonstrating that the reporter gene functioned in vivo. These data extend previous reports by showing that a human promoter can be detected in vitro and in vivo with a dual-function reporter exploiting optical and radiotracer techniques.

  3. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  4. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.

    Science.gov (United States)

    Khan, Mohammed A; Wu, Victoria M; Ghosh, Shreya; Uskoković, Vuk

    2016-06-01

    Despite the long history of nanoparticulate calcium phosphate (CaP) as a non-viral transfection agent, there has been limited success in attempts to optimize its properties for transfection comparable in efficiency to that of viral vectors. Here we focus on the optimization of: (a) CaP nanoparticle precipitation conditions, predominantly supersaturation and Ca/P molar ratios; (b) transfection conditions, mainly the concentrations of the carrier and plasmid DNA; (c) the presence of surface additives, including citrate anion and cationic poly(l-lysine) (PLL). CaP nanoparticles significantly improved transfection with plasmid DNA encoding enhanced green fluorescent protein (eGFP) in pre-osteoblastic MC3T3-E1 cells compared to a commercial non-viral carrier. At the same time they elicited significantly lesser cytotoxicity than the commercial carrier. Plasmid DNA acted as a nucleation promoter, decreasing the nucleation lag time of metastable CaP solutions and leading to a higher rate of nucleation and a lower size of the precipitated particles. The degree of supersaturation (DS) of 15 was found to be more optimal for transfection than that of 12.5 or 17.5 and higher. Because CaP particles precipitated at DS 15 were spherical, while DS 17.5 and 21 yielded acicular particles, it was concluded that spherical particle morphologies were more conducive to transfection than the anisotropic ones. Even though the yield at DS 15 was 10 and 100 times lower than that at DS 17.5 and 21, respectively, transfection rates were higher using CaP nanoparticle colloids prepared at DS 15 than using those made at higher or lower DS, indicating that the right particle morphology can outweigh the difference in the amount of the carrier, even when this difference is close to 100×. In contrast to the commercial carrier, the concentration of CaP-pDNA delivered to the cells was directly proportional to the transfection rate. Osteosarcoma K7M2 cells were four times more easily transfectable with

  5. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion

    DEFF Research Database (Denmark)

    Søe, Kent; Andersen, Thomas Lykke; Hobolt-Pedersen, Anne-Sofie

    2011-01-01

    fusion of the lipid bilayers of their cell membranes are still unknown. Syncytin-1 is a protein encoded by a human endogenous retroviral gene which was stably integrated into the human ancestor genome more than 24 million years ago. Upon activation, syncytin-1 is able to destabilize the lipid bilayer....... This was documented through Q-PCR, Western blot and immunofluorescence analyses. These in vitro findings were confirmed by immunohistochemical stainings in human iliac crest biopsies. A syncytin-1 inhibitory peptide reduced the number of nuclei per osteoclast by 30%, as well as TRACP activity. From a mechanistic...

  6. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    Science.gov (United States)

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  7. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  9. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity.

    NARCIS (Netherlands)

    Boerboom, A.M.A.; Vermeulen, M.; Woude, H. van der; Bremer, B.I.; Lee-Hilz, Y.Y.; Kampman, E.; Bladeren, P.J. van; Rietjens, I.M.C.M.; Aarts, J.

    2006-01-01

    The electrophile-responsive element (EpRE) is a transcriptional enhancer involved in cancer-chemoprotective gene expression modulation by certain food components. Two stably transfected luciferase reporter cell lines were developed, EpRE(hNQO1)-LUX and EpRE(mGST-Ya)-LUX, based on EpRE sequences from

  10. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity

    NARCIS (Netherlands)

    Boerboom, A.M.J.F.; Vermeulen, M.; Woude, H. van der; Bremer, B.I.; Lee-Hilz, Y.Y.; Kampman, E.; Bladeren, P.J. van; Rietjens, I.M.C.M.; Aarts, J.M.M.J.G.

    2006-01-01

    The electrophile-responsive element (EpRE) is a transcriptional enhancer involved in cancer-chemoprotective gene expression modulation by certain food components. Two stably transfected luciferase reporter cell lines were developed, EpRE(hNQO1)-LUX and EpRE(mGST-Ya)-LUX, based on EpRE sequences from

  11. Construction of a novel lentiviral vector carrying human B-domain ...

    African Journals Online (AJOL)

    ... integration were detected in all cell lines after transfection. A novel lentiviral vector carrying human FVIII³BD was constructed, which was able to transfect different mammalian cell types accompanied by high-level activity. This lentiviral vector may provide a theoretical basis for the gene therapy of patients with hemophilia ...

  12. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1

    International Nuclear Information System (INIS)

    Horn, Galit; Gaziel, Avital; Wreschner, Daniel H.; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2009-01-01

    Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell's transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.

  13. Antiproliferative activity of recombinant human interferon-λ2 ...

    African Journals Online (AJOL)

    Antiproliferative activity of recombinant human interferon-λ2 expressed in stably ... The representing 26 kDa protein band of IFN-λ2 was detected by SDS-PAGE and ... The antiproliferative activity of hIFN-λ2 was determined by MTT assay.

  14. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  15. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Jeggo, P.; Smith, J.

    1987-01-01

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  16. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA

    NARCIS (Netherlands)

    Olbrich, C; Bakowsky, U; Muller, RH; Kneuer, C

    2001-01-01

    The suitability of cationically modified solid-lipid nanoparticles (SLN) as a novel transfection agent was investigated. SLN were produced by hot homogenisation using either Compritol ATO 888 or paraffin as matrix lipid, a mixture of Tween 80 and Span 85 as tenside and either EQ1

  17. Transfection of Eimeria mitis with yellow fluorescent protein as reporter and the endogenous development of the transgenic parasite.

    Directory of Open Access Journals (Sweden)

    Mei Qin

    Full Text Available BACKGROUND: Advancements have been made in the genetic manipulation of apicomplexan parasites. Both the in vitro transient and in vivo stable transfection of Eimeria tenella have been developed successfully. Herein, we report the transient and stable transfection of Eimeria mitis. METHODS AND FINDINGS: Sporozoites of E. mitis transfected with enhanced yellow fluorescent protein (EYFP expression plasmid were inoculated into chickens via the cloacal route. The recovered fluorescent oocysts were sorted by fluorescence activated cell sorting (FACS and then passaged 6 generations successively in chickens. The resulting population was analyzed by genome walking and Western blot. The endogenous development of the transgenic E. mitis was observed and its reproduction potential was tested. The stable transfection of E. mitis was developed. Genome walking confirmed the random integration of plasmid DNA into the genome; while Western blot analysis demonstrated the expression of foreign proteins. Constitutive expression of EYFP was observed in all stages of merogony, gametogony and sporogony. The peak of the transgenic oocyst output was delayed by 24 h and the total oocyst reproduction was reduced by 7-fold when compared to the parental strain. CONCLUSION: Stable transfection of E. mitis was successfully developed. The expression of foreign antigens in the transgenic parasites will facilitate the development of transgenic E. mitis as a vaccine vector.

  18. Green fluorescent protein as indicator of nonviral transient transfection efficiency in endometrial and testicular biopsies.

    Science.gov (United States)

    Zizzi, Antonio; Minardi, Daniele; Ciavattini, Andrea; Giantomassi, Federica; Montironi, Rodolfo; Muzzonigro, Giovanni; Di Primio, Roberto; Lucarini, Guendalina

    2010-03-01

    In the last years, physical and chemical methods of plasmid delivery have revolutionized the efficiency of nonviral gene transfer, and the success of gene therapy is largely dependent upon the development of gene-delivery methods. The nonviral techniques that lead to a direct transfer of DNA into tissue fragments, like electroporation (EP) and lipofection delivery systems are still insufficiently investigated. Our aim was to test the efficiency of EP and lipofection protocols in endometrial and testicular tissue fragments, using a naked plasmid DNA encoding green fluorescent protein (GFP). Because the transfection efficiency depends upon several factors, we tried to optimize the transfection conditions by testing different lipofectamine 2000 and plasmid ratios, electrical parameters, and culture after transfection. Our results show that these two nonviral methods of gene delivery are feasible and efficient in gene transfection of endometrial and testicular tissue biopsies. We found that the most performing ratio of plasmid:lipofectamine was 10:50 for transient lipofection, whereas two pulses for 10 s at 960 microF of capacitance, 200 V of voltage were the most favorable electrical parameters for EP efficiency in the presence of 5 microL of phMGFP plasmid. After lipofection and EP, the highest GFP intensity was observed respectively after 48 and 72 h of tissue fragment culturing. In conclusion, nonviral methods are attractive for an improvement of the gene therapy and our protocol could provide useful indications for in vivo gene therapy applications.

  19. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    Science.gov (United States)

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-07

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.

  20. Mechanism research of miR-181 regulating human lens epithelial cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yu Qin

    2015-05-01

    Full Text Available AIM: To investigate the expression of miR-181 in the lens tissue of cataract and the regulating mechanism of miR-181 on apoptosis of human lens epithelial cell.METHODS:Real time q-PCR was used to measure the expression of miR-181 in the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model. miR-181 mimic and inhibitor were transfected using Lipofectamine 2 000 to regulate the expression of miR-181, and then Real time q-PCR was used to verify transfection efficiency. Flow cytometry was used to detect the change of cell apoptosis rate. RESULTS: Compared with control group, the expression of miR-181 was significantly higher in both the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model; the relative expression of miR-181 in lens epithelial cells transfected with miR-181 mimic was increased, whereas decreased in cells transfected with miR-181 inhibitor; the apoptosis rate of cells transfected with miR-181 mimic was increased, while reduced in miR-181 inhibitor group. Each result was statistically significant(PCONCLUSION: High expression of miR-181 is detected in anterior lens capsule of age-related cataract. miR-181 might play a certain role in the pathogenesis of cataract via promoting human lens epithelial cell apoptosis. miR-181 probably becomes a new approach for the nonoperative treatment of cataract, but the concrete mechanism still needs to be further studied.

  1. Generation of a constitutively expressing Tetracycline repressor (TetR human embryonic stem cell line BJNhem20-TetR

    Directory of Open Access Journals (Sweden)

    Ronak Shetty

    2016-03-01

    Full Text Available Human embryonic stem cell line BJNhem20-TetR was generated using non-viral method. The construct pCAG-TetRnls was transfected using microporation procedure. BJNhem20-TetR can subsequently be transfected with any vector harbouring a TetO (Tet operator sequence to generate doxycycline based inducible line. For example, in human embryonic stem cells, the pSuperior based TetO system has been transfected into a TetR containing line to generate OCT4 knockdown cell line (Zafarana et al., 2009. Thus BJNhem20-TetR can be used as a tool to perturb gene expression in human embryonic stem cells.

  2. Expression of sodium/iodide symporter transgene in neural stem cells

    International Nuclear Information System (INIS)

    Kim, Yun Hui; Lee, Dong Soo; Kang, Joo Hyun; Lee, Yong Jin; Chung, June Key; Lee, Myung Chul

    2004-01-01

    The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to 20μM, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene expression of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions

  3. Femtosecond laser assisted photo-transfection and differentiation of mouse embryonic stem cells

    Science.gov (United States)

    Thobakgale, Lebogang; Manoto, Sello; Ombinda Lemboumba, Satuurnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    In tissue engineering research, stem cells have been used as starting material in the synthesis of mammalian cells for the treatment of various cell based diseases. This is done by manipulating the DNA content of the cells to induce a specific effect such as increased proliferation or developing a new cell type through the process of differentiation. Such controlled gene expression of stem cells is achieved by the method of transfection, where exogenous plasmid deoxyribonucleic acid (pDNA) is inserted into a stem cell using chemical, viral or physical methods. In this research, we used femtosecond (fs) laser pulses from a home-build microscope system to perforate the cellular membrane and allow entry of selected pDNA to alter the behaviour of mouse embryonic stem cells (mESCs). In one set of experiments, we induce fluorescence on mESCs using green fluorescence protein plasmid (pGFP) while in other tests; differentiation of mESCs into endoderm cells is performed using Sox-17 plasmid DNA (pSox-17). Primitive endoderm formation was thereafter confirmed using polymerase chain reactions (PCR) and the Sox-17 primer. Cell viability studies using adenosine triphosphate were also conducted. From the data, it was concluded that the photo-transfection method is biocompatible since it was able to induce fluorescence in mESCs. Secondly, it was confirmed that Sox-17 was photo-transfected successfully using 6 μW laser power, 128 fs pulses and 1kHz pulse repetition rate.

  4. Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle

    International Nuclear Information System (INIS)

    Lee, Choongho; Wooldridge, Tonia R.; Laimins, Laimonis A.

    2007-01-01

    The E6 oncoproteins of high-risk human papillomaviruses provide important functions not only for malignant transformation but also in the productive viral life cycle. E6 proteins have been shown to bind to a number of cellular factors, but only a limited number of analyses have investigated the effects of these interactions on the viral life cycle. In this study, we investigated the consequences of HPV 31 E6 binding to E6TP1, a putative Rap1 GAP protein. HPV 16 E6 has been shown to bind as well as induce the rapid turnover of E6TP1, and similar effects were observed with HPV 31 E6. Mutation of amino acid 128 in HPV 31 E6 was found to abrogate the ability to bind and degrade E6TP1 but did not alter binding to another α-helical domain protein, E6AP. When HPV 31 genomes containing mutations at amino acid 128 were transfected into human keratinocytes, the viral DNAs were not stably maintained as episomes indicating the importance of this residue for pathogenesis. Many E6 binding partners including E6TP1 are cytoplasmic proteins, but E6 has been also reported to be localized to the nucleus. We therefore investigated the importance of E6 localization to the nucleus in the viral life cycle. Using a fusion of E6 to Green Fluorescent Protein, we mapped one component of the nuclear localization sequences to residues 121 to 124 of HPV 31 E6. Mutation of these residues in the context of the HPV 31 genome abrogated the ability for episomes to be stably maintained and impaired the ability to extend the life span of cells. These studies identify two activities of HPV 31 E6 that are important for its function in the viral life cycle and for extension of cell life span

  5. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  6. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    International Nuclear Information System (INIS)

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith

    2005-01-01

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian

  7. Heterologous expression in Tritrichomonas foetus of functional Trichomonas vaginalis AP65 adhesin

    Directory of Open Access Journals (Sweden)

    Alderete JF

    2005-03-01

    Full Text Available Abstract Background Trichomonosis, caused by Trichomonas vaginalis, is the number one, nonviral sexually transmitted infection that has adverse consequences for the health of women and children. The interaction of T. vaginalis with vaginal epithelial cells (VECs, a step preparatory to infection, is mediated in part by the prominent surface protein AP65. The bovine trichomonad, Tritrichomonas foetus, adheres poorly to human VECs. Thus, we established a transfection system for heterologous expression of the T. vaginalis AP65 in T. foetus, as an alternative approach to confirm adhesin function for this virulence factor. Results In this study, we show stable transfection and expression of the T. vaginalis ap65 gene in T. foetus from an episomal pBS-ap65-neo plasmid. Expression of the gene and protein was confirmed by RT-PCR and immunoblots, respectively. AP65 in transformed T. foetus bound to host cells. Specific mAbs revealed episomally-expressed AP65 targeted to the parasite surface and hydrogenosome organelles. Importantly, surface-expression of AP65 in T. foetus paralleled increased levels of adherence of transfected bovine trichomonads to human VECs. Conclusion The T. vaginalis AP65 adhesin was stably expressed in T. foetus, and the data obtained using this heterologous system strongly supports the role of AP65 as a prominent adhesin for T. vaginalis. In addition, the heterologous expression in T. foetus of a T. vaginalis gene offers an important, new approach for confirming and characterizing virulence factors.

  8. Establishment of Lipofection for Studying miRNA Function in Human Adipocytes

    OpenAIRE

    Enlund, Eveliina; Fischer, Simon; Handrick, René; Otte, Kerstin; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2014-01-01

    miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNA...

  9. Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins.

    Science.gov (United States)

    Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels

    2017-01-01

    Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 10 6 to approximately 10 8 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.

  10. Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-06-01

    Full Text Available Genetic modification (“transfection” of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein four star-shaped polycationic structures, all based on (2-dimethylamino ethyl methacrylate (DMAEMA building blocks, were investigated for their potential to deliver DNA to adherent (CHO, L929, HEK-293 and non-adherent (Jurkat, primary human T lymphocytes mammalian cells. The investigated vectors included three structures where the PDMAEMA arms (different arm length and grafting densities had been grown from a center silsesquioxane or silica-coated γ-Fe2O3-core and one micellar structure self-assembled from poly(1,2-butadiene-block PDMAEMA polymers. All nano-stars combined high transfection potential with excellent biocompatibility. The micelles slightly outperformed the covalently linked agents. For method development and optimization, the absolute amount of polycation added to the cells was more important than the N/P-ratio (ratio between polycation nitrogen and DNA phosphate, provided a lower limit was passed and enough polycation was present to overcompensate the negative charge of the plasmid DNA. Finally, the matrix (NaCl vs. HEPES-buffered glucose solution, but also the concentrations adjusted during polyplex formation, affected the results.

  11. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    Science.gov (United States)

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can

  12. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  13. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    Science.gov (United States)

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  14. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  15. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.

    OpenAIRE

    Felgner, P L; Gadek, T R; Holm, M; Roman, R; Chan, H W; Wenz, M; Northrop, J P; Ringold, G M; Danielsen, M

    1987-01-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA, DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and eff...

  16. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine

    Science.gov (United States)

    Oldiges, Daiane P.; Laughery, Jacob M.; Tagliari, Nelson Junior; Leite Filho, Ronaldo Viana; Davis, William C.; da Silva Vaz, Itabajara; Termignoni, Carlos; Knowles, Donald P.; Suarez, Carlos E.

    2016-01-01

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves

  17. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine.

    Directory of Open Access Journals (Sweden)

    Daiane P Oldiges

    2016-12-01

    Full Text Available The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST. The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein-blasticidin deaminase, and HlGST fused to the MSA-1 (merozoite surface antigen 1 signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on Hl

  18. Raf oncogene is associated with a radiation-resistant human laryngeal cancer

    International Nuclear Information System (INIS)

    Kasid, U.; Pfeifer, A.; Weichselbaum, R.R.; Dritschilo, A.; Mark, G.E.

    1987-01-01

    In order to identify the genetic factors associated with the radiation-resistant human laryngeal carcinoma cell line (SQ-20B), tumor cell DNA was transfected into NIH/3T3 cells. A high incidence (six out of six) of raf sequences was found in transfected NIH/3T3 clones and the tumorigenic potential of SQ-20B DNA could be linked to genomic fragments that represent most of the kinase domain of human c-raf-1. An apparently unaltered 3.5-kilobase pair (kb) human c-raf transcript was identified in SQ-20B cells but was not observed in the transfected NIH/3T3 cell clones. Two new transcripts (4.2 kb and 2.6 kb) were found in tumorigenic clones; the large transcript was missing in a very poorly tumorigenic clone. Cytogenetic analysis indicated that the normal autosomes of chromosome 3 were absent in SQ-20B karyotypes and had formed apparently stable marker chromosomes. Unlike the recipient NIH/3T3 cell line, 30% of the transformed clone-1 metaphases had minute and double-minute chromosomes representative of amplified DNA sequences. The frequency of the c-raf-1 identification by NIH/3T3 transfection of SQ-20B DNA suggests the presence of some genetic abnormality within this locus

  19. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    Science.gov (United States)

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  20. Transfection of cultured cells of the cotton boll weevil, Anthonomus grandis, with a heat-shock-promoter-chloramphenicol-acetyltransferase construct.

    Science.gov (United States)

    Stiles, B; Heilmann, J; Sparks, R B; Santoso, A; Leopold, R A

    1992-01-01

    Expression of heat shock proteins (hsp) in the BRL-AG-3C cell line from the cotton boll weevil was examined. It was determined that the maximal expression of endogenous hsp occurred at 41 degrees C. Various transfection methods were then compared using this cell line in conjunction with a transiently expressed bacterial gene marker (chloramphenicol acetyltransferase) which was under the control of the Drosophila hsp 70 gene promoter. The cationic lipid preparation Lipofectin was found to be very efficient at transfecting the boll weevil cells. Polylysine and 20-hydroxyecdysone-conjugated polylysine were moderately effective, whereas polybrene and electroporation, under the conditions reported herein, were ineffective at transfecting this cell line.

  1. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Byrne, Susan M; Church, George M

    2015-01-01

    CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.

  2. A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings

    Directory of Open Access Journals (Sweden)

    Nicholas I. Cilz

    2017-01-01

    Full Text Available Understanding how neuromodulators influence synaptic transmission and intrinsic excitability within the entorhinal cortex (EC is critical to furthering our understanding of the molecular and cellular aspects of this region. Organotypic cultures can provide a cost-effective means to employ selective molecular biological strategies in elucidating cellular mechanisms of neuromodulation in the EC. We therefore adapted our acute slice model for organotypic culture applications and optimized a protocol for the preparation and biolistic transfection of cultured horizontal EC slices. Here, we present our detailed protocol for culturing EC slices. Using an n-methyl-d-glucamine (NMDG-containing cutting solution, we obtain healthy EC slice cultures for electrophysiological recordings. We also present our protocol for the preparation of “bullets” carrying one or more constructs and demonstrate successful transfection of EC slices. We build upon previous methods and highlight specific aspects in our method that greatly improved the quality of our results. We validate our methods using immunohistochemical, imaging, and electrophysiological techniques. The novelty of this method is that it provides a description of culturing and transfection of EC neurons for specifically addressing their functionality. This method will enable researchers interested in entorhinal function to quickly adopt a similar slice culture transfection system for their own investigations.

  3. Neurotrophins differentially stimulate the growth of cochlear neurites on collagen surfaces and in gels☆

    Science.gov (United States)

    Xie, Joanna; Pak, Kwang; Evans, Amaretta; Kamgar-Parsi, Andy; Fausti, Stephen; Mullen, Lina; Ryan, Allen Frederic

    2013-01-01

    The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant. PMID:24459465

  4. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  5. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  6. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs

    DEFF Research Database (Denmark)

    Khan, Aly A; Betel, Doron; Miller, Martin L

    2009-01-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competiti...

  7. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  8. Transfer of human genes conferring resistance to methylating mutagens, but not to UV irradiation and cross-linking agents, into Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kaina, B.; Van Zeeland, A.A.; Backendorf, C.; Thielmann, H.W.; Van de Putte, P.

    1987-01-01

    Chinese hamster ovary cells were transfected by human DNA ligated to the bacterial gpt (xanthine-guanine-phosphoribosyltransferase) gene which was used either in its native form or after partial inactivation with methylnitrosourea. The gpt+ transfectants were screened for resistance to high doses of N-methyl-N'-nitro-N-nitrosoguanidine. Using this approach, we showed that Chinese hamster ovary cells can acquire N-methyl-N'-nitro-N-nitrosoguanidine resistance upon transfection with DNA from diploid human fibroblasts, that this resistance is transferable by secondary transfection and is specific for methylating mutagens, and that it is not caused by increased removal of O6-methylguanine, 3-methyladenine, and 7-methylguanine from DNA

  9. A human repair gene ERCC5 is involved in group G xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Shiomi, Tadahiro

    1994-01-01

    In E. coli, ultraviolet-induced DNA damage is removed by the coordinated action of UVR A, B, C, and D proteins (1). In Saccharomyces cerevisiae, more than ten genes have been reported to be involved in excision repair (2). The nucleotide excision repair pathway has been extensively studied in these organisms. To facilitate studying nucleotide excision repair in mammalian cells. Ultraviolet-sensitive rodent cell mutants have been isolated and classified into 11 complementation groups (9,10). The human nucleotide excision repair genes which complement the defects of the mutants have been designated as the ERCC (excision repair cross-complementing) genes; a number is added to refer to the particular rodent complementation group that is corrected by the gene. Recently, several human DNA repair genes have been cloned using rodent cell lines sensitive to ultraviolet. These include ERCC2 (3), ERCC3 (4), and ERCC6 (5), which correspond to the defective genes in the ultraviolet-sensitive human disorders xeroderma pigmentosum (XP) group D (6) and group B (4), and Cockayne's syndrome (CS) group B (7), respectively. The human excision repair gene ERCC5 was cloned after DNA-mediated gene transfer of human HeLa cell genomic DNA into the ultraviolet-sensitive mouse mutant XL216, a member of rodent complementation group 5 (11,12) and the gene was mapped on human chromosome 13q32.3-q33.1 by the replication R-banding fluorescence in situ hybridization method (13). The ERCC5 cDNA encodes a predicted 133 kDa nuclear protein that shares some homology with product of the yeast DNA repair gene RAD 2. Transfection with mouse ERCC5 cDNA restored normal levels of ultraviolet-resistance to XL216 cells. Microinjection of ERCC5 cDNA specifically restored the defect of XP group G cells (XP-G) as measured by unscheduled DNA synthesis (UDS), and XP-G cells stably transformed with ERCC5 cDNA showed nearly normal ultraviolet resistance. (J.P.N.)

  10. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    Science.gov (United States)

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  11. Adipogenic differentiation and EGFP gene transfection of amniotic fluid-derived stem cells from goat fetus at terminal gestational age.

    Science.gov (United States)

    He, Xiao-Ying; Zheng, Yue-Mao; Qiu, Shuang; Qi, Ying-Pei; Zhang, Yong

    2011-08-01

    The aims of this study were to determine whether stem cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and to determine if these stem cells could differentiate into adipogenic cells and be transfected with a reporter gene, EGFP (enhanced green fluorescent protein). The stem cells were isolated from amniotic fluid of goat fetus at terminal gestational age, induced to differentiate into adipogenic cells in vitro and transfected with the EGFP gene using lipofection. Markers associated with undifferentiated AFS (amniotic fluid-derived stem) cells were tested by RT (reverse transcription)-PCR. The results demonstrated that AFS cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and could differentiate into adipogenic cells. The EGFP gene was transfected into AFS cells successfully. EGFP gene transfection efficiency of the three groups of transgenic AFS cells were 26.0, 29.9 and 30.5%, respectively. Both transgenic and wild-type AFS cells could express Hes1 (hairy and enhancer of split 1), Oct4 (octamer-binding protein 4) and Nanog.

  12. shRNA-mediated EMMPRIN silencing inhibits human leukemic monocyte lymphoma U937 cell proliferation and increases chemosensitivity to adriamycin.

    Science.gov (United States)

    Gao, Hui; Jiang, Qixiao; Han, Yantao; Peng, Jianjun; Wang, Chunbo

    2015-03-01

    EMMPRIN is a widely distributed cell surface glycoprotein, which plays an important role in tumor progression and confers resistance to some chemotherapeutic drugs. Recent studies have shown that EMMPRIN overexpression indicates poor prognosis in acute myeloid leukemia (AML). However, little was known on the role of EMMPRIN in leukemia. Human leukemia cell line U937 was stably transfected with a EMMPRIN-targeted shRNA-containing vector to investigate the effect of EMMPRIN on cellular functions. EMMPRIN expression was monitored by qRT-PCR and Western blotting. Cell viability and proliferation were determined by trypan blue exclusion and BrdU labeling, respectively. Cell cycle and apoptosis were analyzed by flow cytometry. Cytotoxicity of chemotherapeutic agent adriamycin on cells was assessed by MTT assay. Knockdown of EMMPRIN gene significantly inhibited cell viability and decreased cell proliferation. Fluorescence-activated cell-sorting analysis revealed that the reduced EMMPRIN expression resulted in cell cycle arrest at G1 phase and induced apoptosis. Meanwhile, western blotting analysis showed that EMMPRIN knockdown was associated with downregulation of cell cycle- and apoptosis-related molecules including cyclin D1, cyclin E, as well as increase in cleavage of caspase-3 and PARP. This study also showed that silencing of EMMPRIN sensitized U937 cells to Adriamycin. EMMPRIN is involved in proliferation, growth, and chemosensitivity of human AML line U937, indicating that EMMPRIN may be a promising therapeutic target for AML.

  13. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  14. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    Science.gov (United States)

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  15. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  16. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  17. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection.

    Science.gov (United States)

    Van Pham, Phuc; Thi-My Nguyen, Phuoc; Thai-Quynh Nguyen, Anh; Minh Pham, Vuong; Nguyen-Tu Bui, Anh; Thi-Tung Dang, Loan; Gia Nguyen, Khue; Kim Phan, Ngoc

    2014-06-01

    Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  19. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep.

    Science.gov (United States)

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi

    2006-03-01

    Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.

  20. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available disease- iPS, dopaminergic neurons Transplantation • Autologous- bone marrow, tissue defects, leukemia • Haematopoietic- blood dieases, autoimmune disorders • Mesenchymal- neurological disorders Phototransfection • Transfection refers...

  1. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Directory of Open Access Journals (Sweden)

    Betty R Liu

    Full Text Available Cell-penetrating peptides (CPPs have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW from bovine lactoferricin (LFcin, stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  2. Alzheimer's disease presenilin-1 exon 9 deletion and L250S mutations sensitize SH-SY5Y neuroblastoma cells to hyperosmotic stress-induced apoptosis

    DEFF Research Database (Denmark)

    Tanii, H; Ankarcrona, M; Flood, F

    2000-01-01

    . In the present study, we determined whether PS1 mutations also sensitize cells to hyperosmotic stress-induced apoptosis. For this, we established SH-SY5Y neuroblastoma cell lines stably transfected with wild-type PS1 or either the PS1 exon 9 deletion (deltaE9) or PS1 L250S mutants. Cultured cells were exposed...

  3. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    Science.gov (United States)

    2013-07-01

    transfected with RNA. NatBiotech. 1998;16:364-369. 20. Heiser A, Dahm P, Yancey DR, et al. Human dendritic cells transfected with RNA encoding prostate...specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol. 2000;164(10):5508-5514. 21. Heiser A, Maurice MA, Yancey DR...primary and metastatic tumors. Cancer Res. 2001;61(8):3388-3393. 22. Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected

  4. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  5. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  7. Size effect on transfection and cytotoxicity of nanoscale plasmid DNA/polyethyleneimine complexes for aerosol gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Byeon, Jeong, E-mail: jbyeon@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, Jang-Woo, E-mail: jwkim@hoseo.edu [Department of Digital Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of)

    2014-02-03

    Nanoscale plasmid DNA (pDNA)/polyethyleneimine (PEI) complexes were fabricated in the aerosol state using a nebulization system consisting of a collison atomizer and a cool-walled diffusion dryer. The aerosol fabricated nanoscale complexes were collected and employed to determine fundamental properties of the complexes, such as size, structure, surface charge, and in vitro gene transfection efficiency and cytotoxicity. The results showed that mass ratio between pDNA and PEI should be optimized to enhance gene transfection efficiency without a significant loss of cell viability. These findings may support practical advancements in the field of nonviral gene delivery.

  8. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available This presentation is about the photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses. It outlines the background on embryonic stem cells (ES) and phototransfection....

  9. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    Energy Technology Data Exchange (ETDEWEB)

    Amand, Helene L., E-mail: helene.amand@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Norden, Bengt, E-mail: norden@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Fant, Kristina, E-mail: kristina.fant@sp.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide

  10. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: chaolin@tongji.edu.cn [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: tjpjwang@sina.com [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  11. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Åmand, Helene L.; Nordén, Bengt; Fant, Kristina

    2012-01-01

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  12. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-01-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T 1 -weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T 1 -weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T 1 -contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  13. Effects of frequently used pharmaceutical excipients on the organic cation transporters 1-3 and peptide transporters 1/2 stably expressed in MDCKII cells.

    Science.gov (United States)

    Otter, Marcus; Oswald, Stefan; Siegmund, Werner; Keiser, Markus

    2017-03-01

    There is ample evidence that pharmaceutical excipients, which are supposed to be pharmacologically inactive, have an impact on drug metabolism and efflux transport. So far, little is known whether they also modulate uptake transporter proteins. We have recently shown that commonly used solubilizing agents exert significant effects on the function of organic anion uptake transporting polypeptides. Therefore, we investigated in this study the influence of frequently used pharmaceutical excipients on the transport activity of organic cation transporters OCT1, OCT2 and OCT3 and the peptide transporters PEPT1 and PEPT2. Inhibition of the OCTs and PEPTs by the excipients polyethylene glycol 400 (PEG), hydroxypropyl-β-cyclodextrin (HPCD), Solutol® HS15 (SOL), Cremophor® EL (CrEL), Tween® 20 (Tw20), Tween® 80 (Tw80), Kolliphor® P188 (P188) and Kolliphor® P407 (P407) was evaluated using stably transfected MDCKII cells with radio-labeled reference substrates and established inhibitors as controls. Intracellular accumulation of [3H]-1-methyl-4-phenylpyridinium (MPP + ) for the OCTs and [3H]-glycyl-sarcosine (Gly-Sar) for the PEPTs was measured by liquid scintillation counting after cell lysis. Our studies revealed that PEG, HPCD, SOL, CrEL, Tw20 and Tw80 were potent inhibitors of OCT1-3 (e.g., Tw20 IC 50 values<0.04%). Cellular uptake of Gly-Sar by PEPT1 and PEPT2 was strongly inhibited by both Tw20 and Tw80. SOL was also a strong inhibitor of PEPT1 and PEPT2 (e.g., SOL IC 50 values<0.02%), while CrEL showed significantly inhibition of only PEPT2. The substantial inhibitory effects of certain solubilizing agents on OCTs and PEPTs should be considered if they are to be used in dosage forms for new chemical entities and registered drugs to avoid misinterpretation of pharmacokinetic data and undesired drug interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cloning, sequencing, and expression of cDNA for human β-glucuronidase

    International Nuclear Information System (INIS)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-01-01

    The authors report here the cDNA sequence for human placental β-glucuronidase (β-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH 2 -terminal amino acid sequence determined for human spleen β-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human β-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human β-glucuronidase, demonstrate the existence of two populations of mRNA for β-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length

  15. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  16. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  17. Effective plasmid DNA and small interfering RNA delivery to diseased human brain microvascular endothelial cells.

    Science.gov (United States)

    Slanina, H; Schmutzler, M; Christodoulides, M; Kim, K S; Schubert-Unkmeir, A

    2012-01-01

    Expression of exogenous DNA or small interfering RNA (siRNA) in vitro is significantly affected by the particular delivery system utilized. In this study, we evaluated the transfection efficiency of plasmid DNA and siRNA into human brain microvascular endothelial cells (HBMEC) and meningioma cells, which constitute the blood-cerebrospinal fluid barrier, a target of meningitis-causing pathogens. Chemical transfection methods and various lipofection reagents including Lipofectamin™, FuGene™, or jetPRIME®, as well as physical transfection methods and electroporation techniques were applied. To monitor the transfection efficiencies, HBMEC and meningioma cells were transfected with the reporter plasmid pTagGFP2-actin vector, and efficiency of transfection was estimated by fluorescence microscopy and flow cytometry. We established protocols based on electroporation using Cell Line Nucleofector® Kit V with the Amaxa® Nucleofector® II system from Lonza and the Neon® Transfection system from Invitrogen resulting in up to 41 and 82% green fluorescent protein-positive HBMEC, respectively. Optimal transfection solutions, pulse programs and length were evaluated. We furthermore demonstrated that lipofection is an efficient method to transfect meningioma cells with a transfection efficiency of about 81%. Finally, we applied the successful electroporation protocols to deliver synthetic siRNA to HBMEC and analyzed the role of the actin-binding protein cortactin in Neisseria meningitidis pathogenesis. Copyright © 2012 S. Karger AG, Basel.

  18. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma.

    Science.gov (United States)

    Zamboni, Camila G; Kozielski, Kristen L; Vaughan, Hannah J; Nakata, Maisa M; Kim, Jayoung; Higgins, Luke J; Pomper, Martin G; Green, Jordan J

    2017-10-10

    Hepatocellular carcinoma (HCC) is the third most deadly cancer in the US, with a meager 5-year survival rate of effective and cancer-specific DNA delivery to human HCC using biodegradable poly(beta-amino ester) (PBAE) nanoparticles (NPs). Varied PBAE NP formulations were evaluated for transfection efficacy and cytotoxicity to a range of human HCC cells as well as healthy human hepatocytes. To address HCC heterogeneity, nine different sources of human HCC cells were utilized. The polymeric NPs composed of 2-((3-aminopropyl)amino) ethanol end-modified poly(1,5-pentanediol diacrylate-co-3-amino-1-propanol) ('536') at a 25 polymer-to-DNA weight-to-weight ratio led to high transfection efficacy to all of the liver cancer lines, but not to hepatocytes. Each individual HCC line had a significantly higher percentage of exogenous gene expression than the healthy liver cells (Peffective DNA transfection in vivo. PBAE-based NPs enabled high and preferential DNA delivery to HCC cells, sparing healthy hepatocytes. These biodegradable and liver cancer-selective NPs are a promising technology to deliver therapeutic genes to liver cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Agonist-induced desensitization of human β3-adrenoceptors expressed in human embryonic kidney cells

    NARCIS (Netherlands)

    Michel-Reher, Martina B.; Michel, Martin C.

    2013-01-01

    β3-Adrenoceptors are resistant to agonist-induced desensitization in some cell types but susceptible in others including transfected human embryonic kidney (HEK) cells. Therefore, we have studied cellular and molecular changes involved in agonist-induced β3-adrenoceptor desensitization in HEK cells.

  20. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Lin, Hsueh-Kung; Azzarello, Joseph T; Wren, Jonathan D; Fung, Kar-Ming; Yang, Qing; Davis, Jeffrey S; Hurst, Robert E; Culkin, Daniel J; Penning, Trevor M

    2010-01-01

    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Bioinformatics

  1. hTERT gene immortalized human adipose-derived stem cells and its multiple differentiations: a preliminary investigation.

    Science.gov (United States)

    Wang, L; Song, K; Qu, X; Wang, H; Zhu, H; Xu, X; Zhang, M; Tang, Y; Yang, X

    2013-03-01

    Human adipose-derived adult stem cells (hADSCs) can express human telomerase reverse transcriptase phenotypes under an appropriate culture condition. Because adipose tissue is abundant and easily accessible, hADSCs offer a promising source of stem cells for tissue engineering application and other cell-based therapies. However, the shortage of cells number and the difficulty to proliferate, known as the "Hayflick limit" in vitro, limit their further clinical application. Here, hADSCs were transfected with human telomerase reverse transcriptase (hTERT) gene by the lentiviral vector to prolong the lifespan of stem cells and even immortalize them. Following to this, the cellular properties and functionalities of the transfected cell lines were assayed. The results demonstrated that hADSCs had been successfully transfected with hTERT gene (hTERT-ADSCs). Then, hTERT-ADSCs were initially selected by G418 and subsequently expanded over 20 passages in vitro. Moreover, the qualitative and quantitative differentiation criteria for 20 passages of hTERT-ADSCs also demonstrated that hTERT-ADSCs could differentiate into osteogenesis, chondrogenesis, and adipogenesis phenotypes in lineage-specific differentiation media. These findings confirmed that this transfection could prolong the lifespan of hADSCs.

  2. Generation of human induced pluripotent stem cells using non-synthetic mRNA.

    Science.gov (United States)

    Rohani, L; Fabian, C; Holland, H; Naaldijk, Y; Dressel, R; Löffler-Wirth, H; Binder, H; Arnold, A; Stolzing, A

    2016-05-01

    Here we describe some of the crucial steps to generate induced pluripotent stem cells (iPSCs) using mRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribed mRNA. V. virus' 2'-O-Methyltransferase enzyme creates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

    Science.gov (United States)

    Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

    2013-01-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

  4. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    Science.gov (United States)

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the

  5. Experimental research of radiogenic therapy on human melanoma

    International Nuclear Information System (INIS)

    Min Fengling; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjiang; Liu Bing; Zhou Qingming; Duan Xin; Zhou Guangming; Gao Qingxiang

    2006-01-01

    To investigate the effect of low dose irradiation on gene transfer efficiency and the effect of adenoviral-mediated exogenous P53 overexpression on radiosensitivity of radioresistant human melanoma cell line A375 with wild type p53, control vector, a replication deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein (AdCMV-GFP), was used to transfect the A375 cells preirradiated with or without 1 Gy X-ray radiation. The transduction efficiency of GFP gene was determined with fluorescence microscope directly. A375 cells radiated by 1 Gy X-ray were transfected with a replication deficient recombinant adenoviral vector carrying human wild p53 were detected using flow cytometry (FCM) at different time after transfection. The radiosensitivity of A375 cells after p53 transduction was assayed by clonoy formation. The authors found that 1 Gy exposure increased the gene transfer efficiency of A375 cells. The expression of exogenous P53 was found to be 60% to 80% of transfected cells during the first three days after transduction and then declined continuously down to the control level on the day 10. The G1 cell cycle arrest was also observed after p53 gene transfer. A375 cells that were transfected with p53 showed higher sensitivity of X-ray-induced cell killing than those cells that either were transfected with the viral vector carrying a green fluorescent protein gene or were not transfected at all. Low dose ionizing radiation can improve gene transfer efficiency of A375 cells mediated by adenovirus vector. Althrough the overexpresion of exogenous P53 may not inhibit cell growth and induce apoptosis of melanoma cell line A375 in vitro, it made the tumor cells much sensitive to death by irradiation. the data suggested that p53 gene might be a potential gene for melanoma therapy and provide the experimental evidences to clinically using the combination of radiation with gene therapy on melanoma. Namely, there may be a reduction of

  6. Adenovirus-assisted lipofection: efficient in vitro gene transfer of luciferase and cytosine deaminase to human smooth muscle cells.

    Science.gov (United States)

    Kreuzer, J; Denger, S; Reifers, F; Beisel, C; Haack, K; Gebert, J; Kübler, W

    1996-07-01

    Smooth muscle cells (SMC) are a central cell type involved in multiple processes of coronary artery diseases including restenosis and therefore are major target cells for different aspects of gene transfer. Previous attempts to transfect primary arterial cells using different techniques like liposomes, CaPO4 and electroporation resulted in only low transfection efficiency. The development of recombinant adenoviruses dramatically improved the delivery of foreign genes into different cell types including SMC. However, cloning and identification of recombinants remain difficult and time-consuming techniques. The present study demonstrates that a complex consisting of reporter plasmid encoding firefly luciferase (pLUC), polycationic liposomes and replication-deficient adenovirus was able to yield very high in vitro transfection of primary human smooth muscle cells under optimized conditions. The technique of adenovirus-assisted lipofection (AAL) increases transfer and expression of plasmid DNA in human smooth muscle cells in vitro up to 1000-fold compared to lipofection. To verify the applicability of AAL for gene transfer into human smooth muscle cells we studied a gene therapy approach to suppress proliferation of SMC in vitro, using the prokaryotic cytosine deaminase gene (CD) which enables transfected mammalian cells to deaminate 5-fluorocytosine (5-FC) to the highly toxic 5-fluorouracil (5-FU). The effect of a transient CD expression on RNA synthesis was investigated by means of a cotransfection with a RSV-CD expression plasmid and the luciferase reporter plasmid. Western blot analysis demonstrated high expression of CD protein in transfected SMC. Cotransfected SMC demonstrated two-fold less luciferase activity in the presence of 5-FC (5 mmol/l) after 48 h compared to cells transfected with a non-CD coding plasmid. The data demonstrate that a transient expression of CD could be sufficient to reduce the capacity of protein synthesis in human SMC. This simple and

  7. B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines.

    Science.gov (United States)

    Iezzi, G; Protti, M P; Rugarli, C; Bellone, M

    1996-01-01

    In vitro propagation of tumor-specific CTLs, to be used for identification of tumor antigens (Ag) and/or adoptive immunotherapy, is hampered by the need of large amounts of professional antigen-presenting cells (APC) used for periodical cycles of restimulation. We evaluated whether RMA T lymphoma cells, stably transfected with the cDNA encoding for the B7.1 costimulatory molecule, provided the activation signals to CD8+ T lymphocytes in the absence of professional APC and CD4+ helper cells. We demonstrate here that long-term CD8+ cell lines can be efficiently propagated in vitro by repeated cycles of stimulation with tumor cells stably expressing B7.1. Professional APC and CD4+ helper cells are not required as far as interleukin 2 is exogenously provided. Furthermore, CD8+ blasts needed both signal 1 (Ag in the contest of the MHC molecule) and signal 2 (interaction of costimulatory molecules) for restimulation. T cell blasts in the presence of signal 1 or 2 only still retained their effector potential but did not undergo clonal expansion. These results are very promising for further applications of specific immunotherapies in humans.

  8. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin.

    Science.gov (United States)

    Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K

    1989-06-01

    A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.

  9. In Vitro Repair of UV-Irradiated Micrococcus luteus Bacteriophage N1 Transfecting DNA 1

    Science.gov (United States)

    Mahler, Inga; George, Jeanne; Grossman, Lawrence

    1974-01-01

    Calcium-treated UV-sensitive, host cell reactivation− strains of Micrococcus luteus are infected with UV-irradiated N1 DNA. In strains lacking UV endonuclease, in vitro treatment of the irradiated DNA results in transfection enhancement. PMID:4823319

  10. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  11. Human cell transformation in the study of sunlight-induced cancers in the skin of man

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Bennett, P.V.

    1988-01-01

    Human cell transformation provides a powerful approach to understanding - at the cellular and molecular levels - induction of cancers in the skin of man. A principal approach to this problem is the direct transformation of human skin cells by exposure to ultraviolet and/or near-UV radiation. The frequency of human cells transformed to anchorage independence increases with radiation exposure; the relative transforming efficiencies of different wavelengths implies that direct absorption by nucleic acids is a primary initial event. Partial reversal of potential transforming lesions by photoreactivation suggests that pyrimidine dimers, as well as other lesions, are important in UV transformation of human cells. Human cells can also be transformed by transfection with cloned oncogenes, or with DNAs from tumors or tumor cell lines. Cells treated by the transfection procedure (but without DNA) or cells transfected with DNAs from normal mammalian cells or tissues show only background levels of transformation. Human cells can be transformed to anchorage-independent growth by DNAs ineffective in transformation of NIH 3T3 cells (including most human skin cancers), permitting the analysis of oncogenic molecular changes even in tumor DNAs difficult or impossible to analyze in rodent cell systems. 29 refs.; 4 figs.; 1 table

  12. Wnt activation affects proliferation, invasiveness and radiosensitivity in medulloblastoma.

    Science.gov (United States)

    Salaroli, Roberta; Ronchi, Alice; Buttarelli, Francesca Romana; Cortesi, Filippo; Marchese, Valeria; Della Bella, Elena; Renna, Cristiano; Baldi, Caterina; Giangaspero, Felice; Cenacchi, Giovanna

    2015-01-01

    Medulloblastomas (MBs) associated with the Wnt activation represent a subgroup with a favorable prognosis, but it remains unclear whether Wnt activation confers a less aggressive phenotype and/or enhances radiosensitivity. To investigate this issue, we evaluated the biological behavior of an MB cell line, UW228-1, stably transfected with human β-catenin cDNA encoding a nondegradable form of β-catenin (UW-B) in standard culture conditions and after radiation treatment. We evaluated the expression, transcriptional activity, and localization of β-catenin in the stably transfected cells using immunofluorescence and WB. We performed morphological analysis using light and electron microscopy. We then analyzed changes in the invasiveness, growth, and mortality in standard culture conditions and after radiation. We demonstrated that (A) Wnt activation inhibited 97 % of the invasion capability of the cells, (B) the growth of the UW-B cells was statistically significantly lower than that of all the other control cells (p < 0.01), (C) the mortality of irradiated UW-B cells was statistically significantly higher than that of the controls and their nonirradiated counterparts (p < 0.05), and (D) morphological features of neuronal differentiation were observed in the Wnt-activated cells. In tissue samples, the Ki-67 labeling index (LI) was lower in β-catenin-positive samples compared to non-β-catenin positive ones. The Ki-67 LI median (LI = 40) of the nuclear β-catenin-positive tumor samples was lower than that of non-nuclear β-catenin-positive samples (LI = 50), but the difference was not statistically significant. Overall, our data suggest that activation of the Wnt pathway reduces the proliferation and invasion of MBs and increases the tumor's radiosensitivity.

  13. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems

    Science.gov (United States)

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  14. Optimal transfection methods and comparison of PK-15 and Dulac cells for rescue of chimeric porcine circovirus type 1-2.

    Science.gov (United States)

    Li, Jizong; Yu, Tianqi; Zhou, Jinzhu; Tu, Wei; Gao, Song; Liu, Xiufan

    2014-11-01

    A chimeric porcine circovirus type 1-2 (PCV1-2) infectious DNA clone has low transfection efficiency and exhibits low levels of proliferation. Electroporation and lipofection parameters were optimized for PK-15 and Dulac cells with the purpose of increasing the efficiency for rescuing infectious PCV1-2. Titers of PCV1-2 in Dulac cells were 100-fold higher than those in PK-15 cells following transfection. The electroporation efficiency into Dulac cells was high when three 400 μs pulses at 250 V with 6 μg of plasmid DNA was used, lipofection efficiency was high when the ratio of DNA to transfection reagent was 1:3. The proportion of infected cells was 55.6% compared with 44.2%, for the electroporation and lipofection techniques respectively. Virus titers were higher in Dulac cells, from 10(4.44) to 10(5.32)TCID50/mL compared with 10(1.90)-10(3.38)TCID(50)/mL for PK-15 cells. Dulac cells were more permissive to PCV1-2 than PK-15 cells regardless of the transfection technique. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  16. Improved Human Erythropoiesis and Platelet Formation in Humanized NSGW41 Mice

    Directory of Open Access Journals (Sweden)

    Susann Rahmig

    2016-10-01

    Full Text Available Human erythro-megakaryopoiesis does not occur in humanized mouse models, preventing the in vivo analysis of human hematopoietic stem cell (HSC differentiation into these lineages in a surrogate host. Here we show that stably engrafted KIT-deficient NOD/SCID Il2rg−/− KitW41/W41 (NSGW41 mice support much improved human erythropoiesis and platelet formation compared with irradiated NSG recipients. Considerable numbers of human erythroblasts and mature thrombocytes are present in the bone marrow and blood, respectively. Morphology, composition, and enucleation capacity of de novo generated human erythroblasts in NSGW41 mice are comparable with those in human bone marrow. Overexpression of human erythropoietin showed no further improvement in human erythrocyte output, but depletion of macrophages led to the appearance of human erythrocytes in the blood. Human erythropoiesis up to normoblasts and platelet formation is fully supported in NSGW41 mice, allowing the analysis of human HSC differentiation into these lineages, the exploration of certain pathophysiologies, and the evaluation of gene therapeutic approaches.

  17. 99Tcm pertechnetate uptake by hepatoma cells induced by tissue specific hNIS gene expression

    International Nuclear Information System (INIS)

    Chen Libo; Luo Quanyong; Yu Yongli; Yuan Zhibin; Lu Hankui; Zhu Ruisen; Guo Lihe

    2007-01-01

    Objective: Human sodium/iodide symporter (hNIS) gene could be used both as an ideal reporter gene and promising therapeutic gene. Rather than radioiodine, 99 Tc m pertechnetate has been proven to be a better radiopharmaceutical for tracing and imaging purposes. Herein, the authors investigated the feasibility of monitoring hNIS gene expression in hepatoma cells using 99 Tc m pertechnetate as a tracer. Methods: Hepatoma cells MH3924A were stably transfected with recombinant retroviral vector in which hNIS cDNA was driven by murine albumin enhancer/promoter (mAlb) and coupled to hygromycin resistance gene. The uptake and efflux of 99 Tc m pertechnetate by transfected hepatoma cells were tested with 99 Tc m pertechnetate (74 kBq) solution adulterated into the culture media and counted after media suspension discharge at different intervals. In further tests, 50 μmol/L NaClO 4 and 500 μmol/L Ouabain were added into the media for 99 Tc m inhibition tests. For in vive studies, five ACI rats bearing NIS transfected hepatoma xenografts were injected with 99 Tc m pertechnetate (15.8 MBq) and followed by dynamic acquisition (0.57 1, 2 and 4 h) with small gamma camera to semi-quantitatively analyze the radioactivity distribution. Results: In vitro tests, the peak uptake of 99 Tc m pertechnetate by cultured transfected MH3924A cells was up to 254 folds higher than that by the wild type cells. 99 Tc m uptake by transfected cells were significantly inhibited by NaClO 4 down to 2.44% (P 99 Tc m pertechnetate out of cultured transfected cells became rapid immediately after renewal of culture media (half life 99 Tc m accumulations by hNIS transfected tumor xenografts were obvious in early phases of the acquisition with peak uptake at 12 min and gradually declining later on. Conclusions: hNIS transfected hepatoma cells can avidly uptake 99 Tc m pertechnetate both in vitro and in vive. It is feasible to utilize 99 Tc m pertechnetate for monitoring and even quantitatively analyzing

  18. Transfection of CXCR-4 using microbubble-mediated ultrasound irradiation and liposomes improves the migratory ability of bone marrow stromal cells.

    Science.gov (United States)

    Wang, Gong; Zhuo, Zhongxiong; Zhang, Qian; Xu, Yali; Wu, Shengzheng; Li, Lu; Xia, Hongmei; Gao, Yunhua

    2015-01-01

    Bone marrow stromal cells (BMSCs) have proven useful for the treatment of various human diseases and injuries. However, their reparative capacity is limited by their poor migration and homing ability, which are primarily dependent on the SDF-1/CXCR4 axis. Most subcultured BMSCs lack CXCR4 receptor expression on the cell surface and exhibit impaired migratory capacity. To increase responsiveness to SDF-1 and promote cell migration and survival of cultured BMSCs, we used a combination of ultrasound-targeted microbubble destruction (UTMD) and liposomes to increase CXCR4 expression in vitro. We isolated and cultured rat BMSCs to their third passage and transduced them with recombinant plasmid pDsRed-CXCR4 using microbubble-mediated ultrasound irradiation and liposomes. Compared to some viral vectors, the method we employed here resulted in significantly better transfection efficiency, CXCR4 expression, and technical reproducibility. The benefits of this approach are likely due to the combination of "sonoporation" caused by shockwaves and microjet flow resulting from UTMD-generated cavitation. Following transfection, we performed a transwell migration assay and found that the migration ability of CXCR4-modified BMSCs was 9-fold higher than controls. The methods we describe here provide an effective, safe, non-viral means to achieve high levels of CXCR4 expression. This is associated with enhanced migration of subcultured BMSCs and may be useful for clinical application as well.

  19. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  20. Establishment of Lipofection Protocol for Efficient miR-21 Transfection into Cortical Neurons In Vitro.

    Science.gov (United States)

    Han, Zhaoli; Ge, Xintong; Tan, Jin; Chen, Fanglian; Gao, Huabin; Lei, Ping; Zhang, Jianning

    2015-12-01

    Dysregulated microRNAs in neurons could cause many nervous system diseases. The therapeutic manipulation of these pathogenic microRNAs necessitates novel, efficient delivery systems to facilitate microRNA modulators targeting neurons with minimal off-target effects. The study aimed to establish a lipofection protocol to upregulate expression levels of miR-21 in neurons under different conditions, including different serum-free medium, transfection conditions, and reagent concentration, by evaluating the expression levels of miR-21 and neuron injury. The expression levels of miR-21 were higher in neurons transfected by Neurobasal-A than by DMEM. Expression levels of miR-21 were already the highest at the ratio RNAiMAX:miR-21 = 3:5, but the increase of RNAiMAX's concentration had not caused the further upregulation of expression level of miR-21. Neuron injury was condition dependent and dose dependent after transfection. Compared to S-Neurobasal groups, neurons have a smaller injury in N-Neurobasal groups, and compared to ratios RNAiMAX:miR-21 = 4:5, 5:5, neuron injury was smaller at ratios of RNAiMAX:miR-21 = 1:5, 2:5, 3:5. Without the pretreatment of starvation in vitro, the lipofection protocol was that RNAiMAX/miR-21 agomir complexes were diluted in Neurobasal-A at the ratio of RNAiMAX:miR-21 = 3:5.

  1. Enhancement of the response to purinergic agonists in P2Y1 transfected 1321N1 cells by antagonists suramin and PPADS.

    Science.gov (United States)

    Brown, C A; Charlton, S J; Boarder, M R

    1997-03-01

    1. We have previously shown that both suramin and pyridoxal-phosphate-6-azophenyl-2',4' disulphonic acid (PPADS) act as antagonists at transfected P2Y1 receptors. Here we show that under certain experimental conditions these two P2 antagonists can enhance the response to agonists acting at these receptors. 2. The expression of either P2Y1 or P2Y2 receptors in 1321N1 human astrocytoma cells results, on a change of medium, in an elevation of basal (no added agonist) accumulation of [3H]-inositol(poly)phosphates([3H]-InsPx) compared to cells not expressing these receptors. This elevation is much greater in P2Y1 transfectants than in P2Y, transfectants. 3. Both PPADS and suramin reduced this basal level of [3H]-InsPx accumulation in the P2Y1 expressing cells. 4. When a protocol was used which required changing the culture medium, antagonists were added at a concentration which reduced the basal accumulation by about 50%, there was a significant stimulation in response to increasing concentrations of 2-methylthioadenosine 5'-triphosphate (2MeSATP), in the absence of antagonists there was no significant effect of the agonist. 5. However, when 2MeSATP was added in the absence of a change of medium and with no antagonist present, there was a several fold increase in [3H]-InsPx accumulation. These results show that a release of endogenous agonist activity (possibly ATP/ADP) from the P2Y1 expressing cells can create conditions in which a response to an agonist such as 2MeSATP can only be seen in the presence of a competitive antagonist.

  2. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    Energy Technology Data Exchange (ETDEWEB)

    Gaibelet, Gérald [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France); Tercé, François [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Bertrand-Michel, Justine [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Lipidomic Platform Metatoul, Toulouse (France); Allart, Sophie [Plateau Technique d’Imagerie Cellulaire, INSERM U1043, Toulouse (France); Azalbert, Vincent [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Lecompte, Marie-France [INSERM U563, Faculté de Médecine de Rangueil, Toulouse (France); Collet, Xavier [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Orlowski, Stéphane, E-mail: stephane.orlowski@cea.fr [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France)

    2013-11-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  3. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    International Nuclear Information System (INIS)

    Gaibelet, Gérald; Tercé, François; Bertrand-Michel, Justine; Allart, Sophie; Azalbert, Vincent; Lecompte, Marie-France; Collet, Xavier; Orlowski, Stéphane

    2013-01-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  4. Transfection of embryonated Muscovy duck eggs with a recombinant plasmid is suitable for rescue of infectious Muscovy duck parvovirus.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Ling, Jueyi; Wang, Zhixiang; Zhu, Guoqiang

    2017-12-01

    For members of the family Parvoviridae, rescue of infectious virus from recombinant plasmid is usually done in cultured cells. In this study, the whole genome of the pathogenic Muscovy duck parvovirus (MDPV) strain YY was cloned into the pBluescript II (SK) vector, generating recombinant plasmid pYY. With the aid of a transfection reagent, pYY plasmid was inoculated into 11-day-old embryonated Muscovy duck eggs via the chorioallantoic membrane route, resulting in the successful rescue of infectious virus and death of the embryos. The rescued virus exhibited pathogenicity in Muscovy ducklings similar to that of its parental strain, as evaluated based on the mortality rate. The results demonstrate that plasmid transfection in embryonated Muscovy duck eggs is a convenient and efficacious method for rescue of infectious MDPV in comparison to transfection of primary cells, which is somewhat time-consuming and laborious.

  5. Rapid resensitization of purinergic receptor function in human platelets.

    Science.gov (United States)

    Mundell, S J; Barton, J F; Mayo-Martin, M B; Hardy, A R; Poole, A W

    2008-08-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), the P2Y(1) and P2Y(12) purinergic receptors. Recently, we demonstrated that both receptors desensitize and internalize in human platelets by differential kinase-dependent mechanisms. To demonstrate whether responses to P2Y(1) and P2Y(12) purinergic receptors resensitize in human platelets and determine the role of receptor traffic in this process. These studies were undertaken either in human platelets or in cells stably expressing epitope-tagged P2Y(1) and P2Y(12) purinergic receptor constructs. In this study we show for the first time that responses to both of these receptors can rapidly resensitize following agonist-dependent desensitization in human platelets. Further, we show that in human platelets or in 1321N1 cells stably expressing receptor constructs, the disruption of receptor internalization, dephosphorylation or subsequent receptor recycling is sufficient to block resensitization of purinergic receptor responses. We also show that, in platelets, internalization of both these receptors is dependent upon dynamin, and that this process is required for resensitization of responses. This study is therefore the first to show that both P2Y(1) and P2Y(12) receptor activities are rapidly and reversibly modulated in human platelets, and it reveals that the underlying mechanism requires receptor trafficking as an essential part of this process.

  6. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  7. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    Science.gov (United States)

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  8. Microsphere-liposome complexes protect adenoviral vectors from neutralising antibody without losses in transfection efficiency, in-vitro.

    Science.gov (United States)

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Kalle, Wouter H J

    2004-11-01

    Adenoviral vectors have been commonly used in gene therapy protocols but the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced, which limits further administration. This study examines the effectiveness of a novel combination of microspheres and liposomes for the shielding of adenovirus from neutralising antibodies in an in-vitro setting. We show that liposomes are effective in the protection of adenovirus from neutralising antibody and that the conjugation of these complexes to microspheres augments the level of protection. This study further reveals that previously neutralised adenovirus may still be transported into the cell via liposome-cell interactions and is still capable of expressing its genes, making this vector an effective tool for circumvention of the humoral immune response. We also looked at possible side effects of using the complexes, namely increases in cytotoxicity and reductions in transfection efficiency. Our results showed that varying the liposome:adenovirus ratio can reduce the cytotoxicity of the vector as well as increase the transfection efficiency. In addition, in cell lines that are adenoviral competent, transfection efficiencies on par with uncomplexed adenoviral vectors were achievable with the combination vector.

  9. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán-Pérez

    Full Text Available Nasturtium (Tropaeolum majus L. contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1. FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i the insulin-signaling pathway, ii the intracellular localization of FOXO1 and, iii the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived-like2 (NRF2 and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1. The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance.

  10. Transfection and imaging of diamond nanocrystals as scattering optical labels

    International Nuclear Information System (INIS)

    Smith, Bradley R.; Niebert, Marcus; Plakhotnik, Taras; Zvyagin, Andrei V.

    2007-01-01

    We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation 'space' contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond

  11. Conceptual and technical aspects of transfection and gene delivery.

    Science.gov (United States)

    Kaestner, Lars; Scholz, Anke; Lipp, Peter

    2015-03-15

    Genetically modified animals are state of the art in biomedical research as gene therapy is a promising perspective in the attempt to cure hereditary diseases. Both approaches have in common that modified or corrected genetic information must be transferred into cells in general or into particular cell types of an organism. Here we give an overview of established and emerging methods of transfection and gene delivery and provide conceptual and technical advantages and drawbacks of their particular use. Additionally, based on a flow chart, we compiled a rough guideline to choose a gene transfer method for a particular field of application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Aspects of nonviral gene therapy: correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids.

    Science.gov (United States)

    Parvizi, Paria; Jubeli, Emile; Raju, Liji; Khalique, Nada Abdul; Almeer, Ahmed; Allam, Hebatalla; Manaa, Maryem Al; Larsen, Helge; Nicholson, David; Pungente, Michael D; Fyles, Thomas M

    2014-01-30

    This study seeks correlations between the molecular structures of cationic and neutral lipids, the lipid phase behavior of the mixed-lipid lipoplexes they form with plasmid DNA, and the transfection efficacy of the lipoplexes. Synthetic cationic pyridinium lipids were co-formulated (1:1) with the cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and these lipids were co-formulated (3:2) with the neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol. All lipoplex formulations exhibited plasmid DNA binding and a level of protection from DNase I degradation. Composition-dependent transfection (beta-galactosidase and GFP) and cytotoxicity was observed in Chinese hamster ovarian-K1 cells. The most active formulations containing the pyridinium lipids were less cytotoxic but of comparable activity to a Lipofectamine 2000™ control. Molecular structure parameters and partition coefficients were calculated for all lipids using fragment additive methods. The derived shape parameter values correctly correlated with observed hexagonal lipid phase behavior of lipoplexes as derived from small-angle X-ray scattering experiments. A transfection index applicable to hexagonal phase lipoplexes derived from calculated parameters of the lipid mixture (partition coefficient, shape parameter, lipoplex packing) produced a direct correlation with transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    International Nuclear Information System (INIS)

    Dávalos-Salas, Mercedes; Furlan-Magaril, Mayra; González-Buendía, Edgar; Valdes-Quezada, Christian; Ayala-Ortega, Erandi; Recillas-Targa, Félix

    2011-01-01

    Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines. To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing

  14. NADE (p75NTR-associated cell death executor) suppresses cellular growth in vivo.

    Science.gov (United States)

    Tong, Xiangjun; Xie, Dong; Roth, Wilfried; Reed, John; Koeffler, H Phillip

    2003-06-01

    NADE, a p75NTR (low-affinity neurotrophin receptor p75) -associated cell death executor, was initially cloned from a human ovarian granulosa cell cDNA library, as an unknown protein with the name, pHGR74. It was reported to mediate nerve growth factor-induced apoptosis. We independently isolated human NADE (pHGR74) from breast cancer cell lines. Expression of NADE in various human cancer cell lines, and human and murine tissues was examined. NADE was highly expressed in human endocrine-related organs and embryotic murine tissues. Forced expression of NADE in CHO (Chinese hamster ovary) cells and MDA-MB-231 human breast cancer cells had little effect on the growth of the cells in vitro, while it dramatically suppressed cellular growth in vivo. We used the yeast two-hybrid system to search for NADE binding protein. Dynactin was identified as a candidate. The p75NTR was not found in this assay and did not co-immunoprecipitate with human NADE. Furthermore, the cells stably transfected with NADE did not respond to NGF or TNF. Thus, human and murine NADE appear to have different functions.

  15. Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines, primary- and stem cells using fs laser pulses.

    Science.gov (United States)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Heinemann, Dag; Kalies, Stefan; Ngezahayo, Anaclet; Nolte, Ingo; Ripken, Tammo; Junghanß, Christian; Meyer, Heiko; Murua Escobar, Hugo; Heisterkamp, Alexander

    2015-08-01

    Gold nanoparticle mediated (GNOME) laser transfection is a powerful technique to deliver small biologically relevant molecules into cells. However, the transfection of larger and especially negatively charged DNA remains challenging. The efficiency for pDNA was 0.57% using parameter that does not influence the endo- and exogenous DNA. In order to gain a deeper understanding of the actual molecule uptake process, the uptake efficiency was determined using molecules of different sizes. It was evaluated that uncharged dextran molecules (2000 kDa) were delivered with an efficiency of 68%. The intracellular distribution of injected molecules was visualized and larger molecules were primary found in the cytoplasm. Patch clamp measurements suggested a permeabilization time up to 15 minutes. The uptake efficiency depended on the size and charge of the molecule to deliver as well as the cell size. A minor role for transfection plays the cell type since primary stem cells were successfully transfected. The perforation efficiency of semi-adherent and suspension cells is influenced by the cell and molecule size. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100

    DEFF Research Database (Denmark)

    Hatse, S; Princen, K; Gerlach, L O

    2001-01-01

    by mutational analysis. We established a set of stably transfected U87.CD4 cell lines expressing different mutant forms of CXCR4 (i.e., CXCR4[WT], CXCR4[D171N], CXCR4[D262N], CXCR4[D171N,D262N], and CXCR4[H281A]), to compare the activity of the compound against mutated versus wild-type CXCR4. We found...... by substitution of Asp(171) and/or Asp(262) by neutral asparagine residue(s). Both aspartates, but most particularly Asp(262), also proved essential for the anti-HIV-1 activity of AMD3100 against the viruses NL4.3, IIIB, and HE. In contrast, substitution of His(281) by a neutral alanine potentiated...

  17. Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity.

    Science.gov (United States)

    Talento, A; Nguyen, M; Law, S; Wu, J K; Poe, M; Blake, J T; Patel, M; Wu, T J; Manyak, C L; Silberklang, M

    1992-12-15

    Murine CTL have seven serine proteases, known as granzymes, in their lytic granules. Despite considerable effort, convincing evidence that these enzymes play an obligatory role in the lytic process has not been presented. To investigate the function of one of these proteases, granzyme A (GA), we utilized an antisense expression vector to lower the level of the enzyme in the cells. An expression vector containing antisense cDNA for GA and the gene for hygromycin B resistance was constructed and electroporated into the murine CTL line, AR1. Transfectants were selected based on resistance to hygromycin B, and a number of stable lines were developed. One of the antisense lines had greatly reduced levels of GA mRNA, when compared to the parental cells or to control lines transfected with the vector lacking the antisense DNA. The message levels for two other CTL granule proteins, granzyme B and perforin, were unaffected by the antisense vector. The amount of GA, as measured by enzymatic activity, was 3- to 10-fold lower in the transfectant. Most significantly, this line also consistently showed 50 to 70% lower ability to lyse nucleated target cells and to degrade their DNA. Furthermore, it exhibited 90 to 95% lower lytic activity to anti-CD3-coated SRBC. Conjugate formation with target cells, however, was normal. These data provide strong evidence that GA plays an important role in the cytolytic cycle, and that the quantity of enzyme is a limiting factor in these cytolytic cells.

  18. Research on human placenta-derived mesenchymal stem cells ...

    African Journals Online (AJOL)

    Research on human placenta-derived mesenchymal stem cells transfected with pIRES2-EGFP-VEGF165 using liposome. ... African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ...

  19. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-01-01

    Full Text Available Introduction. Xeroderma pigmentosum group C (XPC, essential component of multisubunit stem cell coactivator complex (SCC, functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  20. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc.

    Science.gov (United States)

    Liu, Lu; Peng, Zhengjun; Xu, Zhezhen; Wei, Xi

    2016-01-01

    Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  1. The effects of 5-fluorouracil and doxorubicin on expression of human immunodeficiency virus type 1 long terminal repeat

    International Nuclear Information System (INIS)

    Panozzo, J.; Akan, E.; Griffiths, T.D.

    1996-01-01

    Previous work by many groups has documented induction of the HIV-LTR following exposure of cells to ultraviolet light and other DNA damaging agents. Our experiments set out to determine the relative activation or repression of the HIV-LTR in response to two classes of chemotherapeutic agents: Doxorubicin is a DNA-damage inducing agent, and 5-fluorouracil has an antimetabolic mode of action. Using HeLa cells stably transfected with a construct in which HIV-LTR drives expression of the chloramphenicol acetyl transferase reporter gene, we demonstrated an up to 10-fold induction following doxorubicin treatment in 24 h post-treatment. This induction was repressed by treatment with salicylic acid, suggesting a role for prostaglandin/cyclo-oxygenase pathways and/or NFKB in the inductive response. Induction by 5-fluorouracil, in contrast, was more modest (two-fold at most) though it was consistently elevated over controls

  2. Gene expression profiles in primary duodenal chick cells following transfection with avian influenza virus H5 DNA plasmid encapsulated in silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Jazayeri SD

    2013-02-01

    Full Text Available Seyed Davoud Jazayeri,1 Aini Ideris,1,2 Kamyar Shameli,3 Hassan Moeini,1 Abdul Rahman Omar1,21Institute of Bioscience, 2Faculty of Veterinary Medicine, 3Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: In order to develop a systemically administered safe and effective nonviral gene delivery system against avian influenza virus (AIV that induced cytokine expression, the hemagglutinin (H5 gene of AIV, A/Ck/Malaysia/5858/04 (H5N1 and green fluorescent protein were cloned into a coexpression vector pIRES (pIREGFP-H5 and formulated using green synthesis of silver nanoparticles (AgNPs with poly(ethylene glycol and transfected into primary duodenal cells taken from 18-day-old specific-pathogen-free chick embryos. The AgNPs were prepared using moderated temperature and characterized for particle size, surface charge, ultraviolet-visible spectra, DNA loading, and stability. AgNPs and AgNP-pIREGFP-H5 were prepared in the size range of 13.9 nm and 25 nm with a positive charge of +78 ± 0.6 mV and +40 ± 6.2 mV, respectively. AgNPs with a positive surface charge could encapsulate pIREGFP-H5 efficiently. The ultraviolet-visible spectra for AgNP-pIREGFP-H5 treated with DNase I showed that the AgNPs were able to encapsulate pIREGFP-H5 efficiently. Polymerase chain reaction showed that AgNP-pIREGFP-H5 entered into primary duodenal cells rapidly, as early as one hour after transfection. Green fluorescent protein expression was observed after 36 hours, peaked at 48 hours, and remained stable for up to 60 hours. In addition, green fluorescent protein expression generally increased with increasing DNA concentration and time. Cells were transfected using Lipocurax in vitro transfection reagent as a positive control. A multiplex quantitative mRNA gene expression assay in the transfected primary duodenal cells via the transfection reagent and AgNPs with pIREGFP-H5 revealed expression of interleukin (IL-18, IL-15, and IL-12

  3. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  4. Octaarginine-modified chitosan as a nonviral gene delivery vector: properties and in vitro transfection efficiency

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Zhaoyang; Liu Wenguang; Lam, Wingmoon; Sun Peng; Kao, Richard Y. T.; Luk, Keith D. K.; Lu, William W.

    2011-01-01

    Protein transduction domains (PTD) have been identified to have the capacity to facilitate molecular cargo to translocate through cell membrane. This study aims to utilize the cell membrane penetrating ability of octaarginine oligopeptide, a simplified prototype of the PTD, to enhance the transfection efficiency of chitosan. Octaarginine-modified chitosan (R 8 -CS) was synthesized as a gene transfer carrier by carbodiimide chemistry. The structure and composition of R 8 -CSs were characterized using FTIR and 1 H NMR. Agarose gel electrophoresis assay showed that R 8 -CS could efficiently condense the DNA. The particle size of R 8 -CS/DNA complexes were determined to be around 100–200 nm. The nanoparticle complexes exhibited a spherical and compact morphology. R 8 -CS demonstrated higher transfection activity and lower cytotoxicity as compared to the unmodified chitosan and also showed good serum resistance.

  5. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    the surface of MSN and utilize them to complex cationic DNA. The p-EGFP-CI gene-coated MSN nanocomposite was able to transfect cancer cell lines, such as human HeLa and CHO cancer cell lines. The gene carrier ability of MSNs was further proved by transfecting primary cells and cotransfecting of two different genes in cancer cell lines. In sum, MSN are versatile partners in several types of applications.

  6. Peptide Dendrimer/Lipid Hybrid Systems Are Efficient DNA Transfection Reagents: Structure–Activity Relationships Highlight the Role of Charge Distribution Across Dendrimer Generations

    Science.gov (United States)

    2013-01-01

    Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure–activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6–10-fold over commercial reagents under their respective optimal conditions. Emerging structure–activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity. PMID:23682947

  7. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    International Nuclear Information System (INIS)

    Snow, Grace E; Kasper, Allison C; Busch, Alexander M; Schwarz, Elisabeth; Ewings, Katherine E; Bee, Thomas; Spinella, Michael J; Dmitrovsky, Ethan; Freemantle, Sarah J

    2009-01-01

    Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833

  8. Resistance to Inhibitors of Cholinesterase 3 (Ric-3 Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome.

    Directory of Open Access Journals (Sweden)

    Matthew J Mulcahy

    Full Text Available The α7-nicotinic acetylcholine receptor (α7-nAChR is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3 has been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed. Using α-bungarotoxin (α-bgtx, we isolated and compared α7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These associating proteins may alter activities of α7-nAChRs to expand their functionally-relevant repertoire as

  9. Optimization of a nonviral transfection system to evaluate Cox-2 controlled interleukin-4 expression for osteoarthritis gene therapy in vitro.

    Science.gov (United States)

    Lang, Annemarie; Neuhaus, Johannes; Pfeiffenberger, Moritz; Schröder, Erik; Ponomarev, Igor; Weber, Yvonne; Gaber, Timo; Schmidt, Michael F G

    2014-01-01

    Gene therapy appears to have the potential for achieving a long-term remedy for osteoarthritis (OA). However, there is a risk of adverse reactions, especially when using cytomegalovirus-controlled expression. To provide a safe application, we focused on the expression of therapeutic cytokines [e.g. interleukin (IL)-4] in a disease-responsive manner by use of the previously cloned Cox-2 promoter as 'genetic switch'. In the present study, we report the functionality of a controlled gene therapeutic system in an equine osteoarthritic cell model. Different nonviral transfection reagents were tested for their efficiency on equine chondrocytes stimulated with equine IL-1β or lipopolysaccharide to create an inflammatory environment. To optimize the transfection, we successfully redesigned the vector by excluding the internal ribosomal entry site (IRES). The functionality of our Cox-2 promoter construct with respect to expressing IL-4 was proven at the mRNA and protein levels and the anti-inflammatory potential of IL-4 was confirmed by analyzing the expression of IL-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3 and tumor necrosis factor (TNF)-α using a quantitative polymerase chain reaction. Nonviral transfection reagents yielded transfection rates from 21% to 44% with control vectors with and without IRES, respectively. Stimulation of equine chondrocytes resulted in a 20-fold increase of mRNA expression of IL-1β. Such exogenous stimulation of chondrocytes transfected with pNCox2-IL4 led to an increase of IL-4 mRNA expression, whereas expression of inflammatory mediators decreased. The timely link between these events confirms the anti-inflammatory potential of synthesized IL-4. We consider that this approach has significant potential for translation into a useful anti-inflammation therapy. Molecular tools such as the described therapeutic plasmid pave the way for a local-controlled, self-limiting gene therapy. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Mutant tamm-horsfall glycoprotein accumulation in endoplasmic reticulum induces apoptosis reversed by colchicine and sodium 4-phenylbutyrate.

    Science.gov (United States)

    Choi, Sung Won; Ryu, Ok Hee; Choi, Sun Jin; Song, In Sun; Bleyer, Anthony J; Hart, Thomas C

    2005-10-01

    As a consequence of uromodulin gene mutations, individuals develop precocious hyperuricemia, gout, and progressive renal failure. In vitro studies suggest that pathologic accumulation of uromodulin/Tamm-Horsfall glycoprotein (THP) occurs in the endoplasmic reticulum (ER), but the pathophysiology of renal damage is unclear. It was hypothesized that programmed cell death triggered by accumulation of misfolded THP in the ER causes progressive renal disease. Stably transfected human embryonic kidney 293 cells and immortalized thick ascending limb of Henle's loop cells with wild-type and mutated uromodulin cDNA were evaluated to test this hypothesis. Immunocytochemistry, ELISA, and deglycosylation studies indicated that accumulation of mutant THP occurred in the ER. FACS analyses showed a significant increase in early apoptosis signal in human embryonic kidney 293 and thick ascending limb of Henle's loop cells that were transfected with mutant uromodulin constructs. Colchicine and sodium 4-phenylbutyrate treatment increased secretion of THP from the ER to the cell membrane and into the culture media and significantly improved cell viability. These findings indicate that intracellular accumulation of THP facilitates apoptosis and that this may provide the pathologic mechanism responsible for the progressive renal damage associated with uromodulin gene mutations. Colchicine and sodium 4-phenylbutyrate reverse these processes and could potentially be beneficial in ameliorating the progressive renal damage in uromodulin-associated kidney diseases.

  11. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  12. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuewen; Ding Dalian [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Jiang Haiyan [State University of New York at Buffalo, Center for Hearing and Deafness (United States); XingXiaowei [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Huang, Suping [Central South University, State Key Laboratory of Powder Metallurgy (China); Liu Hong [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Chen Zhedong [Central South University, State Key Laboratory of Powder Metallurgy (China); Sun Hong, E-mail: shjhaj@vip.163.com [Central South University, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital (China)

    2012-01-15

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI-nHAT, diameter = 73.09 {+-} 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2-NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector-gene complex (PEI-nHAT-pEGFPC2-NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector-gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector-gene complexes. Considering the high transfection efficiency in the vestibular system, PEI-nHAT may be a potential vector for gene therapy of

  13. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  14. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    Science.gov (United States)

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  15. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells.

    Science.gov (United States)

    Minshall, R D; Tan, F; Nakamura, F; Rabito, S F; Becker, R P; Marcic, B; Erdös, E G

    1997-11-01

    Part of the beneficial effects of angiotensin I-converting enzyme (ACE) inhibitors are due to augmenting the actions of bradykinin (BK). We studied this effect of enalaprilat on the binding of [3H]BK to Chinese hamster ovary (CHO) cells stably transfected to express the human BK B2 receptor alone (CHO-3B) or in combination with ACE (CHO-15AB). In CHO-15AB cells, enalaprilat (1 mumol/L) increased the total number of low-affinity [3H]BK binding sites on the cells at 37 degrees C, but not at 4 degrees C, from 18.4 +/- 4.3 to 40.3 +/- 11.9 fmol/10(6) cells (P potentiated the release of [3H]arachidonic acid and the liberation of inositol 1,4,5-trisphosphate (IP3) induced by BK and [Hyp3-Tyr(Me)8]BK. Moreover, enalaprilat (1 mumol/L) completely and immediately restored the response of the B2 receptor, desensitized by the agonist (1 mumol/L [Hyp3-Tyr(Me)8]BK); this effect was blocked by the antagonist, HOE 140. Finally, enalaprilat, but not the prodrug enalapril, decreased internalization of the receptor from 70 +/- 9% to 45 +/- 9% (P desensitization, and decrease internalization, thereby potentiating BK beyond blocking its hydrolysis.

  16. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency

    NARCIS (Netherlands)

    Zuhorn, IS; Bakowsky, U; Polushkin, E; Visser, WH; Stuart, MCA; Engberts, JBFN; Hoekstra, D; Visser, Willy H.

    Cationic lipids are widely used for gene delivery, and inclusion of dioleoylphosphatidylethanolamine (DOPE) as a helper lipid in cationic lipid-DNA formulations often promotes transfection efficacy. To investigate the significance of DOPE's preference to adopt a hexagonal phase in the mechanism of

  17. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Huang, S.Q.; Liao, Q.J.; Wang, X.W.; Xin, D.Q.; Chen, S.X.; Wu, Q.J.; Ye, G.

    2012-01-01

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  18. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina.

    Directory of Open Access Journals (Sweden)

    Sachin S Thakur

    Full Text Available Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM. The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.

  19. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  20. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis.

    Science.gov (United States)

    Hu, Jianhua; Li, Hongjian; Chi, Guanhao; Yang, Zhao; Zhao, Yi; Liu, Wei; Zhang, Chao

    2015-01-01

    In order to investigate the encapsulation of interleukin 1 receptor antagonist (IL-RA) gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of interleukin 1 receptor antagonist (IL-RA) to treat Rheumatoid arthritis (RA). We transfect mesenchymal stem cells with IL-RA gene, and quantify the IL-RA proteins released from the encapsulated cells followed by microencapsulation of recombinant mesenchymal stem cells, and thus observe the permeability of APA microcapsules and evaluate clinical effects after induction and treatment of collagen-induced arthritis (CIA). The concentration of IL-RA in the supernatant was determined by IL-RA ELISA kit by run in technical triplicates using samples from three separate mice. Encapsulated IL-RA gene-transfected cells were capable of constitutive delivery of IL-RA proteins for at least 30 days. Moreover, the APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Also, it has been found that the APA microcapsules can significantly attenuate collagen induced arthritis after delivering of APA microcapsules to rats. Our results demonstrated that the nonautologous IL-RA gene-transfected stem cells are of potential utility for RA therapy.