WorldWideScience

Sample records for stablization initial laboratory

  1. Phillips Laboratory small satellite initiatives

    Science.gov (United States)

    Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.

    1993-09-01

    The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.

  2. Naval Research Laboratory Arctic Initiatives

    Science.gov (United States)

    2011-06-01

    Campaign Code 7420 Arctic Modeling Code 7320/7500/7600 In-situ NRL, CRREL NRL boreholes Strategy Remote Sensing Synergism −Collect in-situ...Navy and Marine Corps Corporate Laboratory An array of BMFCs being prepared for deployment. Each BMFC consists of a weighted anode laid flat onto...Gas CH4 E C D CO2 BGHS Free Methane Gas Hydrates HCO3- HCO3- Seismic and geochemical data to predict deep sediment hydrates Estimate spatial

  3. Pacific Northwest Laboratory's Solid Waste Initiative

    International Nuclear Information System (INIS)

    Holter, G.M.

    1993-09-01

    In fiscal year 1992 (FY-92), a Solid Waste Initiative was undertaken within the Pacific Northwest Laboratory (PNL). This action was partly in response to a perceived increase in the frequency and severity of impacts associated with solid waste issues at all levels. It also recognized the limited attention of previous efforts in addressing the broader impacts resulting from solid waste and, thus, dealing with solid waste issues in a holistic fashion. This paper provides a description of the Solid Waste Initiative at PNL, including a historical perspective on PNL's involvement in solid waste issues, the goals and objectives of the Solid Waste Initiative, and a discussion of selected activities being conducted under the Initiative

  4. Electrical resisitivity of mechancially stablized earth wall backfill

    Science.gov (United States)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized

  5. Diversity in laboratory animal science: issues and initiatives.

    Science.gov (United States)

    Alworth, Leanne; Ardayfio, Krystal L; Blickman, Andrew; Greenhill, Lisa; Hill, William; Sharp, Patrick; Talmage, Roberta; Plaut, Victoria C; Goren, Matt

    2010-03-01

    Since diversity in the workplace began receiving scholarly attention in the late 1980s, many corporations and institutions have invested in programs to address and manage diversity. We encourage laboratory animal science to address the challenges and to build on the strengths that personal diversity brings to our field and workplaces. Diversity is already becoming increasingly relevant in the workplace and the laboratory animal science field. By addressing issues related to diversity, laboratory animal science could benefit and potentially fulfill its goals more successfully. To date, diversity has received minimal attention from the field as a whole. However, many individuals, workplaces, and institutions in industry, academia, and the uniformed services that are intimately involved with the field of laboratory animal science are actively addressing issues concerning diversity. This article describes some of these programs and activities in industry and academia. Our intention is that this article will provide useful examples of inclusion-promoting activities and prompt further initiatives to address diversity awareness and inclusion in laboratory animal science.

  6. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    Science.gov (United States)

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  7. Initial laboratory evaluation of color video cameras: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.L.

    1993-07-01

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. The monochrome cameras were selected over color cameras because they have greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color camera technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories has established an on-going program to evaluate the newest color solid-state cameras. Phase One of the Sandia program resulted in the SAND91-2579/1 report titled: Initial Laboratory Evaluation of Color Video Cameras. The report briefly discusses imager chips, color cameras, and monitors, describes the camera selection, details traditional test parameters and procedures, and gives the results reached by evaluating 12 cameras. Here, in Phase Two of the report, we tested 6 additional cameras using traditional methods. In addition, all 18 cameras were tested by newly developed methods. This Phase 2 report details those newly developed test parameters and procedures, and evaluates the results.

  8. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  9. The Functional Genomics Initiative at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  10. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  11. Quantitative analysis for in situ sintering of 3% yttria-stablized zirconia in the transmission electron microscope

    International Nuclear Information System (INIS)

    Majidi, Hasti; Holland, Troy B.; Benthem, Klaus van

    2015-01-01

    Studying particle-agglomerate systems compared to two-particle systems elucidates different stages of sintering by monitoring both pores and particles. We report on in situ sintering of 3% yttria-stablized zirconia particle agglomerates in the transmission electron microscope (TEM). Real-time TEM observations indicate neck formation and growth, particle coalescence and pore closure. A MATLAB-based image processing tool was developed to calculate the projected area of the agglomerate with and without internal pores during in situ sintering. We demonstrate the first densification curves generated from sequentially acquired TEM images. The in situ sintering onset temperature was then determined to be at 960 °C. Densification curves illustrated that the agglomerate projected area which excludes the internal observed pores also shrinks during in situ sintering. To overcome the common projection problem for TEM analyses, agglomerate mass-thickness maps were obtained from low energy-loss analysis combined with STEM imaging. The decrease in the projected area was directly related to the increase in mass-thickness of the agglomerate, likely caused by hidden pores existing in the direction of the beam. Access to shrinkage curves through in situ TEM analysis provides a new avenue to investigate fundamental mechanisms of sintering through directly correlating microstructural changes during consolidation with mesoscale densification behavior

  12. Quantitative analysis for in situ sintering of 3% yttria-stablized zirconia in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Hasti [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Holland, Troy B. [Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523 (United States); Benthem, Klaus van, E-mail: benthem@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2015-05-15

    Studying particle-agglomerate systems compared to two-particle systems elucidates different stages of sintering by monitoring both pores and particles. We report on in situ sintering of 3% yttria-stablized zirconia particle agglomerates in the transmission electron microscope (TEM). Real-time TEM observations indicate neck formation and growth, particle coalescence and pore closure. A MATLAB-based image processing tool was developed to calculate the projected area of the agglomerate with and without internal pores during in situ sintering. We demonstrate the first densification curves generated from sequentially acquired TEM images. The in situ sintering onset temperature was then determined to be at 960 °C. Densification curves illustrated that the agglomerate projected area which excludes the internal observed pores also shrinks during in situ sintering. To overcome the common projection problem for TEM analyses, agglomerate mass-thickness maps were obtained from low energy-loss analysis combined with STEM imaging. The decrease in the projected area was directly related to the increase in mass-thickness of the agglomerate, likely caused by hidden pores existing in the direction of the beam. Access to shrinkage curves through in situ TEM analysis provides a new avenue to investigate fundamental mechanisms of sintering through directly correlating microstructural changes during consolidation with mesoscale densification behavior.

  13. Quantitative analysis for in situ sintering of 3% yttria-stablized zirconia in the transmission electron microscope.

    Science.gov (United States)

    Majidi, Hasti; Holland, Troy B; van Benthem, Klaus

    2015-05-01

    Studying particle-agglomerate systems compared to two-particle systems elucidates different stages of sintering by monitoring both pores and particles. We report on in situ sintering of 3% yttria-stablized zirconia particle agglomerates in the transmission electron microscope (TEM). Real-time TEM observations indicate neck formation and growth, particle coalescence and pore closure. A MATLAB-based image processing tool was developed to calculate the projected area of the agglomerate with and without internal pores during in situ sintering. We demonstrate the first densification curves generated from sequentially acquired TEM images. The in situ sintering onset temperature was then determined to be at 960 °C. Densification curves illustrated that the agglomerate projected area which excludes the internal observed pores also shrinks during in situ sintering. To overcome the common projection problem for TEM analyses, agglomerate mass-thickness maps were obtained from low energy-loss analysis combined with STEM imaging. The decrease in the projected area was directly related to the increase in mass-thickness of the agglomerate, likely caused by hidden pores existing in the direction of the beam. Access to shrinkage curves through in situ TEM analysis provides a new avenue to investigate fundamental mechanisms of sintering through directly correlating microstructural changes during consolidation with mesoscale densification behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Oak Ridge National Laboratory: Sustainable Landscapes Initiative 2020

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Leah [Environmental Landscape Design Associates; Rogers, Sam [Environmental Landscape Design Associates; Sipes, James L. [Sand County Studios

    2012-09-01

    The goal of the ORNL Sustainable Landscapes Initiative 2020 is to provide a framework that guides future environmental resources and sustainable landscape practices on the ORNL campus. This document builds on the 2003 ORNL Conceptual Landscape Plan and is presented in the context of embracing new opportunities.

  15. Mars Science Laboratory: Mission, Landing Site, and Initial Results

    Science.gov (United States)

    Grotzinger, John; Blake, D.; Crisp, J.; Edgett, K.; Gellert, R.; Gomez-Elvira, J.; Hassler, D.; Mahaffy, P.; Malin, M.; Meyer, M.; Mitrofanov, I.; Vasavada, A.; Wiens, R.

    2012-10-01

    Scheduled to land on August 5, 2012, the Mars Science Laboratory rover, Curiosity, will conduct an investigation of modern and ancient environments. Recent mission results will be discussed. Curiosity has a lifetime of at least one Mars year ( 23 months), and drive capability of at least 20 km. The MSL science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere; an x-ray diffractometer that will determine mineralogical diversity; focusable cameras that can image landscapes and rock/regolith textures in natural color; an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry; a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals; an active neutron spectrometer designed to search for water in rocks/regolith; a weather station to measure modern-day environmental variables; and a sensor designed for continuous monitoring of background solar and cosmic radiation. The 155-km diameter Gale Crater was chosen as Curiosity’s field site based on several attributes: an interior mound of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mound show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Gale’s regional context and strong evidence for a progression through multiple potentially habitable environments, represented by a stratigraphic record of extraordinary extent, insure preservation of a rich record of the environmental history of early Mars.

  16. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    Ca(BH4)2 and Mg(BH4)2 in nano-frameworks did not improve their H2 absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

  17. Polio Eradication Initiative (PEI) contribution in strengthening public health laboratories systems in the African region.

    Science.gov (United States)

    Gumede, Nicksy; Coulibaly, Sheick Oumar; Yahaya, Ali Ahmed; Ndihokubwayo, Jean-Bosco; Nsubuga, Peter; Okeibunor, Joseph; Dosseh, Annick; Salla, Mbaye; Mihigo, Richard; Mkanda, Pascal; Byabamazima, Charles

    2016-10-10

    The laboratory has always played a very critical role in diagnosis of the diseases. The success of any disease programme is based on a functional laboratory network. Health laboratory services are an integral component of the health system. Efficiency and effectiveness of both clinical and public health functions including surveillance, diagnosis, prevention, treatment, research and health promotion are influenced by reliable laboratory services. The establishment of the African Regional polio laboratory for the Polio Eradication Initiative (PEI) has contributed in supporting countries in their efforts to strengthen laboratory capacity. On the eve of the closing of the program, we have shown through this article, examples of this contribution in two countries of the African region: Côte d'Ivoire and the Democratic Republic of Congo. Descriptive studies were carried out in Côte d'Ivoire (RCI) and Democratic Republic of Congo (DRC) from October to December 2014. Questionnaires and self-administered and in-depth interviews and group discussions as well as records and observation were used to collect information during laboratory visits and assessments. The PEI financial support allows to maintain the majority of the 14 (DRC) and 12 (RCI) staff involved in the polio laboratory as full or in part time members. Through laboratory technical staff training supported by the PEI, skills and knowledge were gained to reinforce laboratories capacity and performance in quality laboratory functioning, processes and techniques such as cell culture. In the same way, infrastructure was improved and equipment provided. General laboratory quality standards, including the entire laboratory key elements was improved through the PEI accreditation process. The Polio Eradication Initiative (PEI) is a good example of contribution in strengthening public health laboratories systems in the African region. It has established strong Polio Laboratory network that contributed to the

  18. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya; Fujii, Yoshiaki

    2009-01-01

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  19. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  20. Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Crum, Jarrod V.; Buchmiller, William C.; Rieck, Bennett T.; Schweiger, Michael J.; Vienna, John D.

    2009-10-01

    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184.

  1. Initial Public Health Laboratory Response After Hurricane Maria - Puerto Rico, 2017.

    Science.gov (United States)

    Concepción-Acevedo, Jeniffer; Patel, Anita; Luna-Pinto, Carolina; Peña, Rafael González; Cuevas Ruiz, Rosa Ivette; Arbolay, Héctor Rivera; Toro, Mayra; Deseda, Carmen; De Jesus, Victor R; Ribot, Efrain; Gonzalez, Jennifer-Quiñones; Rao, Gouthami; De Leon Salazar, Alfonsina; Ansbro, Marisela; White, Brunilís B; Hardy, Margaret C; Georgi, Joaudimir Castro; Stinnett, Rita; Mercante, Alexandra M; Lowe, David; Martin, Haley; Starks, Angela; Metchock, Beverly; Johnston, Stephanie; Dalton, Tracy; Joglar, Olga; Stafford, Cortney; Youngblood, Monica; Klein, Katherine; Lindstrom, Stephen; Berman, LaShondra; Galloway, Renee; Schafer, Ilana J; Walke, Henry; Stoddard, Robyn; Connelly, Robin; McCaffery, Elaine; Rowlinson, Marie-Claire; Soroka, Stephen; Tranquillo, Darin T; Gaynor, Anne; Mangal, Chris; Wroblewski, Kelly; Muehlenbachs, Atis; Salerno, Reynolds M; Lozier, Matthew; Sunshine, Brittany; Shapiro, Craig; Rose, Dale; Funk, Renee; Pillai, Satish K; O'Neill, Eduardo

    2018-03-23

    Hurricane Maria made landfall in Puerto Rico on September 20, 2017, causing major damage to infrastructure and severely limiting access to potable water, electric power, transportation, and communications. Public services that were affected included operations of the Puerto Rico Department of Health (PRDOH), which provides critical laboratory testing and surveillance for diseases and other health hazards. PRDOH requested assistance from CDC for the restoration of laboratory infrastructure, surveillance capacity, and diagnostic testing for selected priority diseases, including influenza, rabies, leptospirosis, salmonellosis, and tuberculosis. PRDOH, CDC, and the Association of Public Health Laboratories (APHL) collaborated to conduct rapid needs assessments and, with assistance from the CDC Foundation, implement a temporary transport system for shipping samples from Puerto Rico to the continental United States for surveillance and diagnostic and confirmatory testing. This report describes the initial laboratory emergency response and engagement efforts among federal, state, and nongovernmental partners to reestablish public health laboratory services severely affected by Hurricane Maria. The implementation of a sample transport system allowed Puerto Rico to reinitiate priority infectious disease surveillance and laboratory testing for patient and public health interventions, while awaiting the rebuilding and reinstatement of PRDOH laboratory services.

  2. Laboratory information management system for membrane protein structure initiative--from gene to crystal.

    Science.gov (United States)

    Troshin, Petr V; Morris, Chris; Prince, Stephen M; Papiz, Miroslav Z

    2008-12-01

    Membrane Protein Structure Initiative (MPSI) exploits laboratory competencies to work collaboratively and distribute work among the different sites. This is possible as protein structure determination requires a series of steps, starting with target selection, through cloning, expression, purification, crystallization and finally structure determination. Distributed sites create a unique set of challenges for integrating and passing on information on the progress of targets. This role is played by the Protein Information Management System (PIMS), which is a laboratory information management system (LIMS), serving as a hub for MPSI, allowing collaborative structural proteomics to be carried out in a distributed fashion. It holds key information on the progress of cloning, expression, purification and crystallization of proteins. PIMS is employed to track the status of protein targets and to manage constructs, primers, experiments, protocols, sample locations and their detailed histories: thus playing a key role in MPSI data exchange. It also serves as the centre of a federation of interoperable information resources such as local laboratory information systems and international archival resources, like PDB or NCBI. During the challenging task of PIMS integration, within the MPSI, we discovered a number of prerequisites for successful PIMS integration. In this article we share our experiences and provide invaluable insights into the process of LIMS adaptation. This information should be of interest to partners who are thinking about using LIMS as a data centre for their collaborative efforts.

  3. Impact of Educational Activities in Reducing Pre-Analytical Laboratory Errors: A quality initiative.

    Science.gov (United States)

    Al-Ghaithi, Hamed; Pathare, Anil; Al-Mamari, Sahimah; Villacrucis, Rodrigo; Fawaz, Naglaa; Alkindi, Salam

    2017-08-01

    Pre-analytic errors during diagnostic laboratory investigations can lead to increased patient morbidity and mortality. This study aimed to ascertain the effect of educational nursing activities on the incidence of pre-analytical errors resulting in non-conforming blood samples. This study was conducted between January 2008 and December 2015. All specimens received at the Haematology Laboratory of the Sultan Qaboos University Hospital, Muscat, Oman, during this period were prospectively collected and analysed. Similar data from 2007 were collected retrospectively and used as a baseline for comparison. Non-conforming samples were defined as either clotted samples, haemolysed samples, use of the wrong anticoagulant, insufficient quantities of blood collected, incorrect/lack of labelling on a sample or lack of delivery of a sample in spite of a sample request. From 2008 onwards, multiple educational training activities directed at the hospital nursing staff and nursing students primarily responsible for blood collection were implemented on a regular basis. After initiating corrective measures in 2008, a progressive reduction in the percentage of non-conforming samples was observed from 2009 onwards. Despite a 127.84% increase in the total number of specimens received, there was a significant reduction in non-conforming samples from 0.29% in 2007 to 0.07% in 2015, resulting in an improvement of 75.86% ( P educational activities directed primarily towards hospital nursing staff had a positive impact on the quality of laboratory specimens by significantly reducing pre-analytical errors.

  4. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    International Nuclear Information System (INIS)

    Santi, Peter A.; Demuth, Scott F.; Klasky, Kristen L.; Lee, Haeok; Miller, Michael C.; Sprinkle, James K.; Tobin, Stephen J.; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  5. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  6. Operational Efficiency and Productivity Improvement Initiatives in a Large Cardiac Catheterization Laboratory.

    Science.gov (United States)

    Reed, Grant W; Hantz, Scott; Cunningham, Rebecca; Krishnaswamy, Amar; Ellis, Stephen G; Khot, Umesh; Rak, Joe; Kapadia, Samir R

    2018-02-26

    This study sought to report outcomes from an efficiency improvement project in a large cardiac cath lab. Operational inefficiencies are common in the cath lab, yet solutions are challenging. A detailed report describing and providing solutions for these inefficiencies may be valuable in guiding improvements in productivity. In this observational study, the authors report metrics of efficiency before and after a cath lab quality improvement program in June 2014. Main outcomes included lab room start times, room turnaround times, laboratory use, and employee satisfaction. Time series analysis was used to assess trend over time. Chi-square testing and analysis of variance were used to assess change before and after the initiative. The principal changes included implementation of a pyramidal nursing schedule, increased use of an electronic scheduling system, and increased utilization of a preparation and recovery area. Comparing before with after the program, start times improved an average of 17 min, and on-time starts improved from 61.8% to 81.7% (p = 0.0024). Turnaround times improved from 20.5 min to 16.4 min (trend p productivity. This knowledge may be helpful in assisting other cath labs in similar efficiency improvement initiatives. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery

    International Nuclear Information System (INIS)

    Bray, L.A.; Carson, K.J.; Elovich, R.J.

    1993-10-01

    Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A ampersand M. This report summarizes preliminary results for the measurement of batch distribution coefficient (K d ) values for the powdered CST materials compared to previously tested ion exchange materials: IONSIV IE-96 (a zeolite produced by UOP), CS-100 (an organic resin produced by Rohm and Haas), and BIB-DJ (a new resorcinol-formaldehyde organic resin produced by Boulder Scientific). Excellent results were obtained for CST inorganic exchangers that could be significant in the development of processes for the near-term pretreatment of Hanford alkaline wastes. The following observations and conclusions resulted from this study: (1) Several CST samples prepared at SNL had a higher capacity to remove Cs from solution as compared to BIB-DJ, IE-96, and CS-100. (2) Cesium distribution results showed that CST samples TAM-40, -42, -43, -70, and -74 had λ values of ∼2,200 (λ = Cs K d x ρ b ; where λ represents the number of exchanger bed volumes of feed that can be loaded on an ion exchange column) at a pH value >14. (3) Cesium distribution values for CST exchangers doubled as the aqueous temperature decreased from 40 degrees to 10 degrees C. (4) Crystalline silico-titanates have the capacity to remove Cs as well as Sr and Pu from alkaline wastes unless organic complexants are present. Experimental results indicated that complexed Sr was not removed, and Pu is not expected to be removed

  8. Initial experimental results from the Laboratory Biosphere closed ecological system facility.

    Science.gov (United States)

    Nelson, M; Dempster, W F; Alling, A; Allen, J P; Rasmussen, R; Silverstone, S; Van Thillo, M

    2003-01-01

    An initial experiment in the Laboratory Biosphere facility, Santa Fe, New Mexico, was conducted May-August 2002 using a soil-based system with light levels (at 12 h per day) of 58-mol m-2 d-1. The crop tested was soybean, cultivar Hoyt, which produced an aboveground biomass of 2510 grams. Dynamics of a number of trace gases showed that methane, nitrous oxide, carbon monoxide, and hydrogen gas had initial increases that were substantially reduced in concentration by the end of the experiment. Methane was reduced from 209 ppm to 11 ppm, and nitrous oxide from 5 ppm to 1.4 ppm in the last 40 days of the closure experiment. Ethylene was at elevated levels compared to ambient during the flowering/fruiting phase of the crop. Soil respiration from the 5.37 m2 (1.46 m3) soil component was estimated at 23.4 ppm h-1 or 1.28 g CO2 h-1 or 5.7 g CO2 m-2 d-1. Phytorespiration peaked near the time of fruiting at about 160 ppm h-1. At the height of plant growth, photosynthesis CO2 draw down was as high as 3950 ppm d-1, and averaged 265 ppm h-1 (whole day averages) during lighted hours with a range of 156-390 ppm h-1. During this period, the chamber required injections of CO2 to continue plant growth. Oxygen levels rose along with the injections of carbon dioxide. Upon several occasions, CO2 was allowed to be drawn down to severely limiting levels, bottoming at around 150 ppm. A strong positive correlation (about 0.05 ppm h-1 ppm-1 with r2 about 0.9 for the range 1000-5000 ppm) was observed between atmospheric CO2 concentration and the rate of fixation up to concentrations of around 8800 ppm CO2. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  9. The translated conceptual survey of physics / stablization of the focal plane in two photon excitation fluorescence microscopy

    Science.gov (United States)

    Wada, Asma

    As a reflection of my career to be an effective college physics teacher, my thesis is in two parts. The first is in education research, the focus of this part is to have a tool to evaluate pedagogies I have learned at the school and plan to apply in my classrooms back home. Consequently, this resulted in the development of the translated conceptual survey of physics ( TCSP). (TCSP) was designed by combining some questions from the Force Conceptual Inventory (FCI), and the Conceptual Survey of Electricity and Magnetism (CSEM) to assess student's understanding of basic concepts of Newtonian mechanics and electricity and magnetism in introductory physics. The idea of developing this questionnaire is to use it in classrooms back home as a part of a long term objective to implement what has been realized in the area of education research to improve the quality of teaching physics there. The survey was initially written in English, validated with interviews with native English speakers, translated into Arabic, and then validated via an interview with a native Arabic speaker. We then administered the survey to two different English-speaking intro physics courses and analyzed the results for consistency. The objective of the second part in my thesis is to expand my knowledge in an area of physics that I have interest in, and getting involved in a scientific research to develop skills I need as a teacher. My research is in optical physics, in particular, I am working on one of the challenges in implementing two photon excitation luorescence (TPEF) microscopy in imaging living systems. (TPEF) microscopy has been shown to be an invaluable tool for investigating biological structure and function in living organisms. The utility of (TPEF) imaging for this application arises from several important factors including it's ability to image deep within tissue, and to do so without harming the organism. Both of these advantages arise from the fact that (TPEF) imaging is done with

  10. 78 FR 14100 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-03-04

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... Laboratory Services, a Division of LabOne, Inc.,) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul...

  11. 77 FR 39501 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-07-03

    ...-202-2783, (Formerly: Forensic Toxicology Laboratory Baptist Medical Center) Clinical Reference Lab... Minneapolis Veterans Affairs Medical Center, Forensic Toxicology Laboratory, 1 Veterans Drive, Minneapolis, MN... 65203, 573-882-1273 U.S. Army Forensic Toxicology Drug Testing Laboratory, 2490 Wilson St., Fort George...

  12. New International Initiatives on Enhancement of Biosafety and Biosecurity Regulations for Laboratories Handling Infectious Agents

    International Nuclear Information System (INIS)

    Netesov, S. V.; Drozdov, I. G.

    2007-01-01

    Before we entered the era of antibiotics, development of antiseptics rules and reliable water purification systems the infectious pathogens had played a major role in morbidity and mortality of global human population. The advances in revealing the nature of dangerous infections and studying their causative agents during the recent years have led not only to big progress in their control but also to the study of their potential as weapons. During the last fifty years, several attempts have been made to use them for criminal or terrorist purposes that demonstrated that even primitively organized terrorist attacks may lead to quite significant consequences. The October 2001 events showed that bioterrorism attacks may be prepared, probably, as a result of theft of the pathogen from a lab. All this led to the revision and radical improvement of current national rules and international recommendations in the field of handling, storage and transportation of infectious agents. As a result, during the past two years these rules have been significantly revised by both the World Health Organization and some countries. However, their harmonization of is still far from what is desired. Therefore, biosafety professionals in some countries, including those of the European Union, are establishing professional biosafety associations. In addition, new initiatives are being proposed to develop internationally harmonized biosecurity rules to govern dangerous pathogens handling and storage. The most important of them are as follows: 1. Development, under the auspices of WHO, of new recommendations concerning a set of requirements to provide physical security of both biological agents and laboratories involved in research on extremely hazardous infections; 2. Enhacement, under the auspices of WHO, of current international recommendations on inventory procedures and regulations, inventory monitoring, and transportation of specimens and strains of extremely hazardous infections; 3

  13. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a spacelab mission payload

    Science.gov (United States)

    1976-01-01

    The Atmospheric Cloud Physics Laboratory (ACPL) task flow is shown. Current progress is identified. The requirements generated in task 1 have been used to formulate an initial ACPL baseline design concept. ACPL design/functional features are illustrated. A timetable is presented of the routines for ACPL integration with the spacelab system.

  14. 76 FR 40924 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-07-12

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857...., NOVAMANN (Ontario), Inc.). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636...

  15. 76 FR 75889 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-12-05

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... (Ontario), Inc.). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, (651) 636-7466/(800...

  16. 76 FR 18770 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-04-05

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy...

  17. 76 FR 54477 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-09-01

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857..., St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy Laboratory Services, 1225 NE 2nd Ave...

  18. 77 FR 12862 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-03-02

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy...

  19. 78 FR 7795 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-02-04

    ...: Mrs. Giselle Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road... W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244 MetroLab-Legacy Laboratory Services...

  20. 76 FR 31969 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-06-02

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857...., NOVAMANN (Ontario), Inc.). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636...

  1. 77 FR 69642 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-11-20

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... (Ontario), Inc.) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832...

  2. 77 FR 71605 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-12-03

    ... Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville... Analytics Inc., NOVAMANN (Ontario), Inc.) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN...

  3. 77 FR 45645 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-08-01

    ... Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville... Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy...

  4. 77 FR 126 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-01-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857....). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, (651) 636-7466/(800) 832-3244...

  5. 76 FR 24501 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-05-02

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... (Ontario), Inc.) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832...

  6. 78 FR 314 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-01-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244 MetroLab-Legacy Laboratory Services...

  7. 76 FR 161 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-01-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... certification maintenance program. MedTox Laboratories, Inc., 402 W. County Road D,St. Paul, MN 55112. 651-636...

  8. 78 FR 54903 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-09-06

    ... INFORMATION CONTACT: Giselle Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 7-1051, One Choke Cherry..., Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy Laboratory...

  9. 77 FR 26022 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-05-02

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857...., NOVAMANN (Ontario), Inc.). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636...

  10. 78 FR 66034 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-11-04

    ... INFORMATION CONTACT: Giselle Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 7-1051, One Choke Cherry... W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244 MetroLab-Legacy Laboratory Services...

  11. 76 FR 61110 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-10-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857.... Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy Laboratory Services, 1225 NE 2nd Ave...

  12. 78 FR 25461 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-05-01

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857.... County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy Laboratory Services, 1225...

  13. 76 FR 6147 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-02-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857....) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112. 651-636-7466/800-832-3244. Metro...

  14. 76 FR 11802 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-03-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244; MetroLab-Legacy...

  15. 77 FR 5037 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-02-01

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857...., NOVAMANN (Ontario), Inc.); MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636...

  16. 78 FR 33429 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-06-04

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857....). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. Metro...

  17. 78 FR 19500 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-04-01

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244 MetroLab-Legacy Laboratory Services...

  18. 75 FR 67749 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2010-11-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy...

  19. 76 FR 46309 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2011-08-02

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... (Ontario), Inc.) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832...

  20. 78 FR 72684 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-12-03

    ... INFORMATION CONTACT: Giselle Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 7-1051, One Choke Cherry..., a Division of LabOne, Inc.) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651...

  1. 77 FR 32653 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-06-01

    ... Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville... Analytics Inc., NOVAMANN (Ontario), Inc.). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN...

  2. 78 FR 59946 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-09-30

    ... INFORMATION CONTACT: Giselle Hersh, Division of Workplace Programs, SAMHSA/CSAP, Room 7-1051, One Choke Cherry....). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. Metro...

  3. 77 FR 60449 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-10-03

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857... Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244. MetroLab-Legacy...

  4. 77 FR 20832 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-04-06

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857...., NOVAMANN (Ontario), Inc.). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636...

  5. 77 FR 54597 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2012-09-05

    ..., Division of Workplace Programs, SAMHSA/CSAP, Room 2-1042, One Choke Cherry Road, Rockville, Maryland 20857...., NOVAMANN (Ontario), Inc.). MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636...

  6. Teaching Protein Purification and Characterization Techniques: A Student-Initiated, Project-Oriented Biochemistry Laboratory Course

    Science.gov (United States)

    MacDonald, Gina

    2008-01-01

    This report describes a biochemistry laboratory that is completely project-oriented. Upper-level biology and chemistry majors work in teams to purify a protein of their choice. After the student groups have completed literature searches, ordered reagents, and made buffers they continue to learn basic protein purification and biochemical techniques…

  7. 78 FR 39757 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-07-02

    ..., Room 7-1051, One Choke Cherry Road, Rockville, Maryland 20857; 240-276-2600 (voice), 240-276-2610 (fax... W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244 MetroLab-Legacy Laboratory Services...

  8. 78 FR 46996 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-08-02

    ..., Room 7-1051, One Choke Cherry Road, Rockville, Maryland 20857; 240-276-2600 (voice), 240-276-2610 (fax....) MedTox Laboratories, Inc., 402 W. County Road D, St. Paul, MN 55112, 651-636-7466/800-832-3244 Metro...

  9. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  10. Laboratory findings in neurosyphilis patients with epileptic seizures alone as the initial presenting symptom.

    Science.gov (United States)

    Tong, Man-Li; Liu, Li-Li; Zeng, Yan-Li; Zhang, Hui-Lin; Liu, Gui-Li; Zheng, Wei-Hong; Dong, Jie; Wu, Jing-Yi; Su, Yuan-Hui; Lin, Li-Rong; Yang, Tian-Ci

    2013-04-01

    A retrospective chart review was performed to characterize the clinical presentation, the characteristic combination of serologic and cerebrospinal fluid (CSF) abnormalities, and the neuroimaging findings of neurosyphilis (NS) patients who had epileptic seizures alone as an initial presenting symptom. In a 6.75-year period, 169 inpatients with NS were identified at Zhongshan Hospital (from June 2005 to February 2012). We demonstrated that 13 (7.7%) of the 169 NS patients had epileptic seizures alone as an initial presenting feature. Epileptic seizures occurred in NS patients with syphilitic meningitis (2 cases), meningovascular NS (5 cases), and general paresis (6 cases). The types of epileptic seizures included simple partial, complex partial with secondary generalization (including status epilepticus), and generalized seizures (no focal onset reported). Nine of NS patients with only epileptic seizures as primary symptom were misdiagnosed, and the original misdiagnosis was 69.23% (9/13). Ten (10/13, 76.9%) patients had an abnormal magnetic resonance imaging, and 7 (7/13 53.8%) patients had abnormal electroencephalogram recordings. In addition, the sera rapid plasma reagin (RPR) and Treponema pallidum particle agglutination (TPPA) from all 13 patients were positive. The overall positive rates of the CSF-RPR and CSF-TPPA were 61.5% and 69.2%, respectively. Three patients demonstrated CSF pleocytosis, and 9 patients exhibited elevated CSF protein levels. Therefore, NS with only epileptic seizures at the initial presentation exhibits a lack of specificity. It is recommended that every patient with clinically evident symptoms of epileptic seizures should have a blood test performed for syphilis. When the serology results are positive, all of the patients should undergo a CSF examination to diagnose NS. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Hematologic, hepatic, renal, and lipid laboratory monitoring after initiation of combination antiretroviral therapy in the United States, 2000-2010.

    Science.gov (United States)

    Yanik, Elizabeth L; Napravnik, Sonia; Ryscavage, Patrick; Eron, Joseph J; Koletar, Susan L; Moore, Richard D; Zinski, Anne; Cole, Stephen R; Hunt, Peter; Crane, Heidi M; Kahn, James; Mathews, William C; Mayer, Kenneth H; Taiwo, Babafemi O

    2013-06-01

    We assessed laboratory monitoring after combination antiretroviral therapy initiation among 3678 patients in a large US multisite clinical cohort, censoring participants at last clinic visit, combination antiretroviral therapy change, or 3 years. Median days (interquartile range) to first hematologic, hepatic, renal, and lipid tests were 30 (18-53), 31 (19-56), 33 (20-59), and 350 (96-1106), respectively. At 1 year, approximately 80% received more than 2 hematologic, hepatic, and renal tests consistent with guidelines. However, only 40% received 1 or more lipid tests. Monitoring was more frequent in specific subgroups, likely reflecting better clinic attendance or clinician perception of higher susceptibility to toxicities.

  12. Crystal habit modification of nickel-ferrite: development and results of initial laboratory testing

    International Nuclear Information System (INIS)

    Anderson, C.E.; Varrin, R.D.; Marks, C.; Barkatt, A.; Kim, K.; Fruzzetti, K.P.

    2010-01-01

    This paper documents the results of a laboratory test program conducted to assess the feasibility of using a new type of additive in the primary coolant of pressurized water reactors (PWRs) or to boiling water reactor (BWR) coolant. These additives, known as crystal habit modifiers (CHMs), could potentially be used to control the crystal habits, or shapes, that comprise primary deposits and crud. Similar additives are used throughout the chemical process industry to produce products with desirable crystalline structure, morphology, density, particle size, or surface area. Based on the successes of CHM technologies in other industries, CHMs may have the potential to alleviate problems associated with deposits in nuclear plants including axial offset anomaly (AOA). By controlling the habit of deposit materials, it may be possible to retard deposit formation, produce deposits with desirable properties (e.g., high friability, low or high porosity), or promote a preferred chemical composition or deposit structure that is more amenable to removal. Desirable properties that could be selected for include enhanced boiling efficiency, reduced surface affinity for boron, and resistance to consolidation. The results of this project demonstrate that crystal habit modification of nickel ferrite, a typical primary side deposit species, can be achieved by the addition of both inorganic and organic chemical species (CHMs). The most significant habit modification of nickel ferrite was observed with the addition of metal species (e.g., Zn, Cr) due to their incorporation into the crystal lattice of the oxide. Lesser degrees of modification were achieved with organic additives such as acetate. Specific CHM candidates that may have a beneficial effect on PWR operation are identified in this paper. In addition, this paper summarizes the refinement of several methods for synthesizing nickel ferrites under hydrothermal conditions that may benefit those interested in studying crud and

  13. Crystal habit modification of nickel-ferrite: development and results of initial laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.E.; Varrin, R.D.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Barkatt, A. [The Catholic Univ. of America, Dept. of Chemistry, Washington, District of Columbia (United States); Kim, K.; Fruzzetti, K.P. [Electric Power Research Inst., Palo Alto, California (United States)

    2010-07-01

    This paper documents the results of a laboratory test program conducted to assess the feasibility of using a new type of additive in the primary coolant of pressurized water reactors (PWRs) or to boiling water reactor (BWR) coolant. These additives, known as crystal habit modifiers (CHMs), could potentially be used to control the crystal habits, or shapes, that comprise primary deposits and crud. Similar additives are used throughout the chemical process industry to produce products with desirable crystalline structure, morphology, density, particle size, or surface area. Based on the successes of CHM technologies in other industries, CHMs may have the potential to alleviate problems associated with deposits in nuclear plants including axial offset anomaly (AOA). By controlling the habit of deposit materials, it may be possible to retard deposit formation, produce deposits with desirable properties (e.g., high friability, low or high porosity), or promote a preferred chemical composition or deposit structure that is more amenable to removal. Desirable properties that could be selected for include enhanced boiling efficiency, reduced surface affinity for boron, and resistance to consolidation. The results of this project demonstrate that crystal habit modification of nickel ferrite, a typical primary side deposit species, can be achieved by the addition of both inorganic and organic chemical species (CHMs). The most significant habit modification of nickel ferrite was observed with the addition of metal species (e.g., Zn, Cr) due to their incorporation into the crystal lattice of the oxide. Lesser degrees of modification were achieved with organic additives such as acetate. Specific CHM candidates that may have a beneficial effect on PWR operation are identified in this paper. In addition, this paper summarizes the refinement of several methods for synthesizing nickel ferrites under hydrothermal conditions that may benefit those interested in studying crud and

  14. Identification of novel psychoactive drug use in Sweden based on laboratory analysis--initial experiences from the STRIDA project.

    Science.gov (United States)

    Helander, Anders; Beck, Olof; Hägerkvist, Robert; Hultén, Peter

    2013-08-01

    The study aimed to collect information concerning the increasing use of new psychoactive substances, commonly sold through online shops as 'Internet drugs' or 'legal highs', or in terms of masked products such as 'bath salts' and 'plant food'. The Karolinska Institutet and Karolinska University Laboratory and the Swedish Poisons Information Centre have initiated a project called 'STRIDA' aiming to monitor the occurrence and trends of new psychoactive substances in Sweden, and collect information about their clinical symptoms, toxicity and associated health risks. A liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-component method has been developed, currently allowing for the determination of > 80 novel psychoactive compounds or metabolites thereof. This study focused mainly on the particular drug substances identified and the population demographics of the initial STRIDA cases. In urine and/or blood samples obtained from 103 consecutive cases of admitted or suspected recreational drug intoxications in mostly young subjects (78% were ≤ 25 years, and 81% were males) presenting at emergency departments all over the country, psychoactive substances were detected in 82%. The substances comprised synthetic cannabinoids ('Spice'; JWH analogues), substituted cathinones ('bath salts'; e.g. butylone, MDPV and methylone) and tryptamines (4-HO-MET), plant-based substances (mitragynine and psilocin), as well as conventional drugs-of-abuse. In 44% of the cases, more than one new psychoactive substance, or a mixture of new and/or conventional drugs were detected. The initial results of the STRIDA project have documented use of a broad variety of new psychoactive substances among mainly young people all over Sweden.

  15. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Final review (DR-MA-03)

    Science.gov (United States)

    Clausen, O. W.

    1976-01-01

    Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.

  16. Representing Value as Digital Object: A Discussion of Transferability and Anonymity; Digital Library Initiatives of the Deutsche Forschungsgemeinschaft; CrossRef Turns One; Fermi National Accelerator Laboratory (Fermilab).

    Science.gov (United States)

    Kahn, Robert E.; Lyons, Patrice A.; Brahms, Ewald; Brand, Amy; van den Bergen, Mieke

    2001-01-01

    Includes four articles that discuss the use of digital objects to represent value in a network environment; digital library initiatives at the central public funding organization for academic research in Germany; an application of the Digital Object Identifier System; and the Web site of the Fermi National Accelerator Laboratory. (LRW)

  17. A training course on laboratory animal science: an initiative to implement the Three Rs of animal research in India.

    Science.gov (United States)

    Pratap, Kunal; Singh, Vijay Pal

    2016-03-01

    There is a current need for a change in the attitudes of researchers toward the care and use of experimental animals in India. This could be achieved through improvements in the provision of training, to further the integration of the Three Rs concept into scientific research and into the regulations of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA). A survey was performed after participants undertook the Federation of European Laboratory Animal Science Associations (FELASA) Category C-based course on Laboratory Animal Science (in 2013 and 2015). It revealed that the participants subsequently employed, in their future research, the practical and theoretical Three Rs approaches that they had learned. This is of great importance in terms of animal welfare, and also serves to benefit their research outcomes extensively. All the lectures, hands-on practical sessions and supplementary elements of the courses, which also involved the handling of small animals and procedures with live animals, were well appreciated by the participants. Insight into developments in practical handling and welfare procedures, norms, directives, and ethical use of laboratory animals in research, was also provided, through the comparison of results from the 2013 and 2015 post-course surveys. 2016 FRAME.

  18. Large-Scale Laboratory Experiments of Initiation of Motion and Burial of Objects under Currents and Waves

    Science.gov (United States)

    Landry, B. J.; Wu, H.; Wenzel, S. P.; Gates, S. J.; Fytanidis, D. K.; Garcia, M. H.

    2017-12-01

    Unexploded ordnances (UXOs) can be found at the bottom of coastal areas as the residue of military wartime activities, training or accidents. These underwater objects are hazards for humans and the coastal environment increasing the need for addressing the knowledge gaps regarding the initiation of motion, fate and transport of UXOs under currents and wave conditions. Extensive experimental analysis was conducted for the initiation of motion of UXOs under various rigid bed roughness conditions (smooth PVC, pitted steel, marbles, gravels and bed of spherical particles) for both unidirectional and oscillatory flows. Particle image velocimetry measurements were conducted under both flow conditions to resolve the flow structure estimate the critical flow conditions for initiation of motion of UXOs. Analysis of the experimental observations shows that the geometrical characteristics of the UXOs, their properties (i.e. volume, mass) and their orientation with respect to the mean flow play an important role on the reorientation and mobility of the examined objects. A novel unified initiation of motion diagram is proposed using an effective/unified hydrodynamic roughness and a new length scale which includes the effect of the projected area and the bed-UXO contact area. Both unidirectional and oscillatory critical flow conditions collapsed into a single dimensionless diagram highlighting the importance and practical applicability of the proposed work. In addition to the rigid bed experiments, the burial dynamics of proud UXOs on a mobile sand bed were also examined. The complex flow-bedform-UXOs interactions were evaluated which highlighted the effect of munition density on burial rate and final burial depth. Burial dynamics and mechanisms for motion were examined for various UXOs types, and results show that, for the case of the low density UXOs under energetic conditions, lateral transport coexists with burial. Prior to burial, UXO re-orientation was also observed

  19. Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez y Silva, F.; Guijarro, M.; Madrigal, J.; Jiménez, E.; Molina, J.R.; Hernando, C.; Vélez, R.; Vega, J.A.

    2017-11-01

    Aims of study: To conduct the first full-scale crown fire experiment carried out in a Mediterranean conifer stand in Spain; to use different data sources to assess crown fire initiation and spread models, and to evaluate the role of convection in crown fire initiation. Area of study: The Sierra Morena mountains (Coordinates ETRS89 30N: X: 284793-285038; Y: 4218650-4218766), southern Spain, and the outdoor facilities of the Lourizán Forest Research Centre, northwestern Spain. Material and methods: The full-scale crown fire experiment was conducted in a young Pinus pinea stand. Field data were compared with data predicted using the most used crown fire spread models. A small-scale experiment was developed with Pinus pinaster trees to evaluate the role of convection in crown fire initiation. Mass loss calorimeter tests were conducted with P. pinea needles to estimate residence time of the flame, which was used to validate the crown fire spread model. Main results: The commonly used crown fire models underestimated the crown fire spread rate observed in the full-scale experiment, but the proposed new integrated approach yielded better fits. Without wind-forced convection, tree crowns did not ignite until flames from an intense surface fire contacted tree foliage. Bench-scale tests based on radiation heat flux therefore offer a limited insight to full-scale phenomena. Research highlights: Existing crown fire behaviour models may underestimate the rate of spread of crown fires in many Mediterranean ecosystems. New bench-scale methods based on flame buoyancy and more crown field experiments allowing detailed measurements of fire behaviour are needed.

  20. Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments

    International Nuclear Information System (INIS)

    Rodríguez y Silva, F.; Guijarro, M.; Madrigal, J.; Jiménez, E.; Molina, J.R.; Hernando, C.; Vélez, R.; Vega, J.A.

    2017-01-01

    Aims of study: To conduct the first full-scale crown fire experiment carried out in a Mediterranean conifer stand in Spain; to use different data sources to assess crown fire initiation and spread models, and to evaluate the role of convection in crown fire initiation. Area of study: The Sierra Morena mountains (Coordinates ETRS89 30N: X: 284793-285038; Y: 4218650-4218766), southern Spain, and the outdoor facilities of the Lourizán Forest Research Centre, northwestern Spain. Material and methods: The full-scale crown fire experiment was conducted in a young Pinus pinea stand. Field data were compared with data predicted using the most used crown fire spread models. A small-scale experiment was developed with Pinus pinaster trees to evaluate the role of convection in crown fire initiation. Mass loss calorimeter tests were conducted with P. pinea needles to estimate residence time of the flame, which was used to validate the crown fire spread model. Main results: The commonly used crown fire models underestimated the crown fire spread rate observed in the full-scale experiment, but the proposed new integrated approach yielded better fits. Without wind-forced convection, tree crowns did not ignite until flames from an intense surface fire contacted tree foliage. Bench-scale tests based on radiation heat flux therefore offer a limited insight to full-scale phenomena. Research highlights: Existing crown fire behaviour models may underestimate the rate of spread of crown fires in many Mediterranean ecosystems. New bench-scale methods based on flame buoyancy and more crown field experiments allowing detailed measurements of fire behaviour are needed.

  1. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  2. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    Science.gov (United States)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  3. Initial status of the environment. Environmental marks of the Meuse-Haute Marne underground research laboratory; L'etat initial de l'environnement. Reperes environnementaux du Laboratoire de Recherche souterrain de Meuse/Haute-Marne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    On August 3, 1999, the French government gave the permission to the national agency of radioactive wastes (ANDRA) to build up a research laboratory devoted to the feasibility study of a facility for the reversible disposal of high level and long living radioactive wastes in deep geologic beds. The site retained is located at Bure, at the boundary of the Meuse and Haute-Marne departements. Before starting the construction of this research facility, the ANDRA has carried out a careful survey of the initial environmental status of the site which will serve as a reference. This brochure presents the results of this survey: geo-morphology, agriculture, natural ecosystems, radioecology, sound levels, air quality, surface and groundwater quality. The ANDRA has implemented an environmental monitoring plan for each phase of the development of the project. (J.S.)

  4. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effect of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  5. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency's Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  6. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  7. Phase B-final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL). A spacelab mission payload

    Science.gov (United States)

    1976-01-01

    Progress in the development of the Atmospheric Cloud Physics Laboratory is outlined. The fluid subsystem, aerosol generator, expansion chamber, optical system, control systems, and software are included.

  8. Phase B - final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Work breakdown structure for phase C/D DR-MA-06 (preliminary issue)

    Science.gov (United States)

    1976-01-01

    The Work Breakdown Structure (WBS) and Dictionary (DR-MA-06) for initial and subsequent flights of the Atmospheric Cloud Physics Laboratory (ACPL) is presented. An attempt is made to identify specific equipment and components in each of the eleven subsystems; they are listed under the appropriate subdivisions of the WBS. The reader is cautioned that some of these components are likely to change substantially during the course of the study, and the list provided should only be considered representative.

  9. PTT Advisor: A CDC-supported initiative to develop a mobile clinical laboratory decision support application for the iOS platform.

    Science.gov (United States)

    Savel, Thomas G; Lee, Brian A; Ledbetter, Greg; Brown, Sara; Lavalley, Dale; Taylor, Julie; Thompson, Pam

    2013-01-01

    This manuscript describes the development of PTT (Partial Thromboplastin Time) Advisor, one of the first of a handful of iOS-based mobile applications to be released by the US Centers for Disease Control and Prevention (CDC). PTT Advisor has been a collaboration between two groups at CDC (Informatics R&D and Laboratory Science), and one partner team (Clinical Laboratory Integration into Healthcare Collaborative - CLIHC). The application offers clinicians a resource to quickly select the appropriate follow-up tests to evaluate patients with a prolonged PTT and a normal Prothrombin Time (PT) laboratory result. The application was designed leveraging an agile methodology, and best practices in user experience (UX) design and mobile application development. As it is an open-source project, the code to PTT Advisor was made available to the public under the Apache Software License. On July 6, 2012, the free app was approved by Apple, and was published to their App Store. Regardless of the complexity of the mobile application, the level of effort required in the development process should not be underestimated. There are several issues that make designing the UI for a mobile phone challenging (not just small screen size): the touchscreen, users' mobile mindset (tasks need to be quick and focused), and the fact that mobile UI conventions/expectations are still being defined and refined (due to the maturity level of the field of mobile application development).

  10. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  11. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  12. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  13. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  14. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  15. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  16. Feedbacks stablizing wetland geometry on a pattened landscape

    Science.gov (United States)

    Dong, X.; Heffernan, J. B.; Murray, A. B.

    2017-12-01

    Karst morphology is highly varied across different climatic and geologic regions of the world. Big Cypress National Preserve in SW Florida, features regularly distributed wetland depressions, located on exposed limestone bedrock. In this study, we explored the development of wetland depressions over the past 10kyrs of landscape formation. Specifically, we are interested in (1) whether the wetland depressions on the landscape have reached equilibrium size, and (2) if so, what are feedback mechanisms that contributed to stabilizing these depressions. We hypothesized three stabilizing feedback mechanisms. HYP1: increased size of depressions reduces landscape hydrological connectivity, which resulted in reduced landscape capacity to export dissolution products, hence lower weathering rate. HYP2: expansion of depression area increases tree biomass within the depression, which increased average evapotranspiration (ET) within the dome. The greater difference of ET rate between depression and upland leads to a lower water table in the depression. As a result, more subsurface water, carrying dissolved calcium, flows from catchment to depression. With lower export capacity and more calcium moving into the depression zones, rate of calcite precipitation increases, which lowers net weathering rate. HYP3: increasingly thicker sediment cover in the wetland depression over time decreases chemical transport capacity. This lowers both transport of CO2 from shallower soil to bedrock and transport of dissolution products from bedrock to surface. Both of these processes reduce bedrock-weathering rate. We built a 3-D numerical simulation model that partitioned the relative importance of different mechanisms. Preliminary results show that (1) there is an equilibrium size for wetland depressions for both radius and depth dimension; (2) current depressions are formed by coalescence of several nearby small depressions during development; (3) the soil cover feedback (HYP3) is the major feedback stabilizing depth of depressions, while reduced landscape connectivity (HYP1) and increased local exchange of dissolved calcium caused by differential ET between catchment and depression (HYP2) is the major radius stabilizing feedback.

  17. A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2014-09-01

    Full Text Available The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR of nitrogen oxides (NOX depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  18. A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests.

    Science.gov (United States)

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-09-10

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  19. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-01-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation

  20. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  1. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  2. Surgical Critical Care Initiative

    Data.gov (United States)

    Federal Laboratory Consortium — The Surgical Critical Care Initiative (SC2i) is a USU research program established in October 2013 to develop, translate, and validate biology-driven critical care....

  3. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  4. Laboratory study of electromagnetic initiation of slip

    Directory of Open Access Journals (Sweden)

    V. Chikhladze

    2002-06-01

    Full Text Available Recently Russian seismologists reported the triggering effect of MHD soundings on microseismic activity in the Central Asia test area.The paper focuses on an experimental test of the possibility of triggering the mechanical instability of a system that is close to critical state by a series of electromagnetic pulses.The mechanical system consisted of two pieces of rock;the upper piece can slip on the fixed supporting sample if the latter one is tilted up to the critical angle.In this state,the triggering of mechanical instability by some weak impact such as electrical pulse became more probable.The slope of support in the experiment is an analogue of tectonic stress in natural conditions.The preliminary experiments,carried out in a dry environment,at the humidity of atmosphere 30-50%,show that a strong EM-pulse induces sliding of a sample of rock (granite,basalt,labradoriteplaced on the supporting sample which is inclined at the slope close to,but less than,the critical angle with a probability 0.07.

  5. Characterizing the Laboratory Market

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMates, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratory buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.

  6. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  7. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  8. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  9. Effect of stocking density on growth, survival and development of asp Aspius aspius (L., ide Leuciscus idus (L. and chub Leuciscus cephalus (L. larvae during initial rearing under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Katarzyna Targońska

    2011-07-01

    Full Text Available This study was aimed at determining the effect of stocking density on growth, survival and development of asp Aspius aspius (L., ide Leuciscus idus (L. and chub Leuciscus cephalus (L. larvae, reared under laboratory conditions. Fish larvae were obtained during artificial reproduction. The larvae were fed ad libitum with freshly hatched Artemia sp. nauplii. Eight density variants from 50 to 400 individuals per 1 L (at the interval of 50 individuals L–1 were tested. The initial rearing was carried out for 21 days at 25°C in a recirculation system especially designed for that purpose consisting of 16 tanks with a capacity of 1 L each. The fastest growth rate for all three species, expressed as the greatest average total length, weight and most advanced ontogenetic stage at the end of the experiment was obtained at the lowest stocking density. Fish from other treatments, particularly at densities exceeding 150 individuals L–1, were characterized by similar body sizes and the same ontogenetic stage on the last day of rearing. The recorded differences in the length of larvae among treatments became visible during the first (asp or third (chub, ide week of rearing. No effects of stocking density on larval mortality were found during the experiment.

  10. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  11. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  12. Montlake Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NWFSC conducts critical fisheries science research at its headquarters in Seattle, WA and at five research stations throughout Washington and Oregon. The unique...

  13. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  14. Psychology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides testing stations for computer-based assessment of cognitive and behavioral Warfighter performance. This 500 square foot configurable space can...

  15. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  16. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  17. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  18. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... What are lab tests? Laboratory tests are medical devices that are intended for use on samples of blood, urine, or other tissues ...

  19. Audio Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment and facilities for auditory display research. A primary focus is the performance use of binaurally rendered 3D sound in conjunction...

  20. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  1. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  2. Radioisotope laboratory in Turkey

    International Nuclear Information System (INIS)

    1961-01-01

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies

  3. Radioisotope laboratory in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies.

  4. 78 FR 54643 - Proposed Information Collection Request; Comment Request; Laboratory Quality Assurance Evaluation...

    Science.gov (United States)

    2013-09-05

    ... certification responsibilities for the chemistry and microbiology laboratories that they oversee in their current programs (e.g., initial evaluation of laboratory capability; ongoing assessment of the laboratory...

  5. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  6. Kingsbury Laboratories

    International Nuclear Information System (INIS)

    Hughes, S.B.

    1986-01-01

    The paper concerns the work of the Kingsbury Laboratories of Fairey Engineering Company, for the nuclear industry. The services provided include: monitoring of nuclear graphite machining, specialist welding, non-destructive testing, and metallurgy testing; and all are briefly described. (U.K.)

  7. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  8. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  9. Laboratory investigations

    International Nuclear Information System (INIS)

    Handin, J.

    1980-01-01

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  10. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  11. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  12. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  13. Unilateral initiatives

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This paper reports on arms control which is generally thought of in terms of formal negotiations with an opponent, with the resulting agreements embodied in a treaty. This is not surprising, since arms control discussions between opponents are both important and politically visible. There are, however, strong reasons for countries to consider and frequently take unilateral initiatives. To do so is entirely consistent with the established major precepts of arms control which state that arms control is designed to reduce the risk of war, the costs of preparing for war, and the death and destruction if war should come. Unilateral initiatives on what weapons are purchased, which ones are eliminated and how forces are deployed can all relate to these objectives. There are two main categories of motives for unilateral initiatives in arms control. In one category, internal national objectives are the dominant, often sole, driving force; the initiative is undertaken for our own good

  14. Ports Initiative

    Science.gov (United States)

    EPA's Ports Initiative works in collaboration with the port industry, communities, and government to improve environmental performance and increase economic prosperity. This effort helps people near ports breath cleaner air and live better lives.

  15. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  16. The State Public Health Laboratory System.

    Science.gov (United States)

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  17. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  18. Initial Study

    DEFF Research Database (Denmark)

    Torp, Kristian

    2009-01-01

    increased. In the initial study presented here, the time it takes to pass an intersection is studied in details. Two major signal-controlled four-way intersections in the center of the city Aalborg are studied in details to estimate the congestion levels in these intersections, based on the time it takes...

  19. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  20. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  1. Nanotechnology Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  2. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  3. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  4. Laboratory microfusion capability study

    International Nuclear Information System (INIS)

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report

  5. Exploration Laboratory Analysis

    Science.gov (United States)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  6. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  7. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 3nd QUARTER 2009 MILESTONE REPORT: Upgrade plasma source configuration and carry out initial experiments. Characterize improvements in focal spot beam intensity

    International Nuclear Information System (INIS)

    Lidia, S.; Anders, A.; Barnard, J.J.; Bieniosek, F.M.; Dorf, M.; Faltens, A.; Friedman, A.; Gilson, E.; Greenway, W.; Grote, D.; Jung, J.Y.; Katayanagi, T.; Logan, B.G.; Lee, C.W.; Leitner, M.; Ni, P.; Pekedis, A.; Regis, M. J.; Roy, P. K.; Seidl, P. A.; Waldron, W.

    2009-01-01

    Simulations suggest that the plasma density must exceed the beam density throughout the drift compression and focusing section in order to inhibit the space charge forces that would limit the spot size and beam intensity on the target. WDM experiments will therefore require plasma densities up to 10 14 /cm 3 , with the highest density in the last few centimeters before the target. This work was guided by the simulations performed for the FY09 Q1 milestone. This milestone has been met and we report results of modifications made to the NDCX beamline to improve the longitudinal and radial distribution of the neutralizing plasma in the region near the target plane. In Section 2, we review pertinent simulation results from the FY09 Q1 milestone. Section 3 describes the design, and beam measurements following installation, of a biased, self-supporting metal grid that produces neutralizing electrons from glancing interception of beam ions. Section 4 describes the design and initial testing of a compact Ferro-Electric Plasma Source (FEPS) that will remove the remaining 'exclusion zone' in the neutralizing plasma close to the target plane. Section 5 describes the modification of the beamline to decrease the gap between the FEPS section exit and the final focus solenoid (FFS). Section 6 presents a summary and conclusions.

  8. Development of the Global Measles Laboratory Network.

    Science.gov (United States)

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  9. Laboratory accreditation in developing economies

    International Nuclear Information System (INIS)

    Loesener, O.

    2004-01-01

    Full text: Accreditation of laboratories has been practiced for well over one hundred years with the primary objective of seeking a formal recognition for the competence of a laboratory to perform specified tests or measurements. While first accreditation schemes intended initially to serve only the immediate needs of the body making the evaluation with the purpose of minimizing testing and inspection to be conducted by laboratories, third-party accreditation enables a laboratory to demonstrate its capability as well as availability of all necessary resources to undertake particular tests correctly and that is managed in such a way that it is likely to do this consistently, taking into consideration standards developed by national and international standards-setting bodies. The international standard ISO/IEC 17025 and laboratory accreditation are concerned with competence and quality management of laboratories only, thus requiring a single common set of criteria applicable to them. Quality assurance is therefore fully relevant to laboratories in general and analytical laboratories in particular; it should not be confused with the certification approach according to ISO/IEC 9000 family of standards, that is concerned with quality management applicable to any organization as a whole. The role of laboratory accreditation can be manifold, but in all cases the recipient of the test report needs to have confidence that the data in it is reliable, particularly if the test data is important in a decision-making process. As such, it offers a comprehensive way to ensure: - the availability of managerial and technical staff with the authority and resources needed; - the effectiveness of equipment management, traceability of measurement and safety procedures; - the performance of tests, taking into consideration laboratory accommodation and facilities as well as laboratory practices. The presentation will include also some practical aspects of quality management system

  10. The Dividend Puzzle: A Laboratory Investigation

    NARCIS (Netherlands)

    Füllbrunn, S.C.; Haruvy, E.; Collins, S.M.; Isaac, R.M.; Norton, D.A.

    2013-01-01

    - Purpose - We investigate the implications of the misalignment between manager and shareholder interests and the effects of initial ownership stakes and reinvestment of unpaid dividends on managerial self-dealing. - Methodology - We collect and analyze data from controlled laboratory experiments

  11. Openness initiative

    International Nuclear Information System (INIS)

    Duncan, S.S.

    1995-01-01

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: open-quotes Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?close quotes To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts

  12. Openness initiative

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, S.S. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  13. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  14. Department of Energy multiprogram laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    The Panel recommends the following major roles and missions for the laboratories: perform the Department's national trust fundamental research missions in the physical sciences, including high energy and nuclear physics, and the radiobiological sciences including nuclear medicine; sustain scientific staff core capabilities and specialized research facilities for laboratory research purposes and for use by other Federal agencies and the private sector; perform independent scientific and technical assessment or verification studies required by the Department; and perform generic research and development where it is judged to be in the public interest or where for economic or technical reasons industry does not choose to support it. Organizational efficiencies if implemented by the Department could contribute toward optimal performance of the laboratories. The Panel recommends that a high level official, such as a Deputy Under Secretary, be appointed to serve as Chief Laboratory Executive with authority to help determine and defend the research and development budget, to allocate resources, to decide where work is to be done, and to assess periodically laboratory performance. Laboratory directors should be given substantially more flexibility to deploy resources and to initiate or adapt programs within broad guidelines provided by the Department. The panel recommends the following actions to increase the usefulness of the laboratories and to promote technology transfer to the private sector: establish user groups for all major mission programs and facilities to ensure greater relevance for Department and laboratory efforts; allow the laboratories to do more reimbursable work for others (other Federal agencies, state and local governments, and industry) by relaxing constraints on such work; implement vigorously the recently liberalized patent policy; permit and encourage joint ventures with industry

  15. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  16. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  17. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  18. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  19. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  20. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  1. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  2. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  3. Photovoltaic Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's PV characterization laboratory is used to measure the electrical performance and opto-electronic properties of solar cells and modules. This facility consists...

  4. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  5. Central Laboratories Services

    Data.gov (United States)

    Federal Laboratory Consortium — The TVA Central Laboratories Services is a comprehensive technical support center, offering you a complete range of scientific, engineering, and technical services....

  6. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  7. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  8. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  9. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  10. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  11. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  12. COGNITIVE PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts basic and applied human research studies to characterize cognitive performance as influenced by militarily-relevant contextual and physical...

  13. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  14. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  15. Composites Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose of the Composites Characterization Laboratory is to investigate new and/or modified matrix materials and fibers for advanced composite applications both...

  16. Microgravity Emissions Laboratory (MEL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microgravity Emissions Laboratory (MEL) utilizes a low-frequency acceleration measurement system for the characterization of rigid body inertial forces generated...

  17. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  18. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  19. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  20. Virtual Training Devices Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Training Devices (VTD) Laboratory at the Life Cycle Software Engineering Center, Picatinny Arsenal, provides a software testing and support environment...

  1. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  2. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  3. [Theme: Using Laboratories.

    Science.gov (United States)

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  4. Wind Structural Testing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components...

  5. Geospatial Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: To process, store, and disseminate geospatial data to the Department of Defense and other Federal agencies.DESCRIPTION: The Geospatial Services Laboratory...

  6. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  7. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  8. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  9. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  10. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  11. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  12. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  13. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  14. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  15. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  16. Modern clinical laboratory diagnostics

    International Nuclear Information System (INIS)

    Balakhovskij, I.S.

    1986-01-01

    Laboratory diagnosis is auxillary medical discipline studying specific laboratory symptoms of diseases, revealed by investigations of materials taken from patients. The structure of laboratory servie in our country and abroad, items of laboratory investigations, organizational principles are described. Attention is being given to the cost of analyses, the amount of conducted investigations, methods of result presentation, problems of accuracy, quality control and information content

  17. Mobile spectrometric laboratory

    International Nuclear Information System (INIS)

    Isajenko, K.A.; Lipinski, P.

    2002-01-01

    The article presents the Mobile Spectrometric Laboratory used by Central Laboratory for Radiological Protection since year 2000. The equipment installed in the Mobile Laboratory and its uses is described. The results of international exercises and intercalibrations, in which the Laboratory participated are presented. (author)

  18. Proactive maintenance initiatives at Argonne National Laboratory-West

    International Nuclear Information System (INIS)

    Duckwitz, N.R.; Duncan, L.W.; Whipple, J.J.

    1995-01-01

    In the late 1980's, ANL-W Management foresaw a need to provide dedicated technical support for maintenance supervisors. Maintenance supervisors were facing increased challenges to ensure all environmental, safety, and waste management regulations were followed in daily maintenance activities. This increased burden was diverting supervisory time away from on-the-job supervision. Supervisors were finding less time for their ''mentor'' roles to ensure maintenance focused on finding and correcting root causes. Additionally the traditional maintenance organization could not keep up with the explosion in predictive maintenance technologies. As a result, engineers were tasked to provide direct technical support to the maintenance organization. Today the maintenance technical support group consists of two mechanical engineers, two electrical engineers and an I ampersand C engineer. The group provides a readily available, quick response resource for crafts people and their supervisors. They can and frequently do ask the support group for help to determine the root cause and to effect permanent fixes. Crafts and engineers work together informally to make an effective maintenance team. In addition to day-to-day problem solving, the technical support group has established several maintenance improvement programs for the site. This includes vibration analysis of rotating machinery, testing of fuel for emergency diesel generators, improving techniques for testing of high efficiency particulate air (HEPA) filters, and capacity testing of UPS and emergency diesel starting batteries. These programs have increased equipment reliability, reduced conventional routine maintenance, reduced unexpected maintenance, and improved testing accuracy. This paper will discuss the interaction of the technical support group within the maintenance department. Additionally the maintenance improvement programs will be presented along with actual cases encountered, the resolutions and lessons learned

  19. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    Science.gov (United States)

    2013-08-23

    Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel , Acta...Alumina- Forming Austenitic Stainless Steels Strengthened by LAves Phase and MC Carbide Precipitates , Metallurgical and Materials Transactions A...nano- precipitate engineering---of nanotwinned stainless steels . This preliminary work has provided valuable insight into the mechanisms responsible

  20. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  1. Guam Initial Technical Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Conrad, M.; Haase, S.; Hotchkiss, E.; McNutt, P.

    2011-04-01

    Under an interagency agreement, funded by the Department of Interior's (DOI) Office of Insular Affairs (OIA), the National Renewable Energy Laboratory (NREL) was tasked to deliver technical assistance to the island of Guam by conducting an island initial technical assessment that would lay out energy consumption and production data and establish a baseline. This assessment will be used to conduct future analysis and studies by NREL that will estimate energy efficiency and renewable energy potential for the island of Guam.

  2. Initiation devices, initiation systems including initiation devices and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki; Wallace, Ronald S.

    2018-04-10

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materials include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.

  3. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  4. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  5. Radiochemical Processing Laboratory (RPL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Radiochemical Processing Laboratory (RPL)�is a scientific facility funded by DOE to create and implement innovative processes for environmental clean-up and...

  6. Clinical Laboratory Fee Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — Outpatient clinical laboratory services are paid based on a fee schedule in accordance with Section 1833(h) of the Social Security Act. The clinical laboratory fee...

  7. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  8. Product Evaluation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory offers the services of highly trained and experienced specialists that have a full complement of measuring equipment. It is equipped with two optical...

  9. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  10. Building the Korogwe Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob; von Seidlein, Lorenz; Richard, Jean Pierre

    2011-01-01

    An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania.......An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania....

  11. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  12. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  13. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  14. High Bay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a specially constructed facility with elevated (37 feet) ceilings and an overhead catwalk, and which is dedicated to research efforts in reducing...

  15. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  16. Detroit District Laboratory (DET)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDET-DO Laboratory is equipped with the usual instrumentation necessary to perform a wide range of analyses of food, drugs and cosmetics. Program...

  17. FLEXIBLE FOOD PACKAGING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment to fabricate and test prototype packages of many types and sizes (e.g., bags, pouches, trays, cartons, etc.). This equipment can...

  18. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  19. Human Factors Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The purpose of the Human Factors Laboratory is to further the understanding of highway user needs so that those needs can be incorporated in roadway design,...

  20. Philadelphia District Laboratory (PHI)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesPHI-DO Pharmaceutical Laboratory specializes in the analyses of all forms and types of drug products.Its work involves nearly all phases of drug...

  1. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  2. Neutral Buoyancy Laboratory (NBL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutral Buoyancy Laboratory (NBL) is an astronaut training facility and neutral buoyancy pool operated by NASA and located at the Sonny Carter Training Facility,...

  3. Protective Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a 40 by 28 by 9 foot facility that is equipped with tools for the development of various items of control technology related to the transmission...

  4. Laboratory Demographics Lookup Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — This website provides demographic information about laboratories, including CLIA number, facility name and address, where the laboratory testing is performed, the...

  5. Keeping a Laboratory Notebook.

    Science.gov (United States)

    Eisenberg, Anne

    1982-01-01

    Since the keeping of good records is essential in the chemistry laboratory, general guidelines for maintaining a laboratory notebook are provided. Includes rationale for having entries documented or witnessed. (Author/JN)

  6. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  7. NSLS source development laboratory

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Blum, E.; Johnson, E.D.

    1995-01-01

    The National Synchrotron Light Source (NSLS) has initiated an ambitious project to develop fourth generation radiation sources. To achieve this goal, the Source Development Laboratory (SDL) builds on the experience gained at the NSLS, and at the highly successful BNL Accelerator Test Facility. The SDL accelerator system will consist of a high brightness short pulse linac, a station for coherent synchrotron and transition radiation experiments, a short bunch storage ring, and an ultra-violet free electron laser utilizing the NISUS wiggler. The electrons will be provided by a laser photocathode gun feeding a 210 MeV S-band electron linac, with magnetic bunch compression at 80 MeV. Electron bunches as short as 100 μm with 1 nC charge will be used for pump-probe experiments utilizing coherent transition radiation. Beam will also be injected into a compact storage ring which will be a source of millimeter wave coherent synchrotron radiation. The linac will also serve as the driver for an FEL designed to allow the study of various aspects of single pass amplifiers. The first FEL configuration will be as a self-amplified spontaneous emission (SASE) FEL at 900 nm. Seeded beam and sub-harmonic seeded beam operations will push the output wavelength below 200 nm. Chirped pulse amplification (CPA) operation will also be possible, and a planned energy upgrade (by powering a fifth linac section) to 310 MeV will extend the wavelength range of the FEL to below 100 nm

  8. Personalized laboratory medicine

    DEFF Research Database (Denmark)

    Pazzagli, M.; Malentacchi, F.; Mancini, I.

    2015-01-01

    diagnostic tools and expertise and commands proper state-of-the-art knowledge about Personalized Medicine and Laboratory Medicine in Europe, the joint Working Group "Personalized Laboratory Medicine" of the EFLM and ESPT societies compiled and conducted the Questionnaire "Is Laboratory Medicine ready...... in "omics"; 2. Additional training for the current personnel focused on the new methodologies; 3. Incorporation in the Laboratory of new competencies in data interpretation and counselling; 4. Improving cooperation and collaboration between professionals of different disciplines to integrate information...

  9. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  10. Laboratory Cooperative Program: an assessment

    International Nuclear Information System (INIS)

    1979-11-01

    The Laboratory Cooperative Program (Lab Coop Program) was initiated by the US AEC over 20 years ago to promote the transfer of technical information from the national laboratories to the academic community utilizing the facilities and staff capabilities of the labs. Under the AEC, ERDA and DOE, the goals of the program have broadened gradually. Therefore, the program was examined to determine the extent to which it contributes to the current objectives of the DOE and to develop recommendations for any program changes. The assessment of the Lab Coop Program was based on a combination of review of program activity data and publications, review of general information regarding laboratory operations, and extensive interviews. The major findings of this evaluation were that: the program lacks a clear statement of purpose; program plans, priorities, and procedures are not explicit and operations tend to follow historical patterns; and the program is generally accepted as beneficial, but its benefits are difficult to quantify. It is recommended that the focus of the Lab Coop Program be limited and clearly defined, that performance plans be developed and measured against accomplishments, and that a national informational effort be initiated

  11. The Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M.L.; Torres, L.; Villar, J.A.

    2005-01-01

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories

  12. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  13. The Future of the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1997-12-31

    The policy debate that has surrounded the national laboratories of the Department of Energy since the end of the Cold War has been very confusing. Initially, with the passage of the National Competitiveness Technology Transfer Act of 1989, the laboratories were encouraged to form cooperative arrangements with industry to maintain their technology base and give a boost for U.S. industrial competitiveness. But in the 104th Congress, technology transfer programs were severely constrained.

  14. [Surgical laboratory in pregraduate medicine.

    Science.gov (United States)

    Tapia-Jurado, Jesús

    2011-01-01

    Surgical laboratory in pregraduate students in medicine is beneficial and improves learning processes in cognitive aspects and skills acquisition. It is also an early initiation into scientific research. The laboratory is the introductory pathway into basic concepts of medical science (meaningful learning). It is also where students gain knowledge in procedures and abilities to obtain professional skills, an interactive teacher-student process. Medicine works rapidly to change from an art to a science. This fact compromises all schools and medical faculties to analyze their actual lesson plans. Simulators give students confidence and ability and save time, money and resources, eliminating at the same time the ethical factor of using live animals and the fear of patient safety. Multimedia programs may give a cognitive context evolving logically with an explanation based on written and visual animation followed by a clinical problem and its demonstration in a simulator, all before applying knowledge to the patient.

  15. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  16. AECL's new environmental initiatives

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1993-01-01

    AECL's research and development expenditures in environmental sciences and waste management technology are about $50 M per year. The main focus of these programs is the Nuclear Fuel Waste Management Program. This research is supplemented by activities in support of laboratory, Environmental Authority and internal waste management requirements, as well as provision of non-nuclear services. AECL intends to become more involved in performing environmental research and development with broader application. The goal is to achieve a relationship with Canadian industry that would involve a substantial portion of AECL's environmental research capabilities. The research directions and priorities of the resulting partnership would be set by the private sector in accordance with their needs and requirements. It is expected that the activities associated with this new environmental initiative will start small and grow in response to perceived needs. AECL is now increasing its non-nuclear research efforts by targeting those markets that appear most attractive. The thrust can be divided into three broad categories: environmental research, environmental services, and environmental products. (Author)

  17. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  18. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  19. COMMERCIALLY ORIENTED CLINICAL LABORATORIES

    Science.gov (United States)

    Chapman, W. Max

    1964-01-01

    Out-of-state flat-rate mail order contract laboratories operating from states which have little or no legal control over them can do business in California without obedience to regulations that govern laboratories located within the state. The flat-rate contract principle under which some out-of-state laboratories operate is illegal in California. The use of such laboratories increases physician liability. Legislation for the control of these laboratories is difficult to construct, and laws which might result would be awkward to administer. The best remedy is for California physicians not to use an out-of-state laboratory offering contracts or conditions that it could not legally offer if it were located in California. PMID:14165875

  20. Medical Laboratory Assistant. Laboratory Occupations Cluster.

    Science.gov (United States)

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for medical laboratory assistant is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a task list. Each…

  1. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  2. Head Impact Laboratory (HIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  3. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  4. Biochemical Neuroscience Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This biochemistry lab is set up for protein analysis using Western blot, enzyme linked immunosorbent assays, immunohistochemistry, and bead-based immunoassays. The...

  5. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  6. Behavioral Neuroscience Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This lab supports cognitive research using rodent models. Capabilities for behavioral assessments include:Morris water maze and Barnes maze (spatial memory)elevate...

  7. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  8. Free Surface Hydrodynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Investigates processes and interactions at the air-sea interface, and compares measurements to numerical simulations and field data. Typical phenomena of...

  9. Interactive virtual optical laboratories

    Science.gov (United States)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  10. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  11. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  12. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  13. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  14. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  15. Structural Dynamics Laboratory (SDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...

  16. The Laboratory Diagnosis of HIV Infections

    Directory of Open Access Journals (Sweden)

    Margaret Fearon

    2005-01-01

    Full Text Available HIV diagnostic testing has come a long way since its inception in the early 1980s. Current enzyme immunoassays are sensitive enough to detect antibody as early as one to two weeks after infection. A variety of other assays are essential to confirm positive antibody screens (Western blot, polymerase chain reaction [PCR], provide an adjunct to antibody testing (p24 antigen, PCR, or provide additional information for the clinician treating HIV-positive patients (qualitative and quantitative PCR, and genotyping. Most diagnostic laboratories have complex testing algorithms to ensure accuracy of results and optimal use of laboratory resources. The choice of assays is guided by the initial screening results and the clinical information provided by the physician; both are integral to the laboratory's ability to provide an accurate laboratory diagnosis. Laboratories should also provide specific information on specimen collection, storage and transport so that specimen integrity is not compromised, thereby preserving the accuracy of laboratory results. Point of Care tests have become increasingly popular in the United States and some places in Canada over the past several years. These tests provide rapid, on-site HIV results in a format that is relatively easy for clinic staff to perform. However, the performance of these tests requires adherence to good laboratory quality control practices, as well as the backup of a licensed diagnostic laboratory to provide confirmation and resolution of positive or indeterminate results. Laboratory quality assurance programs and the participation in HIV proficiency testing programs are essential to ensure that diagnostic laboratories provide accurate, timely and clinically relevant laboratory results.

  17. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  18. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  19. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  20. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  1. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  2. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  3. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  4. Changing Educational Traditions with the Change Laboratory

    Science.gov (United States)

    Botha, Louis Royce

    2017-01-01

    This paper outlines the use of a form of research intervention known as the Change Laboratory to illustrate how the processes of organisational change initiated at a secondary school can be applied to develop tools and practices to analyse and potentially re-make educational traditions in a bottom-up manner. In this regard it is shown how a…

  5. The radiological services laboratory

    International Nuclear Information System (INIS)

    Hardt, T.L.; Schutt, S.M.; Doran, K.S.; Dihel, D.L.; Lucas, R.O. II; Eifert, T.K.

    1992-01-01

    A new state of the art radiochemistry laboratory incorporating advanced design and environmental control elements has been constructed in Atlanta, Georgia. The design of the facility is oriented to the efficient production of analytical sample results which meet regulatory requirements while at the same time provides an atmosphere that is pleasurable for analysts and visitors alike. The laboratory building contains two separate and distinct laboratories under one roof. This allows the facility to handle samples with low levels of radioactivity on one side of the lab without fear of contamination of environmental work on the other side. Unlike most laboratories, this facility utilizes a scrubber system and liquid waste holdup system to prevent accidental releases to the environment. The potential spread of radioactive contamination is controlled through the use of negative pressure ventillation zones. Construction techniques, laboratory systems, instrumentation and ergonomic considerations will also be discussed. (author) 1 fig

  6. Outsourcing of Academic Clinical Laboratories

    Science.gov (United States)

    Mrak, Robert E.; Parslow, Tristram G.; Tomaszewski, John E.

    2018-01-01

    American hospitals are increasingly turning to service outsourcing to reduce costs, including laboratory services. Studies of this practice have largely focused on nonacademic medical centers. In contrast, academic medical centers have unique practice environments and unique mission considerations. We sought to elucidate and analyze clinical laboratory outsourcing experiences in US academic medical centers. Seventeen chairs of pathology with relevant experience were willing to participate in in-depth interviews about their experiences. Anticipated financial benefits from joint venture arrangements often eroded after the initial years of the agreement, due to increased test pricing, management fees, duplication of services in support of inpatients, and lack of incentive for utilization control on the part of the for-profit partner. Outsourcing can preclude development of lucrative outreach programs; such programs were successfully launched in several cases after joint ventures were either avoided or terminated. Common complaints included poor test turnaround time and problems with test quality (especially in molecular pathology, microbiology, and flow cytometry), leading to clinician dissatisfaction. Joint ventures adversely affected retention of academically oriented clinical pathology faculty, with adverse effects on research and education, which further exacerbated clinician dissatisfaction due to lack of available consultative expertise. Resident education in pathology and in other disciplines (especially infectious disease) suffered both from lack of on-site laboratory capabilities and from lack of teaching faculty. Most joint ventures were initiated with little or no input from pathology leadership, and input from pathology leadership was seen to have been critical in those cases where such arrangements were declined or terminated. PMID:29637086

  7. Calgary Laboratory Services

    Directory of Open Access Journals (Sweden)

    James R. Wright MD, PhD

    2015-12-01

    Full Text Available Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context.

  8. Initial response of a rock penetrator

    International Nuclear Information System (INIS)

    Longcope, D.B.; Grady, D.E.

    1977-12-01

    An analysis based on elastic rod theory is given for the early-time axisymmetric response of pointed penetrators. Results of measurements by laser interferometry of the back surface particle velocity of laboratory scale penetrators impacted by sandstone targets are presented. Values of the initial pressure on the penetrator tip are determined which give good agreement between the analytical and experimental results. These initial tip pressures are found to be approximated by the stress-particle velocity Hugoniot for the target material

  9. [Accreditation of medical laboratories].

    Science.gov (United States)

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  10. The MEGAPIE Initiative

    International Nuclear Information System (INIS)

    Salvatores, M.; Bauer, G.S.; Heusener, G.

    2000-10-01

    MEGAPIE (Megawatt Pilot Experiment) is a joint initiative by Commissariat a l'Energie Atomique (CEA), France, Forschungszentrum Karlsruhe (FZK), Germany, and Paul Scherrer Institut (PSI), Switzerland, to design, build, operate and explore a liquid lead-bismuth spallation target for 1MW of beam power, taking advantage of the existing spallation neutron facility SINQ at PSI. Such a target based on an eutectic mixture with a melting point as low as 125 o C and a boiling point as high as 1670 o C is the preferred concept in several studies aiming at utilising accelerators to drive subcritical assemblies in order to transmute long lived nuclear waste into shorter lived isotopes in an effort to ease problems of long term storage and final disposal. MEGAPIE will be an essential step towards demonstrating the feasibility of the coupling of a high power accelerator, a spallation target and a subcritical assembly. It will specifically address one of the most critical issues, namely the behaviour of a liquid metal target under realistic operating conditions. As an intensely instrumented pilot experiment it will provide valuable data for benchmarking of frequently used computer codes and will allow to gain important experience in the safe handling of components that have been irradiated with PbBi. It will be installed at the ring cyclotron at PSI with 590 MeV proton energy and a continuous current of 1.8 mA. The basic concept of the MEGAPIE target as well as the definition of the project phases and of the supporting research and development activities at the participating laboratories are described in the present report

  11. Hazardous material reduction initiative

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1995-02-01

    The Hazardous Material Reduction Initiative (HMRI) explores using the review of purchase requisitions to reduce both the use of hazardous materials and the generation of regulated and nonregulated wastes. Based on an 11-month program implemented at the Hanford Site, hazardous material use and waste generation was effectively reduced by using a centralized procurement control program known as HMRI. As expected, several changes to the original proposal were needed during the development/testing phase of the program to accommodate changing and actual conditions found at the Hanford Site. The current method requires a central receiving point within the Procurement Organization to review all purchase requisitions for potentially Occupational Safety and Health Administration (OSHA) hazardous products. Those requisitions (approximately 4% to 6% of the total) are then forwarded to Pollution Prevention personnel for evaluation under HMRI. The first step is to determine if the requested item can be filled by existing or surplus material. The requisitions that cannot filled by existing or surplus material are then sorted into two groups based on applicability to the HMRI project. For example, laboratory requests for analytical reagents or standards are excluded and the purchase requisitions are returned to Procurement for normal processing because, although regulated, there is little opportunity for source reduction due to the strict protocols followed. Each item is then checked to determine if it is regulated or not. Regulated items are prioritized based on hazardous contents, quantity requested, and end use. Copies of these requisitions are made and the originals are returned to Procurement within 1-hr. Since changes to the requisition can be made at later stages during procurement, the HMRI fulfills one of its original premises in that it does not slow the procurement process

  12. Initialized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  13. Australia's marine virtual laboratory

    Science.gov (United States)

    Proctor, Roger; Gillibrand, Philip; Oke, Peter; Rosebrock, Uwe

    2014-05-01

    In all modelling studies of realistic scenarios, a researcher has to go through a number of steps to set up a model in order to produce a model simulation of value. The steps are generally the same, independent of the modelling system chosen. These steps include determining the time and space scales and processes of the required simulation; obtaining data for the initial set up and for input during the simulation time; obtaining observation data for validation or data assimilation; implementing scripts to run the simulation(s); and running utilities or custom-built software to extract results. These steps are time consuming and resource hungry, and have to be done every time irrespective of the simulation - the more complex the processes, the more effort is required to set up the simulation. The Australian Marine Virtual Laboratory (MARVL) is a new development in modelling frameworks for researchers in Australia. MARVL uses the TRIKE framework, a java-based control system developed by CSIRO that allows a non-specialist user configure and run a model, to automate many of the modelling preparation steps needed to bring the researcher faster to the stage of simulation and analysis. The tool is seen as enhancing the efficiency of researchers and marine managers, and is being considered as an educational aid in teaching. In MARVL we are developing a web-based open source application which provides a number of model choices and provides search and recovery of relevant observations, allowing researchers to: a) efficiently configure a range of different community ocean and wave models for any region, for any historical time period, with model specifications of their choice, through a user-friendly web application, b) access data sets to force a model and nest a model into, c) discover and assemble ocean observations from the Australian Ocean Data Network (AODN, http://portal.aodn.org.au/webportal/) in a format that is suitable for model evaluation or data assimilation, and

  14. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Rethinking Laboratory Notebooks

    DEFF Research Database (Denmark)

    Klokmose, Clemens Nylandsted; Zander, Pär-Ola

    2010-01-01

    We take digitalization of laboratory work practice as a challenging design domain to explore. There are obvious drawbacks with the use of paper instead of ICT in the collaborative writing that takes place in laboratory notebooks; yet paper persist in being the most common solution. The ultimate aim...... with our study is to produce design relevant knowledge that can envisage an ICT solution that keeps as many advantages of paper as possible, but with the strength of electronic laboratory notebooks as well. Rather than assuming that users are technophobic and unable to appropriate state of the art software...

  16. Laboratory testing in hyperthyroidism.

    Science.gov (United States)

    Grebe, Stefan K G; Kahaly, George J

    2012-09-01

    The clinical diagnosis of hypo- or hyperthyroidism is difficult (full text available online: http://education.amjmed.com/pp1/272). Clinical symptoms and signs are often non-specific, and there is incomplete correlation between structural and functional thyroid gland changes. Laboratory testing is therefore indispensible in establishing the diagnosis of thyrotoxicosis. Similar considerations apply to treatment monitoring. Laboratory testing also plays a crucial role in establishing the most likely cause for a patient's hyperthyroidism. Finally, during pregnancy, when isotopic scanning is relatively contraindicated and ultrasound is more difficult to interpret, laboratory testing becomes even more important. Copyright © 2012. Published by Elsevier Inc.

  17. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  18. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  19. Accreditation - Its relevance for laboratories measuring radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S E [Icelandic Radiation Protection Inst. (Iceland)

    2001-11-01

    Accreditation is an internationally recognised way for laboratories to demonstrate their competence. Obtaining and maintaining accreditation is, however, a costly and time-consuming procedure. The benefits of accreditation also depend on the role of the laboratory. Accreditation may be of limited relevance for a research laboratory, but essential for a laboratory associated with a national authority and e.g. issuing certificates. This report describes work done within the NKSBOK-1.1 sub-project on introducing accreditation to Nordic laboratories measuring radionuclides. Initially the focus was on the new standard ISO/IEC 17025, which was just in a draft form at the time, but which provides now a new framework for accreditation of laboratories. Later the focus was widened to include a general introduction to accreditation and providing through seminars a forum for exchanging views on the experience laboratories have had in this field. Copies of overheads from the last such seminar are included in the appendix to this report. (au)

  20. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  1. Immersive Simulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Develops and tests novel user interfaces for 3D virtual simulators and first-person shooter games that make user interaction more like natural interaction...

  2. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  3. European Molecular Biology Laboratory

    CERN Multimedia

    1973-01-01

    On 10 May an Agreement was signed at CERN setting up a new European Laboratory. It will be concerned with research in molecularbiology and will be located at Heidelberg in the Federal Republic of Germany.

  4. Laboratory Handbook Electronics

    CERN Multimedia

    1966-01-01

    Laboratory manual 1966 format A3 with the list of equipment cables, electronic tubes, chassis, diodes transistors etc. One of CERN's first material catalogue for construction components for mechanical and electronic chassis.

  5. Shipboard and laboratory equipment

    Digital Repository Service at National Institute of Oceanography (India)

    Shyamprasad, M.; Ramaswamy, V.

    The polymetallic nodules occur at an average depth of 4500 m. Adequate equipment and techniques are required for the exploration at such depths. Shipboard and various laboratory equipments for the sampling of polymetallic nodules is described...

  6. Understanding Laboratory Tests

    Science.gov (United States)

    ... and Drug Administration (FDA) regulates the development and marketing of all laboratory tests that use test kits ... Cancer.gov en español Multimedia Publications Site Map Digital Standards for NCI Websites POLICIES Accessibility Comment Policy ...

  7. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  8. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  9. Sandia National Laboratories:

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  10. Fritz Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Features 800,000 lb and 5,000,000 lb universal testing machines, and a dynamic test bed with broad fatigue-testing capabilities, and a wide range of instrumentation....

  11. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  12. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  13. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  14. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  15. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  16. Lawrence and his laboratory

    International Nuclear Information System (INIS)

    Hellbron, J.L.; Seidel, R.W.

    1989-01-01

    The birthplace of nuclear chemistry and nuclear medicine is the subject of this study of the Radiation Laboratory in Berkeley, California, where Ernest Lawrence used local and national technological, economic, and manpower resources to build the cyclotron

  17. Microcontrollers in the Laboratory.

    Science.gov (United States)

    Williams, Ron

    1989-01-01

    Described is the use of automated control using microcomputers. Covers the development of the microcontroller and describes advantages and characteristics of several brands of chips. Provides several recent applications of microcontrollers in laboratory automation. (MVL)

  18. Multiagency Initiative to Provide Greenhouse Gas Information

    Science.gov (United States)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  19. Laboratory equipment maintenance contracts.

    Science.gov (United States)

    Boudreau, D A; Scheer, W D; Catrou, P G

    1985-12-01

    The increasing level of technical sophistication and complexity found in clinical laboratory instrumentation today more than ever demands careful attention to maintenance service needs. The time-worn caution for careful definition of requirements for acquisition of a system should also carry over to acquisition of maintenance service. Guidelines are presented for specifications of terms and conditions for maintenance service from the perspective of the laboratorian in the automated clinical laboratory.

  20. Laboratory biosafety manual

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This book is in three sections; basic standards of laboratory design and equipment; procedures for safe laboratory practice; and the selection and use of essential biosafety equipment. The intention is that the guidance given in the book should have a broad basis and international application, and that it should be a source from which manuals applicable to local and special conditions can be usefully derived.

  1. Managing laboratory automation

    OpenAIRE

    Saboe, Thomas J.

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Fina...

  2. A Laboratory Notebook System

    OpenAIRE

    Schreiber, Andreas

    2012-01-01

    Many scientists are using a laboratory notebook when conducting experiments. The scientist documents each step, either taken in the experiment or afterwards when processing data. Due to computerized research systems, acquired data increases in volume and becomes more elaborate. This increases the need to migrate from originally paper-based to electronic notebooks with data storage, computational features and reliable electronic documentation. This talks describes a laboratory notebook bas...

  3. Oil water laboratory

    International Nuclear Information System (INIS)

    P Junior, Oswaldo A.; Verli, Fernando; Lopes, Humberto E.

    2000-01-01

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  4. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  5. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  6. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  7. Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

  8. Dioxin Exposure Initiative

    Science.gov (United States)

    The Dioxin Exposure Initiative (DEI) is no longer active. This page contains a summary of the dioxin exposure initiative with illustrations, contact and background information.Originally supported by scientist Matthew Lorber, who retired in Mar 2017.

  9. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  10. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  11. Tall Buildings Initiative

    Science.gov (United States)

    Initiative 2017 TBI Guidelines Version 2.03 Now Available Screen Shot 2017-10-10 at 3.05.10 PM PEER has just initiative to develop design criteria that will ensure safe and usable tall buildings following future earthquakes. Download the primary product of this initiative: Guidelines for Performance-Based Seismic Design

  12. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  13. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  14. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  15. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  16. San Juan District Laboratory (SJN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesSJN-DO Pharmaceutical Laboratory is an A2LA/ISO/IEC 17025 accredited National Servicing Laboratory specialized in Drug Analysis, is a member of...

  17. European nuclear education initiatives

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2011-01-01

    Whatever option regarding their future nuclear energy development is chosen by European Union Member States, the availability of a sufficient number of well trained and experienced staff is key for the responsible use of nuclear energy. This is true in all areas including design, construction, operation, decommissioning, fuel cycle and waste management as well as radiation protection. Given the high average age of existing experts leading to a significant retirement induce a real risk of the loss of nuclear competencies in the coming years. Therefore the demand of hiring skilled employees is rising. The challenge of ensuring a sufficient number of qualified staff in the nuclear sector has been acknowledged widely among the different stakeholders, in particular the nuclear industry, national regulatory authorities and Technical Support Organisations (TSOs). Already the EURATOM Treaty refers explicitly to the obligation for the Commission to carry out training actions. Recently initiatives have been launched at EU level to facilitate and strengthen the efforts of national stakeholders. The European Nuclear Education Network (ENEN) Association aims at preservation and further development of expertise in the nuclear field by higher education and training. The goal of the European Nuclear Energy Leadership Academy (ENELA) is to educate future leaders in the nuclear field to ensure the further development of sustainable European nuclear energy solutions The European Nuclear Energy Forum (ENEF) is a platform operated by the European Commission for a broad discussion on the opportunities and risks of nuclear energy. The nuclear programs under investigation in the Joint Research Center (JRC) are increasingly contributing to Education and Training (E and T) initiatives, promoting a better cooperation between key players and universities as well as operators and regulatory bodies in order to mutually optimise their training programmes. Another objective is to increase

  18. Hungry Cities Initiative: Informality, Inclusive Growth, and Food ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Hungry Cities Initiative: Informality, Inclusive Growth, and Food Security in ... Within this context, the urban food economy is an important laboratory for ... The International Partnerships for Sustainable Societies program is funding this project.

  19. Process innovation laboratory

    DEFF Research Database (Denmark)

    Møller, Charles

    2007-01-01

    to create a new methodology for developing and exploring process models and applications. The paper outlines the process innovation laboratory as a new approach to BPI. The process innovation laboratory is a comprehensive framework and a collaborative workspace for experimenting with process models....... The process innovation laboratory facilitates innovation by using an integrated action learning approach to process modelling in a controlled environment. The study is based on design science and the paper also discusses the implications to EIS research and practice......Most organizations today are required not only to operate effective business processes but also to allow for changing business conditions at an increasing rate. Today nearly every business relies on their enterprise information systems (EIS) for process integration and future generations of EIS...

  20. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  1. Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr

  2. Components of laboratory accreditation.

    Science.gov (United States)

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  3. Consolidated clinical microbiology laboratories.

    Science.gov (United States)

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Mechanical Components and Tribology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory evaluates fundamental friction, wear, and lubrication technologies for improved, robust, and power-dense vehicle transmissions. The facility explores...

  5. SENSORY AND CONSUMER TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — These laboratories conduct a wide range of studies to characterize the sensory properties of and consumer responses to foods, beverages, and other consumer products....

  6. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  7. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  8. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  9. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  10. Integrated Support Environment (ISE) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Integrated Support Environment (ISE) Laboratory serves the fleet, in-service engineers, logisticians and program management offices by automatically and...

  11. The isotope laboratory

    International Nuclear Information System (INIS)

    Anon.

    The various research projects and investigations carried out at the laboratory are briefly described. These include:- hormone investigations (thyroxine and triiodothyronine) by radioimmunology in cattle and swine; the synthesis of fatty acids in sheep digestive juices; vitamin E in pigs; the uptake of phosphorus in cloudberries; the uptake and breaking down of glyphosate in spruce and wild oats; transport and assimilation of MCPA; ground water pollution from sewage; process investigations in fish oil production; cleaning process in dairy piping; soil humidity radiometric gage calibration; mass spectroscopy. The courses held by the laboratory for students and the consumption of radioisotope tracers are summarised. (JIW)

  12. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  13. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  14. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  15. Managing laboratory automation.

    Science.gov (United States)

    Saboe, T J

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Finally, some comments on future automation need are discussed.

  16. Laboratory Medicine is Faced with the Evolution of Medical Practice

    Directory of Open Access Journals (Sweden)

    Collinson Paul

    2017-09-01

    Full Text Available Laboratory medicine and clinical medicine are co-dependent components of medicine. Laboratory medicine functions most effectively when focused through a clinical lens. Me dical practice as a whole undergoes change. New drugs, treatments and changes in management strategies are introduced. New techniques, new technologies and new tests are developed. These changes may be either clinically or laboratory initiated, and so their introduction requires dialogue and interaction between clinical and laboratory medicine specialists. Treatment monitoring is integral to laboratory medicine, varying from direct drug measurement to monitoring cholesterol levels in response to treatment. The current trend to »personalised medicine« is an extension of this process with the development of companion diagnostics. Technological innovation forms part of modern laboratory practice. Introduction of new technology both facilitates standard laboratory approaches and permits introduction of new tests and testing strategies previously confined to the research laboratory only. The revolution in cardiac biomarker testing has been largely a laboratory led change. Flexibility in service provision in response to changing clinical practice or evolving technology provides a significant laboratory management challenge in the light of increasing expectations, shifts in population demographics and constraint in resource availability. Laboratory medicine practitioners are adept at meeting these challenges. One thing remains constant, that there will be a constant need laboratory medicine to meet the challenges of novel clinical challenges from infectious diseases to medical conditions developing from lifestyle and longevity.

  17. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  18. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.

    2001-01-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost

  19. Measurement quality assurance for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, D.E. [Yankee Atomic Environmental Laboratory, Boston, MA (United States)

    1993-12-31

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, {open_quotes}Measurement Quality Assurance For Radioassay Laboratories.{open_quotes} The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory`s specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations.

  20. 75 FR 80011 - Good Laboratory Practice for Nonclinical Laboratory Studies

    Science.gov (United States)

    2010-12-21

    .... FDA-2010-N-0548] Good Laboratory Practice for Nonclinical Laboratory Studies AGENCY: Food and Drug... (FDA) is seeking comment on whether to amend the regulations governing good laboratory practices (GLPs..., 1978 (43 FR 60013). As stated in its scope (Sec. 58.1), this regulation prescribes good laboratory...

  1. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    Science.gov (United States)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  2. Aquatic Microbiology Laboratory Manual.

    Science.gov (United States)

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  3. Saclay Laboratory report

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    R and D activities on RF Superconductivity have continued at Saclay during the last two years. An important effort has been made to update a picture of the laboratory latest results. A mere 'table of contents' of 19 contributed papers are summarized. (R.P.)

  4. Introducing Laboratory Safety.

    Science.gov (United States)

    DeLorenzo, Ronald

    1985-01-01

    Presents a simple, 10-item quiz designed to make students aware that they must learn laboratory safety. The items include questions on acid/base accidents, several types of fire extinguishers, and safety glassses. Answers and some explanations are included. (DH)

  5. Laboratories: Integrating Services

    Centers for Disease Control (CDC) Podcasts

    2011-04-04

    This podcast highlights the importance of integrating laboratory services to maximize service delivery to patients.  Created: 4/4/2011 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 4/7/2011.

  6. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  7. The IAEA laboratories

    International Nuclear Information System (INIS)

    1973-01-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  8. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  9. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  10. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  11. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  12. The IAEA laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  13. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1980-01-01

    The report summarizes the main activities of the linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission 2. Photonuclear reactions 3. Nuclear spectroscopy and positron annihilation 4. Dosimetry 5. Theoretical studies. (MDC)

  14. Writing the Laboratory Notebook.

    Science.gov (United States)

    Kanare, Howard M.

    The purpose of this book is to teach the principles of proper scientific notekeeping. The principles presented in this book are goals for which working scientists must strive. Chapter 1, "The Reasons for Notekeeping," is an overview of the process of keeping a laboratory notebook. Chapter 2, "The Hardware of Notekeeping," is intended especially…

  15. European initiatives for modeling emissions from transport

    DEFF Research Database (Denmark)

    Joumard, Robert; Hickman, A. John; Samaras, Zissis

    1998-01-01

    In Europe there have been many cooperative studies into transport emission inventories since the late 80s. These cover the scope of CORINAIR program involving experts from seven European Community laboratories addressing only road transport emissions at national level. These also include the latest...... covered are the composition of the vehicle fleets, emission factors, driving statistics and the modeling approach. Many of the European initiatives aim also at promoting further cooperation between national laboratories and at defining future research needs. An assessment of these future needs...... is presented from a European point of view....

  16. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  17. Performance testing of UK personal dosimetry laboratories

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  18. Safety in laboratories: Indian scenario.

    Science.gov (United States)

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  19. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2000-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry service for several customers outside the INP, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments for customers in southern Poland. The year 2000 was another eventful year for the Health Physics Laboratory. We started three new research projects granted by the Polish State Committee of Scientific Research. Mr P. Bilski co-ordinates the project on the measurements of radiation doses on board of commercial aircraft of Polish LOT Airlines. Dr B. Marczewska and I worked on the application of artificial diamonds for dosimetry of ionising radiation. We also participate in a

  20. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    1999-01-01

    The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti for medical applications in conventional and hadron radiotherapy, and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (radon in dwellings and in soil air) are also performed using track detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, monitoring and supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. The year 1998 was another eventful year for the Health Physics Laboratory. In retrospective, the main effort in 1998 has been directed towards preparation and participation in the 12th International Conference on Solid State Dosimetry in Burgos, Spain. One of the research projects is aimed at developing novel miniature TLD detectors with improved LET and dose characteristics for precise phantom measurements in eye cancer radiotherapy with proton beams. The second project concerns the application of ultra-sensitive LiF:Mg, Cu, P (MCP-N) TLD detectors in environmental monitoring of gamma ionising radiation. The main objective of this last project is to develop and to test a system for rapid, short-term monitoring of environmental radiation

  1. Initial performance parameters on FXR

    International Nuclear Information System (INIS)

    Kulke, B.; Innes, T.G.; Kihara, R.; Scarpetti, R.D.

    1982-01-01

    Construction of the new flash x-ray induction LINAC (FXR) at Lawrence Livermore National Laboratory has been completed. Initial tuning of the machine has produced stable current pulses in excess of 2 kA at the design energy of 20 MeV, with an 80 ns FWHM pulse width, producing single-pulse radiation doses near 500 Roentgen at one meter from the target. The electronic spot size on the bremsstrahlung target is estimated at 3 to 5 mm. In this paper we will discuss the basic FXR design; running-in and tuning of the machine; emittance measurements; beam stability; switch gap synchronization; and measurements of the radiation dose and angular distribution

  2. Pacific Northwest Laboratory Institutional Plan FY 1995-2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report serves as a document to describe the role PNL is positioned to take in the Department of Energy`s plans for its national centers in the period 1995-2000. It highlights the strengths of the facilities and personnel present at the laboratory, touches on the accomplishments and projects they have contributed to, and the direction being taken to prepare for the demands to be placed on DOE facilities in the near and far term. It consists of sections titled: director`s statement; laboratory mission and core competencies; laboratory strategic plan; laboratory initiatives; core business areas; critical success factors.

  3. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  4. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  5. Simulation of Initiation in Hexanitrostilbene

    Science.gov (United States)

    Thompson, Aidan; Shan, Tzu-Ray; Yarrington, Cole; Wixom, Ryan

    We report on the effect of isolated voids and pairs of nearby voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock loading. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating in HNS crystal along the [010] orientation are performed (up = 1.25 km/s, Us =4.0 km/s, P = 11GPa.) We compare the effect on hot spot formation and growth rate of isolated cylindrical voids up to 0.1 µm in size with that of two 50nm voids set 100nm apart. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock- heed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  7. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  8. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    Science.gov (United States)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  9. The impact of laboratory quality assurance standards on laboratory operational performance

    Directory of Open Access Journals (Sweden)

    E Ratseou

    2014-01-01

    Full Text Available It has become a trend for companies to implement and be certified to various quality management systems so as to improve consistency, reliability, and quality of product delivery to customers. The most common quality management systems adopted are the ISO 9000 series of standards for manufacturing and services related organisations, with ISO 17025 and Good Laboratory Practices (GLP standards adopted specifically by laboratories as quality assurance initiatives. There are various reports on the impact of the ISO 9000 series on organisational performance but no studies or reports have been done on the performance of laboratory standards. Therefore this article reports on a study conducted to investigate the impact of ISO 17025 and GLP on the operational performance of both commercial and non-commercial laboratories. A qualitative research study was conducted to examine the impact standards on the aspects of health and safety, supplier selection and performance, human resources, customer satisfaction and profitability of the laboratory. The data collected suggest that there is no difference in laboratory operational performance with or without the standards. In other words it appears that the basic fundamental requirements inherent with laboratories are sufficient to perform both operationally and optimally. This leads to the view that standards are implemented as a customer requirement and not as an operational requirement.

  10. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  11. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2002-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics (IFJ) in Cracow are principally research in the general area of radiation physics, dosimetry and radiation protection of the employees of the Institute. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti, CaF 2 :Tm and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P and LiF:Mg, Cu, Si, Na for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on IFJ premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry services for several customers outside the IFJ, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments (400 per year) for customers in the southern region of Poland. The year 2001 was another eventful year for the Health Physics Laboratory. M. Waligorski has received his Professor of Physics state nomination from A. Kwasniewski, the President of Poland. P. Bilski and M. Budzanowski were granted their Ph.D. degrees by the Scientific Council of the Institute of Nuclear Physics. We continued several national and international research projects. Dr

  12. Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    Rutherford Appleton Laboratory (RAL), described in this document, supports a wide variety of projects. Each year more than 1000 scientists and engineers visit RAL to use its world-class laser and neutron-scattering facilities. RAL staff design and build instruments which circle the Earth in satellites, increasing our understanding of ozone depletion and global warming, of the life cycles of stars and galaxies and, indeed, of the origin of the Universe itself. They work with their academic colleagues at international laboratories such as European Organization for Nuclear Research (CERN), Geneva, where massive underground machines probe the microstructure of the atomic nucleus. Vastly complex calculations are carried out on the design of anti-cancer drugs, for example, using supercomputers at RAL. (author)

  13. Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described

  14. AC Initiation System.

    Science.gov (United States)

    An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)

  15. Saclay laboratory report

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    R and D activities on RF Superconductivity have continued at Saclay during the last two years. For this conference, an important effort has been made to update a picture of the laboratory latest results, under the form of 19 contributed papers. In the following, a mere 'table of contents' of these contributed papers is found, covering high gradients and field emission, superconductor characterization, niobium properties and thin superconducting films. (author)

  16. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  17. Radiation carcinogenesis, laboratory studies

    International Nuclear Information System (INIS)

    Shellabarger, C.J.

    1974-01-01

    Laboratory studies on radioinduced carcinogenesis are reviewed. Some topics discussed are: radioinduced neoplasia in relation to life shortening; dose-response relationships; induction of skin tumors in rats by alpha particles and electrons; effects of hormones on tumor response; effects of low LET radiations delivered at low dose-rates; effects of fractionated neutron radiation; interaction of RBE and dose rate effects; and estimates of risks for humans from animal data. (U.S.)

  18. LABORATORY MODELING OF TORNADOES

    OpenAIRE

    文字, 信貴

    1982-01-01

    Laboratory modelings of the tornado vortices are overviewed. Modelings of the mesocyclone as theboundary conditions in the tornado simulations are found to have significant problems especially on thesource of thunderstorm and tornado rotation. A number of the problems related to the vortex structuresuch as the wind profiles or the role of turbulence are left unsolved. However, the simulated vortices arefound to have many common characteristics with the tornado vortices in nature, which sugges...

  19. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  20. Hanford cultural resources laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  1. Defense Laboratory Enterprise

    Science.gov (United States)

    2011-07-01

    NSWC - Corona Division Corona , CA 53 NSWC - Crane Division Crane, IN 55 NSWC - Dahlgren Division Dahlgren, VA 57 NSWC - Naval Explosive Ordnance...Invention • HemCon Chitosan Dressing – 2004 Army Greatest Invention • Combat Application Tourniquet ( CAT ) – 2005 Army Greatest Invention • Damage...laboratory within DoD with the capability to study highly hazardous viruses requiring maximum containment at Biosafety Level 4 (BSL-4). While the

  2. Remote Laboratory in Photovoltaics

    Directory of Open Access Journals (Sweden)

    Cornel Samoila

    2009-08-01

    Full Text Available This paper presents a new concept of studying, understanding and teaching the performance of solar cells. Using NI ELVIS allows the realization of eight laboratory experiments which study all the important parameters of the solar cells. The model used for the equivalent circuit of the solar cell was the “one diode” model. For the realization of control, data acquisition and processing, a complex program was created, with a friendly interface, using the graphical programming language LabVIEW.

  3. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  4. Rutherford Appleton Laboratory 1983

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, R T; Wroath, P D [eds.

    1984-01-01

    Efforts are summarized in the areas of: cosmic research; solar and interplanetary research; space plasma science; atmospheric research; distributed computing systems; industrial robotics; software engineering; advanced computer networking (Project UNIVERSE); computing applications in engineering; pattern analysis; electron beam lithography; radio research; applied superconductivity; particle physics; neutron beam research; laser research; and computing facilities and operations. Laboratory resources are summarized, and publications and reports resulting from the work reported for the year are listed, as well as lectures and meetings. (LEW)

  5. Princeton Plasma Physics Laboratory:

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations

  6. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  7. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  8. The Postwar Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    Recent discussion of project policy has met with a widespread feeling that important alternatives were not being properly considered. These alternatives will be discussed here from the point of view of research personnel concerned with formulation a laboratory policy based on the wartime experience of Los Alamos. This policy is discussed on the primary assumption that the national investment here in facilities, in tradition, and in the existence of an going research and development laboratory organization ought not to be lightly discarded, but also ought not to be wholly continued without reexamination under the new conditions of peace. Others will discuss this policy more broadly, and others will make the decision of continuation; but the purpose of the present document is to suggest a policy which might help answer the question of what to do with Los Alamos.It is the thesis of this document that fundamental research in fields underlying the military utilization of atomic energy ought to be separated from all development testing and production. It still remains to argue which of these separate functions this mesa should carry out. In the next sections it is proposed to describe what this laboratory can do and what it should stop trying to do, and on this detailed basis a general program is proposed.

  9. Benchmarking and the laboratory

    Science.gov (United States)

    Galloway, M; Nadin, L

    2001-01-01

    This article describes how benchmarking can be used to assess laboratory performance. Two benchmarking schemes are reviewed, the Clinical Benchmarking Company's Pathology Report and the College of American Pathologists' Q-Probes scheme. The Clinical Benchmarking Company's Pathology Report is undertaken by staff based in the clinical management unit, Keele University with appropriate input from the professional organisations within pathology. Five annual reports have now been completed. Each report is a detailed analysis of 10 areas of laboratory performance. In this review, particular attention is focused on the areas of quality, productivity, variation in clinical practice, skill mix, and working hours. The Q-Probes scheme is part of the College of American Pathologists programme in studies of quality assurance. The Q-Probes scheme and its applicability to pathology in the UK is illustrated by reviewing two recent Q-Probe studies: routine outpatient test turnaround time and outpatient test order accuracy. The Q-Probes scheme is somewhat limited by the small number of UK laboratories that have participated. In conclusion, as a result of the government's policy in the UK, benchmarking is here to stay. Benchmarking schemes described in this article are one way in which pathologists can demonstrate that they are providing a cost effective and high quality service. Key Words: benchmarking • pathology PMID:11477112

  10. Measurement quality assurance for radioassay laboratories

    International Nuclear Information System (INIS)

    McCurdy, D.E.

    1993-01-01

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, open-quotes Measurement Quality Assurance For Radioassay Laboratories.open-quotes The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory's specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations

  11. Sustainable Agricultural Marketing Initiatives

    Directory of Open Access Journals (Sweden)

    Hakan Adanacıoğlu

    2015-07-01

    Full Text Available Sustainable marketing is a holistic approach that puts equal emphasis on environmental, social equity, and economic concerns in the development of marketing strategies. The purpose of the study is to examine and discuss the sustainable agricultural marketing initiatives practiced throughout the World and Turkey, and to put forth suggestions to further improve the performance of agricultural marketing initiatives in Turkey. Some of the sustainable agricultural marketing initiatives practiced around the world are carried out through civil organizations. Furthermore; some of these initiatives have also launched by farmers, consumers, food processors and retailers. The long-term strategies to increase these initiatives should be determined due to the fact that examples of successful sustainable agricultural marketing initiatives are inadequate and cannot be spread in Turkey. In this context, first of all, the supports provided by the government to improve agricultural marketing systems, such as EU funds for rural development should be compatible with the goals of sustainable marketing. For this purpose, it should be examined whether all proposed projects related to agricultural marketing meet the social, economic, and environmental principles of sustainable marketing. It is important that supporting organizations, especially civil society organisations, should take an active role for faster dissemination and adoption of sustainable agricultural marketing practices in Turkey. These organizations may provide technical assistance in preparing successful project proposals and training to farm groups. In addition, the other organizations, such as local administrations, producers' associations, cooperatives, can contribute to the success of sustainable agricultural marketing initiatives. The use of direct marketing strategies and vertical integration attempts in sustainable agricultural marketing initiatives that will likely be implemented in Turkey is

  12. Problems in laboratory diagnosis of tuberculosis

    Directory of Open Access Journals (Sweden)

    Joshi J

    2005-01-01

    Full Text Available Setting : Department of Respiratory Medicine, B.Y.L. Nair Hospital, Mumbai, India. Objective : To study pre-treatment sputum smear, culture and drug susceptibility testing for mycobacterium tuberculosis in fresh cases of pulmonary tuberculosis, the extent of laboratory related problems and correlation of the laboratory results with clinical outcome. Design : This study is a prospective analysis of 57 cases of pulmonary tuberculosis that denied previous treatment with anti tuberculosis drugs. Cases with associated human immunodeficiency virus (HIV infection and diabetes mellitus (DM were excluded. Pre-treatment smear, culture and drug susceptibility were performed by standard culture techniques. Patients were treated with short course chemotherapy (SCC on the basis of World Health Organisation (WHO category I. Laboratory results were correlated with initial clinical data and treatment outcomes. Results : Of the 57 cases selected, there were 34 males and 23females, age range 18-65 years, mean age 27.86 years. Clinical data was lacking in 16 patients who defaulted on treatment and hence were excluded from the analysis. Of the 41 cases with complete data, 37 patients were declared cured (91.25% while 4 patients failed on therapy (9.75%, 17/41 (41.46% had laboratory results consistent with clinical data and treatment results whereas 24/41 (58.53% had poor correlation between laboratory results, clinical data and treatment outcomes. The major laboratory related problems were: 1 Smear positive / culture negative (S+/C- in 16/41 (39% cases at the start of treatment; 2 HR pattern of resistance in 4/41 (9.75% and R resistance 3/41 (7.31% on initial culture susceptibility tests but response to SCC suggesting incorrect susceptibility results. Conclusions : Discrepant reports between clinical findings, laboratory reports and treatment outcomes were found in 58.53% cases. Treatment should not be decided only on the basis of the initial culture susceptibility

  13. NASA Gulf of Mexico Initiative Hypoxia Research

    Science.gov (United States)

    Armstrong, Curtis D.

    2012-01-01

    The Applied Science & Technology Project Office at Stennis Space Center (SSC) manages NASA's Gulf of Mexico Initiative (GOMI). Addressing short-term crises and long-term issues, GOMI participants seek to understand the environment using remote sensing, in-situ observations, laboratory analyses, field observations and computational models. New capabilities are transferred to end-users to help them make informed decisions. Some GOMI activities of interest to the hypoxia research community are highlighted.

  14. SUPERCOLLIDER: Preparing initial experiments

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Superconducting Supercollider (SSC) Laboratory in Ellis County, Texas, has taken an important step toward its scientific programme. While three letters of intent for large detectors had been invited, only two could be considered due to funding limitations. Two letters were received from existing collaborations (SDC and L*) and one from a merger of (EMPACT and TEXAS)

  15. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  16. 1996 environmental initiatives report

    International Nuclear Information System (INIS)

    1996-01-01

    Progress by Consumers Gas in addressing environmental challenges were reviewed. Proposed environmental initiatives for the next fiscal year and beyond were introduced. Proposed initiatives were placed into three priority categories, high, medium or low, which together with the environmental management framework form the the utility's overall environmental agenda. High on the list of environmental priorities for the company are atmospheric air emissions, planning and construction practices, energy conservation and efficiency, environmental compliance, and methane emissions. The present state of the initiatives by the various company divisions and regions, compiled from the respective business plans, were reported. 21 figs

  17. Laboratory for Extraterrestrial Physics

    Science.gov (United States)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  18. Research Programs & Initiatives

    Science.gov (United States)

    CGH develops international initiatives and collaborates with other NCI divisions, NCI-designated Cancer Centers, and other countries to support cancer control planning, encourage capacity building, and support cancer research and research networks.

  19. Nursing Home Quality Initiative

    Data.gov (United States)

    U.S. Department of Health & Human Services — This Nursing Home Quality Initiative (NHQI) website provides consumer and provider information regarding the quality of care in nursing homes. NHQI discusses quality...

  20. Global Methane Initiative

    Science.gov (United States)

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  1. Medical Errors Reduction Initiative

    National Research Council Canada - National Science Library

    Mutter, Michael L

    2005-01-01

    The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...

  2. RAS Initiative - Community Outreach

    Science.gov (United States)

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.

  3. RAS Initiative - Events

    Science.gov (United States)

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  4. PESP Landscaping Initiative

    Science.gov (United States)

    Landscaping practices can positively or negatively affect local environments and human health. The Landscaping Initiative seeks to enhance benefits of landscaping while reducing need for pesticides, fertilizers, etc., by working with partners.

  5. About the RAS Initiative

    Science.gov (United States)

    The RAS Initiative, a "hub and spoke" model, connects researchers to better understand and target the more than 30% of cancers driven by mutations in RAS genes. Includes oversight and contact information.

  6. The Yekaterinburg headache initiative

    DEFF Research Database (Denmark)

    Lebedeva, Elena R; Olesen, Jes; Osipova, Vera V

    2013-01-01

    for a demonstrational interventional project in Russia, undertaken within the Global Campaign against Headache. The initiative proposes three actions: 1) raise awareness of need for improvement; 2) design and implement a three-tier model (from primary care to a single highly specialized centre with academic affiliation......) for efficient and equitable delivery of headache-related health care; 3) develop a range of educational initiatives aimed at primary-care physicians, non-specialist neurologists, pharmacists and the general public to support the second action. RESULTS AND CONCLUSION: We set these proposals in a context...... of a health-care needs assessment, and as a model for all Russia. We present and discuss early progress of the initiative, justify the investment of resources required for implementation and call for the political support that full implementation requires. The more that the Yekaterinburg headache initiative...

  7. The RAS Initiative

    Science.gov (United States)

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  8. Piezoelectrically Initiated Pyrotechnic Igniter

    Science.gov (United States)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  9. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  10. Laboratory for filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1987-07-01

    Filters used for mine draining in brown coal surface mines are tested by the Mine Draining Department of Poltegor. Laboratory tests of new types of filters developed by Poltegor are analyzed. Two types of tests are used: tests of scale filter models and tests of experimental units of new filters. Design and operation of the test stands used for testing mechanical properties and hydraulic properties of filters for coal mines are described: dimensions, pressure fluctuations, hydraulic equipment. Examples of testing large-diameter filters for brown coal mines are discussed.

  11. [Accreditation of forensic laboratories].

    Science.gov (United States)

    Sołtyszewski, Ireneusz

    2010-01-01

    According to the framework decision of the European Union Council, genetic laboratories which perform tests for the benefit of the law enforcement agencies and the administration of justice are required to obtain a certificate of accreditation testifying to compliance with the PN EN ISO/IEC 17025:2005 standard. The certificate is the official confirmation of the competence to perform research, an acknowledgement of credibility, impartiality and professional independence. It is also the proof of establishment, implementation and maintenance of an appropriate management system. The article presents the legal basis for accreditation, the procedure of obtaining the certificate of accreditation and selected elements of the management system.

  12. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  13. Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990

  14. Supply Chain Initiatives Database

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-11-01

    The Supply Chain Initiatives Database (SCID) presents innovative approaches to engaging industrial suppliers in efforts to save energy, increase productivity and improve environmental performance. This comprehensive and freely-accessible database was developed by the Institute for Industrial Productivity (IIP). IIP acknowledges Ecofys for their valuable contributions. The database contains case studies searchable according to the types of activities buyers are undertaking to motivate suppliers, target sector, organization leading the initiative, and program or partnership linkages.

  15. Laboratory interface in support of Environmental Restoration Programs

    International Nuclear Information System (INIS)

    Pardue, G.J. Jr.

    1994-01-01

    A vital part of quality environmental data resides in the communication between the project and the analytical laboratory. It is essential that the project clearly identify its objectives to the laboratory and that the laboratory understands the scope and limitations of the analytical process. Successful completion of an environmental project must include an aggressive program between project managers and subcontracted Lyrical laboratories. All to often, individuals and organizations tend to deflect errors and failures observed in environmental toward open-quotes the other guyclose quotes. The engineering firm will blame the laboratory, the laboratory will blame the field operation, the field operation will blame the engineering, and everyone will blame the customer for not understanding the true variables in the environmental arena. It is the contention of the authors, that the majority of failures derive from a lack of communication and misunderstanding. Several initiatives can be taken to improve communication and understanding between the various pieces of the environmental data quality puzzle. This presentation attempts to outline mechanisms to improve communication between the environmental project and the analytical laboratory with the intent of continuous quality improvement. Concepts include: project specific laboratory statements of work which focus on project and program requirements; project specific analytical laboratory readiness reviews (project kick-off meetings); laboratory team workshops; project/program performance tracking and self assessment and promotion of team success

  16. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  17. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  18. Visual Landing Aids (VLA) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Visual Landing Aids (VLA) Laboratory serves to support fleet VLA systems by maintaining the latest service change configuration of currently deployed VLA...

  19. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  20. Institute of Laboratory Animal Research

    National Research Council Canada - National Science Library

    Dell, Ralph

    2000-01-01

    ...; and reports on specific issues of humane care and use of laboratory animals. ILAR's mission is to help improve the availability, quality, care, and humane and scientifically valid use of laboratory animals...

  1. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  2. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  3. San Francisco District Laboratory (SAN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesFood Analysis SAN-DO Laboratory has an expert in elemental analysis who frequently performs field inspections of materials. A recently acquired...

  4. MIT Lincoln Laboratory Facts 2015

    Science.gov (United States)

    2015-01-01

    Positions filled by engineers and scientists at Lincoln Laboratory require problem-solving ability, analytical skills, and creativity ...balance, as well as offer- ing flexible work schedules, part-time employment, and telecommuting opportunities. Child Care The Lincoln Laboratory

  5. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  6. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  7. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  8. Metallurgical Laboratory and Components Testing

    Data.gov (United States)

    Federal Laboratory Consortium — In the field of metallurgy, TTC is equipped to run laboratory tests on track and rolling stock components and materials. The testing lab contains scanning-electron,...

  9. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  10. Handbook of laboratory techniques

    International Nuclear Information System (INIS)

    2002-01-01

    The Nuclear Regulatory Authority in Argentina have laboratories of support to regulations functions on radiological and nuclear safety, safeguards and physical protection, that have a surface of 2950 m 2 in the Ezeiza Atomic Center. The manual describes in seven chapters the different techniques developed and applied in the laboratories along four decades of existence. The chapter 1: Dedicated to the treatment of environmental samples, described the procedures associated with the different types of samples: deposits, waters, sediments, vegetables, milk, fish and diet. The chapter 2: Details 48 radiochemical techniques associated to the measurements of americium 241, carbon 16, strontium 90, iodine 129, plutonium, radium 226, radon, uranium, nickel and actinides. The chapter 3: Describes the measurements techniques of alpha and gamma spectrometry. The different techniques of biological and physical dosimetry are described in the chapters 5 and 6 respectively. The final chapter is dedicated the techniques of external and internal contamination. It s important to emphasize that this manual contains the standardized technologies that the Nuclear Regulatory Authority of Argentina submits regularly to international comparisons

  11. Laboratory diagnostics of malaria

    Science.gov (United States)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  12. Laboratory Diagnosis of Pertussis

    Science.gov (United States)

    Schellekens, Joop F. P.; Mooi, Frits R.

    2015-01-01

    SUMMARY The introduction of vaccination in the 1950s significantly reduced the morbidity and mortality of pertussis. However, since the 1990s, a resurgence of pertussis has been observed in vaccinated populations, and a number of causes have been proposed for this phenomenon, including improved diagnostics, increased awareness, waning immunity, and pathogen adaptation. The resurgence of pertussis highlights the importance of standardized, sensitive, and specific laboratory diagnoses, the lack of which is responsible for the large differences in pertussis notifications between countries. Accurate laboratory diagnosis is also important for distinguishing between the several etiologic agents of pertussis-like diseases, which involve both viruses and bacteria. If pertussis is diagnosed in a timely manner, antibiotic treatment of the patient can mitigate the symptoms and prevent transmission. During an outbreak, timely diagnosis of pertussis allows prophylactic treatment of infants too young to be (fully) vaccinated, for whom pertussis is a severe, sometimes fatal disease. Finally, reliable diagnosis of pertussis is required to reveal trends in the (age-specific) disease incidence, which may point to changes in vaccine efficacy, waning immunity, and the emergence of vaccine-adapted strains. Here we review current approaches to the diagnosis of pertussis and discuss their limitations and strengths. In particular, we emphasize that the optimal diagnostic procedure depends on the stage of the disease, the age of the patient, and the vaccination status of the patient. PMID:26354823

  13. Department of Energy Multiprogram Laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    Volume III includes the following appendices: laboratory goals and missions statements; laboratory program mix; class waiver of government rights in inventions arising from the use of DOE facilities by or for third party sponsors; DOE 4300.2: research and development work performed for others; procedure for new work assignments at R and D laboratories; and DOE 5800.1: research and development laboratory technology transfer program

  14. Laboratory medicine in the European Union.

    Science.gov (United States)

    Oosterhuis, Wytze P; Zerah, Simone

    2015-01-01

    The profession of laboratory medicine differs between countries within the European Union (EU) in many respects. The objective of professional organizations of the promotion of mutual recognition of specialists within the EU is closely related to the free movement of people. This policy translates to equivalence of standards and harmonization of the training curriculum. The aim of the present study is the description of the organization and practice of laboratory medicine within the countries that constitute the EU. A questionnaire covering many aspects of the profession was sent to delegates of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and Union Européenne de Médecins Spécialistes (UEMS) of the 28 EU countries. Results were sent to the delegates for confirmation. Many differences between countries were identified: predominantly medical or scientific professionals; a broad or limited professional field of interest; inclusion of patient treatment; formal or absent recognition; a regulated or absent formal training program; general or minor application of a quality system based on ISO Norms. The harmonization of the postgraduate training of both clinical chemists and of laboratory physicians has been a goal for many years. Differences in the organization of the laboratory professions still exist in the respective countries which all have a long historical development with their own rationality. It is an important challenge to harmonize our profession, and difficult choices will need to be made. Recent developments with respect to the directive on Recognition of Professional Qualifications call for new initiatives to harmonize laboratory medicine both across national borders, and across the borders of scientific and medical professions.

  15. Process Engineering Technology Center Initiative

    Science.gov (United States)

    Centeno, Martha A.

    2002-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  16. Journal of Medical Laboratory Science

    African Journals Online (AJOL)

    The Journal of Medical Laboratory Science is a Quarterly Publication of the Association of Medical Laboratory Scientists of Nigeria. It Publishes Original Research and Review Articles in All Fields of Biomedical Sciences and Laboratory Medicine, Covering Medical Microbiology, Medical Parasitology, Clinical Chemistry, ...

  17. Chemistry laboratory safety manual available

    Science.gov (United States)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  18. Humidity requirements in WSCF Laboratories

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment

  19. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  20. Strengthening Laboratory Capacity for Early Warning Alert and Response System (EWARS) in Indonesia

    OpenAIRE

    Kandel, Nirmal; Hapsari, Ratna Budi; Riana, Dyah Armi; Setiawaty, Vivi; Larasati, Wita; Wulandari, Endang; Purwanto, Edy

    2017-01-01

    Background: Establishment of Early Warning Alert and Response System (EWARS) in Indonesia was initiated since 2009 in few selected provinces and government was planning to roll out in other provinces. Before initiating this roll out the assessment of performance of EWARS in 2012 was conducted. The aim of the assessment is to strengthen laboratory for supporting to EWARS for alerts testing. Methods: Laboratory capacity mapping tool and laboratory algorithm for twenty two priority diseases of ...

  1. Pathology Laboratories and Infection Prevention and Control

    Directory of Open Access Journals (Sweden)

    R Baral

    2014-11-01

    Full Text Available Laboratory health care workers are vulnerable to infection with the Hospital Acquired Infections (HAIs while receiving, handling and disposing biological samples. Ideally the infrastructure of the lab should be according to the best practices like good ventilation, room pressure differential, lighting, space adequacy, hand hygiene facilities, personal protective equipments, biological safety cabinets etc. Disinfection of the environment, and specific precautions with sharps and microbial cultures should follow the protocols and policies of the Infection Prevention and Control Practices (IPAC. If Mycobacterium tuberculosis or Legionella pneumophila are expected, diagnostic tests should be performed in a bio-safety level 3 facilities (for agents which may cause serious or potentially lethal disease in healthy adults after inhalation. Laboratory access should be limited only to people working in it.Along with the advent of new technologies and advanced treatment we are now facing problems with the dreadful HAIs with Antimicrobial Resistant Organisms (AROs which is taking a pandemic form. According to WHO, hundreds of millions of patients develop HAI every year worldwide and as many as 1.4 million occur each day in hospitals alone. The principal goals for hospital IPAC programs are to protect the patient, protect the health care worker (HCW, visitors, and other persons in the health environment, and to accomplish the previous goals in a cost-effective manner like hand hygiene, surveillance, training of the HCWs, initiating awareness programs and making Best Practices and Guidelines to be followed by everyone in the hospital.The initiation for the best practices in the Pathology Laboratories can be either Sporadic or Organizational. Sporadic initiation is when the laboratories make their own IPAC policies. It has been seen that in few centres these policies have been conceptualized but not materialized. Organizational initiation is much more

  2. Laboratory system strengthening and quality improvement in Ethiopia

    Directory of Open Access Journals (Sweden)

    Tilahun M. Hiwotu

    2014-11-01

    Full Text Available Background: In 2010, a National Laboratory Strategic Plan was set forth in Ethiopia to strengthen laboratory quality systems and set the stage for laboratory accreditation. As a result, the Strengthening Laboratory Management Toward Accreditation (SLMTA programme was initiated in 45 Ethiopian laboratories. Objectives: This article discusses the implementation of the programme, the findings from the evaluation process and key challenges. Methods: The 45 laboratories were divided into two consecutive cohorts and staff from each laboratory participated in SLMTA training and improvement projects. The average amount of supportive supervision conducted in the laboratories was 68 hours for cohort I and two hoursfor cohort II. Baseline and exit audits were conducted in 44 of the laboratories and percent compliance was determined using a checklist with scores divided into zero- to five-star ratinglevels. Results: Improvements, ranging from < 1 to 51 percentage points, were noted in 42 laboratories, whilst decreases were recorded in two. The average scores at the baseline and exit audits were 40% and 58% for cohort I (p < 0.01; and 42% and 53% for cohort II (p < 0.01,respectively. The p-value for difference between cohorts was 0.07. At the exit audit, 61% ofthe first and 48% of the second cohort laboratories achieved an increase in star rating. Poor awareness, lack of harmonisation with other facility activities and the absence of a quality manual were challenges identified. Conclusion: Improvements resulting from SLMTA implementation are encouraging. Continuous advocacy at all levels of the health system is needed to ensure involvement of stakeholders and integration with other improvement initiatives and routine activities.

  3. Initial treatment of Parkinson's disease.

    Science.gov (United States)

    Tarsy, Daniel

    2006-05-01

    Initial treatment of early idiopathic Parkinson's disease (PD) begins with diagnosis based on clinical evaluation supplemented by laboratory studies and brain imaging to exclude causes of secondary parkinsonism. In most cases, testing is normal and the diagnosis of PD rests on clinical criteria. In patients with mild symptoms and signs, the diagnosis of PD may not initially be apparent, and follow-up evaluation is needed to arrive at a diagnosis. Once the diagnosis is made, pharmacologic treatment may not be the first step. First, patient education is essential, especially because PD is a high-profile disease for which information and misinformation are readily available to patients and families. Counseling concerning prognosis, future symptoms, future disability, and treatment must be provided. Questions from patients concerning diet, lifestyle, and exercise are especially common at this point. The decision of when to initiate treatment is the next major consideration. Much controversy but relatively little light has been brought to bear on this issue. L-dopa was the first major antiparkinson medication to be introduced and remains the "gold standard" of treatment. Next in efficacy are the dopamine agonists (DAs). A debate has raged concerning whether initial dopaminergic treatment should be with L-dopa or DAs. Physicians have been concerned about forestalling the appearance of dyskinesias and motor fluctuations, whereas patients have incorrectly understood that L-dopa and possibly other antiparkinson drugs have a finite duration of usefulness, making it important to defer treatment for as long as possible. This has created "L-dopa phobia," which may stand in the way of useful treatment. In spite of this controversy, there is uniform agreement that the appropriate time to treat is when the patient is beginning to be disabled. This varies from patient to patient and depends on age, employment status, nature of job, level of physical activity, concern about

  4. International EUREKA: Initialization Segment

    International Nuclear Information System (INIS)

    1982-02-01

    The Initialization Segment creates the starting description of the uranium market. The starting description includes the international boundaries of trade, the geologic provinces, resources, reserves, production, uranium demand forecasts, and existing market transactions. The Initialization Segment is designed to accept information of various degrees of detail, depending on what is known about each region. It must transform this information into a specific data structure required by the Market Segment of the model, filling in gaps in the information through a predetermined sequence of defaults and built in assumptions. A principal function of the Initialization Segment is to create diagnostic messages indicating any inconsistencies in data and explaining which assumptions were used to organize the data base. This permits the user to manipulate the data base until such time the user is satisfied that all the assumptions used are reasonable and that any inconsistencies are resolved in a satisfactory manner

  5. Initiating events frequency determination

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Vukovic, I.

    2004-01-01

    The paper describes work performed for the Nuclear Power Station (NPS). Work is related to the periodic initiating events frequency update for the Probabilistic Safety Assessment (PSA). Data for all relevant NPS initiating events (IE) were reviewed. The main focus was on events occurring during most recent operating history (i.e., last four years). The final IE frequencies were estimated by incorporating both NPS experience and nuclear industry experience. Each event was categorized according to NPS individual plant examination (IPE) initiating events grouping approach. For the majority of the IE groups, few, or no events have occurred at the NPS. For those IE groups with few or no NPS events, the final estimate was made by means of a Bayesian update with general nuclear industry values. Exceptions are rare loss-of-coolant-accidents (LOCA) events, where evaluation of engineering aspects is used in order to determine frequency.(author)

  6. Laboratory Impact Experiments

    Science.gov (United States)

    Horanyi, M.; Munsat, T.

    2017-12-01

    The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.

  7. Metabolomics for laboratory diagnostics.

    Science.gov (United States)

    Bujak, Renata; Struck-Lewicka, Wiktoria; Markuszewski, Michał J; Kaliszan, Roman

    2015-09-10

    Metabolomics is an emerging approach in a systems biology field. Due to continuous development in advanced analytical techniques and in bioinformatics, metabolomics has been extensively applied as a novel, holistic diagnostic tool in clinical and biomedical studies. Metabolome's measurement, as a chemical reflection of a current phenotype of a particular biological system, is nowadays frequently implemented to understand pathophysiological processes involved in disease progression as well as to search for new diagnostic or prognostic biomarkers of various organism's disorders. In this review, we discussed the research strategies and analytical platforms commonly applied in the metabolomics studies. The applications of the metabolomics in laboratory diagnostics in the last 5 years were also reviewed according to the type of biological sample used in the metabolome's analysis. We also discussed some limitations and further improvements which should be considered taking in mind potential applications of metabolomic research and practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  9. Korogwe Research Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob

    2012-01-01

    . It is a large vaccine trial programme simultaneously conducted in several countries in Africa funded by the Bill and Melinda Gates Foundation. The laboratory is an extension to a district hospital placed quite isolated and rural in the north-eastern part of Tanzania. It’s close to the equator and the climate...... and ceiling have been separated leaving a large space for natural ventilation creating a general chimney effect. To provide independent backup water supply all rainwater falling on the roof is collected and directed through a sand filter into a 100m3 subterranean water tank. All constructions, details...... and materials have been carefully selected to last a long time even in a future situation with limited maintenance. Except from the high-end lab equipment only local available materials have been used. All major spaces are reached from colonnades surrounding an inner calm and cool garden space equipped...

  10. Laboratory molecular spectroscopy

    International Nuclear Information System (INIS)

    Margolis, J.

    1982-04-01

    The precision required in making spectroscopic measurements is discussed. Remarks are directed specifically to vibration-rotation spectra rather than continuum absorptions. The ultimate precision that is required for line positions is related to the width of the lines which may be no narrower than the Doppler width. The spectroscopic methods considered are those which are of the most general value to the astronomers, those which acquire and can handle large volumes of spectra in digital form, or in a form which is compatible with computer analysis, and in a form which is at least internally consistent. The use of dye laser, grating instruments, and the most versatile instrument for laboratory spectroscopy, the Fourier transform spectrometer is discussed

  11. RCRA facility stabilization initiative

    International Nuclear Information System (INIS)

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program's management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies

  12. [ISO 15189 medical laboratory accreditation].

    Science.gov (United States)

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  13. The ideal laboratory information system.

    Science.gov (United States)

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  14. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  15. Decommissioning of the Fission Product Development Laboratory at Holifield National Laboratory

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1975-01-01

    The decontamination of the Fission Product Development Laboratory was initiated in FY 1975 after 17 years of processing fission product waste streams to produce commercial quantities of 90 Sr, 137 Cs, 144 Ce, and 147 Pm. The objective of the decommissioning program is the removal of all radiation and contamination areas in the facility to a level which will be compatible with the environment in the foreseeable future

  16. [Safety in the Microbiology laboratory].

    Science.gov (United States)

    Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L

    2015-01-01

    The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    Science.gov (United States)

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. The SEED Initiative

    Science.gov (United States)

    Teich, Carolyn R.

    2011-01-01

    Committed to fulfilling the promise of the green economy, the American Association of Community Colleges (AACC) launched the Sustainability Education and Economic Development (SEED) initiative (www.theseedcenter.org) in October 2010. The project advances sustainability and clean energy workforce development practices at community colleges by…

  19. Major New Initiatives

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Major New Initiatives. Multi-party multi-rate video conferencing OOPS. Live Lecture OOPS. Rural ATM Machine Vortex. Finger print detection HP-IITM. Medical Diagnostic kit NeuroSynaptic. LCD projection system TeNeT. Web Terminal MeTeL Midas. Entertainment ...

  20. Mixed-Initiative Clustering

    Science.gov (United States)

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  1. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  2. Next generation initiation techniques

    Science.gov (United States)

    Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans

    1993-01-01

    Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  4. Promoting Good Clinical Laboratory Practices and Laboratory Accreditation to Support Clinical Trials in Sub-Saharan Africa

    Science.gov (United States)

    Shott, Joseph P.; Saye, Renion; Diakité, Moussa L.; Sanogo, Sintry; Dembele, Moussa B.; Keita, Sekouba; Nagel, Mary C.; Ellis, Ruth D.; Aebig, Joan A.; Diallo, Dapa A.; Doumbo, Ogobara K.

    2012-01-01

    Laboratory capacity in the developing world frequently lacks quality management systems (QMS) such as good clinical laboratory practices, proper safety precautions, and adequate facilities; impacting the ability to conduct biomedical research where it is needed most. As the regulatory climate changes globally, higher quality laboratory support is needed to protect study volunteers and to accurately assess biological parameters. The University of Bamako and its partners have undertaken a comprehensive QMS plan to improve quality and productivity using the Clinical and Laboratory Standards Institute standards and guidelines. The clinical laboratory passed the College of American Pathologists inspection in April 2010, and received full accreditation in June 2010. Our efforts to implement high-quality standards have been valuable for evaluating safety and immunogenicity of malaria vaccine candidates in Mali. Other disease-specific research groups in resource-limited settings may benefit by incorporating similar training initiatives, QMS methods, and continual improvement practices to ensure best practices. PMID:22492138

  5. Laboratory testing the Anaconda.

    Science.gov (United States)

    Chaplin, J R; Heller, V; Farley, F J M; Hearn, G E; Rainey, R C T

    2012-01-28

    Laboratory measurements of the performance of the Anaconda are presented, a wave energy converter comprising a submerged water-filled distensible tube aligned with the incident waves. Experiments were carried out at a scale of around 1:25 with a 250 mm diameter and 7 m long tube, constructed of rubber and fabric, terminating in a linear power take-off of adjustable impedance. The paper presents some basic theory that leads to predictions of distensibility and bulge wave speed in a pressurized compound rubber and fabric tube, including the effects of inelastic sectors in the circumference, longitudinal tension and the surrounding fluid. Results are shown to agree closely with measurements in still water. The theory is developed further to provide a model for the propagation of bulges and power conversion in the Anaconda. In the presence of external water waves, the theory identifies three distinct internal wave components and provides theoretical estimates of power capture. For the first time, these and other predictions of the behaviour of the Anaconda, a device unlike almost all other marine systems, are shown to be in remarkably close agreement with measurements.

  6. Nuclear electronics laboratory manual

    International Nuclear Information System (INIS)

    1984-05-01

    The Nuclear Electronics Laboratory Manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. The manual does not include experiments of a basic nature, such as characteristics of different active electronics components. It starts by introducing small electronics blocks, employing one or more active components. The most demanding exercises instruct a student in the design and construction of complete circuits, as used in commercial nuclear instruments. It is expected that a student who completes all the experiments in the manual should be in a position to design nuclear electronics units and also to understand the functions of advanced commercial instruments which need to be repaired or maintained. The future tasks of nuclear electronics engineers will be increasingly oriented towards designing and building the interfaces between a nuclear experiment and a computer. The manual pays tribute to this development by introducing a number of experiments which illustrate the principles and the technology of interfacing

  7. Laboratory instruction and subjectivity

    Directory of Open Access Journals (Sweden)

    Elisabeth Barolli

    1998-09-01

    Full Text Available The specific aspects which determined the way some groups of students conducted their work in a university laboratory, made us understand the articulation of these groups´s dynamics, from elements that were beyond the reach of cognition. In more specific terms the conduction and the maintenance of the groups student´s dynamics were explicited based on a intergame between the non conscious strategies, shared anonymously, and the efforts of the individuals in working based on their most objective task. The results and issues we have reached so far, using a reference the work developed by W.R.Bion, with therapeutical groups, gave us the possibility for understanding the dynamics of the student´s experimental work through a new approach that approximates the fields of cognition and subjectivity. This approximation led us to a deeper reflection about the issues which may be involved in the teaching process, particularly in situations which the teacher deals with the class, organised in groups.

  8. ABT-773 (Abbott Laboratories).

    Science.gov (United States)

    Lawrence, L E

    2001-06-01

    ABT-773 is a macrolide antibacterial agent under development by Abbott Laboratories and Taisho Pharmaceutical Co Ltd for the potential treatment of bacterial infection [266579]. As of February 2001, ABT-773 had entered phase III trials in the US [398274]. Japanese phase II trials were expected to commence in June 2000 and a phase II trial is being designed for respiratory infections, with Abbott expecting filing in March 2002 [360455]. The bioavailability of ABT-773 in humans is unaffected by food [383228] and in a phase I, randomized, double-blind trial in healthy males only mild adverse effects, usually affecting the gastrointestinal system, were observed [383208]. Under an agreement, Abbott and Taisho are conducting joint research to discover new compounds; Abbott will have worldwide marketing, manufacturing and supply rights (except in Japan), and Taisho will receive royalties on Abbott's sales in consideration of granted rights. In Japan, the companies will co-market any resulting compounds [266579]. ABT-773 demonstrated good activity in vitro and in vivo against Streptococcus pneumoniae and Staphylococcus aureus [383229], [383231], and was highly potent even against macrolide-resistant [382149], [382150] and invasive [383782] S pneumoniae.

  9. Funding Initiatives | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Funding Initiatives ... The Fellowship Scheme for Women Scientists for societal programmes is initiative of the ... at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  10. Communications and Information Sharing (CIS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — TheCommunications and Information Sharing (CIS) Laboratory is a Public Safety interoperable communications technology laboratory with analog and digital radios, and...

  11. Director, Laboratory Animal Care and Use Section

    Data.gov (United States)

    Federal Laboratory Consortium — The NIAMS Laboratory Animal Care and Use Section (LACU) provides support to all NIAMS Intramural Research Program (IRP) Branches and Laboratories using animals. The...

  12. Sustaining Participatory Design Initiatives

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Dindler, Christian

    2014-01-01

    While many participatory design (PD) projects succeed in establishing new organisational initiatives or creating technology that is attuned to the people affected, the issue of how such results are sustained after the project ends remains an important challenge. We explore the challenge...... these various forms of sustainability may be pursued in PD practice and how they can become a resource in reflecting on PD activities. Finally, we discuss implications for PD practice, suggesting that a nuanced conception of sustainability and how it may relate to PD practice are useful resources for designers...... of sustaining PD initiatives beyond the individual project and discuss implications for PD practice. First, based on current PD literature, we distinguish between four ideal typical forms of sustainability: maintaining, scaling, replicating and evolving. Second, we demonstrate from a case study how...

  13. Initial management of breastfeeding.

    Science.gov (United States)

    Sinusas, K; Gagliardi, A

    2001-09-15

    Breast milk is widely accepted as the ideal source of nutrition for infants. In order to ensure success in breastfeeding, it is important that it be initiated as early as possible during the neonatal period. This is facilitated by skin-to-skin contact between the mother and infant immediately following birth. When possible, the infant should be allowed to root and latch on spontaneously within the first hour of life. Many common nursery routines such as weighing the infant, administration of vitamin K and application of ocular antibiotics can be safely delayed until after the initial breastfeeding. Postpartum care practices that improve breastfeeding rates include rooming-in, anticipatory guidance about breastfeeding problems and the avoidance of formula supplementation and pacifiers.

  14. Self-initiated expatriates

    DEFF Research Database (Denmark)

    Selmer, Jan; Lauring, Jakob

    2014-01-01

    Purpose – As it has been suggested that adult third-culture kids may be more culturally adaptable than others, they have been labelled “the ideal” expatriates. In this article, we explore the adjustment of self-initiated expatriate academics in Hong Kong, comparing adult third-culture kids...... with adult mono-culture kids. Design/methodology/approach – We use survey results from 267 self-initiated expatriate academics in Hong Kong. Findings – Exploratory results show that adult third-culture kids had a higher extent of general adjustment. No significant results were found in relation...... to interaction adjustment and job adjustment. We also found that recent expatriate experiences generally had a positive association with the adjustment of adult mono-culture kids, but this association only existed in terms of general adjustment for adult third-culture kids. Originality/value – Once corroborated...

  15. INITIAL TRAINING OF RESEARCHERS

    Directory of Open Access Journals (Sweden)

    Karina Alejandra Cruz-Pallares

    2015-07-01

    Full Text Available The document presents results of a research that used as strategy a complementary training project with thirty-three students of a Bachelors Degree in Primary School 1997(DPS,1997 of an Education Faculty for the initial training of investigators, applied by four teachers members of the academic research group in Mexico; that develops through process of action research methodology. Highlighted in results is the strengthening of the competition of reading, understanding and writing scientific texts, which is analogous to the first feature of the graduate profile called intellectual skills. Among the conclusions it is emphasized that the initial training of teachers in a task that is quite interesting, challenging and complex, as is the educational complex phenomenon.

  16. Dynamics of Laboratory Simulated Microbursts

    Science.gov (United States)

    Alahyari, Abbas Alexander

    1995-01-01

    A downburst (or microburst) is an intense, localized downdraft of cold air which reaches the Earth and spreads radially outward after it impinges on the ground. Downdrafts are typically induced by rapid evaporation of moisture or melting of hail. The divergent outflow created by a microburst produces strong winds in opposite directions. The sudden changes in the speed and direction of both horizontal and vertical winds within a microburst can create hazardous conditions for aircraft within 1000 ft of the ground, particularly during takeoff and landing. The objective of this investigation was to obtain detailed measurements within a laboratory -simulated version of this flow. The flow was modeled experimentally by releasing a small volume of heavier fluid into a less dense ambient surrounding. The heavier fluid impinged on a horizontal plate which represented the ground. Indices of refraction of the light and heavy fluid were matched to yield clear photographic images. Particle image velocimetry (PIV) was used to obtain detailed maps of the instantaneous velocity fields within horizontal and vertical cross sections through the flow. Laser-induced fluorescence (LIF) was used to determine the local concentration of heavy fluid within the downburst flow at different times. PIV measurements showed that the leading edge of the falling fluid rolled up into a vortex ring which then impacted on the ground and expanded radially outward. After touchdown, the largest horizontal velocities occurred beneath the vortex ring but also extended over some distance upstream of the vortex core. PIV results showed small vertical velocity gradients in the region below the core of the vortex ring. The effects of parameters such as initial release height and release volume shape were investigated. Using appropriate length and time scales, the measured velocities were scaled to and compared with previously studied atmospheric microbursts. The experimental data generally agree well with

  17. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  18. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-04-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed are (1) to accomplish the purpose of the laboratory; (2) to protect the environment, (3) to provide safe working conditions; and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of a well engineered plutonium or transplutonium laboratory are given

  19. Laboratories new to the ICRM.

    Science.gov (United States)

    Karam, Lisa; Anagnostakis, Marios J; Gudelis, Arunas; Marsoem, Pujadi; Mauring, Alexander; Wurdiyanto, Gatot; Yücel, Ülkü

    2012-09-01

    The Scientific Committee of the ICRM decided, for the 2011 Conference, to present laboratories that are at a key developmental stage in establishing, expanding or applying radionuclide metrology capabilities. The expansion of radionuclide metrology capabilities is crucial to meet evolving and emerging needs in health care, environmental monitoring, and nuclear energy. Five laboratories (from Greece, Lithuania, Indonesia, Norway and Turkey) agreed to participate. Each laboratory is briefly introduced, and examples of their capabilities and standardization activities are discussed. Published by Elsevier Ltd.

  20. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed, are (1) to accomplish the purpose of the laboratory, (2) to protect the environment, (3) to provide safe working conditions, and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of well-engineered plutonium or transplutonium laboratory are given. (author)

  1. An internet of laboratory things

    OpenAIRE

    Drysdale, Timothy D.; Braithwaite, N. St.J.

    2017-01-01

    By creating “an Internet of Laboratory Things” we have built a blend of real and virtual laboratory spaces that enables students to gain practical skills necessary for their professional science and engineering careers. All our students are distance learners. This provides them by default with the proving ground needed to develop their skills in remotely operating equipment, and collaborating with peers despite not being co-located. Our laboratories accommodate state of the art research grade...

  2. The advanced thermionics initiative...program update

    International Nuclear Information System (INIS)

    Lamp, T.R.; Donovan, B.D.

    1993-01-01

    The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs

  3. Armor breakup and reformation in a degradational laboratory experiment

    OpenAIRE

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-01-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1mm sand fraction and two gravel fractions (6 and 10mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport condit...

  4. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  5. The Computational Sensorimotor Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Computational Sensorimotor Systems Lab focuses on the exploration, analysis, modeling and implementation of biological sensorimotor systems for both scientific...

  6. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  7. [Laboratory accreditation and proficiency testing].

    Science.gov (United States)

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  8. Polymer Processing and Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to process and evaluate polymers for use in nonlinear optical, conductive and structural Air Force applications. Primary capabilities are extrusion of...

  9. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  10. Are laboratory tests always needed? Frequency and causes of laboratory overuse in a hospital setting.

    Science.gov (United States)

    Cadamuro, Janne; Gaksch, Martin; Wiedemann, Helmut; Lippi, Giuseppe; von Meyer, Alexander; Pertersmann, Astrid; Auer, Simon; Mrazek, Cornelia; Kipman, Ulrike; Felder, Thomas K; Oberkofler, Hannes; Haschke-Becher, Elisabeth

    2018-04-01

    Inappropriate utilization of laboratory resources is an increasing concern especially in high-throughput facilities. Until now, no reliable information has been published addressing to which extent laboratory results are actually used for clinical decision-making. Therefore, we aimed to close this gap using a novel retrospective approach including a survey of clinicians and nurses. We retrospectively evaluated the number of re-orders for potassium (K), lactate dehydrogenase (LD), aspartate-aminotransferase (AST), activated partial thromboplastin-time (APTT) and prothrombin-time/INR (PT/INR), after the initial order had to be cancelled due to preanalytical non-conformities. We analyzed subgroups regarding time to re-order, ward and sample priority (urgent vs. routine). Subsequently, we surveyed clinicians and nurses, asking for their estimate of the amount of failed re-orders as well as for possible reasons. From initially cancelled tests, only ~20% of K, LD, AST and ~30% of APTT and PT/INR tests were re-ordered within 24 h. 70% of the investigated clinical chemistry and 60% of coagulation tests were re-ordered one week after cancellation or not at all. Survey participants quite accurately estimated these numbers. Routine laboratory panels, short stay of out-patients, obsolete test results and avoiding additional phlebotomies were the main reasons for not re-ordering cancelled tests. Overall, 60-70% of test results in the investigated assays ordered in a high throughput laboratory are potentially inappropriate or of doubtful clinically importance. Although clinicians and nurses are aware of this situation, it is the duty of laboratory specialists to overcome overutilization in close collaboration with all involved healthcare workers. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. Inter-laboratory comparisons. Determination of actinides in excreta

    International Nuclear Information System (INIS)

    Berard, P.; Cavadore, D.; Harduin, J.C.

    1995-01-01

    Inter-laboratory tests are a means of assessing the analytical coherence of medical laboratories. In radio toxicology, this kind of exercise makes it possible to keep up with laboratory know-how and with the evolution and relative performances of analytical techniques (precision and reproducibility). However, the goal of the laboratories taking part in these annual exercises is not only to check the accuracy of their results. The analytical discussions and the chance to compare experience enrich the groups general competence. French biologists have been organizing annual radio toxicology intercomparison exercises since 1978. The exercises are carried out within the framework of a working group (GT1) operating under the aegis of the French Atomic Energy Commission's (CEA) Medical Coordinator. Using reports and diagrams which present the results obtained by the participants in the form of syntheses, the authors describe how the exercises for determining actinides in excreta (urine and faeces) are organized, how the results are evaluated in terms of the analytical methods used, and the improvements made in analytical and metrological performance. Up until 1985, these exercises were limited to French laboratories. Since then, the exercises have acquired an international dimension, opening up to include interested foreign radio chemists, initially from European laboratories, and now from laboratories worldwide. At the present time, 35 laboratories representing 9 countries take part regularly in these intercomparison exercises. (author). 6 refs., 9 figs

  12. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  13. Knowledge and practices of pharmaceutical laboratory workers on laboratory safety

    Directory of Open Access Journals (Sweden)

    Esra Emerce

    2017-09-01

    Full Text Available Laboratories are classified as very hazardous workplaces. Objective: The aim of this descriptive study was to determine the knowledge and practice of laboratory safety by analysts and technicians in the laboratories of the Turkish Medicine and Medical Devices Agency. Methods:  85.0% (n=93 of the workers (n=109 was reached. A pre-tested, laboratory safety oriented, self-administered questionnaire was completed under observation. Results: Participants were mostly female (66,7%, had 12.8±8.2 years of laboratory experience and worked 24.6±10.3 hours per week. 53.8% of the employees generally worked with flammable and explosive substances, 29.0% with acute toxic or carcinogenic chemicals and 30.1% with physical dangers. Of all surveyed, 14.0% had never received formal training on laboratory safety. The proportion of ‘always use’ of laboratory coats, gloves, and goggles were 84.9%, 66.7%, and 6.5% respectively. 11.9% of the participants had at least one serious injury throughout their working lives and 24.7% had at least one small injury within the last 6 months. Among these injuries, incisions, bites and tears requiring no stiches (21.0% and the inhalation of chemical vapors (16.1% took first place. The mean value for the number of correct responses to questions on basic safety knowledge was 65.4±26.5, out of a possible 100. Conclusion: Overall, the participants have failed in some safety practices and have been eager to get regular education on laboratory safety.  From this point onwards, it would be appropriate for the employers to organize periodic trainings on laboratory safety.Keywords: Health personnel, laboratory personnel, occupational health, occupational safety, pharmacy

  14. McCormick to Aid Frederick National Laboratory in Developing RAS Cancer Genetics Initiative | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frank McCormick, Ph.D., director of the Helen Diller Family Comprehensive Cancer Center at the University of California, San Francisco, and associate dean of the UCSF School of Medicine, has signed a consulting agreement with SAIC-Frederick Inc. to w

  15. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  16. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  17. UNLV Nuclear Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hechanova, Anthony E.; Johnson, Allen; O' Toole, Brendan; Trabia, Mohamed; Peterson, Per

    2012-10-25

    Evaluation of the Crack growth rate (CGR) of Alloy 617 and Alloy 276 under constant K at ambient temperature has been completed. Creep deformation of Alloy 230 at different temperature range and load level has been completed and heat to heat variation has been noticed. Creep deformation study of Alloy 276 has been completed under an applied initial stress level of 10% of yield stress at 950ºC. The grain size evaluation of the tested creep specimens of Alloy 276 has been completed.

  18. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  19. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  20. Initiation of slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Hanratty, T.J.; Woods, B.D. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31

    The initiation of slug flow in a horizontal pipe can be predicted either by considering the stability of a slug or by considering the stability of a stratified flow. Measurements of the shedding rate of slugs are used to define necessary conditions for the existence of a slug. Recent results show that slugs develop from an unstable stratified flow through the evolution of small wavelength waves into large wavelength waves that have the possibility of growing to form a slug. The mechanism appears to be quite different for fluids with viscosities close to water than for fluids with large viscosities (20 centipoise).