WorldWideScience

Sample records for stable water injection

  1. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  2. Reactor water injection facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-05-02

    A steam turbine and an electric generator are connected by way of a speed convertor. The speed convertor is controlled so that the number of rotation of the electric generator is constant irrespective of the speed change of the steam turbine. A shaft coupler is disposed between the turbine and the electric generator or between the turbine and a water injection pump. With such a constitution, the steam turbine and the electric generator are connected by way of the speed convertor, and since the number of revolution of the electric generator is controlled to be constant, the change of the number of rotation of the turbine can be controlled irrespective of the change of the number of rotation of the electric generator. Accordingly, the flow rate of the injection water from the water injection pump to a reactor pressure vessel can be controlled freely thereby enabling to supply stable electric power. (T.M.)

  3. Water injection dredging

    NARCIS (Netherlands)

    Verhagen, H.J.

    2000-01-01

    Some twenty years ago WIS-dredging has been developed in the Netherlands. By injecting water into the mud layer, the water content of the mud becomes higher, it becomes fluid mud and will start to flow. The advantages of this system are that there is no need of transporting the mud in a hopper, and

  4. Quasi-stable injection channels in a wakefield accelerator

    OpenAIRE

    Wiltshire-Turkay, Mara; Farmer, John P.; Pukhov, Alexander

    2016-01-01

    The influence of initial position on the acceleration of externally-injected electrons in a plasma wakefield is investigated. Test-particle simulations show previously unobserved complex structure in the parameter space, with quasi-stable injection channels forming for particles injected in narrow regions away from the wake centre. Particles injected into these channels remain in the wake for a considerable time after dephasing, and as a result achieve significantly higher energy than their n...

  5. Quasi-stable injection channels in a wakefield accelerator

    CERN Document Server

    Wiltshire-Turkay, Mara; Pukhov, Alexander

    2016-01-01

    Particle-driven plasma-wakefield acceleration is a promising alternative to conventional electron acceleration techniques, potentially allowing electron acceleration to energies orders of magnitude higher than can currently be achieved. In this work we investigate the dependence of the energy gain on the position at which electrons are injected into the wake. Test particle simulations show previously unobserved complex structure in the parameter space, with quasi-stable injection channels forming for particles injected in narrow regions away from the centre of the wake. The result is relevant to the planning and tuning of experiments making use of external injection.

  6. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    Science.gov (United States)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  7. Allan Hills Stable Water Isotopes, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice...

  8. Modelling stable water isotopes: Status and perspectives

    Directory of Open Access Journals (Sweden)

    Werner M.

    2010-12-01

    Full Text Available Modelling of stable water isotopes H2 18O and HDO within various parts of the Earth’s hydrological cycle has clearly improved our understanding of the interplay between climatic variations and related isotope fractionation processes. In this article key principles and major research results of stable water isotope modelling studies are described. Emphasis is put on research work using explicit isotope diagnostics within general circulation models as this highly complex model setup bears many resemblances with studies using simpler isotope modelling approaches.

  9. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  10. Stable injection locking of diode lasers through a phase-modulated double phase-conjugate mirror

    Science.gov (United States)

    Iida, Kenichi; Tan, Xiaodi; Shimura, Tsutomu; Kuroda, Kazuo

    1997-04-01

    The stable injection locking of 0.8- m diode lasers with a double phase-conjugate mirror (DPCM) was achieved. Phase modulation by piezoelectric transducers allowed us to keep two input beams of the DPCM mutually incoherent during locking. We preserved the high performance of the DPCM and retained stable locking for more than an hour.

  11. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    Science.gov (United States)

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  12. Water Injection Feasibility for Boeing 747 Aircraft

    Science.gov (United States)

    Daggett, David L.

    2005-01-01

    Can water injection be offered at a reasonable cost to large airplane operators to reduce takeoff NO( sub x) emissions? This study suggests it may be possible. This report is a contract deliverable to NASA Glenn Research Center from the prime contractor, The Boeing Commercial Airplane Company of Seattle, WA. This study was supported by a separate contract to the Pratt & Whitney Engine Company of Hartford, CT (contract number NNC04QB58P). Aviation continues to grow and with it, environmental pressures are increasing for airports that service commercial airplanes. The feasibility and performance of an emissions-reducing technology, water injection, was studied for a large commercial airplane (e.g., Boeing 747 with PW4062 engine). The primary use of the water-injection system would be to lower NOx emissions while an important secondary benefit might be to improve engine turbine life. A tradeoff exists between engine fuel efficiency and NOx emissions. As engines improve fuel efficiency, by increasing the overall pressure ratio of the engine s compressor, the resulting increased gas temperature usually results in higher NOx emissions. Low-NO(sub x) combustors have been developed for new airplanes to control the increases in NO(sub x) emissions associated with higher efficiency, higher pressure ratio engines. However, achieving a significant reduction of NO(sub x) emissions at airports has been challenging. Using water injection during takeoff has the potential to cut engine NO(sub x) emissions some 80 percent. This may eliminate operating limitations for airplanes flying into airports with emission constraints. This study suggests an important finding of being able to offer large commercial airplane owners an emission-reduction technology that may also save on operating costs.

  13. Stable injection locking of diode lasers through a phase-modulated double phase-conjugate mirror

    Energy Technology Data Exchange (ETDEWEB)

    Iida, K.; Tan, X.; Shimura, T.; Kuroda, K. [Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106 (Japan)

    1997-04-01

    The stable injection locking of 0.8-{mu}m diode lasers with a double phase-conjugate mirror (DPCM) was achieved. Phase modulation by piezoelectric transducers allowed us to keep two input beams of the DPCM mutually incoherent during locking. We preserved the high performance of the DPCM and retained stable locking for more than an hour. {copyright} 1997 Optical Society of America

  14. Characterization of pore volume of cumulative water injection distribution

    Directory of Open Access Journals (Sweden)

    Guoqing Feng

    2015-06-01

    Full Text Available Pore volume of Cumulative water injection is one of the factors for evaluating water flood effect in a water flood oil field. In previous study, there were limited lab studies for evaluating oil displacement efficiency. A method to characterize the distribution of pore volume of cumulative water injection is proposed in this paper, and it is verified by a five-spot water flooding streamline simulation model. The logarithmic relation between pore volume of cumulative water injection and water saturation is established by regression. An inflection point and limit point of cumulative water injection pore volume are identified. Current simulation model indicates inflection point appears after 2–5 pore volume (PV injection, and limit point appears after 15–25 PV injection. Both inflection and limit point vary in different regions of reservoir.

  15. Saturate hydraulic conductivity, water stable aggregates and soil ...

    African Journals Online (AJOL)

    Saturate hydraulic conductivity, water stable aggregates and soil organic matter in a sandy-loam soil in Ikwuano lga of Abia state. ... carbon content of the soil. . Keywords: Toposequence, Water stable aggregates, Saturated hydraulic conductivity, Organic carbon, Slope position. Agro-Science Vol. 4 (1) 2005: pp. 34-37.

  16. Using stable isotopes to examine watershed connectivity to downstream waters

    Science.gov (United States)

    Water bodies within the USA are protected by the US Clean Water Act when they have a significant nexus to downstream navigable waters. As a research scientist with the US Environmental Protection Agency, I have used water stable isotopes to examine hydrologic connectivity dynami...

  17. Addiction treatment and stable housing among a cohort of injection drug users.

    Directory of Open Access Journals (Sweden)

    Anita Palepu

    Full Text Available Unstable housing and homelessness is prevalent among injection drug users (IDU. We sought to examine whether accessing addiction treatment was associated with attaining stable housing in a prospective cohort of IDU in Vancouver, Canada.We used data collected via the Vancouver Injection Drug User Study (VIDUS between December 2005 and April 2010. Attaining stable housing was defined as two consecutive "stable housing" designations (i.e., living in an apartment or house during the follow-up period. We assessed exposure to addiction treatment in the interview prior to the attainment of stable housing among participants who were homeless or living in single room occupancy (SRO hotels at baseline. Bivariate and multivariate associations between the baseline and time-updated characteristics and attaining stable housing were examined using Cox proportional hazard regression models.Of the 992 IDU eligible for this analysis, 495 (49.9% reported being homeless, 497 (50.1% resided in SRO hotels, and 380 (38.3% were enrolled in addiction treatment at the baseline interview. Only 211 (21.3% attained stable housing during the follow-up period and of this group, 69 (32.7% had addiction treatment exposure prior to achieving stable housing. Addiction treatment was inversely associated with attaining stable housing in a multivariate model (adjusted hazard ratio [AHR]=0.71; 95% CI: 0.52-0.96. Being in a partnered relationship was positively associated with the primary outcome (AHR=1.39; 95% CI: 1.02-1.88. Receipt of income assistance (AHR=0.65; 95% CI: 0.44-0.96, daily crack use (AHR=0.69; 95% CI: 0.51-0.93 and daily heroin use (AHR=0.63; 95% CI: 0.43-0.92 were negatively associated with attaining stable housing.Exposure to addiction treatment in our study was negatively associated with attaining stable housing and may have represented a marker of instability among this sample of IDU. Efforts to stably house this vulnerable group may be occurring in contexts

  18. Radiotracer investigations in oil production and water injection wells

    International Nuclear Information System (INIS)

    Eapen, A.C.; Jain, S.K.; Kirti

    1977-01-01

    Injection of gamma emitting radiotracers into oil wells followed by logging provides information on several aspects such as the identification of zones of seepage of water in the water injection wells and also the location of source of water entering oil producting wells. The experience gained in the application of bromine-82 and rubidium-86 as radiotracers in such studies at the Ankleshwar and Kalol oil fields in Gujarat and Nazira in Assam has been briefly reported. (author)

  19. Particle retention in porous media: Applications to water injectivity decline

    Energy Technology Data Exchange (ETDEWEB)

    Wennberg, Kjell Erik

    1998-12-31

    This thesis studies the problem of migration and deposition of colloidal particles within porous media, theoretically and by computerized simulation. Special emphasis is put on the prediction of injectivity decline in water injection wells due to inherent particles in the injection water. The study of particle deposition within porous media requires a correct prediction of the deposition rate or filtration coefficient. A thorough review of the modeling approaches used in the past are combined with new ideas in order to arrive at an improved model for the prediction of the filtration coefficient. A new way of determining the transition time for the dominant deposition mechanism to change from internal deposition to external cake formation is proposed. From this fundamental theory, equations are given for water injectivity decline predictions. A computer program called WID for water injectivity decline predictions was developed. Using water quality, formation properties, injection rate/pressure and completion information as input, WID predicts decline in vertical and horizontal injection wells with openhole, perforated and fractured completions. The calculations agree fairly well with field data; in some cases the agreement is excellent. A poor match in a few cases indicates that more mechanisms may be responsible for injectivity decline than those presently accounted for by the simulator. The second part of the study deals with a theoretical investigation of the multi-dimensional nature of particle deposition in porous media. 112 refs., 100 figs., 9 tabs.

  20. Divergence of stable isotopes in tap water across China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang

    2017-03-02

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presents typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale. Title: Divergence of stable isotopes in tap water across China Authors: Zhao, SH; Hu, HC; Tian, FQ; Tie, Q; Wang, LX; Liu, YL; Shi, CX Source: SCIENTIFIC REPORTS, 7 10.1038/srep43653 MAR 2 2017

  1. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    Science.gov (United States)

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.

  2. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  3. Packaged water-injection plant aimed at offshore use

    Energy Technology Data Exchange (ETDEWEB)

    1977-05-02

    A packaged, fully instrumented water treatment and injection system for offshore use has been designed by the Aker Group of Oslo, Norway. The design also could be used on shore. Its standard Akar WIP 50 plant is rated at 50,000-bpd capacity at 3,000 psi injection pressure. Units may be arranged to achieve may treatment and injection capability. Systems use treated seawater, produced water, fresh water or ground water. Water supply is chlorinated and coarse-filtered at the system intake. Water carried through plastic, Eternit, or epoxy coated pipe will not need further treatment (deaeration for example) at the intake, Aker points out. Water injected into producing formations meets well-defined specifications. Before injection, water is filtered to reduce contaminants to an acceptable level. The standard degree of filtration is finer than 10 mu which helps to avoid blocking wells. Filters are simple in design and efficient in operation. Dependability and maintenance ease are design considerations. Filters have small external dimensions, are lightweight, and provide guaranteed degrees of filtration. A self-cleaning filter (50 mu size) can be put ahead of the fine filter to remove larger particles. Vacuum stripping is seen as the oxygen-removal method for the WIP 50.

  4. Aberrant water homeostasis detected by stable isotope analysis.

    Directory of Open Access Journals (Sweden)

    Shannon P O'Grady

    Full Text Available While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose, few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (delta2H and oxygen (delta18O isotope ratios in body water. Additionally, we show that the delta2H and delta18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis.

  5. Stable soap and water sponges doped with metal nanoparticles

    NARCIS (Netherlands)

    Gaikwad, A.V.; Verschuren, P.; van der Loop, T.; Rothenberg, G.; Eiser, E.

    2009-01-01

    This paper presents various aspects of surfactant/oil/water L3 phases. Although these so-called sponge phases are usually stable only within a narrow temperature range, we show here that they can be stabilized over a larger phase space by doping with metal nanoparticle suspensions. We make and study

  6. The separation of stable water-in-oil emulsions

    International Nuclear Information System (INIS)

    Velicogna, D.; Koundakjiian, A.; Beausejour, I.

    1993-01-01

    Stable oil-in-water emulsions are a major problem in the recovery of spilled oils. Such emulsions can contain as little as 10% oil and can have properties very different from the original oils, making their storage and disposal difficult. These problems have led to experiments testing the feasibility of a process for separating these stable emulsions into dischargeable water and reusable oil. The technique investigated involves use of a recyclable solvent to remove the oil and subsequent distillation and/or membrane treatment to recover the oil and recycle the solvent. Results of preliminary tests show that stable water-in-oil emulsions can be separated quite readily with a regenerated solvent system. The only products of these systems are oil, which can be sent to a refinery, and dischargeable water. The recycled solvent can be used many times without any significant decrease in separation efficiency. In order to enhance the throughput of the system, a solvent vapor stripping method was invented. This stripping method also improves the quality of the products and the recycled solvent. Membrane methods can be used as a post-treatment for the produced water in order to achieve more adequate compliance with discharge limits. 4 refs., 3 figs., 5 tabs

  7. Precipitation and stream water stable isotope data from the Marys River, Oregon in water year 2015.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Water stable isotope data collected from a range of streams throughout the Marys River basin in water year 2015, and precipitation data collected within the basin at...

  8. Strategies for stable water splitting via protected photoelectrodes

    DEFF Research Database (Denmark)

    Bae, Dowon; Seger, Brian; Vesborg, Peter Christian Kjærgaard

    2017-01-01

    Photoelectrochemical (PEC) solar-fuel conversion is a promising approach to provide clean and storable fuel (e.g., hydrogen and methanol) directly from sunlight, water and CO2. However, major challenges still have to be overcome before commercialization can be achieved. One of the largest barriers...... photocathodes. In addition, we review protection layer approaches and their stabilities for a wide variety of experimental photoelectrodes for water reduction. Finally, we discuss key aspects which should be addressed in continued work on realizing stable and practical PEC solar water splitting systems....

  9. Multi-Phase Modeling of Rainbird Water Injection

    Science.gov (United States)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  10. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter permeabil......Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  11. Water conservation and allocation guideline for oilfield injection

    International Nuclear Information System (INIS)

    2006-01-01

    This paper was prepared as a guide for regulatory agencies and developers using non-saline water sources in enhanced oil recovery (EOR) schemes. A systems approach was used to achieve specific environmental outcomes that adhered to the Water Conservation and Allocation Policy for Oilfield Injection. The guide was applicable to licence renewal applications for projects operating and licensed to use non-saline water resources, as well as new licence applications for oilfield injection use. The guide provided recommended water conservation practices and application requirements, and outlined regulatory procedures and steps for obtaining a Water Act licence. The guideline was prepared to eliminate the use of non-saline water in EOR projects where feasible alternatives existed, as well as to identify areas with water shortages and reduce the use of non-saline water. The guide included monitoring and reporting requirements to improve the evaluation of water use practices and outlined current initiatives to address water conservation and research. It was concluded that outcomes from the program will include reliable quality water supplies for a sustainable economy, healthy aquatic ecosystems, and safe, secure drinking water supplies for Albertans. 3 tabs., 5 figs

  12. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  13. Optimization of post-run corrections for water stable isotope measurements by laser spectroscopy

    Science.gov (United States)

    van Geldern, Robert; Barth, Johannes A. C.

    2013-04-01

    Light stable isotope analyses of hydrogen and oxygen of water are used in numerous aquatic studies from various scientific fields. The advantage of using stable isotope ratios is that water molecules serve as ubiquitous and already present natural tracers. Traditionally, the samples were analyzed in the laboratory by isotope ratio mass spectrometry (IRMS). Within recent years these analyses have been revolutionized by the development of new isotope ratio laser spectroscopy (IRIS) systems that are said to be cheaper, more robust and mobile compared to IRMS. Although easier to operate, laser systems also need thorough calibration with international reference materials and raw data need correction for analytical effects. A major issue in systems that use liquid injection via a vaporizer module is the memory effect, i.e. the carry-over from the previous analyzed sample in a sequence. This study presents an optimized and simple post-run correction procedure for liquid water injection developed for a Picarro water analyzer. The Excel(TM) template will rely exclusively on standard features implemented in MS Office without the need to run macros, additional code written in Visual Basic for Applications (VBA) or to use a database-related software such as MS Access or SQL Server. These protocols will maximize precision, accuracy and sample throughput via an efficient memory correction. The number of injections per unknown sample can be reduced to 4 or less. This procedure meets the demands of faster throughput with reduced costs per analysis. Procedures were verified by an international proficiency test and traditional IRMS techniques. The template is available free for scientific use from the corresponding author or the journals web site (van Geldern and Barth, 2012). References van Geldern, R. and Barth, J.A.C. (2012) Limnol. Oceanogr. Methods 10:1024-1036 [doi: 10.4319/lom.2012.10.1024

  14. Irradiation Sterilized Gelatin-Water-Glycerol Ternary Gel as an Injectable Carrier for Bone Tissue Engineering.

    Science.gov (United States)

    Zhao, Yantao; Han, Liwei; Yan, Jun; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2017-01-01

    Injectable gelatin gels offer an attractive option for filling bone defects. The challenge is to fabricate gelatin gels with optimal gelation properties, which can be irradiation sterilized. Here, a gelatin-water-glycerol (GWG) gel is reported for use as a broad-spectrum injectable carrier. This ternary gel is high in glycerol and low in water, and remains stable after gamma irradiation at doses (25 kGy). As an injectable gel, it remains a viscous solution at gelatin concentrations ≤2.0%, at room temperature. Its storage modulus increases dramatically and eventually exceeds the loss modulus around 46-50 °C, indicating a transition from a liquid-like state to an elastic gel-like state. This ternary gel ranges significantly in terms of storage modulus (12-1700 Pa) while demonstrating a narrow pH range (5.58-5.66), depending on the gelatin concentration. Therefore, it can be loaded with a variety of materials. It is highly cytocompatible compared with saline in vivo and culture media in vitro. When loaded with demineralized bone matrix, the composites show favorable injectability, and excellent osteogenesis performance, after irradiation. These features can be attributed to high hydrophilicity and fast degradability. These findings justify that this ternary gel is promising as an irradiation-sterilized and universal injectable delivery system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment

    Science.gov (United States)

    Mark B. Green; Bethany K. Laursen; John L. Campbell; Kevin J. McGuire; Eric P. Kelsey

    2015-01-01

    Stable water isotopes provide a means of tracing many hydrologic processes, including poorly understood dynamics like soil water interactions with the atmosphere. We present a four-year dataset of biweekly water isotope samples from eight fluxes and stores in a headwater catchment at the Hubbard Brook Experimental Forest, New Hampshire, USA. We use Dansgaard's...

  16. Measuring and Modeling the Displacement of Connate Water in Chalk Core Plugs during Water Injection

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Aage, Helle Karina; Andersen, Bertel Lohmann

    2006-01-01

    The movement of connate water spiked with gamma emitting 22Na was studied during laboratory water flooding of oil saturated chalk from a North Sea oil reservoir. Using a one dimensional gamma monitoring technique is was observed that connate water is piled-up at the front of the injection water...... and forms a mixed water bank with almost 100% connate water in the front behind which a gradual transition to pure injection water occurs. This result underpins log interpretations from waterflooded chalk reservoirs. An ad hoc model was set up by use of the results, and the process was examined...

  17. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao

    2015-06-01

    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  18. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME – water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600 rpm and 4 bar BMEP load conditions. The fuel injection and combustion processes were observed and analysed using endoscopes and a digital camera. The temperature distribution in the combustion chamber was analysed quantitatively using the two-colour method. The injection and combustion phenomena were described and compared.A way to reduce NOX formation in the combustion chamber of diesel engines by adding water in the combustion zone was presented. Evaporating water efficiently lowers the peak flame temperature and the temperature in the post-flame zone. For diesel engines, there is an exponential relationship between NOX emissions and peak combustion temperatures. The energy needed to vaporize the water results in lower peak temperatures of the combusted gases, with a consequent reduction in nitrogen oxide formation. The experimental results show up to 50 % NOX emission reduction with the use of 30% water in an RME emulsion, with unchanged engine performance.

  19. Maintenance and Recovery of Water System for Injection (WFI)

    International Nuclear Information System (INIS)

    Wan Anuar Wan Awang; Ahmad Firdaus Jalil; Wan Mohd Firdaus Wan Ishak

    2015-01-01

    Water system for injection (WFI) is one of the main component in manufacturing pharmaceutical materials and radiopharmaceuticals. This system accredited in 2005. Water quality produced analyzed and give the unsatisfied results. The operation of WFI was stopped temporarily due to technical problems. In 2013, recovery works were implemented with budget of RM 226,500.00. Comprehensive maintenance were implemented by Rykertech (Asia) Sdn. Bhd. With duration of 24 months (October 2014 until September 2016) with cost RM 473,550.00. Now, this system operated in good condition and produced water that meet with the specifications. (author)

  20. An emergency water injection system (EWIS) for future CANDU reactors

    International Nuclear Information System (INIS)

    Marques, Andre L.F.; Todreas, Neil E.; Driscoll, Michael J.

    2000-01-01

    This paper deals with the investigation of the feasibility and effectiveness of water injection into the annulus between the calandria tubes and the pressure tubes of CANDU reactors. The purpose is to provide an efficient decay heat removal process that avoids permanent deformation of pressure tubes severe accident conditions, such as loss of coolant accident (LOCA). The water injection may present the benefit of cost reduction and better actuation of other related safety systems. The experimental work was conducted at the Massachusetts Institute of Technology (MIT), in a setup that simulated, as close as possible, a CANDU bundle annular configuration, with heat fluxes on the order of 90 kW/m 2 : the inner cylinder simulates the pressure tube and the outer tube represents the calandria tube. The experimental matrix had three dimensions: power level, annulus water level and boundary conditions. The results achieved overall heat transfer coefficients (U), which are comparable to those required (for nominal accident progression) to avoid pressure tube permanent deformation, considering current CANDU reactor data. Nonetheless, future work should be carried out to investigate the fluid dynamics such as blowdown behavior, in the peak bundle, and the system lay-out inside the containment to provide fast water injection. (author)

  1. The research of new type stratified water injection process intelligent measurement technology

    Science.gov (United States)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  2. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  3. Measuring and Modeling the Displacement of Connate Water in Chalk Core Plugs during Water Injection

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Aage, Helle Karina; Andersen, Bertel Lohmann

    2006-01-01

    and forms a mixed water bank with almost 100% connate water in the front behind which a gradual transition to pure injection water occurs. This result underpins log interpretations from waterflooded chalk reservoirs. An ad hoc model was set up by use of the results, and the process was examined...

  4. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  5. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx......The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview...

  6. Cold water injection into two-phase mixtures

    International Nuclear Information System (INIS)

    1989-07-01

    This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation

  7. Aging study of boiling water reactor high pressure injection systems

    International Nuclear Information System (INIS)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  8. Stable, tunable, quasimonoenergetic electron beams produced in a laser wakefield near the threshold for self-injection

    Directory of Open Access Journals (Sweden)

    S. Banerjee

    2013-03-01

    Full Text Available Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low-energy spread, ∼10  pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear focus of the laser pulse within the plasma suppresses continuous injection, thus reducing the low-energy tail of the electron beam.

  9. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  10. Primary events following electron injection into water and adsorbed water layers

    International Nuclear Information System (INIS)

    Barnett, R.N.; Landman, U.; Nitzan, A.

    1990-01-01

    The initial stages of the evolution of an electron injected into bulk water (at 300 K) and into thin water films (1--4 monolayers) adsorbed on a Pt(111) substrate at 50 K are investigated. It is shown that for electrons injected into bulk water with an initial translational kinetic energy between 1.54 and 6.18 eV (i.e., subexcitation energies), the electron momentum time-correlation function left-angle p(0)p(t)right-angle, decays to zero on a time scale of less than 1 fs, reflecting strong backscattering of the electron by the water molecules. On this time scale the electron propagation in the medium is dominated by elastic processes. Furthermore, during this initial stage the system is well represented by a static aqueous medium. Transmission of electrons injected into thin films of adsorbed water is also dominated by elastic scattering. The dependence of the electron transmission probability on the film thickness and the initial injection energy are in accord with recent experimental results of photoinjected electrons into adsorbed water films

  11. Use of Spacecraft Data to Drive Regions on Mars where Liquid Water would be Stable

    Science.gov (United States)

    Lobitz, Brad; Wood, Byron L.; Averner, Maurice M.; McKay, Christopher P.; MacElroy, Robert D.

    2001-01-01

    Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter (MOLA) topography data we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40 degrees. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia where 34% of the year liquid water would be stable if it was present. Locations of stability appear to correlate with the distribution of valley networks.

  12. Reassessing the stable water isotope record in understanding past climate

    International Nuclear Information System (INIS)

    Noone, D.; Simmonds, I.

    1999-01-01

    Full text: The impact of atmospheric circulation on the stable water isotope record has been examined using an atmospheric general circulation model to reassess the validity of using isotopes to reconstruct Earth's climate history. Global temperature changes are classically estimated from the variations in (polar) isotopic values assuming a simple linear relationship. Such a relationship can be justified from first order theoretical considerations given that the isotopic fractionation at the deposition (ice core) site is temperature dependent. However, it is found that the history of a given air mass is more important that local processes because of the net effect of condensation events active along the transport pathway from the source region. Modulations in the hemispheric flow are seen to be crucial to Antarctic precipitation and the isotopic signal. Similarly, both transient and stationary disturbances influence the pathways of the air masses associated with Antarctic precipitation. During different climate regimes, such as that of the Last Glacial Maximum, the properties of these types of disturbances may not be assumed to be the same. As such, we may not assume that the condensation histories are the same as under different climate conditions. Therefore, the veracity of the linear climate reconstructions becomes questionable. Notwithstanding this result, the types of changes to the circulation regime that are expected generally correspond to changes in the global temperature. This fortunate result does not disallow the use of regressional reconstruction, however, the uncertainties associated with these circulation changes are of the same magnitude as the differences suggested by conventional linear regression in climate reconstruction. This indicates that interpretation of ice core data must be accompanied by detailed examination of the atmospheric processes and quantification of the impacts of their changes. Copyright (1999) Geological Society of Australia

  13. Reseach on the reduction of rocket motor jet noise by water injection

    Directory of Open Access Journals (Sweden)

    Zou Hao

    2016-01-01

    Full Text Available Injecting water in the mixing layer of rocket motor jets is a means to reduce jet noise. The calculation of the sound pressure signals at the prescribed receivers was performed by FW-H acoustics model under the condition of water injection and without water injection. The calculation results show that the jet noise is with obvious directivity. The total sound pressure levels are obviously much higher in 10° to 30° direction than that in other direction. The sound pressure levels at the condition of water injected are lower than that of without water injection at the all receiver points, which indicates that water injection can reduce jet noise effectively.

  14. Triggering processes of microseismic events associated with water injection in Okuaizu Geothermal Field, Japan

    Science.gov (United States)

    Okamoto, Kyosuke; Yi, Li; Asanuma, Hiroshi; Okabe, Takashi; Abe, Yasuyuki; Tsuzuki, Masatoshi

    2018-02-01

    A continuous water injection test was conducted to halt the reduction in steam production in the Okuaizu Geothermal Field, Japan. Understanding the factors triggering microseismicity associated with water injection is essential to ensuring effective steam production. We identified possible triggering processes by applying methods based on microseismic monitoring, including a new method to determine the presence of water in local fractures using scattered P-waves. We found that the evolving microseismicity near the injection point could be explained by a diffusion process and/or water migration. We also found that local microseismicity on a remote fault was likely activated by stress fluctuations resulting from changes in the injection rate. A mediator of this fluctuation might be water remaining in the fracture zone. After the injection was terminated, microseismicity possibly associated with the phase transition of the liquid was found. We conclude that a variety of triggering processes associated with water injection may exist.[Figure not available: see fulltext.

  15. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    Science.gov (United States)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  16. Control of microbial sulfide production by limiting sulfate dispersal in a water-injected oil field.

    Science.gov (United States)

    Shen, Y; Agrawal, A; Suri, N K; An, D; Voordouw, J K; Clark, R G; Jack, T R; Miner, K; Pederzolli, R; Benko, A; Voordouw, G

    2018-01-20

    Oil production by water injection often involves the use of makeup water to replace produced oil. Sulfate in makeup water is reduced by sulfate-reducing bacteria to sulfide, a process referred to as souring. In the MHGC field souring was caused by using makeup water with 4mM (384ppm) sulfate. Mixing with sulfate-free produced water gave injection water with 0.8mM sulfate. This was amended with nitrate to limit souring and was then distributed fieldwide. The start-up of an enhanced-oil-recovery pilot caused all sulfate-containing makeup water to be used for dissolution of polymer, which was then injected into a limited region of the field. Produced water from this pilot contained 10% of the injected sulfate concentration as sulfide, but was free of sulfate. Its use as makeup water in the main water plant of the field caused injection water sulfate to drop to zero. This in turn strongly decreased produced sulfide concentrations throughout the field and allowed a decreased injection of nitrate. The decreased injection of sulfate and nitrate caused major changes in the microbial community of produced waters. Limiting sulfate dispersal into a reservoir, which acts as a sulfate-removing biofilter, is thus a powerful method to decrease souring. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Water stable isotopes: application to the water cycle and climate variations study

    International Nuclear Information System (INIS)

    Risi, C.

    2009-12-01

    The stable isotopic composition of water (H 2 16 , HDO, H 2 18 , H 2 17 ) is a promising tracer of the present day water cycle and past climates. While the isotopic composition recorded in polar ice core have long been used to reconstruct past temperatures, however, what controls the isotopic composition of the tropical precipitation is more complex. The goal of this thesis is thus to better understand the processes that affect the isotopic composition of tropical precipitation and atmospheric water, more particularly in the tropics. Since most of the tropical precipitation arises from atmospheric convection, and most isotopic archives are on land, we focus more particularly on the impact of convective and land surface processes. In turn, what can be learned about convection and land surface processes using isotopic measurements? Can they help constrain their representation in models? At the inter-annual to climate change scale, what information about the tropical climate variability is recorded in isotopic signals observed in archives? First, we investigate the influence of convection on water stable isotopes. We use both (1) numerical modeling, with a hierarchy of models (single column model, two-dimensional model of squall lines, general circulation model) and (2) data analysis, using isotopic data from rain collected in the Sahel during the African Monsoon Multidisciplinary Analysis campaign, at the event and intra-event scales. These studies highlight the strong impact of convection on the precipitation composition, and stress the importance of rain evaporation and convective or meso-scale subsidence in controlling the rain isotopic composition. Convection also plays an important role on isotopic profiles in the upper troposphere-lower stratosphere. Second, we study what information about climatic variability is recorded by water stable isotopes in precipitation. We analyze simulations of present day and past climates with LMDZ, and evaluate to what extent

  18. High frequency, realtime measurements of stable isotopes in liquid water

    Science.gov (United States)

    Weiler, M.; Herbstritt, B.; Gralher, B.

    2012-04-01

    We developed a method to measure in-situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a off-the-shelf microporous hydrophobic membrane contactor for under 200€ was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with nitrogen as carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the isotope laser spectrometer. To prove the membrane's applicability we determined the specific isotope fractionation factor for the phase change through the contactor's membrane for a common temperature range and with different waters of known isotopic compositions. This fractionation factor is then used to derive the liquid water isotope ratio from the measured water vapor isotope ratios and the measured temperature at the phase change. The system was compared for breakthrough curves of isotopically enriched water and the isotope values corresponded very well with those of liquid water samples taken simultaneously and analyzed with a conventional method (CRDS). The introduced method supersedes taking liquid samples and employs only relative cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution with the same accuracy as collecting individual water samples.

  19. A fast alternative to core plug tests for optimising injection water salinity for EOR

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta

    2014-01-01

    Core tests have demonstrated that decreasing the salinity of injection water can increase oil recovery. Although recovery is enhanced by simply decreasing salt content, optimising injection water salinty would offer a clear economic advantage for several reasons. Too low salinity risks swelling o...

  20. Continuous in situ measurements of stable isotopes in liquid water

    Science.gov (United States)

    Herbstritt, Barbara; Gralher, Benjamin; Weiler, Markus

    2012-03-01

    We developed a method to measure in situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a microporous hydrophobic membrane contactor (Membrana) was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with N2 as a carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the Picarro analyzer. To prove the membrane's applicability, we determined the specific isotope fractionation factor for the phase change through the contactor's membrane across an extended temperature range (8°C-21°C) and with different waters of known isotopic compositions. This fractionation factor is needed to subsequently derive the liquid water isotope ratio from the measured water vapor isotope ratios. The system was tested with a soil column experiment, where the isotope values derived with the new method corresponded well (R2 = 0.998 for δ18O and R2 = 0.997 for δ2H) with those of liquid water samples taken simultaneously and analyzed with a conventional method (cavity ring-down spectroscopy). The new method supersedes taking liquid samples and employs only relatively cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly, and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution.

  1. Stable Cl isotope composition of the Changjiang River water

    Science.gov (United States)

    Lang, Y.; Liu, C. Q.; LI, S. L.; Aravena, R.; Ding, H.; WANG, B.; Benjamin, C.

    2017-12-01

    To understand chemical wreathing, nutrient cycling, and the impact of human activities on eco-environments of the Changjiang River (Yangtze River) Basin, we carried out a geochemical study on water chemistry and multiple isotopes (C, N, S, Sr…...) of Changjiang River water in the summer season. Some of the research results about the water chemistry, boron isotope geochemistry and suspended matter have been published (Chetelat et al., 2008; Li et al., 2010). Ten samples were selected for the measurement of δ37Cl values, among which 7 samples were collected from main stream and 3 samples from tributaries. The range of δ37Cl values varies between 0.02‰ and 0.33‰ in the main stream and between 0.16‰ and 0.71‰ in the tributary waters. The δ37Cl values in general are negatively correlated with Cl- concentrations for both main stream and tributary waters. δ37Cl value of Wujiang, which is one of the large tributaries in the upper reach of Changjiang and dominated by carbonate rocks in lithology of the watershed, has the maximum value but minimum value of Cl- concentration in this study. The lowest δ37Cl value was measured for the water collected from the estuary of Changjiang River. The variation of δ37Cl values in the waters would be attributed to mixing of different sources of chlorine, which most likely include rain water, ground water, seawater, and pollutants. Systematic characterization of different Cl sources in terms of their chlorine isotope composition is imperative for better understanding of sources and processes of chlorine cycling. Acknowledgements: This work was financially supported by NSFC through project 41073099. (Omit references)

  2. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Talma, A.S.

    1987-01-01

    Variations of the isotopic ratios 18 O/ 16 O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18 O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '1 8 O content of river water reflects that of the prevailing rains within the catchment. 18 O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  3. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  4. Effects of temperature on SCC propagation in high temperature water injected with hydrogen peroxide

    International Nuclear Information System (INIS)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yoshiyuki, Kaji; Yamamoto, Masahiro; Tsukada, Takashi

    2012-09-01

    To understand the stress corrosion cracking (SCC) behaviour of austenitic stainless steels (SSs) in the boiling water reactor (BWR) coolant environment, it is significant to investigate the effect of hydrogen peroxide (H 2 O 2 ) produced by the radiolysis of water on SCC under the various water chemistry and operational conditions. At the start-up or shut-down periods, for example, the conditions of radiation and temperature on the structural materials are different from those during the plant normal operation, and may be influencing on SCC behaviour. Therefore, the effect of temperature on SCC in high temperature water injected with H 2 O 2 was evaluated by SCC propagation test at the present study. Oxide films on the metal surface in crack were examined and the thermal equilibrium diagram was calculated to estimate the environmental situation in the crack. On the thermally sensitized type 304 SS, crack growth tests were conducted in high temperature water injected with H 2 O 2 to simulate water radiolysis in the core. Small CT type specimens with a width of 15.5 mm and thickness of 6.2 mm were machined from the sensitized SS. SCC growth tests were conducted in high temperature water injected with 100 ppb H 2 O 2 at 453 and 561 K. To minimize H 2 O 2 decomposition by a contact with metal surface of autoclave, the CT specimen was isolated from inner surface of the autoclave by the inner modules made of polytetrafluoroethylene (PTFE), and PTFE lining was also used for the inner surface of inlet and sampling tubes. Base on the measurement of sampled water, it was confirmed that 80-90 % of injected H 2 O 2 remained around the CT specimen in autoclave. Constant load at initial K levels of 11-20 MPam 1/2 was applied to the CT specimens during crack growth tests. After crack growth tests, CT specimens were split into two pieces on the plane of crack propagation. Scanning electron microscope (SEM) examination and laser Raman spectroscopy for outer oxide layer of oxide

  5. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    Science.gov (United States)

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  6. 40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?

    Science.gov (United States)

    2010-07-01

    ... if I use water or steam injection? 60.4335 Section 60.4335 Protection of Environment ENVIRONMENTAL... compliance for NOX if I use water or steam injection? (a) If you are using water or steam injection to... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine...

  7. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  8. Scale formation at various locations in a geothermal operation due to injection of imported waters

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, O.J.; Kandarpa, V.

    1982-06-22

    The injection of waters that are not native to a geothermal formation generates various physical and chemical problems. The major chemical problem resulting from such injections is the formation of sulfate scales (particularly CaSO4, BaSO4 and SrSO4) at various locations starting from the injection well through the production well to the surface facilities of any geothermal operation. One of the ways to prevent this type of scale formation is by reducing the sulfate concentration of the injection waters. The effect of sulfate deionization on scale formation at various locations of the geothermal operations is studied. Some experimental results on the CaSO4 scale formation in porous media upon heating an injection water with and without addition of scale inhibitors are also given.

  9. Cerro Prieto cold water injection: effects on nearby production wells

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H.; Lippmann, M.J.; De Leon, J.; Rodriguez, M.H.

    1999-07-01

    The liquid-dominated Cerro Prieto geothermal field of northern Baja California, Mexico has been under commercial exploitation since 1973. During the early years of operation, all waste brines were sent to an evaporation pond built west of the production area. In 1989, cooled pond brines began to be successfully injected into the reservoir along the western boundary of the geothermal system. The injection rate varied over the years, and is at present about 20% of the total fluid extracted. As expected under the continental desert conditions prevailing in the area, the temperature and salinity of the pond brines change with the seasons, being higher during the summer and lower during the winter. The chemistry of pond brines is also affected by precipitation of silica, oxidation of H{sub 2}S and reaction with airborne clays. Several production wells in the western part of the field (CP-I area) showed beneficial effects from injection. The chemical (chloride, isotopic) and physical (enthalpy, flow rate) changes observed in producers close to the injectors are reviewed. Some wells showed steam flow increases, in others steam flow decline rates flattened. Because of their higher density, injected brines migrated downward in the reservoir and showed up in deep wells.

  10. Inferring the source of evaporated waters using stable H and O isotopes

    Science.gov (United States)

    Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...

  11. Fault Diagnosis Of A Water For Injection System Using Enhanced Structural Isolation

    DEFF Research Database (Denmark)

    Laursen, Morten; Blanke, Mogens; Düstegör, Dilek

    2008-01-01

    A water for injection system supplies chilled sterile water as solvent to pharmaceutical products. There are ultimate requirements to the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause loss of one or more batches...

  12. Performance indicators for water injections projects; Indicadores de desempenho para projetos de injecao de agua

    Energy Technology Data Exchange (ETDEWEB)

    Hastenreiter, Livia; Correa, Antonio C. de F.; Mendes, Roberta A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Currently, the water injection process into oil reservoirs is the method of secondary recovery more important to increase the recovery factor. Thus, it is necessary an efficient project management, with constant data acquisitions and interpretation. This paper aims to present some indicators to evaluate the performance of water injection projects. Each indicator is presented based on a methodology that transforms the data collected in information. The results are expressed in graphical form for better viewing of the indicators measurement. (author)

  13. Can We Untangle the Weather? Stable Water Isotope Controls on the Juneau Icefield

    Science.gov (United States)

    Ihle, A. C.; Keenan, E.; Yong, C.; Bridgers, S. L.; Markle, B. R.; Hamel, J.; Klein, E. S.

    2017-12-01

    Stable water isotopes in snow and ice provide a reliable proxy for past weather and climate. However, untangling weather and climate signals from water isotopes on the Juneau Icefield, Alaska, has proven difficult due to consistent summer melt and rain. The Juneau Icefield is a large glaciated region consisting of complex terrain and sharp climatic gradients. Here we study how topographic steepness and elevation influence stable water isotope ratios on the Juneau Icefield using vertical snowpit profiles collected from water year 2017's snowpack. As terrain steepens, we expect gradients in isotope ratios to intensify. In addition, we aim to determine how post-depositional metamorphism, particularly precipitation, affects water isotope ratios. We anticipate rain events to increase the proportion of heavy water isotopes. Lastly, we compare model output and remote sensing observations of storm origin to vertical stratigraphy of stable isotope ratios in the snowpack in order to determine if it is possible to use isotopes to identify past storm tracks on the Juneau Icefield. Snowpack isotope stratigraphy ratios can likely be linked to seasonal trends of storm characteristics. Given this enhanced understanding of how stable water isotopes behave on the Juneau Icefield, we contribute to the understanding of past weather and climate, both here and elsewhere, and explore the possibility for future deep ice cores on the Juneau Icefield.

  14. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    Science.gov (United States)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  15. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    International Nuclear Information System (INIS)

    Fukumura, Takuya; Arioka, Koji

    2007-01-01

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in steam generator (SG). The ETA injection is supposed to decrease flow accelerated corrosion (FAC) rate, because of secondary system pH increase. But the water chemistry in the secondary system is very complicated. So water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, it is assumed that the model of FAC rate is proportional to the concentration gradient of magnetite. Then chemical concentration and magnetite solubility of the secondary system are calculated and the change of FAC rate is evaluated in the outline. It has been clarified that the effect of ETA injection reduces the FAC rate to about 1/3-1/22 of that of ammonia. In some portions of the secondary system, the effects of ETA injection have been measured experimentally by rotary disk test. The FAC rate of ETA injection is larger than that of ammonia at high temperature. And the FAC rate peaks at about 180degC in the case of ammonia, but the peak seems to shift to higher temperatures in the case of ETA. (author)

  16. Stable hydrogen and oxygen isotope ratios of bottled waters of the world.

    Science.gov (United States)

    Bowen, Gabriel J; Winter, David A; Spero, Howard J; Zierenberg, Robert A; Reeder, Mathew D; Cerling, Thure E; Ehleringer, James R

    2005-01-01

    Bottled and packaged waters are an increasingly significant component of the human diet. These products are regulated at the regional, national, and international levels, and determining the authenticity of marketing and labeling claims represents a challenge to regulatory agencies. Here, we present a dataset of stable isotope ratios for bottled waters sampled worldwide, and consider potential applications of such data for regulatory, forensic and geochemical standardization applications. The hydrogen and oxygen isotope ratios of 234 samples of bottled water range from -147 per thousand to +15 per thousand and from -19.1 per thousand to +3.0 per thousand, respectively. These values fall within and span most of the normal range for meteoric waters, indicating that these commercially available products represent a source of waters for use as laboratory working standards in applications requiring standardization over a large range of isotope ratios. The measured values of bottled water samples cluster along the global meteoric water line, suggesting that bottled water isotope ratios preserve information about the water sources from which they were derived. Using the dataset, we demonstrate how bottled water isotope ratios provide evidence for substantial evaporative enrichment of water sources prior to bottling and for the marketing of waters derived from mountain and lowland sources under the same name. Comparison of bottled water isotope ratios with natural environmental water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, suggesting that in many cases bottled water need not be considered as an isotopically distinct component of the human diet. Our findings suggest that stable isotope ratios of bottled water have the power to distinguish ultimate (e.g., recharge) and proximal (e.g., reservoir) sources of bottled water and constitute a potential

  17. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  18. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    Science.gov (United States)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  19. Modeling Reservoir Formation Damage due to Water Injection for Oil Recovery

    DEFF Research Database (Denmark)

    Yuan, Hao

    2010-01-01

    The elliptic equation for non-Fickian transport of suspension in porous media is applied to simulate the reservoir formation damage due to water injection for oil recovery. The deposition release (erosion of reservoir formation) and the suspension deposition (pore plugging) are both taken...... into account. 1-D numerical simulations are carried out to reveal the erosion of reservoir formation due to water injection. 2-D numerical simulations are carried out to obtain the suspension and deposition profiles around the injection wells. These preliminary results indicate the non-Fickian behaviors...... of suspended reservoir fines and the corresponding formation damage due to erosion and relocation of reservoir fines....

  20. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs.

    Directory of Open Access Journals (Sweden)

    Yvette Marisa Piceno

    2014-08-01

    Full Text Available A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaska North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24-27°C, Kuparuk (47-70°C, Sag River (80°C, and Ivishak (80-83°C reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited. Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences.

  1. Stable water isotopes as tracers in studies of lacustrine groundwater discharge

    Science.gov (United States)

    Lewandowski, Jörg; Pöschke, Franziska; Meinikmann, Karin; Rudnick, Sebastian; Périllon, Cécile; Elmarami, Hatem; Massmann, Gudrun; Stumpp, Christine

    2015-04-01

    Different tracers are used in ecohydrology to study transport processes across groundwater-surface water interfaces. The stable water isotopes oxygen-18 and deuterium as parts of the water molecule are close to perfect tracers since their behavior in aquifers is quite conservative. Isotopic signatures of groundwater and surface water differ due to the impact of evaporation on lake water. Stable isotope measurements are nowadays orders of magnitude cheaper, faster, and easier due to the recent development of cavity ring-down spectroscopy. Based on that analytical progress, we suggest a much broader use and highlight a number of promising ecohydrological applications in studies of lacustrine groundwater discharge. For example, they might be used to clearly distinguish between in- and exfiltration zones of lakes, to identify temporal fluctuations of in- and exfiltration, but also to identify sampling artifacts due to short circuits during sampling with lakebed piezometers.

  2. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  3. Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle

    International Nuclear Information System (INIS)

    Gat, J.R.; Gonfiantini, R.

    1981-01-01

    This monograph is mainly intended for hydrologists, hydrogeologists and geochemists who want to become acquainted, rapidly but in some detail, with the theoretical background of stable isotope fractionation in natural physico-chemical processes involving fresh water, with the isotopic differences actually encountered in natural waters and with their use for practical hydrological purposes. Throughout the monograph, and in particular in the last chapter, a series of examples are discussed, giving the results obtained with stable isotope techniques in current hydrological and hydrogeological investigations or, more generally, in water resources exploration and assessment. One chapter is also dedicated to the techniques for measuring D/H and 18 O/ 16 O ratios in water

  4. Influence of Zn injection on corrosion behavior and oxide film characteristics of 304 stainless steel in borated and lithiated high temperature water

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei

    2012-09-01

    Water chemistry of the reactor coolant system plays a major role in maintaining safety and reliability of light water reactor nuclear power plants (NPPs). Zn water chemistry into pressurized water reactors (PWRs) in order to reduce the radiation buildup in primary coolant system has been widely applied, and the reduction effect has been experimentally confirmed. Zn injection can also lessen the corrosion phenomena in high temperature pressurized water by changing oxide films formed on components materials. Both the radiation buildup and material corrosion resistance in PWR coolant system are closely dependent on the oxide films formed. However, the influence of Zn injection on the chemical composition and structure of the oxide films on their protective properties is still a matter of considerable debate. The influence of Zn injection on corrosion inhibition and environmental degradation has not been fully clarified yet. Therefore, the understanding of corrosion behaviour, oxide film characteristics and their protective property is of significance to clarify the environmentally assisted material failure problems in NPPs. In the present work, oxide films formed on nuclear-grade 304 SS exposed to borated and lithiated high temperature water environments at 300 deg. C up to 4000 h with or without 10 ppb Zn injection were investigated ex-situ. Without Zn injection, the oxide films mainly consisted of Fe 3 O 4 and FeCr 2 O 4 . With Zn injection, ZnFe 2 O 4 and ZnCr 2 O 4 were detected in the oxide films at the initial stage of immersion and ZnCr 2 O 4 became dominant after long-term immersion. It was believed that the above Zn-Fe and Zn-Cr spinel oxides were formed by substitution reactions between Zn 2+ and Fe 2+ . At the initial stage of immersion, water chemistry significantly affected the formation of the oxide films. Once a stable oxide film formed, it is rather difficult to change its structure through changing water chemistry. The potential-pH diagrams for Zn

  5. [Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan].

    Science.gov (United States)

    Tian, Ri-Chang; Chen, Hong-Song; Song, Xian-Fang; Wang, Ke-Lin; Yang, Qing-Qing; Meng, Wei

    2009-09-15

    Stable isotope techniques provide a new approach to study soil water movement. The process of water movement in soils under two kinds of plant types (oil tea and corn) were studied based on the observed values of hydrogen and oxygen isotopes of precipitation and soil water at different depths in red-soil sloping land. The results showed that stable isotopes of precipitation in this area had obvious seasonal effect and rainfall effect. The stable isotopes at 0-50 cm depth in oil tea forestland and at 0-40 cm depth in corn cropland increased with the increase in depth, respectively, but they had the opposite tendency after rainfall in arid time. The stable isotopes decreased with the increase in depth below 50 cm depth in oil tea forestland and below 40 cm depth in corn cropland where evaporation influence was weak. The infiltrate rate of soil in oil tea land was affected by precipitation obviously, and it was about 50-100 mm/d after 2-3 days in heavy rain, slowed sharply later, and soil water at 50 cm depth often became a barrier layer. The permeability of soil in corn land was poor and the infiltration rate was lower. The change of stable isotopes in soil water in red soil hilly region was mainly affected by the mixing water which was formed by the antecedent precipitation, and evaporation effect took the second place. The evaporation intensity in oil tea land was lower than that in corn land, but the evaporation depth was higher.

  6. A new approach of proration-injection allocation for water-flooding mature oilfields

    Directory of Open Access Journals (Sweden)

    Shuyong Hu

    2015-03-01

    Full Text Available This paper presents a new method of injection-production allocation estimation for water-flooding mature oilfields. The suggested approach is based on logistic growth rate functions and several type-curve matching methods. Using the relationship between these equations, oil production and water injection rate as well as injection-production ratio can be easily forecasted. The calculation procedure developed and outlined in this paper requires very few production data and is easily implemented. Furthermore, an oilfield case has been analyzed. The synthetic and field cases validate the calculation procedure, so it can be accurately used in forecasting production data, and it is important to optimize the whole injection-production system.

  7. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...

  8. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    Science.gov (United States)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  9. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    Science.gov (United States)

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  10. Flash Atomization: A New Concept to Control Combustion Instability in Water-Injected Gas Turbines

    Directory of Open Access Journals (Sweden)

    Vishwas Iyengar

    2012-01-01

    Full Text Available The objective of this work is to explore methods to reduce combustor rumble in a water-injected gas turbine. Attempts to use water injection as a means to reduce NOX emissions in gas turbines have been largely unsuccessful because of increased combustion instability levels. This pulsation causes chronic fretting, wear, and fatigue that damages combustor components. Of greater concern is that liberated fragments could cause extensive damage to the turbine section. Combustion instability can be tied to the insufficient atomization of injected water; large water droplets evaporate non-uniformly that lead to energy absorption in chaotic pulses. Added pulsation is amplified by the combustion process and acoustic resonance. Effervescent atomization, where gas bubbles are injected, is beneficial by producing finely atomized droplets; the gas bubbles burst as they exit the nozzles creating additional energy to disperse the liquid. A new concept for effervescent atomization dubbed “flash atomization” is presented where water is heated to just below its boiling point in the supply line so that some of it will flash to steam as it leaves the nozzle. An advantage of flash atomization is that available heat energy can be used rather than mechanical energy to compress injection gas for conventional effervescent atomization.

  11. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  12. Determination of nitrate in water by flow-injection analysis

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Večeřa, Zbyněk

    2001-01-01

    Roč. 8, č. 1 (2001), s. 115-120 ISSN 1231-7098 R&D Projects: GA ČR GA203/98/0943 Grant - others:COPERNICUS(BE) SUB-AERO EVK2-1999-000327 Institutional research plan: CEZ:AV0Z4031919 Keywords : nitrate * chemiluminescence * water Subject RIV: CB - Analytical Chemistry, Separation

  13. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Science.gov (United States)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  14. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    International Nuclear Information System (INIS)

    Arabaci, Emre; İçingür, Yakup; Solmaz, Hamit; Uyumaz, Ahmet; Yilmaz, Emre

    2015-01-01

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  15. In situ water and gas injection experiments performed in the Hades Underground Research Facility

    International Nuclear Information System (INIS)

    Volckaert, G.; Ortiz, L.; Put, M.

    1995-01-01

    The movement of water and gas through plastic clay is an important subject in the research at SCK-CEN on the possible disposal of high level radioactive waste in the Boom clay layer at Mol. Since the construction of the Hades underground research facility in 1983, SCK-CEN has developed and installed numerous piezometers for the geohydrologic characterization and for in situ radionuclide migration experiments. In situ gas and water injection experiments have been performed at two different locations in the underground laboratory. The first location is a multi filter piezometer installed vertically at the bottom of the shaft in 1986. The second location is a three dimensional configuration of four horizontal multi piezometers installed from the gallery. This piezometer configuration was designed for the MEGAS (Modelling and Experiments on GAS migration through argillaceous rocks) project and installed in 1992. It contains 29 filters at distances between 10 m and 15 m from the gallery in the clay. Gas injection experiments show that gas breakthrough occurs at a gas overpressure of about 0.6 MPa. The breakthrough occurs by the creation of gas pathways along the direction of lowest resistance i.e. the zone of low effective stress resulting from the drilling of the borehole. The water injections performed in a filter -- not used for gas injection -- show that the flow of water is also influenced by the mechanical stress conditions. Low effective stress leads to higher hydraulic conductivity. However, water overpressures up to 1.3 MPa did not cause hydrofracturing. Water injections performed in a filter previously used for gas injections, show that the occluded gas hinders the water flow and reduces the hydraulic conductivity by a factor two

  16. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    Science.gov (United States)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  17. The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada

    Science.gov (United States)

    Baer, Thomas; Barbour, S. Lee; Gibson, John J.

    2016-10-01

    Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from

  18. Investigation of Amourphous Deposits and Potential Corrosion Mechanisms in Offshore Water Injection Systems

    DEFF Research Database (Denmark)

    Eroini, Violette; Oehler, Mike Christian; Graver, Britt Kathrine

    2017-01-01

    Increasing incidence of amorphous deposits in both production and water injection systems has caused considerable problems for offshore oil fields. Amorphous deposits, which are a widely recognized, but often poorly explained phenomenon, are typically comprised of both organic (biological...... or hydrocarbons) and inorganic material, but with compositions that vary considerably. One recurrent form of deposits, found in offshore water injection flowlines and wells, consisting mainly of magnetite as the corrosion product, was further investigated with the objectives of explaining its formation...... and assisting in prevention or remediation. It is proposed that the deposit formation, observed in offshore water injection systems treated with nitrate, is initiated by formation of a nitrate reducing biofilm promoting under deposit corrosion by activity of sulphate reducing and methanogenic prokaryotes...

  19. SATCAP-C : a program for thermal hydraulic design of pressurized water injection type capsule

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Someya, Hiroyuki; Asoh, Tomokazu; Niimi, Motoji

    1992-10-01

    There are capsules called 'Pressure Water Injection Type Capsule' as a kind of irradiation devices at the Japan Materials Testing Reactor (JMTR). A type of the capsules is a 'Boiling Water Capsule' (usually named BOCA). The other type is a 'Saturated Temperature Capsule' (named SATCAP). When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature so far as the water does not fully change to steam. These type capsules are designed on the basis of the conception of applying the water characteristic to the control of irradiation temperature of specimens in the capsules. In designing of the capsules in which the pressurized water is injected, thermal performances have to be understood as exactly as possible. It is not easy however to predict thermal performances such as axially temperature distribution of water injected in the capsule, because there are heat-sinks at both side of inner and outer of capsule casing as the result that the water is fluid. Then, a program (named SATCAP-C) for the BOCA and SATCAP was compiled to grasp the thermal performances in the capsules and has been used the design of the capsules and analysis of the data obtained from some actual irradiation capsules. It was confirmed that the program was effective in thermal analysis for the capsules. The analysis found out the values for heat transfer coefficients at various surfaces of capsule components and some thermal characteristics of capsules. (author)

  20. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  1. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    Science.gov (United States)

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Perspectives on Severe Accident Management by Depressurization and External Water Injection under Extended SBO Conditions

    International Nuclear Information System (INIS)

    Seol, Wookcheol; Park, Jongwoon

    2014-01-01

    Three major issues of severe accident management guideline (SAMG) after this sort of extended SBO would be depressurization of the primary system, external water injection and hydrogen management inside a containment. Under this situation, typical SAM actions would be depressurization and external water delivery into the core. However, limited amount of external water would necessitate optimization between core cooling, containment integrity and fission product removal. In this paper, effects of SAM actions such as depressurization and external water injection on the reactor and containment conditions after extended SBO are analyzed using MAAP4 code. Positive and negative aspects are discussed with respect to core cooling and fission product retention inside a primary system. Conclusions are made as following: Firstly, early depressurization action itself has two-faces: positive with respect to delay of the reactor vessel failure but negative with respect to the containment failure and fission product retention inside the primary system. Secondly, in order to prevent containment overpressure failure after external water injection, re-closing of PORV later should be considered in SAM, which has never been considered in the previous SAMG. Finally, in case of external water injection, the flow rate should be optimized considering not only the cooling effect but also the long term fission product retention inside the primary system

  3. Water uptake depth analyses using stable water isotopes in rice-based cropping systems in Southeastern Asia

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Orlowski, Natalie; Racela, Healthcliff S. U.; Breuer, Lutz

    2017-04-01

    Rice is one of the most water-consuming crop in the world. Understanding water source utilization of rice-based cropping systems will help to improve water use efficiency (WUE) in paddy management. The objectives of our study were to (1) determine the contributions of various water sources to plant growth in diversified rice-based production systems (wet rice, aerobic rice) (2) investigate water uptake depths at different maturity periods during wet and dry conditions, and (3) calculate WUE of the cropping systems. Our field experiment is based on changes of stable water isotope concentrations in the soil-plant-atmosphere continuum due to transpiration and evaporation. Soil samples were collected together with root sampling from nine different depths under vegetative, reproductive, and matured periods of plant growth together with stem samples. Soil and plant samples were extracted by cryogenic vacuum extraction. Groundwater, surface water, rain, and irrigation water were sampled weekly. All water samples were analyzed for hydrogen and oxygen isotope ratios (δ2H and δ18O) via a laser spectroscope (Los Gatos DLT100). The direct inference approach, which is based on comparing isotopic compositions between plant stem water and soil water, were used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These estimations were used to determine the proportion of water from upper soil horizons and deep horizons for rice in different maturity periods during wet and dry seasons. Shallow soil water has the higher evaporation than from deeper soil water where the highest evaporation effect is at 5 cm depth (drying front). Water uptake is mostly taking place from surface water in the vegetative and between 5-10 cm in the reproductive period, since roots have grown widely and deeper in the reproductive stage. This will be

  4. The analysis of scaling mechanism for water-injection pipe columns in the Daqing Oilfield

    OpenAIRE

    Guolin Jing; Shan Tang; Xiaoxiao Li; Huaiyuan Wang

    2017-01-01

    Although water-injection in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), in the process of development in the oilfield, scale has been produced in water-injection pipe columns. The ability to prevent and control the deposition of scale is critical to the efficient recovery of crude oil from hard environments, as part of the broader discipline of “flow assurance” in the petroleum industry. To this end laboratory-scale deposition tests have been useful to und...

  5. Data collapse of the spectra of water-based stable single-bubble sonoluminescence

    International Nuclear Information System (INIS)

    Levinsen, Mogens T.

    2010-01-01

    In the early days of stable single-bubble sonoluminescence, it was strongly debated whether the emission was blackbody radiation or whether the bubble was transparent to its own radiation (volume emission). Presently, the volume emission picture is nearly universally accepted. We present new measurements of spectra with apparent color temperatures ranging from 6000 to 21 000 K. We show through data collapse that within experimental uncertainty, apart from a constant, the spectra of strongly driven stable single-bubble sonoluminescence in water can be written as the product between a universal function of wavelength and a functional form that only depends on wavelength and apparent temperature but has no reference to any other parameter specific to the experimental situation. This remarkable result does question our theoretical understanding of the state of the plasma in the interior of strongly driven stable sonoluminescent bubbles.

  6. Tracing Water Sources of Terrestrial Animal Populations with Stable Isotopes: Laboratory Tests with Crickets and Spiders

    Science.gov (United States)

    McCluney, Kevin E.; Sabo, John L.

    2010-01-01

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the “water web”). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change. PMID:21209877

  7. Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?

    Science.gov (United States)

    Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

    2011-01-01

    An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

  8. Effect of intake manifold water injection on a natural gas spark ignition engine: an experimental study

    Science.gov (United States)

    Arruga, H.; Scholl, F.; Kettner, M.; Amad, O. I.; Klaissle, M.; Giménez, B.

    2017-10-01

    Design and development of gas CHP (combined heat and power) engines are strongly influenced by the progressively more severe European NOx emissions normative. Water injection represents a promising approach to reduce these emissions while attaining high engine efficiency. In this work, the effect of intake manifold water injection on combustion parameters and performance of a single-cylinder naturally aspirated natural gas spark ignition engine is presented. First, the most appropriate injector was selected, using a spray test bed. Subsequently, engine experiments at constant indicated mean effective pressure (IMEP) and engine speed were conducted with water-fuel ratios of 0.1 to 0.3. IMEP was kept constant at about 6.3 bar by adjusting both air-fuel ratio and spark timing. A NOx reduction of 0.2 g/kWhi (15 %) for a constant ISFC of about 204 g/kWhi was achieved. In the low NOx regime, water injection allows for an improvement of the NOx-ISFC trade-off, while leading to poor fuel consumption at same NOx in the high efficiency regime. Furthermore, water injection implies a reduction of intake mixture temperature, lengthened burning delay and combustion duration and a moderate increase of combustion instability.

  9. Direct injection of water vapor into the stratosphere by volcanic eruptions

    Science.gov (United States)

    Sioris, Christopher E.; Malo, Alain; McLinden, Chris A.; D'Amours, Real

    2016-07-01

    While theoretical studies show that water vapor (WV) can be directly injected into the stratosphere during a volcanic eruption, few observations of such a phenomenon exist. The Microwave Limb Sounder observed stratospheric injection of WV following the 2015 Calbuco eruption. Lower stratospheric mixing ratios exceeded 10 ppmv for a few days downwind of the injection location. Plume transport is confirmed by back trajectory modeling. Due to the short duration and limited spatial extent of the enhancement, climatic impact is expected to be negligible. This letter provides spatiotemporal analysis of a volcanogenic pulse of lower stratospheric WV as it dispersed. The inferred mass of stratospheric WV from this eruption of 2 megaton (Mt) and the rapid evanescence of the enhancement are similar to what has been observed for other eruptions, suggesting that injection by moderately explosive eruptions is not an effective mechanism for large-scale stratospheric hydration.

  10. The Use of Stable Isotope Tracers to Quantify the Transit Time Distribution of Water

    Science.gov (United States)

    Gray, T. M.; Troch, P. A. A.

    2016-12-01

    Water pollution is an important societal problem because it can have harmful effects on human and ecological health. In order to improve water quality, scientists must develop land management methods that can avoid or mitigate environmental pollution. State of the art tools to develop such methods are flow and transport models that trace water and other solutes through the landscape. These models deliver important information that can lead to remediation efforts, and improve the quality of water for humans, plants, and animals. However, these models may be difficult to apply since many details about the catchment may not be available. Instead, a lumped approach is often used to find the water transit time using stable isotope tracers such as 18O and 2H that are naturally applied by precipitation to a catchment. The transit time distribution of water is an important indicator for the amount of solutes soil water and groundwater can contain, and thus a predictor of water quality. We conducted a 2-week long experiment using a tilted weighing lysimeter at Biosphere 2 to observe the breakthrough curves of deuterium and specific artificial DNA particles. We show that hydrological parameters can be computed in order to provide an estimate for the transit time distribution of deuterium. The convolution integral is then used to determine the distribution of the water transit time in the system. Unfortunately, stable isotopes such as deuterium make it difficult to pinpoint a specific flowpath since they naturally occur in the environment. Recent studies have shown that DNA tracers are able to trace water through the landscape. We found that DNA has a similar breakthrough curve happening at similar timescales as the deuterium. Therefore, DNA tracers may be able to identify sources of nonpoint source pollution in the future.

  11. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water

    KAUST Repository

    Towsif Abtab, Sk Md

    2018-01-11

    Summary Hydrolytically stable adsorbents, with notable water uptake, are of prime importance and offer great potential for many water-adsorption-related applications. Nevertheless, deliberate construction of tunable porous solids with high porosity and high stability remains challenging. Here, we present the successful deployment of reticular chemistry to address this demand: we constructed Cr-soc-MOF-1, a chemically and hydrolytically stable chromium-based metal-organic framework (MOF) with underlying soc topology. Prominently, Cr-soc-MOF-1 offers the requisite thermal and chemical stability concomitant with unique adsorption properties, namely extraordinary high porosity (apparent surface area of 4,549 m2/g) affording a water vapor uptake of 1.95 g/g at 70% relative humidity. This exceptional water uptake is maintained over more than 100 adsorption-desorption cycles. Markedly, the adsorbed water can be fully desorbed by just the simple reduction of the relative humidity at 25°C. Cr-soc-MOF-1 offers great potential for use in applications pertaining to water vapor control in enclosed and confined spaces and dehumidification.

  12. Stable Isotope Analyses of water and Aqueous Solutions by Conventional Dual-inlet Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Juske [ORNL; Kendall, C. [U.S. Geological Survey, Menlo Park, CA

    2004-01-01

    The foundation of various analytical methods for the stable isotope composition of water and other aqueous samples (natural abundance, {sup 1}H : {sup 2}H (D) = 99.985 : 0.015 atom%, and {sup 16}O : {sup 17}O : {sup 18}O = 99.762 : 0.038 : 0.200 atom%) was established during the Manhatten Project in the U.S.A., when large amounts of heavy water were produced for nuclear reactors (see Kirshenbaum, 1951, for a detailed account). From early on, there was great interest in the oxygen and hydrogen isotopic compositions of water, because they are the ideal tracers of water sources and reactions. The increased analytical precisions made possible by the subsequent development of modern gas-source isotope-ratio mass spectrometers with dual-inlets and multi-collectors, have caused the proliferation of new analytical methods and applications for the oxygen and hydrogen isotopic compositions of water. These stable isotopes have found wide applications in basic as well as applied sciences (chemistry, geology, hydrology, biology, medical sciences, and food sciences). This is because water is ubiquitous, is an essential and predominant ingredient of living organisms, and is perhaps the most reactive compound in the Earth.

  13. The use of stable isotopes in quantitative determinations of exogenous water and added ethanol in wines

    Science.gov (United States)

    Magdas, D. A.; Moldovan, Z.; Cristea, G.

    2012-02-01

    The application of oxygen isotope ratios analysis to wine water according to EU regulation no. 822/97 to determine wine's origin and also, the possible water addition to wines, gained great importance in wines authenticity control. In the natural cycle of water isotopic fractionation, during water evaporation process, the water vapors are depleted in heavy isotopes. On the other hand inside the plants take place an isotope enrichment of heavy stable isotopes of water compared with meteoric water due to photosynthesis and plants transpiration. This process makes possible the detection of exogenous water from wines 18O/16O ratios. Carbon isotopic ratios were used to estimate the supplementary addition of ethanol obtained from C4 plants (sugar cane or corn). This work presents the way in which the isotopic fingerprints (δ13C and δ18O) were used to determine the content of exogenous water from wines and the added supplementary ethanol coming from C4 plants. By using this method, the calculated values obtained for the degree of wine adulteration were in a good agreement with the real exogenous percent of water and ethanol from investigated samples.

  14. Eddy Covariance measurements of stable isotopes (δD and δ18O) in water vapor

    Science.gov (United States)

    Braden-Behrens, Jelka; Knohl, Alexander

    2017-04-01

    Stable isotopes are a promising tool to enhance our understanding of ecosystem gas exchanges. Studying 18O and 2H in water vapour (H2Ov) can e.g. help partitioning evapotranspiration into its components. With recent developments in laser spectroscopy direct Eddy Covariance (EC) measurements for investigating fluxes of stable isotopologues became feasible. So far very few case studies have applied the EC method to measure stable isotopes in water vapor. We continuously measure fluxes of water vapor isotopologues with the EC method in a managed beech forest in Thuringia, Germany, since autumn 2015 using the following setup: An off-axis integrated cavity output water vapor isotope analyzer (WVIA, Los Gatos Research. Inc, USA) measures the water vapour concentration and its isotopic composition (δD and δ18O). The instrument, that was optimized for high flow rates (app. 4slpm) to generate high frequency (2Hz) measurements, showed sufficient precision with Allan Deviations of app. 0.12 ‰ for δD and 0.06 ‰ for δ18O for averaging periods of 100s. The instrument was calibrated hourly using a high-flow optimized version of the water vapor isotope standard source (WVISS, Los Gatos Research. Inc, USA) that provides water vapor with known isotopic composition for a large range of different concentrations. Our calibration scheme includes a near continuous concentration range calibration instead of a simple 2 or 3-point calibration to face the analyzers strong concentration dependency within a range of app. 6 000 to 16 000 ppm in winter and app. 8 000 to 23 000 ppm in summer. In the used setup, the high-flow and high-frequency optimized water vapor isotope analyzer (WVIA) showed suitable characteristics (Allan deviation and spectral energy distribution) to perform Eddy covariance measurements of stable isotopes in H2Ov. Thus, this novel instrument for EC measurements of water vapor isotopologues provides a new opportunity for studying the hydrological cycle in long

  15. Studies on determination of stable elements in sea water and organisms

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    The existing conditions of stable elements including Co, Zn, Cs, Ce and Eu in sea water were determined by adding radioactive tracers, and determination methods were discussed. 60 Co added to sea water revealed to be kept in solution in 93 per cent of non-filtrated sea water, and in 98 per cent of filtrated sea water. 65 Zn also added to sea water showed to be kept in solution in 97 per cent of both non-filtrated and filtrated sea water. Both elements seemed to exist as particle or ion smaller than 0.45 μ, which solved in sea water. On the other hand, in both Ce and Eu of rare earth elements, about 80 per cent of them presented in the residue, but the treatment of sea water by hydrochroric acid solubilized 80 to 90 per cent of them in filtrated sea water. One of the instrumental analysis, irradiation analysis by nuclear reactor, was applied: each of preconcentration procedure by ion exchange method for Co and Zn in sea water and drying up sample marine organisms to ash content combined with irradiation analysis. Chemical recovery of both 60 Co and 65 Zn in sea water by preconcentration procedure reached more than 95 per cent. As to marine organisms, Co, Zn, and Cs could be determined with only 100 to 200 mg. of ash content obtained from sample marine organisms showing 80 per cent of chemical yield of the carrier through whole the procedure of analysis in almost all the samples. The chemical recovery of Ce and Eu in sea water and marine organisms by the preconcentration procedure reached about 85 per cent, and chemical yield through whole the procedure of analysis was more than 60 per cent. Concentration factor of Co and Zn in fishes and shells, especially that of muscles, obtained by stable elements determination method was almost 10 times that by RI tracer method. The difference of chemical forms between RI tracer and stable isotope affected not only to physiological metabolism but also to food chains. (Kanao, K.)

  16. Geochemical tracers for monitoring fluid mixing during a CO2-water injection field test

    Science.gov (United States)

    Black, J. R.; Vu, H. P.; Haese, R. R.

    2015-12-01

    A series of injection-withdrawl (push-pull) well tests were conducted at the Otway CO2CRC field site using the CRC-2 well to determine the impact of injecting impurities (54 ppm SO2, 9 ppm NO2, 1100 ppm N2 and 6150 ppm O2) with a CO2 stream on mineral dissolution/precipitation processes in a siliciclastic reservoir. Four geochemical tracers were added to the injection waters of two sequential tests to monitor for any fluid mixing in the reservoir during the tests. Bromide and strontium were added as tracers to the injection water of test 1, and fluoresceine and lithium were added as tracers to the injection water of test 2. Injection waters in both tests were allowed to soak in the reservoir before they were back-produced to monitor for any water-rock interactions that took place. The results suggest mixing of injection and in situ formation waters as well as reactivity of some of the tracers. Bromide behaves as an inert tracer and the concentration decreases by 6 and 15% after 11 and 21 days of soaking, respectively, suggesting minor fluid mixing in the reservoir. Fluorescein drops by about 50% after two days of soaking, which may be due to adsorption onto minerals under acidic conditions. Strontium and lithium concentrations decrease over time in excess to the bromide concentration decrease, this may indicate the precipitation of Sr and Li bearing mineral phases that are calculated to be supersaturated with respect to the composition of back-produced waters. The decrease in bromide tracer concentration over time can be explained by preferential flow paths and hydrodynamic mixing during the soak period. Importantly, ideal tracer behavior was observed during a subsequent experiment where water was continuously back-produced. Our results show that typical (shallow) groundwater tracers need to be applied with caution when studying the hydrodynamics in a CO2 storage reservoir. Further geochemical and hydrodynamic modelling is underway to fully explain our observations.

  17. Flow velocity effect on the corrosion/erosion in water injection systems

    International Nuclear Information System (INIS)

    Jimenez, C.; Mendez, J.

    1998-01-01

    The main causes of fails at water injection lines on the secondary petroleum recovery systems are related with corrosion/erosion problems which are influenced by the flow velocity, the presence of dissolved oxygen, solids in the medium and the microorganisms proliferation. So too, this corrosion process promotes the suspended solids generation which affects the water quality injected, causing wells tamponage and loss of injectivity, with the consequent decrease in the crude production. This situation has been impacted in meaning order at the production processes of an exploration enterprise which utilizes the Maracaibo lake as water resource for their injection by pattern projects. Stating that, it was developed a study for determining in experimental order the effect of flow velocity on the corrosion/erosion process joined to the presence of dissolved oxygen which allows to determine the optimum range of the said working velocity for the water injection systems. This range is defined by critical velocities of bio layers deposition and erosion. They were realized simulation pilot tests of the corrosion standard variables, concentration of dissolved oxygen and fluid velocity in the injection systems with filtered and non filtered water. For the development of these tests it was constructed a device which allows to install and expose cylindrical manometers of carbon steel according to predetermined conditions which was obtained the necessary information to make correlations the results of these variables. Additionally, they were determined the mathematical models that adjusts to dynamical behavior of the corrosion/erosion process, finding the optimum range of the flow velocity for the control of this process, being necessary to utilize the following techniques: Scanning Electron Microscopy (SEM), X-ray dispersion analysis (EDX) for encourage the surface studies. They were effected morphological analysis of the surfaces studies and the values were determined of

  18. Water-stable aggregates of Niger floodplain soils and their organic ...

    African Journals Online (AJOL)

    Five soil profiles were studied along a soil sequence in the Niger river floodplain to determine their soil properties and water-stable aggregates (WSA) between 4.75-2.00 mm, 2.00-1.00 mm, 1.00-0.50 mm, 0.50-02.5 mm and <0.25 mm. The relative distributions of soil organic carbon (SOC), total nitrogen and available ...

  19. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins.

    Science.gov (United States)

    Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo; Vallittu, Pekka; Shimizu, Hiroshi; Takahashi, Yutaka

    2014-11-01

    This study investigated the influence of water sorption on certain mechanical properties of injection-molded thermoplastic denture base resins. Six thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethylmethacrylate) and a polymethylmethacrylate (PMMA) conventional heat-polymerized denture-based polymer, selected as a control, were tested. Specimens of each denture base material were fabricated according to ISO 1567 specifications and were either dry or water-immersed for 30 days (n = 10). The ultimate flexural strength, the flexural strength at the proportional limit and the elastic modulus of the denture base materials were calculated. Water sorption significantly decreased the ultimate flexural strength, the flexural strength at the proportional limit and the elastic modulus of one of the polyamides and the PMMAs. It also significantly increased the ultimate flexural strength of the polycarbonate. The mechanical properties of some injection-molded thermoplastic denture base resins changed after water sorption.

  20. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    Science.gov (United States)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  1. Assessment of electrical conductivity as a surrogate measurement for water samples in a tracer injection experiment

    Science.gov (United States)

    The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...

  2. Is There Evidence of Convectively Injected Water Vapor in the Lowermost Stratosphere Over Boulder, Colorado?

    Science.gov (United States)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.

    2014-12-01

    Anderson et al. (2012) reported the frequent presence of convectively injected water vapor in the lowermost stratosphere over North America during summertime, based on aircraft measurements. They asserted that enhanced catalytic ozone destruction within these wet stratospheric air parcels presents a concern for UV dosages in populated areas, especially if the frequency of deep convective events increases. Schwartz et al.(2013) analyzed 8 years of more widespread Aura Microwave Limb Sounder (MLS) measurements of lower stratospheric water vapor over North America and concluded that anomalously wet (>8 ppm) air parcels were present only 2.5% of the time during July and August. However, given the 3-km vertical resolution of MLS water vapor retrievals in the lowermost stratosphere, thin wet layers deposited by overshooting convection may be present but not readily detectable by MLS. Since 1980 the balloon-borne NOAA frost point hygrometer (FPH) has produced nearly 400 high quality water vapor profiles over Boulder, Colorado, at 5-m vertical resolution from the surface to the middle stratosphere. The 34-year record of high-resolution FPH profiles obtained over Boulder during summer months is evaluated for evidence of convectively injected water vapor in the lowermost stratosphere. A number of approaches are used to assess the contributions of deep convection to the Boulder stratospheric water vapor record. The results are compared to those based on MLS profiles over Boulder and the differences are discussed. Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835-839, doi:10.1126/science.1222978. Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney (2013), Convectively injected water vapor in the North American summer lowermost stratosphere, Geophys. Res. Lett., 40, 2316-2321, doi:10

  3. An Energy Analysis on Gasification of Sewage Sludge by a Direct Injection in Supercritical Water

    OpenAIRE

    Yukananto, Riza; Louwes, Alexander Charnchai; Bramer, Eduard A.; Brem, Gerrit

    2017-01-01

    Supercritical Water Gasification is an efficient technology in converting wet biomass into H2 and CH4 in comparison to other conventional thermochemical processes. Coke deposition, however, remains as a major challenge in this technology. Coke formation is the result of polymerization reactions that take place at sub-critical conditions. Directly injecting the relatively unheated wet biomass feed into supercritical water increases the heating rate and reduces the residence time of the feed in...

  4. Stable isotope study of soil water, WIPP site New Mexico: estimation of recharge to Rustler aquifers

    International Nuclear Information System (INIS)

    Campbell, A.R.; Phillips, F.M.; Vanlandingham, R.J.

    1996-01-01

    Defining the hydrologic setting of the Waste Isolation Pilot Plant (WIPP) is an important step for site characterization and performance assessment. From past research there is a controversy about the timing of recharge to the aquifers in the Rustler Formation which overlies the repository. The stable isotopic composition (δD and δD 18 O) of the water has been used in this argument but with ambiguous conclusions. Soil cores from WIPP have been sampled for δD, δD 18 O, Cl - and water content. The data indicate that there is a small amount of infiltration (.2 to 2 mm/yr) through the desert soil. The δD and δD 18 O analyses suggest that meteoric water in the area can have a stable isotope composition similar to that in the Rustler Fm. Further supporting evidence come from the isotopic composition of drip and pool waters in nearby Carlsbad Caverns. This indicates that the water in the Rustler Fm. need not have been recharged in the past (>10,000 yrs.) under different climatic conditions. (author) 8 figs., 2 tabs., 16 refs

  5. An experimental study on tissue damage following subcutaneous injection of water soluble contrast media

    International Nuclear Information System (INIS)

    Kim, Seung Hyup; Park, Jae Hyung; Kang, Heung Sik; Kim, Chu Wan; Han, Man Chung; Kim, Yong Il

    1989-01-01

    The water soluble contrast media cause tissue necrosis infrequently by extravasation during intravenous injection in various radiological examinations. However, it has not been well documented that what kind and what concentration of contrast media can cause tissue necrosis. And also, the mechanism of tissue necrosis by extravasated contrast media has not been well known. The purpose of this experimental study was to evaluate the frequency and severity of tissue damage following subcutaneous injection of various water soluble contrast media to investigate the characteristics of the contrast media acting on the tissue damage, and to provide the basic data for the clinical application. Meglumine ioxithalamate,sodium and meglumine ioxithalamate, iopromide, iopamidol, ioxaglate,meglumine diatrizoate and sodium diatrizoate of various iodine content and osmolality were injected into subcutaneous tissue of the dorsum of 970 feet of 485 rats. The tissue reaction of injection sites were grossly examined with period from 1 day to 8 weeks after the injection. Representative gross changes were correlated with histologic findings. The results were as follows; 1. The basic tissue damage by extravasated contrast media was acute and chronic inflammatory reaction of the soft tissue with subsequent progress into the hemorrhagic and necrotizing lesion. 2. Lager volume of contrast media caused more severe tissue damage. 3. Contrast media of higher osmolality caused more severe tissue damage. 4. At same osmolality, contrast media of higher iodine content caused more severe tissue damage

  6. Lake Louise water (USGS47): a new isotopic reference water for stable hydrogen and oxygen isotope measurements.

    Science.gov (United States)

    Qi, Haiping; Lorenz, Jennifer M; Coplen, Tyler B; Tarbox, Lauren; Mayer, Bernhard; Taylor, Steve

    2014-02-28

    Because of the paucity of isotopic reference waters for daily use, a new secondary isotopic reference material has been prepared from Lake Louise water from Alberta, Canada, for international distribution. This water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule. The δ(2)H and δ(18)O values of this reference water are -150.2 ± 0.5‰ and -19.80 ± 0.02‰, respectively, relative to VSMOW, on scales normalized such that the δ(2)H and δ(18)O values of SLAP reference water are, respectively, -428 and -55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    International Nuclear Information System (INIS)

    Abu-Zaid, M.

    2004-01-01

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases

  8. Development of a stable cation modified graphene oxide membrane for water treatment

    Science.gov (United States)

    Yu, Wenzheng; (Yet Yu, Tong; Graham, Nigel

    2017-12-01

    Membranes prepared from layers of graphene oxide (GO) offer substantial advantages over conventional materials for water treatment (e.g. greater flux), but the stability of GO membranes in water has not been achieved until now. In this study the behavior of GO membranes prepared with different quantities and species of cations has been investigated to establish the feasibility of their application in water treatment. A range of cation-modified GO membranes were prepared and exposed to aqueous solutions containing specific chemical constituents. In pure water, unmodified and Na-modified GO membranes were highly unstable, while GO membranes modified with multivalent cations were stable provided there were sufficient quantities of cations present; their relative capability to achieve GO stability was as follows: Al3+  >  Ca2+  >  Mg2+  >  Na+. It is believed that the mechanism of cross-linking, and membrane stability, is via metal-carboxylate chelates and cation-graphite surface interactions (cation-π interaction), and that the latter appears to increase with increasing cation valency. The instability of cation (Ca or Al)-modified GO membranes by NaCl solutions during permeation occurred as Na+ exchanged with the incorporated multivalent cations, but a high content of Al3+ in the GO membrane impeded Al3+/Na+ exchange and thus retained membrane stability. In solutions containing biopolymers representative of surface waters or seawater (protein and polysaccharide solutions), Ca-GO membranes (even with high Ca2+ content) were not stable, while Al-GO membranes were stable if the Al3+ content was sufficiently high; Al-formed membranes also had a greater flux than Ca-GO membranes.

  9. Accident tolerant high-pressure helium injection system concept for light water reactors

    International Nuclear Information System (INIS)

    Massey, Caleb; Miller, James; Vasudevamurthy, Gokul

    2016-01-01

    Highlights: • Potential helium injection strategy is proposed for LWR accident scenarios. • Multiple injection sites are proposed for current LWR designs. • Proof-of-concept experimentation illustrates potential helium injection benefits. • Computational studies show an increase in pressure vessel blowdown time. • Current LOCA codes have the capability to include helium for feasibility calculations. - Abstract: While the design of advanced accident-tolerant fuels and structural materials continues to remain the primary focus of much research and development pertaining to the integrity of nuclear systems, there is a need for a more immediate, simple, and practical improvement in the severe accident response of current emergency core cooling systems. Current blowdown and reflood methodologies under accident conditions still allow peak cladding temperatures to approach design limits and detrimentally affect the integrity of core components. A high-pressure helium injection concept is presented to enhance accident tolerance by increasing operator response time while maintaining lower peak cladding temperatures under design basis and beyond design basis scenarios. Multiple injection sites are proposed that can be adapted to current light water reactor designs to minimize the need for new infrastructure, and concept feasibility has been investigated through a combination of proof-of-concept experimentation and computational modeling. Proof-of-concept experiments show promising cooling potential using a high-pressure helium injection concept, while the developed choked-flow model shows core depressurization changes with added helium injection. Though the high-pressure helium injection concept shows promise, future research into the evaluation of system feasibility and economics are needed.Classification: L. Safety and risk analysis

  10. Assessment of nitrification potential in ground water using short term, single-well injection experiments.

    Science.gov (United States)

    Smith, R L; Baumgartner, L K; Miller, D N; Repert, D A; Böhlke, J K

    2006-01-01

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 microM) and ammonium (19 to 625 microM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with (15)N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 mumol (L aquifer)(-1) h(-1) with in situ oxygen concentrations and up to 0.81 mumol (L aquifer)(-1) h(-1) with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.

  11. Assessment of nitrification potential in ground water using short term, single-well injection experiments

    Science.gov (United States)

    Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.

    2006-01-01

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 μM) and ammonium (19 to 625 μM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02–0.28 μmol (L aquifer)−1 h−1 with in situ oxygen concentrations and up to 0.81 μmol (L aquifer)−1 h−1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.

  12. Isotopic modeling of water and sodium distribution and exchange kinetics in 7 stable hemodialysis patients

    International Nuclear Information System (INIS)

    Chamoiseau, S.; Bertrou, L.; Pujo, J.M.; Massol, M.

    1988-01-01

    Sequential serum sampling over 24 h. has been performed in 7 hemodialysis patients after simultaneous intra-venous injection of tritiated water and 24 Na. Each time-activity curve fits a biexponential pattern. A compartment analysis leads to describe either a simple but incomplete single compartment model or a much more satisfactory open two-compartment mamillary model featuring 2 intercompartment transfer rate constants k 21 and k 12 , and a loss out of the system, k 01 . These constants can be related to intrabody resistances to sodium and water transfers. Compartment analysis allows a comprehensive quantitated description of the exchange and transfer kinetics of sodium and water throughout the system. Evidence for a sodium reservoir, probably located in bone, can be drawn from the results and leads to propose a strategy for a targetted bone sodium removal [fr

  13. Dew water effects on leaf water using a stable isotope approach

    Science.gov (United States)

    Kim, K.; Lee, X.

    2009-12-01

    The presence of dew is a common meteorological phenomenon in field conditions and takes into account for significant portion of hydrologic processes in terrestrial ecosystems. The isotope composition of leaf water plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. However, the consequence of dew formation in the plant-atmosphere relations has been ignored in many studies. The objective of this study is to improve our understanding of environmental and biological controls on the leaf water in equilibrium with dew water through laboratory experiments. Five species of plants (soybean, corn, sorghum, wheat, cotton) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. Humidity inside the container was saturated to mimic dew events in field conditions. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of the isotopic ratio of leaf water in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of the isotopic ratio of leaf water differ between the C3 and C4 photosynthesis pathways.

  14. Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water

    Science.gov (United States)

    Scholl, M.A.; Giambelluca, T.W.; Gingerich, S.B.; Nullet, M.A.; Loope, L.L.

    2007-01-01

    Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume‐weighted average cloud water and rain samples was 1.4‰ δ18O and 12‰ δ2H for the windward site and 2.8‰ δ18O and 25‰ δ2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end‐member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.

  15. The use of chemical tracers to water injection processes applied on Romanian reservoirs

    Directory of Open Access Journals (Sweden)

    Zecheru M.

    2013-05-01

    Full Text Available The hydrocarbon reservoirs are extremely complex, each reservoir having its own identity. Reservoirs heterogeneity (mainly regarding the layered ones frequently results in low recovery efficiencies, both under the primary regime and when different agents are injected from the surface. EOR processes efficiency depends on how detailed the reservoir is known and on the information related to fluids flow through reservoir. There are certain analyzes, investigations and tests providing good knowledge about the reservoir. The tracer tests are among them, being frequently used to water injection processes. Depending on the method used, IWTT (Interwell tracer test, SWTT (Single-Well Tracer Test, TWTT (Two-Well Tracer Test, information are obtained as related to: the setting of the preferential flow path of the injected fluid, the identification of water channels, evidencing the geological barriers, determining the residual oil saturation, around the well bore or along the tracer's path between two wells. This paper is focused on ICPT Câmpina efforts related to the use of the chemical tracers to the water injection processes applied to the oil reservoirs of Romania. It describes the usual tracers and the methods used to detect them in the reaction wells. Up to now, more than 50 tests with IWTT tracers have been performed on-site and this work presents some of their results.

  16. Partitioning evapotranspiration fluxes with water stable isotopic measurements: from the lab to the field

    Science.gov (United States)

    Quade, M. E.; Brueggemann, N.; Graf, A.; Rothfuss, Y.

    2017-12-01

    Water stable isotopes are powerful tools for partitioning net into raw water fluxes such as evapotranspiration (ET) into soil evaporation (E) and plant transpiration (T). The isotopic methodology for ET partitioning is based on the fact that E and T have distinct water stable isotopic compositions, which in turn relies on the fact that each flux is differently affected by isotopic kinetic effects. An important work to be performed in parallel to field measurements is to better characterize these kinetic effects in the laboratory under controlled conditions. A soil evaporation laboratory experiment was conducted to retrieve characteristic values of the kinetic fractionation factor (αK) under varying soil and atmospheric water conditions. For this we used a combined soil and atmosphere column to monitor the soil and atmospheric water isotopic composition profiles at a high temporal and vertical resolution in a nondestructive manner by combining micro-porous membranes and laser spectroscopy. αK was calculated by using a well-known isotopic evaporation model in an inverse mode with the isotopic composition of E as one input variable, which was determined using a micro-Keeling regression plot. Knowledge on αK was further used in the field (Selhausen, North Rhine-Westphalia, Germany) to partition ET of catch crops and sugar beet (Beta vulgaris) during one growing season. Soil and atmospheric water isotopic profiles were measured automatically across depths and heights following a similar modus operandi as in the laboratory experiment. Additionally, a newly developed continuously moving elevator was used to obtain water vapor isotopic composition profiles with a high vertical resolution between soil surface, plant canopy and atmosphere. Finally, soil and plant samples were collected destructively to provide a comparison with the traditional isotopic methods. Our results illustrate the changing proportions of T and E along the growing season and demonstrate the

  17. Stable water use efficiency under climate change of three sympatric conifer species at the Alpine treeline

    Directory of Open Access Journals (Sweden)

    Gerhard eWieser

    2016-06-01

    Full Text Available The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies and Larix decidua trees from 1975-2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ13C and Δ18O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  18. Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline.

    Science.gov (United States)

    Wieser, Gerhard; Oberhuber, Walter; Gruber, Andreas; Leo, Marco; Matyssek, Rainer; Grams, Thorsten Erhard Edgar

    2016-01-01

    The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ(13)C and Δ(18)O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  19. Constraining water uptake depths in semiarid environments using water stable isotopes

    Science.gov (United States)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    The biophysical process of transpiration recently received increased attention by ecohydrologists as it has been proven the largest flux of the global water balance. However, fundamental aspects related to the questions how and from which sources plants receive their water are not fully understood. Especially the process of plant water uptake from deeper soil and its impact on the water balance requires increased scientific effort. In this study we combined tracer experiments with the analysis of natural isotopic compositions in order to: i) derive a suitable site-specific root water uptake distribution for hydrological modeling; ii) find indicators for groundwater use by specific plants; and iii) evaluate the importance of deep unsaturated zone water uptake using HYDRUS 1D. The bayesian mixing model MixSIAR was applied at a semiarid site with a deep unsaturated zone in northern Namibia in order to identify source water contributions of the most abundant species (A.erioloba, B.plurijuga, C.collinum, S.luebertii and T.sericea). In addition, a previously developed method for the investigation of root water uptake depths based on deuterium labeling (2H2O) at specific depths (0.5 to 4 m) and monitoring of tracer uptake by plants was carried out with a focus on the deeper unsaturated zone. With the experimental results a root water uptake distribution for the lateral root zone was derived which allows to constrain the source water contributions estimated with MixSIAR. Finally, a HYDRUS 1D model was established and unsaturated zone water transport was evaluated. The analysis of the natural isotopic compositions reveals a significant contribution of groundwater (median: 48%) to the isotopic composition of A.erioloba at the end of the dry season indicating the presence of deep tap roots for a number of individuals. All other investigated species obtain their water from the shallow (median: 22%) or deeper (median: 62%) unsaturated zone at this time of the year. The water

  20. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  1. Effects of Continuing Oral Risperidone vs. Switching from Risperidone to Risperidone Long-Acting Injection on Cognitive Function in Stable Schizophrenia Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Hikaru Hori

    2018-03-01

    Full Text Available ObjectivesRisperidone is the first new generation antipsychotic drug to become available as a long-acting injection (LAI. The purpose of this study was to evaluate the effects of switching from oral risperidone to risperidone LAI (RLAI on cognitive function in stable schizophrenia patients compared with the effects of continuing oral risperidone.MethodsSixteen stable patients who had received risperidone monotherapy for at least 3 months were enrolled (the RLAI group. Before and 24 weeks after switching to RLAI, the Japanese-language version of the Brief Assessment of Cognition in Schizophrenia (BACS-J and the Positive and Negative Syndrome Scale (PANSS were administered. To exclude the possibility of learning effects on the BACS-J results, 14 patients with stable schizophrenia who continued oral risperidone treatment were also assessed (the RIS group.ResultsThe two groups did not differ with respect to changes in the PANSS score, and no emergent side effects, including extrapyramidal symptoms, were observed. The BACS-J score for verbal memory exhibited greater improvement in the RLAI group than in the RIS group (p = 0.047.ConclusionThe results of this preliminary study suggest that switching from oral risperidone to RLAI may improve verbal capability more than continuing with oral risperidone. However, these findings must be replicated in a larger, double-blind study.

  2. Counter-crossing injection for stable high-quality electron beam generation via laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kotaki, H; Daito, I; Hayashi, Y; Ma, J; Chen, L-M; Kando, M; Esirkepov, T Z; Fukuda, Y; Homma, T; Pirozhkov, A; Koga, J K; Nakajima, K; Daido, H; Bulanov, S V [Advanced Photon Research Center, Japan Atomic Energy Agency, Kizugawa, Kyoto (Japan)], E-mail: kotaki.hideyuki@jaea.go.jp

    2008-05-01

    Counter-crossing injection, which is a realistic setup for applications, by two sub-relativistic laser pulses colliding at an angle of 45 degrees is demonstrated. The collision of the two laser pulses generates a high-quality electron beam with high reproducibility. The generated monoenergetic electron beam has a peak energy of 14.4 MeV, an energy spread of 10.6%, a charge of 21.8 pC, a normalized emittance of 1.6 {pi} mm mrad, and a reproducibility of 50%. The electron beam generation is unfolded with two-dimensional-particle-in-cell simulations. The laser pulses in plasma are self-focused to higher intensity when the laser power is above the threshold for relativistic self-focusing. The collision of the self-focused laser pulses generates a high-quality electron beam with high reproducibility.

  3. Time Effect of Water Injection on the Mechanical Properties of Coal and Its Application in Rockburst Prevention in Mining

    Directory of Open Access Journals (Sweden)

    Xiaofei Liu

    2017-11-01

    Full Text Available Coal seam water injection is widely used to prevent rockbursts in coal mines, and the duration of water injection is an important parameter related to the effectiveness of rockburst prevention, making it of practical importance to optimize the effective water injection duration. This paper presents the test results of the mechanical properties and pore structure of samples with different soaking time, obtained from a working face where rockburst occurred. Soaking time changes the mechanical properties of samples, and this time effect differs with the coal size (from centimeter to nanometer size. Results of numerical simulation and on-site tests in the Changgouyu coal mine demonstrated that water injection can effectively soften coal bodies and release or transfer stresses, and the time effect of water injection on rock prevention and control is apparent.

  4. Zinc injection on the EDF pressurized light water reactors. Current results and operating experience feedback

    International Nuclear Information System (INIS)

    Piana, Olivier; Duval, Arnaud; Moleiro, Edgar; Benfarah, Moez; Bretelle, Jean-Luc; Chaigne, Guy

    2014-01-01

    Nowadays, zinc injection, as well as pH management and hydrogen control, is increasingly considered as an essential element of PWR Primary Water Chemistry worldwide. After a first implementation of zinc injection at Bugey 2 since 2004 and Bugey 4 since 2006, EDF decided to extend this practice, which constitutes a modification of primary circuit chemical conditioning, to other units of its fleet. Currently, 15 among the 58 reactors of the French fleet are injecting depleted zinc acetate into the primary coolant water. Three main goals were identified at the beginning of this program. Indeed, the expected benefits of zinc injection were: Reduction of the rate of generalized corrosion and mitigation of stress corrosion cracking initiation on nickel based alloys (Material goal). Curative or preventive reduction of radiation sources to which workers are exposed (Radiation fields' goal). Mitigation of the AOA or CIPS risks by reduction of corrosion products releases and mitigation of crud deposition (Fuel protection goal). To monitor the zinc addition, EDF has defined a complete survey program concerning: chemistry and radiochemistry responses (primary coolant monitoring of corrosion and fission products and calculation of zinc injected, zinc removed and zinc incorporated in RCS surfaces) ; radiation fields (dose rates and deposited activities measurements) ; materials (statistical analysis of SG tube cracks) ; fuel (oxide thickness measurements and visual exams) ; effluents (corrosion products releases and isotopic distribution follow up) ; wastes (radiochemical characterization of filters). This paper will detail the present results of this monitoring program. It appears that the expected benefits of zinc injection have yet to be fully realized; further operating experience will be required in order to fully evaluate its impact. (author)

  5. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  6. Chaotic behavior of water column oscillator simulating pressure balanced injection system in passive safety reactor

    International Nuclear Information System (INIS)

    Morimoto, Y.; Madarame, H.; Okamoto, K.

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI) proposed a passive safety reactor called the System-integrated Pressurized Water Reactor (SPWR). In a loss of coolant accident, the Pressurizing Line (PL) and the Injection Line (IL) are passively opened. Vapor generated by residual heat pushes down the water level in the Reactor Vessel (RV). When the level is lower than the inlet of the PL, the vapor is ejected into the Containment Vessel (CV) through the PL. Then boronized water in the CV is injected into the RV through the IL by the static head. In an experiment using a simple apparatus, gas ejection and water injection were found to occur alternately under certain conditions. The gas ejection interval was observed to fluctuate considerably. Though stochastic noise affected the interval, the experimental results suggested that the large fluctuation was produced by an inherent character in the system. A set of piecewise linear differential equations was derived to describe the experimental result. The large fluctuation was reproduced in the analytical solution. Thus it was shown to occur even in a deterministic system without any source of stochastic noise. Though the derived equations simulated the experiment well, they had ten independent parameters governing the behavior of the solution. There appeared chaotic features and bifurcation, but the analytical model was too complicated to examine the features and mechanism of bifurcation. In this study, a new simple model is proposed which consists of a set of piecewise linear ordinary differential equations with only four independent parameters. (authors)

  7. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Soo-Yong Park

    2015-10-01

    Full Text Available Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  8. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    Science.gov (United States)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  9. Control of carbon deposition in the free space of coke oven chamber by injecting atomized water

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, T.; Kudo, T.; Kamada, Y.; Suzuki, T.; Suzuki, Y.; Komaki, K. [Nippon Steel Corp. Ltd., Chiba (Japan)

    2002-07-01

    The method of the atomized water injection into the free space of coke oven chamber was studied to decrease the carbon deposits by controlling the atmospheric temperature. After the preliminary examinations, three injection lances were installed among four charging holes of an actual coke oven chamber. When the 1.7 kmol/h of water per lance was injected into the free space, the temperature decreased from 1210 to 1160 K and the carbon formation rate was decreased by 70 % (average in an oven length direction, respectively). A long-term (about two months) injection test showed that the remarkable decreases of the frequency of the manual decarbonization operation held on the oven top and the incidence of the blockage of the standpipe. It was estimated that the decrease of the carbon deposits was brought not only by the depression of the pyrolysis reaction, but also by the dilution of the carbonization gas and the reduction of the carry-over of fines.

  10. Investigation of Amourphous Deposits and Potential Corrosion Mechanisms in Offshore Water Injection Systems

    DEFF Research Database (Denmark)

    Eroini, Violette; Oehler, Mike Christian; Graver, Britt Kathrine

    2017-01-01

    Increasing incidence of amorphous deposits in both production and water injection systems has caused considerable problems for offshore oil fields. Amorphous deposits, which are a widely recognized, but often poorly explained phenomenon, are typically comprised of both organic (biological...... and assisting in prevention or remediation. It is proposed that the deposit formation, observed in offshore water injection systems treated with nitrate, is initiated by formation of a nitrate reducing biofilm promoting under deposit corrosion by activity of sulphate reducing and methanogenic prokaryotes...... and sometimes inappropriate treatment. Initial work, undertaken to classify the different substances encountered, has been previously reported.1 Systematic analysis allowed the development of a classification matrix intending to describe similar material in terms of their major components. The objective...

  11. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    Science.gov (United States)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  12. Hydrogeochemical and stable isotope geochemical characterization of shallow ground waters and submarine ground water discharge in North-Eastern Germany

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Böttcher, Gerd; Schwerdtfeger, Beate; Lipka, Marko; Westphal, Julia

    2017-04-01

    The evolution and hydrochemical composition of ground waters in Mecklenburg-Western Pommerania (North-Eastern Germany) is controlled by different natural and anthropogenic factors. In the present study, the hydrogeochemistry and stable isotope geochemistry (H, C, O, S) of shallow ground waters was investigated in 2014 and 2015. A mass balance approach is combined with physico-chemical modeling to define the mineral dissolution/precipitation potential as well as the processes taking place during the ground water development. The dissolved inorganic carbon system of the ground waters is controlled by the dissolution of biogenic carbon dioxide, the dissolution of (marine) carbonates and the oxidation of anthropogenically introduced DOC and at a few sites biogenic methane. The sulfur isotope composition of dissolved sulfate indicates the substantial impact from the oxidation of sedimentary pyrite using oxygen or nitrate as electron acceptor. The combined results are the base for a quantitative reaction path analysis. The composition of ground water is discussed with respect to its role as a source for fresh waters forming SGD and in a re-wetting wetland area (Hütelmoor) at the southern Baltic Sea coast line. Acknowledgements: The SGD/Hütelmoor part of this study is supported by German Science Foundation during DFG research training group BALTIC TRANSCOAST.

  13. Mass spectrometric method for the determination of the stable isotopic content of nitrous oxide by the technique of direct injection

    International Nuclear Information System (INIS)

    Rahn, T.; Wahlen, M.

    2002-01-01

    A method for the direct isotopic analysis of N 2 O has been developed for VG-Prism H dynamic dual inlet stable isotope mass spectrometer. Tests have shown extreme sensitivity to contamination by carbon dioxide with a dependence of 6.8 per mille per % CO 2 for δ 15 N and 12.4 per mille per % CO 2 for δ 18 O. Trace amounts of CO 2 have proven difficult to eliminate, particularly for small sample sizes. In order to ensure accurate analyses an indicator of CO 2 contamination must be monitored and corrections applied when necessary. We have found that ions with mass to charge ratios of 12 and 22 are excellent proxies for CO 2 contamination. Empirical relationships between these indicator species and CO 2 contamination are documented which allow for corrections to be applied to raw data. Additional corrections required due to the presence of isobaric molecules containing 17 O are described. Issues of standardization are discussed and sample handling procedures described. Finally, these methods and corrections are applied to a suite of stratospheric air samples. (author)

  14. A comparison of water-diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions

    International Nuclear Information System (INIS)

    Subramanian, K.A.

    2011-01-01

    Experiments were conducted to compare the effects of water-diesel emulsion and water injection into the intake manifold on performance, combustion and emission characteristics of a DI diesel engine under similar operating conditions. The water to diesel ratio for the emulsion was 0.4:1 by mass. The same water-diesel ratio was maintained for water injection method in order to assess both potential benefits. All tests were done at the constant speed of 1500 rpm at different outputs. The static injection timing of 23 o BTDC was kept as constant for all experimental tests. In the first phase, experiments were carried out to asses the performance, combustion and emission characteristics of the engine using the water-diesel emulsion. The emulsion was prepared using the surfactant of HLB:7. The emulsion was injected using the conventional injection system during the compression stroke. The second phase of work was that water was injected into the intake manifold of the engine using an auxiliary injector during the suction stroke. An electronic control unit (ECU) was developed to control the injector operation such as start of injection and water injection duration with respect to the desired crank angle. The experimental result indicates the both methods (emulsion and injection) could reduce NO emission drastically in diesel engines. At full load, NO emission decreased drastically from 1034 ppm with base diesel to 645 ppm with emulsion and 643 ppm with injection. But, NO emission reduction is lesser with injection than emulsion at part loads. Smoke emission is lower with the emulsion (2.7 BSU) than with water injection (3.2 BSU) as compared to base diesel (3.6 BSU). However, CO and HC levels were higher with emulsion than water injection. As regards NO and smoke reduction, the emulsion was superior to injection at all loads. Peak pressure, ignition delay and maximum rate of pressure rise were lesser with water injection as compared to the emulsion. It is well demonstrated

  15. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    Science.gov (United States)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for

  16. Gas diffusion-flow injection determination of total inorganic carbon in water using tungsten oxide electrode.

    Science.gov (United States)

    Monser, L; Adhoum, N; Sadok, S

    2004-02-06

    A novel gas diffusion-flow injection method has been developed for the rapid and sensitive determination of total inorganic carbon (TIC) in water. The method is based on the diffusion of CO(2) across gas permeable membrane from a donor stream containing 0.1M HCl to an acceptor stream of sodium acetate (10(-5)moll(-1) and pH 10). The CO(2) trapped in the acceptor stream passes through an electrochemical flow cell contains a tungsten oxide wire and a silver/silver chloride electrode, where it was sensitively detected. The parameters affecting the sensitivity of the electrode such as buffer concentration, pH, flow rate and injected volume were studied in detail. The electrode response was linear in the concentration range from 5 to 100mugml(-1) CO(3)(2-) with a correlation coefficient (R(2)) of 0.998. Precision (R.S.D.) was 1.42% for 20mugml(-1) standard solution of CO(3)(2-) (n=10). The detection limit was 0.20mugml(-1) CO(3)(2-). The method was evaluated by the injection of real natural water samples and an average recovery of 100.1% was obtained. The sampling rate was 30 samplesh(-1). The method is simple, feasible with satisfactory accuracy and precision and thus could be used for monitoring TIC in water.

  17. The analysis of scaling mechanism for water-injection pipe columns in the Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Guolin Jing

    2017-02-01

    Full Text Available Although water-injection in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR, in the process of development in the oilfield, scale has been produced in water-injection pipe columns. The ability to prevent and control the deposition of scale is critical to the efficient recovery of crude oil from hard environments, as part of the broader discipline of “flow assurance” in the petroleum industry. To this end laboratory-scale deposition tests have been useful to understand scale deposition mechanism. The process, mechanism and the main type of the scale in water-injection pipe columns of the fifth plant of the Daqing Oilfield were analyzed. The effect of temperature on the possibility of carbonate calcium formation on oil recovery was investigated experimentally. One of the scale samples was characterized by electron spectroscopy and the results of the element analysis were investigated. Moreover, the precautionary and control measures of scaling in oilfield pipe column systems are proposed.

  18. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  19. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    Science.gov (United States)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  20. Marine bivalve feeding strategy, radiocarbon ages and stable isotopes in Scottish coastal waters

    Science.gov (United States)

    Lo Giudice Cappelli, Elena; Austin, William

    2017-04-01

    microhabitats, as all measured bivalve shells are the same age within the ± 2sigma error. Thus, the main conclusion that can be drawn from our results is that stable isotopes measured in marine bivalve shells can be a very useful source of palaeoenvironmental information in coastal and continental shelf waters, while radiocarbon dating of the same shells provides a reliable chronology of environmental change, regardless of vital effects and differences in microhabitats, feeding strategies and sample location.

  1. Elevational Dependence of Catchment-scale Evapotranspiration Partitioning as Revealed by Water Stable Isotopes

    Science.gov (United States)

    Yamanaka, T.; Sato, R.

    2017-12-01

    Transpiration (T) through plants (i.e., green water) does not induce isotopic fractionation, although evaporation (E) from soils and water surfaces do. Therefore, water stable isotopes offer a powerful tool to partition evapotranspiration (ET) components. We attempted to evaluate catchment-scale T/ET for five mountainous catchments in the central Japan, using river water isotopes and isotope maps of precipitation and soil water as well as climatic and radar precipitation maps. The estimated T/ET ranged from 56% to 79% (ET not including interception loss), and negatively correlated with mean elevation of the catchments (r = -0.88). This is due to decreasing transpiration (-82 mm/yr per 100 m) and slightly increasing evaporation (8 mm/yr per 100 m) with increasing elevation. Another estimation scheme using isotope data only showed a positive correlation between elevation and E/P*, where P* is effective precipitation defined by gross precipitation minus interception. Because the forest coverage within the catchments has positive correlation with catchment-mean-elevation, both decrease in transpiration and increase in soil evaporation seem to reflect structural change in forests (e.g., dense to sparse) along elevation and thus temperature gradients. Applying the space-for-time substitution, our results indicates that global warming will increase transpiration (and thus carbon intake) at mid-latitude mountainous landscapes.

  2. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise

    DEFF Research Database (Denmark)

    Avnstorp, Magnus B; Rasmussen, Peter; Brassard, Patrice

    2015-01-01

    both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION: Challenging exercise in hypoxia for 30 min affected muscle......Avnstorp, Magnus B., Peter Rasmussen, Patrice Brassard, Thomas Seifert, Morten Overgaard, Peter Krustrup, Niels H. Secher, and Nikolai B. Nordsborg. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 16:000-000, 2015.-Background...... intense exercise is carried out in hypoxia and monitored the influence of muscle metabolism for changes in arterial variables. METHODS: On two separate days, in random order, 30 min cycling exercise was performed in either hypoxia (10% O2) or normoxia at an intensity that was exhaustive in the hypoxic...

  3. Assessing the Impact of Sublimation on the Stable Water Isotope Signal of Surface Ice

    Science.gov (United States)

    Dennis, D. P.; Ehrenfeucht, S.; Marchant, D. R.

    2017-12-01

    Sublimation is often a significant, if not the dominant, mechanism for ablation in polar and high elevation glacial systems. Previous field studies on firn and ice have suggested that sublimation can enrich the stable water isotope (δD and δ18O) signatures of these exposed materials. Several additional studies have attempted to replicate this effect through laboratory experiments. However, neither the magnitude of alteration caused by sublimation nor the maximum depth at which ice is affected are well-constrained. The effect of sublimation-induced alteration on the original meteoric signal relative to other post-depositional processes is additionally unknown. Here, we present the results of an experimental study on the effect of sublimation on stable water isotope ratios in surface ice. Using high-resolution data, we attempt to assess the suitability of δD and δ18O in near-surface and exposed ice for use as paleoclimate proxies. This type of analysis is particularly useful for future studies of ice from hyper-arid polar regions like the Antarctic McMurdo Dry Valleys, and may be extended to icy planetary bodies, including surface ice on Mars.

  4. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records

    Science.gov (United States)

    Luo, Ning; Illman, Walter A.

    2016-09-01

    Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity ( T) and storativity ( S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.

  5. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  6. Simple flow injection colorimetric system for determination of paraquat in natural water.

    Science.gov (United States)

    Chuntib, Prakit; Jakmunee, Jaroon

    2015-11-01

    A simple and low cost flow injection colorimetric system has been developed for determination of paraquat in natural water. The developed method is based on the reduction of paraquat by using sodium dithionite as a reducing agent in an alkaline medium to produce a blue free radical ion that can be detected by a simple light emitting diode-light dependent resistor (LED-LDR) colorimeter. The standard or sample solution was injected via a set of 3-way solenoid valves into a water carrier stream and flowed to merge with reagent to generate a colored product which is proportional to the concentration of paraquat ion in the solution. Under the optimum condition of the system, i.e., mixing coil length 30 cm, flow rate 2.0 mL min(-1), sample volume 100 μL, concentrations of dithionite 0.1% (w/v) and sodium hydroxide 0.06 mol L(-1), a linear calibration graph in the range of 0.2-10.0 mg L(-1) with a correlation coefficient of 0.9996, and a limit of detection of 0.15 mg L(-1) were achieved. Relative standard deviation for 9 replicate injections of 1 mg L(-1) paraquat is 3.7%. A sample throughput of 40 injections h(-1) was achieved. The limit of detection can be improved by off-line preconcentration of paraquat employing a column packed with Dowex 50WX8-100 (H) cation exchange resin and eluted with 10% (w/v) ammonium chloride in ammonium buffer solution pH 10. The eluting solution was then injected into the FI system for paraquat determination. The proposed system did not suffer from interferences of some possible ions in natural water and other herbicides. Recoveries obtained by spiking 0.5 and 5.0 mg L(-1) paraquat standard into water samples were in the range of 104-110% and 101-105%, respectively. The developed system can be conveniently applied for screening of paraquat contaminated in natural water. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An analysis on water hammer in liquid injection shutdown system of CANDU-9

    International Nuclear Information System (INIS)

    Kim, T. H.; Heo, J.; Han, S. K.; Choi, H. Y.; No, T. S.

    2000-01-01

    The water hammer analysis code, PTRAN, is used for computation of transient pressures and pressure differentials in the Liquid Injection Shutdown System(LISS) piping network of CANDU-9 to ensure that the design allowables for LEVEL C Service Limit are met for the water hammer loads resulting from the water hammer. The LISS piping network of CANDU-9 has incorporated design improvement in considering the water hammer, such as declining the horizontal part of helium header, and raising the elevation of the overall system piping configuration, etc. The maximum pressure in the LISS piping network is found to be 7.92 MPa(a) at the closed valve in the vent line, which is below the allowable working pressure and the valve design pressure under Level C service conditions. And it is also shown that the maximum pressure in CANDU-9 is much lower than that in CANDU-6

  8. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  9. Water-stable fac-{TcO₃}⁺ complexes - a new field of technetium chemistry.

    Science.gov (United States)

    Braband, Henrik

    2011-01-01

    The development of technetium chemistry has been lagging behind that of its heavier congener rhenium, primarily because the inherent radioactivity of all Tc isotopes has limited the number of laboratories that can study the chemistry of this fascinating element. Although technetium is an artificial element, it is not rare. Significant amounts of the isotope (99)Tc are produced every day as a fission byproduct in nuclear power plants. Therefore, a fundamental understanding of the chemistry of (99)Tc is essential to avoid its release into the environment. In this article the chemistry of technetium at its highest oxidation state (+VII) is reviewed with a special focus on recent developments which make water-stable complexes of the general type [TcO(3)(tacn-R)](+) (tacn-R = 1,4,7-triazacyclononane or derivatives) accessible. Complexes containing the fac-{TcO(3)}(+) core display a unique reactivity. In analogy to [OsO(4)] and [RuO(4)], complexes containing the fac-{TcO(3)}(+) core undergo with alkenes metal-mediated, vicinal cis-dihydroxylation reactions (alkene-glycol interconversion) in water via a (3+2)-cycloaddition reaction. Therefore, water-stable fac-{(99m)TcO(3)}(+) complexes pave the way for a new labeling strategy for radiopharmaceutical applications, based on (3+2)-cycloaddition reactions. This new concept for the labeling of biomolecules with small [(99m)TcO(3)(tacn-R)](+)-type complexes by way of a (3+2)-cycloaddition with alkenes is discussed in detail. The herein reported developments in high-valent technetium chemistry create a new field of research with this artificial element. This demonstrates the potential of fundamental research to provide new impetus of innovation for the development of new methods for radiopharmaceutical applications.

  10. Determining the Hydrological Importance of Coastal Fog in Northern California Using Stable Isotopes of Water

    Science.gov (United States)

    Scholl, M. A.; Torregrosa, A.; Coplen, T. B.

    2014-12-01

    Fog and cloud water can be an important part of the water cycle in mountainous coastal areas. In coastal California's Mediterranean climate, fog is the predominant precipitation source during the summer months. Here we report initial results of a study utilizing stable hydrogen and oxygen isotopes of water to investigate the role of fog in the hydrology of two ecosystems in Sonoma County, CA. The two study sites were the Bodega Marine Laboratory (BML) at 13 m elevation at the coast, and the Pepperwood Preserve at 375 m elevation in the North Coast Range, 44 km inland to the northeast. During a 1-week period in July 2014, fog samples were collected at 30-minute intervals using small active-strand cloudwater collectors (mini-CASCCs) and automated precipitation samplers. Four overnight fog events were collected at the Pepperwood site, while at the BML site, the liquid water content of the fog was very low, and only one cumulative sample was obtained. Groundwater samples from five wells and seven springs, and surface water samples from two streams were collected in and around the Pepperwood Preserve and on Bodega Head near BML. Droplet size distribution of the fog at BML was monitored, and at both sites, air temperature was measured at 10-minute intervals to assess variation in the δ 18O and δ 2H values of fog related to temperature. Relative humidity, wind speed, and wind direction were obtained from weather stations at each site. Previous work in this area (Coplen et al., in prep) documented the isotopic signatures of winter precipitation from frontal systems and landfalling Pacific storms. These results will be combined with the isotopic signature of summer fog water to determine whether fog contributes to shallow groundwater recharge or streamflow at the two sites.

  11. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  12. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt

    Directory of Open Access Journals (Sweden)

    N. Ohlanders

    2013-03-01

    Full Text Available Central Chile is an economically important region for which water supply is dependent on snow- and ice melt. Nevertheless, the relative contribution of water supplied by each of those two sources remains largely unknown. This study represents the first attempt to estimate the region's water balance using stable isotopes of water in streamflow and its sources. Isotopic ratios of both H and O were monitored during one year in a high-altitude basin with a moderate glacier cover (11.5%. We found that the steep altitude gradient of the studied catchment caused a corresponding gradient in snowpack isotopic composition and that this spatial variation had a profound effect on the temporal evolution of streamflow isotopic composition during snowmelt. Glacier melt and snowmelt contributions to streamflow in the studied basin were determined using a quantitative analysis of the isotopic composition of streamflow and its sources, resulting in a glacier melt contribution of 50–90% for the unusually dry melt year of 2011/2012. This suggests that in (La Niña years with little precipitation, glacier melt is an important water source for central Chile. Predicted decreases in glacier melt due to global warming may therefore have a negative long-term impact on water availability in the Central Andes. The pronounced seasonal pattern in streamflow isotope composition and its close relation to the variability in snow cover and discharge presents a potentially powerful tool to relate discharge variability in mountainous, melt-dominated catchments with related factors such as contributions of sources to streamflow and snowmelt transit times.

  13. Assessment of water quality of the Odaw river catchment using hydrochemistry and stable isotope techniques

    International Nuclear Information System (INIS)

    Kemetse, J. K.

    2014-07-01

    The physico-chemical and isotopic properties of water In the Odaw River catchment including some hand-dug wells and water from the unsaturated zone were assessed to ascertain the impact of human activities on the water quality and also to assess the vulnerability of ground water resources in the catchment. Samples were collected from October, 2013 to March, 2014 using well washed plastic bottles. During every sampling session; temperature, conductivity, salinity, turbidity and pH were measured in situ using HACH portable conductivity meter and a pH meter. Alkalinity and bicarbonates were determined by titration. In the laboratory, total dissolved solid (TDS) and total suspended solids (TSS) were determined using calorimetric methods. Total hardness, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and dissolved oxygen (DO) and calcium were determined by titration. Anions such as nitrates, phosphates, sulphate, chloride, fluoride were analyzed by Ion Chromatography, while Flame Photometry was used to analyze sodium and potassium. Atomic Absorption Spectroscopy (AAS) was used to determine magnesium, cadmium, mercury, lead and arsenic. Liquid isotope analyzer was also used for the determination of 18 O and 2 H. Stable isotopes of 18 O, 2 H and 15 N were analyzed to help understand the source and flow of nutrients into the catchment. Data were analyzed using Microsoft Excel-2003 and CCME WQI. From the results pH for the water samples upstream was acidic to slightly alkaline (2.8 - 8.1), midstream was alkaline (7.3 - 11.5) and the downstream was 6.4 -7.7; TDS, EC and salinity increased from the upstream to the downstream as the river approaches the lagoon. There was some amount of heavy metal contamination in all the samples with the exception of Cd which was below detection limit. Hg was also below detection limit in the upstream. The CCME WQI was calculated for the surface water samples using 16 physico-chemical parameters. Results indicated that the

  14. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  15. Partitioning water and carbon fluxes in a Mediterranean oak woodland using stable oxygen isotopes

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra; Silva, Filipe Costa e.; Pereira, Joao; Werner, Christiane

    2014-05-01

    Water is a key factor driving ecosystem productivity, especially in water-limited ecosystems. A separation of the component fluxes is needed to gain a functional understanding on the development of net ecosystem water fluxes and their coupling with biogeochemical cycles. Oxygen isotope signatures are valuable tracers for water movements within the ecosystem because of the distinct isotopic compositions of water in soil and vegetation. In the past, determination of isotopic signatures of evaporative or transpirational fluxes has been challenging since measurements of water vapor isotopes were difficult to obtain using cold-trap methods, delivering data with low time resolution. Recent developments in laser spectroscopy now enable direct high frequency measurements of the isotopic composition of atmospheric water vapor (δv), evapotranspiration (δET), and its components and allow validations of common modeling approaches for estimating δE and δT based on Craig and Gordon (1965). Here, a novel approach was used, combining a custom build flow-through gas-exchange branch chamber with a Cavity Ring-Down Spectrometer in a Mediteranean cork-oak woodland where two vegetation layers respond differently to drought: oak-trees (Quercus suber L.) avoid drought due to their access to ground water while herbaceous plants survive the summer as seeds. We aimed at 1) testing the Craig and Gordon equation for soil evaporation against directly measured δE and 2) quantifying the role of non-steady-state transpiration under natural conditions. Thirdly, we used this approach to quantify the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year and disentangle how ET components of the ecosystem relate to carbon dioxide exchange. We present one year data comparing modeled and measured stable oxygen isotope signatures (δ18O) of soil evaporation, confirming that the Craig and Gordon equation leads to good agreement with measured δ18O of

  16. 40 CFR 60.4340 - How do I demonstrate continuous compliance for NOX if I do not use water or steam injection?

    Science.gov (United States)

    2010-07-01

    ... compliance for NOX if I do not use water or steam injection? 60.4340 Section 60.4340 Protection of....4340 How do I demonstrate continuous compliance for NOX if I do not use water or steam injection? (a) If you are not using water or steam injection to control NOX emissions, you must perform annual...

  17. Stable isotopes of water as a natural tracer for infiltration into urban sewer systems

    Science.gov (United States)

    Kracht, O.; Gresch, M.; de Bénédittis, J.; Prigiobbe, V.; Gujer, W.

    2003-04-01

    An adequate understanding of the hydraulic interaction between leaky sewers and groundwater is essential for the sustainable management of both sewer systems and aquifers in urbanized areas. Undesirable infiltration of groundwater into sewers can contribute over 50% of the total discharge and is detrimental to treatment plant efficiency. On the other hand, in many European cities groundwater surface levels seem to be particularly controlled by the drainage effect of permeable sewer systems. However, nowadays methods for the quantification of these exchange processes are still subject to considerable uncertainties due to their underlying assumptions. The frequently used assumption that the night time minimum in the diurnal wastewater hydrograph is equal to the "parasitic discharge" has to be reconsidered to today's patterns of human life as well as to the long residence time of wastewater in the sewer networks of modern cities. The suitability of stable water isotopes as a natural tracer to differentiate the origin of water in the sewer ("real" wastewater or infiltrating groundwater) is currently investigated in three different catchment areas. The studies are carried out within the framework of the European research project APUSS (Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems): 1) The village of Rümlang (Zürich, Switzerland) is predominantly served with drinking water from the Lake Zürich. A large fraction of the lakes water is derived from precipitation in the Alps. This drinking water represents the intrinsic provenience of the wastewater with an δ18O value around -11,5 per mill and δ^2H value around -82 per mill vs. SMOW. In contrast, the local groundwater is originating from precipitation in a moderate altitude of about 450 m above sea level and shows comparatively enriched mean δ18O values of -9,7 per mill and δ^2H values of -70 per mill with only small natural variations. The isotopic separation between these

  18. A stable isotopic view on lianas' and trees' below ground competition for water

    Science.gov (United States)

    De Deurwaerder, Hannes; Hervé-Fernández, Pedro; Stahl, Clément; Bonal, Damien; Burban, Benoît; Petronelli, Pascal; Boeckx, Pascal; Verbeeck, Hans

    2017-04-01

    Various studies highlight an increase in liana abundance and biomass in the neotropics in the last decades. To date, the reason why this growth form expresses this trend is still unclear. One of the proposed hypotheses ascribes tropical lianas, in comparison to tropical trees, of being able to adapt better to increased drought conditions resulting from climate change. Moreover, lianas presumably have a deeper root system, providing access to deeper soil layers less susceptible for dehydration during drought events. A dual stable water isotopic approach (δ18O and δ2H) enables studying vegetation below ground competition and in combination with Bayesian mixing models can provide insight in the fractional contribution of distinct soil layer depths. In this perspective, precipitation (bulk and through fall), bulk soil (at different depths), stream and xylem water of both lianas and trees were sampled between October 7-13, 2015. The study focusses on two distinct plots differing in soil texture (sand and clay), localized in close vicinity of the Guyana flux tower at Paracou (French Guyana). Our study highlights the erroneous of the deep tap root hypothesis and provides new insights in water and nutrient competition between tropical lianas and trees during dry season. Lianas isotopic signature is enriched compared to those of trees. This can be linked to water source depth and soil seasonal replenishment. Moreover, liana displaying a very active soil surface root activity, efficiently capturing the low amount of dry season precipitation, while trees show to tap the deeper and less drought susceptible soil layers. A strategy, which not only results in a spatial niche separation in the underground competition for water, but it also provides lianas with a definite advantage in nutrient competition.

  19. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua

    2011-01-01

    Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...... to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests...

  20. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  1. Antifungal activity of water-stable copper-containing metal-organic frameworks

    Science.gov (United States)

    Bouson, Supaporn; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon; Siwayaprahm, Patcharaporn; Sawangphruk, Montree

    2017-10-01

    Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fusarium oxysporum. The Cu-BTC MOF can effectively inhibit the growth rate of C. albicans and remarkably inhibit the spore growth of A. niger, A. oryzae and F. oxysporum. This finding shows the potential of using Cu-BTC MOF as a strong biocidal material against representative yeasts and moulds that are commonly found in the food and agricultural industries.

  2. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    Science.gov (United States)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  3. Use of stable isotopes of water (d and o-18) in hydrological studies in the Jonkershoek valley

    CSIR Research Space (South Africa)

    Midgley, JJ

    1994-04-01

    Full Text Available Stable isotopes of water in rainfall and streams in the Jonkershoek Valley were used to determine the relative contribution of new water (i.e. rain) during storm flow conditions. Significant differences between rain and stream isotopic signatures...

  4. High-Resolution Modeling of Flow Partitioning: Tracer Comparison Between Water Stable Isotopes and Electrical Conductivity

    Science.gov (United States)

    Segura, C.; Mosquera, G.; Crespo, P.

    2017-12-01

    The identification of water sources contributing to runoff is critical to understand the relation between water and biogeochemical cycles. During rainstorm events runoff can be composed of fractions of event and pre-event water. Tracers in two-component end member mixing analysis are commonly used to investigate these relative contributions to total runoff. However, tracer data are often only available at low temporal resolution, leading to high uncertainties in the estimation of flow components. Here, we present TraSPAN a new numerical tracer based streamflow-partitioning model that simulates both the tracer mass balance and the water flux response at the event scale. TraSPAN has four different structures representing different internal catchment hydrologic characteristics. We used high-resolution (0.25-5 hours) hydrometric and tracer (water stable isotopes (WSI) and electrical conductivity (EC)) data to simulate flow partitioning and compare the results between tracers for a storm in a forest headwater catchment at the western Oregon Cascades. Our results show that flow partitioning and transit time functions (TTFs) of event and pre-event water are well defined using either EC or WSI. The same model structure provided the best fit in both cases (Nash Sutcliffe Efficiency > 0.9). This structure includes 2 reservoirs in parallel to route the event and pre-event water fractions following independent TTFs and allows a time-variant fraction of precipitation routed as event water over the course of the storm. The level of agreement between the results attained with EC and WSI is remarkable in terms of parameter values and TTFs. Given the high cost and effort associated to the collection and analysis of WSI at high temporal resolution, our results provide great promise for the use of EC as a tracer in high-resolution flow partitioning modeling. The use of such an inexpensive tracer could allow for detailed investigation of the relative importance of internal (e

  5. Water intake, faecal output and intestinal motility in horses moved from pasture to a stabled management regime with controlled exercise

    Science.gov (United States)

    Williams, S; Horner, J; Orton, E; Green, M; McMullen, S; Mobasheri, A; Freeman, S L

    2015-01-01

    Reasons for performing study A change in management from pasture to stabling is a risk factor for equine colic. Objectives To investigate the effect of a management change from pasture with no controlled exercise to stabling with light exercise on aspects of gastrointestinal function related to large colon impaction. The hypothesis was that drinking water intake, faecal output, faecal water content and large intestinal motility would be altered by a transition from a pastured to a stabled regime. Study design Within-subject management intervention trial involving changes in feeding and exercise using noninvasive techniques. Methods Seven normal horses were evaluated in a within-subjects study design. Horses were monitored while at pasture 24 h/day, and for 14 days following a transition to a stabling regime with light controlled exercise. Drinking water intake, faecal output and faecal dry matter were measured. Motility of the caecum, sternal flexure and left colon (contractions/min) were measured twice daily by transcutaneous ultrasound. Mean values were pooled for the pastured regime and used as a reference for comparison with stabled data (Days 1–14 post stabling) for multilevel statistical analysis. Results Drinking water intake was significantly increased (mean ± s.d. pasture 2.4 ± 1.8 vs. stabled 6.4 ± 0.6 l/100 kg bwt/day), total faecal output was significantly decreased (pasture 4.62 ± 1.69 vs. stabled 1.81 ± 0.5 kg/100 kg bwt/day) and faecal dry matter content was significantly increased (pasture 18.7 ± 2.28 vs. stabled 27.2 ± 1.93% DM/day) on all days post stabling compared with measurements taken at pasture (P<0.05). Motility was significantly decreased in all regions of the large colon collectively on Day 2 post stabling (-0.76 contractions/min), and in the left colon only on Day 4 (-0.62 contractions/min; P<0.05). Conclusions There were significant changes in large intestinal motility patterns and parameters relating to gastrointestinal water

  6. Flow injection spectrophotometric determination of low concentrations of orthosphate in natural waters employing ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1981-01-01

    A simple and fast method for the determination of low concentrations of orthophosphate in natural waters is described. Ion exchange is incorporated into a flow injection system by usina a resin column in the sample loop of a proportion injector. Effects of sample aspiration rate, sampling time, eluting agent concentration, pumping rate of the sample carrier stream and interfaces, were investigated both using 32 PO 3- 4 or 31 PO 3- 4 with columns coupled to a gerger-muller detector and incorporated in a flow system with molybdenum blue colorinetry. (M.A.C.) [pt

  7. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    International Nuclear Information System (INIS)

    Chen, Gang; Cao, Peng; Wen, Guian; Edmonds, Neil

    2013-01-01

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions

  8. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    International Nuclear Information System (INIS)

    Ortiz, M.G.; Ghan, L.S.

    1991-01-01

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs

  9. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    Science.gov (United States)

    Oerter, Erik; Malone, Molly; Putman, Annie; Drits-Esser, Dina; Stark, Louisa; Bowen, Gabriel

    2017-07-01

    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water) during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. However, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  10. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany – evidence from stable and radiogenic isotopes

    International Nuclear Information System (INIS)

    Geldern, Robert van; Baier, Alfons; Subert, Hannah L.; Kowol, Sigrid; Balk, Laura; Barth, Johannes A.C.

    2014-01-01

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ∼20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. - Highlights: • Groundwater from deep aquifer identified as paleo-water with age over 20,000 years. • Low stable isotope values indicate recharge during Pleistocene. • Shallow aquifer mirrors stable isotope signature of average modern precipitation. • Identification of non-renewable paleo-waters enhance sustainable water management. • Strict protection measures of authorities justified by isotope geochemistry

  11. WO3/Conducting Polymer Heterojunction Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Jeon, Dasom; Kim, Nayeong; Bae, Sanghyun; Han, Yujin; Ryu, Jungki

    2018-02-26

    An efficient and stable heterojunction photoanode for solar water oxidation was fabricated by hybridization of WO 3 and conducting polymers (CPs). Organic/inorganic hybrid photoanodes were readily prepared by the electropolymerization of various CPs and the codeposition of tetraruthenium polyoxometalate (Ru 4 POM) water-oxidation catalysts (WOCs) on the surface of WO 3 . The deposition of CPs, especially polypyrrole (PPy) doped with Ru 4 POM (PPy:Ru 4 POM), resulted in a remarkably improved photoelectrochemical performance by the formation of a WO 3 /PPy p-n heterojunction and the incorporation of efficient Ru 4 POM WOCs. In addition, there was also a significant improvement in the photostability of the WO 3 -based photoanode after the deposition of the PPy:Ru 4 POM layer due to the suppression of the formation of hydrogen peroxide, which was responsible for corrosion. This study provides insight into the design and fabrication of novel photosynthetic and photocatalytic systems with excellent performance and stability through the hybridization of organic and inorganic materials.

  12. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.

    Science.gov (United States)

    Waterman, Carrie; Cheng, Diana M; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Lila, Mary Ann; Raskin, Ilya

    2014-07-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as both a food and medicine throughout the tropics. A moringa concentrate (MC), made by extracting fresh leaves with water, utilized naturally occurring myrosinase to convert four moringa glucosinolates into moringa isothiocyanates. Optimum conditions maximizing MC yield, 4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate, and 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate exhibited 80% stability at 37°C for 30 days. MC, and both of the isothiocyanates described above significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, both attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFα at 1 and 5 μM. These results suggest a potential for stable and concentrated moringa isothiocyanates, delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications.

    Science.gov (United States)

    Maity, Dipak; Chandrasekharan, Prashant; Yang, Chang-Tong; Chuang, Kai-Hsiang; Shuter, Borys; Xue, Jun-Min; Ding, Jun; Feng, Si-Shen

    2010-12-01

    Superparamagnetic magnetite nanoparticles have been under intensive investigation in nanomedicine. However, it is still a challenge to synthesize high-quality water-stable magnetite nanoparticles for better magnetic performance and less side effects in medical MRI and nanothermotherapy. We successfully synthesized hydrophilic magnetite nanoparticles through thermal decomposition of Fe(acac)(3) in triethylene glycol, which were coated with a triethylene glycol layer and thus demonstrated excellent water stability. The optimized deposition temperature has been found to be 250°C (IO-250 NPs). The magnetic and thermal properties as well as the cytotoxicity of IO-250 NPs were investigated. In vitro experiments have demonstrated high cellular uptake and low cytotoxicity. The hyperthermia experiments showed effectiveness in temperature rise and cancer cell death. IO-250 NPs showed promising MRI with relaxivity r(2)* as high as 617.5 s(-1) mM(-1) Fe. In vivo MRI showed excellent tumor imaging. The IO-250 NPs have great potential to be applied for clinical MRI and magnetic thermotherapy.

  14. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simulation bidimensional of water and gas alternative injection; Simulacao bidimensional de injecao alternada de agua e gas

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Ana Paula Silva C. de

    1999-07-01

    This dissertation presents a study of the unidimensional of water and gas alternate injection (WAG) using the stream line theory. It is considered incompressible fluid., unit mobility ratio, negligible capillary and gravitational effects, homogeneous and isotropic reservoir, isothermal flow two phases, oil and water, and three components, oil, water and gas. In the stream line theory, the following injection schemes are considered: staggered line five-spot, direct line and seven-spot. It is also considered that there is no flow among the streams. In the WAG calculations it is used the fractional flow theory and the method of characteristics, which consists of shock waves and rarefactions. The composition of these waves is said compatible if it satisfies the entropy condition. The solution goes through a certain path from the left to the right side constrained by the initial and boundary conditions. The gas injection is at a high pressure to ensure miscible displacement. It is considered first injection of a water bank and then, injection of a gas bank. We concluded that the gas injection at a high pressure recoveries all residual oil and the water saturation remains is greater than initial saturation. (author)

  16. Effective Jet Properties for the Prediction of Turbulent Mixing Noise Reduction by Water Injection

    Science.gov (United States)

    Kandula, Max; Lonergan, Michael J.

    2007-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the control volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  17. Numerical method for nitrogen and steam injection in a porous medium with water

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Wanderson; Marchesin, Dan; Albuquerque, Daniel L. [Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, RJ (Brazil); Bruining, Johannes [TUDELFT (Netherlands)

    2004-07-01

    The frequent widespread occurrence of contamination due to spills and leaks of organic materials, such as petroleum products, that occur during their transport, storage and disposal constitute a menace to our high-quality ground-water resources. In spite of increased awareness of the environmental impacts of oil spills, it appears to be impossible to avoid these accidents, so it is necessary to develop techniques of groundwater remediation. Traditional clean up methods of these spills, such as pump-and-treat are slow because diffusion/dissolution are the main removal mechanisms used. Removal of contaminants with steam is considered an alternative solution. Steam injection is widely studied in Petroleum Engineering see 'Bruining et. al. (2003)'. From mass balance and conservation of enthalpy equations, we formulate conservation laws governing steam and nitrogen injection in a linear porous medium containing water. Compressibility, heat conductivity and capillarity are neglected. We present an upstream semi implicit method to solve numerically this model, so that optimal clean up strategies can be developed. (author)

  18. Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH

    Directory of Open Access Journals (Sweden)

    B. Haese

    2013-09-01

    Full Text Available In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31. A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ18O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil and also fractionation included in both evaporation and transpiration (from water transport through plants fluxes. While the isotopic composition of the soil water may change for δ18O by up to +8&permil:, the simulated δ18O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation database.

  19. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  20. Two Water Stable Copper Metal-Organic Frameworks with Performance in the Electrocatalytic Activity for Water Oxidation

    Directory of Open Access Journals (Sweden)

    Liu Xiuping

    2018-01-01

    Full Text Available Two novel water stable metal-organic frameworks, [Cu(L·(4,4′-bipy·(ClO4]n (1, [Cu(L·(phen·(ClO4·(H2O]2 (2, have been constructed by HL=[5-Mercapto-1-methyl] tetrazole acetic acid and Cu (II salt in the presence of assistant N-containing ligands. MOF 1 and MOF 2 with open CuII sites, resulting the framework 1 and 2 show electrocatalytic activity for water oxidation in alkaline solution. The electrochemical properties of complex for oxygen evolution reaction (OER were evaluated by linear sweep voltammetry (LSV and the Tafel slopes. Complex 1 has a higher LSV activity with a lower over potential of 1.54 V and a much higher increase in current density. Meanwhile, the Tafel slope of complex 1 (122.0 mV dec-1 is much lower than complex 2 (243.5 mV dec-1. This phenomenon makes complex 1 a promising porous material for electrocatalytic activity.

  1. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    Science.gov (United States)

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  2. Use Of Stable Isotope To Determine Time of Red River Water Recharging To Production Groundwater Wells In Hanoi

    International Nuclear Information System (INIS)

    Trinh Van Giap; Dang Anh Minh

    2011-01-01

    Stable isotope O-18 and lump parameter models has been used to determine time of Red River water recharging to some production groundwater wells at Yen Phu station in Ha noi. Composition of stable isotope O-18 in Red River water changed on time in a year has been used as a tracer with lump parameter models to study flow of groundwater. Composition of stable isotope O-18 in production groundwater wells was measured on months in a year and the fitting of measured data and calculation data with selected flow models was carried out by lumped parameter models. The results of fitting shows resident time or time of Red River water recharging to production groundwater wells. At 4 production groundwater wells of Yen Phu station selected in this study, the time of Red River water recharging to wells H26 and H29 is following 3.5 months and 11 months. Composition of stable isotope O-18 at wells H12 and H27 do not change on time, but proportions of Red River water in production groundwater at these wells were calculated of following 99% and 97%. (author)

  3. Experimental Study on the Cause of Inorganic Scale Formation in the Water Injection Pipeline of Tarim Oilfield

    Directory of Open Access Journals (Sweden)

    Guihong Pei

    2014-01-01

    Full Text Available Scale formation of water injection pipeline will cause the pipeline to be corroded and increase frictional drag, which will induce the quality and quantity cannot meet the need of oil production process. The cause of scale formation in different oilfield is different because of the complex formation conditions. Taking one operation area of Tazhong oilfield as research object, the authors studied the water quality in different point along water injection pipeline through experiment studies, and analyzed the cause of inorganic scale formation and influence factors. The research results can provide theoretical guidance to anticorrosion and antiscale of oilfield pipeline.

  4. Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad Salehi

    2017-06-01

    This paper presents laboratory investigation of the effect of salinity injection water on oil recovery, pressure drop, permeability, IFT and relative permeability in water flooding process. The experiments were conducted at the 80 °C and a net overburden pressure of 1700 psi using core sample. The results of this study have been shown oil recovery increases as the injected water salinity up to 200,000 ppm and appointment optimum salinity. This increase has been found to be supported by a decrease in the IFT. This effect caused a reduction in capillary pressure increasing the tendency to reduce the residual oil saturation.

  5. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer

    NARCIS (Netherlands)

    Prommer, H.; Stuijfzand, P.J.

    2005-01-01

    Artificial recharge is a technique used increasingly to supplement drinking water supplies. To assess the potential water quality changes that occur during subsurface passage, a comprehensive deep-well injection experiment was carried out for a recharge scheme, where pretreated, aerobic surface

  6. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  7. Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements

    Directory of Open Access Journals (Sweden)

    Tongmei Wang

    2018-01-01

    Full Text Available Stable Water Isotopologues (SWIs are important diagnostic tracers for understanding processes in the atmosphere and the global hydrological cycle. Using eight years (2002–2009 of retrievals from Odin/SMR (Sub-Millimetre Radiometer, the global climatological features of three SWIs, H216O, HDO and H218O, the isotopic composition δD and δ18O in the stratosphere are analysed for the first time. Spatially, SWIs are found to increase with altitude due to stratospheric methane oxidation. In the tropics, highly depleted SWIs in the lower stratosphere indicate the effect of dehydration when the air comes through the cold tropopause, while, at higher latitudes, more enriched SWIs in the upper stratosphere during summer are produced and transported to the other hemisphere via the Brewer–Dobson circulation. Furthermore, we found that more H216O is produced over summer Northern Hemisphere and more HDO is produced over summer Southern Hemisphere. Temporally, a tape recorder in H216O is observed in the lower tropical stratosphere, in addition to a pronounced downward propagating seasonal signal in SWIs from the upper to the lower stratosphere over the polar regions. These observed features in SWIs are further compared to SWI-enabled model outputs. This helped to identify possible causes of model deficiencies in reproducing main stratospheric features. For instance, choosing a better advection scheme and including methane oxidation process in a specific model immediately capture the main features of stratospheric water vapor. The representation of other features, such as the observed inter-hemispheric difference of isotopic component, is also discussed.

  8. Experimental and numerical study on the fracture of rocks during injection of CO2-saturated water

    Science.gov (United States)

    Li, Qi; Wu, Zhishen; Lei, Xing-Lin; Murakami, Yutaka; Satoh, Takashi

    2007-02-01

    Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.

  9. Physiochemical and environmental stable isotope profile of marine coastal water, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Javed, T.; Fazil, M.; Latif, Z.; Ahmad, N.

    2005-01-01

    Physiochemical and environmental stable isotope (delta /sup 13/C, delta /sup 18/O delta /sup 2/H, delta /sup 34/S) analysis of seawater samples collected from selected locations off Pakistan. Coast was performed to assess pollution scenario during 2002. Objective of the study was to establish a baseline data profile of Pakistan coastal waters. Coastal location includes: Indus Delta, Karachi Harbour, Southeast Coast Karachi, Northwest Coast Karachi, Sonmiani, Ormara. Pasni, Gwadar and Jiwani. In-situ physiochemical parameters such as: pH, electrical conductivity (E.C), salinity, turbidity and dissolved oxygen (DO) were performed with portable meters. Stable isotope of oxygen, hydrogen, carbon and sulfur was performed on GD -150 modified Mass Spectrometer. Values of delta /sup 18/O along the Sindh Coast (Indus Delta, Karachi Harbour High Tide, Karachi Harbour Low Tide, North West Coast South East Coast, Gadani), lie in range of -6.3 to -2.4 , -0.17 to -0.2, -0.13 to + 1.16, + 0.65 to + 1.25, + 0.88 to +0.93, and 1.14 %. SMOW respectively. The values of delta /sup 18/O along Baluchistan Coast (Sonmiani, Ormara, Pasni, Gwadar, and Jiwani) lie in the range of 0.74 to 1.08,0.77 to 0.82, 0.96 to + 1.07,0.38 to 1.23, and 0.45 to 0.83 % SMOW respectively. Values of delta /sup 13/ C of total dissolved inorganic carbon (TDIC) along Sindh Coast lie in the range of -2.7 to 0.55, -7.0 to -2.14, -11.48 to -2.98, -1.26 to 2.12, -2.91 to -0.56, and -1.31 to -0.28 % V- PDB. Values of delta /sup 13/ C of total dissolved inorganic carbon (TDIC) off Baluchistan Coast lie in the range of - 2.65 to -0.68, -8.5 to 0.07, -1.1 to 0.01, -1.3 to 0.47 and -5.2 to 0 % V-PDB respectively. Significantly depleted delta /sup 13/C (TDIC) values observed in water samples collected off Karachi coast, Indus Delta and Armor Coast indicate pollution inputs from industrial and domestic waste drains into shallow marine environment off these coasts. Carbon Isotope data shows that the Gwadar and Pasni are

  10. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    Science.gov (United States)

    The stable isotope ratios of hydrogen (H) and oxygen (O) are valuable tracers of the origin of biological materials and water sources. Application of these environmental tracers is largely based on the distinct and pervasive spatial patterns of precipitation isotopes, which are preserved in many hy...

  11. New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment

    Science.gov (United States)

    Glenn E. Woerndle; Martin Tsz-Ki Tsui; Stephen D. Sebestyen; Joel D. Blum; Xiangping Nie; Randall K. Kolka

    2018-01-01

    Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a...

  12. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany--evidence from stable and radiogenic isotopes.

    Science.gov (United States)

    van Geldern, Robert; Baier, Alfons; Subert, Hannah L; Kowol, Sigrid; Balk, Laura; Barth, Johannes A C

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    Directory of Open Access Journals (Sweden)

    E. Oerter

    2017-07-01

    Full Text Available Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. However, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  14. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  15. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    Science.gov (United States)

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

  16. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    areal extent of the thermal plume that develops around the area of injection minimizing the time and the space needed for the disappearance of the thermal plume and the restoration of undisturbed temperature conditions. The reduction in plan and temporal extension of the thermal plume would have several benefits, minimizing the use of large areas around the buildings involved by the thermal perturbation, with direct implementation benefits. In order to investigate alternatives to traditional drilled water well for the re-injection and dispersion of water in aquifer downstream of the heat pump, we modeled with FEFLOW the possible reverse use of commercial draining gabions in various types of ground configuration, geometry and interconnection with systems of pre-fabricated vertical drains on a possible reliable test-site. The results highlighted that they can represent a good and efficient alternative for the groundwater dispersion in the aquifers.

  17. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    Science.gov (United States)

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments.

  18. Closed Pore Structured NiCo2O4-Coated Nickel Foams for Stable and Effective Oil/Water Separation.

    Science.gov (United States)

    Li, Yan; Zheng, Xi; Yan, Zhanheng; Tian, Dongliang; Ma, Jianmin; Zhang, Xiaofang; Jiang, Lei

    2017-08-30

    To solve the serious problem caused by oily wastewater pollution, unique interface designs, for example, membranes with superwetting properties such as superhydrophobicity/superoleophilicity and superhydrophilicity/underwater superoleophobicity, provide a good way to achieve oil/water separation. Here, inspired by the liquid storage property of the honeycomb structure, we propose a strategy to fabricate NiCo 2 O 4 -coated nickel foams for stable and efficient oil/water separation. NiCo 2 O 4 with a closed-pore structure was formed by assembling nanoflakes with a micro/nanoscale hierarchical structure. Compared with nickel foam coated by NiCo 2 O 4 with an open-pore structure (NiCo 2 O 4 nanowires), the enclosed nanostructure of NiCo 2 O 4 nanoflakes can firmly hold water for a more stable superhydrophilic/underwater superoleophobic interface. As a consequence, the NiCo 2 O 4 -nanoflake-coated nickel foam has a larger oil breakthrough pressure than the NiCo 2 O 4 -nanowire-coated nickel foam because of a slightly larger oil advancing angle and a lower underwater oil adhesion force, which makes it more stable and efficient for oil/water separation. Moreover, the NiCo 2 O 4 -coated nickel foams have excellent chemical and mechanical stability, and they are reusable for oil-water separation. This work will be beneficial for the design and development of stable underwater superoleophobic self-cleaning materials and related device applications, such as oil/water separation.

  19. Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama

    Science.gov (United States)

    Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

    2012-12-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

  20. The Global Network of Isotopes in Rivers (GNIR): Integration of Stable Water Isotopes in Riverine Research and Management

    International Nuclear Information System (INIS)

    Halder, J.; Terzer, S.; Wassenaar, L.; Araguas, L.; Aggarwal, P.

    2015-01-01

    Rivers play a crucial role in the global water cycle as watershed-integrating hydrological conduits for returning terrestrial precipitation, runoff, surface and groundwater, as well as melting snow and ice back to the world’s oceans. The IAEA Global Network of Isotopes in Rivers (GNIR) is the coherent extension of the IAEA Global Network for Isotopes in Precipitation (GNIP) and aims to fill the informational data gaps between rainfall and river discharge. Whereas the GNIP has been surveying the stable hydrogen and oxygen isotopes, and tritium composition in precipitation, the objective of GNIR is to accumulate and disseminate riverine isotope data. We introduce the new global database of riverine water isotopes and evaluate its current long-term data holdings with the objective to improve the application of water isotopes and to inform water managers and researchers. An evaluation of current GNIR database holdings confirmed that seasonal variations of the stable water isotope composition in rivers are closely coupled to precipitation and snow-melt water run-off on a global scale. Rivers could be clustered on the basis of seasonal variations in their isotope composition and latitude. Results showed furthermore, that there were periodic phases within each of these groupings and additional modelling exercises allowed a priori prediction of the seasonal variability as well as the isotopic composition of stable water isotopes in rivers. This predictive capacity will help to improve existing and new sampling strategies, help to validate and interpret riverine isotope data, and identify important catchment processes. Hence, the IAEA promulgates and supports longterm hydrological isotope observation networks and the application of isotope studies complementary with conventional hydrological, water quality, and ecological studies. (author)

  1. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying, E-mail: maying@igsnrr.ac.cn [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing (China); State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing (China); Song, Xianfang [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing (China)

    2016-04-15

    Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and {sup 18}O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013–2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0–20 cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20–50 cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0–20 cm (6.0–58.5%) and 20–50 cm (6.1–26.3%). There was little difference of contributions in the deep layers (50–200 cm) among treatments in 2013, whereas differences were observed in 50–90 cm at the milk stage and 50–200 cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0–50 cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r = 0.753, p < 0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management. - Highlights: • Dual stable isotopes and MixSIAR were coupled to quantify water uptake of maize. • Maize mainly used soil water in 20–50 cm at milk stage and 0–20 cm at other stages. • Fertilization treatments led to distinct water uptake pattern at 0–50 cm

  2. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments

    International Nuclear Information System (INIS)

    Ma, Ying; Song, Xianfang

    2016-01-01

    Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and 18 O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013–2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0–20 cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20–50 cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0–20 cm (6.0–58.5%) and 20–50 cm (6.1–26.3%). There was little difference of contributions in the deep layers (50–200 cm) among treatments in 2013, whereas differences were observed in 50–90 cm at the milk stage and 50–200 cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0–50 cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r = 0.753, p < 0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management. - Highlights: • Dual stable isotopes and MixSIAR were coupled to quantify water uptake of maize. • Maize mainly used soil water in 20–50 cm at milk stage and 0–20 cm at other stages. • Fertilization treatments led to distinct water uptake pattern at 0–50 cm depth.

  3. Geohydrology and water quality in northern Portage County, Ohio, in relation to deep-well brine injection

    Science.gov (United States)

    Eberts, S.M.

    1991-01-01

    Geohydrology and water quality of the principal freshwater aquifers near oilfield and gasfield brine-injection wells in northern Portage County, Ohio, were evaluated. Since 1975, 13 wells in this part of the Country have been used to dispose of more than 4.5 million barrels of brine by injection into Silurian carbonate and sandstone rocks that generally are greater than 3,500 feet below land surface. More than 3,000 feet of interbedded shales, sandstones, carbonates, and evaporites separate the freshwater aquifers from these brine-injection zones. The shallowest brine-injection zone is greater than 2,200 feet below sea level. Native fluids in the injection zones have dissolved-solids concentrations greater than 125,000 milligrams per liter and are hydraulically isolated from the freshwater aquifers. No known faults or fracture systems are present in northern Portage County, although abandoned oil and gas wells could exist and serve as conduits for migration of injected brine. Pennsylvanian clastic units are freshwater bearing in northern Portage County, and two bedrock aquifers generally are recognized. The shallower bedrock aquifer (Connoquenessing Sandstone Member of the Pottsville Formation) principally consists of sandstone; this aquifer is separated from a deeper sandstone and conglomerate aquifer in the lower part of the Sharon Member (Pottsville Formation) by shale in the upper part of the Sharon Member that acts as a confining unit. The upper sandstone aquifer is the surficial aquifer where overlying glacial deposits are unsaturated in the uplands; glacial deposits comprise the surficial aquifer in buried valleys where the sandstone is absent. These two surficial aquifers are hydraulically connected and act as a single unit. The lower sandstone and conglomerate aquifer is the most areally extensive aquifer within the project area. From November 1987 through August 1988, ground-water levels remained at least 60 feet higher in the upper sandstone aquifer than

  4. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    Science.gov (United States)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  5. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    Science.gov (United States)

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  6. A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan.

    Science.gov (United States)

    Abdelhamid, Hani Nasser; Bermejo-Gómez, Antonio; Martín-Matute, Belén; Zou, Xiaodong

    2017-01-01

    The preparation of a highly water stable and porous lanthanide metal-organic framework (MOF) nanoparticles (denoted SUMOF-7II; SU refers to Stockholm University) is described. SUMOF-7II was synthesized starting from the tritopic linker of 2,4,6-tri-p-carboxyphenyl pyridine (H 3 L2) and La(III) as metal clusters. SUMOF-7II forms a stable dispersion and displays high fluorescence emission with small variation over the pH range of 6 to 12. Its fluorescence is selectively quenched by Fe(III) ions compared to other metal ions. The intensity of the fluorescene emission drops drops linearly in 16.6-167 μM Fe(III) concentration range, and Stern-Volmer plots are linear. The limit of detection (LOD) is 16.6 μM (at an S/ N  ratio of >3). This indicator probe can also be used for selective detection of tryptophan among several amino acids. Compared to the free linker H 3 L2, SUMOF-7II offers improved sensitivity and selectivity of the investigated species. Graphical abstractA water-stable porous lanthanide metal-organic framework SUMOF-7II (La) has shown to be an excellent probe for the detection of ferric ions among other metal ions, and tryptophan among other amino acids in aqueous solution. The new probe displays high and stable fluorescence signal in a wide pH range (6-12).

  7. The role of the tractus diagonalis in drinking behaviour induced by central chemical stimulation, water deprivation and salt injection

    NARCIS (Netherlands)

    Terpstra, G.K.; Slangen, J.L.

    1972-01-01

    The role of the tractus diagonalis in drinking behaviour induced by central chemical stimulation, 23-hr water deprivation and injection of a hypertonic sodium chloride solution was investigated by means of central and peripheral administration of atropine and methylatropine. The effect of the same

  8. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    International Nuclear Information System (INIS)

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ 18 O and δ 2 H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local

  9. Hydrologic Activity of Deciduous Agroforestry Tree : Observed through Monitoring of Stable Isotopes in Stem Water, Solar Radiation Attenuation, and Sapflow

    Science.gov (United States)

    Ceperley, N. C.; Mande, T.; Parlange, M. B.

    2012-12-01

    The net benefit of agroforestry trees for small scale farmers in dryland agricultural systems is debatable because while they provide significant direct and indirect services, they also consume considerable amounts of scare water resources. In this study we monitor the stable isotopes of water to improve a water budget of a Sclerocarya birrea tree in a millet field in South Eastern Burkina Faso. Data obtained from air temperature and humidity, surface temperature, solar radiation, and soil moisture sensors attached to a wireless sensor network uniquely configured around the agroforestry tree provided the initial calculation of the local water balance. Isotopic ratios were determined from water extracted from stems and sub canopy soil, and from nearby ground water, precipitation, and surface water that was sampled weekly. A linear mixing model is used to predict when the tree switched between water sources. The results from the linear mixing model coupled with a tree water balance demonstrate the extreme seasonality of the annual cycle of water use by this deciduous species.

  10. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  11. Hydrogeochemical and stable isotopic investigations on CO2-rich mineral waters from Harghita Mts. (Eastern Carpathians, Romania)

    Science.gov (United States)

    Kis, Boglárka-Mercedesz; Baciu, Călin; Kármán, Krisztina; Kékedy-Nagy, Ladislau; Francesco, Italiano

    2013-04-01

    There is a worldwide interest on geothermal, mineral and groundwater as a resource for energy, drinking water supply and therapeutic needs. The increasing trend in replacing tap water with commercial bottled mineral water for drinking purposes has become an economic, hydrogeologic and medical concern in the last decades. Several investigations have been carried out worldwide on different topics related to geothermal and mineral waters, dealing with mineral water quality assessment, origin of geothermal and mineral waters, geochemical processes that influence water chemistry and water-rock interaction In Romania, the Călimani-Gurghiu-Harghita Neogene to Quaternary volcanic chain (Eastern Carpathians) is one of the most important areas from the point of view of CO2-rich mineral waters. These mineral water springs occur within other post-volcanic phenomena like dry CO2 emissions, moffettes, bubbling pools, H2S gas emissions etc. Mineral waters from this area are used for bottling, local spas and drinking purposes for local people. The number of springs, around 2000 according to literature data, shows that there is still a significant unexploited potential for good quality drinking water in this area. Within the youngest segment of the volcanic chain, the Harghita Mts., its volcaniclastic aprons and its boundary with the Transylvanian Basin, we have carried out an investigation on 23 CO2-rich mineral water springs from a hydrogeochemical and stable isotopic point of view. The mineral waters are Ca-Mg-HCO3 to Na-Cl type. Sometimes mixing between the two types can be observed. We have detected a great influence of water-rock interaction on the stable isotopic composition of the mineral waters, shown by isotopic shifts to the heavier oxygen isotope, mixing processes between shallow and deeper aquifers and local thermal anomalies. Acknowledgements: The present work was financially supported by the Romanian National Research Council, Project PN-II-ID-PCE-2011-3-0537 and by

  12. A comparison between wet canopy evaporation estimated by stable isotope ratios of water and canopy interception measured by water balance

    Science.gov (United States)

    Murakami, Shigeki; Hattori, Shohei; Uemura, Ryu

    2017-04-01

    Some papers proved that canopy interception is proportional to rainfall not only on a rain event basis but also on an hourly basis (e.g. Murakami, 2006, J. Hydrol.; Saito et al., 2013, J. Hydrol.). However, theoretically, evaporation does not depend on rainfall amount. These results are enigmatic and we need to reevaluate wet canopy evaporation. We measured gross rainfall and net rainfall in a plastic Christmas tree stand with a height of 165 cm placed on a 180-cm square tray as described in Murakami and Toba (2013, Hydrol. Res. Lett.). The measurement was conducted outside under natural rainfall. We also estimated wet canopy evaporation using stable isotope ratios of water. During a rain event, we manually sampled gross and net rainwater on an hourly basis. Evaporation was calculated using the difference between the δ18O (or δ2H) values in gross and net rainfall using isotope fractionation factor. Total gross rainfall in a target rain event in October, 2014, was 28.0 mm and net rainfall (discharge from the tray) was 22.7 mm, i.e. canopy interception was 5.3 mm (18.9% of gross rainfall). The δ18O (or δ2H) value in net rainfall was higher than that in gross rainfall because of fractionation by evaporation on wet canopy surface. Hourly evaporation calculated by the values of δ18O varied from 2% to 24% of gross rainfall, and the weighted average by hourly gross rainfall was 5.2% of gross rainfall. Further, we estimated rainfall interception using a tank model (Yoshida et al., 1993) assuming constant evaporation rate, i.e. 20% of gross rainfall. Total net rainfall calculated by the model was 23.1 mm, i.e. calculated canopy interception was 4.9 mm (17.5% of gross rainfall). Then, keeping the parameters of the model, we simulated net rainfall using hourly surface evaporation obtained by the δ18O values. Calculated net rainfall was 25.6 mm, i.e. wet canopy evaporation was only 2.4 mm (8.6% of gross rainfall). So far, possible explanation of the discrepancy between

  13. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    Directory of Open Access Journals (Sweden)

    José E. O. Reges

    2016-07-01

    Full Text Available This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1; 10.47% and 9.88% (for injection zone 2. Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  14. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn; Yang, Yu; Wang, Zhiyu; Qian, Guodong, E-mail: gdqian@zju.edu.cn

    2017-01-15

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework has been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.

  15. Soil structure stability and distribution of carbon in water-stable aggregates in different tilled and fertilized Haplic Luvisol

    Directory of Open Access Journals (Sweden)

    Vladimír Šimanský

    2012-01-01

    Full Text Available The influence of tillage and fertilization on soil structure stability and the distribution of carbon in water-stable aggregates of loamy Haplic Luvisol were studied. Soil samples from the locality of Dolná Malanta (experimental station of SUA Nitra were collected (in 2007–2009 from a depth of 0–0.2 m in two tillage variants: (1. conventional tillage, 2. minimal tillage and three treatments of fertilization: (1. without fertilization, 2. crop residues and NPK fertilizers, 3. NPK fertilizers. The minimal tillage system has a positive effect on both the aggregation processes and sequestration of carbon in size fractions of water-stable aggregates, as well as ploughing of crop residues together with NPK fertilizers. On the other hand, application of only NPK fertilizers had a negative effect on SOM content. Under the minimal tillage system and in treatment with crop residues together with NPK fertilizers, what has been observed is a statistically significant increase in the total organic carbon contents by increasing size fractions of water-stable aggregates. Organic carbon did not influence the aggregation processes with dependence on tillage systems. Under conventional tillage as well as in treatment with ploughing crop residues with NPK fertilizers, a very important effect on aggregation had bivalent cations Ca2+ and Mg2+.

  16. Numerical simulation of MH growth/dissociation by hot water injection on the Lab. experiment

    Science.gov (United States)

    Temma, N.; Sakamoto, Y.; Komai, T.; Yamaguchi, T.; Pawar, R.; Zyvoloski, G.

    2005-12-01

    Methane Hydrate (MH) is considered to be one of the new-generation energy resources. Aiming to develop the method of extraction of methane gas from MH, laboratory experiments have been performed in order to grasp the MH property in the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba in Japan. In this paper, we present the results of the numerical simulation of experiment using by the hot water injection. In this calculation, FEHM (Finite Element Heat and Mass transfer) code is used. This code is developed at Los Alamos National Laboratory. In this experiment, temperature, pressure and cumulative gas production were measured. From these data, we suppose that MH growth/dissociation occurred by the flow of the hot water. And we make the model of the growth/dissociation. As this model consist of many parameters, it is difficult to determine parameters. Thus, we use PEST (Parameter ESTimation ) in order to determine parameters for the model of the MH growth/ dissociation. We use temperature data of experiment, as observed data. We make two observed data sets at the beginning and later term of experiment. At the results of PEST, we obtain two sets of parameters to get good match the observed data. We think that these sets indicate both the maximum and the minimum values of the MH growth/dissociation model. And, on this range, we continue to calculate until we get the good match. Finally, we obtain the numerical model of the experiment. Also, we conducted the sensitive analysis for the MH growth/ dissociation using this model.

  17. Stable isotope composition of environmental water and food products as a tracer of origin

    International Nuclear Information System (INIS)

    Wierzchnicki, R.; Owczarczyk, A.; Soltyk, W.

    2004-01-01

    The paper is the review of Institute of Nuclear Chemistry and Technology (INCT) activity in application of stable isotope ratios (especially D/H and 18 O/ 16 O) for environmental studies and food origin control. INCT has at disposal since 1998, a high class instrument - Isotope Ratio Mass Spectrometer, Delta Plus, Finnigan MAT, Germany - suitable to perform such measurements. (author)

  18. Stable isotopes use in hydrogeology studies of mineral and thermal waters (Lindoia region, Sao Paulo, Brazil)

    International Nuclear Information System (INIS)

    Yoshinaga, S.; Silva, A.A.K. de; Matsui, E.

    1991-01-01

    Deuterium and oxygen-18 studies were used to investigate the origin and the mineralizing processes of the mineral water and thermal water in Aguas de Lindoia and Lindoia, Brazilian municipal districts. (M.V.M.)

  19. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Asher, R.C.; Bullen, D.; Davies, D.

    1976-03-01

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 900 0 C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  20. Distribution and utilization of 15N in cowpeas injected into the stem under influence of water deficit.

    Science.gov (United States)

    Götz K-P; Herzog, H

    2000-01-01

    Investigations were carried out on Vigna unguiculata L. Walp. to estimate the distribution and utilization of 15N in different organs after stem injection during vegetative, flowering and pod filling stage. During flowering effects of water deficit were also examined. In well watered plants, within 4 days after injection, 65% of 15N accumulated in leaves. This was drastically reduced to 42% by water deficit. 15N accumulation in stems increased under water deficit. The translocation of 15N from the stem base to roots were not altered by water deficit. During pod filling 62% of recovered 15N in the plants had accumulated in seeds, 24% in leaves and 11% in stems within 4 days, whereas the uptake of nitrogen in pod walls and roots remained low (2%). These results demonstrate that the method of injecting very small quantities (1 mg/plant) of 15N into the stem base allows an exact and detailed quantitative assessment of N translocation/distribution with regard to different organs, different growth stages and different treatments.

  1. Determination of human-use pharmaceuticals in filtered water by direct aqueous injection: high-performance liquid chromatography/tandem mass spectrometry

    Science.gov (United States)

    Furlong, Edward T.; Noriega, Mary C.; Kanagy, Christopher J.; Kanagy, Leslie K.; Coffey, Laura J.; Burkhardt, Mark R.

    2014-01-01

    This report describes a method for the determination of 110 human-use pharmaceuticals using a 100-microliter aliquot of a filtered water sample directly injected into a high-performance liquid chromatograph coupled to a triple-quadrupole tandem mass spectrometer using an electrospray ionization source operated in the positive ion mode. The pharmaceuticals were separated by using a reversed-phase gradient of formic acid/ammonium formate-modified water and methanol. Multiple reaction monitoring of two fragmentations of the protonated molecular ion of each pharmaceutical to two unique product ions was used to identify each pharmaceutical qualitatively. The primary multiple reaction monitoring precursor-product ion transition was quantified for each pharmaceutical relative to the primary multiple reaction monitoring precursor-product transition of one of 19 isotope-dilution standard pharmaceuticals or the pesticide atrazine, using an exact stable isotope analogue where possible. Each isotope-dilution standard was selected, when possible, for its chemical similarity to the unlabeled pharmaceutical of interest, and added to the sample after filtration but prior to analysis. Method performance for each pharmaceutical was determined for reagent water, groundwater, treated drinking water, surface water, treated wastewater effluent, and wastewater influent sample matrixes that this method will likely be applied to. Each matrix was evaluated in order of increasing complexity to demonstrate (1) the sensitivity of the method in different water matrixes and (2) the effect of sample matrix, particularly matrix enhancement or suppression of the precursor ion signal, on the quantitative determination of pharmaceutical concentrations. Recovery of water samples spiked (fortified) with the suite of pharmaceuticals determined by this method typically was greater than 90 percent in reagent water, groundwater, drinking water, and surface water. Correction for ambient environmental

  2. STUDY OF STABLE NITROGEN FORMS IN NATURAL SURFACE WATERS IN THE PRESENCE OF MINERAL SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Petru Spataru

    2015-12-01

    Full Text Available The influence of substrates on the oxidation of reduced toxic forms of nitrogen in river water was investigated by laboratory modelling. Granite and expended clay accelerate the oxidation of ammonium and nitrite ions from 2 to 4 times. The presence of calcium carbonate in water hinders the oxidation of nitrogen in the polluted water.

  3. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  4. Multi-scale heterogeneity in the temporal origin of water taken up by trees water uptake inferred using stable isotopes

    Science.gov (United States)

    Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.

    2017-12-01

    Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.

  5. Water uptake in woody riparian phreatophytes of the southwestern United States: a stable isotope study

    International Nuclear Information System (INIS)

    Busch, D.E.; Ingraham, N.L.; Smith, S.D.

    1992-01-01

    Alluvial forest associations are often dominated by woody phreatophytes, plants that are tightly linked to aquifers for water uptake. Anthropogenic hydrological alterations (e.g., water impoundment or diversion) are of clear importance to riparian ecosystem function. Because decreased frequency of flooding and depression of water tables may, in effect, sever riparian plants from their natural water sources, research was undertaken to determine water uptake patterns for the dominant native and introduced woody taxa of riparian plant communities of the southwestern United States. At floodplain study sites along the Bill Williams and lower Colorado Rivers (Arizona, USA), naturally occurring D and 18 O were used to distinguish among potential water sources. Isotopic ratios from potential uptake locations were compared to water extracted from the dominant woody taxa of the study area (Populus fremontii, Salix gooddingii, and Tamarix ramosissima) to elucidate patterns of water absorption. Isotopic composition of water obtained from sapwood cores did not differ significantly from heartwood or branch water, suggesting that heartwood water exchange, stem capacitance, and phloem sap mixing may be inconsequential in actively transpiring Salix and Populus. There was evidence for close hydrologic linkage of river, ground, and soil water during the early part of the growing season. Surface soils exhibited D enrichment due to cumulative exposure to evaporation as the growing season progressed. Isotopic ratios of water extracted from Populus and Salix did not exhibit isotopic enrichment and were not significantly different from groundwater or saturated soil water sources, indicating a phreatophytic uptake pattern. Associations of isotopic ratios with water relations parameters indicated high levels of canopy evaporation and possible use of moisture from unsaturated alluvial soils in addition to groundwater in Tamarix. (author)

  6. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Science.gov (United States)

    Serret, María D.; Yousfi, Salima; Vicente, Rubén; Piñero, María C.; Otálora-Alcón, Ginés; del Amor, Francisco M.; Araus, José L.

    2018-01-01

    Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N) in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct relationship with N

  7. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Directory of Open Access Journals (Sweden)

    María D. Serret

    2018-01-01

    Full Text Available Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1, three water regimes (control and mild and moderate water stress and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct

  8. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    Science.gov (United States)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  9. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis.

    Science.gov (United States)

    Spangenberg, Jorge E

    2012-11-30

    The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and

  10. Sensation of Cold during the Ice Water Test Corresponds to the Perception of Pain during Botulinum Toxin Bladder Wall Injections.

    Science.gov (United States)

    Reitz, André; Hüsch, Tanja; Doggweiler, Regula; Buse, Stephan; Haferkamp, Axel

    2018-01-01

    To investigate the association of bladder cold sensation (BCS) during the ice water test (IWT) and pain perception when botulinum toxin injections (BTI) are administered into the bladder wall. In 86 patients with idiopathic overactive bladder, the BCS during the IWT was investigated. Patients were divided into 2 groups: with and without BCS. During subsequent administration of BTI, the number of perceived and painful injections as well as the pain levels on a 0-100 pain scale were compared in both groups using Student t test. Thirty-five patients reported a BCS, while 51 did not. After 10 BTI, the mean number of perceived injections was 7.9 in patients with and 2.4 in patients without BCS (p sensation (p perceptions of cold and pain in the urinary bladder may use similar receptors and neuronal pathways. © 2018 S. Karger AG, Basel.

  11. Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota: Field observations, preliminary model analysis, and aquifer thermal efficiency

    Science.gov (United States)

    Miller, Robert T.

    1989-01-01

    In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated (150 °C (degree Celsius)) water in the deep (180 to 240 m (meters)) Franconia-Ironton-Galesville aquifer and later recovering it for space heating. The Aquifer Thermal-Energy Storage (ATES) system was doublet-well design in which the injection/withdrawal wells were spaced approximately 250 m apart. High-temperature water from the University's steam-generation facilities supplied heat for injection. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. Water then was injected back into the aquifer through the other well. The experimental plan for testing the ATES system consisted of a series of short-term hot-water injection, storage, and withdrawal cycles. Each cycle was 24-days long, and each injection, storage, and withdrawal step of the cycle was 8 days.

  12. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements

    Science.gov (United States)

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve

    2014-01-01

    "RATIONALE: Because of the paucity of isotopic reference waters for daily use, a new secondary isotopic reference material has been prepared from Lake Louise water from Alberta, Canada for international distribution. MOTHODS: This water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.

  13. Contribution to the study of evaporation of natural water using stable isotope

    International Nuclear Information System (INIS)

    Takaki, T.

    1979-01-01

    Procedures for measurements of isotopic ratios in natural waters have been developed, in order to study evaporation mechanism in reservoirs, in laboratory scale. Rayleigh's model of evaporation is discussed, considering evaporation in the presence of atmospheric water vapor. The results obtained for the variation of the concentration of O 18 and D, in function of remaining water fraction for four evaporation reservoirs agree with the model presented and allow an estimation of the local average relative humidity. The straight-line equation that relates the results for the concentrations of O 18 and D in our samples is proper to water reservoirs subjected to a significant reduction in its volume by evaporation. The content of O 18 and D, in water prior the evaporation directly obtained from the intersection, of the meteoric with our line agree with the values measured for the water used to fill the reservoirs [pt

  14. Determination of Tree and Understory Water Sources and Residence Times Using Stable Isotopes in a Southern Appalachian Forest

    Science.gov (United States)

    Stewart, A. N.; Knoepp, J.; Miniat, C.; Oishi, A. C.; Emanuel, R. E.

    2017-12-01

    The development of accurate hydrologic models is key to describing changes in hydrologic processes due to land use and climate change. Hydrologic models typically simplify biological processes associated with plant water uptake and transpiration, assuming that roots take up water from the same moisture pool that feeds the stream; however, this assumption is not valid for all systems. Novel combinations of climate and forest composition and structure, caused by ecosystem succession, management decisions, and climate variability, will require a better understanding of sources of water for transpiration in order to accurately estimate impact on forest water yield. Here we examine red maple (Acer rubrum), rhododendron (Rhododendron maximum), tulip poplar (Liriodendron tulipifera), and white oak (Quercus alba) trees at Coweeta Hydrologic Laboratory, a long-term hydrological and ecological research site in western NC, USA, and explore whether source water use differs by species and landscape position. We analyzed stable isotopes of water (18O and 2H) in tree cores, stream water, soil water, and precipitation using laser spectrometry and compare the isotopic composition of the various pools. We place these results in broader context using meteorological and ecophysiological data collected nearby. These findings have implications for plant water stress and drought vulnerability. They also contribute to process-based knowledge of plant water use that better captures the sensitivity of transpiration to physical and biological controls at the sub-catchment scale. This work aims to help establish novel ways to model transpiration and improve understanding of water balance, biogeochemical cycling, and transport of nutrients to streams.

  15. Schizophrenia-spectrum patients treated with long-acting injectable risperidone in real-life clinical settings: functional recovery in remitted versus stable, non-remitted patients (the EVeREST prospective observational cohort study).

    Science.gov (United States)

    Giraud-Baro, Elisabeth; Dassa, Daniel; De Vathaire, Florent; Garay, Ricardo P; Obeid, Joelle

    2016-01-15

    Previous studies showed functional improvement in stable patients with schizophrenia treated with risperidone long-acting injection (LAI). We therefore re-investigated functional improvement with risperidone LAI in remitted patients, in comparison with stable patients. The study was conducted in real-life conditions because of the high heterogeneity of the patients' situations. This was a multi-centre, prospective observational cohort study involving adult schizophrenia-spectrum chronic patients who were previously treated with risperidone LAI for 6 months. Remission was evaluated using the consensus criteria proposed by the Remission in Schizophrenia Working Group (RSWG). The primary endpoint was global functioning (assessed with the Global Assessment of Functioning scale, GAF) after one year of treatment. Social functioning was a secondary outcome. The analysis included 1490 patients. Attrition rate was 9.1 % at the end of the study. 27.7 % of patients were in remission after one year of risperidone LAI treatment. The mean GAF rating score (62.5 ± 1.5) was higher than the cut-off previously used to identify patients with satisfactory functioning (60) and significantly higher than the mean GAF score in stable, non-remitted patients (48.3, p risperidone LAI, RSWG-remitted patients have a high level of global functioning, which is significantly higher than in stable, non-remitted patients. Social functioning was also higher in remitted patients as compared with stable, non-remitted patients.

  16. A New Treatment Strategy for Inactivating Algae in Ballast Water Based on Multi-Trial Injections of Chlorine

    Directory of Open Access Journals (Sweden)

    Jinyang Sun

    2015-06-01

    Full Text Available Ships’ ballast water can carry aquatic organisms into foreign ecosystems. In our previous studies, a concept using ion exchange membrane electrolysis to treat ballast water has been proven. In addition to other substantial approaches, a new strategy for inactivating algae is proposed based on the developed ballast water treatment system. In the new strategy, the means of multi-trial injection with small doses of electrolytic products is applied for inactivating algae. To demonstrate the performance of the new strategy, contrast experiments between new strategies and routine processes were conducted. Four algae species including Chlorella vulgaris, Platymonas subcordiformis, Prorocentrum micans and Karenia mikimotoi were chosen as samples. The different experimental parameters are studied including the injection times and doses of electrolytic products. Compared with the conventional one trial injection method, mortality rate time (MRT and available chlorine concentration can be saved up to about 84% and 40%, respectively, under the application of the new strategy. The proposed new approach has great potential in practical ballast water treatment. Furthermore, the strategy is also helpful for deep insight of mechanism of algal tolerance.

  17. A New Treatment Strategy for Inactivating Algae in Ballast Water Based on Multi-Trial Injections of Chlorine.

    Science.gov (United States)

    Sun, Jinyang; Wang, Junsheng; Pan, Xinxiang; Yuan, Haichao

    2015-06-09

    Ships' ballast water can carry aquatic organisms into foreign ecosystems. In our previous studies, a concept using ion exchange membrane electrolysis to treat ballast water has been proven. In addition to other substantial approaches, a new strategy for inactivating algae is proposed based on the developed ballast water treatment system. In the new strategy, the means of multi-trial injection with small doses of electrolytic products is applied for inactivating algae. To demonstrate the performance of the new strategy, contrast experiments between new strategies and routine processes were conducted. Four algae species including Chlorella vulgaris, Platymonas subcordiformis, Prorocentrum micans and Karenia mikimotoi were chosen as samples. The different experimental parameters are studied including the injection times and doses of electrolytic products. Compared with the conventional one trial injection method, mortality rate time (MRT) and available chlorine concentration can be saved up to about 84% and 40%, respectively, under the application of the new strategy. The proposed new approach has great potential in practical ballast water treatment. Furthermore, the strategy is also helpful for deep insight of mechanism of algal tolerance.

  18. FEM for stability analysis against overturning of portal water injection sheet pile

    Science.gov (United States)

    Lingyun, Liu; Haiyan, Guo; Qi, Sun

    2006-07-01

    Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and thos of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin's theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3 2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.

  19. Fluid-structure interaction analysis of a water pool under loading caused by steam injection

    International Nuclear Information System (INIS)

    Timperi, A.; Paettikangas, T.; Niemi, J.; Ilvonen, M.

    2006-04-01

    CFD and structural analysis codes. MpCCI 3.0 was used for coupling Fluent CFD code with ABAQUS FE code. ES-FSI was used for coupling Star-CD CFD code with ABAQUS. FSI analyses, in which the calculation was carried out entirely in ABAQUS, were also performed. In this case, acoustic elements were used for the fluid and the acoustic and structural domains were coupled. FSI calculations were performed for simple test cases and for a test pool at Lappeenranta University of Technology. The Method of Images was studied as an alternative method for the analyses of the pool. Particularly, the determination of pressure source for the method was studied. Earlier work carried out with the homogenous two-phase model was continued by testing the model with Fluent. Calculation of condensation of steam in a water pool was tested with a new implementation. The two-directionally coupled simulations of the pool with MpCCI and ES-FSI were found to be numerically instable. It was concluded that an implicit coupling method may have to be used in order to avoid the instability. Calculations of the pool were finally performed by using one directional coupling. In the simulations with MpCCI, the incompressible and compressible VOF models of Fluent were used. With ES-FSI, the incompressible VOF model of Star-CD was used for modelling the beginning of a steam injection experiment. The magnitudes of pressure and stress peaks in the simulation and experiment were of comparable size. Otherwise, however, differences between the simulation and experiment were large due to the simplifications used in the simulation. Results obtained with the acoustic-structural FE analyses were compared to analytical and experimental results. The results indicated that the coupled acoustic-structural analysis can be used for calculating the coupled Eigenmodes of BWR pressure suppression pools. (au)

  20. Fluid-structure interaction analysis of a water pool under loading caused by steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A.; Paettikangas, T.; Niemi, J.; Ilvonen, M. [VTT Technical Researc Centre of Finland (Finland)

    2006-04-15

    CFD and structural analysis codes. MpCCI 3.0 was used for coupling Fluent CFD code with ABAQUS FE code. ES-FSI was used for coupling Star-CD CFD code with ABAQUS. FSI analyses, in which the calculation was carried out entirely in ABAQUS, were also performed. In this case, acoustic elements were used for the fluid and the acoustic and structural domains were coupled. FSI calculations were performed for simple test cases and for a test pool at Lappeenranta University of Technology. The Method of Images was studied as an alternative method for the analyses of the pool. Particularly, the determination of pressure source for the method was studied. Earlier work carried out with the homogenous two-phase model was continued by testing the model with Fluent. Calculation of condensation of steam in a water pool was tested with a new implementation. The two-directionally coupled simulations of the pool with MpCCI and ES-FSI were found to be numerically instable. It was concluded that an implicit coupling method may have to be used in order to avoid the instability. Calculations of the pool were finally performed by using one directional coupling. In the simulations with MpCCI, the incompressible and compressible VOF models of Fluent were used. With ES-FSI, the incompressible VOF model of Star-CD was used for modelling the beginning of a steam injection experiment. The magnitudes of pressure and stress peaks in the simulation and experiment were of comparable size. Otherwise, however, differences between the simulation and experiment were large due to the simplifications used in the simulation. Results obtained with the acoustic-structural FE analyses were compared to analytical and experimental results. The results indicated that the coupled acoustic-structural analysis can be used for calculating the coupled Eigenmodes of BWR pressure suppression pools. (au)

  1. Contribution of Water Saving to a Stable Power Supply in Vietnam

    Directory of Open Access Journals (Sweden)

    Takayuki Otani

    2015-06-01

    Full Text Available In Vietnam, the rapid expansion of cities is exceeding the supply capacity for water and electricity, and restrictions on water supply and blackouts occur on a daily basis. In this study, the authors examined whether water-saving equipment could solve these problems. This paper focused on toilet bowls that consumed a large amount of water, and on showers for which heat consumption was high. In Vietnam, the main heat source for showers is the electric water heater, typically having a power consumption of 2500–4500 W. Although the current diffusion rate of such water heaters is just 13%, their use will spread widely in the future. These heaters have already placed a peak load on electricity consumption in winter when a large amount of energy is consumed for heating water, and they will become a significant factor in blackout risks as their use becomes commonplace nationwide. It is clear that the introduction of water-saving showers will allow not only a more efficient use of water resources, but will also mitigate against the risk of blackouts.

  2. Stable and accurate methods for identification of water bodies from Landsat series imagery using meta-heuristic algorithms

    Science.gov (United States)

    Gamshadzaei, Mohammad Hossein; Rahimzadegan, Majid

    2017-10-01

    Identification of water extents in Landsat images is challenging due to surfaces with similar reflectance to water extents. The objective of this study is to provide stable and accurate methods for identifying water extents in Landsat images based on meta-heuristic algorithms. Then, seven Landsat images were selected from various environmental regions in Iran. Training of the algorithms was performed using 40 water pixels and 40 nonwater pixels in operational land imager images of Chitgar Lake (one of the study regions). Moreover, high-resolution images from Google Earth were digitized to evaluate the results. Two approaches were considered: index-based and artificial intelligence (AI) algorithms. In the first approach, nine common water spectral indices were investigated. AI algorithms were utilized to acquire coefficients of optimal band combinations to extract water extents. Among the AI algorithms, the artificial neural network algorithm and also the ant colony optimization, genetic algorithm, and particle swarm optimization (PSO) meta-heuristic algorithms were implemented. Index-based methods represented different performances in various regions. Among AI methods, PSO had the best performance with average overall accuracy and kappa coefficient of 93% and 98%, respectively. The results indicated the applicability of acquired band combinations to extract accurately and stably water extents in Landsat imagery.

  3. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta 2 H (δ 2 H) and as delta 18 O (δ 18 O), respectively. The values of δ 2 H and δ 18 O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of δ 2 H and δ 18 O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively

  4. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing

    Science.gov (United States)

    Lenchi, Nesrine; İnceoğlu, Özgül; Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Llirós, Marc; Servais, Pierre; García-Armisen, Tamara

    2013-01-01

    The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already

  5. Diversity of Microbial Communities in Production and Injection Waters of Algerian Oilfields Revealed by 16S rRNA Gene Amplicon 454 Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Nesrine Lenchi

    Full Text Available The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations. Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera

  6. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    Science.gov (United States)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  7. Trace analysis of isothiazolinones in water samples by large-volume direct injection liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Speksnijder, P; van Ravestijn, J; de Voogt, P

    2010-08-06

    Isothiazolinones are used as preservatives, biocides and disinfectants in a variety of industrial and domestic applications. Some of the isothiazolinones are difficult to isolate from water due their high polarity. A sensitive and selective analytical method was developed and optimized for the determination of sub-microg/L levels of three isothiazolinones in water samples. Three isothiazolinones are described in this paper: 2-methyl-3-isothiazolinone, 5-chloro-2-methyl-3-isothiazolinone and 4,5-dichloro-2-methyl-3-isothiazolinone. The analytical method involves a robust large-volume direct on-column loop injection of 2 mL on an Aqua ODS HPLC column and tandem MS detection (HPLC-MS/MS). After filtration, samples are directly injected without further pretreatment. Detection limits of the individual target compounds were between 0.03 and 0.1 microg/L employing Multi-Reaction Monitoring (MRM) mass spectrometry. Based on the constant ratio of two selected product-ions together with the retention time, the identification is very selective and quantification is reliable. The method was successfully applied to real samples of membrane flushings, drinking water, surface waters and waste water. Additional investigations showed the instability of the isothiazolinones in river- and waste water. Preservation of river water and waste water samples with sodium azide (NaN(3)) promotes the stability of the isothiazolines in solution. In membrane flushings, waste water, surface waters and drinking water, levels of the three isothiazolinones were all below the limit of detection. In effluents of households containing washings from normal shampoo use, isothiazolinones could be detected. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. (Weizmann Institute of Science, Rehovot (Israel))

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  9. Stable isotope ratio measurements on highly enriched water samples by means of laser spectrometry

    NARCIS (Netherlands)

    van Trigt, R; Kerstel, E.R.T.; Visser, GH; Meijer, H.A.J.

    2001-01-01

    We demonstrate the feasibility of using laser spectrometry (LS) to analyze isotopically highly enriched water samples (i.e., delta H-2 less than or equal to 15000 parts per thousand, delta O-18 less than or equal to 1200 parts per thousand), as often used in the biomedical doubly labeled water (DLW)

  10. Use of stable isotopes for estimating water and nitrogen transport in plants

    International Nuclear Information System (INIS)

    Grygoryuk, I.P.; Petrenko, N.I.; Shvedova, O.Yu.; Tkachev, V.I.; Yaroshenko, O.A.

    1998-01-01

    Peculiarities in the response of various wheat cultivars and maize hybrids to water deficiency were studied in laboratory and vegetation experiments. Their resistance to extemal environmental factors was estimated by changes in nitrogen ( 15 N) and water (HDO) accumulation, transport and distribution in plant organs. The water supply was maintained at 60% FWC (control) and was reduced to 30% FWC (experiment) in the absence of plant watering during different stages or with use of polyethylene glycol. Decrease in water potential of medium from -0.05 (control) to -0.5, -0.9 and -1.6 MPa resulted in inhibition of water absorption, transport and distribution in spring wheat organs. After 24-hour stress, root absorption of water of drought-resistant varieties as compared to non-drought resistant ones was more sensitive, during 5, 10 and 15 min intervals after HDO introduction in nutrition medium. Strong depression of water exchange was observed at weaker stress in non-resistant variety. HDO absorption of the low part of the stem at short exposure resembled that of roots. The 24-hour stress revealed the tendency to sharper inhibition of absorption of labelled water in leaves of resistant variety. At a more durable stress the intensity of leaf water-exchange resistant variety was stabilized, while in the non-resistant variety it was reduced considerably. The intensity of HDO and 15 N exchange under stress conditions depended on the lability of regulator mechanism of water transport. Genotypic specificity of N use by wheat and maize plants depending on water supply and inclusion of 15 N in total and protein N was found. The 15 N content in total N in spring wheat cultivars under optimum water supply and under drought made 3.65 to 6.20 and 1.69 to 3.47, respectively. The 15 N content in protein N under the above conditions was 3.03 to 5.96 and 2.36 to 2.93, respectively. At water stress the main mass of labelled N in plant roots and stems was localized, while its intake into

  11. Stable isotope study of ground water recharge and movement in the Shogawa Fan, Toyama

    International Nuclear Information System (INIS)

    Mizutani, Yoshihiko; Oda, Matsuhisa

    1983-01-01

    Deuterium and oxygen-18 measurements of ground and river waters of the Shogawa Fan, Toyama, have been used to identify sources of water in aquifers in the Fan. A significant difference exists in deltaD and delta 18 O values between two major rivers flowing onto the Fan. On the basis of this difference, it is indicated that aquifers in the eastern half of the Fan are recharged from the Sho River and those in the western half of the Fan are from the Oyabe River. Chloride measurements of the waters support this identification of water sources. Contributions of other water sources to the aquifers are also indicated. The flow rate of infiltration from the Sho River is estimated to be 10-13 m/day in the confined aquifers in the northern part of the Fan. (author)

  12. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    Science.gov (United States)

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. Experiment HFR-B1: A preliminary analysis of the water-vapor injection experiments in capsule 3

    Energy Technology Data Exchange (ETDEWEB)

    Myers, B.F.

    1993-08-01

    A preliminary analysis of the response of uranium oxycarbide (UCO) fuel to water vapor addition in capsule 3 of experiment HFR-B1 (HFR-B1/3) has been conducted. The analysis provides an early indication of the behavior of fission gas release under a wider range of water-vapor pressures and of temperatures than heretofore studied. A preliminary analysis of selected aspects of the water-vapor injection tests in capsule 3 of experiment HFR-B1 is presented. The release of fission gas stored in bubbles and the diffusive release of fission-gas atoms are distinguished. The dependence of the release of stored fission gas ({sup 85m}Kr) on water-vapor pressure, P(H{sub 2}O), and temperature were established taking into account the contributing mechanisms of gaseous release, the effect of graphite hydrolysis, and the requirement of consistency with experiment HRB-17 in which similar water-vapor injection tests were conducted. The dependence on P(H{sub 2}O) becomes weaker as temperatures increase above 770{degree}C; the activation energy for release of stored-fission gas is 393 kJ/mol. Isorelease curves for the pressure-temperature plane were deduced from a derived functional relation. The stored-fission gas releases as a function of P(H{sub 2}O) at a common temperature for experiments HFR-B1 and HRB-17 differ by a factor of 4; this discrepancy could be attributed to the differences in fission-rate density and neutron flux between the two experiments. Diffusive release of fission gas occurred during and after the release of stored gas. The ratio of diffusive release during water-vapor injection to that prior to injection varied in contrast to the results from HRB-17. The variation was attributed to the practice of injecting water vapor into HFR-B1 before sintering of the fuel, hydrolyzed in the previous test, was completed. The derived activation energy for diffusive release is 23.6 kJ/mol.

  14. Geochemistry, water balance, and stable isotopes of a “clean” pit lake at an abandoned tungsten mine, Montana, USA

    International Nuclear Information System (INIS)

    Gammons, Christopher H.; Pape, Barbara L.; Parker, Stephen R.; Poulson, Simon R.; Blank, Carrine E.

    2013-01-01

    Highlights: • An abandoned open pit mine is now a 30 m deep lake with excellent water quality. • Concentrations of sulfate, nutrients, and most trace metals are extremely low. • Based on water isotopes, the lake is 30% evaporated with a 2.5 yr residence time. • Stable isotopes of DIC and DO track in-lake bio-geochemical processes. • Phytoplankton are active at depths as great as 20 m. - Abstract: The Calvert Mine is a small tungsten-rich (scheelite) skarn deposit in a remote, mountainous region of southwest Montana, USA. The open-pit mine closed in the 1970s and subsequently flooded to form a pit lake that is roughly conical in shape, 30 m deep and 120 m in diameter, with no surface inlet or outlet. The lake is holomictic with a groundwater flow-through hydrology and an estimated residence time of 2.5–5 y. Water isotopes show that the lake is at an approximate steady state with respect to water balance and has experienced 30% evaporation. The lake has a near-neutral pH, exceptional clarity, and extremely low concentrations of nutrients, sulfate, and most metals, including tungsten. Manganese concentrations are slightly elevated and increase with depth towards the sediment–water interface. Despite seasonally anoxic conditions in the deep water, dissolved Fe concentrations are orders of magnitude lower than Mn, suggesting that insufficient organic carbon is present in the sediment of this oligotrophic lake to drive bacterial Fe reduction. Based on stable isotope fingerprinting, diffuse seepage that enters a nearby headwater stream at the base of a large waste-rock pile can be directly linked to the partially evaporated pit lake. However, this seepage has neutral pH and low metal concentrations, and poses no threats to the environment. Stable isotopes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) are used to track the relative importance of photosynthesis and respiration with depth. In summer, a zone of high productivity exists near the

  15. Photo-induced flow-injection determination of nitrate in water

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Čapka, Lukáš; Večeřa, Zbyněk; Kalinichenko, I.; Kellner, J.

    2014-01-01

    Roč. 94, č. 10 (2014), s. 1038-1049 ISSN 0306-7319 Institutional support: RVO:68081715 Keywords : chemiluminescence * flow injection analysis * nitrate Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 1.295, year: 2014

  16. Leaf water enrichment of stable water isotopes (δ18O and δD) in a mature oil palm plantation in Jambi province, Indonesia.

    Science.gov (United States)

    Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander

    2017-04-01

    During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.

  17. Geological Factors Affecting Flow Spatial Continuity in Water Injection of Units Operating in the LGITJ–0102 Ore Body

    Directory of Open Access Journals (Sweden)

    Ilver M. Soto-Loaiza

    2016-05-01

    Full Text Available The objective of the investigation was to identify the geological factors affecting the spatial continuity of the flow during the process of flank water injection in the units operating in the Lower Lagunilla Hydrocarbon Ore Body. This included the evaluation of the recovery factor, the petro-physic properties such as porosity, permeability, water saturation and rock type and quality in each flow unit. it was observed that the rock type of the geologic structure in the ore body is variable. The lowest values for the petro-physic properties were found in the southern area while a high variability of these parameters was observed in the northern and central areas. It was concluded that the northern area has a great potential for the development of new injection projects for petroleum recovery.

  18. Wastewater injection, aquifer biogeochemical reactions, and resultant groundwater N fluxes to coastal waters: Kā'anapali, Maui, Hawai'i.

    Science.gov (United States)

    Fackrell, Joseph K; Glenn, Craig R; Popp, Brian N; Whittier, Robert B; Dulai, Henrietta

    2016-09-15

    We utilize N and C species concentration data along with δ(15)N values of NO3(-) and δ(13)C values of dissolved inorganic C to evaluate the stoichiometry of biogeochemical reactions (mineralization, nitrification, anammox, and denitrification) occurring within a subsurface wastewater plume that originates as treated wastewater injection and enters the coastal waters of Maui as submarine groundwater discharge. Additionally, we compare wastewater effluent time-series data, injection rates, and treatment history with submarine spring discharge time-series data. We find that heterotrophic denitrification is the primary mechanism of N loss within the groundwater plume and that chlorination for pathogen disinfection suppresses microbial activity in the aquifer responsible for N loss, resulting in increased coastal ocean N loading. Replacement of chlorination with UV disinfection may restore biogeochemical reactions responsible for N loss within the aquifer and return N-attenuating conditions in the effluent plume, reducing N loading to coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    Science.gov (United States)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  20. The application of stable carbon isotope ratios as water quality indicators in coastal areas of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Mashiatullah, A.; Javed, T.; Tasneem, M.A.; Sajjad, M.I.; Saleem, M.; Khan, S.H.; Rizvi, S.H.N.; Siddiqui, S.A.; Qari, R.

    1998-01-01

    Stable carbon isotope ratios (δ 13 C) of total dissolved inorganic carbon (TDIC), total inorganic and organic carbon in bottom sediments, as well as sea plants in polluted water sources, non-polluted Karachi Sea water and pollution recipients are used to elaborate pollution scenario of shallow marine environment off Karachi coast. These results are supplemented with stable isotope composition of nitrogen (δ 15 N) in seaweeds and mangroves, toxic/trace metal concentration in sea-bottom sediments, total Coliform bacterial population, electrical conductivity, temperature and turbidity. Isotopic data shows that the mangrove ecosystem and the tidal fluctuations play a key role in controlling contamination inventories in shallow sea water off Karachi coast, specifically the Manora Channel. The Karachi harbour zone is found to be the most heavily polluted marine site in Manora channel during high as well as low tide regimes. Significant concentrations of toxic metals such as Pb, Ni, Cr, Zn, V, U are observed in off-shore sediments of Karachi coast. The results show that sewage and industrial wastes are the main sources of heavy metal pollution in Karachi harbour, Manora Channel exit zone and the southeast coast. However, as compared to other coastal areas, the Karachi coast is moderately polluted. Studies suggest incorporation of quick remedial measures to combat pollution in shallow marine environments off Karachi Coast. (author)

  1. Highly Water-Stable Novel Lanthanide Wheel Cluster Organic Frameworks Featuring Coexistence of Hydrophilic Cagelike Chambers and Hydrophobic Nanosized Channels.

    Science.gov (United States)

    Zhou, Yuan-Yuan; Shi, Yang; Geng, Bing; Bo, Qi-Bing

    2017-02-15

    In attempts to investigate the potential luminescent sensing materials for sensitive detection of environmental pollutants, a new family of lanthanide wheel cluster organic frameworks (Ln-WCOFs) UJN-Ln4 has been constructed by employing one of the cycloalkane dicarboxylic acid derivatives. Adopting different conformations, the ligand links Ln 4 second building units (SBUs) and Ln 24 tertiary building units (TBUs) to form a unique wheel cluster layer-pillared 3D framework featuring the coexistence of hydrophobic nanosized channels and trigonal antiprism arrays with hydrophilic cagelike chambers. Apart from charming structures, isostructural UJN-Ln4 displays interesting porous, water-stable features. Systematic luminescence studies demonstrate that solvent water molecules can enhance the emission intensity of solid-state UJN-Eu4. Acting as a recyclable luminescent probe, water-stable luminescent UJN-Eu4 exhibits superior "turn-off" detection for Fe 3+ and Cu 2+ ions in aqueous solutions. Due to the nanosized hydrophobic channels, UJN-Eu4 also shows highly sensitive sensing of sodium dodecyl benzenesulfonate (SDBS) via luminescence "turn-on" respondence, representing the first example of quantitatively detecting SDBS in aqueous solutions by employing luminescent lanthanide frameworks as fluorescent sensors. The results also open up the exploration of novel luminescent Ln-WCOFs exhibiting unique applications in sensitive detecting of harmful pollutants in aquatic environments.

  2. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    Science.gov (United States)

    Alpers, Charles N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  3. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Science.gov (United States)

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  4. Pu(V) as the stable form of oxidized plutonium in natural waters

    International Nuclear Information System (INIS)

    Orlandini, K.A.; Penrose, W.R.; Nelson, D.M.

    1986-01-01

    This work presents analytical evidence supporting the proposition that Pu(V) is the sole or predominant form of oxidized plutonium in natural waters. Two independent methods, the selective adsorption of Pu(VI) by silica gel, and the somewhat less selective coprecipitation of Pu(V) with calcium carbonate, were developed to separate Pu(V) from Pu(VI). Measurements of ambient plutonium in several natural waters by these methods found only Pu(V). In laboratory tracer studies, Pu(VI) was shown to be highly unstable in dilute bicarbonate solution and in Lake Michigan water, reducing in first-order fashion to Pu(V). (orig.)

  5. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    Science.gov (United States)

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  6. Relationships of stable isotopes, water-rock interaction and salinization in fractured aquifers, Petrolina region, Pernambuco State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila Sousa, E-mail: priscila.silva@cprm.gov.br [Serviço Geológico do Brasil (CPRM), Manaus, AM (Brazil); Campos, José Eloi Guimarães; Cunha, Luciano Soares; Mancini, Luís Henrique, E-mail: eloi@unb.br, E-mail: lucianosc@unb.br, E-mail: lmancini@unb.br [Universidade de Brasília (UnB), Brasília, DF (Brazil)

    2018-01-15

    The Petrolina County, Pernambuco State, Brazil, presents specificities that make it unique from a hydrogeological point of view. Water resource scarcity is both a quantitative and qualitative issue. The climate is classified as semiarid, having low precipitation, along with high temperatures and evapotranspiration rates. Aquifer zones are related to low connected fractures resulting in a restricted water flow in the aquifer. The recharge is limited and the groundwater salinity is high. Stable isotope analyses of H and O were developed in groundwater samples (with different electrical conductivity) and surface water collected in a bypass channel flowing from the São Francisco River. The results were plotted in a δD ‰ versus δ{sup 18}O ‰ graph along with the curves of the global and local meteoric water line. Groundwater samples showed unexpected results showing a lighter sign pattern when compared to the meteoric waters. More negative δD and δ{sup 18}O values indicate an enrichment in light isotopes, which show that this process is not influenced by surface processes, where the enrichment occurs in heavy isotopes due to evaporation. The isotopic signature observed is interpreted either as resulting from the water-rock interaction, or as resulting from recharge from paleo rains. The waters are old and show restricted flow. So the water-rock contact time is extended. In the rock weathering processes, through the hydration of feldspars, there is preferential assimilation of heavy isotopes at the expense of the lighter ones that remain in the water. Analyses of the {sup 87}Sr/{sup 86}Sr ratio and isotopic groundwater dating assist in the interpretations. (author)

  7. Water-stable 0-20 μm microaggregates of cultivated topsoils as relevant indicators of soil functioning ?

    Science.gov (United States)

    Watteau, Françoise; Villemin, Geneviève; Blanchart, Eric; Bartoli, François

    2010-05-01

    Growing concern about sustainable soil management in agroecosystems, has given new impetus to research on soil quality indicators used to monitor the ability of ecosystems to either resist or degrade or recover from disturbances, i.e. land use change, climate warning, pollution, tillage... Integrating soil aggregation characteristics, and their dynamics, into agrosystem studies is very useful to understand how cultivated soils function and how their soil organic matter pools could be preserved or improved. The aim of the researches reported here was to test the hypothesis that the characterization of water-stable organo-mineral 2-20μm microaggregates - in terms of size, composition, typology and stability - would be relevant dynamic soil quality indicators of the impact of cropping practices. For this, two agrosystems were studied: (1) a temperate maize-cropped silt loam soil amended with sewage sludge and (2) a vertisol of south-eastern Martinique presenting a high sensitivity for erosion and used for intensive vegetable cropping. A quantitative and qualitative study of organo-mineral associations, combining granulometric soil fractionations and morphological/analytical characterizations at ultrastructural (TEM/EDX) scale was conducted. 0-20μm water-stable organo-mineral aggregates were involved in the structural stability of the maize-cropped soil and their organic matter was still recognizable, mainly of plant origin, but also of bacterial origin. Some impacts of the application of sewage sludge were the emergence of microaggregates containing residues of sludge flocs, which can be considered as specific indicators of sludge, and the transfer of Cu from sludge to endogenous soil organic matter within microaggregates. In the agricultural vertisol different types of water-stable 2-20μm microaggregates, were defined, based on the nature and the biodegradation state of the organic matter included in them. Their relative distributions varied as a function of land

  8. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay.

    Science.gov (United States)

    Guo, Jie; Yang, Fuchao; Guo, Zhiguang

    2016-03-15

    We report a simple and rapid method to fabricate superhydrophobic films on copper substrates via Fe(3+) etching and octadecanethiol (ODT) modification. The etching process can be as short as 5 min and the ODT treatment only takes several seconds. In addition, the whole process is quite flexible in reaction time. The superhydrophobicity of as-prepared surfaces is mechanically durable and chemically stable, which have great performance in oil-water separation and ice-over resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-13

    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium (2H) and 18-oxygen (18O) of nine perched water samples from three different wells was performed. Samples represent time points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ2H and δ18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.

  10. Experimental Investigation of Gas Hydrate Production at Injection of Liquid Nitrogen into Water with Bubbles of Freon 134A

    Directory of Open Access Journals (Sweden)

    Meleshkin Anton V.

    2016-01-01

    Full Text Available The hydrodynamic processes during the injection of the cryogenic liquid into the volume of water with bubbles of gas freon 134a are studding experimentally. A processes during the explosive boiling of liquid nitrogen in the volume of water are registered. Video recording of identified gas hydrate flakes formed during this process is carried out by high speed camera. These results may be useful for the study of the new method of producing gas hydrates, based on the shock-wave method.

  11. Carbon-14, tritium, stable isotope and chemical measurements on thermal waters from the Tauranga region

    International Nuclear Information System (INIS)

    Stewart, M.K.; McGill, R.C.; Taylor, C.B.; Whitehead, N.E.; Downes, C.J.

    1984-03-01

    The chemical compositions of groundwater from the Tauranga region are affected to varying degrees by reducing conditions due to buried organic matter. The levels of some dissolved constituents are also affected by mixing with sea water contained within the rocks and by rock-water interaction. Dissolved gas compositions range from oxygen-bearing to methane-bearing reflecting the varying redox conditions. Excess air may be present but further experiments are necessary to confirm this. Apparent ages deduced from carbon-14 measurements (corrected using 12C dilution and 13C fractionation methods) range from 2-25,000 years, suggesting that some of the waters were recharged during late Pleistocene or early Holocene time. ΔD and Δ18 O values of the oldest waters are slightly more negative than those of younger samples; this may indicate recharge during a cooler climate, in agreement with the 14C ages. Very low but significantly non-zero tritium contents (TR=(0.007-0.059)+-0.007) were measured using the high tritium-enrichment facilities at INS and the very low-background counters at the University of Bern. The tritium is thought to derive from contamination or nuclear reactions in the aquifer rocks rather than from recharge water

  12. Testing and modelling of a novel oil-free co-rotating scroll machine with water injection

    International Nuclear Information System (INIS)

    Mendoza, Luis Carlos; Lemofouet, Sylvain; Schiffmann, Jürg

    2017-01-01

    Highlights: • Performance of novel oil-free co-rotating scroll expander presented. • Water injection allows reaching quasi-isothermal expansion process. • Comparison between experimental data, semi-empirical and deterministic models. • Flank leakage, water injection and rotor speed effects have been analyzed experimentally. • Design guidelines for co-rotating scroll improvement proposed. - Abstract: Efficient compressed air energy storage requires reversible isothermal compression and expansion devices. The isothermal compression and expansion processes can either be approached by several stages with intercooling or by the more convenient injection of a liquid, often water. While volumetric machines are readily available for dry processes the compression and expansion of a gas with the presence of liquid is still problematic. The concept of a co-rotating scroll has been identified as a promising technology to cope with the presence of liquid. The current paper discusses the first experimental results of an oil-free co-rotating scroll prototype tested in expansion mode on a wide range of rotational speeds, varying water injection flow rates and with different nominal flank clearances. A maximal overall isothermal efficiency of 34% and a maximum output power of 1.74 kW el were measured with this first prototype, providing the proof of the technical feasibility of the oil-free co-rotating scroll expander concept. The experimental data indicate a positive effect of water injection suggesting good heat transfer behaviour between the water and the air in the individual chambers, which is a result of the relatively long residence time compared to other volumetric concepts. The experimental sensitivity analysis yields a strong dependency of the machine performance on both the nominal flank clearance and on the injected water rate. The analysis through a semi-empirical model suggests the inversion of a classical trend, i.e. the increase in total leakage area with

  13. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.

    2013-01-01

    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  14. A mobile and self-sufficient lab for high frequency measurements of stable water isotopes and chemistry of multiple water sources

    Science.gov (United States)

    Windhorst, David; Kraft, Philipp; Holly, Hartmut; Sahraei, Amir; Breuer, Lutz

    2017-04-01

    Technical advances over the last years have made instruments for stable water isotope and water chemistry measurements smaller, more durable and energy efficient. It is nowadays feasible to deploy such instruments in situ during field campaigns. Coupled to an automated sample delivery system, high temporal resolution online measurements of various sources are within the bounds of economic and technical possibility. However, the day to day operation of such equipment still requires either a lot of man power and infrastructure or the implementation of a quasi-self-sufficient system. The challenge remains on how to facilitate and remotely operate such a system. We present the design and implementation of the Water Analysis Trailer for Environmental Research (WATER), an autonomous platform consisting of instruments for stable water isotope and water chemistry analysis. The system takes and measures samples in high temporal resolution (communication of all system states, alarm messages and measurement results to an internal as well as an external database via cellular telemetry, - automated storage of up to 300 frozen reference samples (100 mL, stored at -18°C), - climate control for temperature sensitive equipment (±1°C), - a local and remote (up to 20 km using radio telemetry) sensor network (i.e. to record states of the hydrological system and climate and soil conditions), also suitable to trigger specific measurements - automatic fire suppression and security system. The initial instrumentation includes a UV spectrometer (ProPs, Trios GmBH, Germany) to measure NO3-, COD, TOC and total suspended sediments, multiparameter water quality probe (YSI600R, YSI, USA) to measure electrical conductivity and pH, and a stable water isotope analyzer (L2130-i, Picarro, USA) coupled to a continuous water sampler (A0217, Picarro, USA). Fourty soil moisture, temperature and electrical conductivity sensors (5TE, Decagon, USA) are connect to the remote sensor network (A850, Adcon

  15. A novel strategy to produce highly stable and transparent aqueous 'nanosolutions' of water-insoluble drug molecules

    International Nuclear Information System (INIS)

    Wang Jiexin; Zhang Zhibing; Le Yuan; Chen Jianfeng; Zhao Hong

    2011-01-01

    A surprisingly large proportion of new drug candidates emerging from drug discovery programmes are water-insoluble and, as a result, have poor oral bioavailability. To overcome insolubility, the drug particles are usually dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. In this paper, we report a generic method for preparing drug nanoparticles with a combination of antisolvent precipitation in the presence of water-soluble matrices and spray-drying. The spray-dried powder composites (solid dispersion) are microspherical, highly stable and thus form transparent nanodispersions or so-called 'nanosolutions' of water-insoluble drug when simply added to water. Aqueous nanodispersions of silybin (a kind of water-insoluble drug for liver protection) with an average size of 25 nm produced with this approach display a 10 times faster dissolution rate than that of raw drug. This has great potential to offer a novel solution for innovative drugs of the future.

  16. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523

  17. Stable isotopic compositions of waters in the karst environments of China: Climatic implications

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.-C. [College of Geography Sciences, Southwest University, Chongqing 400715 (China); Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740 (United States); Department of Earth Sciences, National Cheng-Kung University, Tainan 701, Taiwan (China)], E-mail: hli@earth.usc.edu; Ku, T.-L. [Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740 (United States); Yuan, D.-X. [College of Geography Sciences, Southwest University, Chongqing 400715 (China); Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004 (China); Wan, N.-J. [Department of Earth Sciences, National Cheng-Kung University, Tainan 701, Taiwan (China); Ma, Zhi-Bang [Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100036 (China); Zhang, P.-Z. [College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000 (China); Bar-Matthews, Miryam; Ayalon, Avner [Geologic Survey of Israel, Jerusalem 95501 (Israel); Liu, Z.-H.; Zhang, M.-L. [Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004 (China); Zhu, Z.-Y. [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Wang, R.-M. [Department of Earth Sciences, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2007-08-15

    A total of 117 water samples, including cave water, ground water, spring water and river water, collected from the monsoonal area of China have been analyzed for their H- and O-isotope composition. Overall, a {delta}{sup 18}O-{delta}D correlation is observed of {delta}D = -4.45 + 6.6{delta}{sup 18}O (R{sup 2} = 0.90) and a significant evaporation effect observed for the southern sites. Average {delta}{sup 18}O and {delta}D site values generally correspond to those of precipitation in nearby cities, with correlations of {delta}D = 2.18 + 7.23{delta}{sup 18}O (R{sup 2} = 0.95) for the sample sites and {delta}D = 11.05 + 7.95{delta}{sup 18}O (R{sup 2} = 0.95) for the cities. The effects of rainfall amount and temperature on precipitation {delta}{sup 18}O were calculated using a simplified theoretical model derived from the Rayleigh distillation equation, which demonstrated that the sign of {delta}{sup 18}O{sub p}vs. T correlation is dependent on precipitation intensity. The mean {delta}{sup 18}O value of cave waters exhibit decreasing trends with increasing latitude and reveal a spatial pattern of positive correlation with annual mean temperature and precipitation, mainly reflecting isotopic fractionations in the moisture source traveling from the ocean side to the inland continent. This spatial pattern implies that the {delta}{sup 18}O values recorded in the proxy climate records derived from speleothems might be influenced by shifts in monsoon boundary during the past, especially between glacial and interglacial intervals.

  18. Stable sulfur isotopes in the water column of the Cariaco Basin

    Science.gov (United States)

    Li, Xiaona; Gilhooly, William P., III; Zerkle, Aubrey L.; Lyons, Timothy W.; Farquhar, James; Werne, Josef P.; Varela, Ramon; Scranton, Mary I.

    2010-12-01

    Previous geochemical and microbiological studies in the Cariaco Basin indicate intense elemental cycling and a dynamic microbial loop near the oxic-anoxic interface. We obtained detailed distributions of sulfur isotopes of total dissolved sulfide and sulfate as part of the on-going CARIACO time series project to explore the critical pathways at the level of individual sulfur species. Isotopic patterns of sulfate ( δ34S) and sulfide ( δ34SS) were similar to trends observed in the Black Sea water column: δ34SS and δ34S were constant in the deep anoxic water (varying within 0.6‰ for sulfide and 0.3‰ for sulfate), with sulfide roughly 54‰ depleted in 34S relative to sulfate. Near the oxic-anoxic interface, however, the δ34SS value was ˜3‰ heavier than that in the deep water, which may reflect sulfide oxidation and/or a change in fractionation during in situ sulfide production through sulfate reduction (SR). δ34SS and Δ33SS data near the oxic-anoxic interface did not provide unequivocal evidence to support the important role of sulfur-intermediate disproportionation suggested by previous studies. Repeated observation of minimum δ34S values near the interface suggests 'readdition' of 34S-depleted sulfate during sulfide oxidation. A slight increase in δ34S values with depth extended over the water column may indicate a reservoir effect associated with removal of 34S-depleted sulfur during sulfide production through SR. Our δ34SS and Δ33SS data also do not show a clear role for sulfur-intermediate disproportionation in the deep anoxic water column. We interpret the large difference in δ 34S between sulfate and sulfide as reflecting fractionations during SR in the Cariaco deep waters that are larger than those generally observed in culturing studies.

  19. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  20. An Efficient and Stable Hydrophobic Molecular Cobalt Catalyst for Water Electro-oxidation at Neutral pH

    KAUST Repository

    Chen, Ba-Tian

    2016-06-14

    The synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine is described. Hydrophobicity was identified as the key variable in mediating the catalytic competence of the complexes. The change in this parameter correlates with both the conformational mobility of the ligand core and the structural changes in the local solvent environment around the metal site. The optimal Co complex identified is hydrophobic, because of three semifluorinated side chains. It catalyzes water electro-oxidation efficiently at neutral pH, with an overpotential of 390 mV and a turnover frequency (TOF) of 1.83 s-1 in the absence of soluble Co salts. The catalyst can be immobilized through physisorption, and it remains stable in prolonged electrolysis experiments. © 2016 American Chemical Society.

  1. Stable isotope characterization of pan-derived and directly sampled atmospheric water vapour

    International Nuclear Information System (INIS)

    Maric, R.; St. Amour, N.A.; Gibson, J.J.; Edwards, T.W.D.

    2002-01-01

    Isotopic characterization of atmospheric water vapour, δ A , and its temporal variability are important prerequisites for quantifying water balance of surface reservoirs and partitioning of evaporation and transpiration fluxes using isotope techniques. Here we present results from a detailed comparison of several methods for determining δ A in field situations, (i) by back-calculation from isotopic and micrometeorological monitoring of a steady-state terminal reservoir (standard Class-A evaporation pan) using boundary-layer mass transfer models [1], (ii) through direct (cryogenic) sampling of ambient atmospheric moisture, and (iii) using the precipitation-equilibrium approximation (i.e., δ A =δ P - ε*)

  2. Stable carbon and oxygen isotopes of natural waters in the Netherlands

    International Nuclear Information System (INIS)

    Mook, W.G.

    1970-01-01

    The carbon and oxygen isotopes in the Dutch surface water and groundwater present an internally consistent picture of the hydrologic cycle. The 18 O content of the average annual precipitation (-7.9 per mille) fits in with the temperature relation of Dansgaard. The average seasonal variation can be explained comparatively. The groundwater generally reflects the isotopic composition of precipitation during the seasons of maximum infiltration (δ 18 = -7.5 to -8 per mille). River water appears to have a component derived from groundwater of a specific isotopic composition, as observed in winter. Certain processes during the rest of the year cause a marked seasonal variation in both isotopes. The δ 13 of the dissolved bicarbonate generally varies between -12 and -8 per mille, largely due to isotope exchange with the atmospheric CO 2 . The meltwater and rain-water rivers show opposite variations in 18 O content, the Rhine from -9 to -10.5 per mille and the Vecht from -7.5 to -6.5 per mille between winter and summer respectively. The δ 13 values of sea-water bicarbonate (+1.5 to +2.0 per mille) point to a condition of isotopic equilibrium between the dissolved bicarbonate and the atmospheric carbon dioxide at an average temperature between 14 and 20 degrees C. In an estuary the isotopic compositions of the bicarbonate and the water turn out to be solely determined by the mixing ratio of the fresh and sea-water. The δ 18 -chlorinity relation yields a straight line, whereas the similar relation for 13 C gives a smooth curve, the form depending on the relative quantities of dissolved carbon in the fresh and sea-water. In the lake IJsselmeer the 13 C content approaches an isotopic equilibrium with atmospheric CO 2 along the flow direction, due to the relatively long residence time of the water in the lake. The observed chemical and isotopic changes in the flow direction can be explained quantitatively. (author)

  3. Unit operation optimization for the manufacturing of botanical injections using a design space approach: a case study of water precipitation.

    Science.gov (United States)

    Gong, Xingchu; Chen, Huali; Chen, Teng; Qu, Haibin

    2014-01-01

    Quality by design (QbD) concept is a paradigm for the improvement of botanical injection quality control. In this work, water precipitation process for the manufacturing of Xueshuantong injection, a botanical injection made from Notoginseng Radix et Rhizoma, was optimized using a design space approach as a sample. Saponin recovery and total saponin purity (TSP) in supernatant were identified as the critical quality attributes (CQAs) of water precipitation using a risk assessment for all the processes of Xueshuantong injection. An Ishikawa diagram and experiments of fractional factorial design were applied to determine critical process parameters (CPPs). Dry matter content of concentrated extract (DMCC), amount of water added (AWA), and stirring speed (SS) were identified as CPPs. Box-Behnken designed experiments were carried out to develop models between CPPs and process CQAs. Determination coefficients were higher than 0.86 for all the models. High TSP in supernatant can be obtained when DMCC is low and SS is high. Saponin recoveries decreased as DMCC increased. Incomplete collection of supernatant was the main reason for the loss of saponins. Design space was calculated using a Monte-Carlo simulation method with acceptable probability of 0.90. Recommended normal operation region are located in DMCC of 0.38-0.41 g/g, AWA of 3.7-4.9 g/g, and SS of 280-350 rpm, with a probability more than 0.919 to attain CQA criteria. Verification experiment results showed that operating DMCC, SS, and AWA within design space can attain CQA criteria with high probability.

  4. Unit operation optimization for the manufacturing of botanical injections using a design space approach: a case study of water precipitation.

    Directory of Open Access Journals (Sweden)

    Xingchu Gong

    Full Text Available Quality by design (QbD concept is a paradigm for the improvement of botanical injection quality control. In this work, water precipitation process for the manufacturing of Xueshuantong injection, a botanical injection made from Notoginseng Radix et Rhizoma, was optimized using a design space approach as a sample. Saponin recovery and total saponin purity (TSP in supernatant were identified as the critical quality attributes (CQAs of water precipitation using a risk assessment for all the processes of Xueshuantong injection. An Ishikawa diagram and experiments of fractional factorial design were applied to determine critical process parameters (CPPs. Dry matter content of concentrated extract (DMCC, amount of water added (AWA, and stirring speed (SS were identified as CPPs. Box-Behnken designed experiments were carried out to develop models between CPPs and process CQAs. Determination coefficients were higher than 0.86 for all the models. High TSP in supernatant can be obtained when DMCC is low and SS is high. Saponin recoveries decreased as DMCC increased. Incomplete collection of supernatant was the main reason for the loss of saponins. Design space was calculated using a Monte-Carlo simulation method with acceptable probability of 0.90. Recommended normal operation region are located in DMCC of 0.38-0.41 g/g, AWA of 3.7-4.9 g/g, and SS of 280-350 rpm, with a probability more than 0.919 to attain CQA criteria. Verification experiment results showed that operating DMCC, SS, and AWA within design space can attain CQA criteria with high probability.

  5. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    Science.gov (United States)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were isotope tracers but were significantly

  6. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Directory of Open Access Journals (Sweden)

    E. Schlosser

    2017-10-01

    Full Text Available The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM. The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study

  7. The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Science.gov (United States)

    Schlosser, Elisabeth; Dittmann, Anna; Stenni, Barbara; Powers, Jordan G.; Manning, Kevin W.; Masson-Delmotte, Valérie; Valt, Mauro; Cagnati, Anselmo; Grigioni, Paolo; Scarchilli, Claudio

    2017-10-01

    The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome

  8. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  9. Development of active, and stable water-gas-shift reaction catalysts for fuel cell applications

    NARCIS (Netherlands)

    Azzam, K.G.H.; Babich, Igor V.; Seshan, Kulathu Iyer; Lefferts, Leon

    2006-01-01

    Water-gas-shift (WGS) reaction CO + H2O = CO2 + H2, is a key step in the generation of H2 for fuel cells. Noble metal-based catalysts are promising single stage WGS catalysts because they less sensitive than LTS catalysts (Cu based) and more active than the HTS (Ni) catalysts. High activity in CO

  10. Climate impacts on connectivity of snowmelt to flow in the Willamette River using water stable isotopes

    Science.gov (United States)

    Much of the water that people in Western Oregon rely on comes from snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past 6 years have shown dramatic variation in snowpack, from a high of 174% of normal in ...

  11. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    Science.gov (United States)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS

  12. Experimental and Numerical Studies on Mudstone's Creep Behavior During Water Injection and Its Effect on Casing Damage

    Science.gov (United States)

    Huang, X. L.; Yang, C. H.; Liu, J. J.; He, X.; Xiong, J.

    2008-07-01

    During the process of water injection production in oilfield, when water cuts into the mudstone, as a result, large numbers of casings are damaged because of mudstone's creep characteristic. In order to analyze this phenomenon, the uniaxial compression experiments and creep experiments of mudstone from Daqing Oil Field under different saturation conditions were done, it was studied that how the mudstone's mechanical parameters and creep characteristic would change with the increment of water contents. The results indicate that the rock strength and elastic modulus are decreased rapidly with the increment of water contents, on the other hand, the creep strain and steady state creep strain rate are increased with the increment of water contents, and also the steady state creep strain rate is enhanced with the increment of deviatoric stress. Through the creep characteristic curves, a nonlinear creeping constitutive equation of mudstone considering the changes of water contents was established. In the deep stratum of the oilfield, the calculation model of casing-cement sheath-mudstone was built, based on the experiment results of mudstone and its creep constitutive equation, mudstone's creep pressure with time under different water contents was simulated. The simulation results show that the increasing water content accelerates the incremental rate of the creep pressure of mudstone, so the time of reaching yield state of casing will descend greatly, which means service time of casing becomes much shorter.

  13. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    Science.gov (United States)

    Hufkens, Koen; Helle, Gerd; Beeckman, Hans; de Haulleville, Thales; Kearsley, Elizabeth; Boeckx, Pascal

    2013-04-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the seasonally varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C/12C and 18O/16O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of carbon are influenced by fractionation through carboxylation during photosynthesis and changes in leaf stomatal conductance. Similarly, fractionation of oxygen isotopes of soil water occurs at the leaf level through evapo-transipiration. As a consequence, 18O/16O (δ18O) values in wood cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, both C and O stable isotopes might not only be valuable as proxy data for past climatic conditions but they also serve as an important tool in understanding carbon and water relations within a tropical forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope composition(δ13C , δ18O) at a tropical humid forests in the DR Congo. The Yangambi Man And Biosphere (MAB) reserve is located in the north-eastern part of DR Congo, with a distinct tropical rainforest climate. In addition to the tree-core data records and

  14. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation

    Science.gov (United States)

    Digdaya, Ibadillah A.; Adhyaksa, Gede W. P.; Trześniewski, Bartek J.; Garnett, Erik C.; Smith, Wilson A.

    2017-06-01

    Solar-assisted water splitting can potentially provide an efficient route for large-scale renewable energy conversion and storage. It is essential for such a system to provide a sufficiently high photocurrent and photovoltage to drive the water oxidation reaction. Here we demonstrate a photoanode that is capable of achieving a high photovoltage by engineering the interfacial energetics of metal-insulator-semiconductor junctions. We evaluate the importance of using two metals to decouple the functionalities for a Schottky contact and a highly efficient catalyst. We also illustrate the improvement of the photovoltage upon incidental oxidation of the metallic surface layer in KOH solution. Additionally, we analyse the role of the thin insulating layer to the pinning and depinning of Fermi level that is responsible to the resulting photovoltage. Finally, we report the advantage of using dual metal overlayers as a simple protection route for highly efficient metal-insulator-semiconductor photoanodes by showing over 200 h of operational stability.

  15. Behavior of radon, chemical compounds and stable elements in underground water

    International Nuclear Information System (INIS)

    Lopez R, N.; Segovia, N.; Lopez, M.B.E.; Pena, P.; Armienta, M.A.; Godinez, L.; Seidel, J.L.

    2001-01-01

    The radon behavior, chemical compounds, major and trace elements in water samples of four springs and three wells of urban and agricultural zones around the Jocotitlan volcano and El Oro region was determined, both of them located in the medium part of the Mexican neo-volcanic axis. The 222 Rn was measured by the liquid scintillation method, the analysis of major components was realized with conventional chemical techniques, while the trace elements were quantified using an Icp-Ms. The average values of the radon concentrations obtained during one year were constant relatively, in an interval from 0.97 to 4.99 Bq/lt indicating a fast transport from the reload area toward the sampling points. the compounds, major and trace elements showed differences which indicate distinct origins of water from the site studies. (Author)

  16. Use of water stable isotopes in climatology and paleoclimatology illustrated from polar ice cores studies

    International Nuclear Information System (INIS)

    Jouzel, J.; Lorius, C.

    1994-01-01

    The isotopic content of ancient waters (deuterium and oxygen 18) gives a key access to past climatic changes. An essentially linear relationship exists between the isotopic content of a precipitation and the temperature of the site (at least for medium and high latitudes). This link between water isotope atmospheric cycle and climate is presented through various isotopic models and illustrated from the deuterium profile obtained along the Vostok ice core in East Antarctica. This 2 km record which covers a full glacial-interglacial cycle (160000 years) confirms the existence of a link between insolation changes and climate (Milankovitch theory). It shows also that the greenhouse effect has played a role in glacial-interglacial changes in amplifying this orbital forcing. (authors). 10 figs., 23 refs

  17. Copper Oxide Nanograss for Efficient and Stable Photoelectrochemical Hydrogen Production by Water Splitting

    Science.gov (United States)

    Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit

    2018-03-01

    A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.

  18. Dissolved stable noble gas measurements from primary water of Paks NPP

    International Nuclear Information System (INIS)

    Palcsu, L.; Molnar, M.; Szanto, Zs.; Svingor, E.; Futo, I.; Pinter, T.

    2001-01-01

    A sampling and measuring method of noble gases from the primary water circuit of a VVER type NPP was developed to provide relevant information about the kilter of heating rods and detailed additional information about some working parameters. The helium concentrations and 3 He/ 4 He ratios was used to estimate the content of tritium and alpha emitting isotopes of the primary water. By argon content measurements the air penetration and the required hydrazine amount for the oxygen absorption could be estimated with high accuracy. Continuous monitoring of the concentration and isotope ratios of Xe and Kr in the dissolved gas is proved to be a good tool for high sensitivity detection of small leakage of fuel elements. In case of block-3 xenon surplus was detected. The results indicate possible leakage of fuel rods.(author)

  19. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    Science.gov (United States)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  20. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer......-dimensional electrodes completely free from noble metals, they show polarization characteristics comparable to those of commercially available separators and good performance stability over several days....

  1. Thermal shock studies associated with injection of emergency core coolant in pressurized water reactors

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.; Iskander, S.K.

    1977-01-01

    Studies to determine the accuracy of calculational techniques for predicting crack initiation and arrest in PWR vessels due to thermal shock from ECC injection are described. The reference calculational model is reviewed, the experimental program and facilities are described, and some thermal shock experiments and results are discussed

  2. Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems.

    Science.gov (United States)

    Liu, Wei; Wang, Yanlong; Bai, Zhuanling; Li, Yuxiang; Wang, Yaxing; Chen, Lanhua; Xu, Lin; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2017-05-17

    Effective detection of chromate anions in aqueous solution is highly desirable because of their high solubility, environmental mobility, carcinogenicity, and bioaccumulation effect. A new strategy for precise detection of chromate anions in the presence of a large excess of other anions, such as Cl - , NO 3 - , and HCO 3 - , in drinking water and natural water systems remains a challenge. Herein, a hydrolytically stable cationic luminescent europium(III)-based metal organic framework (MOF), 1, was successfully synthesized and investigated as a luminescent sensor that exhibits instant and selective luminescence quenching properties toward chromate ions in aqueous solutions. Moreover, 1 can be introduced into high-ionic-strength water system (e.g., seawater) for chromate detection as a consequence of the excellent sensing selectivity. The real environmental application of 1 as a chromate probe is studied in deionized water, lake water, and seawater. The detection limits in these aqueous media are calculated to be 0.56, 2.88, and 1.75 ppb, respectively. All of these values are far below the maximum contamination standard of Cr(VI) in drinking water of 100 ppb, defined by the U.S. Environmental Protection Agency. This excellent chromate sensing capability originates from the fast enrichment of chromate ions in solids of 1 from solutions, followed by efficient energy transfer from the MOF skeleton to the chromate anion, as demonstrated by solution absorption spectroscopy, X-ray diffraction, and chromate uptake kinetics and isotherm investigations. To the best of our knowledge, 1 possesses the lowest chromate detection limit among all reported MOFs up to date and is the only MOF material reported for chromate sensing application under environmentally relevant conditions with high ionic strengths.

  3. Strontium isotopes test long-term zonal isolation of injected and Marcellus formation water after hydraulic fracturing.

    Science.gov (United States)

    Kohl, Courtney A Kolesar; Capo, Rosemary C; Stewart, Brian W; Wall, Andrew J; Schroeder, Karl T; Hammack, Richard W; Guthrie, George D

    2014-08-19

    One concern regarding unconventional hydrocarbon production from organic-rich shale is that hydraulic fracture stimulation could create pathways that allow injected fluids and deep brines from the target formation or adjacent units to migrate upward into shallow drinking water aquifers. This study presents Sr isotope and geochemical data from a well-constrained site in Greene County, Pennsylvania, in which samples were collected before and after hydraulic fracturing of the Middle Devonian Marcellus Shale. Results spanning a 15-month period indicated no significant migration of Marcellus-derived fluids into Upper Devonian/Lower Mississippian units located 900-1200 m above the lateral Marcellus boreholes or into groundwater sampled at a spring near the site. Monitoring the Sr isotope ratio of water from legacy oil and gas wells or drinking water wells can provide a sensitive early warning of upward brine migration for many years after well stimulation.

  4. Chabazite: stable cation-exchanger in hyper alkaline concrete pore water.

    Science.gov (United States)

    Van Tendeloo, Leen; Wangermez, Wauter; Kurttepeli, Mert; de Blochouse, Benny; Bals, Sara; Van Tendeloo, Gustaaf; Martens, Johan A; Maes, André; Kirschhock, Christine E A; Breynaert, Eric

    2015-02-17

    To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K(+) and Na(+) cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs(+) cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.

  5. Stable Aluminum Metal-Organic Frameworks (Al-MOFs) for Balanced CO2 and Water Selectivity.

    Science.gov (United States)

    Li, Haiwei; Feng, Xiao; Ma, Dou; Zhang, Mengxi; Zhang, Yuanyuan; Liu, Yi; Zhang, Jinwei; Wang, Bo

    2018-01-31

    Three new Al-MOFs in the formation of [Al 4 (OH) 2 (OCH 3 ) 4 (OH-BDC) 3 ]·xH 2 O (BIT-72), [Al 4 (OH) 2 (OCH 3 ) 4 (CH 3 -BDC) 3 ]·xH 2 O (BIT-73) and {Al 4 (OH) 2 (OCH 3 ) 4 [(CH 3 ) 2 -BDC] 3 }·xH 2 O (BIT-74) have been synthesized by assembling Al 3+ ion with terephthalic acid ions decorated with monohydroxyl, monomethyl or dimethyl groups, respectively. All of these three MOFs exhibit high stability in boiling water and acidic conditions. Among them, BIT-72 shows the highest surface area of 1618 m 2 ·g -1 and IAST CO 2 /N 2 selectivity of 48, while BIT-73 and BIT-74 present moderate IAST CO 2 /N 2 selectivity and much lower H 2 O capacity below P/P 0 = 0.3. The high CO 2 /N 2 selectivity together with alleviative H 2 O sorption at low water relative pressure may provide promising potential in postcombustion CO 2 capture.

  6. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... reservoirs and in many situations alternating injection of water and CO2 is required to stabilize the injection front. Both scenarios involve a large amount of water, making CO2 solubility in brine, which is around ten times higher than methane solubility, a non-negligible factor in the relevant reservoir...... simulations. In our previous study, a 1-D slimtube simulator, which rigorously accounts for both CO2 solubility in brine and water content in hydrocarbon phases using the Peng-Robinson EoS modified by Soreide and Whitson, has been used to investigate the influence of CO2 solubility on the simulation...

  7. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  8. Design of water debinding and dissolution stages of metal injection moulded porous Ti foam production

    OpenAIRE

    Shbeh, M.M.; Goodall, R.

    2015-01-01

    Foams are advanced materials with controlled meso- and micro-structure, with huge potential in a variety of applications such as in the biomedical and automotive sectors. One promising technique for the production of Ti foams is Metal Injection Moulding in combination with Space Holders (MIMSH). Most existing work in the literature on MIM-SH foams reports very long debinding and dissolution periods that can extend for more than two days. In this paper, the effect on process speed of different...

  9. FLOW INJECTION ANALYSIS SYSTEM COUPLED WITH ICP-EOS FOR DETERMINATION OF SOME METALLIC ELEMENTS IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Cristina Dinu

    2009-06-01

    Full Text Available The European Drinking Water Directive (98/83/EC, transposed in Romanian Legislation as Low 458/2002, amended by Low 311/2004, imposes the limit of concentration for metallic elements in water intended for human consumption. The toxic metals arsenic and selenium are among these elements and the limit value is 10 μg/L. In the paper there are presented the working conditions for determination of As and Se from drinking water using modern techniques based on the fl ow injection-hydride generation with the inductively coupled plasma atomic emission spectrometry (FIAS-ICP-EOS. The analyses were performed on Optima 5300 DV Perkin Elmer equipment with FIAS 400 Flow Injection System, Perkin Elmer type. For the hydride generation two types of solution were used: 10% (v/v HCl as a carrier solution and 0.2 % NaBH4 in 0.05%NaOH solution as a reducing agent [1]. The treatment step of the samples and standard solutions consisted in reducing with mixed solutions of KI and ascorbic acid in acidic condition (HCl for As and only with HCl and high temperature for Se [2,3]. The paper contains the characteristic parameters of the methods, such as: low detection limit, quantifi cation limit, repeatability, precision, recovery, which were evaluated using Certifi ed Reference Materials for each element.

  10. Rayleigh-Plesset equation of the bubble stable cavitation in water: A nonequilibrium all-atom molecular dynamics simulation study

    Science.gov (United States)

    Man, Viet Hoang; Li, Mai Suan; Derreumaux, Philippe; Nguyen, Phuong H.

    2018-03-01

    The Rayleigh-Plesset (RP) equation was derived from the first principles to describe the bubble cavitation in liquids in terms of macroscopic hydrodynamics. A number of nonequilibrium molecular dynamics studies have been carried out to validate this equation in describing the bubble inertial cavitation, but their results are contradictory and the applicability of the RP equation still remains to be examined, especially for the stable cavitation. In this work, we carry out nonequilibrium all-atom simulation to validate the applicability of the RP equation in the description of the stable cavitation of nano-sized bubbles in water. We show that although microscopic effects are not explicitly included, this equation still describes the dynamics of subnano-bubbles quite well as long as the contributions of various terms including inertial, surface tension, and viscosity are correctly taken into account. These terms are directly and inversely proportional to the amplitude and period of the cavitation, respectively. Thus, their contributions to the RP equation depend on these two parameters. This may explain the discrepancy between the current results obtained using different parameters. Finally, the accuracy of the RP equation in the current mathematical modeling studies of the ultrasound-induced blood-brain-barrier experiments is discussed in some detail.

  11. Stable stomatal number per minor vein length indicates the coordination between leaf water supply and demand in three leguminous species.

    Science.gov (United States)

    Zhao, Wan-Li; Siddiq, Zafar; Fu, Pei-Li; Zhang, Jiao-Lin; Cao, Kun-Fang

    2017-05-19

    The coordination between minor vein density (MVD) and stomatal density (SD) has been found in many plants. However, we still know little about the influence of leaf node on this correlation relationship. Here, we devised the new functional trait 'stomatal number per minor vein length' (SV). By measuring leaflet area (LA), MVD, SD, and SV, we demonstrated the significance of this functional trait in Arachis hypogaea (peanut) grown under different light regimes and in sun leaves of Dalbergia odorifera and Desmodium renifolium. We found that SV did not change significantly with leaflet node or with LA within each light treatment, while shading caused a significant decrease in SV. The positive correlation between SD and MVD was found in peanut under each light regime. Sun leaves of D. odorifera and D. renifolium also had stable SV along the leaflet node, with a positive correlation between MVD and SD. We conclude that under a certain light regime, a stable SV similar to the positive correlation between MVD and SD can also indicate the coordination between leaf water supply and demand. Our findings highlight the significance of SV and provide new insight into the coordination between stomatal number and minor vein length.

  12. The use of stable isotopes to determine the water and nitrogen sources of Casuarina glauca at a saline discharge site

    International Nuclear Information System (INIS)

    Cramer, V.; Stewart, G. R.

    1997-01-01

    Full text: The concentration of salt in the root zone of plants due to root water uptake is a major concern in the long term success of tree planting to manage saline groundwater tables. Increased concentration of salts in the root zone will not only limit water availability, but may also interfere with the uptake of nutrients, such as nitrogen, through either ionic or osmotic effects. At a highly saline site in south-east Queensland, natural abundance stable isotopes have been used to determine the soil sources of both water and nitrogen used by Casuarina glauca planted at the site, including the role of nitrogen fixation in the nitrogen nutrition of the trees. At this site, the dominant source of water for C. glauca originated from the groundwater table, with an annual average of greater than 60% of tree water derived from this source. However, on a monthly basis this proportion varied considerably. Trees readily utilised large summer rainfall events. But showed a smaller, or delayed response, to winter rainfall events. Soil nitrogen levels (combined NH 4 , and NO 3 ) ranged widely between plots, with the majority of soil nitrogen present in the upper soil layers. The availability of soil N to plants was estimated using the ion exchange resin bag techniques with results reflecting the influence of soil moisture and leaching events on NH 4 and NO 3 availability. Tree δ 15 N signatures reflected soil N availability, with enriched values in high N soils. Soil δ 15 N signatures were compared to those of trees to determine whether nitrogen was acquired from mineral sources or through nitrogen fixation

  13. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Science.gov (United States)

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  14. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-10-01

    Full Text Available In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010 using a three-stage Caltech Active Strand Cloud water Collector (CASCC. An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  15. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  16. Putative new heat-stable cytotoxic and enterotoxic factors in culture supernatant of Escherichia coli isolated from drinking water

    Directory of Open Access Journals (Sweden)

    DA Ribeiro

    2011-01-01

    Full Text Available Enteric infections caused by the ingestion of contaminated water, especially by Escherichia coli, are important to define the virulence properties of these bacteria. Due to frequent infantile diarrhea in the city of Ouro Preto, Minas Gerais state, Brazil, the phenotypic and genotypic diarrheagenic properties of E. coli isolated from drinking water were studied. The culture supernatants of 39 (40% among a total of 97 E. coli isolates from drinking water were positive by suckling mouse assay and induced cytotoxic effects on Vero cells. The enterotoxic and cytotoxic activities were present in the fraction with less than 10 kDa and were not lost when heated up to 60°C and 100°C for 30 minutes. PCR assays showed that among these 39 Vero cytotoxigenic E. coli, four (10.2% were positive for ST II (estB and two (5% positive for αHly (hlyA. Gene amplification of SLT (stx 1, stx 2, ST I (estA, LT (eltI, eltII, EAST1 (astA, EHly (enhly and plasmid-encoded enterotoxin (pet were not observed. This heat-stable cytotoxic enterotoxin of E. coli is probably a new putative diarrheagenic virulence factor, as a toxin presenting these characteristics has not yet been described.

  17. Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine.

    Science.gov (United States)

    Qiu, Hui; Yang, Luyang; Liu, Fengling; Zhao, Yunxia; Liu, LeLe; Zhu, Jinhong; Song, Mingxia

    2017-10-01

    In this work, a series of polyethyleneimine (PEI) impregnated metal-organic framework (UiO-66) with varying PEI loadings were prepared and applied as sorbents to capture phosphate ions from water. As indicated by SEM and XRD analysis, PEI was dispersed on the outer surface and the inner pores of UiO-66. At 9.45% PEI loadings (UiO-66-3), the saturated adsorption capacity of phosphate reached 73.15 mg P/g at 298 K, which is superior to most sorbents ever reported. UiO-66-3 could sequestrate phosphate over a wide pH range from 2.0 to 7.0 with high efficiency. The sorption toward phosphate reached equilibrium in 50 min. Unlike commercial anion exchanger IRA-900, UiO-66-3 still exhibited high removal toward phosphate even large amount of coexisted anions were present. Successive sorption assay demonstrated that the removal efficiency of UiO-66-3 toward phosphate remained constant after six cyclic runs. All the above results indicated the great potential of UiO-66-3 as a promising sorbent for the decontamination of water from phosphate.

  18. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    Science.gov (United States)

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2018-05-01

    Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  19. A simple simultaneous flow injection method based on phosphomolybdenum chemistry for nitrate and nitrite determinations in water and fish samples.

    Science.gov (United States)

    Monser, L; Sadok, S; Greenway, G M; Shah, I; Uglow, R F

    2002-05-24

    A direct spectrophotometric flow injection method for the simultaneous determination of nitrite and nitrate has been developed. The method is based on the oxidation of a phosphomolybdenum blue complex by the addition of nitrite and the decrease in absorbance of the blue complex is monitored at 820 nm. The injected sample is split into two segments. One of the streams was directly reacted with the above reagent and detected as nitrite. The other stream was passed through a copperised cadmium reductor column where reduction of nitrate to nitrite occurs, and the sample was then mixed with the reagent and passed through the cell of the spectrophotometer to be detected as nitrite plus nitrate. The conditions for the flow injection manifold parameters were optimised by experimental design and the concentration of nitrite and nitrate was determined in the linear range from 0.05 to 1.15 mug ml(-1) nitrite and 0.06 to 1.6 mug ml(-1) nitrate with a detection limit of 0.01 mug ml(-1) for nitrite and 0.025 mug ml(-1) for nitrate. The method is suitable for the simultaneous determination of nitrite and nitrate in fish and water samples with a sampling rate of 25+/-2 sample per hour.

  20. A graded catalytic-protective layer for an efficient and stable water-splitting photocathode

    Science.gov (United States)

    Gu, Jing; Aguiar, Jeffery A.; Ferrere, Suzanne; Steirer, K. Xerxes; Yan, Yong; Xiao, Chuanxiao; Young, James L.; Al-Jassim, Mowafak; Neale, Nathan R.; Turner, John A.

    2017-01-01

    Achieving solar-to-hydrogen efficiencies above 15% is key for the commercial success of photoelectrochemical water-splitting devices. While tandem cells can reach those efficiencies, increasing the catalytic activity and long-term stability remains a significant challenge. Here we show that annealing a bilayer of amorphous titanium dioxide (TiOx) and molybdenum sulfide (MoSx) deposited onto GaInP2 results in a photocathode with high catalytic activity (current density of 11 mA cm-2 at 0 V versus the reversible hydrogen electrode under 1 sun illumination) and stability (retention of 80% of initial photocurrent density over a 20 h durability test) for the hydrogen evolution reaction. Microscopy and spectroscopy reveal that annealing results in a graded MoSx/MoOx/TiO2 layer that retains much of the high catalytic activity of amorphous MoSx but with stability similar to crystalline MoS2. Our findings demonstrate the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production.

  1. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  2. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy

    KAUST Repository

    Zhang, Zhonghai

    2012-01-01

    Hydrogen generation through photoelectrochemical (PEC) water splitting using solar light as an energy resource is believed to be a clean and efficient way to overcome the global energy and environmental problems. Extensive research effort has been focused on n-type metal oxide semiconductors as photoanodes, whereas studies of p-type metal oxide semiconductors as photocathodes where hydrogen is generated are scarce. In this paper, highly efficient and stable copper oxide composite photocathode materials were successfully fabricated by a facile two-step electrochemical strategy, which consists of electrodeposition of a Cu film on an ITO glass substrate followed by anodization of the Cu film under a suitable current density and then calcination to form a Cu 2O/CuO composite. The synthesized Cu 2O/CuO composite was composed of a thin layer of Cu 2O with a thin film of CuO on its top as a protecting coating. The rational control of chemical composition and crystalline orientation of the composite materials was easily achieved by varying the electrochemical parameters, including electrodeposition potential and anodization current density, to achieve an enhanced PEC performance. The best photocathode material among all materials prepared was the Cu 2O/CuO composite with Cu 2O in (220) orientation, which showed a highly stable photocurrent of -1.54 mA cm -2 at a potential of 0 V vs reversible hydrogen electrode at a mild pH under illumination of AM 1.5G. This photocurrent density was more than 2 times that generated by the bare Cu 2O electrode (-0.65 mAcm -2) and the stability was considerably enhanced to 74.4% from 30.1% on the bare Cu 2O electrode. The results of this study showed that the top layer of CuO in the Cu 2O/CuO composite not only minimized the Cu 2O photocorrosion but also served as a recombination inhibitor for the photogenerated electrons and holes from Cu 2O, which collectively explained much enhanced stability and PEC activity of the Cu 2O/CuO composite

  3. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    Science.gov (United States)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor

  4. Methodology for assessing quantities of water and proppant injection, and water production associated with development of continuous petroleum accumulations

    Science.gov (United States)

    Haines, Seth S.

    2015-07-13

    The quantities of water and hydraulic fracturing proppant required for producing petroleum (oil, gas, and natural gas liquids) from continuous accumulations, and the quantities of water extracted during petroleum production, can be quantitatively assessed using a probabilistic approach. The water and proppant assessment methodology builds on the U.S. Geological Survey methodology for quantitative assessment of undiscovered technically recoverable petroleum resources in continuous accumulations. The U.S. Geological Survey assessment methodology for continuous petroleum accumulations includes fundamental concepts such as geologically defined assessment units, and probabilistic input values including well-drainage area, sweet- and non-sweet-spot areas, and success ratio within the untested area of each assessment unit. In addition to petroleum-related information, required inputs for the water and proppant assessment methodology include probabilistic estimates of per-well water usage for drilling, cementing, and hydraulic-fracture stimulation; the ratio of proppant to water for hydraulic fracturing; the percentage of hydraulic fracturing water that returns to the surface as flowback; and the ratio of produced water to petroleum over the productive life of each well. Water and proppant assessments combine information from recent or current petroleum assessments with water- and proppant-related input values for the assessment unit being studied, using Monte Carlo simulation, to yield probabilistic estimates of the volume of water for drilling, cementing, and hydraulic fracture stimulation; the quantity of proppant for hydraulic fracture stimulation; and the volumes of water produced as flowback shortly after well completion, and produced over the life of the well.

  5. Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: an integrative model perspective using stable isotopes and acesulfame.

    Science.gov (United States)

    Engelhardt, I; Barth, J A C; Bol, R; Schulz, M; Ternes, T A; Schüth, C; van Geldern, R

    2014-01-01

    The suitability of acesulfame to trace wastewater-related surface water fluxes from streams into the hyporheic and riparian zones over long-term periods was investigated. The transport behavior of acesulfame was compared with the transport of water stable isotopes (δ(18)O or δ(2)H). A calibrated model based on a joint inversion of temperature, acesulfame, and piezometric pressure heads was employed in a model validation using data sets of acesulfame and water stable isotopes collected over 5months in a stream and groundwater. The spatial distribution of fresh water within the groundwater resulting from surface water infiltration was estimated by computing groundwater ages and compared with the predicted acesulfame plume obtained after 153day simulation time. Both, surface water ratios calculated with a mixing equation from water stable isotopes and simulated acesulfame mass fluxes, were investigated for their ability to estimate the contribution of wastewater-related surface water inflow within groundwater. The results of this study point to limitations for the application of acesulfame to trace surface water-groundwater interactions properly. Acesulfame completely missed the wastewater-related surface water volumes that still remained in the hyporheic zone under stream-gaining conditions. In contrast, under stream-losing conditions, which developed after periods of stagnating hydraulic exchange, acesulfame based predictions lead to an overestimation of the surface water volume of up to 25% in the riparian zone. If slow seepage velocities prevail a proportion of acesulfame might be stored in smaller pores, while when released under fast flowing water conditions it will travel further downstream with the groundwater flow direction. Therefore, under such conditions acesulfame can be a less-ideal tracer in the hyporheic and riparian zones and additional monitoring with other environmental tracers such as water stable isotopes is highly recommended. © 2013 Elsevier

  6. A multivariate analysis of intrinsic soil components influencing the mean-weight diameter of water-stable aggregates

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Chukwu, W.I.E.

    1994-06-01

    A knowledge of the soil properties influencing the water-stability of soil aggregates is needed for selecting those more easily-determined properties that would be useful in areas where lack of facilities makes its direct determination impossible. In this laboratory study we evaluated the main soil physical, chemical and mineralogical properties influencing the stability of macro aggregates of some Italian surface soils in water. The objective is to select a subset of soil properties which predict optimally, soil aggregate stability. The index of stability used is the mean weight diameter of water-stable aggregates whereas the method of evaluation is the principal component analysis (PCA). The range in coefficients of variation (CV) among the properties was least in the physical (12.0-61.0%), medium in the mineralogical (28.0-116.2%) and highest in the chemical (8.2-110.8%) properties. The wider the range in CV in each subset of properties, the greater the number of components extracted by the PCA. The component defining variables, i.e. those with the highest loadings on each component and therefore, provide the best relationship between the variables and aggregate stability, revealed the ratio of total sand/clay and plastic limit as the significant physical properties. The significant chemical properties are Al 2 O 3 , FeO, MgO and MnO which contribute positively to aggregate stability. Feldspar, quartz and muscovite are the significant mineralogical properties each of which is negatively related to aggregate stability. These soil components are useful for developing empirical models for estimating the stability of aggregates of these soils in water. (author). 38 refs, 7 tabs

  7. Stable oxygen isotopic fractionation during photolytic O(2) consumption in stream waters.

    Science.gov (United States)

    Chomicki, K M; Schiff, S L

    2008-10-15

    Oxygen (O(2)) is required for life in higher organisms, however, processes such as respiration, the oxidation of reduced inorganic species, and the photolytic breakdown of dissolved organic matter (DOM) decrease the O(2) concentrations in aquatic systems. Filtered, inoculated, and sterile samples of stream waters from Ontario, Canada, were incubated in natural sunlight to examine the effects of photolysis of DOM, respiration, and abiotic reactions on O(2) consumption and delta(18)O of dissolved oxygen (delta(18)O-O(2)). Oxygen consumption rates in the light were up to an order of magnitude greater than in the dark, suggesting light-mediated processes controlled O(2) consumption. Rates of O(2) loss were the same for each treatment (i.e. filtered, inoculated, and sterile) indicating that photolysis was the dominant O(2) consuming process over respiration in these incubations. O(2) consumption rates were different between streams, even when normalized to the change in dissolved organic carbon (DOC), signifying that DOM photolability varied among streams. During DOM breakdown to CO(2), the lighter (16)O isotopomer was preferentially consumed. Fractionation factors observed for photolysis, respiration, and abiotic reactions ranged between 0.988 and 0.995, and were similar in both the light and in the dark incubations in all streams. These fractionation factors are not a function of O(2) consumption rates, and are outside the range published for respiration (0.975-0.982). In current models of O(2) and delta(18)O-O(2), photolysis and respiration are not considered separately and the isotopic fractionation during respiration that is measured in the dark is used in the light. In these incubations, DOM degradation and abiotic reactions are important O(2) consuming and delta(18)O-O(2) fractionating processes. Current models of O(2) and delta(18)O-O(2) incorporate photolysis of DOM and other abiotic processes into the respiratory component of O(2) consumption, thereby

  8. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  9. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    International Nuclear Information System (INIS)

    Conklin, James C.; Szybist, James P.

    2010-01-01

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP steam ). The valve closing timing for maximum MEP steam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP steam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP combustion ) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.

  10. Pilot Experimental Works on Injection of Hot Water with Surfactants into Bobrikovian Deposits of Berket-Klyuchevsky Field

    Directory of Open Access Journals (Sweden)

    R.N. Khusnutdinov

    2017-03-01

    Full Text Available The problem of developing and introducing new methods of enhancing oil recovery is especially important for heavy oil fields, the share of which in the structure of reserves is steadily growing. Conventional methods of oil recovery and stimulation of well productivity applied on heavy oil fields are often ineffective, in this regard, the increase in the efficiency of geological and technical measures at such objects is becoming increasingly dependent on the concentration of intensifying factors of influence on the reservoir and the proper choice of technology in accordance with geological and geophysical conditions. The authors have developed and introduced into production the resource-saving technology of complex stimulation on the productive layer, which includes a combination of physical, chemical, thermal and hydrodynamic factors of stimulation. A rational combination of these factors made it possible to increase the efficiency of developing a heavy oil deposit – to stabilize the decline and increase oil production. Technologically, the implemented development method consists in injecting hot water into the injection wells with a calculated content of surfactants. Associated gas of this section of the field, previously burned on the flare, is used as fuel for heating water. The introduction of the technology allowed to completely solve the problem of utilization of associated gas at the site: the flare was extinguished, as a result of which the emissions and technogenic load on the environment were also reduced.

  11. A metallic cobalt electrode for the indirect potentiometric determination of calcium and magnesium in natural waters using flow injection analysis.

    Science.gov (United States)

    Chen, Z; Adams, M A

    1998-11-01

    A flow injection analysis of Ca(2+) and Mg(2+) using indirect potentiometric detection in natural waters is proposed, where Ca(2+) or Mg(2+) are injected into a buffer carrier containing phosphate, resulting in the formation of Ca(3)(PO(4))(2) or Mg(3)(PO(4))(2). The consequent reduction in free phosphate in the carrier solution is detected using a metallic cobalt wire electrode. Indirect electrode response was used and the experimental conditions affecting electrode response were optimized. Responses were linear in the concentration range 5x10(-4) to 5x10(-3) M with a detection limit of 1x10(-5) M in 20 mM phosphate buffer at pH 8.0. The relative standard derivation at 1 mM of Ca(2+) and Mg(2+) were 3.9 and 3.7% (n=10), respectively. EGTA and 8-hydroxyquinoline were used as the masking agents for Ca(2+) and Mg(2+), respectively. Concentrations of Ca(2+) and Mg(2+) in natural waters were successfully determined by the proposed method.

  12. Condensation in the cold leg as results of ECC water injection during A LOCA: modeling and validation

    International Nuclear Information System (INIS)

    Liao, J.; Frepoli, C.; Ohkawa, K.

    2011-01-01

    During postulated LOCA events in pressurized water reactors, cold water is injected into cold legs by emergency core cooling system (ECCS). As the ECC water comes into contact with steam, the amount of condensation in the cold legs which results from mixing of the two phases is expected to have an effect on the thermal hydraulic behavior of the system. During boil off period and recovery period of a small break LOCA, the condensation in the cold leg is enhanced by the impingement of the ECC jet on the layer of liquid, when the flow in the cold leg is expected to be horizontal stratified. Consequently, the reactor coolant system (RCS) depressurization is accelerated, which in turn increases ECC flow rate and promotes accumulator injection. For a large break LOCA, the condensation process in the cold leg during refill period helps to reduce bypass flow at the top of downcomer, promoting ECC penetration. The condensation in the cold leg during reflood period is an important factor in determining the ECC bypass, the break flow rate, the downcomer and core water inventory, and the liquid subcooling in the downcomer, which in turn impacts the peak cladding temperature during reflood. A cold leg condensation model was considered for the new release of WCOBRA/TRAC-TF2 safety analysis code and presented in an authors' previous work. The model was further improved to better capture relevant data and a revised model was found to be in better agreement with such experimental data. The intent of this paper is to present the validation for the cold leg condensation model. The improved cold leg condensation model is assessed against various small break and large break LOCA separate effects tests such as COSI experiments, ROSA experiments and UPTF experiments. Those experiments cover a wide range of cold leg dimensions, system pressures, mass flow rates, and fluid properties. All the predicted condensation results match reasonably well with the experimental data. (author)

  13. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.D.; Zhang, J.; Rember, W.C.; Jennings, D.; Larson, P. (Univ. of Idaho, Moscow, ID (United States))

    1994-06-01

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduous species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.

  14. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: a soil water balance

    Science.gov (United States)

    Gaj, Marcel; Beyer, Matthias; Koeniger, Paul; Wanke, Heike; Hamutoko, Josefina; Himmelsbach, Thomas

    2016-02-01

    Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil water were measured in the field using a liquid water isotope analyzer (tunable off-axis integrated cavity output spectroscope, OA-ICOS, LGR) and commercially available soil gas probes (BGL-30, UMS, Munich) in the semi-arid Cuvelai-Etosha Basin (CEB), Namibia. Results support the applicability of an in situ measurement system for the determination of stable isotopes in soil pore water. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring-down laser spectroscopic isotope analysis (CRDS, L2120-i, Picarro Inc.). After drift and span correction of the in situ isotope data, precision for over 140 measurements taken during two consecutive field campaigns (June and November 2014) was 1.8 and 0.48 ‰ for δ2H and δ18O, respectively. Mean measurement trueness is determined using quality check standards and was 5 and 0.3 ‰ for δ2H and δ18O, respectively. The isotope depth profiles are used quantitatively to calculate a soil water balance. The contribution of transpiration to total evapotranspiration ranged between 72 and 92 %. Shortly after a rain event, the contribution of transpiration was much lower, at 35 to 50 %. Potential limitations of such an in situ system are related to environmental conditions which could be minimized by using a temperature-controlled chamber for the laser spectrometer. Further, the applicability of the system using previously oven-dried soil material might be limited by physicochemical soil properties (i.e., clay minerals). Uncertainty in the in situ system is suggested to be reduced by improving the calibration procedure and further studying fractionation effects influencing the isotope ratios in the soil water, especially at low water contents. Furthermore, the influence of soil-respired CO2 on isotope values within the root zone

  15. A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water - USGS50 Lake Kyoga Water.

    Science.gov (United States)

    Coplen, Tyler B; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M

    2015-11-15

    As a result of the need for isotopic reference waters having high δ(2) HVSMOW-SLAP and δ(18) OVSMOW-SLAP values for daily use, especially for tropical and equatorial-zone freshwaters, a new secondary isotopic reference material for international distribution was prepared from water collected from Lake Kyoga, Uganda. This isotopic reference lakewater was filtered through a membrane with 0.2-µm pore size, homogenized, loaded into glass ampoules that were sealed with a torch and autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available in a case of 144 glass ampoules each containing 5 mL of water. The δ(2) H and δ(18) O values of this reference material are +32.8 ± 0.4 and +4.95 ± 0.02 mUr (milliurey = 0.001 = 1 ‰), respectively, relative to VSMOW, on scales normalized such that the δ(2) H and δ(18) O values of SLAP reference water are, respectively, -428 and -55.5 mUr. Each uncertainty is an estimated expanded uncertainty (U = 2uc ) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions. Published in 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. Effect of temperature and salinity on stable isotopic composition of shallow water benthic foraminifera: A laboratory culture study

    Digital Repository Service at National Institute of Oceanography (India)

    Kurtarkar, S.R.; Linshy, V.N.; Saraswat, R.; Nigam, R.

    Quantitative estimation of past climatic parameters from stable isotopic composition of foraminifera relies on estimating the precise relationship between stable isotopic composition of the species analyzed and the physico-chemical factors...

  17. Integrated Assessment Of Groundwater Recharge In The North Kelantan River Basin Using Environmental Water Stable Isotopes, Tritium And Chloride Data

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Nur Hayati Hussin; Ismail Yusof; Kamaruzaman Mamat; Johari Abdul Latif; Rohaimah Demanah

    2014-01-01

    Estimation and understanding of groundwater recharge mechanism and capacity of aquifer are essential issues in water resources investigation. An integrated study of environmental chloride content in the unsaturated zone using chloride mass balance method (CMB) and isotopic analyses of deuterium, oxygen-18, and tritium values range in the alluvial channel aquifer profiles (quaternary sediments) of the North Kelantan River basin has been carried out in order to estimate and understand groundwater recharge processes. However, the rate of aquifer recharge is one of the most difficult factors to measure in the evaluation of ground water resources. Estimation of recharge, by whatever method, is normally subject to large uncertainties and errors. In this paper, changes in stable isotopic signatures in different seasons and tritium analysis of the sampled groundwater observed at different depth in the aquifer system were evaluated. Stable isotope data are slightly below the local meteoric water line (LMWL) indicating that there is some isotopic enrichment due to direct evaporation through the soil surface which is exposed prior or during the recharging process. The overall data on water isotopic signatures from boreholes and production wells (shallow and relatively deep aquifer system) are spread over a fairly small range but somewhat distinct compared to river water isotopic compositions. Such a narrow variation in isotopic signatures of the sampled groundwaters may suggest that all groundwater samples originated from the same area of direct recharge predominantly from rainfall and nearby rivers. Environmental tritium data measured in groundwater at different depths and locations together with a medium-term of limited monthly rainfall collections were used to investigate the groundwater age distributions (residence times). The existence of groundwater in the aquifer system (sampled wells) is predominantly designated as modern (young) water that has undergone recharged

  18. One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications.

    Science.gov (United States)

    Tang, Xiaosheng; Choo, Eugene Shi Guang; Li, Ling; Ding, Jun; Xue, Junmin

    2009-05-05

    ZnO nanoparticles have been identified as a new generation of biofriendly cell labeling agents since they are nontoxic, less expensive, and chemically stable in air. However, ZnO nanoparticles show poor water stability due to high equilibrium concentration of Zn species in water in a wide pH range. In this work, a one-pot polyol hydrolysis method was developed for synthesizing water-stable ZnO nanoparticles with blue emission. The as-synthesized ZnO nanoparticles were hydrophilic and stable in water, even at basic or acidic aqueous conditions. The PL properties of the ZnO nanoparticles stored at various pH values (i.e., 4.5-11) could be preserved for at least 3 days. The good water stability of the ZnO nanoparticles was offered by the surface attachment of an ester compound, which was formed as a result of the reaction between the stearic acid and triethylene glycol (TREG). This method provides a new approach to synthesize water-stable ZnO nanoparticles. The resultant ZnO nanoparticles demonstrated promising applications in cell labeling.

  19. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    Science.gov (United States)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  20. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  1. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  2. Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-12-01

    humidity and temperature at the moisture source region or both. This study illustrates the sensitivity of stable isotope composition of cloud water to changes in large scale air mass properties and regional recycling of moisture.

  3. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  4. Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)

    Science.gov (United States)

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first study resolving the temporal evolution of δ2H and δ18O values in cloud droplets during 13 different cloud events. The cloud events were probed on a 937 m high mountain chain in Germany in the framework of the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) in September and October 2010. The δ values of cloud droplets ranged from −77‰ to −15‰ (δ2H) and from −12.1‰ to −3.9‰ (δ18O) over the whole campaign. The cloud water line of the measured δ values was δ2H=7.8×δ18O+13×10−3, which is of similar slope, but with higher deuterium excess than other Central European Meteoric Water Lines. Decreasing δ values in the course of the campaign agree with seasonal trends observed in rain in central Europe. The deuterium excess was higher in clouds developing after recent precipitation revealing episodes of regional moisture recycling. The variations in δ values during one cloud event could either result from changes in meteorological conditions during condensation or from variations in the δ values of the water vapor feeding the cloud. To test which of both aspects dominated during the investigated cloud events, we modeled the variation in δ values in cloud water using a closed box model. We could show that the variation in δ values of two cloud events was mainly due to changes in local temperature conditions. For the other eleven cloud events, the variation was most likely caused by changes in the isotopic composition of the advected and entrained vapor. Frontal passages during two of the latter cloud events led to the strongest temporal changes in both δ2H (≈ 6‰ per hour) and δ18O (≈ 0.6‰ per hour). Moreover, a detailed trajectory analysis for the two longest cloud events revealed that variations in the entrained vapor were most likely related to rain out or changes in relative humidity and temperature at the moisture source region or both. This study illustrates the sensitivity of stable isotope

  5. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    Full Text Available The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic 'baseline' for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003 considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers

  6. Comparisons of ice packs, hot water immersion, and analgesia injection for the treatment of centipede envenomations in Taiwan.

    Science.gov (United States)

    Chaou, Chung-Hsien; Chen, Chian-Kuang; Chen, Jih-Chang; Chiu, Te-Fa; Lin, Chih-Chuan

    2009-08-01

    To compare the effectiveness of ice packs and hot water immersion for the treatment of centipede envenomations. Sixty patients envenomated by centipedes were randomized into three groups and were treated with ice packs, hot water immersion, or analgesia injection. The visual analog score (VAS) for pain was measured before the treatment and 15 min afterward. Demographic data and data on local and systemic effects after centipede bites were collected. The VAS scores and the pain decrease (DeltaVAS) were compared between the three groups. All patients suffered from pain at the affected sites; other local effects included redness (n = 49, 81.7%), swelling (n = 32, 53.3%), heat (n = 14, 23.3%), itchiness (n = 5, 8.3), and bullae formation (n = 3, 5.0%). Rare systemic effects were reported. All three groups had similar VAS scores before and after treatment. They also had similar effectiveness in reducing pain caused by centipedes bites (DeltaVAS = 2.55 +/- 1.88, 2.33 +/- 1.78, and 1.55 +/- 1.68, with ice packs, analgesia, and hot water immersion, respectively, p = 0.165). Ice packs, hot water immersion, and analgesics all improved the pain from centipede envenomation. Ice pack treatment is a safe, inexpensive, and non-invasive method for pre-hospital management in patients with centipede envenomation.

  7. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    Directory of Open Access Journals (Sweden)

    Marketa Kominkova

    2014-02-01

    Full Text Available Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED. Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer and potential changes (1,000, 1,100 and 1,200 mV offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  8. An Energy Analysis on Gasification of Sewage Sludge by a Direct Injection in Supercritical Water

    NARCIS (Netherlands)

    Yukananto, Riza; Louwes, Alexander Charnchai; Bramer, Eduard A.; Brem, Gerrit

    2017-01-01

    Supercritical Water Gasification is an efficient technology in converting wet biomass into H2 and CH4 in comparison to other conventional thermochemical processes. Coke deposition, however, remains as a major challenge in this technology. Coke formation is the result of polymerization reactions that

  9. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  10. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Science.gov (United States)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  11. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Energy Technology Data Exchange (ETDEWEB)

    Meng Jie; Yang Man; Jia Fumin; Kong Hua; Zhang Weiqi; Xu Haiyan [Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Wang Chaoying; Xie Sishen [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 8 Nan San Jie, Zhongguancun, Beijing100080 (China); Xing Jianmin, E-mail: xuhy@pumc.edu.cn [Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029 (China)

    2010-04-09

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  12. The Evaluation of 3-Dimensional Polymerization Changes of a Denture Resin Utilizing Injection Molding with Water Bath Polymerization and Microwave Polymerization

    Science.gov (United States)

    2016-06-01

    Dimensional change in complete dentures fabricated by injection molding and microwave processing . J Prosthet Dent, 2003. 89(1): p. 37-44. 21. Phoenix...The Evaluation of 3-Dimensional Polymerization Changes of a Denture Resin Utilizing Injection Molding with Water Bath Polymerization and Microwave...Specification 12 regarding working qualities of cured resins: “The polymer, when processed according to the instructions furnished by the manufacturer

  13. Determination of pesticides and pesticide degradates in filtered water by direct aqueous-injection liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Sandstrom, Mark W.; Kanagy, Leslie K.; Anderson, Cyrissa A.; Kanagy, Christopher J.

    2016-01-11

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for determination of 229 pesticides compounds (113 pesticides and 116 pesticide degradates) in filtered water samples from stream and groundwater sites. The pesticides represent a broad range of chemical classes and were selected based on criteria such as current-use intensity, probability of occurrence in streams and groundwater, and toxicity to humans or aquatic organisms. More than half of the analytes are pesticide degradates. The method involves direct injection of a 100-microliter (μL) sample onto the LC-MS/MS without any sample preparation other than filtration. Samples are analyzed with two injections, one in electrospray ionization (ESI) positive mode and one in ESI negative mode, using dynamic multiple reaction monitoring (MRM) conditions, with two MRM transitions for each analyte. The LC-MS/MS instrument parameters were optimized for highest sensitivity for the most analytes. This report describes the analytical method and presents characteristics of the method validation including bias and variability, detection levels, and holding-time studies.

  14. Research and application of multi-hydrogen acidizing technology of low-permeability reservoirs for increasing water injection

    Science.gov (United States)

    Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei

    2017-12-01

    The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.

  15. Flow-Injection Determination of Thiabendazole Fungicide in Water Samples Using a Diperiodatocuprate(III)-Sulfuric Acid-Chemiluminescence System.

    Science.gov (United States)

    Asghar, Mohammad; Yaqoob, Mohammad; Munawar, Nusrat; Nabi, Abdul

    2016-01-01

    Chemiluminescence (CL) with a flow-injection method is reported for the determination of thiabendazole (TBZ) fungicide based on its enhancement effect on diperiodatocuprate(III) (DPC)-sulfuric acid-CL system. The calibration graph was linear in the concentration range of 1 - 2000 μg L(-1) (R(2) = 0.9999, n = 8) with a limit of detection (S/N = 3) of 0.3 μg L(-1). The injection throughput was 160 h(-1) with relative standard deviations (RSD, n = 4) of 1.1 - 2.9% in the concentration range studied. The experimental variables e.g., reagents concentrations, flow rates, sample volume, and PMT voltage were optimized, and the potential interferences were investigated individually. The method was successfully applied to the determination of TBZ in water samples showing good agreement and recovery in the range of 92 ± 2.2 - 108 ± 3% (n = 3) using dispersive liquid-liquid micro-extraction (DLLME). The possible CL reaction mechanism for DPC-sulfuric acid-TBZ is also discussed.

  16. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO4 rich waters.

    Science.gov (United States)

    Matthies, Romy; Aplin, Andrew C; Boyce, Adrian J; Jarvis, Adam P

    2012-03-15

    Reducing and Alkalinity Producing Systems (RAPS) remediate net-acidic metalliferous mine drainage by creating anoxic conditions in which bacterial sulfate reduction (BSR) raises alkalinity and drives the precipitation of iron and other chalcophilic elements as sulfides. We report chemical and stable isotopic data from a study monitoring the biogeochemical processes involved in the generation of mine waters and their remediation by two RAPS. Sulfur isotopes show that sulfate in all mine waters has a common source (pyrite oxidation), whilst oxygen isotopes show that oxidation of pyritic sulfur is mediated by Fe(III)(aq). The isotopic composition of dissolved sulfide, combined with the sulfur and oxygen isotopic composition of sulfate in RAPS effluents, proves BSR and details its dual isotope systematics. The occurrence and isotopic composition of solid phase iron sulfides indicate the removal of reduced sulfur within the RAPS, with significant amounts of elemental sulfur indicating reoxidation steps. However, only 0 to 9% of solid phase iron occurs as Fe sulfides, with approximately 70% of the removed iron occurs as Fe(III) (hydr)oxides. Some of the (hydr)oxide is supplied to the wetland as solids and is simply filtered by the wetland substrate, playing no role in alkalinity generation or proton removal. However, the majority of iron is supplied as dissolved Fe(II), indicating that acid generating oxidation and hydrolysis reactions dominate iron removal. The overall contribution of BSR to the sulfur geochemistry in the RAPS is limited and sulfate retention is dominated by sulfate precipitation, comparable to aerobic treatment systems, and show that the proton acidity resulting from iron oxidation and hydrolysis must be subsequently neutralised by calcite dissolution and/or BSR deeper in the RAPS sediments. BSR is not as important as previously thought for metal removal in RAPS. The results have practical consequences for the design, treatment performance and long

  17. Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania

    Science.gov (United States)

    Otte, Insa; Detsch, Florian; Gutlein, Adrian; Scholl, Martha A.; Kiese, Ralf; Appelhans, Tim; Nauss, Thomas

    2017-01-01

    To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n = 2,140, R2 = .91, p research site. We found an altitude effect of δ18Orain = −0.11‰ × 100 m−1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south- and north-easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of dexcess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.

  18. Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures

    International Nuclear Information System (INIS)

    Zein El Abedin, S.; Saad, A.Y.; Farag, H.K.; Borisenko, N.; Liu, Q.X.; Endres, F.

    2007-01-01

    The electrochemical behaviour of Au(1 1 1) and highly oriented pyrolytic graphite (HOPG) substrates in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([BMP]Tf 2 N) was investigated using in situ scanning tunneling microscopy (STM). Furthermore, the electrodeposition of Se, In and Cu in the same ionic liquid was investigated. The high thermal stability as well as the large electrochemical window of this ionic liquid compared with aqueous electrolytes allow the direct electrodeposition of grey selenium, indium and copper at variable temperatures, as the first step in making CIS solar cells electrochemically, in a one pot reaction. The results show that grey selenium can be obtained at temperatures ≥100 o C. XRD patterns of the electrodeposit obtained at 100 o C show the characteristic peaks of crystalline grey selenium. Nanocrystalline indium with grain sizes between 100 and 200 nm was formed in the employed ionic liquid, containing 0.1 M InCl 3 , at room temperature. It was also found that copper(I) species can be introduced into the ionic liquid [BMP]Tf 2 N by anodic dissolution of a copper electrode and nanocrystalline copper with an average crystallite size of about 50 nm was obtained without additives in the resulting electrolyte

  19. Pore-Scale Investigation of Crude Oil/CO2 Compositional Effects on Oil Recovery by Carbonated Water Injection

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran

    2017-01-01

    Through coreflood and micromodel studies, it has been shown that carbonated water injection (CWI) can improve oil recovery compared to conventional waterflood. However, in most early studies, either a refined oil or dead crude oil had been used, which is not representative of a real oil reservoir...... where the oil has significant dissolved gases. In such studies, oil swelling and oil viscosity reduction had been introduced as the main mechanisms of additional oil recovery by CWI. However, in our direct flow visualization (micro model) studies reported here, we have used live crude oil, and we have......-temperature direct flow visualization (micromodel) experiments which have been performed using a live crude oil sample. These include a tertiary (post-waterflood) and a secondary (pre-waterflood) CWI experiment performed at 2500 psia and 100 degrees F. The results of our secondary and tertiary CWI showed that CWI...

  20. Determination of hydrogen peroxide in water by chemiluminescence detection, (1). Flow injection type hydrogen peroxide detection system

    International Nuclear Information System (INIS)

    Yamashiro, Naoya; Uchida, Shunsuke; Satoh, Yoshiyuki; Morishima, Yusuke; Yokoyama, Hiroaki; Satoh, Tomonori; Sugama, Junichi; Yamada, Rie

    2004-01-01

    A flow injection type hydrogen peroxide detection system with a sub-ppb detection limit has been developed to determine hydrogen peroxide concentration in water sampled from a high temperature, high pressure hydrogen peroxide water loop. The hydrogen peroxide detector is based on luminol chemiluminescence spectroscopy. A small amount of sample water (20 μl) is mixed with a reagent mixture, an aqueous solution of luminol and Co 2+ catalyst, in a mixing cell which is installed just upstream from the detection cell. The optimum values for pH and the concentrations of luminol and Co 2+ ion have been determined to ensure a lower detectable limit and a higher reproducibility. The photocurrent detected by the detection system is expressed by a linear function of the hydrogen peroxide concentration in the region of lower concentration ([H 2 O 2 ] 2 O 2 ] in the region of higher concentration ([H 2 O 2 ] > 10 ppb). The luminous intensity of luminol chemiluminescence is the highest when pH of the reagent mixture is 11.0. Optimization of the major parameters gives the lowest detectable limit of 0.3 ppb. (author)

  1. Mapping water exchange rates in rat tumor xenografts using the late-stage uptake following bolus injections of contrast agent.

    Science.gov (United States)

    Bailey, Colleen; Moosvi, Firas; Stanisz, Greg J

    2014-05-01

    To map the intra-to-extracellular water exchange rate constant in rat xenografts using a two-compartment model of relaxation with water exchange and a range of contrast agent concentrations and compare with histology. MDA-MB-231 cells were xenografted into six nude rats. Three bolus injections of gadodiamide were administered. When uptake in the tumor demonstrated a steady-state, T1 data were acquired by spoiled gradient recalled acquisitions at four flip angles. A global fit of data to a two-compartment model incorporating exchange was performed, assuming a distribution volume of 20% of the rat. Voxels that did not reach steady-state and were excluded from parametric maps tended to be in large necrotic areas. TUNEL-negative (nonapoptotic) regions tended to have well-defined error bounds, with an average intra-to-extracellular exchange rate constant of 0.6 s(-1) . Apoptotic regions had higher exchange, but poorly determined upper bounds, with goodness of fit similar to that for a model assuming infinitely fast exchange. A lower bound of >3 s(-1) was used to establish voxels where the exchange rate constant was fast despite a large upper bound. Water exchange rates were higher in apoptotic regions, but examination of statistical errors was an important step in the mapping process. Copyright © 2013 Wiley Periodicals, Inc.

  2. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    imbibition, which has been applied in most of the previous studies. Two different flooding schemes (with and without aging) were used for flooding North Sea reservoir chalk samples. For comparison, two tests were also carried out with Stevns Klint core plugs. The flooding tests were carried out...... composition but also the formation water composition affected the oil recovery at high temperatures from the Stevns Klint chalk rock....

  3. Liquid chromatography-tandem mass spectrometry direct injection analysis of organophosphorus flame retardants in Ontario surface water and wastewater effluent.

    Science.gov (United States)

    Hao, Chunyan; Helm, Paul A; Morse, David; Reiner, Eric J

    2018-01-01

    Organophosphorus flame retardants (OPFRs) started to be used in plastics, electronics and furnishings back in the 1960s and became popular again last decade. They are now widely present in the environment and regarded as "new" emerging organic pollutants. An effective liquid chromatography-tandem mass spectrometry (LC-MS/MS) direct injection analysis (DIA) method was developed to monitor OPFR levels in aquatic environment. The removal of sample extraction and concentration steps not only improved operation efficiency, but also reduced the potential contamination commonly observed during the sample preparation process before. Positive background signals from the analytical instrument were eliminated by employing a "trap" column in front of the sample injector while an ACE C18 and an ACE C18-PFP column were compared for the separation of OPFRs. Nineteen OPFR related compounds were evaluated and rapid signal drops were observed for seven of them including TOTP, TMTP, TPTP, TEHP, T35DMPP, T2iPPP and EHDP, due to their low water solubility. The other twelve compounds, TMP, TEP, TPrP, TiPP, TBP, TCEP, TCPP, TDCPP, TPP, TBEP, BDCP and BEHP, were included for the measurement of OPFRs in drinking water, surface water, ground water and wastewater effluent samples. The instrumental detection limits of these twelve OPFRs at signal-to-noise ≥3 were in the 1.5-30 ng/L range. The method was applied for the determination of OPFRs in surface water and wastewater samples in Ontario, Canada, and BEHP, TBEP, TBP, TCEP, TCPP, TDCPP, and TEP were commonly detected. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Sub-1min separation in sequential injection chromatography for determination of synthetic water-soluble dyes in pharmaceutical formulation.

    Science.gov (United States)

    Davletbaeva, Polina; Chocholouš, Petr; Bulatov, Andrey; Šatínský, Dalibor; Solich, Petr

    2017-09-05

    Sequential Injection Chromatography (SIC) evolved from fast and automated non-separation Sequential Injection Analysis (SIA) into chromatographic separation method for multi-element analysis. However, the speed of the measurement (sample throughput) is due to chromatography significantly reduced. In this paper, a sub-1min separation using medium polar cyano monolithic column (5mm×4.6mm) resulted in fast and green separation with sample throughput comparable with non-separation flow methods The separation of three synthetic water-soluble dyes (sunset yellow FCF, carmoisine and green S) was in a gradient elution mode (0.02% ammonium acetate, pH 6.7 - water) with flow rate of 3.0mLmin -1 corresponding with sample throughput of 30h -1 . Spectrophotometric detection wavelengths were set to 480, 516 and 630nm and 10Hz data collection rate. The performance of the separation was described and discussed (peak capacities 3.48-7.67, peak symmetries 1.72-1.84 and resolutions 1.42-1.88). The method was represented by validation parameters: LODs of 0.15-0.35mgL -1 , LOQs of 0.50-1.25mgL -1 , calibration ranges 0.50-150.00mgL -1 (r>0.998) and repeatability at 10.0mgL -1 of RSD≤0.98% (n=6). The method was used for determination of the dyes in "forest berries" colored pharmaceutical cough-cold formulation. The sample matrix - pharmaceuticals and excipients were not interfering with vis determination because of no retention in the separation column and colorless nature. The results proved the concept of fast and green chromatography approach using very short medium polar monolithic column in SIC. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Numerical simulation of counter-current spontaneous imbibition in water-wet fractured porous media: Influences of water injection velocity, fracture aperture, and grains geometry

    Science.gov (United States)

    Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud

    2017-11-01

    Counter-current spontaneous imbibition (SI), in which water and oil flow through the same face in opposite directions, is known as one of the most significant oil recovery mechanisms in naturally fractured reservoirs; however, this mechanism has not received much attention. Understanding the dynamic of water-oil displacement during counter-current SI is very challenging because of simultaneous impacts of multiple factors including geometry complexity and heterogeneity of naturally fractured reservoir materials, e.g., high permeability contrast between the rock matrix and fracture, wettability, and porosity. This study investigates the effects of water injection velocity, fracture aperture, and grain shape during counter-current SI at pore-scale. A robust finite element solver is used to solve the governing equations of multiphase flow, which are the coupled Navier-Stokes and Cahn-Hilliard phase-field equations. The results showed that the case with the highest injection velocity (uinj = 5 mm/s) recovered more than 15% of the matrix oil at the early times and then reached its ultimate recovery factor. However, in the case of the lowest injection velocity, i.e., uinj = 0.05 mm/s, the lowest imbibition rate was observed at the early times, but ultimately 23% of the matrix oil was recovered. The model with uinj = 5 mm/s was able to capture some pore-level mechanisms such as snap-off, oil film thinning, interface coalescence, and water film bridging. The obtained results revealed that changing the fracture aperture has a slight effect on the imbibition rate at the earlier times and ultimate recoveries would be almost equal. To assess the influences of grain shape on the imbibition process, the simulated domain was reconstructed with cubic grains. It was noticed that because of higher permeability and porosity, relatively larger oil drops were formed and resulted in higher oil recovery compared with the model with spherical grains. The developed model can be used as a

  6. State of radionuclides in seawater. Comparison of natural stable and artificial radioactive isotope s of mercury and zinc in natural waters of the arid zone of the USSR

    International Nuclear Information System (INIS)

    Rakhmatov, U; Khikmatov, K; Kist, A.A.; Kulmatov, R.A.; Teshabaev, S.T.; Volkov, A.A.

    1986-01-01

    This paper studies the state of stable and artificial radioactive isotopes of merury and zinc in natural waters of the arid zone of the USSR by radioactivity and radiochemical methods. Convergent results have been obtained for the dissolved forms of mercury and zinc in natural waters of the arid zone in a comparison of the results of radioactivation analysis and laboratory simulation using the radionuclides mercury-203 and zinc-65

  7. Decoration of Cotton Fibers with a Water-Stable Metal–Organic Framework (UiO-66 for the Decomposition and Enhanced Adsorption of Micropollutants in Water

    Directory of Open Access Journals (Sweden)

    Marion Schelling

    2018-02-01

    Full Text Available We report on the successful functionalization of cotton fabrics with a water-stable metal–organic framework (MOF, UiO-66, under mild solvothermal conditions (80 °C and its ability to adsorb and degrade water micropollutants. The functionalized cotton samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. UiO-66 crystals grew in a uniform and conformal manner over the surface of the cotton fibers. The cotton fabrics functionalized with UiO-66 frameworks exhibited an enhanced uptake capacity for methylchlorophenoxypropionic acid (MCPP, a commonly used herbicide. The functionalized fabrics also showed photocatalytic activity, demonstrated by the degradation of acetaminophen, a common pharmaceutical compound, under simulated sunlight irradiation. These results indicate that UiO-66 can be supported on textile substrates for filtration and photocatalytic purposes and that these substrates can find applications in wastewater decontamination and micropollutant degradation.

  8. Modeling Convective Injection of Water Vapor into the Lower Stratosphere in the Mid-Latitudes over North America

    Science.gov (United States)

    Clapp, C.; Leroy, S. S.; Anderson, J. G.

    2015-12-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) from the tropics to the poles is important both radiatively and chemically. Water vapor is the most important greenhouse gas, and increases in water vapor concentrations in the UTLS lead to cooling at these levels and induce warming at the surface [Forster and Shine, 1999; 2002;Solomon et al., 2010]. Water vapor is also integral to stratospheric chemistry. It is the dominant source of OH in the lower stratosphere [ Hanisco et al. , 2001], and increases in water vapor concentrations promote stratospheric ozone loss by raising the reactivity of several key heterogeneous reactions as well as by promoting the growth of reactive surface area [Anderson et al., 2012; Carslaw et al., 1995; Carslaw et al., 1997; Drdla and Muller , 2012; Kirk-Davidoff et al., 1999; Shi et al., 2001]. However, the processes that control the distribution and phase of water in this region of the atmosphere are not well understood. This is especially true at mid-latitudes where several different dynamical mechanisms are capable of influencing UTLS water vapor concentrations. The contribution by deep convective storm systems that penetrate into the lower stratosphere is the least well understood and the least well represented in global models because of the small spatial scales and short time scales over which convection occurs. To address this issue, we have begun a modeling study to investigate the convective injection of water vapor from the troposphere into the stratosphere in the mid-latitudes. Fine-scale models have been previously used to simulate convection from the troposphere to the stratosphere [e.g., Homeyer et al., 2014]. Here we employ the Advanced Research Weather and Research Forecasting model (ARW) at 3-km resolution to resolve convection over the eastern United States during August of 2007 and August of 2013. We conduct a comparison of MERRA, the reanalysis used to initialize ARW, and the model output to assess

  9. A model of reaction field in gas-injected arc-in-water method to synthesize single-walled carbon nanohorns: Influence of water temperature

    International Nuclear Information System (INIS)

    Poonjarernsilp, Chantamanee; Sano, Noriaki; Tamon, Hajime; Charinpanitkul, Tawatchai

    2009-01-01

    The method to synthesize single-walled carbon nanohorns (SWCNHs) using gas-injected arc in water (GI-AIW) has been experimentally studied. GI-AIW is known as one of the cost-effective methods to obtain SWCNHs. It was revealed that the yield of SWCNHs significantly decreases with the increase in water temperature although the purity of SWCNHs is not dependent on the temperature change. Then the model of relevant reactions in the GI-AIW system was proposed by accounting the emission of carbon vapor, formation of SWCNHs, and diffusion of water vapor in three zones inside the cathode hole (arc plasma zone, quenching zone, and downstream zone). The side reaction between H 2 O and C produces H 2 gas and consumes a certain amount of carbon vapor, resulting in the hindered SWCNH formation. Moreover the observation of the optical spectra emitting from the arc plasma zone strongly supported that the H 2 generating reaction does not occur at arc plasma zone since N 2 flow can purge H 2 O out. The model proposed in this study can precisely explain the correlation between H 2 gas production and water temperature.

  10. Role of angiotensin II and vasopressin receptors within the supraoptic nucleus in water and sodium intake induced by the injection of angiotensin II into the medial septal area

    Directory of Open Access Journals (Sweden)

    Antunes V.R.

    1998-01-01

    Full Text Available In this study we investigated the effects of the injection into the supraoptic nucleus (SON of non-peptide AT1- and AT2-angiotensin II (ANG II receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP receptor antagonist d(CH25-Tyr(Me-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA. The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 ml over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01 and sodium intake (81%, N = 8, P<0.01 induced by the injection of ANG II (10 nmol into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. On the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01, ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01 following injection of the V1-type vasopressin antagonist d(CH25-Tyr(Me-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.

  11. Depleted zinc oxide sertificate for safe zinc injection into water coolant of nuclear reactors

    International Nuclear Information System (INIS)

    Yurmanov, E.V.; Yurmanov, V.A.; Evropin, S.V.; Shut'ko, K.I.; Filimonov, S.V.; Zyryanov, S.M.; Timofeev, D.V.

    2015-01-01

    The prospects of the introduction of dosing of zinc depleted in the isotope 64Zn into the water coolant of WWER and RBMK are shown with the aim of removing the long-lived radionuclides accumulated in oxide films, including 60Co, which dominates in the radiation situation during parking for repairs and reloading of fuel, on the decommissioning of power units. The developed technical requirements for commercial zinc oxide powder include the allowable ranges of its granulometric characteristics (average and maximum pellet sizes) and isotopic composition (restriction of the share of the isotope 64Zn), its specific surface area and moisture content, as well as restrictions on the content of impurities to ensure its safe use in domestic NPP. The requirements for the purity of zinc oxide powder in the specification are developed taking into account the experience of its production at the enterprises of the State Corporation Rosatom for export deliveries to foreign nuclear power plants [ru

  12. Stable isotopes, δ18O and δ2H, in the study of water balance of Lake Massoko, Tanzania: Investigation of the exchange between lake and underground water

    International Nuclear Information System (INIS)

    Bergonzini, L.; Gibert, E.; Winckel, A.

    2002-01-01

    Full text: The stable oxygen and deuterium isotope compositions of a lake depend upon its water balance. Therefore the balance equations of stable isotopes, which imply calculation of the composition of evaporating moisture α E , provide information for assessing the water balance. In most cases, this approach is used to investigate the relationships between lakes and groundwater. Lake Massoko (8 deg. 20'S, 33 deg. 45'E, 870 m.a.s.l.) is a freshwater maar-lake without surface outlet. The lake surface and its runoff area cover 0.38 and 0.55 km 2 respectively. In contrast with the mean annual rainfall in the other parts of south Tanzania (1000-1200 mm y -1 ), the presence of Lake Malawi to the South, and the high ranges to the North (Mounts Poroto, Rungwe and Livingstone) imply local climatic features. Air masses overloaded with humidity bypassing Lake Malawi are submitted, especially in April, to ascending currents, producing rainfalls up to 2450 mm y -1 over Massoko area. Because of the evaporation rate from the lake's surface (around 2100 mm y -1 ) and without taking into account the runoff from the drainage basin, hydrological balance is positive and imply underground lost. One of most difficult points in the establishment of the isotope balances is the calculation of the composition of the evaporated water (δ E ), which requires an estimation of the isotopic composition of the water vapour in the atmosphere over the lake (δ Atm ). Without direct measurements, two ways can be used for the determination of the vapour composition (i) equilibrium with precipitation and reconstitution from them, or (ii) calculation from the balances of a terminal lake of the region. Both approaches are presented and compared, but only the second one allows physical solutions. δ Atm determined from Lake Rukwa hydrological and isotope balances has been used to calculate values for δ E over Lake Massoko. The estimation of δ Atm obtained from Lake Rukwa budgets presents a deuterium

  13. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  14. Influence of environmental factors on dissolved nitrate stable isotopes under denitrifying conditions - carbon sources and water isotopes

    Science.gov (United States)

    Wunderlich, A.; Meckenstock, R.; Einsiedl, F.

    2012-04-01

    Stable isotopes in dissolved nitrate are regularly used to identify sources of nitrate contamination in aquifers and water bodies. A dual isotope plot of 15N and 18O in nitrate can provide good evidence of the origin of such pollution as various sources have different isotopic signatures. Microbial denitrification changes both isotopic values by removing nitrate with lighter isotopes first, thereby increasing δ18O as well as δ15N. This change can distort the determination of sources but also has the potential to be used to identify and quantify microbial denitrification. Previous studies found a wide range of enrichment factors (ɛ) that did not allow conclusions towards the extent of microbial denitrification. However, it was found that during denitrification at each respective field site or laboratory experiment, there was a constant ratio in increase of the values of δ18O in relation to δ15N. That ratio was, however, not constant across field sites and the values published range from below 0.5 to more than 1.0. The reasons for these variations in enrichment factors and relative enrichment of oxygen compared to nitrogen are yet unknown. We conducted microcosm experiments with three different bacterial species to elucidate possible influences of environmental factors on these parameters. As a result we conclude that the type of carbon source available to denitrifying bacteria can play a role in the value of the enrichment factors, but not in the relative enrichment of the two isotopes. Specifically we found that complex hydrocarbons (toluene, benzoate) produce significantly different enrichment factors in nitrate than a simple hydrocarbon substrate (acetate). The relative enrichment of δ18O compared to δ15N was 0.86. We hypothesise that this influence is based on a variation in process kinetics of cross-membrane nitrate transport in relation to intracellular nitrate reduction. The core of the hypothesis is that nitrate transport into the cell becomes rate

  15. Multi-reflection photometric flow cell for use in flow injection analysis of estuarine waters

    International Nuclear Information System (INIS)

    Ellis, Peter S.; Lyddy-Meaney, Amanda J.; Worsfold, Paul J.; McKelvie, Ian D.

    2003-01-01

    A multi-reflection flow cell suitable for flow analysis is described. Light from an LED is directed through an optical fibre into a silver coated capillary through a sidewall aperture, and emerges through a similar aperture 10 mm along the capillary after undergoing an estimated 19 reflections. This process provides a sensitivity enhancement of approximately 2.5 compared with a conventional z-cell of the same nominal path length. This enhancement is due to both the increased optical path length achieved by multiple reflection of the light beam through the sample, and minimization of physical dispersion by the use of a short, small internal diameter capillary as the flow cell. The optical design of this flow cell also minimizes the Schlieren effect. Optical and hydrodynamic characteristics of this multi-reflection cell have been evaluated using a series of bromothymol blue dye studies. Application of the flow cell to the determination of reactive phosphorus in estuarine waters with wide variation in salinity and refractive index is also described

  16. A New Dynamic Injection System of Urea-Water Solution for a Vehicular Select Catalyst Reduction System

    Directory of Open Access Journals (Sweden)

    Long Li

    2016-12-01

    Full Text Available Since the Euro-ІІІ standard was adopted, the main methods to inhibit NOx production in diesel engines are exhaust gas recirculation (EGR and select catalyst reduction (SCR. On these methods SCR offers great fuel economy, so it has received wide attention. However, there also exists a trade-off law between NOx conversion efficiency and NH3 slip under dynamic conditions. To inhibit NH3 slip with high NOx conversion efficiency, a dynamic control method for a urea water solution (UWS injection was investigated. The variation phenomena of SCR conversion efficiency with respect to the cross-sensitivity characteristics of the NOx sensor to NH3 have been thoroughly analyzed. The methodology of “uncertain conversion efficiency curve tangent analysis” has been applied to estimate the concentration of the slipped NH3. The correction factor “φ” of UWS injection is obtained by a comparative calculation of the NOx conversion ability and subsequent NH3 slip. It also includes methods of flow compensation and flow reduction. The proposed control method has been authenticated under dynamic conditions. In low frequency dynamic experiments, this control method has accurately justified the NH3 slip process and inhibits the NH3 emission to a lower level thereby improving the conversion efficiency to a value closer to the target value. The results of European transient cycle (ETC experiments indicate that NH3 emissions are reduced by 90.8% and the emission level of NOx is close to the Euro-Ѵ standard.

  17. Bioavailability of diazepam after intramuscular injection of its water-soluble prodrug alone or with atropine–pralidoxime in healthy volunteers

    Science.gov (United States)

    Abbara, C; Rousseau, JM; Turcant, A; Lallement, G; Comets, E; Bardot, I; Clair, P; Diquet, B

    2009-01-01

    Background and purpose: The aim of this study was to assess the relative bioavailability of diazepam after administration of diazepam itself or as a water-soluble prodrug, avizafone, in humans. Experimental approach: The study was conducted in an open, randomized, single-dose, three-way, cross-over design. Each subject received intramuscular injections of avizafone (20 mg), diazepam (11.3 mg) or avizafone (20 mg) combined with atropine (2 mg) and pralidoxime (350 mg) using a bi-compartmental auto-injector (AIBC). Plasma concentrations of diazepam were quantified using a validated LC/MS–MS assay, and were analysed by both a non-compartmental approach and by compartmental modelling. Key results: The maximum concentration (Cmax) of diazepam after avizafone injection was higher than that obtained after injection of diazepam itself (231 vs. 148 ng·mL−1), while area under the curve (AUC) values were equal. Diazepam concentrations reached their maximal value faster after injection of avizafone. Injection of avizafone with atropine–pralidoxime (AIBC) had no effect on diazepam Cmax and AUC, but the time to Cmax was increased, relative to avizafone injected alone. According to the Akaike criterion, the pharmacokinetics of diazepam after injection as a prodrug was best described as a two-compartment with zero-order absorption model. When atropine and pralidoxime were injected with avizafone, the best pharmacokinetic model was a two-compartment with a first-order absorption model. Conclusion and implications: Diazepam had a faster entry to the general circulation and achieved higher Cmax after injection of prodrug than after the parent drug. Administration of avizafone in combination with atropine and pralidoxime by AIBC had no significant effect on diazepam AUC and Cmax. PMID:19681868

  18. Membrane inlet laser spectroscopy to measure H and O stable isotope compositions of soil and sediment pore water with high sample throughput.

    Science.gov (United States)

    Oerter, Erik J; Perelet, Alexei; Pardyjak, Eric; Bowen, Gabriel

    2017-01-15

    The fast and accurate measurement of H and O stable isotope compositions (δ 2 H and δ 18 O values) of soil and sediment pore water remains an impediment to scaling-up the application of these isotopes in soil and vadose hydrology. Here we describe a method and its calibration to measuring soil and sediment pore water δ 2 H and δ 18 O values using a water vapor-permeable probe coupled to an isotope ratio infrared spectroscopy analyzer. We compare the water vapor probe method with a vapor direct equilibration method, and vacuum extraction with liquid water analysis. At a series of four study sites in a managed desert agroecosystem in the eastern Great Basin of North America, we use the water vapor probe to measure soil depth profiles of δ 2 H and δ 18 O values. We demonstrate the accuracy of the method to be equivalent to direct headspace equilibration and vacuum extraction techniques, with increased ease of use in its application, and with analysis throughput rates greater than 7 h -1 . The soil depth H and O stable isotope profiles show that soil properties such as contrasting soil texture and pedogenic soil horizons control the shape of the isotope profiles, which are reflective of local evaporation conditions within the soils. We conclude that this water vapor probe method has potential to yield large numbers of H and O stable isotope analyses of soil and sediment waters within shorter timeframes and with increased ease than with currently existing methods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role for meteoric water?

    NARCIS (Netherlands)

    Agemar, T.; Wörner, G.; Heumann, A.

    1999-01-01

    Whole rock and mineral stable isotope and microprobe analyses are presented from granitoids of the North Chilean Precordillera. The Cretaceous to Tertiary plutonic rocks contain important ore deposits and frequently display compositional and textural evidence of hydrothermal alteration even in

  20. EXPERIMENTAL INVESTIGATIONS OF REAL TIME SECONDARY CO-INJECTION OF WATER – DIETHYL ETHER SOLUTION IN DI-DIESEL ENGINE FUELLED WITH PALM KERNEL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Y. V. V. SATYANARAYANAMURTHY

    2012-12-01

    Full Text Available In this investigation tests were conducted on single cylinder diesel engine fuelled with neat diesel and biodiesel palm kernel methyl ester as a base line fuel with secondary injection of Water-DEE solution through the inlet manifold. A real time control systems consists of electronic unit pump that delivers 5% to 25% vol. Water-DEE solution through injector tip mounted nearer to the inlet manifold under a pressure of 3 kgf/cm2. NOx emissions reduced to a level of 500 ppm with simultaneous reduction of soot especially for PKME. However for 15% vol. of Water-DEE injection the HC emissions are closely tallying with that of neat diesel. A global overview of the results has shown that the 15% Water-DEE solution is the optimal blend based on performance and emission characteristics.

  1. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    Science.gov (United States)

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

  2. Development and Validation of a Fast Procedure to Analyze Amoxicillin in River Waters by Direct-Injection LC-MS/MS

    Science.gov (United States)

    Homem, Vera; Alves, Arminda; Santos, Lu´cia

    2014-01-01

    A laboratory application with a strong component in analytical chemistry was designed for undergraduate students, in order to introduce a current problem in the environmental science field, the water contamination by antibiotics. Therefore, a simple and rapid method based on direct injection and high performance liquid chromatography-tandem mass…

  3. Model experiment on change of seismic properties of a fracture caused by injecting/draining water; Chusui/haisui ni yoru kison kiretsu no dansei denpa tokusei no henka ni kansuru model jikken

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Koizumi, T.; Sassa, K. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1997-05-27

    Effect of water injection/draining on elastic waves penetrating through cracks is examined by measuring elastic waves before, during, and after the injection/draining of water into/from cracks in presence in granite. Two blocks of rock, with their crack-containing surfaces in contact with each other, are placed in a vessel, and water injection/draining is done through a hole on a vessel bottom side so that water will penetrate into the cracks. When the blocks are dry, there is almost no contact between the cracks, and so no crack penetrating waves are observed. Crack penetrating waves are produced when water is injected, and the position of the receiver sensing the penetrating waves changes as the water level rises. When the water level is lowered from the high water level, the waveform changes again as the level changes. The change in waveform is not so remarkable, however, as that observed during water injection thanks to the water residual in the cracks. It is now inferred that crack investigation is more effective when it is carried out with water being injected into dry cracks. The difference produced between the dry state and wet state when water is injected into dry cracks is used to detect the presence of cracks in this experiment, and this may be applied also to the investigation of cracks in the shallow part of the ground. 4 refs., 11 figs.

  4. Stable isotope (δ18O and δ2H) data for precipitation, stream water, and groundwater in Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Torres-Sanchez, Angel; Rosario-Torres, Manuel

    2014-01-01

    Puerto Rico is located in the northeastern Caribbean Sea (18.2 °N, 66.3 °W), with the Atlantic Ocean on its northern coast. The U.S. Geological Survey’s Water, Energy, and Biogeochemical Budgets (WEBB) program study area in which most of these data were collected comprises the El Yunque National Forest and surrounding area of eastern Puerto Rico. Samples were collected in two forested watersheds, the Rio Mameyes and the Rio Icacos/Rio Blanco, on opposite sides of a ridge in the Luquillo Mountains on the eastern end of the island (fig. 1). Elevation in both watersheds ranges from sea level to approximately 1,000 meters (m). Near sea level, land use is mixed pasture, moist forest, and residential, grading to completely forested within the boundaries of El Yunque National Forest. Forest type changes with elevation from tabonuco to palo colorado to sierra palm to cloud forest above approximately 950 m (Murphy and others, 2012). The Rio Mameyes watershed is oriented north-northeast, and the basin is underlain by volcaniclastic bedrock (basaltic to andesitic volcanic sandstone/mudstone/conglomerate/breccia). The Rio Icacos/Rio Blanco watershed is oriented south-southeast. The Rio Icacos is one of the headwaters of the Rio Blanco and is underlain by quartz diorite. The lower Rio Blanco basin is underlain by andesitic volcaniclastic bedrock. This report also contains a long-term rain isotope dataset from the San Agustin site, in north-central Puerto Rico (fig. 1). Puerto Rico has a tropical climate dominated by easterly trade winds, and seasonal climate patterns affect the hydrology of the study area. The summer wet season is characterized by convective precipitation from tropical easterly waves, troughs, and cyclonic low-pressure systems, including tropical storms and hurricanes; in contrast, the drier winter season is characterized by trade-wind showers and frontal systems. The highest single-event rainfall totals tend to be associated with tropical storms

  5. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  6. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    Science.gov (United States)

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  7. A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations

    Directory of Open Access Journals (Sweden)

    Christian León-Celi

    2016-12-01

    Full Text Available The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed.

  8. Tracing stable isotopes (δ²H and δ¹⁸O) from meteoric water to groundwater in the Densu River basin of Ghana.

    Science.gov (United States)

    Adomako, Dickson; Gibrilla, Abass; Maloszewski, Piotr; Ganyaglo, Samuel Yao; Rai, Shive Prakash

    2015-05-01

    This study represents the first attempt to study soil water δ(18)O profiles in Ghana using a mechanical auger. In this paper, the characteristics of δ(18)O and δ(2)H in rain water, surface water, soil water and groundwater have been used to understand the transformation mechanism of rain water to groundwater. Rain waters were sampled in Koforidua and Accra. Surface water and groundwater were sampled from the Densu River and selected boreholes in the basin, respectively. Soil waters were taken from three typical sites, namely, Potroase (POT), Teacher Mante (TM) and Ayikai Doblo (AD) in the northern, middle and southern zone from 0.00- to 6-m depth. The soil water was extracted using vacuum distillation method. The distribution of the stable isotopes of rain water is influenced by rainfall amount with minimal temperature effect. In general, the soil water is of meteoric origin undergoing fractionation-controlled evaporation. In the middle zone, the soil water shows some evidence of recharge from enriched source. The three profiles show similar trend of enriched values in the upper depths with gradual depletions of δ(18)O with depth. The POT profile showed relatively more depleted values suggesting a fast infiltration. In all the three profiles, soil waters below 3 m were found to contribute to groundwater recharge with piston flow as the dominant mechanism. The study also revealed that there is a significant contribution of enrich source to the groundwater system leading to the dilution of the infiltrating water by the large aquifer.

  9. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  10. Analysis of ground-water flow in the Madison aquifer using fluorescent dyes injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO

  11. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Bing [Geological Survey, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Zhou, Jianwei, E-mail: jw.zhou@cug.edu.cn [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Zhou, Aiguo; Liu, Cunfu [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Xie, Lina [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China)

    2016-11-01

    The Xikuangshan (XKS) mine in central China is the largest antimony (Sb) mine in the world. The mining activity has seriously contaminated the waters in the area. To determine the sources, migration and transformation of Sb contamination, 32 samples from groundwater (aquifer water), surface water and mine water were collected for water chemistry, trace element and S{sub SO4} and Sr stable isotope analyses. The results showed that the groundwater and surface water were in an oxidized environment. The S{sub SO4} and Sr isotope compositions in the water indicated that dissolved Sb and SO{sub 4}{sup 2} originated from sulfide mineral (Sb{sub 2}S{sub 3}) oxidation, whereas radiogenic Sr may have been sourced from silicified limestone and stibnite in the Shetianqiao aquifer. Furthermore, a positive correlation between δ{sup 34}S{sub SO4} and δ{sup 87}Sr values revealed that the Sr, S and Sb in the waters had a common contamination source, i.e., silicified limestone and stibnite, whereas the Sr, S and Sb in rock and ore were sourced from Proterozoic basement clastics. The analysis also indicated that the isotope composition of dissolved SO{sub 4}{sup 2} {sup −} had been influenced by slight bacterial SO{sub 4} reduction in the Magunao aquifer. Mining or rock collapse may have caused Shetianqiao aquifer water to contaminate the Magunao aquifer water via mixing. This study has demonstrated that the stable isotopes of {sup 34}S{sub SO4} and {sup 87}Sr, combined with hydrochemical methods, are effective in tracking the sources, migration and transformation of Sb contamination. - Highlights: • Mining activities at XKS mine have caused serious water contamination. • The characteristics of Sb contamination in water environment are still unclear. • Combine S isotopes of sulfate and Sr isotopes with hydrochemical methods. • Sr, S, and Sb in natural water had a common source: silicified limestone and stibnite. • Shetianqiao aquifer water contaminated the Magunao

  12. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    Science.gov (United States)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  13. A new high-quality set of singly (H-2) and doubly (H-2 and O-18) stable isotope labeled reference waters for biomedical and other isotope-labeled research

    NARCIS (Netherlands)

    Faghihi, V.; Verstappen-Dumoulin, B. M. A. A.; Jansen, H. G.; van Dijk, G.; Aerts-Bijma, A. T.; Kerstel, E. R. T.; Groening, M.; Meijer, H. A. J.

    2015-01-01

    RATIONALE: Research using water with enriched levels of the rare stable isotopes of hydrogen and/or oxygen requires well-characterized enriched reference waters. The International Atomic Energy Agency (IAEA) did have such reference waters available, but these are now exhausted. New reference waters

  14. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection

    Science.gov (United States)

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    Background It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Materials and methods Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate–malate or N, N, N′, N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)–ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate–malate as substrate. Results As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate–malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD–ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. Conclusion In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process. PMID:26203225

  15. Stable Carbon Isotope Composition (δ13C), Water Use Efficiency, and Biomass Productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 Hybrid

    Science.gov (United States)

    Martin, Bjorn; Thorstenson, Yvonne R.

    1988-01-01

    Three tomatoes, Lycopersicon esculentum Mill. cv UC82B, a droughttolerant wild related species, Lycopersicon pennellii (Cor.) D'Arcy, and their F1 hybrid, were grown in containers maintained at three levels of soil moisture. Season-long water use was obtained by summing over the season daily weight losses of each container corrected for soil evaporation. Plant biomass was determined by harvesting and weighing entire dried plants. Season-long water use efficiency (gram dry weight/kilogram H2O) was calculated by dividing the dry biomass by the season-long water use. The season-long water use efficiency was greatest in the wild parent, poorest in the domestic parent, and intermediate (but closer to the wild parent) in the F1 hybrid. Instantaneous water-use efficiency (micromole CO2/millimole H2O) determined by gas exchange measurements on individual leaves was poorly correlated with season-long water use efficiency. However, the relative abundance of stable carbon isotopes of leaf tissue samples was strongly correlated with the season-long water use efficiency. Also, the isotopic composition and the season-long water use efficiency of each genotype alone were strongly negatively correlated with plant dry weight when the dry weight varied as a function of soil moisture. PMID:16666269

  16. Stable carbon isotope composition (δ13C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid

    International Nuclear Information System (INIS)

    Martin, B.; Thorstenson, Y.R.

    1988-01-01

    Three tomatoes, Lycopersicon esculentum Mill. cv UC82B, a droughttolerant wild related species, Lycopersicon pennellii (Cor.) D'Arcy, and their F 1 , hybrid, were grown in containers maintained at three levels of soil moisture. Season-long water use was obtained by summing over the season daily weight losses of each container corrected for soil evaporation. Plant biomass was determined by harvesting and weighing entire dried plants. Season-long water use efficiency (gram dry weight/kilogram H 2 O) was calculated by dividing the dry biomass by the season-long water use. The season-long water use efficiency was greatest in the wild parent, poorest in the domestic parent, and intermediate (but closer to the wild parent) in the F, hybrid. Instantaneous water-use efficiency (micromole CO 2 /millimole H 2 O) determined by gas exchange measurements on individual leaves was poorly correlated with season-long water use efficiency. However, the relative abundance of stable carbon isotopes of leaf tissue samples was strongly correlated with the season-long water use efficiency. Also, the isotopic composition and the season-long water use efficiency of each genotype alone were strongly negatively correlated with plant dry weight when the dry weight varied as a function of soil moisture. (author)

  17. Characterization of Dissolved Organic Matter in Surface, Soil, and Ground Waters of a Small (10 ha) Catchment Using Stable Isotopes (C, N, S) and Chemical Methods

    Science.gov (United States)

    Frentress, J.; Lajtha, K.; Jones, J.; Kendall, C.

    2007-12-01

    In order to better understand sources of dissolved organic matter (DOM) in streams at the small watershed scale, we initiated a one-year investigation of the chemical and isotopic characteristics of DOM at the HJ Andrews Research Forest in Blue River, OR. These data will be used to test two mechanistic hypotheses to explain observed hysteresis patterns where dissolved organic carbon (DOC) concentrations in surface flow are greatest during the ascending limb of the hydrograph during storms and over the water year, with decreased DOC concentrations in surface flow during the descending limb of the hydrograph: Hypothesis 1) A flushing effect with no change in dominant flowpaths; Stream DOC concentrations directly reflect the DOC concentrations in the soil that are initially high and decrease during the event and throughout the water year due to the flushing of DOC. Hypothesis 2) A change in dominance from near-surface to subsurface hydrologic flowpaths during the event, with high-DOC sources in near-surface flowpaths dominating early and low-DOC sources in groundwater dominating later in the event. In order to address this ambiguity, the characterization of DOM using stable isotopes and other fingerprinting techniques (e.g. SUVA, C:N) was used to identify sources of organic matter to streams throughout an individual storm event and through the water year. If the first hypothesis (flushing effect) is correct, DOM in surface water should carry a similar fingerprint to the DOM in soil waters throughout the rain event and water year. If the second hypothesis (change in flowpaths) is correct, the fingerprint of DOM in the surface water should closely resemble that of soil water early in the event and change to reflect a mix of the two fingerprinted DOM sources - groundwater and soil water - later in the event. In addition to established chemical characterization methods like SUVA and C:N, a new technique of DOM isolation via solid-phase extraction using C-18 resin was used

  18. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  19. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  20. Multiscale Characterization and Quantification of Arsenic Mobilization and Attenuation During Injection of Treated Coal Seam Gas Coproduced Water into Deep Aquifers

    Science.gov (United States)

    Rathi, Bhasker; Siade, Adam J.; Donn, Michael J.; Helm, Lauren; Morris, Ryan; Davis, James A.; Berg, Michael; Prommer, Henning

    2017-12-01

    Coal seam gas production involves generation and management of large amounts of co-produced water. One of the most suitable methods of management is injection into deep aquifers. Field injection trials may be used to support the predictions of anticipated hydrological and geochemical impacts of injection. The present work employs reactive transport modeling (RTM) for a comprehensive analysis of data collected from a trial where arsenic mobilization was observed. Arsenic sorption behavior was studied through laboratory experiments, accompanied by the development of a surface complexation model (SCM). A field-scale RTM that incorporated the laboratory-derived SCM was used to simulate the data collected during the field injection trial and then to predict the long-term fate of arsenic. We propose a new practical procedure which integrates laboratory and field-scale models using a Monte Carlo type uncertainty analysis and alleviates a significant proportion of the computational effort required for predictive uncertainty quantification. The results illustrate that both arsenic desorption under alkaline conditions and pyrite oxidation have likely contributed to the arsenic mobilization that was observed during the field trial. The predictive simulations show that arsenic concentrations would likely remain very low if the potential for pyrite oxidation is minimized through complete deoxygenation of the injectant. The proposed modeling and predictive uncertainty quantification method can be implemented for a wide range of groundwater studies that investigate the risks of metal(loid) or radionuclide contamination.

  1. Numerical Investigation into the Impact of CO2-Water-Rock Interactions on CO2 Injectivity at the Shenhua CCS Demonstration Project, China

    Directory of Open Access Journals (Sweden)

    Guodong Yang

    2017-01-01

    Full Text Available A 100,000 t/year demonstration project for carbon dioxide (CO2 capture and storage in the deep saline formations of the Ordos Basin, China, has been successfully completed. Field observations suggested that the injectivity increased nearly tenfold after CO2 injection commenced without substantial pressure build-up. In order to evaluate whether this unique phenomenon could be attributed to geochemical changes, reactive transport modeling was conducted to investigate CO2-water-rock interactions and changes in porosity and permeability induced by CO2 injection. The results indicated that using porosity-permeability relationships that include tortuosity, grain size, and percolation porosity, other than typical Kozeny-Carman porosity-permeability relationship, it is possible to explain the considerable injectivity increase as a consequence of mineral dissolution. These models might be justified in terms of selective dissolution along flow paths and by dissolution or migration of plugging fines. In terms of geochemical changes, dolomite dissolution is the largest source of porosity increase. Formation physical properties such as temperature, pressure, and brine salinity were found to have modest effects on mineral dissolution and precipitation. Results from this study could have practical implications for a successful CO2 injection and enhanced oil/gas/geothermal production in low-permeability formations, potentially providing a new basis for screening of storage sites and reservoirs.

  2. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Delgado C, R. A.; Lopez S, E.; Chavez M, C.

    2012-10-01

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  3. Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products.

    Science.gov (United States)

    Azhar, Muhammad Rizwan; Vijay, Periasamy; Tadé, Moses O; Sun, Hongqi; Wang, Shaobin

    2018-04-01

    Water-stable and active metal organic frameworks (MOFs) are important materials for mitigation of water contaminants via adsorption and catalytic reactions. In this study, a highly water-stable Co-based MOF, namely bio-MOF-11-Co, was synthesized by a simplified benign method. Moreover, it was used as a catalyst in successful activation of peroxymonsulfate for catalytic degradation of sulfachloropyradazine (SCP) and para-hydroxybenzoic acid (p-HBA) as representatives of pharmaceuticals and personal care products, respectively. The bio-MOF-11-Co showed rapid degradation of both p-HBA and SCP and could be reused multiple times without losing the activity by simply water washing. The effects of catalyst and PMS loadings as well as temperature were further studied, showing that high catalyst and PMS loadings as well as temperature produced faster kinetic degradation of p-HBA and SCP. The generation of highly reactive and HO radicals during the degradation was investigated by quenching tests and electron paramagnetic resonance. A plausible degradation mechanism was proposed based on the functionalities in the bio-MOF-11-Co. The availability of electron rich nucleobase adenine reinforced the reaction kinetics by electron donation along with cobalt atoms in the bio-MOF-11-Co structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On-line multi-bed sorption trap for VOC analysis of large-volume vapor samples: injection plug width, effects of water vapor and sample decomposition.

    Science.gov (United States)

    Sanchez, Juan M; Sacks, Richard D

    2005-01-01

    A multibed on-line sorption trap is used to preconcentrate organic vapors from air samples and inject the analytes into a GC separation column. Injection plug widths depend on the boiling point for the lipophilic compounds and on the polarity and boiling point for the polar compounds. Injection plug widths are sufficiently small (0.7-0.8 s) as to allow the direct injection of the most volatile compounds into the GC column without the need for a second focusing device. The presence of water in the samples has an effect on the retention of polar compounds by the trap. However, this effect is reproducible for a fixed water content and so can be overcome by using calibration standards under the same conditions of humidity as the samples. The thermal decomposition of many volatile organic compounds in an on-line sorption trap during the GC analysis of air samples is examined. The results show that degradation of unstable compounds is governed by the amount of heat transferred to the compounds during desorption (i.e., applied temperature and pulse duration). The use of an on-line trap results in the immediate transfer of desorbed compounds to the analytical column, which can reduce the formation of artifacts.

  5. Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota: Analysis of thermal data and nonisothermal modeling of short-term test cycles

    Science.gov (United States)

    Miller, Robert T.; Delin, G.N.

    1994-01-01

    In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated water (150 degrees Celsius) in the Franconia-Ironton-Galesville aquifer (180 to 240 meters below land surface) and later recovering it for space heating. The University's steam-generation facilities supplied high-temperature water for injection. The Aquifer Thermal-Energy Storage system is a doublet-well design in which the injection-withdrawal wells are spaced approximately 250 meters apart. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. This water was then injected back into the aquifer through the other well.

  6. Use of stable isotopes of carbon, nitrogen, and sulfer to identify sources of nitrogen in surface waters in the Lower Susquehanna River basin, Pennsylvania

    Science.gov (United States)

    Cravotta, C.A.

    1995-01-01

    Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.

  7. Investigating the Relationship Between Soil Water Mobility and Stable Isotope Composition with Implications for the Ecohydrologic Separation Hypothesis

    Science.gov (United States)

    Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.

    2017-12-01

    The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.

  8. Profiles of chloride and water stable isotope in porewater obtained from a 2000 m-deep borehole through the Mesozoic sedimentary series in the East of France

    International Nuclear Information System (INIS)

    Bensenouci, F.; Michelot, J.L.; Matray, J.M.; Savoye, S.

    2010-01-01

    Document available in extended abstract form only. A method to obtain information about fluid flow and solute transport in porous media with low hydraulic conductivity and low water content is based on the study of the natural tracer distribution in pore water. This approach was previously applied to the Callovo-Oxfordian argillites, studied by Andra at the Bure URL (East of France), using several natural tracer profiles ( 4 He, 2 H, 18 O, Cl - , 37 Cl). These profiles were interpreted as the result of a diffusive exchange between pore water in the aquitard and groundwater in the surrounding aquifers. However, at the Bure URL, and in contrast to other investigated argillaceous formations, the concentrations of tracers in lower aquifer groundwater may be higher than those in argillite pore water and increase with depth. The continuity of the profiles and the origin of pore water salinity remained questionable. This study aims at presenting and interpreting chloride and stable isotope profiles in pore water through more than 800 m of sediments, from the lower Oxfordian to the lower Hettangian. Drill-core samples were collected from the 2000 m-deep borehole (EST 433) drilled by Andra in the so-called 'Transposition Zone', located north to the Bure URL. In the framework of the TAPPS 2000 programme, twenty-five core samples were collected from the Oxfordian to the lower Hettangian during the drilling campaign, and in-situ conditioned. The chloride concentrations in pore water were firstly estimated by aqueous leaching, using a geochemical porosity two times smaller than the porosity measured by heating at 150 deg. C. After this estimation of pore water salinities, the radial diffusion and vapour exchange methods were applied to determine the stable isotope and anion concentrations in pore water. The deuterium contents of pore water derived from the vapour exchange experiments describe a classical bell-shape profile in the Callovo-Oxfordian argillites with an

  9. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2015-01-01

    Full Text Available This paper used near-infrared (NIR spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R-3, 4-dihydroxyphenyllactic acid, protocatechuic aldehyde (PA, rosmarinic acid (RA, and salvianolic acid B (SAB concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value.

  10. A Practical Approach for Formation Damage Control in Both Miscible and Immiscible CO2 Gas Flooding in Asphaltenic Crude Systems Using Water Slugs and Injection Parameters

    Science.gov (United States)

    David, Sergio Z.

    , precipitation occurred throughout the entire reservoir due to the vaporizing drive miscibility process. While precipitation increased with the injection rate, further increase in the injection rate slightly decreased the deposition due to shear. The pressure drop in the water phase caused by the pore throat increased the local water velocity, resulting in a more effective removal of the clogging asphaltene material.

  11. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    Science.gov (United States)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play an important role in the early alteration of the planet. However, our understanding of impact-induced hydrothermal systems remains unclear

  12. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions

    OpenAIRE

    Jie Peng; Wu-jun Dong; Ling Li; Jia-ming Xu; Du-jia Jin; Xue-jun Xia; Yu-ling Liu

    2015-01-01

    The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the d...

  13. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    Science.gov (United States)

    2015-05-18

    Brian Ray 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...for his continued help and support throughout the last four years as both his student and advisee. Additionally, I would like to thank Mr. Charles ...Daggett, David L., Silvio Ortanderl, David Eames , Jeffrey J. Berton, and Christopher A. Snyder. Revisiting Water Injection for Commercial Aircraft

  14. Evaluation of Hydroxyl Ion Diffusion in Dentin and Injectable Forms and a Simple Powder-Water Calcium Hydroxide Paste: An in Vitro Study

    OpenAIRE

    Eftekhar, Behrooz; Moghimipour, Eskandar; Eini, Ebrahim; Jafarzadeh, Mansour; Behrooz, Narges

    2014-01-01

    Background: Intra canal medicaments are used to reduce the number of bacteria and reinfection in endodontic procedures. Calcium Hydroxide was introduced to endodontics by Herman as an intracanal antimicrobial agent. Objectives: The aim of this study was to present an injectable formulation of calcium hydroxide then compare the final pH of this new formulation with Metapaste and evaluate the effect of a mixture of Calcium Hydroxide powder with water on human extracted teeth. Patients and Metho...

  15. Single-dose Intramuscular-injection Toxicology Test of Water-soluble Carthami-flos and Cervi cornu parvum Pharmacopuncture in a Rat Model

    Directory of Open Access Journals (Sweden)

    Sunju Park

    2015-09-01

    Full Text Available Objectives: The aim of the study is to investigate both the single-dose intramuscular injection toxicity and the approximate lethal dose of water-soluble Carthami-flos and Cervi cornu parvum pharmacopuncture (WCFC in male and female Sprague-Dawley (SD rats. Methods: The study was conducted at Biotoxtech Co. according to the Good Laboratory Practice (GLP regulation and the toxicity test guidelines of the Ministry of Food and Drug Safety (MFDS after approval of the Institutional Animal Care and Use Committee. Dosages for the control, high dose, middle dose and low dose groups were 0.5 mL/animal of saline and 0.5, 0.25 and 0.125 mL/animal of WCFC, respectively. WCFC was injected into the muscle of the left femoral region by using a disposable syringe (1 mL, 26 gauge. The general symptoms and mortality were observed 30 minutes, 1, 2, 4, and 6 hours after the first injection and then daily for 14 days after the injection. The body weights of the SD rats were measured on the day of the injection (before injection and on the third, seventh, and fourteenth days after the injection. Serum biochemical and hematologic tests, necropsy examinations, and histopathologic examinations at the injection site were performed after the observation period. Results: No deaths, abnormal clinical symptoms, or significant weight changes were observed in either male or female SD rats in the control or the test (0.125, 0.25, and 0.5 mL/animal groups during the observation period. No significant differences in hematology and serum biochemistry and no macroscopic abnormalities at necropsy were found. No abnormal reactions at injection sites were noted on the topical tolerance tests. Conclusion: The results of this single-dose toxicity study show that WCFC is safe, its lethal doses in male and female SD rats being estimated to be higher than 0.5 mL/animal.

  16. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  17. Tritium retention in the femoral bone marrow and spleens of mice receiving single intravenous injections of tritiated water and tritiated thymidine

    International Nuclear Information System (INIS)

    Joshima, Hisamasa; Matsushita, Satoru; Fukutsu, Kumiko; Kashima, Masatoshi

    1987-01-01

    To derive parameters necessary for evaluating the possible hazards of tritium, retention of tritium in total and TCA-insoluble fractions of the femoral marrow and spleen of mice were observed after single intravenous injections of tritiated water and tritiated thymidine. Retention curves of tritium in TCA-insoluble fractions of the femoral marrow and spleen were resolved fairly well into two exponential components. After injecting tritiated thymidine, most of the activity was detected in the TCA-insoluble fraction. Tritium in this fraction decreased with half-times of 2.2 days in the femoral marrow and 3.6 days in the spleen as the first component, and 23.9 days and 30.5 days, respectively, as the second component. After tritiated water injections, the tritium incorporated into the TCA-insoluble fraction was quite small. Most of the activity was considered to be in the TCA-soluble fraction. Tritium in this fraction was estimated to decrease with half-times of 2.6 days in the femoral marrow and 2.3 days in the spleen as the first component, and 8.0 days and 8.2 days, respectively, as the second component. It is concluded that the retention curves of tritium in the bone marrow are similar to those in the spleen for tritiated water, but not for tritiated thymidine. (author)

  18. Water chemistry at Hontomín-Huermeces (Burgos, Spain): insights for a pre-, intra- and post-CO2 injection geochemical monitoring.

    Science.gov (United States)

    Nisi, Barbara; Vaselli, Orlando; Tassi, Franco; de Elio, Javier; Delgado Huertas, António; Mazadiego, Luis Felipe; Ortega, Marcelo F.

    2013-04-01

    In this study, the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín-Huermeces (Burgos, Spain) are presented and discussed. Hontomín-Huermeces was selected as a pilot site for the injection of pure (>99 %) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980's. Stratigraphical logs indicate the presence of a confined saline aquifer at the depth of about 1,500 m into which less than 100,000 tons of liquid CO2 will be injected, possibly starting in 2013. The chemical and isotopic features of the spring waters suggest the occurrence of a shallow aquifer having a Ca2+(Mg2+)-HCO3- composition, relatively low salinity (Total Dissolved Solids ≈800 mg/L) and a meteoric isotopic signature. Some spring waters close to the oil wells are characterized by relatively high concentrations of NO3- (up to 123 mg/L), unequivocally indicating anthropogenic contamination that adds to the main water-rock interaction processes. The latter can be referred to Ca-Mg-carbonate and, at a minor extent, Al-silicate dissolution, being the outcropping sedimentary rocks characterized by Palaeozoic to Quaternary rocks. Anomalous concentrations of Cl-, SO42-, As, B and Ba were measured in two springs discharging a few hundreds meters from the oil wells and in the Rio Ubierna, possibly indicative of mixing processes, although at very low extent, between deep and shallow aquifers. Gases dissolved in spring waters show relatively high concentrations of atmospheric species, such as N2, O2 and Ar, and isotopically negative CO2 (masking any contribution related to a deep source. The geochemical and isotopic data of this study are of particular importance when a monitoring program will be established to verify whether CO2 leakages, induced by the injection of this greenhouse gas, may affect the quality of the waters of the shallow Hontomín-Huermeces hydrological circuit. In this

  19. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities

    International Nuclear Information System (INIS)

    Hwang, Seong Hoon; Kim, Min Soo

    2016-01-01

    Highlights: • Proposal of a cathode humidification and evaporative cooling system for PEM fuel cells. • An external-mixing air-assist atomizer is used to produce a very fine water spray. • The system is effective in both cathode humidification and stack cooling. • Increased water flow rate improves stack performance and evaporative cooling capacity. • At a given water flow rate, lower stack temperatures cause greater humidification effect. - Abstract: Humidification and cooling are critical issues in enhancing the efficiency and durability of polymer electrolyte membrane fuel cells (PEMFCs). However, existing humidifiers and cooling systems have the disadvantage that they must be quite large to achieve adequate PEMFC performance. In this study, to eliminate the need for a bulky humidifier and to lighten the cooling load of PEMFCs, a cathode humidification and evaporative cooling system using an external-mixing air-assist atomizer was developed and its performance was investigated. The atomization performance of the nozzle was analyzed experimentally under various operating conditions with minimal changes in the system design. Experiments with a five-cell PEMFC stack with an active area of 250 cm 2 were carried out to analyze the effects of various parameters (such as the operating temperature, current density, and water injection flow rate) on the evaporation of injected water for humidification and cooling performances. The experimental results demonstrate that the direct water injection method proposed in this study is quite effective in cathode humidification and stack cooling in PEM fuel cells at high current densities. The stack performance was improved by humidification effect and the coolant temperature at the stack outlet decreased by evaporative cooling effect.

  20. Stable carbon isotope analysis of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in natural waters - Results from a worldwide proficiency test

    Science.gov (United States)

    van Geldern, Robert; Verma, Mahendra P.; Carvalho, Matheus C.; Grassa, Fausto; Delgado Huertas, Antonio; Monvoisin, Gael; Barth, Johannes A. C.

    2014-05-01

    Stable carbon isotope ratios of dissolved inorganic (DIC) and organic carbon (DOC) are of particular interest in aquatic geochemistry. The precision for this kind of analysis is typically reported in the range of 0.1 to 0.5‰. To date, no published data attempted a comparison of δ13C measurements of DIC and DOC from for natural water samples among different laboratories. Five natural water sample types (lake water, seawater, two geothermal waters, and petroleum well water) were analyzed for their δ13C-DIC and δ13C-DOC values by 5 laboratories with isotope ratio mass spectrometry (IRMS) in an international proficiency test. Reported δ13C-DIC values for lake water and seawater showed fairly good agreement within a range of about 1‰ whereas geothermal and petroleum waters were characterized by much larger differences of up to 6.6‰ between laboratories. In contrast, δ13C-DOC values were only comparable for seawater and showed differences of 10 to 21‰ for all other samples. This study [1] indicates that scatter in δ13C-DIC isotope data can be in the range of several per mil for samples from extreme environments (geothermal waters) and may not yield reliable information with respect to dissolved carbon (petroleum wells). The analyses of lake water and seawater also revealed a larger than expected difference. Evaluation of analytical procedures of the participating laboratories indicated that the differences cannot be explained by analytical errors or different data normalization procedures and must be related to specific sample characteristics or secondary effects during sample storage and handling. Our results reveal the need for further research on sources of error and on method standardization. References [1] van Geldern, R., Verma, M.P., Carvalho, M.C., Grassa, F., Huertas, A.D., Monvoisin, G. and Barth, J.A.C. (2013): Stable carbon isotope analysis of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in natural waters - Results from a

  1. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)]|[Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville (United States); Whitledge, T.E. [Marine Science Institute, University of Texas at Austin (United States); Grebmeier, J.M. [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville (United States)]|[Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Weingartner, T. [Institute of Marine Science, University of Alaska Fairbanks (United States)

    1997-06-01

    Seawater nutrient, salinity, and oxygen 18 data collected from 1990 to 1993 in the Bering and Chukchi Seas were used to identify potential sources of nutrients and water masses that result in formation of the Arctic Ocean upper halocline and its associated nutrient maximum. Water matching the {delta}{sup 18}O values of the Arctic Ocean upper halocline and containing sufficient, or a nearly sufficient, nutrient and salinity concentration was collected in subsurface waters in the summer in portions of the Bering Sea, particularly the Gulf of Anadyr. However, nutrient concentrations significantly declined in this north flowing water over the shallow continental shelf before it reached the Bering Strait, as a consequence of biological utilization, and dilution with nutrient-poor and oxygen 18-depleted fresh water. Therefore it does not appear likely that the flow of unaltered water through the Bering Strait in the summer plays a critical role in the formation of the Arctic Ocean upper halocline. The role of other mechanisms for contributing Pacific-derived waters to the Arctic Ocean nutrient maximum is considered.{copyright} 1997 American Geophysical Union

  2. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  3. Use of 2H and 18O stable isotopes to investigate water sources for different ages of Populus euphratica along the lower Heihe River

    Science.gov (United States)

    Shubao Liu,; Yaning Chen,; Yapeng Chen,; Friedman, Jonathan M.; Gonghuan Fan,; Hati, Jarre Heng A.

    2015-01-01

    Investigation of the water sources used by trees of different ages is essential to formulate a conservation strategy for the riparian tree, P. euphratica. This study addressed the contributions of different potential water sources to P. euphratica based on levels of stable oxygen and hydrogen isotopes (δ18O, δ2H) in the xylem of different aged P. euphratica, as well as in soil water and groundwater along the lower Heihe River. We found significant differences in δ18O values in the xylem of different aged P. euphratica. Specifically, the δ18O values of young, mature and over-mature forests were −5.368(±0.252) ‰, −6.033(± 0.185) ‰ and −6.924 (± 0.166) ‰, respectively, reflecting the reliance of older trees on deeper sources of water with a δ18O value closer to that of groundwater. Different aged P. euphratica used different water sources, with young forests rarely using groundwater (mean 45 %), and mature and over-mature forests using water from deeper than 100 cm derived primarily from groundwater.

  4. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Wunderlich, Anja A.L.

    2012-01-01

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  5. Cefoxitin Injection

    Science.gov (United States)

    ... injection is used to treat infections caused by bacteria including pneumonia and other lower respiratory tract (lung) infections; and urinary tract, abdominal (stomach area), female reproductive organs, blood, ... by killing bacteria.Antibiotics such as cefoxitin injection will not work ...

  6. Golimumab Injection

    Science.gov (United States)

    ... damaged, and do not use an auto-injection device if the security seal is broken. Look through the viewing window on the prefilled syringe or auto-injection device. The liquid inside should be clear and colorless ...

  7. Doxycycline Injection

    Science.gov (United States)

    ... may have been exposed to anthrax in the air. Doxycycline injection is in a class of medications ... decrease the effectiveness of hormonal contraceptives (birth control pills, patches, rings, or injections). Talk to your doctor ...

  8. Abaloparatide Injection

    Science.gov (United States)

    ... injection may cause osteosarcoma (bone cancer) in laboratory rats. It is not known whether abaloparatide injection increases ... too have too much calcium in the blood, hyperparathyroidism (condition in which the body produces too much ...

  9. Paliperidone Injection

    Science.gov (United States)

    Paliperidone extended-release injections (Invega Sustenna, Invega Trinza) are used to treat schizophrenia (a mental illness that ... interest in life, and strong or inappropriate emotions). Paliperidone extended-release injection (Invega Sustenna) is also used ...

  10. Doripenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such ... if you are allergic to doripenem injection; other carbapenem antibiotics such as imipenem/cilastatin (Primaxin) or meropenem ( ...

  11. Ceftriaxone Injection

    Science.gov (United States)

    Ceftriaxone injection is used to treat certain infections caused by bacteria such as gonorrhea (a sexually transmitted ... skin, urinary tract, blood, bones, joints, and abdomen. Ceftriaxone injection is also sometimes given before certain types ...

  12. Nalbuphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  13. Naltrexone Injection

    Science.gov (United States)

    ... Videos & Tools Español You Are Here: Home → Drugs, Herbs and Supplements → Naltrexone Injection URL of this page: ... become depressed and sometimes try to harm or kill themselves. Receiving naltrexone injection does not decrease the ...

  14. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    Science.gov (United States)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play an important role in the early alteration of the planet. However, our understanding of impact-induced hydrothermal systems remains

  15. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    Science.gov (United States)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play an important role in the early alteration of the planet. However, our understanding of impact-induced hydrothermal systems remains unclear. If most of the water mobilized by an impact

  16. Point processes statistics of stable isotopes: analysing water uptake patterns in a mixed stand of Aleppo pine and Holm oak

    Directory of Open Access Journals (Sweden)

    Carles Comas

    2015-04-01

    Full Text Available Aim of study: Understanding inter- and intra-specific competition for water is crucial in drought-prone environments. However, little is known about the spatial interdependencies for water uptake among individuals in mixed stands. The aim of this work was to compare water uptake patterns during a drought episode in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill., using the isotope composition of xylem water (δ18O, δ2H as hydrological marker. Area of study: The study was performed in a mixed stand, sampling a total of 33 oaks and 78 pines (plot area= 888 m2. We tested the hypothesis that both species uptake water differentially along the soil profile, thus showing different levels of tree-to-tree interdependency, depending on whether neighbouring trees belong to one species or the other. Material and Methods: We used pair-correlation functions to study intra-specific point-tree configurations and the bivariate pair correlation function to analyse the inter-specific spatial configuration. Moreover, the isotopic composition of xylem water was analysed as a mark point pattern. Main results: Values for Q. ilex (δ18O = –5.3 ± 0.2‰, δ2H = –54.3 ± 0.7‰ were significantly lower than for P. halepensis (δ18O = –1.2 ± 0.2‰, δ2H = –25.1 ± 0.8‰, pointing to a greater contribution of deeper soil layers for water uptake by Q. ilex. Research highlights: Point-process analyses revealed spatial intra-specific dependencies among neighbouring pines, showing neither oak-oak nor oak-pine interactions. This supports niche segregation for water uptake between the two species.

  17. Numerical Simulation of Geostress and Pore Pressure Evolution around Oil or Water Well under Different Injection-Production Ratio

    Directory of Open Access Journals (Sweden)

    Liu Jian-jun

    2013-01-01

    Full Text Available Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore pressure and stress changes with time under different injection-production ratio, which disclosed the dynamic change regulation of pore pressure and stress of surrounding rock nearby the injection and production wells. These results may have implications in the treatment of wellbore stability and optimizing the injection and production processes during oil and gas production.

  18. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral ex