WorldWideScience

Sample records for stable surface structure

  1. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    OpenAIRE

    Kimura, Yusuke

    2018-01-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface i...

  2. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  3. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    OpenAIRE

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2015-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP....

  4. Effect of surface texture and structure on the development of stable fluvial armors

    Science.gov (United States)

    Bertin, Stephane; Friedrich, Heide

    2018-04-01

    Stable fluvial armors are found in river systems under conditions of partial sediment transport and limited sediment supply, a common occurrence in nature. Stable armoring is also readily recreated in experimental flumes. Initially, this bed stabilizing phenomenon was examined for different flow discharges and solely related to surface coarsening and bedload transport reduction. The models developed suggest a specific armor composition (i.e., texture) dependent on the parent bed material and formative discharge. Following developments in topographic remote sensing, recent research suggests that armor structure is an important control on bed stability and roughness. In this paper, replicated flume runs during which digital elevation models (DEMs) were collected from both exposed and flooded gravel beds are used to interpret armoring manifestations and to assess their replicability. A range of methodologies was used for the analysis, providing information on (i) surface grain size and orientation, (ii) bed-elevation distributions, (iii) the spatial coherence of the elevations at the grain-scale, (iv) surface slope and aspect, (v) grain imbrication and (vi) the spatial variability in DEM properties. The bed-surface topography was found to be more responsive than bed-material size to changes in flow strength. Our experimental results also provide convincing evidence that gravel-beds' response to water-work during parallel degradation is unique (i.e., replicable) given the formative parameters. Based on this finding, relationships between the armors' properties and formative parameters are proposed, and are supported by adding extensive data from previous research.

  5. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  6. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  7. Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization

    Directory of Open Access Journals (Sweden)

    Kumar Suresh

    2016-06-01

    Full Text Available This work presents a study on the surface morphology, structure and optical behavior of stable phase cadmium sulphide (CdS nanoparticles synthesized via co-precipitation technique. Scanning electron microscopy (SEM analysis has been employed to study a cluster formation in the aggregated nanoparticles. An image analysis approach using ImageJ has been used to measure the size of nanoparticles from the SEM micrographs. Fourier transform infrared spectroscopic (FT-IR analysis identified absorption peaks of Cd–S stretching along with moisture content. X-ray diffraction (XRD analysis showed that CdS nanoparticles crystallized in wurtzite structure with a preferential orientation along (0 0 2 plane. The particle size, microstrain and lattice constants have been evaluated using XRD data. The lattice parameters of these nanoparticles were found to be shorter than the bulk value which led to lattice contraction. The optical absorption study showed a blue shift in the fundamental absorption edge indicating a quantum size effect.

  8. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  9. Atomic structure of a stable high-index Ge surface: G2(103)-(4x1)

    DEFF Research Database (Denmark)

    Seehofer, L.; Bunk, O.; Falkenberg, G.

    1997-01-01

    Based on scanning tunneling microscopy and surface X-ray diffraction, we propose a complex structural model for the Ge(103)-(4 x 1) reconstruction. Each unit cell contains two (103) double steps, which gives rise to the formation of stripes of Ge atoms oriented in the [] direction....... The stripes and the spaces between them are covered with threefold-coordinated Ge adatoms. Charge is transferred from the bulk-like edge atoms of the double steps to the adatoms. The formation of the reconstruction can be explained in terms of stress relief, charge transfer, and minimization of the dangling...

  10. Ultra-stable Molecule-Surface Architectures at Metal Oxides: Structure, Bonding, and Electron-transfer Processes

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Robert John

    2013-12-07

    Research funded by this project focused on the development of improved strategies for functionalization of metal oxides to enhance charge-transfer processes relevant to solar energy conversion. Initial studies included Fe2O3, WO3, TiO2, SnO2, and ZnO as model oxide systems; these systems were chosen due to differences in metal oxidation state and chemical bonding types in these oxides. Later studies focused largely on SnO2 and ZnO, as these materials show particularly promising surface chemistry, have high electron mobility, and can be readily grown in both spherical nanoparticles and as elongated nanorods. New molecules were synthesized that allowed the direct chemical assembly of novel nanoparticle ?dyadic? structures in which two different oxide materials are chemically joined, leading to an interface that enhances the separation of of charge upon illumination. We demonstrated that such junctions enhance photocatalytic efficiency using model organic compounds. A separate effort focused on novel approaches to linking dye molecules to SnO2 and ZnO as a way to enhance solar conversion efficiency. A novel type of surface binding through

  11. Stable structures and potential energy surface of the metallic clusters: Ni, Cu, Ag, Au, Pd, and Pt

    Science.gov (United States)

    Wu, Xia; Sun, Yan

    2017-06-01

    Metallic clusters have been widely studied due to their special electrical, optical, and catalytic properties. The many-body Gupta potential is applied to describe the interatomic interaction of Ni, Cu, Ag, Au, Pd, and Pt clusters, and their global minimal structures within 100 atoms are optimized using dynamic lattice searching (DLS) method. The configurational distribution of global minima is analyzed, and the geometrical difference among these clusters is demonstrated. Results show that the dominant motif of Ni and Cu clusters is the icosahedron, and in Ag and Au clusters the number of decahedra is slightly larger than that of the icosahedra. However, more face-centered cubic (fcc), stacking fault fcc, and amorphous structures are formed in Au clusters than in Ag clusters. Furthermore, the main motif of Pd and Pt clusters is the decahedron. In particular, Ni98 adopts a Leary tetrahedral motif, and Pt54 is a central vacant icosahedron. The difference related to the potential parameters of these metallic clusters is further investigated by energy analysis. Moreover, the potential energy surfaces (PES) of 38-atom metallic clusters is characterized in terms of conformational analysis. It was found that the sequence of the number of local minima on the PES from large to low is Ni, Cu, Ag, Pt, Pd, and Au.

  12. Preparation of stable silica surfaces for surface forces measurement

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  13. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  14. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  15. Stable pair invariants of surfaces and Seiberg-Witten invariants

    NARCIS (Netherlands)

    Kool, M.

    2016-01-01

    The moduli space of stable pairs on a local surface X = KS is in general non-compact. The action of C ∗ on the fibres of X induces an action on the moduli space and the stable pair invariants of X are defined by the virtual localization formula. We study the contribution to these invariants of

  16. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface

    Science.gov (United States)

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  17. Highly stable superhydrophobic surfaces under flow conditions

    Science.gov (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  18. The stable moduli space of Riemann surfaces: Mumford's conjecture

    DEFF Research Database (Denmark)

    Madsen, I.; Weiss, Michael

    2007-01-01

    , one may replace the stable moduli space of Riemann surfaces by $B\\Gamma_{\\infty}$, where $\\Gamma_\\infty$ is the group of isotopy classes of automorphisms of a smooth oriented connected surface of ``large'' genus. Tillmann's theorem that the plus construction makes $B\\Gamma_{\\infty}$ into an infinite...

  19. How structurally stable are global socioeconomic systems?

    Science.gov (United States)

    Saavedra, Serguei; Rohr, Rudolf P; Gilarranz, Luis J; Bascompte, Jordi

    2014-11-06

    The stability analysis of socioeconomic systems has been centred on answering whether small perturbations when a system is in a given quantitative state will push the system permanently to a different quantitative state. However, typically the quantitative state of socioeconomic systems is subject to constant change. Therefore, a key stability question that has been under-investigated is how strongly the conditions of a system itself can change before the system moves to a qualitatively different behaviour, i.e. how structurally stable the systems is. Here, we introduce a framework to investigate the structural stability of socioeconomic systems formed by a network of interactions among agents competing for resources. We measure the structural stability of the system as the range of conditions in the distribution and availability of resources compatible with the qualitative behaviour in which all the constituent agents can be self-sustained across time. To illustrate our framework, we study an empirical representation of the global socioeconomic system formed by countries sharing and competing for multinational companies used as proxy for resources. We demonstrate that the structural stability of the system is inversely associated with the level of competition and the level of heterogeneity in the distribution of resources. Importantly, we show that the qualitative behaviour of the observed global socioeconomic system is highly sensitive to changes in the distribution of resources. We believe that this work provides a methodological basis to develop sustainable strategies for socioeconomic systems subject to constantly changing conditions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. In-induced stable ordering of stepped Si(553) surface

    Science.gov (United States)

    Chauhan, Amit Kumar Singh; Niazi, Asad; Nair, Lekha; Gupta, Govind

    2015-05-01

    The growth mechanism and adsorbate-induced surface morphology of metal atoms on semiconducting surfaces crucially determines the electronic and physicochemical properties of these metal/semiconductor systems. In this study, we investigate the kinetically controlled growth of indium (In) atoms on the high index stepped Si(553)-7 × 7 surface and the thermal stability of various novel In-induced superstructural phases formed during adsorption/desorption process. Auger electron spectroscopy analysis reveals that In adsorption at room temperature (RT) and at 350 °C, with a controlled incident flux of 0.0016 ML/s, proceeds in the Stranski-Krastanov growth mode where two dimensional (2D)/three dimensional (3D) islands are formed on top of two complete monolayers. At higher substrate temperature up to 450 °C, the growth of In atoms occurs in the form of islands on the bare Si(553) surface, and In coverage is limited to the sub-monolayer regime. During the thermal desorption of the RT grown In/Si(553) system, the In clusters rearrange themselves and an unusual "cluster to layer" transformation occurs on top of the stable monolayer. In situ low energy electron diffraction analysis during adsorption and desorption shows the development of various coverage and temperature dependent In-induced superstructural phases on Si(553) surface, such as: (8 × 2) after annealing at 520 °C with coverage 0.5 ML, (8 × 4) after annealing at 580 °C (∼1 ML coverage) and (553)-7 × 1 + (111)-√3 × √3-R30° at 0.3 ML (630 °C). These adsorbate-induced superstructural phases could potentially be utilized as templates for pattern assisted growth of various exotic 1D/2D structures for optoelectronics and photovoltaic applications.

  1. Long-term stable surface modification of DLC coatings

    Directory of Open Access Journals (Sweden)

    Gotzmann Gaby

    2017-09-01

    Full Text Available The use of coatings based on diamond like carbon (DLC for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.

  2. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction.

    Science.gov (United States)

    Song, Wenqiao; Ren, Zheng; Chen, Sheng-Yu; Meng, Yongtao; Biswas, Sourav; Nandi, Partha; Elsen, Heather A; Gao, Pu-Xian; Suib, Steven L

    2016-08-17

    Efficient bifunctional catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable due to their wide applications in fuel cells and rechargeable metal air batteries. However, the development of nonprecious metal catalysts with comparable activities to noble metals is still challenging. Here we report a one-step wet-chemical synthesis of Ni-/Mn-promoted mesoporous cobalt oxides through an inverse micelle process. Various characterization techniques including powder X-ray diffraction (PXRD), N2 sorption, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) confirm the successful incorporation of Ni and Mn leading to the formation of Co-Ni(Mn)-O solid solutions with retained mesoporosity. Among these catalysts, cobalt oxide with 5% Ni doping demonstrates promising activities for both ORR and OER, with an overpotential of 399 mV for ORR (at -3 mA/cm(2)) and 381 mV (at 10 mA/cm(2)) for OER. Furthermore, it shows better durability than precious metals featuring little activity decay throughout 24 h continuous operation. Analyses of cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), Raman, and O2-temperature-programmed desorption (O2-TPD) reveal that redox activity of Co(3+) to Co(4+) is crucial for OER performance, while the population of surface oxygen vacancies and surface area determine ORR activities. The comprehensive investigation of the intrinsic active sites for ORR and OER by correlating different physicochemical properties to the electrochemical activities is believed to provide important insight toward the rational design of high-performance electrocatalysts for ORR and OER reactions.

  3. DFT computations of the lattice constant, stable atomic structure and ...

    African Journals Online (AJOL)

    This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...

  4. In-induced stable ordering of stepped Si(553) surface

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Amit Kumar Singh [Physics of Energy Harvesting, (CSIR-NPL) , Dr. K.S. KrishnanRoad, New Delhi -110012 (India); Department of Physics, JMI, New Delhi 110025 (India); Niazi, Asad; Nair, Lekha [Department of Physics, JMI, New Delhi 110025 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting, (CSIR-NPL) , Dr. K.S. KrishnanRoad, New Delhi -110012 (India)

    2015-05-15

    Highlights: • Control growth of In on step Si(553) & thermal stability of novel superstructure. • Influence of temperature on growth modes (SK,VB) under different growth conditions. • In-induced superstructure: (8 × 2), (8 × 4), mixed (553)-7 × 1 + (111)√3 × √3R30° phases. - Abstract: The growth mechanism and adsorbate-induced surface morphology of metal atoms on semiconducting surfaces crucially determines the electronic and physicochemical properties of these metal/semiconductor systems. In this study, we investigate the kinetically controlled growth of indium (In) atoms on the high index stepped Si(553)-7 × 7 surface and the thermal stability of various novel In-induced superstructural phases formed during adsorption/desorption process. Auger electron spectroscopy analysis reveals that In adsorption at room temperature (RT) and at 350 °C, with a controlled incident flux of 0.0016 ML/s, proceeds in the Stranski–Krastanov growth mode where two dimensional (2D)/three dimensional (3D) islands are formed on top of two complete monolayers. At higher substrate temperature up to 450 °C, the growth of In atoms occurs in the form of islands on the bare Si(553) surface, and In coverage is limited to the sub-monolayer regime. During the thermal desorption of the RT grown In/Si(553) system, the In clusters rearrange themselves and an unusual “cluster to layer” transformation occurs on top of the stable monolayer. In situ low energy electron diffraction analysis during adsorption and desorption shows the development of various coverage and temperature dependent In-induced superstructural phases on Si(553) surface, such as: (8 × 2) after annealing at 520 °C with coverage 0.5 ML, (8 × 4) after annealing at 580 °C (∼1 ML coverage) and (553)-7 × 1 + (111)-√3 × √3-R30° at 0.3 ML (630 °C). These adsorbate-induced superstructural phases could potentially be utilized as templates for pattern assisted growth of various exotic 1D/2D structures for

  5. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    Science.gov (United States)

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-04

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Is bicarbonate stable in and on the calcite surface?

    Science.gov (United States)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 < pH < 6.35, where H2CO30 is the dominant dissolved species. When bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 < pH < 10.35. Our atomic scale data for the various calcite surface sites provide the needed input to improve and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure.

  7. Structure of a Stable G-Hairpin

    Czech Academy of Sciences Publication Activity Database

    Gajarský, M.; Zivkovic, M.L.; Stadlbauer, Petr; Pagano, B.; Fiala, R.; Amato, J.; Tomáška, L´.; Šponer, Jiří; Plavec, J.; Trantírek, L.

    2017-01-01

    Roč. 139, č. 10 (2017), s. 3591-3594 ISSN 0002-7863 R&D Projects: GA ČR GA13-28310S; GA ČR(CZ) GA16-13721S Institutional support: RVO:68081707 Keywords : g-quadruplex structures * human telomeric dna * single-stranded- dna * g-triplex Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 13.858, year: 2016

  8. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  9. Dynamics and control of twisting bi-stable structures

    Science.gov (United States)

    Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.

    2018-02-01

    Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states

  10. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua, E-mail: xuc0374@hotmail.com [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-05-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  11. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.

    Science.gov (United States)

    Wong, Tak-Sing; Kang, Sung Hoon; Tang, Sindy K Y; Smythe, Elizabeth J; Hatton, Benjamin D; Grinthal, Alison; Aizenberg, Joanna

    2011-09-21

    Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and

  12. Thermodynamics of Minerals Stable Near the Earth's Surface

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra

    2003-01-01

    OAK B262 Research and Education Activities We are working on developing calorimetric techniques for sulfide minerals. We have completed calorimetric studies of (Na, K, H3O) jarosites, of Na and K jarosite -alunite solid solutions, and of Cr6+ - containing jarosites. We are now working on phases containing As and Pb. These studies are important to issues of heavy metal pollution in the environment. A number of postdocs, graduate students, and undergrads have participated in the research. We have active collaboration with Dirk Baron, faculty at California State University, Bakersfield. In a collaboration with Peter Burns, Notre Dame University, we are working on thermochemistry of U6+ minerals. Navrotsky has participated in a number of national workshops that are helping to define the interfaces between nanotechnology and earth/environmental science. Major Findings Our first finding on uranyl minerals shows that studtite, a phase containing structural peroxide ion, is thermodynamically unstable in the absence of a source of aqueous peroxide ion but is thermodynamically stable in contact with a solution containing peroxide concentrations expected for the radiolysis of water in contact with spent nuclear fuel. This work is in press in Science. We have a consistent thermodynamic data set for the (Na, K, H3O) (Al, Fe) jarosite, alunite minerals and for Cr6+ substituting for S6+ in jarosite. The latter phases represent one of the few solid sinks for trapping toxic Cr6+ in groundwater. Contributions within Discipline Better understanding of thermodynamic driving for and constraints on geochemical and environmental processes

  13. Thermochemistry of minerals stable near the earth's surface

    International Nuclear Information System (INIS)

    1990-01-01

    The present proposal continues the evolution, of changing emphasis from silicate melts to glass and toward crystalline minerals stable in the shallow crustal environment, particularly amphiholes, micas, and related hydrous phases adding zeolites and carbonates to our areas of interest. This is made possible both by recent advances in our high-temperature calorimetric techniques and by an interest in extending our ideas about the systematics of ionic substitutions to more complex structures. The proposal presents the following: (a) a listing of papers, theses, and abstracts in the past 3 years supported by the present grant, (b) a summary of work on glasses containing highly charged cations and on some related crystalline phases, with proposed new directions, (c) a discussion of advances in calorimetric methods and what new possibilities they open, (d) completed and planned work on amphiboles, micas, and clays, (e) completed and proposed work on amorpous low temperature materials, (f) proposed work on zeolites, and (g) proposed work on carbonates and (h) a discussion of the energy relevance of the above projects. This is followed by the required forms, budget pages, and CV. 34 refs., 5 figs., 1 tab

  14. Surface roughness from highlight structure

    NARCIS (Netherlands)

    Lu, Rong; Koenderink, Jan J.; Kappers, Astrid M L

    1999-01-01

    Highlights are due to specular reflection and cause the lustrous or mirrorlike appearance of many material surfaces. We investigated in detail the structure of highlight patterns that are due to material surface roughness. We interpret results in terms of a simple model of a random Gaussian surface.

  15. Bioinspired structured surfaces.

    Science.gov (United States)

    Bhushan, Bharat

    2012-01-24

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. Various natural objects which provide functionality of commercial interest have been characterized to understand how a natural object provides functionality. We have modeled and fabricated structures in the lab using nature's route and developed optimum structures. Once it is understood how nature does it, optimum structures have been fabricated using smart materials and fabrication techniques. This feature article provides an overview of four topics: Lotus effect, rose petal effect, gecko feet, and shark skin.

  16. Recent developments in low cost stable structures for space

    International Nuclear Information System (INIS)

    Thompson, T.C.; Grastataro, C.; Smith, B.G.

    1994-01-01

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) is advancing the development of low cost, lightweight, composite technology for use in spacecraft and stable structures. The use of advanced composites is well developed, but the application of an all-composite tracker structure has never been achieved. This paper investigates the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small satellites, using technology directly applicable to central tracking in a high luminosity environment. The satellite program Fast On-Orbit Recording of Transient Events (FORTE) is the second in a series of satellites to be launched into orbit for the US Department of Energy (DOE). This paper will discuss recent developments in the area of low cost composites, used for either spacecraft or ultra stable applications in high energy physics (HEP) detectors. The use of advanced composites is a relatively new development in the area of HEP. The Superconducting Super Collider (SSC) spawned a new generation of Trackers which made extensive use of graphite fiber reinforced plastic (GFRP) composite systems. LANL has designed a structure employing new fabrication technology. This concept will lower the cost of composite structures to a point that they may now compete with conventional materials. This paper will discuss the design, analysis and proposed fabrication of a small satellite structure. Central tracking structures using advanced materials capable of operating in an adverse environment typical of that found in a high luminosity collider could use identical concepts

  17. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  18. Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity

    International Nuclear Information System (INIS)

    Bera, Susanta; Khan, Hasmat; Biswas, Indranil; Jana, Sunirmal

    2016-01-01

    Highlights: • Polyaniline (PANI) hybridized ZnO nanorods was synthesized by solution method. • Surface defects were found in the nanorods. • The hybrid material exhibited an enhancement in visible light absorption. • A long-term stable photoelectrochemical activity of the material was found. • Advancement in the properties would be PANI hybridization and surface defects. - Abstract: We report surfactant/template free precursor solution based synthesis of polyaniline (PANI) hybridized surface defective ZnO nanorods by a two-step process. Initially, ZnO nanorods have been prepared at 95 °C, followed by hybridization (coating) of PANI onto the ZnO via in situ polymerization of aniline monomer, forming ZnO-PANI nanohybrid (ZP). The structural properties of ZP have been analyzed by X-ray diffraction (XRD) and transmission electron microscopic (TEM) studies. The presence of surface defects especially the oxygen vacancies in ZnO has been characterized by photoluminescence emission, high resolution TEM, X-ray photoelectron spectroscopy (XPS) and micro-Raman spectral measurements. The chemical interaction of PANI with ZnO has been examined by Fourier transform infrared (FTIR) and XPS analyses. A significant enhancement in visible absorption of ZP sample is found as evidenced from UV–vis diffused reflectance spectral study. BET nitrogen adsorption-desorption isotherm shows an improved textural property (pore size, pore volume) of ZP. Moreover, a long-term stable photoelectrochemical activity (PEC) of ZP is found compare to pristine ZnO. The synergic effect of PANI hybridization and the presence of surface defects in ZnO NRs can enhance the PEC by prolonging the recombination rate of photogenerated charge carriers. The effect can also provide large number of active sites to make electrolyte diffusion and mass transportation easier in the nanohybrid. This simple synthesis strategy can be adopted for PANI hybridization with different metal oxide semiconductors

  19. Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Susanta; Khan, Hasmat [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India); Biswas, Indranil [Materials Characterization and Instrumentation Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India); Jana, Sunirmal, E-mail: sjana@cgcri.res.in [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), 196 Raja S.C. Mullick Road, P.O. Jadavpur University, Kolkata 700 032, West Bengal (India)

    2016-10-15

    Highlights: • Polyaniline (PANI) hybridized ZnO nanorods was synthesized by solution method. • Surface defects were found in the nanorods. • The hybrid material exhibited an enhancement in visible light absorption. • A long-term stable photoelectrochemical activity of the material was found. • Advancement in the properties would be PANI hybridization and surface defects. - Abstract: We report surfactant/template free precursor solution based synthesis of polyaniline (PANI) hybridized surface defective ZnO nanorods by a two-step process. Initially, ZnO nanorods have been prepared at 95 °C, followed by hybridization (coating) of PANI onto the ZnO via in situ polymerization of aniline monomer, forming ZnO-PANI nanohybrid (ZP). The structural properties of ZP have been analyzed by X-ray diffraction (XRD) and transmission electron microscopic (TEM) studies. The presence of surface defects especially the oxygen vacancies in ZnO has been characterized by photoluminescence emission, high resolution TEM, X-ray photoelectron spectroscopy (XPS) and micro-Raman spectral measurements. The chemical interaction of PANI with ZnO has been examined by Fourier transform infrared (FTIR) and XPS analyses. A significant enhancement in visible absorption of ZP sample is found as evidenced from UV–vis diffused reflectance spectral study. BET nitrogen adsorption-desorption isotherm shows an improved textural property (pore size, pore volume) of ZP. Moreover, a long-term stable photoelectrochemical activity (PEC) of ZP is found compare to pristine ZnO. The synergic effect of PANI hybridization and the presence of surface defects in ZnO NRs can enhance the PEC by prolonging the recombination rate of photogenerated charge carriers. The effect can also provide large number of active sites to make electrolyte diffusion and mass transportation easier in the nanohybrid. This simple synthesis strategy can be adopted for PANI hybridization with different metal oxide semiconductors

  20. Is bicarbonate stable in and on the calcite surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Rodriguez Blanco, Juan Diego; Stipp, Susan Louise Svane

    2016-01-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3− CO32− + H+, when HCO3− is included in, and adsorbed on, a calcite surface. We have used cluster models (80–100 atoms) to represent...... the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from −6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite...... even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution...

  1. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  2. Structurally tuned iridescent surfaces inspired by nature

    International Nuclear Information System (INIS)

    Deparis, Olivier; Rassart, Marie; Vandenbem, Cedric; Welch, Victoria; Vigneron, Jean Pol; Lucas, Stephane

    2008-01-01

    Iridescent surfaces exhibit vivid colours which change with the angle of incidence or viewing due to optical wave interference in the multilayer structure present at the wavelength scale underneath the surface. In nature, one can find examples of iridescent Coleoptera for which the hue changes either greatly or slightly with the angle. Because these species typically make these structures from a single biological material (usually chitin) and air or water as the low refractive index component, they have evolved by adjusting the layer thicknesses in order to display quite different iridescent aspects. Taking inspiration from this proven strategy, we have designed and fabricated periodic TiO 2 /SiO 2 multilayer films in order to demonstrate the concept of structurally tuned iridescent surfaces. Titanium or silicon oxide layers were deposited on a glass substrate using dc reactive or RF magnetron sputtering techniques, respectively. Two structures were designed for which the period and the TiO 2 /SiO 2 layer thickness ratio were varied in such a way that the films displayed radically different iridescent aspects: a reddish-to-greenish changing hue and a stable bluish hue. The fabricated samples were characterized through specular reflectance/transmittance measurements. Modelling of transmittance spectra using standard multilayer film theory confirmed the high quality of the twelve-period Bragg reflectors. The chromaticity coordinates, which were calculated from measured reflectance spectra taken at different angles, were in accordance with theoretical predictions

  3. The structure of stepped surfaces

    International Nuclear Information System (INIS)

    Algra, A.J.

    1981-01-01

    The state-of-the-art of Low Energy Ion Scattering (LEIS) as far as multiple scattering effects are concerned, is discussed. The ion fractions of lithium, sodium and potassium scattered from a copper (100) surface have been measured as a function of several experimental parameters. The ratio of the intensities of the single and double scattering peaks observed in ion scattering spectroscopy has been determined and ion scattering spectroscopy applied in the multiple scattering mode is used to determine the structure of a stepped Cu(410) surface. The average relaxation of the (100) terraces of this surface appears to be very small. The adsorption of oxygen on this surface has been studied with LEIS and it is indicated that oxygen absorbs dissociatively. (C.F.)

  4. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  5. Stable isotope labeling of oligosaccharide cell surface antigens

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A. [and others

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  6. Structure of the moon's surface

    CERN Document Server

    Fielder, Gilbert

    1961-01-01

    Structure of the Moon's Surface aims to assemble and marshal relevant matter, and to produce a largely unprejudiced text which brings lunar studies up to date and stresses the importance of certain features of the Moon which have frequently been disregarded in the past, largely because of lack of knowledge about them. The book contains 14 chapters organized into two parts. Part I reviews and summarizes important physical problems. These include the liberations of the moon; height determinations of points of the moon's surface; the figure of the moon; and the moon's temperature and atmosphere.

  7. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  8. Structure and Dynamics of Thin Ionomer Films: a Key to A Stable Fuel Cell Membrane.

    Science.gov (United States)

    Perahia, Dvora

    2000-03-01

    The technology for solid polymeric electrolytic membranes for a fuel cells, calls for the thinnest film which is electrochemically stable. At present, none supported polymeric solid state fuel cell membranes, thinner than 50 microns, fail mechanically during fuel cell operation. When approaching the thin film limits, interfacial effects become significant to structure dynamics and consequently, the stability of the membranes. Our work focuses on understanding the interfacial effects on thin per-fluorinated ionomer films, including interfacial effects on the thin films themselves and nanotubes-thin film complexes, mimicking the catalyst-ionomer complexes. In particular we investigated the dynamics and structure in 500 angstrom and less, films made by several perfluorinated ionomers, cast on a solid support. Both the films and their parent solutions were investigated with the goal of resolving the factors that affect the stability in the ultra thin regime. AFM/STM and X-ray and neutron reflectivity were used to investigate the thin films and small angle neutron scattering was utilized to the study of the solutions. Films were both spin-coated and self assembles from solutions on a model oxidized single crystal silicon wafer, treated with HF. When coated from molecular solutions, the films tend to dewet on a time scale of minutes to hours. With increasing concentrations, above the critical micellar concentration of the ionomers in water/alcohol, stable films on the order of 200-500 angstroms were formed. While self-assembled films were found to be stable at temperatures close to Tg of the ionomer, spin-coated ones partially dewet. The surface structure obtained, exhibit periodicity on different length scales, depending on the concentration of the polymer in the solution from which the film was assembled. In the ultra dilute regime, micelles were detected at the solid interface. Films formed from dilute solutions exhibit fractal nature with a fractal dimension varying

  9. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    Science.gov (United States)

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  10. Thermally-Stable High Strain Deployable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is for the development of a thermally-stable composite made of carbon fibers and elastomeric resin. This combination of materials will allow...

  11. Wetting of geometrically structured surfaces

    CERN Document Server

    Bruschi, L; Mistura, G

    2003-01-01

    We review recent experiments on the growth of cryogenic fluids adsorbed on various substrates structured in different ways. On a very well defined array of microscopic linear wedges sculpted on thin Si wafers, the film mass is found to diverge as a power law in the chemical potential difference from saturation with an exponent x=-1.96+-0.10, in very good agreement with recent scaling analysis results. For the other, more irregular patterns, the observed exponents range from -0.95 to -2. In any case, they are always much smaller than those found for flat or rough surfaces.

  12. Regional Comparisons of Oceanic Food Web Structure Using Stable Isotopes

    Science.gov (United States)

    Choy, A.; Drazen, J.; Popp, B. N.; Robison, B. H.

    2016-02-01

    Food chain length, or the number of trophic steps between primary producers and apex predators within an ecosystem, is a key determinant of ecosystem structure, including overall efficiency, stability, and productivity. Here, we quantitatively estimate food chain length for three pelagic ecosystems characterized by distinct biogeochemical and oceanographic regimes: the Northern California Current (NCC), the North Pacific Subtropical Gyre (NPSG), and the Gulf of California (GoC). From each region, ecologically equivalent organisms were selected from each of four successive trophic steps, including zooplankton (primary consumers), zooplanktivores (secondary consumers), piscivores (tertiary consumers), and higher order predators. Bulk tissue δ15N values of the organisms from all four trophic steps spanned ranges of approximately 9.8‰ (NCC), 1.4‰ (NPSG), and 2.1‰ (GoC). Regional variations in nitrogen biogeochemistry, however, can alter isotopic baselines and food web dynamics, ultimately complicating bulk isotope measurements across regions. Thus, we apply amino acid nitrogen isotope measurements to quantitatively measure and compare food chain length across consumers from the three regions, accounting for biogeochemical disparities in isotopic baseline. Implications for ecosystem production and efficiency are discussed, including the potential for these different ecosystems to withstand environmental change, including shifting oxygen levels and surface productivity.

  13. Surface structure of AU3Cu(001)

    DEFF Research Database (Denmark)

    Eckstein, G.A.; Maupai, S.; Dakkouri, A.S.

    1999-01-01

    The surface morphology, composition, and structure of Au3Cu(001) as determined by scanning tunneling microscopy and surface x-ray diffraction are presented. Atomic resolution STM images reveal distinctive geometric features. The analysis of the surface x-ray diffraction data provides clear evidence...... for the surface structure. [S0163-1829(99)04535-X]....

  14. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab Initio Calculations

    Science.gov (United States)

    Slassi, A.; Hammi, M.; El Rhazouani, O.

    2017-07-01

    The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.

  15. Systematic screening of different surface modifiers for the production of physically stable nanosuspensions.

    Science.gov (United States)

    Lestari, Maria L A D; Müller, Rainer H; Möschwitzer, Jan P

    2015-03-01

    The role of a surface modifier is important in the formation of stable nanosuspensions. In this study, a simple and systematic screening method for selecting optimum surface modifiers was performed by utilizing a low-energy wet ball milling method. Nine surface modifiers from different classes with different stabilization mechanisms were applied on six different models of active pharmaceutical ingredients (API). Particle size analysis showed that at concentration five times higher than the critical micelle concentration, SDS and sodium cholate (anionic surfactant) showed the highest percent success to produce stable nanosuspensions with particle size smaller than 250 nm. Similar findings were also shown by poloxamer 188 (nonionic surfactant) and hydroxypropylmethylcellulose E5 (polymeric stabilizer) at concentration 1% (w/v) and 0.8% (w/v), respectively. In addition, combinations of anionic surfactant and nonionic surfactant as well as combinations of anionic surfactant and polymeric stabilizer showed high percent success in the formation of stable nanosuspensions. In general, no correlation can be found between the physicochemical characteristics of the model API (molecular weight, melting point, log P, pKa, and crystallinity) with its feasibility to be nanosized. The concentration and the principle of stabilization of surface modifier determine the formation of stable nanosuspensions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion

    DEFF Research Database (Denmark)

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne

    2015-01-01

    Stable primary functionalization of metal surfaces plays a significant role in reliable secondary attachment of complex functional molecules used for the interfacing of metal objects and nanomaterials with biological systems. In principle, this can be achieved through chemical reactions either in...

  17. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  18. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Hye Min; Lee, Won-Jae; Lee, Chang-Woo; Kim, Tae-il; Lee, Jong-Kwon; Jeong, Jayoung; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    An attempt was made to control the surface charge of colloidal silica nanoparticles with 20 nm and 100 nm diameters. Untreated silica nanoparticles were determined to be highly negatively charged and have stable hydrodynamic sizes in a wide pH range. To change the surface to a positively charged form, various coating agents, such as amine containing molecules, multivalent metal cation, or amino acids, were used to treat the colloidal silica nanoparticles. Molecules with chelating amine sites were determined to have high affinity with the silica surface to make agglomerations or gel-like networks. Amino acid coatings resulted in relatively stable silica colloids with a modified surface charge. Three amino acid moiety coatings (L-serine, L-histidine, and L-arginine) exhibited surface charge modifying efficacy of L-histidine > L-arginine > L-serine and hydrodynamic size preservation efficacy of L-serine > L-arginine > L-histidine. The time dependent change in L-arginine coated colloidal silica was investigated by measuring the pattern of the backscattered light in a Turbiscan™. The results indicated that both the 20 nm and 100 nm L-arginine coated silica samples were fairly stable in terms of colloidal homogeneity, showing only slight coalescence and sedimentation. PMID:25565824

  19. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  20. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  1. Importance of surface structure on dissolution of fluorite: Implications for surface dynamics and dissolution rates

    Science.gov (United States)

    Godinho, J. R. A.; Piazolo, S.; Balic-Zunic, T.

    2014-02-01

    Dissolution rates are usually calculated as a function of surface area, which is assumed to remain constant ignoring the changes occurring on the surface during dissolution. Here we present a study of how topography of natural fluorite surfaces with different orientation changes during up to 3200 h of dissolution. Results are analyzed in terms of changes in surface area, surface reactivity and dissolution rates. All surfaces studied present fast changes in topography during the initial 200 h of dissolution. The controlling factors that cause the development of topography are the stability of the step edges forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces continue to present significant changes in topography, while for others the topography tends to remain approximately constant. The observed variation of dissolution rates are attributed to a decrease of the density of step edges on the surface and the continuous increase in exposure of more stable surfaces. Calculations of dissolution rates, which assume that dissolution rates are directly proportional to surface area, are not valid for the type of surfaces studied. Instead, to develop accurate kinetic dissolution models and more realistic stochastic dissolution simulations the surface reactivity, determined by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure.

  2. Hygro-Thermal Transient Analysis for Highly Stable Structures

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude; Kanoute, P; Ribeiro, R

    1999-01-01

    This paper presents the results obtained with the simulations of a sandwich rectangular plate made of carbon/epoxy composite when subjected to temperature and humidity cycles. Fickian diffusion process, moisture transport along the interfaces and damage caused by slipping and debonding between the components of the microscopic structure are considered. The application of the design methodology to a real structure is shown.

  3. Surface magnetic structures in amorphous ferromagnetic microwires

    International Nuclear Information System (INIS)

    Usov, N.A.; Serebryakova, O.N.; Gudoshnikov, S.A.; Tarasov, V.P.

    2017-01-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  4. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  5. Active structural control with stable fuzzy PID techniques

    CERN Document Server

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  6. An Energy stable Monolithic Eulerian Fluid-Structure Numerical Scheme *

    OpenAIRE

    Pironneau , Olivier

    2017-01-01

    The conservation laws of continuum mechanic written in an Eulerian frame make no difference between fluids and solids except in the expression of the stress tensors, usually with Newton's hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown , monolithic methods for fluid structure interactions (FSI) are built. In this article such a formulation is analyzed when the fluid is compressible and the fluid is incompressible. The i...

  7. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  8. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  9. A stable metal-organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture

    NARCIS (Netherlands)

    Bao, S.J.; Krishna, R.; He, Y.B.; Qin, J.S.; Su, Z.M.; Li, S.L.; Xie, W.; Du, D.Y.; He, W.W.; Zhang, S.R.; Lan, Y.Q.

    2015-01-01

    An air-stable tetrazolate-containing framework, [ZN(2)L(2)]center dot 2DMF (NENU-520, H2L = 4-(1H-tetrazole-5-yl) biphenyl-4-carboxylic acid), with uncoordinated N atoms on its internal surface was solvothermally synthesized and structurally characterized. This metal-organic framework (MOF)

  10. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, Wolfgang M. H.; Huang, Yin-Yan

    1998-01-01

    Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

  11. Numerically stable fluid–structure interactions between compressible flow and solid structures

    KAUST Repository

    Grétarsson, Jón Tómas

    2011-04-01

    We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. © 2011 Elsevier Inc.

  12. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  13. Photoelectric effect in surface-barrier structures

    International Nuclear Information System (INIS)

    Kononenko, V.K.; Tupenevich, P.A.

    1985-08-01

    Deviations from the Fowler law were observed when investigating photoelectric emission in p-type ZnTe surface-barrier structures. The revealed peculiarities of the structure photosensitivity spectrum are explained by the electron transitions involving surface states at the metal-semiconductor interface. (author)

  14. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  15. Abdominal muscle EMG-activity during bridge exercises on stable and unstable surfaces.

    Science.gov (United States)

    Czaprowski, Dariusz; Afeltowicz, Anna; Gębicka, Anna; Pawłowska, Paulina; Kędra, Agnieszka; Barrios, Carlos; Hadała, Michał

    2014-08-01

    To assess abdominal muscles (AM) activity during prone, side, and supine bridge on stable and unstable surfaces (BOSU, Swiss Ball). Prospective comparison study. Research laboratory. Thirty-three healthy volunteers from a university population. Surface electromyography of the rectus abdominis (RA), the external oblique (EO) and the internal oblique with the transversus abdominis (IO-TA). The AM exhibited the highest activity during prone bridge on a Swiss Ball (RA, EO, IO-TA 44.7 ± 19.2, 54.7 ± 22.9, 36.8 ± 18.6 in % of MVC, respectively). The lowest activity was observed during supine bridge on a stable surface and a BOSU (under 5.0). The lowest ratio analyzed on the basis of the relation of EO and IO-TA activity to RA was obtained during prone bridge on the Swiss Ball (1.4 ± 0.7 for EO, 0.9 ± 0.5 for IO-TA). The highest ratio was obtained during prone bridge on stable surface and supine bridges. The highest level of activity in the abdominal muscles is achieved during prone bridge on a Swiss Ball. However, this exercise provided the lowest activity of the EO and IO-TA in relation to RA. It is essential to conduct further studies verifying the usefulness of using Swiss Ball during core stability training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2017-05-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  17. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  18. Stable Titania Nanostructures on Stainless Steel Coronary Stent Surface for Enhanced Corrosion Resistance and Endothelialization.

    Science.gov (United States)

    Mohan, Chandini C; Cherian, Aleena Mary; Kurup, Sujish; Joseph, John; Nair, Manitha B; Vijayakumar, Maniyal; Nair, Shantikumar V; Menon, Deepthy

    2017-06-01

    Stainless steel (SS) coronary stents continue to present risk of in-stent restenosis that impact its long term safety and efficacy. The present work focuses on developing a drug-free and polymer-less surface on coronary stents by utilizing a titania (TiO 2 ) nanotexturing approach through hydrothermal processing, that will offer improved stent performance in vivo. Mechanically stable and durable nanotextured coatings are obtained on SS stents that also offer good corrosion resistance. In vitro vascular cell (endothelial and smooth muscle cells) studies on surface modified SS show preferential rapid endothelialization with enhanced nitric oxide production and reduce smooth muscle cell proliferation, in comparison to unmodified SS. In vivo evaluation of the nanotextured stents after subcutaneous implantation in rabbits show reduced irritability and minimal localized inflammatory response. These beneficial effects suggest that the stable, easily scalable titania nanosurface modification strategy on coronary stent surfaces can be a much cheaper alternative to drug eluting stents in addressing in-stent restenosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Assessing the Impact of Sublimation on the Stable Water Isotope Signal of Surface Ice

    Science.gov (United States)

    Dennis, D. P.; Ehrenfeucht, S.; Marchant, D. R.

    2017-12-01

    Sublimation is often a significant, if not the dominant, mechanism for ablation in polar and high elevation glacial systems. Previous field studies on firn and ice have suggested that sublimation can enrich the stable water isotope (δD and δ18O) signatures of these exposed materials. Several additional studies have attempted to replicate this effect through laboratory experiments. However, neither the magnitude of alteration caused by sublimation nor the maximum depth at which ice is affected are well-constrained. The effect of sublimation-induced alteration on the original meteoric signal relative to other post-depositional processes is additionally unknown. Here, we present the results of an experimental study on the effect of sublimation on stable water isotope ratios in surface ice. Using high-resolution data, we attempt to assess the suitability of δD and δ18O in near-surface and exposed ice for use as paleoclimate proxies. This type of analysis is particularly useful for future studies of ice from hyper-arid polar regions like the Antarctic McMurdo Dry Valleys, and may be extended to icy planetary bodies, including surface ice on Mars.

  20. An Investigation of Ni2P Single Crystal Surfaces : Structure, Electronic State and Reactivity

    OpenAIRE

    Yuan, Qiuyi; Ariga, Hiroko; Asakura, Kiyotaka

    2015-01-01

    Ni2P has demonstrated high catalytic activity for hydrodesulfurization and has recently been employed as a catalyst in a variety of other reactions. We have thoroughly reviewed the literature concerning Ni2P single crystal surfaces, with the aim of determining the relationship between surface structure and catalytic properties. Published results to date indicate that Ni2P single crystal surfaces exhibit reconstructed structures, and so the bulk terminated structure may not be stable. We have ...

  1. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    Science.gov (United States)

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-03-09

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  2. High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles.

    Science.gov (United States)

    Huang, Ning; Xu, Yanhong; Jiang, Donglin

    2014-11-27

    Protection of metal nanoparticles from agglomeration is critical for their functions and applications. The conventional method for enhancing their stability is to cover them with passivation layers to prevent direct contact. However, the presence of a protective shell blocks exposure of the metal species to reactants, thereby significantly impeding the nanoparticles' utility as catalysts. Here, we report that metal nanoparticles can be prepared and used in a surface-exposed state that renders them inherently catalytically active. This strategy is realised by spatial confinement and electronic stabilisation with a dual-module mesoporous and microporous three-dimensional π-network in which surface-exposed nanoparticles are crystallised upon in situ reduction. The uncovered palladium nanoparticles serve as heterogeneous catalysts that are exceptionally active in water, catalyse unreactive aryl chlorides for straightforward carbon-carbon bond formation and are stable for repeated use in various types of cross couplings. Therefore, our results open new perspectives in developing practical heterogeneous catalysts.

  3. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    Science.gov (United States)

    Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

    2011-03-01

    Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  4. Unoccupied surface electronic structure of Gd(0001)

    International Nuclear Information System (INIS)

    Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.

    1994-01-01

    The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV

  5. Geologic investigations of Australian earthquakes: Paleoseismicity and the recurrence of surface faulting in the stable regions of continents

    Science.gov (United States)

    Machette, Michael; Crone, Anthony

    1993-01-01

    Earthquakes that occur in the stable regions of continents are very rare compared to those that occur along plate margins, such as the San Andreas fault system of western California. Worldwide, only 11 historic earthquakes in stable continental regions are known to have produced surface ruptures. Five of these have occurred in Australia since 1968 (see map, next page).

  6. Sub-µ structured Lotus Surfaces Manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo

    2008-01-01

    Sub-micro structured surfaces allow modifying the behavior of polymer films or components. Especially in micro fluidics a lotus-like characteristic is requested for many applications. Structure details with a high aspect ratio are necessary to decouple the bottom and the top of the functional layer....... Unlike to stochastic methods, patternin¬g with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g. with gradients). In this paper we present the process chain to realize polymer sub-micro structures with minimum lateral feature size of 400 nm...

  7. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods

    Directory of Open Access Journals (Sweden)

    Kaili Wang

    2017-06-01

    Full Text Available Mussel-inspired polydopamine (PDA chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic wood surfaces were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS. The PDA and octadecylamine (OA modified surface showed excellent superhydrophobicity with a water contact angle (CA of about 153° and a rolling angle (RA of about 9°. The CA further increased to about 157° and RA reduced to about 5° with the Cu metallization. The superhydrophobic material exhibited outstanding stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and organic solvent immersion, and high-temperature water boiling. The results suggested that the PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless deposition technique may allow for a wide range of potential applications in biomimetic materials.

  8. Designing visual appearance using a structured surface

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Thamdrup, Lasse Højlund; Smitrup, Christian

    2015-01-01

    followed by numerical and experimental verification. The approach comprises verifying all design and fabrication steps required to produce a desired appearance. We expect that the procedure in the future will yield structurally colored surfaces with appealing prescribed visual appearances....

  9. A stable isotope record of late Cenozoic surface uplift of southern Alaska

    Science.gov (United States)

    Bill, Nicholas S.; Mix, Hari T.; Clark, Peter U.; Reilly, Sean P.; Jensen, Britta J. L.; Benowitz, Jeffrey A.

    2018-01-01

    Although the timing of an acceleration in late-Cenozoic exhumation of southern Alaska is reasonably well constrained as beginning ∼5-∼6 Ma, the surface uplift history of this region remains poorly understood. To assess the extent of surface uplift relative to rapid exhumation, we developed a stable isotope record using the hydrogen isotope composition (δD) of paleo-meteoric water over the last ∼7 Ma from interior basins of Alaska and Yukon Territory. Our record, which is derived from authigenic clays (δDclay) in silicic tephras, documents a ∼50-60‰ increase in δD values from the late Miocene (∼6-∼7 Ma) through the Plio-Pleistocene transition (∼2-∼3 Ma), followed by near-constant values over at least the last ∼2 Ma. Although this enrichment trend is opposite that of a Rayleigh distillation model typically associated with surface uplift, we suggest that it is consistent with indirect effects of surface uplift on interior Alaska, including changes in aridity, moisture source, and seasonality of moisture. We conclude that the δDclay record documents the creation of a topographic barrier and the associated changes to the climate of interior Alaska and Yukon Territory.

  10. The structure of reconstructed chalcopyrite surfaces

    Science.gov (United States)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  11. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  12. Ion beam induced surface pattern formation and stable travelling wave solutions.

    Science.gov (United States)

    Numazawa, Satoshi; Smith, Roger

    2013-03-06

    The formation of ripple structures on ion bombarded semiconductor surfaces is examined theoretically. Previous models are discussed and a new nonlinear model is formulated, based on the infinitesimal local atomic relocation induced by elastic nuclear collisions in the early stages of collision cascades and an associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important, and it is shown that in this case certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results are in very good agreement with experimental observations.

  13. Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure

    Directory of Open Access Journals (Sweden)

    S. Iikubo

    2018-01-01

    Full Text Available By combining theoretical predictions and in-situ X-ray diffraction under high pressure, we found a novel stable crystal structure of Li3PS4 under high pressures. At ambient pressure, Li3PS4 shows successive structural transitions from γ-type to β-type and from β-type to α type with increasing temperature, as is well established. In this study, an evolutionary algorithm successfully predicted the γ-type crystal structure at ambient pressure and further predicted a possible stable δ-type crystal structures under high pressure. The stability of the obtained structures is examined in terms of both static and dynamic stability by first-principles calculations. In situ X-ray diffraction using a synchrotron radiation revealed that the high-pressure phase is the predicted δ-Li3PS4 phase.

  14. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  15. The Impact of Wind Speed Changes on the Surface Stress in the Weak-wind Stable Boundary Layer

    Science.gov (United States)

    Thomas, C. K.

    2015-12-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. Howver, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships.

  16. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  17. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  18. CONDITIONS FOR STABLE CHIP BREAKING AND PROVISION OF MACHINED SURFACE QUALITY WHILE TURNING WITH ASYMMETRIC TOOL VIBRATIONS

    Directory of Open Access Journals (Sweden)

    V. K. Sheleh

    2015-01-01

    Full Text Available The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration amplitude on a cutting process and quality of the machined surfaces machining must be carried out with its minimum value. In this case certain ratio of the tool vibration frequency to the work-piece rotation speed has been ensured in the paper. A formula has been obtained for calculation of this ratio with due account of the expected length of chip elements and coefficient of vibration cycle asymmetry.Influence of the asymmetric coefficient of the tool vibration cycle on roughness of the machined surfaces and cutting tool wear has been determined in the paper. According to the results pertaining to machining of work-pieces made of 45 and ШХ15 steel the paper presents mathematical relationships of machined surface roughness with cutting modes and asymmetry coefficient of tool vibration cycle. Tool feeding being one of the cutting modes exerts the most significant impact on the roughness value and increase of the tool feeding entails increase in roughness. Reduction in coefficient of vibration cycle asymmetry contributes to surface roughness reduction. However, the cutting tool wear occurs more intensive. Coefficient of the vibration cycle asymmetry must be increased in order to reduce wear rate. Therefore, the choice of the coefficient of the vibration cycle asymmetry is based on the parameters of surface roughness which must be obtained after machining and intensity of tool wear rate.The paper considers a process of turning structural steel with asymmetric

  19. Projective and superconformal structures on surfaces

    International Nuclear Information System (INIS)

    Harvey, W.J.

    1990-01-01

    Much attention has recently been given to the study of super Riemann surfaces. Detailed accounts of these objects and their infinitesimal deformation theory are referenced where they are fitted into the framework of complex supermanifolds, superconformal structures and graded sheaves. One difficulty, which seems even more of a barrier than in the case of classical deformations of Riemann surface structure, is the lack of a good global description of super-moduli spaces. In this note, we outline an approach which places the theory in the classical setting of projective structures on variable Riemann surfaces. We explain how to construct a distribution (family of vector subspaces) inside the holomorphic cotangent space to the moduli space M g of Riemann surfaces with genus g and furnished with a level-4 homology structure, such that the corresponding rank-(2g-2) complex vector bundle models the soul deformations of a family of super-Riemann surfaces. The keystone in this construction is the existence of holomorphic sections for the space of non-singular odd theta characteristics on C g the universal curve over M g . (author)

  20. No difference in 1RM strength and muscle activation during the barbell chest press on a stable and unstable surface.

    Science.gov (United States)

    Goodman, Craig A; Pearce, Alan J; Nicholes, Caleb J; Gatt, Brad M; Fairweather, Ian H

    2008-01-01

    Exercise or Swiss balls are increasingly being used with conventional resistance exercises. There is little evidence supporting the efficacy of this approach compared to traditional resistance training on a stable surface. Previous studies have shown that force output may be reduced with no change in muscle electromyography (EMG) activity while others have shown increased muscle EMG activity when performing resistance exercises on an unstable surface. This study compared 1RM strength, and upper body and trunk muscle EMG activity during the barbell chest press exercise on a stable (flat bench) and unstable surface (exercise ball). After familiarization, 13 subjects underwent testing for 1RM strength for the barbell chest press on both a stable bench and an exercise ball, each separated by at least 7 days. Surface EMG was recorded for 5 upper body muscles and one trunk muscle from which average root mean square of the muscle activity was calculated for the whole 1RM lift and the concentric and eccentric phases. Elbow angle during each lift was recorded to examine any range-of-motion differences between the two surfaces. The results show that there was no difference in 1RM strength or muscle EMG activity for the stable and unstable surfaces. In addition, there was no difference in elbow range-of-motion between the two surfaces. Taken together, these results indicate that there is no reduction in 1RM strength or any differences in muscle EMG activity for the barbell chest press exercise on an unstable exercise ball when compared to a stable flat surface. Moreover, these results do not support the notion that resistance exercises performed on an exercise ball are more efficacious than traditional stable exercises.

  1. Surface band structures on Nb(001)

    International Nuclear Information System (INIS)

    Fang, B.; Lo, W.; Chien, T.; Leung, T.C.; Lue, C.Y.; Chan, C.T.; Ho, K.M.

    1994-01-01

    We report the joint studies of experimental and theoretical surface band structures of Nb(001). Angle-resolved photoelectron spectroscopy was used to determine surface-state dispersions along three high-symmetry axes bar Γ bar M, bar Γ bar X, and bar M bar X in the surface Brillouin zone. Ten surface bands have been identified. The experimental data are compared to self-consistent pseudopotential calculations for the 11-layer Nb(001) slabs that are either bulk terminated or fully relaxed (with a 12% contraction for the first interlayer spacing). The band calculations for a 12% surface-contracted slab are in better agreement with the experimental results than those for a bulk-terminated slab, except for a surface resonance near the Fermi level, which is related to the spin-orbit interaction. The charge profiles for all surface states or resonances have been calculated. Surface contraction effects on the charge-density distribution and the energy position of surface states and resonances will also be discussed

  2. Decontamination of radionuclide strontium polluted the analog instruments surface by high stable foam

    International Nuclear Information System (INIS)

    Zhu Gaolong; Chen Shuai; Lin Xiaoyan; Luo Xuegang

    2014-01-01

    Decontamination of the radionuclide strontium polluted the analog instruments surface radionuclide strontium by foam, where the high stable foam detergent was prepared by Sodium dodecylbenzene sulfonate (SDBS) as a foaming agent and hydroxyethyl cellulose (HEC) as a foam stabilizer. The effects of adding a foam stabilizer hydroxyethyl cellulose (HEC) on foam stability and the volume of drainage liquid were discussed and contact time, foaming agent concentration, temperature, humidity on foam decontamination efficiency of the analog instruments surface by radionuclide strontium were observed. The results show that there has been a significant increase of foam stability with the increase of HEC addition, the volume of drainage liquid was decrease from 7.8 g to 0 g and the half decay time of foam was extended from 305 seconds to 1050 seconds after the HEC addition increase from 0 % to 3%. The half decay time increase with the continue to increase of HEC addition but decrease of the foamability. The foam drainage speed up with the increase of temperture, the foam will burst rapidly when the temperture is higer than 600 ℃. The high table foam has a effective decontamination efficiency between 88%∼95%. contact time, foaming agent concentration, humidity do not much affect on the foam decontamination. In order to reduce the affect of volume of drainage liquid on the precision instrument, the contact time should control in 3 min. (authors)

  3. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng

    2015-08-13

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core–shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H2O2 solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620–690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

  4. A stable fused bicyclic disilene as a model for silicon surface.

    Science.gov (United States)

    Kobayashi, Hideki; Iwamoto, Takeaki; Kira, Mitsuo

    2005-11-09

    We synthesized the first fused bicyclic disilene 1 representing topologically a partial structure of the Si(001) surface up to the third layer. In the solid state, the five-membered rings adopt the envelope conformation, and the Si=Si double bond in 1 exists in the slightly cis-bent form (bent angle theta is 3.6 degrees ) compared to that of the highly cis-bent dimer on the Si(001) surface. Highly symmetric 1H NMR spectral pattern of 1 remains even at -80 degrees C, indicating the facile ring flipping of the bicyclic skeleton in solution. While syn-adduct was obtained in the reaction of 1 with water, anti-addition of chlorine atoms across the Si=Si double bond in 1 was observed in the reaction with carbon tetrachloride. The structural characteristics of the 9,10-phenanthrenequinone adduct 7 are in good accord with those of the proposed structure of the 9,10-phenanthrenequinone molecule adsorbed on the Si(001) surface.

  5. Embodied memory: effective and stable perception by combining optic flow and image structure.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2013-12-01

    Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.

  6. Prediction of Stable Ruthenium Silicides from First-Principles Calculations: Stoichiometries, Crystal Structures, and Physical Properties.

    Science.gov (United States)

    Zhang, Chuanzhao; Kuang, Xiaoyu; Jin, Yuanyuan; Lu, Cheng; Zhou, Dawei; Li, Peifang; Bao, Gang; Hermann, Andreas

    2015-12-09

    We present results of an unbiased structure search for stable ruthenium silicide compounds with various stoichiometries, using a recently developed technique that combines particle swarm optimization algorithms with first-principles calculations. Two experimentally observed structures of ruthenium silicides, RuSi (space group P2(1)3) and Ru2Si3 (space group Pbcn), are successfully reproduced under ambient pressure conditions. In addition, a stable RuSi2 compound with β-FeSi2 structure type (space group Cmca) was found. The calculations of the formation enthalpy, elastic constants, and phonon dispersions demonstrate the Cmca-RuSi2 compound is energetically, mechanically, and dynamically stable. The analysis of electronic band structures and densities of state reveals that the Cmca-RuSi2 phase is a semiconductor with a direct band gap of 0.480 eV and is stabilized by strong covalent bonding between Ru and neighboring Si atoms. On the basis of the Mulliken overlap population analysis, the Vickers hardness of the Cmca structure RuSi2 is estimated to be 28.0 GPa, indicating its ultra-incompressible nature.

  7. Surface and mineral structure of ferrihydrite

    NARCIS (Netherlands)

    Hiemstra, T.

    2013-01-01

    Ferrihydrite (Fh) is an yet enigmatic nano Fe(III)-oxide material, omnipresent in nature that can bind ions in large quantities, regulating bioavailability and ion mobility. Although extensively studied, to date no proper view exists on the surface structure and composition, while it is of vital

  8. Melamine structures on the Au(111) surface

    NARCIS (Netherlands)

    Silly, Fabien; Shaw, Adam Q.; Castell, Martin R.; Briggs, G. A. D.; Mura, Manuela; Martsinovich, Natalia; Kantorovich, Lev

    2008-01-01

    We report on a joint experimental and theoretical study of the ordered structures of melamine molecules formed on the Au(111)-(22 x root 3) surface. Scanning tunneling microscopy (STM) images taken under UHV conditions reveal two distinct monolayers one of which has never been reported before on

  9. Single crystal surface structure by bragg scattering

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1985-01-01

    X-ray diffraction is becoming an important tool in the measurements of surface structures. Single crystalline samples are used as in Low Energy Electron Diffraction (LEED)-studies. The X-ray technique is somewhat more involved due to the need of bright, collimated photon sources, in general...

  10. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  11. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  12. Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene

    KAUST Repository

    Shi, Xueliang

    2015-10-08

    Quinoidal thia-acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2-sulfur migration was observed during the Friedel-Crafts alkylation reaction. The analogues display a closed-shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole-dipole and [C-H⋯π]/[C-H⋯S] interactions.

  13. Searching for stable Si(n)C(n) clusters: combination of stochastic potential surface search and pseudopotential plane-wave Car-Parinello simulated annealing simulations.

    Science.gov (United States)

    Duan, Xiaofeng F; Burggraf, Larry W; Huang, Lingyu

    2013-07-22

    To find low energy Si(n)C(n) structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each Si(n)C(n) cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to Si(n)C(n) (n = 4-12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each Si(n)C(n) cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  14. Searching for Stable SinCn Clusters: Combination of Stochastic Potential Surface Search and Pseudopotential Plane-Wave Car-Parinello Simulated Annealing Simulations

    Directory of Open Access Journals (Sweden)

    Larry W. Burggraf

    2013-07-01

    Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  15. Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH

    Directory of Open Access Journals (Sweden)

    B. Haese

    2013-09-01

    Full Text Available In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31. A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ18O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil and also fractionation included in both evaporation and transpiration (from water transport through plants fluxes. While the isotopic composition of the soil water may change for δ18O by up to +8&permil:, the simulated δ18O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation database.

  16. Surface structure of oriented PET films

    CERN Document Server

    Kirov, K

    2001-01-01

    crystallinity and the level of molecular orientation of the polymer are highest at the film surface and gradually decrease away from it. The same trend for an increase in structural order nearer the film surface was observed in a series of PET films drawn uniaxially in laboratory conditions. The observed strong dependence of stratification in the oriented films on drawing ratio, lead to the conclusion, that the structural gradients arise as a result of viscous flow. The molecular mechanism of stratification is discussed and leads to the idea of enhanced chain mobility at the PET film surface. The idea is in line with recent studies showing a depression of the glass transition temperature of free polymer surfaces. In addition, the results on structure formation in PET films during drawing, give support to the existing view that polymer crystallisation is assisted by a spinodal-decomposition nucleation process. Polymer films are widely used as substrates in nano-composite materials and therefore have to possess...

  17. Stable algorithm for the computation of the electromagnetic field distribution of eigenmodes of periodic diffraction structures.

    Science.gov (United States)

    Bezus, Evgeni A; Doskolovich, Leonid L

    2012-11-01

    In the present work, a stable algorithm for the calculation of the electromagnetic field distributions of the eigenmodes of one-dimensional diffraction gratings is presented. The proposed approach is based on the method for the computation of the propagation constants of Bloch waves of such structures previously presented by Cao et al.[J. Opt. Soc. Am. A 19, 335 (2002)] and uses a modified S-matrix algorithm to ensure numerical stability.

  18. Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers

    Science.gov (United States)

    Zhao, Rui-Xue; Sun, Peng-fei; Liu, Rui-jian; Ding, Zhan-hui; Li, Xiang-shan; Liu, Xiao-yang; Zhao, Xu-dong; Gao, Zhong-min

    2018-03-01

    The stabilized polyacrylonitrile (PAN) fibers were obtained after heating the precursor PAN fibers under air atmosphere by different procedures. The surface structures and compositions of as-prepared stabilized PAN fibers have been investigated by SEM, SSNMR, XPS and Raman spectroscopy. The results show that 200 °C, 220 °C, 250 °C, and 280 °C are key temperatures for the preparation of stabilized PAN fibers. The effect of heating gradient on the structure of stabilized PAN fibers has been studied. The possible chemical structural formulas for the PAN fibers is provided, which include the stable and unstable structure. The stable structure (α-type) could endure the strong chemical reactions and the unstable structure (β- or γ-type) could mitigate the drastic oxidation reactions. The inferences of chemical formula of stabilized PAN fibers are benefit to the design of appropriate surface structure for the production for high quality carbon fibers.

  19. Benthic Food Web Structure across the Canadian Arctic Ocean: Insights from stable isotopes and the IP25 biomarker

    Science.gov (United States)

    Friscourt, N.; Archambault, P.; Masse, G.; Nozais, C.

    2016-02-01

    In recent decades, the Arctic Ocean has undergone unprecedented changes, such as an increase in the surface temperature and a reduction of sea ice cover. These changes may cause variations in the intensity and spatial distribution of primary production and the nature of pelagic-benthic coupling. This could affect the amount and quality of organic matter that settles onto the seafloor, and the benthic communities that feed upon it. The objectives of this study were i) to describe the trophic structure and resilience of regional benthic food webs using stable carbon and nitrogen isotope analyses and ii) to evaluate the significance of ice algae in the diet of benthic communities using the sea ice proxy IP25. The study area extends from the North Water Polynya to the Chukchi Sea across five geographic regions (North Water Polynya, Canadian Archipelago, Amundsen Gulf, Beaufort Sea and Chukchi Sea) based on environmental factors. To reach these objectives, we collected particulate organic matter (POM), sediments and zoobenthic samples from July to October 2014 aboard the CCGS Amundsen. Stable isotope and IP25 data, the trophic structure within regions and comparison between regions will be presented. Potential impacts of climate change and human activities on benthic ecosystems in the Arctic are still difficult to assess because of the lack of baseline data. The baseline data once provided will enable us to make further predictions on how these changes may affect benthic food web structure.

  20. A novel metamaterial filter with stable passband performance based on frequency selective surface

    Directory of Open Access Journals (Sweden)

    C. Y. Fang

    2014-07-01

    Full Text Available In this paper, a novel metamaterial filter based on frequency selective surface (FSS is proposed. Using the mode matching method, we theoretically studied the transmission performance of the structure. Results show that, by rotating its neighboring elements 90 degree, the novel filter has a better stability to angle of incidence than traditional structures for TE and TM polarization. As the incident angles vary from 0 to 50 degrees, the metamaterial filter exhibits a transmittance higher than 0.98 and the center frequency slightly shifts downward (from 10 GHz to 0.96 GHz for TE polarization. For TM polarization, a transmittance of 0.98 is achieved and the center frequency retains 0.96 GHz with the varying of the incident angles. Furthermore, an experimental prototype fabricated was tested in a microwave chamber, and the measured results show good agreement with the simulated ones.

  1. Muon-Substituted Malonaldehyde: Transforming a Transition State into a Stable Structure by Isotope Substitution.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2016-02-12

    Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014, 53, 13706-13709; Angew. Chem. 2014, 126, 13925-13929] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear-electronic orbital non-Born-Oppenheimer procedure, the nuclear configuration of the muon-substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the "atoms in molecules" (AIM) structure of the muon-substituted malonaldehyde and the AIM structure of the stable and the transition-state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon-substituted malonaldehyde to the transition state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The impact of non-stationary flows on the surface stress in the weak-wind stable boundary layer

    Science.gov (United States)

    Thomas, Christoph; Mahrt, Larry

    2016-04-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height and innovative fiber-optic distributed temperature sensing observations were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. However, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships. Contrary to expectations, the vertical coherence was strongest for weakest winds and declined fast with increasing velocities, which suggests that submeso-scale motions are much deeper than previously thought.

  3. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Debruin, H.A.R.; Hartogensis, O.K.

    2005-01-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, ¿u and ¿T respectively, measured at a single level. An attractive aspect of this method is that it

  4. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    Science.gov (United States)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for

  5. Nanoscale surface topographies for structural colors

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik

    The thesis describes and demonstrates the possibilities for utilization of structural colors in mass fabricated plastic products as replacement for or in combination with pigments and inks. The motivation is the possible advantages related to re-cycling and re-use of plastic by limiting the number......-polymer interface is suppressed. This improves the ability to see through a clear plastic in the presence of specular reflection. The tapered nanostructures are also utilized to enhance the chroma of pigmented polymers. Larger tapered structures fabricated in a similar manor are shown to work as color filters....... Through an experimental study is the color of the transmitted light linked directly to the random topography of the surface by use of diffraction theory. The color effects from periodic structures and how these might be employed to create bright colors are investigated. This is done both for opaque...

  6. Rupture of thin liquid films on structured surfaces.

    Science.gov (United States)

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  7. Structure and stability of surface passivation layers on semiconductor materials

    Science.gov (United States)

    Kluth, George Jonathan

    The structure and stability of passivating layers on silicon surfaces have been examined on the molecular level using the methods of surface science. Hydrogen-terminated surfaces were prepared through wet chemical treatment with ammonium fluoride. The oxidation of these surfaces was studied using high resolution electron energy loss spectroscopy (HREELS), which showed that oxidation occurred through oxygen insertion in silicon backbonds, while the hydrogen termination remained intact. Oxygen was observed in both the surface layer and bulk layers, suggesting that initial oxidation was not restricted to layer-by-layer growth. Because the surface did oxidize with time, other passivating treatments, specifically self-assembled monolayers, were examined. The thermal stability of alkylsiloxane monolayers on oxidized Si(100) was studied in vacuum. Using HREELS it was found that the monolayers were stable up to 740 K. Above that temperature, they began to decompose through cleavage of C-C bonds, resulting in a reduction in chain length. The thermal stability of alkyl monolayers, which form directly on silicon without requiring an oxide layer, was also examined. These monolayers were stable to 620 K, significantly lower than the alkylsiloxane monolayers. Desorption was accompanied by the appearance of Si-H bonds, suggesting that desorption took place through a hydrogen elimination reaction. The thermal behavior of these two different monolayers highlighted the importance of bonding between the surface and the chains. The bonding of alkylsiloxane monolayers was examined in more detail by forming them on both SiOsb2 and Sisb3Nsb4. It was found that cross linking between adjacent head groups was critical to the formation of high quality monolayers. Bonding between the chains and the surface was of secondary importance, but played a key role in the initial stages of growth, when nucleation occurred. The chemical stability of alkylsiloxane monolayers on oxidized silicon was also

  8. Stable Encoding of Task Structure Coexists With Flexible Coding of Task Events in Sensorimotor Striatum

    Science.gov (United States)

    Kubota, Yasuo; Liu, Jun; Hu, Dan; DeCoteau, William E.; Eden, Uri T.; Smith, Anne C.

    2009-01-01

    The sensorimotor striatum, as part of the brain's habit circuitry, has been suggested to store fixed action values as a result of stimulus-response learning and has been contrasted with a more flexible system that conditionally assigns values to behaviors. The stability of neural activity in the sensorimotor striatum is thought to underlie not only normal habits but also addiction and clinical syndromes characterized by behavioral fixity. By recording in the sensorimotor striatum of mice, we asked whether neuronal activity acquired during procedural learning would be stable even if the sensory stimuli triggering the habitual behavior were altered. Contrary to expectation, both fixed and flexible activity patterns appeared. One, representing the global structure of the acquired behavior, was stable across changes in task cuing. The second, a fine-grain representation of task events, adjusted rapidly. Such dual forms of representation may be critical to allow motor and cognitive flexibility despite habitual performance. PMID:19625536

  9. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-12-01

    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  10. The search for the most stable structures of silicon-carbon monolayer compounds.

    Science.gov (United States)

    Li, Pengfei; Zhou, Rulong; Zeng, Xiao Cheng

    2014-10-21

    The most stable structures of two-dimensional (2D) silicon-carbon monolayer compounds with different stoichiometric compositions (i.e., Si : C ratio = 2 : 3, 1 : 3 and 1 : 4) are predicted for the first time based on the particle-swarm optimization (PSO) technique combined with density functional theory optimization. Although the 2D Si-C monolayer compounds considered here are rich in carbon, many of the low-energy metastable and the lowest-energy silicon-carbon structures are not graphene (carbon monolayer) like. Phonon-spectrum calculations and ab initio molecular dynamics simulations were also performed to confirm the dynamical stability of the predicted most stable 2D silicon-carbon structures as well their thermal stability at elevated temperature. The computed electronic band structures show that all three predicted silicon-carbon compounds are semiconductors with direct or indirect bandgaps. Importantly, their bandgaps are predicted to be close to those of bulk silicon or bulk germanium. If confirmed in the laboratory, these 2D silicon-carbon compounds with different stoichiometric compositions may be exploited for future applications in nanoelectronic devices.

  11. Bioinspired, dynamic, structured surfaces for biofilm prevention

    Science.gov (United States)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  12. Surface Stress with Non-stationary Weak Winds and Stable Stratification

    Science.gov (United States)

    Mahrt, L.; Thomas, Christoph K.

    2016-04-01

    The behaviour of turbulent transport in the weak-wind, stably-stratified, boundary layer over land is examined in terms of the non-stationarity of the wind field using measurements from three field programs. These field programs include towers ranging from 12 to 20 m in height and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and non-stationary submeso motions is investigated from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected partly due to enhancement of the turbulence by submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases in the downward transport of momentum.

  13. Calculation of the vibration properties of the Pd/Au (111 ordered surface alloy in its stable domain

    Directory of Open Access Journals (Sweden)

    Tigrine R.

    2012-06-01

    Full Text Available In the present paper, a calculation is presented for the vibration properties of the ordered surface alloy alloy Au(111 − (√3×√3R30° − Pd, which is a stable system in the temperature range of 500K to 600K. This surface alloy is formed by depositing Pd atoms onto the Au(111surface, and annealing at higher temperatures. The matching theory is applied to calculate the surface phonons and local vibration densities of states (LDOS for the clean Au (111 surface, and for the Au(111 − (√3×√3R30° − Pd surface alloy. Our theoretical results for the surface phonon branches of the clean Au (111 surface compare favorably with previous ab initio results and experimental data. In contrast, there are no previous results for the vibrational LDOS for the atomic Au site in a clean Au (111 surface, or results for the surface phonons and vibration spectra for the surface alloy. The surface phonons are calculated for the clean Au (111 surface and the ordered surface alloy along three directions of high symmetry, namely, ΓΜ¯, MML:MK¯ $overline {Gamma {m M}} ,{m{ }}overline {{m{MK}}} $ , and KΓ¯ $overline {KGamma } $ . The phonon branches are strongly modified from the Au (111 surface to the surface alloy. In particular a remarkable change takes place for the LDOS between the clean Au (111 surface and the surface alloy, which may find its origin in the charge transfer from Au atoms to Pd atoms.

  14. Novel structures of oxygen adsorbed on a Zr(0001) surface predicted from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); Wang, Jianyun [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Lv, Jian [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Gao, Xingyu [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Zhao, Yafan [CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Wang, Yanchao, E-mail: wyc@calypso.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Song, Haifeng, E-mail: song_haifeng@iapcm.ac.cn [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China)

    2017-01-30

    Highlights: • Two stable structures of O adsorbed on a Zr(0001) surface are predicted with SLAM. • A stable structure of O adsorbed on a Zr(0001) surface is proposed with MLAM. • The calculated work function change is agreement with experimental value. - Abstract: The structures of O atoms adsorbed on a metal surface influence the metal properties significantly. Thus, studying O chemisorption on a Zr surface is of great interest. We investigated O adsorption on a Zr(0001) surface using our newly developed structure-searching method combined with first-principles calculations. A novel structural prototype with a unique combination of surface face-centered cubic (SFCC) and surface hexagonal close-packed (SHCP) O adsorption sites was predicted using a single-layer adsorption model (SLAM) for a 0.5 and 1.0 monolayer (ML) O coverage. First-principles calculations based on the SLAM revealed that the new predicted structures are energetically favorable compared with the well-known SFCC structures for a low O coverage (0.5 and 1.0 ML). Furthermore, on basis of our predicted SFCC + SHCP structures, a new structure within multi-layer adsorption model (MLAM) was proposed to be more stable at the O coverage of 1.0 ML, in which adsorbed O atoms occupy the SFCC + SHCP sites and the substitutional octahedral sites. The calculated work functions indicate that the SFCC + SHCP configuration has the lowest work function of all known structures at an O coverage of 0.5 ML within the SLAM, which agrees with the experimental trend of work function with variation in O coverage.

  15. The surface electronic structure of Y(0001)

    International Nuclear Information System (INIS)

    Searle, C.

    1998-12-01

    Yttrium has been grown epitaxially on W(110). The growth was monitored by using photoemission spectroscopy with a synchrotron radiation source. The film thickness has been gauged by the attenuation of the W 4f 7/2 bulk component. The films have been grown reproducibly and show a prominent surface state which is indicative of good order and low contamination. Angle-Resolved Ultra-Violet Photoemission Spectroscopy has been used to examine the valence band of these ultra-thin films. The films show a very different structure to the valence band of a bulk crystal of yttrium. The differences have been investigated by a series of model calculations using the LMASA-46 tight-binding LMTO program. The calculations suggest that the ultra-thin film surface state may be hybridised with a tungsten orbital having (x 2 - y 2 ) character. (author)

  16. Frequency Selective Surface for Structural Health Monitoring

    Science.gov (United States)

    Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack

    2018-03-01

    Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

  17. Structure and thermodynamics of surface recognition

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Interactions of the surface glycoprotein, gp120, with the receptors of host cells define the pathogenesis of HIV-1, the virus that causes AIDS. gp120 is made of several disulfide-bridged loops--the amino acid sequences of some of these loops are fairly conserved whereas the rest are variable. The third variable (V3) loop has been the target of vaccine design for quite some time since this loop is involved in various steps of viral pathogenesis. However, this loop also happens to be the most variable one. The authors have carried out structural and immunological studies to determine the sequence-structure-antigenicity correlations of the HIV-1 V3 loops. This resulted in the identification of a secondary structure at the tip of the V3 loop that remains invariant in spite of the sequence variation. The authors designed a multi-valent V3-based antigen that presents multiple copies of the same tip element several times in the same structure. During the course of this project, they realized that the protective epitopes of gp120 should be judged in the context of the native structure. Therefore, the authors developed a method to obtain a model of gp120 that is consistent with all the immunology and virology data. This model is useful in choosing or designing gp120 subdomains for vaccine development.

  18. Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof

    Science.gov (United States)

    Woodward, J.

    1998-12-08

    This research provides a structurally stable gel bead containing an entrapped enzyme and a method for its manufacture. The enzyme is covalently cross-linked to gelatin in the presence of glutaraldehyde prior to the formation of the gel bead, to prevent leakage of the enzyme. Propylene glycol alginate is then added to the mixture. Once the gel beads are formed, they are then soaked in glutaraldehyde, which imparts structural stability to the gel beads. This method can be used with many types of enzymes, such as proteases, carbohydrases, proteases, ligases, isomerases, oxidoreductases, and specialty enzymes. These and other enzymes can be immobilized in the gel beads and utilized in a number of enzymatic processes. Exogenously added ions are not required to maintain the structural stability of these gel beads. 7 figs.

  19. Unraveling the oxygen vacancy structures at the reduced Ce O2(111 ) surface

    Science.gov (United States)

    Han, Zhong-Kang; Yang, Yi-Zhou; Zhu, Beien; Ganduglia-Pirovano, M. Verónica; Gao, Yi

    2018-03-01

    Oxygen vacancies at ceria (Ce O2 ) surfaces play an essential role in catalytic applications. However, during the past decade, the near-surface vacancy structures at Ce O2(111 ) have been questioned due to the contradictory results from experiments and theoretical simulations. Whether surface vacancies agglomerate, and which is the most stable vacancy structure for varying vacancy concentration and temperature, are being heatedly debated. By combining density functional theory calculations and Monte Carlo simulations, we proposed a unified model to explain all conflicting experimental observations and theoretical results. We find a novel trimeric vacancy structure which is more stable than any other one previously reported, which perfectly reproduces the characteristics of the double linear surface oxygen vacancy clusters observed by STM. Monte Carlo simulations show that at low temperature and low vacancy concentrations, vacancies prefer subsurface sites with a local (2 × 2) ordering, whereas mostly linear surface vacancy clusters do form with increased temperature and degree of reduction. These results well explain the disputes about the stable vacancy structure and surface vacancy clustering at Ce O2(111 ) , and provide a foundation for the understanding of the redox and catalytic chemistry of metal oxides.

  20. Rich stoichiometries of stable Ca-Bi system: Structure prediction and superconductivity

    Science.gov (United States)

    Dong, Xu; Fan, Changzeng

    2015-03-01

    Using a variable-composition ab initio evolutionary algorithm implemented in the USPEX code, we have performed a systematic search for stable compounds in the Ca-Bi system at different pressures. In addition to the well-known tI12-Ca2Bi and oS12-CaBi2, a few more structures were found by our calculations, among which phase transitions were also predicted in Ca2Bi (tI12 --> oI12 --> hP6), Ca3Bi2 (hP5 --> mC20 --> aP5) and CaBi (tI2 --> tI8), as well as a new phase (Ca3Bi) with a cF4 structure. All the newly predicted structures can be both dynamically and thermodynamically stable with increasing pressure. The superconductive properties of cF4-CaBi3, tI2-CaBi and cF4-Ca3Bi were studied and the superconducting critical temperature Tc can be as high as 5.16, 2.27 and 5.25 K, respectively. Different superconductivity behaviors with pressure increasing have been observed by further investigations.

  1. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    Science.gov (United States)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  2. Use of systematics in the interpretation of nuclear structure far from the beta-stable region

    International Nuclear Information System (INIS)

    Wood, J.L.

    1979-01-01

    The use of systematics in the interpretation of nuclear structure far from the beta-stable region is discussed. In particular, a set of rules for the use of systematics is presented together with some experimental criteria that need to be fulfilled for radioactive decay scheme studies in order that all states up to a given spin-parity and energy are located. Illustrative examples are taken from the region 180 < A < 210, with particular emphasis on the odd-mass Au and Hg nuclei. 6 figures

  3. Stable isotopes provide insight into population structure and segregation in eastern North Atlantic sperm whales

    DEFF Research Database (Denmark)

    Borrell, Asunción; Velásquez Vacca, Adriana; Pinela, Ana M.

    2013-01-01

    highly mobile, shows indication of structuring in the eastern North Atlantic, an ocean basin in which a single population is believed to occur. To do so, we examined stable isotope values in sequential growth layer groups of teeth from individuals sampled in Denmark and NW Spain. In each layer we...... measured oxygen-isotope ratios (delta O-18) in the inorganic component (hydroxyapatite), and nitrogen and carbon isotope ratios (delta N-15: delta C-13) in the organic component (primarily collagenous). We found significant differences between Denmark and NW Spain in delta N-15 and delta O-18 values...

  4. A stable high-order perturbation of surfaces method for numerical simulation of diffraction problems in triply layered media

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu

    2017-02-01

    The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution of dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.

  5. Athletes trained using stable compared to unstable surfaces exhibit distinct postural control profiles when assessed by traditional and nonlinear measures.

    Science.gov (United States)

    Powell, Douglas W; Williams, D S Blaise

    2015-12-01

    Athletes are assumed to exhibit better balance than non-athletes; however, few studies have examined the role of different types of sports on balance measures. Two athlete groups that experience divergent sport-specific balance training are stable- (i.e. basketball) and unstable-surface athletes (i.e. surfers). The purpose of this study was to quantify the effect of stable- compared to unstable-surface sports on postural stability. Eight non-athletes (NON), eight stable-surface athletes (SSA) and eight unstable-surface athletes (USA) performed five 20-s quiet standing trials while ground reaction forces were recorded. Approximate entropy (ApEn), total excursion and root mean square distances (RMS) of the center of pressure position were calculated. Univariate ANOVAs with post hoc tests were conducted for each variable. ApEn values were lower in SSA compared to NON in the ML direction (p=0.012) and USA had lower ApEn values compared to SSA in the AP direction (p=0.036). The USA had smaller AP RMS compared to SSA (p=0.002) while the USA had greater ML RMS (p=0.008) and resultant RMS values compared to SSA (p=0.025). These data suggest that USA and SSA may exhibit direction-specific differences in balance strategy due to feedback paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Structure-Guided Redesign Increases the Propensity of HIV Env To Generate Highly Stable Soluble Trimers.

    Science.gov (United States)

    Guenaga, Javier; Dubrovskaya, Viktoriya; de Val, Natalia; Sharma, Shailendra K; Carrette, Barbara; Ward, Andrew B; Wyatt, Richard T

    2015-12-30

    Due to high viral diversity, an effective HIV-1 vaccine will likely require Envs derived from multiple subtypes to generate broadly neutralizing antibodies (bNAbs). Soluble Env mimics, like the native flexibly linked (NFL) and SOSIP trimers, derived from the subtype A BG505 Env, form homogeneous, stable native-like trimers. However, other Env sequences, such as JRFL and 16055 from subtypes B and C, do so to a lesser degree. The high-resolution BG505 SOSIP crystal structures permit the identification and redesign of Env elements involved in trimer stability. Here, we identified structure trimer-derived (TD) residues that increased the propensity of the subtype B JRFL and subtype C 16055 Env sequences to form well-ordered, homogenous, and highly stable soluble trimers. The generation of these spike mimics no longer required antibody-based selection, positive or negative. Using the redesigned subtype B and C trimer representatives as respective foundations, we further stabilized the NFL TD trimers by engineering an intraprotomer disulfide linkage in the prebridging sheet, I201C-A433C (CC), that locks the gp120 in the receptor nontriggered state. We demonstrated that this disulfide pair prevented CD4 induced-conformational rearrangements in NFL trimers derived from the prototypic subtype A, B, and C representatives. Coupling the TD-based design with the engineered disulfide linkage, CC, increased the propensity of Env to form soluble highly stable spike mimics that are resistant to CD4-induced changes. These advances will allow testing of the hypothesis that such stabilized immunogens will more efficiently elicit neutralizing antibodies in small-animal models and primates. HIV-1 displays unprecedented global diversity circulating in the human population. Since the envelope glycoprotein (Env) is the target of neutralizing antibodies, Env-based vaccine candidates that address such diversity are needed. Soluble well-ordered Env mimics, typified by NFL and SOSIP trimers

  7. The Surface Structure of Ground Metal Crystals

    Science.gov (United States)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  8. Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition

    Science.gov (United States)

    Rajab, Fatema H.; Liu, Zhu; Li, Lin

    2018-01-01

    Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method

  9. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  10. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  11. Trophic structure in a seabird host-parasite food web: insights from stable isotope analyses.

    Directory of Open Access Journals (Sweden)

    Elena Gómez-Díaz

    2010-05-01

    Full Text Available Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C ((13C/(12C, delta(13C and N ((15N/(14N, delta(15N of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters. delta(13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in delta(15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 per thousand depending on the species. Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.

  12. Stable, metastable and unstable solutions of a spin-1 Ising system based on the free energy surfaces

    Science.gov (United States)

    Keskİin, Mustafa; Özgan, Şükrü

    1990-04-01

    Stable, metastable and unstable solutions of a spin-1 Ising model with bilinear and biquadratic interactions are found by using the free energy surfaces. The free energy expression is obtained in the lowest approximation of the cluster variation method. All these solutions are shown in the two-dimensional phase space, especially the unstable solutions which in some cases are difficult to illustrate in the two-dimensional phase space, found by Keskin et al. recently.

  13. Ultra-Stable Zero-CTE HoneySiC and H2CMN Mirror Support Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA MSFC, GSFC and JPL are interested in Ultra-Stable Mirror Support Structures for Exoplanet Missions. Telescopes with Apertures of 4-meters or larger and using an...

  14. Ultra-Stable Zero-CTE HoneySiC and H2CMN Mirror Support Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA MSFC, GSFC and JPL are interested in Ultra-Stable Mirror Support Structures for Exoplanet Missions. Telescopes with Apertures of 4-meters or larger and using an...

  15. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  16. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace....... Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... of molecules such as NH3 or the internal modes of adsorbed molecules such as C4H10. Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H2 physisorbed...

  17. Lunar surface structural concepts and construction studies

    Science.gov (United States)

    Mikulas, Martin

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  18. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  19. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  20. Long-Term Stable Surface Treatments on CdTe and CdZnTe Radiation Detectors

    Science.gov (United States)

    Pekarek, Jakub; Belas, Eduard; Zazvorka, Jakub

    2017-04-01

    The spectral resolution and charge collection efficiency (CCE) of cadmium telluride (CdTe) and cadmium zinc telluride (CZT) room-temperature x-ray and gamma-ray detectors are often limited by high surface leakage current due to conducting surface species created during detector fabrication. Surface treatments play a major role in reduction of this surface leakage current. The effect of various types of surface etching and passivation on the leakage current and thereby the spectral energy resolution, CCE, and internal electric field profile of CdTe/CZT detectors has been studied. The main aim of this work is preparation of long-term stable detectors with strongly reduced leakage current. The time stability of the current-voltage characteristic and spectral resolution was investigated during 21 days and 1 year, respectively, after performing surface treatments. Our results suggest that the optimal detector preparation method is chemomechanical polishing in bromine-ethylene glycol solution followed by chemical etching in bromine-methanol solution then surface passivation in potassium hydroxide or ammonium fluoride (NH4F/H2O2). Detectors prepared using this optimal treatment exhibited low leakage current, high spectral resolution, and long-term stability compared with those subjected to other surface preparation methods.

  1. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface

    Science.gov (United States)

    Chauhan, Amit Kumar Singh; Eldose, Nirosh M.; Mishra, Monu; Niazi, Asad; Nair, Lekha; Gupta, Govind

    2014-09-01

    This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature 500 °C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250-340 °C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520 °C), (√3 × √3-R30°) at 0.3 ML (560 °C) and (7 × 7) at 0.1 ML (580 °C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  2. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  3. Determination of Trophic Structure in Selected Freshwater Ecosystems by using Stable Isotope Analysis.

    Science.gov (United States)

    Zainordin, 'Amila Faqhira; Ab Hamid, Suhaila

    2017-07-01

    Stable isotope analysis has been used extensively to establish trophic relationships in many ecosystems. Present study utilised stable isotope signatures of carbon and nitrogen to identify trophic structure of aquatic food web in river and rice field ecosystems in Perak, northern peninsular Malaysia. The mean δ 13 C values of all producers ranged from -35.29 ± 0.21 to -26.00 ± 0.050‰. The greatest δ 15 N values noted was in zenarchopterid fish with 9.68 ± 0.020‰. The δ 15 N values of aquatic insects ranged between 2.59 ± 0.107 in Elmidae (Coleoptera) and 8.11 ± 0.022‰ in Nepidae (Hemiptera). Correspondingly, with all the δ 13 C and δ 15 N values recorded, it can be deduced that there are four trophic levels existed in the freshwater ecosystems which started with the producer (plants), followed by primary consumer (aquatic insects and non-predatory fish), secondary consumer (invertebrate predators) and lastly tertiary consumer (vertebrate predators).

  4. Surface and interface electronic structure: Three year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    The 3-year activity report covers surface structure and phonon anomalies (surface reconstruction on W(001) and Mo(001), adsorbate lateral ordering, surface Fermi contours and phonon anomalies on Pt(111) and Pd(001)), adsorbate vibrational damping, charge transfer in momentum space: W(011)-K, surface states and resonances (relativistic effects ampersand computations, surface resonances)

  5. Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties

    KAUST Repository

    Noh, Jung Hyun

    2015-08-04

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide which has also a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms can be more stable than bulk-like terminations. These surfaces show different surface chemistry, electronic structures and distinctive spin polarization features near the Fermi level from those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLED and spintronic devices.

  6. Conditions for Stable Chip Breaking and Provision of Machined Surface Quality While Turning with Asymmetric Tool Vibrations

    OpenAIRE

    Шелег, В. К.; Молочко, В. И.; Данильчик, С. С.

    2015-01-01

    The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration a...

  7. On the structure of Si(100) surface

    DEFF Research Database (Denmark)

    Back, Seoin; Schmidt, Johan Albrecht; Ji, Hyunjun

    2013-01-01

    We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing...... of the electron-electron correlation as well as proper multireference wave functions when exploring the extremely delicate potential energy surfaces of the reconstructed Si(100) surface. (C) 2013 AIP Publishing LLC....

  8. Stable anilinyl radicals coordinated to nickel: X-ray crystal structure and characterization.

    Science.gov (United States)

    Kochem, Amélie; Gellon, Gisèle; Leconte, Nicolas; Baptiste, Benoit; Philouze, Christian; Jarjayes, Olivier; Orio, Maylis; Thomas, Fabrice

    2013-12-02

    Two anilinosalen and a mixed phenol-anilinosalen ligands involving sterically hindered anilines moieties were synthesized. Their nickel(II) complexes 1, 2, and 3 were prepared and characterized. They could be readily one-electron oxidized (E(1/2)=-0.30, -0.26 and 0.10 V vs. Fc(+)/Fc, respectively) into anilinyl radicals species [1](+), [2](+), and [3](+), respectively. The radical complexes are extremely stable and were isolated as single crystals. X-ray crystallographic structures reveal that the changes in bond length resulting from oxidation do not exceed 0.02 Å within the ligand framework in the symmetrical [1](+) and [2](+). No quinoid bond pattern was present. In contrast, larger structural rearrangements were evidenced for the unsymmetrical [3](+), with shortening of one C(ortho)-C(meta) bond. Radical species [1](+) and [2](+) exhibit a strong absorption band at around 6000 cm(-1) (class III mixed valence compounds). This band is significantly less intense than [3](+), consistent with a rather localized anilinyl radical character, and thus a classification of this species as class II mixed-valence compound. Magnetic and electronic properties, as well as structural parameters, have been computed by DFT methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly active and stable oxaloacetate decarboxylase Na⁺ pump complex for structural analysis.

    Science.gov (United States)

    Inoue, Michio; Li, Xiaodan

    2015-11-01

    The oxaloacetate decarboxylase primary Na(+) pump (Oad) produces energy for the surviving of some pathogenic bacteria under anaerobic conditions. Oad composes of three subunits: Oad-α, a biotinylated soluble subunit and catalyzes the decarboxylation of oxaloacetate; Oad-β, a transmembrane subunit and functions as a Na(+) pump; and Oad-γ, a single transmembrane α-helical anchor subunit and assembles Oad-α/β/γ complex. The molecular mechanism of Oad complex coupling the exothermic decarboxylation to generate the Na(+) electrochemical gradient remains unsolved. Our biophysical and biochemical studies suggested that the stoichiometry of Oad complex from Vibrio cholerae composed of α, β, γ in 4:2:2 stoichiometry not that of 4:4:4. The high-resolution structure determination of the Oad complex would reveal the energetic transformation mechanism from the catalytical soluble α subunit to membrane β subunit. Sufficient amount stable, conformational homogenous and active Oad complex with the right stoichiometry is the prerequisite for structural analysis. Here we report an easy and reproducible protocol to obtain high quantity and quality Oad complex protein for structural analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Amit Kumar Singh [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics, JMI, New Delhi 110025 (India); Eldose, Nirosh M.; Mishra, Monu [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Niazi, Asad; Nair, Lekha [Department of Physics, JMI, New Delhi 110025 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2014-09-30

    Highlights: • Evolution of In induced superstructures on Si(5 5 7) surface during RT and HT adsorption/desorption process. • Kinetics is governed by substrate temperature which exhibits various growth modes (FM, SK, VB) under different conditions. • Strain relaxation play significant role in the commencement of desorption/rearrangement of atoms. • A consolidated phase diagram of In/Si(5 5 7) interface has been reported with new √3 × √3-R30° and 4 × 1 phases. - Abstract: This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature <500°C, growth of In follows Stranski–Krastanov growth mode while for temperature >500°C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250–340°C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520°C), (√3 × √3-R30°) at 0.3 ML (560°C) and (7 × 7) at 0.1 ML (580°C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  11. Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Oxygen and Deuterium isotope ratios for approximately 980 sites on the surface of the ablation zone of Taylor Glacier, Antarctica. The data...

  12. Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography.

    Science.gov (United States)

    Škeříková, Veronika; Urban, Jiří

    2013-09-01

    A two-step surface modification of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic stationary phases, including hypercrosslinking and thermally initiated surface grafting of [2-(methacryloyloxy)ethyl]dimethyl(3-sulfopropyl)ammonium hydroxide, has been used to prepare capillary columns for the isocratic separation of small polar compounds in hydrophilic interaction chromatography (HILIC). The prepared monolithic columns provided a dual retention mechanism, combining RP and hydrophilic interaction chromatography, controlled by the composition of the mobile phase. By the optimization of the surface grafting reaction using response surface methodology, we have found that the grafting time is the main synergistic effect controlling the retention of polar compounds in HILIC. The prepared monolithic columns achieved long column lifetimes and did not lose their separation power following >10,000 injections. Finally, hypercrosslinked columns have been used in the 1- and 2D LC of phenolic compounds. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The dynamics and structures of adsorbed surfaces

    International Nuclear Information System (INIS)

    Nielsen, M.; Ellenson, W.D.; McTague, J.P.

    1978-01-01

    This article reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace. Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N 2 , Ar, H 2 , D 2 , O 2 , Kr, and He. Measurements on layers of larger molecules such as CD 4 and ND 3 have been reported very recently. Inelastic neutron scattering measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36 Ar and D 2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility of molecules such as NH 3 or the internal modes of adsorbed molecules such as C 4 H 10 . Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H 2 physisorbed to activated alumina and in an example where hydrogen is chemisorbed to Raney nickel. (author)

  14. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  15. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia.

    Science.gov (United States)

    Rašić, Gordana; Endersby-Harshman, Nancy; Tantowijoyo, Warsito; Goundar, Anjali; White, Vanessa; Yang, Qiong; Filipović, Igor; Johnson, Petrina; Hoffmann, Ary A; Arguni, Eggi

    2015-12-01

    Dengue fever, the most prevalent global arboviral disease, represents an important public health problem in Indonesia. Control of dengue relies on the control of its main vector, the mosquito Aedes aegypti, yet nothing is known about the population history and genetic structure of this insect in Indonesia. Our aim was to assess the spatio-temporal population genetic structure of Ae. aegypti in Yogyakarta, a densely populated region on Java with common dengue outbreaks. We used multiple marker systems (microsatellites, nuclear and mitochondrial genome-wide single nucleotide polymorphisms generated via Restriction-site Associated DNA sequencing) to analyze 979 Ae. aegypti individuals collected from the Yogyakarta city and the surrounding hamlets during the wet season in 2011 and the following dry season in 2012. We employed individual- and group-based approaches for inferring genetic structure. We found that Ae. aegypti in Yogyakarta has spatially structured and seasonally stable populations. The spatial structuring was significant for the nuclear and mitochondrial markers, while the temporal structuring was non-significant. Nuclear markers identified three main genetic clusters, showing that hamlets have greater genetic isolation from each other and from the inner city sites. However, one hamlet experienced unrestricted mosquito interbreeding with the inner city, forming a single genetic cluster. Genetic distance was poorly correlated with the spatial distance among mosquito samples, suggesting stronger influence of human-assisted gene flow than active mosquito movement on spatial genetic structure. A star-shaped mitochondrial haplotype network and a significant R(2) test statistic (R(2) = 0.0187, P = 0.001) support the hypothesis that Ae. aegypti in Yogyakarta originated from a small or homogeneous source and has undergone a relatively recent demographic expansion. We report the first insights into the spatio-temporal genetic structure and the underlying

  16. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  17. Comparison of weak-wind characteristics across different Surface Types in stable stratification

    Science.gov (United States)

    Freundorfer, Anita; Rehberg, Ingo; Thomas, Christoph

    2017-04-01

    Atmospheric transport in weak winds and very stable conditions is often characterized by phenomena collectively referred to as submeso motions since their time and spatial scales exceed those of turbulence, but are smaller than synoptic motions. Evidence is mounting that submeso motions invalidate models for turbulent dispersion and diffusion since their physics are not captured by current similarity theories. Typical phenomena in the weak-wind stable boundary layer include meandering motions, quasi two-dimensional pancake-vortices or wavelike motions. These motions may be subject to non-local forcing and sensitive to small topographic undulations. The invalidity of Taylor's hypothesis of frozen turbulence for submeso motions requires the use of sensor networks to provide observations in both time and space domains simultaneously. We present the results from the series of Advanced Resolution Canopy Flow Observations (ARCFLO) experiments using a sensor network consisting of 12 sonic anemometers and 12 thermohygrometers. The objective of ARCFLO was to observe the flow and the turbulent and submeso transport at a high spatial and temporal resolution at 4 different sites in the Pacific Northwest, USA. These sites represented a variable degree of terrain complexity (flat to mountainous) and vegetation architecture (grass to forest, open to dense). In our study, a distinct weak-wind regime was identified for each site using the threshold velocity at which the friction velocity becomes dependent upon the mean horizontal wind speed. Here we used the scalar mean of the wind speed because the friction velocity showed a clearer dependence on the scalar mean compared to the vector mean of the wind velocity. It was found that the critical speed for the weak wind regime is higher in denser vegetation. For an open agricultural area (Botany and Plant Pathology Farm) we found a critical wind speed of v_crit= (0.24±0.05) ms-1 while for a very dense forest (Mary's River Douglas Fir

  18. Modeling laser-induced periodic surface structures: an electromagnetic approach

    NARCIS (Netherlands)

    Skolski, J.Z.P.

    2014-01-01

    This thesis presents and discusses laser-induced periodic surface structures (LIPSSs), as well as a model explaining their formation. LIPSSs are regular wavy surface structures with dimensions usually in the submicrometer range, which can develop on the surface of many materials exposed to laser

  19. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  20. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay.

    Science.gov (United States)

    Guo, Jie; Yang, Fuchao; Guo, Zhiguang

    2016-03-15

    We report a simple and rapid method to fabricate superhydrophobic films on copper substrates via Fe(3+) etching and octadecanethiol (ODT) modification. The etching process can be as short as 5 min and the ODT treatment only takes several seconds. In addition, the whole process is quite flexible in reaction time. The superhydrophobicity of as-prepared surfaces is mechanically durable and chemically stable, which have great performance in oil-water separation and ice-over resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The structure and properties of fluorite crystal surfaces

    OpenAIRE

    Tasker, P.

    1980-01-01

    The surface energies, tensions and structure of the (111) and (110) surfaces of CaF2, SrF2, BaF2 and UO2, ThO2, PrO2, PuO2, CeO2 have been calculated using an ionic shell model. The surface energies for the natural cleavage plane (111) are compared with the available experimental data and agree well. The surface tensions indicate a compressive stress in both surfaces. The surface structures show increasing relaxation with increasing ion size and the rumpling of the (110) surface indicates a q...

  2. Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses

    Science.gov (United States)

    McClain-Counts, Jennifer P.; Demopoulos, Amanda W.J.; Ross, Steve W.

    2017-01-01

    Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North-Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co-occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non-crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft-bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth-specific isotope trends in sources and consumers, and assimilation of 15N-depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was

  3. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  4. Structural, electronic and magnetic properties of Mn3N2(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Mandru, Andrada-Oana; Wang, Kangkang; Takeuchi, Noboru; Cocoletzi, Gregorio H.; Smith, Arthur R.

    2015-01-01

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn 3 N 2 (0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  5. Structure of stable binary neutron star merger remnants: Role of initial spin

    Science.gov (United States)

    Kastaun, W.; Ciolfi, R.; Endrizzi, A.; Giacomazzo, B.

    2017-08-01

    We present general relativistic numerical simulations of binary neutron star (BNS) mergers with different initial spin configurations. We focus on models with stars of mass 1.4 M⊙ each, which employ the equation of state (EOS) by Shen, Horowitz, and Teige, and which result in stable NSs as merger remnants. For comparison, we consider two irrotational equal mass (M =1.35 M⊙) and unequal mass (M =1.29 , 1.42 M⊙ ) BNS models using the APR4 EOS, which result in a supramassive merger remnant. We present visualizations of the fluid flow and temperature distribution and find a strong impact of the spin on vortex structure and nonaxisymmetric deformation. We compute the radial mass distribution and the rotation profile in the equatorial plane using recently developed measures independent of spatial gauge, revealing slowly rotating cores that can be well approximated by the cores of spherical stars. We also study the influence of the spin on the inspiral phase and the gravitational wave (GW) signal. Using a newly developed analysis method, we further show that gravitational waveforms from BNS mergers can exhibit one or more phase jumps after merger, which occur together with minima of the strain amplitude. We provide a natural explanation in terms of the remnant's quadrupole moment, and show that cancellation effects due to phase jumps can have a strong impact on the GW power spectrum. Finally, we discuss the impact of the spin on the amount of ejected matter.

  6. Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system

    Directory of Open Access Journals (Sweden)

    Shuyin Yu

    2014-10-01

    Full Text Available Using first-principles variable-composition evolutionary methodology, we explored the high-pressure structures of beryllium hydrides between 0 and 400 GPa. We found that BeH2 remains the only stable compound in this pressure range. The pressure-induced transformations are predicted as I b a m → P 3 ̄ m 1 → R 3 ̄ m → C m c m → P 4 / n m m , which occur at 24, 139, 204 and 349 GPa, respectively. P 3 ̄ m 1 and R 3 ̄ m structures are layered polytypes based on close packings of H atoms with Be atoms filling all octahedral voids in alternating layers. Cmcm and P4/nmm contain two-dimensional triangular networks with each layer forming a kinked slab in the ab-plane. P 3 ̄ m 1 and R 3 ̄ m are semiconductors while Cmcm and P4/nmm are metallic. We have explored superconductivity of both metal phases, and found large electron-phonon coupling parameters of λ = 0.63 for Cmcm with a Tc of 32.1-44.1 K at 250 GPa and λ = 0.65 for P4/nmm with a Tc of 46.1-62.4 K at 400 GPa. The dependence of Tc on pressure indicates that Tc initially increases to a maximum of 45.1 K for Cmcm at 275 GPa and 97.0 K for P4/nmm at 365 GPa, and then decreases with increasing pressure for both phases.

  7. Structure of stable binary neutron star merger remnants: A case study

    Science.gov (United States)

    Kastaun, W.; Ciolfi, R.; Giacomazzo, B.

    2016-08-01

    In this work, we study the merger of two neutron stars with a gravitational mass of 1.4 M⊙ each, employing the Shen-Horowitz-Teige equation of state. This equation of state is a corner case, allowing the formation of a stable neutron star with the given total baryonic mass of 3.03 M⊙. We investigate in unprecedented detail the structure of the remnant, in particular the mass distribution, the thermal structure, and the rotation profile. We also compute fluid trajectories both inside the remnant and those relevant for the formation of the disk. We find a peanut-shaped fluid flow inside the remnant following a strong m =2 perturbation. Moreover, the flow is locally compressive, causing the appearance of dynamic hot spots. Further, we introduce new diagnostic measures that are easy to implement in numeric simulations and that allow one to quantify mass and compactness of merger remnants in a well-defined way. As in previous studies of supra- and hypermassive stars, we find a remnant with a slowly rotating core and an outer envelope rotating at nearly Keplerian velocity. We compute a Tolman-Oppenheimer-Volkoff star model which agrees well with that of the remnant in the core, while the latter possesses extensive outer layers rotating close to Kepler velocity. Finally, we extract the gravitational wave signal and discuss the detectability with modern observatories. This study has implications for the interpretation of gravitational wave detections from the postmerger phase and is relevant for short gamma-ray burst models.

  8. A Simple Nanocellulose Coating for Self-Cleaning upon Water Action: Molecular Design of Stable Surface Hydrophilicity.

    Science.gov (United States)

    Huang, Shu; Wang, Dayang

    2017-07-24

    Coating solid surfaces with cellulose nanofibril (CNF) monolayers via physical deposition was found to keep the surfaces free of a variety of oils, ranging from viscous engine oil to polar n-butanol, upon water action. The self-cleaning function was well correlated with the unique molecular structure of the CNF, in which abundant surface carboxyl and hydroxy groups are uniformly, densely, and symmetrically arranged to form a polar corona on a crystalline nanocellulose strand. This isotropic core-corona configuration offers new and easily adoptable guidance to design self-cleaning surfaces at the molecular level. Thanks to its excellent self-cleaning behavior, the CNF coating converted conventional meshes into highly effective membranes for oil-water separation with no prior surface treatment required. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction.

    Science.gov (United States)

    Chen, Yen-Chang; Lu, Ang-Yu; Lu, Ping; Yang, Xiulin; Jiang, Chang-Ming; Mariano, Marina; Kaehr, Bryan; Lin, Oliver; Taylor, André; Sharp, Ian D; Li, Lain-Jong; Chou, Stanley S; Tung, Vincent

    2017-11-01

    The emerging molybdenum disulfide (MoS 2 ) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS 2 (ce-MoS 2 ) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang

    2017-10-12

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  11. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    Science.gov (United States)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-12-01

    Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  12. Structural stability and the electronic and magnetic properties of ferrimagnetic Mn4N(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2017-01-01

    Highlights: • Surface formation energy calculations demonstrate a N-dependent stability. • The magnetic alignment of these surfaces remains bulk-like, in a ferrimagnetic fashion. • A ferrimagnetic behavior in both structures is confirmed by density of states calculations. - Abstract: We have carried out spin-polarized first principles calculations to describe the surface stability and the electronic and magnetic properties of Mn 4 N(0 0 1) surfaces. Results show two different surface terminations with different N content. The surface formation energies indicate that for manganese rich conditions the most stable structure is a MnN terminated surface. Whereas, from intermediate to nitrogen rich conditions, a MnN terminated surface with excess of nitrogen atoms is the most favorable. The stability of these surfaces can be traced to the formation of Mn–N bonds at the surface. The stable surfaces are Ferrimagnetic along the direction perpendicular to the surface, retaining a bulk-like behavior. However, there is a decrease in the Mn magnetic moments due to the presence of the surface. Density of states shows an asymmetric behavior, inherent of a Ferrimagnetic state. Finally, the surfaces are metallic with the main contributions around the Fermi level coming from the Mn-d orbitals. The knowledge about the atomic arrangements of the Mn 4 N surfaces may serve to explain and understand the formation of more complex and technologically applicable ferromagnetic/ferrimagnetic and antiferromagnetic/ferrimagnetic heterostructures.

  13. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO 3 /IDT/diamond and diamond/IDT/128 0 rotated Y-X cut LiNbO 3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO 2 ) or silicon dioxide (SiO 2 ). The presence of a TeO 2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO 2 . The temperature stable TeO 2 /LiNbO 3 /IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) x 10 -15 s 3 kg -1 has been obtained for the temperature stable SiO 2 /diamond/IDT/LiNbO 3 layered structure indicating a promising device structure for AO applications

  14. Stable structures of Al510–800 clusters and lowest energy sequence of truncated octahedral Al clusters up to 10,000 atoms

    International Nuclear Information System (INIS)

    Wu, Xia; He, Chengdong

    2012-01-01

    Highlights: ► The stable structures of Al 510–800 clusters are obtained with the NP-B potential. ► Al 510–800 clusters adopt truncated octahedral (TO) growth pattern based on complete TOs at Al 405 , Al 586 , and Al 711 . ► The lowest energy sequence of complete TOs up to the size 10,000 is proposed. -- Abstract: The stable structures of Al 510–800 clusters are obtained using dynamic lattice searching with constructed cores (DLSc) method by the NP-B potential. According to the structural growth rule, octahedra and truncated octahedra (TO) configurations are adopted as the inner cores in DLSc method. The results show that in the optimized structures two complete TO structures are found at Al 586 and Al 711 . Furthermore, Al 510–800 clusters adopt TO growth pattern on complete TOs at Al 405 , Al 586 , and Al 711 , and the configurations of the surface atoms are investigated. On the other hand, Al clusters with complete TO motifs are studied up to the size 10,000 by the geometrical construction method. The structural characteristics of complete TOs are denoted by the term “family”, and the growth sequence of Al clusters is investigated. The lowest energy sequence of complete TOs is proposed.

  15. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses.

    Science.gov (United States)

    Zuhlke, Craig A; Anderson, Troy P; Alexander, Dennis R

    2013-04-08

    The formation of self-organized micro- and nano-structured surfaces on nickel via both above surface growth (ASG) and below surface growth (BSG) mechanisms using femtosecond laser pulse illumination is reported. Detailed stepped growth experiments demonstrate that conical mound-shaped surface structure development is characterized by a balance of growth mechanisms including scattering from surface structures and geometric effects causing preferential ablation of the valleys, flow of the surface melt, and redeposition of ablated material; all of which are influenced by the laser fluence and the number of laser shots on the sample. BSG-mound formation is dominated by scattering, while ASG-mound formation is dominated by material flow and redeposition. This is the first demonstration to our knowledge of the use of femtosecond laser pulses to fabricate metallic surface structures that rise above the original surface. These results are useful in understanding the details of multi-pulse femtosecond laser interaction with metals.

  16. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  17. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    International Nuclear Information System (INIS)

    Flavel, Benjamin S.; Garrett, David J.; Lehr, Joshua; Shapter, Joseph G.; Downard, Alison J.

    2010-01-01

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH 3 ) 6 +3/+2 couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10 -3 cm s -1 at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  18. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles

    Science.gov (United States)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli

    2017-09-01

    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  19. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    Science.gov (United States)

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  20. The X-37 Hot Structure Control Surface Testing

    Science.gov (United States)

    Hudson, Larry D.; Stephens, Craig A.

    2006-01-01

    Thermal-structural testing of three hot structure control surface subcomponent test articles (STA) designed for the X-37 (Boeing Phantom Works, Huntington Beach, California) Orbital Vehicle (OV) has been completed. The test articles were subcomponents of the X-37 OV bodyflap and flaperon control surfaces.

  1. Synthesis, Structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    3

    lead to the formation of a three-dimensional architecture. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D fingerprint plots have been used to scrutinize molecular shapes. The vibration properties of this structure were studied by IR ...

  2. Fragmentation pathways of nanofractal structures on surfaces

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2011-01-01

    We present a theoretical analysis of the post-growth processes occurring in nanofractals grown on a surface. For this study we have developed a method that accounts for the internal dynamics of particles in a fractal. We demonstrate that the detachment of particles from the fractal and their diff...

  3. Facile fabrication of superhydrophobic surfaces with hierarchical structures.

    Science.gov (United States)

    Lee, Eunyoung; Lee, Kun-Hong

    2018-03-06

    Hierarchical structures were fabricated on the surfaces of SUS304 plates using a one-step process of direct microwave irradiation under a carbon dioxide atmosphere. The surface nanostructures were composed of chrome-doped hematite single crystals. Superhydrophobic surfaces with a water contact angle up to 169° were obtained by chemical modification of the hierarchical structures. The samples maintained superhydrophobicity under NaCl solution up to 2 weeks.

  4. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  5. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  6. Structure of Solids Surfaces in Wear Situations.

    Science.gov (United States)

    1984-10-17

    lactones , respectively. As pointed out by Greenler 12J, the most intense emission bands from a material adsorbed in a thin layer on a metal surface...peroxides are formed instead of hydroper-.,. .," ", oxides. The decomposition of these peroxides then leads to unsaturates , aldehydes, ketones and...around 1100 cm-1 (OH and unsaturation ) and at 730 cm-1 (CH2 rock). weeIt is clear that such analyses are difficult, but can yield a welthof information

  7. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    Dissolution rates are usually calculated as a function of surface area, which is assumed to remain constant ignoring the changes occurring on the surface during dissolution. Here we present a study of how topography of natural fluorite surfaces with different orientation changes during up to 3200...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  8. Compact complex surfaces with geometric structures related to split quaternions

    International Nuclear Information System (INIS)

    Davidov, Johann; Grantcharov, Gueo; Mushkarov, Oleg; Yotov, Miroslav

    2012-01-01

    We study the problem of existence of geometric structures on compact complex surfaces that are related to split quaternions. These structures, called para-hypercomplex, para-hyperhermitian and para-hyperkähler, are analogs of the hypercomplex, hyperhermitian and hyperkähler structures in the definite case. We show that a compact 4-manifold carries a para-hyperkähler structure iff it has a metric of split signature together with two parallel, null, orthogonal, pointwise linearly independent vector fields. Every compact complex surface admitting a para-hyperhermitian structure has vanishing first Chern class and we show that, unlike the definite case, many of these surfaces carry infinite-dimensional families of such structures. We provide also compact examples of complex surfaces with para-hyperhermitian structures which are not locally conformally para-hyperkähler. Finally, we discuss the problem of non-existence of para-hyperhermitian structures on Inoue surfaces of type S 0 and provide a list of compact complex surfaces which could carry para-hypercomplex structures.

  9. Compact complex surfaces with geometric structures related to split quaternions

    Energy Technology Data Exchange (ETDEWEB)

    Davidov, Johann, E-mail: jtd@math.bas.bg [Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); ' L. Karavelov' Civil Engineering Higher School, 175 Suhodolska Str., 1373 Sofia (Bulgaria); Grantcharov, Gueo, E-mail: grantchg@fiu.edu [Department of Mathematics and Statistics, Florida International University, Miami, FL 33199 (United States); Mushkarov, Oleg, E-mail: muskarov@math.bas.bg [Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Yotov, Miroslav, E-mail: yotovm@fiu.edu [Department of Mathematics and Statistics, Florida International University, Miami, FL 33199 (United States)

    2012-12-11

    We study the problem of existence of geometric structures on compact complex surfaces that are related to split quaternions. These structures, called para-hypercomplex, para-hyperhermitian and para-hyperkaehler, are analogs of the hypercomplex, hyperhermitian and hyperkaehler structures in the definite case. We show that a compact 4-manifold carries a para-hyperkaehler structure iff it has a metric of split signature together with two parallel, null, orthogonal, pointwise linearly independent vector fields. Every compact complex surface admitting a para-hyperhermitian structure has vanishing first Chern class and we show that, unlike the definite case, many of these surfaces carry infinite-dimensional families of such structures. We provide also compact examples of complex surfaces with para-hyperhermitian structures which are not locally conformally para-hyperkaehler. Finally, we discuss the problem of non-existence of para-hyperhermitian structures on Inoue surfaces of type S{sup 0} and provide a list of compact complex surfaces which could carry para-hypercomplex structures.

  10. Surface Structures of Model Metal Catalysts in Reactant Gases.

    Science.gov (United States)

    Tao, Franklin Feng; Ralston, Walter T; Liu, Huimin; Somorjai, Gabor A

    2018-01-18

    Atomic scale knowledge of the surface structure of a metal catalyst is essential for fundamentally understanding the catalytic reactions performed on it. A correlation between the true atomic surface structure of a metal catalyst under reaction conditions and the corresponding catalytic performance is the key in pursuing mechanistic insight at a molecular level. Here the surface structures of model, metal catalysts in both ultrahigh vacuum (UHV) and gaseous environments of CO at a wide range of pressures are discussed. The complexity of observed surface structures in CO is illustrated, driving the necessity for visualization of the catalytic metals under realistic reaction conditions. Technical barriers for visualization of metal surfaces in situ at high temperature and high pressure are discussed.

  11. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  12. Surface forces between rough and topographically structured interfaces

    DEFF Research Database (Denmark)

    Thormann, Esben

    2017-01-01

    and manufactured materials, which possess topographical variations. Further, with technological advances in nanotechnology, fabrication of nano- or micro-structured surfaces has become increasingly important for many applications, which calls for a better understanding of the effect of surface topography...... on the interaction between interfaces. This paper presents a review of the current state of understanding of the effect of surface roughness on DLVO forces, as well as on the interactions between topographically structured hydrophobic surfaces in water. While the first case is a natural choice because it represents...

  13. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  14. Quasilinear ridge structures in water surface waves

    Science.gov (United States)

    Blümel, R.; Davidson, I. H.; Reinhardt, W. P.; Lin, H.; Sharnoff, M.

    1992-02-01

    Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (ν700 Hz) regimes. In the low-frequency regime, in agreement with predictions of quantum-chaos theory, the shape of the tank's boundaries (integrable or nonintegrable) dictates the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns characterized by short-range order (called ``scarlets'' because they are believed to be the precursors of quantum scars), as recently predicted in the quantum-chaos context by P. O'Connor, J. Gehlen, and E. J. Heller [Phys. Rev. Lett. 58, 1296 (1987)].

  15. Influence of surface structure and chemistry on water droplet splashing.

    Science.gov (United States)

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  16. Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Totaro, Grazia; Fava, Fabio

    2017-11-02

    The application of chemical dispersants as a response to marine oil spills is raising concerns related to their potential toxicity also towards microbes involved in oil biodegradation. Hence, oil spills occurring under marine environments necessitate the application of biodispersants that are highly active, stable and effective under marine environment context. Biosurfactants from marine bacteria could be good candidates for the development of biodispersant formulations effective in marine environment. This study aimed at establishing a collection of marine bacteria able to produce surface-active compounds and evaluating the activity and stability of the produced compounds under conditions mimicking those found under marine environment context. A total of 43 different isolates were obtained from harbor sediments. Twenty-six of them produced mainly bioemulsifiers when glucose was used as carbon source and 16 were biosurfactant/bioemulsifiers producers after growth in the presence of soybean oil. Sequencing of 16S rRNA gene classified most isolates into the genus Marinobacter. The produced emulsions were shown to be stable up to 30 months monitoring period, in the presence of 300 g/l NaCl, at 4 °C and after high temperature treatment (120 °C for 20 min). The partially purified compounds obtained after growth on soybean oil-based media exhibited low toxicity towards V. fischeri and high capability to disperse crude oil on synthetic marine water. To the best of our knowledge, stability characterization of bioemulsifiers/biosurfactants from the non-pathogenic marine bacterium Marinobacter has not been previously reported. The produced compounds were shown to have potential for different applications including the environmental sector. Indeed, their high stability in the presence of high salt concentration and low temperature, conditions characterizing the marine environment, the capability to disperse crude oil and the low ecotoxicity makes them interesting for

  17. DNA-based stable isotope probing: a link between community structure and function

    Czech Academy of Sciences Publication Activity Database

    Uhlík, Ondřej; Ječná, K.; Leigh, M. B.; Macková, Martina; Macek, Tomáš

    2009-01-01

    Roč. 407, č. 12 (2009), s. 3611-3619 ISSN 0048-9697 Grant - others:GA MŠk(CZ) 2B08031 Program:2B Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA-based stable isotope probing * microbial diversity * bioremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.905, year: 2009

  18. Imprinted and injection-molded nano-structured optical surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik

    2013-01-01

    . In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication...... of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4...

  19. Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents: a randomized controlled trial.

    Science.gov (United States)

    Granacher, Urs; Schellbach, Jörg; Klein, Katja; Prieske, Olaf; Baeyens, Jean-Pierre; Muehlbauer, Thomas

    2014-01-01

    It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the

  20. Dimers on Surface Graphs and Spin Structures. I

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai

    2007-01-01

    Partition functions for dimers on closed oriented surfaces are known to be alternating sums of Pfaffians of Kasteleyn matrices. In this paper, we obtain the formula for the coefficients in terms of discrete spin structures....

  1. Synthesis, structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    dimensional architecture. Hirshfeld surface analysis for visually analysing intermolecular interactions in crystal structures employing molecular sur- face contours and 2D fingerprint plots has been used to scrutinize molecular shapes. The vibration ...

  2. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  3. Surface structure investigations using noncontact atomic force microscopy

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.

    2006-01-01

    Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination

  4. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei

    2013-11-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte structure showed good chemical stability in both CO2 and H2O atmosphere, indicating that the BZPY layers effectively protect the inner BCY electrolyte, while the BCY electrolyte alone decomposed completely under the same conditions. Fuel cell prototypes fabricated with the sandwiched electrolyte achieved a relatively high performance of 185 mW cm- 2 at 700 C, with a high electrolyte film conductivity of 4 × 10- 3 S cm- 1 at 600 C. © 2013 Elsevier B.V.

  5. Closed Pore Structured NiCo2O4-Coated Nickel Foams for Stable and Effective Oil/Water Separation.

    Science.gov (United States)

    Li, Yan; Zheng, Xi; Yan, Zhanheng; Tian, Dongliang; Ma, Jianmin; Zhang, Xiaofang; Jiang, Lei

    2017-08-30

    To solve the serious problem caused by oily wastewater pollution, unique interface designs, for example, membranes with superwetting properties such as superhydrophobicity/superoleophilicity and superhydrophilicity/underwater superoleophobicity, provide a good way to achieve oil/water separation. Here, inspired by the liquid storage property of the honeycomb structure, we propose a strategy to fabricate NiCo 2 O 4 -coated nickel foams for stable and efficient oil/water separation. NiCo 2 O 4 with a closed-pore structure was formed by assembling nanoflakes with a micro/nanoscale hierarchical structure. Compared with nickel foam coated by NiCo 2 O 4 with an open-pore structure (NiCo 2 O 4 nanowires), the enclosed nanostructure of NiCo 2 O 4 nanoflakes can firmly hold water for a more stable superhydrophilic/underwater superoleophobic interface. As a consequence, the NiCo 2 O 4 -nanoflake-coated nickel foam has a larger oil breakthrough pressure than the NiCo 2 O 4 -nanowire-coated nickel foam because of a slightly larger oil advancing angle and a lower underwater oil adhesion force, which makes it more stable and efficient for oil/water separation. Moreover, the NiCo 2 O 4 -coated nickel foams have excellent chemical and mechanical stability, and they are reusable for oil-water separation. This work will be beneficial for the design and development of stable underwater superoleophobic self-cleaning materials and related device applications, such as oil/water separation.

  6. Laser-induced nanoscale superhydrophobic structures on metal surfaces

    NARCIS (Netherlands)

    Radhakrishnan, J.; Pathiraj, B.; Karatay, Elif; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert

    2011-01-01

    The combination of a dual-scale (nano and micro) roughness with an inherent low-surface energy coating material is an essential factor for the development of superhydrophobic surfaces. Ultrashort pulse laser (USPL) machining/structuring is a promising technique for obtaining the dual-scale

  7. Comparison of hamstring and quadriceps femoris electromyographic activity between men and women during a single-limb squat on both a stable and labile surface.

    Science.gov (United States)

    Youdas, James W; Hollman, John H; Hitchcock, James R; Hoyme, Gregory J; Johnsen, Jeremiah J

    2007-02-01

    The purpose of this study was to determine if women are quadriceps dominant and men are hamstring dominant during the performance of a partial single-leg squat (SLS) on both a stable and labile ground surface against body weight resistance. Thirty healthy participants (15 men and 15 women) performed an SLS on both a stable surface and a 6.4-cm-thick vinyl pad. Surface electromyographic (EMG) recordings were obtained from the quadriceps femoris and hamstring muscles during the extension phase of the SLS. Statistical analysis revealed that women produced 14% more EMG activity (p = 0.04) in their quadriceps than the men during the SLS on a stable surface, whereas the men generated 18% more EMG activity (p = 0.04) in their hamstrings than the women during the SLS on a labile surface. Additionally, we found a statistically significant sex effect (p = 0.048) for the hamstring/quadriceps (H/Q) EMG ratio, which was 2.25 and 0.62, respectively, for men and women on the stable surface and 2.52 and 0.71, respectively, on the labile surface. We concluded that women are quadriceps dominant and men are hamstring dominant during the performance of SLS against body weight resistance on either a stable or labile surface condition. During an SLS, men showed an H/Q ratio approximately 3.5 times larger than their female counterparts, suggesting that men activate their hamstrings more effectively than women during an SLS. According to our data, the SLS may not be an ideal exercise for activating the hamstring muscles in women without additional neuromuscular training techniques, because women are quadriceps dominant during the SLS.

  8. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    Science.gov (United States)

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  10. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part

    Science.gov (United States)

    Fox-Rabinovich, German; Wagg, Terry

    2017-01-01

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405

  11. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part

    Directory of Open Access Journals (Sweden)

    Yassmin Seid Ahmed

    2017-10-01

    Full Text Available During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE. BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  12. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    Full Text Available The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic 'baseline' for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003 considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers

  13. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  14. Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens

    Science.gov (United States)

    Alyami, Abeer; Saviello, Daniela; McAuliffe, Micheal A. P.; Cucciniello, Raffaele; Mirabile, Antonio; Proto, Antonio; Lewis, Liam; Iacopino, Daniela

    2017-08-01

    Au nanorods were used as an alternative to commonly used Ag nanoparticles as Surface Enhanced Raman Scattering (SERS) probes for identification of dye composition of blue BIC ballpoint pens. When used in combination with Thin Layer Chromatography (TLC), Au nanorod colloids allowed identification of the major dye components of the BIC pen ink, otherwise not identifiable by normal Raman spectroscopy. Thanks to their enhanced chemical stability compared to Ag colloids, Au nanorods provided stable and reproducible SERS signals and allowed easy identification of phthalocyanine and triarylene dyes in the pen ink mixture. These findings were supported by FTIR and MALDI analyses, also performed on the pen ink. Furthermore, the self-assembly of Au nanorods into large area ordered superstructures allowed identification of BIC pen traces. SERS spectra of good intensity and high reproducibility were obtained using Au nanorod vertical arrays, due to the high density of hot spots and morphological reproducibility of these superstructures. These results open the way to the employment of SERS for fast screening analysis and for quantitative analysis of pens and faded pens which are relevant for the fields of forensic and art conservation sciences.

  15. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    Science.gov (United States)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    atmospheric turbulence and wind speed. GEM enriched in stable isotope 198 (GEM-198) was released into the room from source at elevated but environmentally relevant concentrations of GEM-198 for several days. Uptake of GEM-198 from deciduous and conifer trees, grass turf, 3 types of soil, sand, concrete, asphalt, and adsorbent coated deposition coupons were quantified over several days. Exposures were conducted between 10oC and 30oC, in dark and light conditions. Mercury was recovered from the samples using acidic digestions and surface leaches, and then analyzed for the content of GEM-198 by high resolution ICPMS. Experimental results demonstrated that uptake by White Ash, White Spruce, and Kentucky bluegrass were significantly higher than uptakes measured for two Wisconsin soils, peat, sand, concrete and asphalt at all of the conditions studied. Deposition resistances for surface transfer processes for were calculated for each of the substrates across the conditions studied for use in atmospheric model simulations.

  16. Color effects from scattering on random surface structures in dielectrics

    DEFF Research Database (Denmark)

    Clausen, Jeppe; Christiansen, Alexander B; Garnæs, Jørgen

    2012-01-01

    We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized....... The angle resolved scattering has been measured and compared to predictions based on the measured surface topography and by the use of non-paraxial scalar diffraction theory. From this it is shown that the color of the transmitted light can be predicted from the topography of the randomly textured surfaces....

  17. Finding the Stable Structures of WxN1-x with an ab-initio High-Throughput Approach

    Science.gov (United States)

    2014-03-13

    properties must be energetically stable against decomposition into other compounds. This stability can only be found after the determination of the...polarized. However, in every structure the self-consistent magnetic moment was negligible, and the final calculations were all done assuming no moment. The...of NaCl) we looked at all 255 combinations. We found 34 unique structures, including NbO itself, CsCl, S3U4, ReO3,[59] cubic perovskite (with formula

  18. Synthesis, structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    Hirshfeld surface analysis for visually analysing intermolecular interactions in crystal structures employing molecular surfacecontours and 2D fingerprint plots has been used to scrutinize molecular shapes. The vibration properties of this structure were studied by IR spectroscopy and Raman scattering. Vibration spectra ...

  19. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    The dendritic or fractal Ag nanostructures have attracted the attention of scientists recently due to their attractive supramolecular structures, large surface area and excellent connectivity between the different parts of the structures. Significantly, it has been established that dendritic or fractal Ag nanostructures are an excel-.

  20. Characteristics of surface wind structure of tropical cyclones over the ...

    Indian Academy of Sciences (India)

    the effective utilization of above-mentioned multi- platform-based satellite-derived wind product is very essential to minimize the error in intensity and structure monitoring and forecast. So, a study has been undertaken to analyze the mean character- istics of surface wind distribution and hence the structure of TC based on ...

  1. Near Surface Characterization Of Concrete Structures Using Rayleigh Waves

    Science.gov (United States)

    Al Wardany, R.; Ballivy, G.; Saleh, K.; Rhazi, J.; Gallias, J.

    2004-05-01

    The deterioration of the near surface concrete minimises the structural behaviour, capacity, and working lifespan for civil engineering structures and dams. Repair strategy and maintenance require careful examination and determination of the degraded depth. In this aim, dispersive properties of Rayleigh waves are used to detect concrete stratification and cracks. Current work focuses on an experimental study and application of multichannel Rayleigh wave methods on high concrete volumes. The method considers a wavefield in the frequency-wavenumber domain to separate existing Rayleigh modes and determine the appropriate shear wave velocity profile. The classical phase unwrapping analysis technique is also used to localise near surface cracks and defects. This new way in concrete nondestructive testing lead to a best evaluation of near surface stiffness and properties from the surface of concrete structures.

  2. The physical structure of the oceanic surface-layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, K.N.

    1981-01-01

    A study is presented of the structure of the near-surface layer of the ocean under various hydrometeorological conditions. Such a study allows the isolation of border measures for a four characteristic regime for the top ocean layer: 1) intensive wind-wave mixing; 2) Langmuir circulation; 3) intense solar heating during still and calm weather (with and without internal wave modulations); 4) a pressing-out of surface sediment. It is demonstrated that the spatial temperature change in the ocean surface, the thermal structure, and the heat attainment in the top layer have various characteristics during different regimes and this must be considered during the measuring of the ocean surface temperature with the contact method as well as during the comparison of contact and satallite data on the ocean surface temperature. The necessity for more research in this area is underscored.

  3. A genetic algorithm approach in interface and surface structure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  4. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    Science.gov (United States)

    Sobel, Nicolas; Hess, Christian

    2015-12-07

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Prediction of Protein Structure Using Surface Accessibility Data.

    Science.gov (United States)

    Hartlmüller, Christoph; Göbl, Christoph; Madl, Tobias

    2016-09-19

    An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance-to-surface information encoded in the sPRE data in the chemical shift-based CS-Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  7. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates.

    Science.gov (United States)

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-09-01

    Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171° was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.

    Science.gov (United States)

    Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm

    2008-12-02

    The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.

  9. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2017-04-30

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy 3D image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  10. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2018-03-05

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  11. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  12. Generalised coexistence of a low work function and a stable surface : CaAl4 and BaAuIn3

    NARCIS (Netherlands)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Cathodes are used in many devices ranging from microwave ovens to organic light-emitting diodes (OLEDs). Crucial materials properties are a low work function (Phi) and a (relatively) stable surface. The relation between the two was not clear for more-complex metals. Our previous paper [M.A.

  13. The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice

    NARCIS (Netherlands)

    Sterk, H.A.M.; Steeneveld, G.J.; Holtslag, A.A.M.

    2013-01-01

    To enhance the understanding of the impact of small-scale processes in the polar climate, this study focuses on the relative role of snow-surface coupling, radiation and turbulent mixing in an Arctic stable boundary layer. We extend the GABLS1 (GEWEX Atmospheric Boundary-Layer Study 1) model

  14. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non

  15. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  16. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  17. Nonlinear Tamm states and surface effects in periodic photonic structures

    International Nuclear Information System (INIS)

    Kivshar, Yu S

    2008-01-01

    We present a brief overview of the basic concepts and important experimental observations of the effect of light localization near the surfaces of truncated periodic photonic structures. In particular, we discuss the formation of nonlinear localized modes and discrete surface solitons near the edges of nonlinear optical waveguide arrays and two-dimensional photonic lattices. We draw an analogy between the nonlinear surface optical modes and the surface Tamm states known in the electronic theory. We discuss the crossover between discrete solitons in the array and surface solitons at the edge of the array by analyzing the families of even and odd nonlinear localized modes located at finite distances from the edge of a waveguide array. We discuss various generalization of this concept including surface solitons in chirped lattices, multi-gap vector surface solitons, polychromatic surface states generated by a supercontinuum source, surface modes in two-dimensional photonic lattices, and spatiotemporal surface solitons. Finally, we discuss briefly several other related concepts including the enhanced beaming of light from subwavelength waveguides in photonic crystals

  18. Crystallography and surface structure an introduction for surface scientists and nanoscientists

    CERN Document Server

    Hermann, Klaus

    2017-01-01

    A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.

  19. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  20. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.

    Science.gov (United States)

    Kamkar, Iman; Gupta, Sunil Kumar; Phung, Dinh; Venkatesh, Svetha

    2015-02-01

    Modern healthcare is getting reshaped by growing Electronic Medical Records (EMR). Recently, these records have been shown of great value towards building clinical prediction models. In EMR data, patients' diseases and hospital interventions are captured through a set of diagnoses and procedures codes. These codes are usually represented in a tree form (e.g. ICD-10 tree) and the codes within a tree branch may be highly correlated. These codes can be used as features to build a prediction model and an appropriate feature selection can inform a clinician about important risk factors for a disease. Traditional feature selection methods (e.g. Information Gain, T-test, etc.) consider each variable independently and usually end up having a long feature list. Recently, Lasso and related l1-penalty based feature selection methods have become popular due to their joint feature selection property. However, Lasso is known to have problems of selecting one feature of many correlated features randomly. This hinders the clinicians to arrive at a stable feature set, which is crucial for clinical decision making process. In this paper, we solve this problem by using a recently proposed Tree-Lasso model. Since, the stability behavior of Tree-Lasso is not well understood, we study the stability behavior of Tree-Lasso and compare it with other feature selection methods. Using a synthetic and two real-world datasets (Cancer and Acute Myocardial Infarction), we show that Tree-Lasso based feature selection is significantly more stable than Lasso and comparable to other methods e.g. Information Gain, ReliefF and T-test. We further show that, using different types of classifiers such as logistic regression, naive Bayes, support vector machines, decision trees and Random Forest, the classification performance of Tree-Lasso is comparable to Lasso and better than other methods. Our result has implications in identifying stable risk factors for many healthcare problems and therefore can

  1. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  2. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles

    International Nuclear Information System (INIS)

    Wu Wei; He Quanguo; Chen Hong; Tang Jianxin; Nie Libo

    2007-01-01

    Air-stable nanoparticles of Fe 3 O 4 /Au were prepared via sonolysis of a solution mixture of hydrogen tetrachloroaureate(III) trihydrate (HAuCl 4 ) and (3-aminopropyl)triethoxysilane (APTES)-coated Fe 3 O 4 nanoparticles with further drop-addition of sodium citrate. The Fe 3 O 4 /Au nanoparticles were characterized by x-ray powder diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID) magnetometry. Nanoparticles of Fe 3 O 4 /Au obtained under appropriate conditions possess a very high saturation magnetization of about 63 emu g -1 and their average diameter is about 30 nm

  4. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  5. Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: an integrative model perspective using stable isotopes and acesulfame.

    Science.gov (United States)

    Engelhardt, I; Barth, J A C; Bol, R; Schulz, M; Ternes, T A; Schüth, C; van Geldern, R

    2014-01-01

    The suitability of acesulfame to trace wastewater-related surface water fluxes from streams into the hyporheic and riparian zones over long-term periods was investigated. The transport behavior of acesulfame was compared with the transport of water stable isotopes (δ(18)O or δ(2)H). A calibrated model based on a joint inversion of temperature, acesulfame, and piezometric pressure heads was employed in a model validation using data sets of acesulfame and water stable isotopes collected over 5months in a stream and groundwater. The spatial distribution of fresh water within the groundwater resulting from surface water infiltration was estimated by computing groundwater ages and compared with the predicted acesulfame plume obtained after 153day simulation time. Both, surface water ratios calculated with a mixing equation from water stable isotopes and simulated acesulfame mass fluxes, were investigated for their ability to estimate the contribution of wastewater-related surface water inflow within groundwater. The results of this study point to limitations for the application of acesulfame to trace surface water-groundwater interactions properly. Acesulfame completely missed the wastewater-related surface water volumes that still remained in the hyporheic zone under stream-gaining conditions. In contrast, under stream-losing conditions, which developed after periods of stagnating hydraulic exchange, acesulfame based predictions lead to an overestimation of the surface water volume of up to 25% in the riparian zone. If slow seepage velocities prevail a proportion of acesulfame might be stored in smaller pores, while when released under fast flowing water conditions it will travel further downstream with the groundwater flow direction. Therefore, under such conditions acesulfame can be a less-ideal tracer in the hyporheic and riparian zones and additional monitoring with other environmental tracers such as water stable isotopes is highly recommended. © 2013 Elsevier

  6. Structure and properties of GMA surfaced armour plates

    OpenAIRE

    A. Klimpel; K. Luksa; M. Burda

    2010-01-01

    Purpose: In the combat vehicles many materials can be used for the armour. Application of the monolithic armour plates in light combat vehicles is limited by the high armour weigh. Introduction of the layered armour plates is a way to limit the vehicle weight. In the paper test results of graded and nanostructural GMA surfaced armour plates are presented.Design/methodology/approach: Metallographic structure, chemical composition and hardness of surfaced layers were investigated in order to ex...

  7. Soil structure stability and distribution of carbon in water-stable aggregates in different tilled and fertilized Haplic Luvisol

    Directory of Open Access Journals (Sweden)

    Vladimír Šimanský

    2012-01-01

    Full Text Available The influence of tillage and fertilization on soil structure stability and the distribution of carbon in water-stable aggregates of loamy Haplic Luvisol were studied. Soil samples from the locality of Dolná Malanta (experimental station of SUA Nitra were collected (in 2007–2009 from a depth of 0–0.2 m in two tillage variants: (1. conventional tillage, 2. minimal tillage and three treatments of fertilization: (1. without fertilization, 2. crop residues and NPK fertilizers, 3. NPK fertilizers. The minimal tillage system has a positive effect on both the aggregation processes and sequestration of carbon in size fractions of water-stable aggregates, as well as ploughing of crop residues together with NPK fertilizers. On the other hand, application of only NPK fertilizers had a negative effect on SOM content. Under the minimal tillage system and in treatment with crop residues together with NPK fertilizers, what has been observed is a statistically significant increase in the total organic carbon contents by increasing size fractions of water-stable aggregates. Organic carbon did not influence the aggregation processes with dependence on tillage systems. Under conventional tillage as well as in treatment with ploughing crop residues with NPK fertilizers, a very important effect on aggregation had bivalent cations Ca2+ and Mg2+.

  8. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  10. Thermodynamics and structure of liquid surfaces investigated directly with surface analytical tools

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Gunther [Flinders Univ., Adelaide, SA (Australia). Centre for NanoScale Science and Technology; Morgner, Harald [Leipzig Univ. (Germany). Wilhelm Ostwald Inst. for Physical and Theoretical Chemistry

    2017-06-15

    Measuring directly the composition, the distribution of constituents as function of the depth and the orientation of molecules at liquid surfaces is essential for determining physicochemical properties of liquid surfaces. While the experimental tools that have been developed for analyzing solid surfaces can in principal be applied to liquid surfaces, it turned out that they had to be adjusted to the particular challenges imposed by liquid samples, e.g. by the unavoidable vapor pressure and by the mobility of the constituting atoms/molecules. In the present work it is shown, how electron spectroscopy and ion scattering spectroscopy have been used for analyzing liquid surfaces. The emphasis of this review is on using the structural information gained for determining the physicochemical properties of liquid surfaces. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Ion induced millimetre-scale structures growth on metal surfaces

    Science.gov (United States)

    Girka, O.; Bizyukov, O.; Balkova, Y.; Myroshnyk, M.; Bizyukov, I.; Bogatyrenko, S.

    2018-04-01

    Polished polycrystalline Plansee tungsten (W) sample with purity 99.99 wt% and 0.75 mm thickness has been exposed to intense argon (Ar) ion beam with average energy of 2 keV and etched through in the centre. As a result, castle-like structures with strong asymmetry and with the height of >200 μm have been formed. Structures can be observed by naked eyes and with scanning-electron microscopy (SEM). It has been revealed, that the structures have been formed not immediately, but at the later stages of irradiation. Primary factors favouring the formation for the structures are relaxation of the surface stresses and activated surface mobility of atoms.

  12. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  13. Quantitative parameterization of soil surface structure with increasing rainfall volumes

    OpenAIRE

    Edison Aparecido Mome Filho

    2016-01-01

    The study of soil structure allows inferences on soil behavior. Quantitative parameters are oftentimes required to describe soil structure and the multifractal ones are still underused in soil science. Some studies have shown relations between the multifractal spectrum and both soil surface roughness decay by rainfall and porous system heterogeneity, however, a particular multifractal response to a specific soil behavior is not established yet. Therefore, the objectives of this research were:...

  14. Moduli spaces of convex projective structures on surfaces

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2007-01-01

    We introduce explicit parametrisations of the moduli space of convex projective structures on surfaces, and show that the latter moduli space is identified with the higher Teichmüller space for defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, ma.......AG/0311149]. We investigate the cluster structure of this moduli space, and define its quantum version....

  15. DNA-based stable isotope probing: a link between community structure and function

    International Nuclear Information System (INIS)

    Uhlik, Ondrej; Jecna, Katerina; Leigh, Mary Beth; Mackova, Martina; Macek, Tomas

    2009-01-01

    DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing 13C-labeled substrate to a microbial community and subsequent analyses of the 13C-DNA isolated from the community. Isopycnic centrifugation permits separating 13C-labeled DNA of organisms that utilized the substrate from 12C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.

  16. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    Science.gov (United States)

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-01-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π–π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems. PMID:24220603

  17. Optimized multi-step NMR-crystallography approach for structural characterization of a stable quercetin solvate.

    Science.gov (United States)

    Filip, Xenia; Miclaus, Maria; Martin, Flavia; Filip, Claudiu; Grosu, Ioana Georgeta

    2017-05-10

    Herein we report the preparation and solid state structural investigation of the 1,4-dioxane-quercetin solvate. NMR crystallography methods were employed for crystal structure determination of the solvate from microcrystalline powder. The stability of the compound relative to other reported quercetin solvates is discussed and found to be in perfect agreement with the hydrogen bonding networks/supra-molecular architectures formed in each case. It is also clearly shown that NMR crystallography represents an ideal analytical tool in such cases when hydrogen-bonding networks are required to be constrained at a high accuracy level. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Structure and dynamics at the liquid surface of benzyl alcohol

    International Nuclear Information System (INIS)

    Dietter, J.; Morgner, H.

    1999-01-01

    A molecular dynamics simulation of a liquid layer of benzyl alcohol has been performed in order to compare the results with those obtained in experimental studies of our group. The main result of the experimental work was a strong orientational ordering of the benzyl alcohol molecules in the surface as well as an exceptionally large surface potential of ca. 0.6 V. According to the experiments the surface molecules orientate in such a way that the benzene ring points toward the vapor phase while the CH 2 group and the OH group are directed towards the bulk of the liquid. The simulation confirms this orientation of the surface molecules. The surface potential resulting from the simulation is 350 mV. The simulation reveals that the rather large surface potential can be understood as a consequence of the mean orientation of the molecular dipole moment in the surface region. The mean orientation of the molecules themselves in the surface is due to the tendency of the system to maintain the hydrogen bonding structure of the bulk in the surface region as well. The preferential orientation of the surface molecules causes a change of the dynamics of the individual components of the molecules when switching from bulk to surface which depends on the separation of these components from the polar group. This becomes most obvious in case of the reorientation dynamics of the molecular axes, e.g. the reorientation of the benzene ring is faster than the reorientation of the OH group. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Refining femtosecond laser induced periodical surface structures with liquid assist

    International Nuclear Information System (INIS)

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  20. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    Science.gov (United States)

    Alpers, Charles N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  1. Fracture Resistance, Surface Defects and Structural Strength of Glass

    NARCIS (Netherlands)

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass

  2. Visual evaluation of beef tenderness by using surface structural ...

    African Journals Online (AJOL)

    The steaks were evaluated by visual analysis for colour, marbling, fibre separation, surface texture and structure integrity by a 10-member trained panel. Colour was also measured by the CIE L*, a*, b* system using a Minolta meter, and tenderness was measured by means of Warner-Bratzler shear force. High negative ...

  3. Hirschfeld surface analysis of two new phosporothioic triamides structures

    Czech Academy of Sciences Publication Activity Database

    Alamdar, A.H.; Pourayoubi, M.; Saneei, A.; Dušek, Michal; Kučeráková, Monika; Henriques, Margarida Isabel Sousa

    2015-01-01

    Roč. 71, č. 9 (2015), s. 824-833 ISSN 2053-2296 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : phosphorothioic triamide * Hirshfeld surface analysis * two-dimensional fingerprint plot * crystal structure * hydrogen-bonding pattern. Subject RIV: CC - Organic Chemistry Impact factor: 0.479, year: 2015

  4. The determination of turbulent structures in the atmospheric surface layer

    NARCIS (Netherlands)

    Schols, J.L.J.

    1984-01-01

    The turbulent flow in the atmospheric surface layer (ASL) contains turbulent structures, which are defined as spatially coherent, organized flow motions. 'Organized' means that characteristic patterns, observed at a point in space, occur almost simultaneously in more than one turbulence signal and

  5. Surface Structures of Binary Mixture of Ionic Liquids.

    Czech Academy of Sciences Publication Activity Database

    Nakajima, K.; Nakanishi, S.; Lísal, Martin; Kimura, K.

    2017-01-01

    Roč. 230, MARCH (2017), s. 542-549 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GA16-12291S Institutional support: RVO:67985858 Keywords : ionic liquids * mixture * surface structure Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.648, year: 2016

  6. Surface plasmon resonance for detecting clenbuterol: Influence of monolayer structure

    Science.gov (United States)

    Suherman; Morita, Kinichi; Kawaguchi, Toshikazu

    2015-03-01

    Surface plasmon resonance sensor equipped with a fabricated immunosensor chip is used for detecting clenbuterol in this study. Since clenbuterol is a small analyte, indirect competitive inhibition immunoassay is employed. For fabricating the immunosurface, the Au-chip was functionalized by succinimidyl-terminated alkanethiol, and the terminal N-hydroxysuccinimide group of the self-assembled monolayer was either replaced with clenbuterol or blocked with ethanolamine. Scanning tunneling microscope experiments and electrochemical measurements depicted the domain structures of the succinimide group of succinimidyl-terminated propanethiol monolayer. The surface concentration and the orientation of succinimide group was significantly dependent on the concentration of dithiobis(succinimidyl) propionate (DSP) used in fabricating the monolayer. Furthermore, the structure of monolayer significantly influenced both the surface concentration and the orientation of clenbuterol on the sensor surface. Consequently, high coverage and standing-up configuration of clenbuterol showed high affinity for clenbuterol antibody. However, high affinity constant exhibited by the sensor surface was coupled with a low sensitivity. By contrast, lowest concentration of DSP solution (0.1 mM) used in fabricating the immunosurface showed a detection sensitivity of 3 ppt - the highest reported sensitivity for clenbuterol. For regeneration the immunosurface, 0.1 M NaOH was used and the same sensor surface could be reused for performing >100 rapid immunoreaction.

  7. A hypoplastic constitutive model for clays with meta-stable structure

    Czech Academy of Sciences Publication Activity Database

    Mašín, David

    2007-01-01

    Roč. 44, č. 3 (2007), s. 363-375 ISSN 0008-3674 R&D Projects: GA AV ČR(CZ) IAA200710605 Institutional research plan: CEZ:AV0Z20710524 Keywords : constitutive relations * hypoplasticity * clays * structure of soils Subject RIV: JM - Building Engineering Impact factor: 0.542, year: 2007

  8. Structurally stable design of output regulation for a class of nonlinear systems

    Czech Academy of Sciences Publication Activity Database

    Villanueva-Novelo, C.; Čelikovský, Sergej; Castillo-Toledo, B.

    2001-01-01

    Roč. 37, č. 5 (2001), s. 517-561 ISSN 0023-5954 R&D Projects: GA ČR GA102/99/1368 Institutional research plan: AV0Z1075907 Keywords : nonlinear systems * structural stability * output regulation Subject RIV: BC - Control Systems Theory Impact factor: 0.316, year: 2001

  9. Dimers on surface graphs and spin structures. II

    DEFF Research Database (Denmark)

    Cimasoni, David; Reshetikhin, Nicolai

    2009-01-01

    In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function of the di......In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function...... model as a quantum field theory on surface graphs....

  10. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  11. Structure of the Si(1 1 3) surface studied by surface X-ray diffraction

    International Nuclear Information System (INIS)

    Mizuno, Yoshihito; Akimoto, Koichi; Aoyama, Tomohiro; Suzuki, Hidetoshi; Nakahara, Hitoshi; Ichimiya, Ayahiko; Sumitani, Kazushi; Takahashi, Toshio; Zhang Xiaowei; Sugiyama, Hiroshi; Kawata, Hiroshi

    2004-01-01

    We carried out a grazing incidence X-ray diffraction analysis of the Si(1 1 3) 3 x 1 surface using synchrotron radiation. We compared the experimental structure factors obtained from the integrated intensities of the fractional-order reflections with the calculated structure factors of the dimerized structure model of Ranke. By minimizing the R-factor, we determined the position and the size of the pentagon in the 3 x 1 dimerized structure model of Ranke. In addition, we found that a model with randomly distributed interstitial atoms at the center of the pentagon gives a smaller R-factor value

  12. Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4.

    Science.gov (United States)

    McKenna, Keith P; Hofer, Florian; Gilks, Daniel; Lazarov, Vlado K; Chen, Chunlin; Wang, Zhongchang; Ikuhara, Yuichi

    2014-12-10

    The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe 3 O 4 ) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe 3 O 4 , which could be stabilized by strain in films or nanostructures.

  13. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  14. Flow Structure and Surface Topology on a UCAV Planform

    Science.gov (United States)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  15. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    Science.gov (United States)

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-01

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  16. PP3 forms stable tetrameric structures through hydrophobic interactions via the C-terminal amphipathic helix and undergoes reversible thermal dissociation and denaturation.

    Science.gov (United States)

    Pedersen, Lise R L; Nielsen, Søren B; Hansted, Jon G; Petersen, Torben E; Otzen, Daniel E; Sørensen, Esben S

    2012-01-01

    The milk protein proteose peptone component 3 (PP3), also called lactophorin, is a small phosphoglycoprotein that is expressed exclusively in lactating mammary tissue. The C-terminal part of the protein contains an amphipathic helix, which, upon proteolytic liberation, shows antibacterial activity. Previous studies indicate that PP3 forms multimeric structures and inhibits lipolysis in milk. PP3 is the principal component of the proteose peptone fraction of milk. This fraction is obtained by heating and acidifying skimmed milk, and in the dairy industry milk products are also typically exposed to treatments such as pasteurization, which potentially could result in irreversible denaturation and inactivation of bioactive components. We show here, by the use of CD, that PP3 undergoes reversible thermal denaturation and that the α-helical structure of PP3 remains stable even at gastric pH levels. This suggests that the secondary structure survives treatment during the purification and possibly some of the industrial processing of milk. Finally, asymmetric flow field-flow fractionation and multi-angle light scattering reveal that PP3 forms a rather stable tetrameric complex, which dissociates and unfolds in guanidinium chloride. The cooperative unfolding of PP3 was completely removed by the surfactant n-dodecyl-β-d-maltoside and by oleic acid. We interpret this to mean that the PP3 monomers associate through hydrophobic interactions via the hydrophobic surface of the amphipathic helix. These observations suggest that PP3 tetramers act as reservoirs of PP3 molecules, which in the monomeric state may stabilize the milk fat globule. © 2011 The Authors Journal compilation © 2011 FEBS.

  17. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  18. Electronic structure of graphene on Ni surfaces with different orientation

    International Nuclear Information System (INIS)

    Pudikov, D.A.; Zhizhin, E.V.; Rybkin, A.G.; Rybkina, A.A.; Zhukov, Y.M.; Vilkov, O. Yu.; Shikin, A.M.

    2016-01-01

    An experimental study of the graphene, synthesized by propylene cracking on Ni surfaces with different orientation: (100) and (111), using angle-resolved photoemission, has been performed. It has been shown that graphene on Ni(111) had a perfect lateral structure due to consistency of their lattices, whereas graphene/Ni(100) consisted of a lot of domains. For both systems electronic structure was quite similar and demonstrated a strong bonding of graphene to the underlying Ni surface. After Au intercalation the electronic structure of graphene in both systems was shifted to the Fermi level and became linear in the vicinity of the K point of the Brillouin zone. - Highlights: • Graphene on Ni(111) is well-ordered, whereas on Ni(100) – multi-domain. • Graphene on Ni(111) and Ni(100) is strongly bonded with substrate. • Intercalation of Au atoms restores the linearity in dispersion and makes graphene quasi-free on both Ni(100) and Ni(111).

  19. Structural changes, market concentration and vertical integration: would they lead to more stable markets

    International Nuclear Information System (INIS)

    Tahmassebi, H.

    1991-01-01

    This communication is concerned with three major developments that are likely to have significant impact on the future structure of world oil markets: oil company mergers and acquisitions, shift of exploration and production activity from the United States to overseas, and joint venture agreements between producing countries and oil companies aimed at further downstream integration by OPEC. The last two developments are likely to contribute substantially to price and market stability in the future

  20. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La2NiO4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove the enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO2 & La2-xNiO4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.

  1. Structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Mandru, Andrada-Oana; Wang, Kangkang [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California, Codigo Postal 22800 (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2015-11-15

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  2. Plant Surfaces: Structures and Functions for Biomimetic Innovations

    Science.gov (United States)

    Barthlott, Wilhelm; Mail, Matthias; Bhushan, Bharat; Koch, Kerstin

    2017-04-01

    An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350-450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology

  3. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  4. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  5. Stable isotope evidence of long-term changes in North Sea food web structure

    DEFF Research Database (Denmark)

    Richardson, Katherine; Christensen, Jens Tang

    2008-01-01

    coast. Porpoises collected after ~1960 had significantly lower d15N than porpoises collected earlier. This change in d15N implies that fundamental changes in food web structure in, or nutrient availability to, the North Sea have taken place over the last ~150 yr and that most of the change occurred over...... reported here may be a reflection of a change in the isotope signature of nitrogen entering the food web. Regardless of its underlying cause, the recorded change in isotopic signature in harbour porpoises is noteworthy as it represents the first fisheries-independent documentation of a long-term temporal...

  6. Annealing assisted structural and surface morphological changes in Langmuir–Blodgett films of nickel octabutoxy phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Shilpa Harish, T.; Viswanath, P., E-mail: viswanath@cnsms.res.in

    2016-01-01

    We report our studies on thin films of metallo-phthalocyanine (MPc), Nickel(II)1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (NiPc(OBu){sub 8}) transferred in a well defined thermodynamic state over a self assembled monolayer (octadecyl trichlorosilane)/SiO{sub 2}/Si substrate using the Langmuir–Blodgett (LB) method. The films are characterized using differential scanning calorimetry (DSC), grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM) techniques. DSC studies on powdered samples in the bulk indicate enantiotropic solid–solid phase transition. GIXD studies on the as-deposited LB film show a Bragg peak indicating crystallinity of the thin film. Annealing (373 K) results in reduction of lattice spacing (1.21 Å) signifying changes in molecular packing within the unit cell. At this stage, an additional Bragg peak is observed which grows at the expense of the former one and they coexist between 373 K and 423 K. A discontinuity in lattice spacing from 20.73 to 15.12 Å with annealing indicates clearly a structural change of the underlying crystalline lattice. Correspondingly, the surface morphology images obtained using AFM show, with annealing, a transformation from spherical granular morphology to elongated, flat crystallites suggesting asymmetric growth process. Statistical parameters of the grain extracted from the AFM images show that the size, fractal dimension and circularity are affected by annealing. Based on these studies, we infer the structural and surface morphological changes of the meta-stable phase (Form I) to the stable phase (Form II) in annealed LB films of phthalocyanine. - Highlights: • Langmuir–Blodgett (LB) films of phthalocyanine subjected to thermal annealing. • Structural transformation and coexistence of polymorphs in LB films • Surface morphology changes from nanoscale grains to elongated crystallites. • Reduction of fractal dimension and circularity index reveals asymmetric growth.

  7. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  8. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    Science.gov (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  9. A Two-Surface Viscoplastic Model for the Structural Steel

    Directory of Open Access Journals (Sweden)

    Dong-Keon Kim

    Full Text Available Abstract As extension of the previous two-surface model in plasticity, a two-surface model for viscoplasticity is presented herein. In order to validate and investigate the performance of the proposed model, several numerical simulations are undertaken especially for structural steel under monotonic and cyclic loading cases, where experimental results and numerical results from the rate dependent kinematic hardening model are also provided for the reference. For all the cases studied, the proposed model can appropriately account for the rate-effects in both maximum stress and hysteretic shapes.

  10. Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-01-01

    Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Subwavelength topological structures resulting from surface two-plasmon resonance by femtosecond laser exposure solid surface.

    Science.gov (United States)

    Song, Hai-Ying; Liu, Shi-Bing; Liu, H Y; Wang, Yang; Chen, Tao; Dong, Xiang-Ming

    2016-05-30

    We present that surface two-plasmon resonance (STPR) in electron plasma sheet produced by a femtosecond laser irradiating a solid surface is the self-formation mechanism of periodic subwavelength ripple structures. Peaks of overdense electrons, formed by resonant two-plasmon wave mode, pull bound ions out of the metal surface. Thus, the wave pattern of STPR is "carved" on the surface by Coulomb ablation (removal) due to periodic distributed strong electrostatic field produced by charge separation. To confirm the STPR model, we have performed analogical carving experiments by two femtosecond laser beams with perpendicular polarizations and time delay. The results explicitly show that two wave patterns of STPR generated by each beam are independently created in the pulse exposure area of a target surface, which is like the traditional "layer-carving" technique by comparison with the structured topological features. The time-scale of ablation dynamics and the electron temperature in ultrafast interaction are also verified by a time-resolved spectroscopy experiment and numerical simulation, respectively. The present model can self-consistently explain the formation of subwavelength ripple structures even with spatial periods shorter than half of the laser wavelength, shedding light on the understanding of ultrafast laser-solid interaction.

  12. Electronic structure of epitaxial chalcopyrite surfaces and interfaces for photovoltaics

    International Nuclear Information System (INIS)

    Hofmann, Andreas

    2012-01-01

    This thesis constitutes a comprehensive study of the surface physics of epitaxial CuInSe 2 films. It comprises analyses of the surface morphology and reconstruction, electronic band structure as well as hetero-junctions relevant to photovoltaic applications. Therefore, especially the aspect of stoichiometry variation from the CuInSe 2 to the copper-deficient defect phases was considered. Preparation and analysis was completely performed under ultra-high vacuum conditions in order to ensure the investigation of well-defined samples free of contaminants. For some of the analysis techniques, single-crystalline samples are indispensable: They allow for the determination of surface periodicity by low-energy electron diffraction (LEED). In combination with concentration depth profiling by angle-resolved x-ray photoemission, to types of surface reconstructions could be distinguished for the near-stoichiometric CuInSe 2 (112) surface. In the copper-rich case, it is stabilized by Cu In anti-site defects and on the indium-rich side by 2 V Cu defects, as predicted by surface total energy calculations by Jaffe and Zunger. Both configurations correspond to a c(4 x 2) reconstruction of the zinc blende type (111) surface. For the defect compound CuIn 3 Se 5 , a sphalerite order of the surface was found, which points at a weakening or absence of the chalcopyrite order in the bulk of the material. The unusual stability of the (112) surface could also be proven by comparison with the reconstruction and surface order of (001) and (220) surfaces. The results from surface analysis were used to measure the valence band structure of the epitaxial samples by synchrotron-based angle-resolved photoelectron spectroscopy. The CuInSe 2 (001) surface gives access to the high symmetry directions Γ-T and Γ-N of momentum space. By contrasting the data obtained for the stoichiometric surface with the copper-poor defect compound, a reduction of the valence band dispersion and a broadening of

  13. Relation between surface crystallography and surface electron structure of the superlattice

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Igor; Strasser, T.; Schattke, W.

    2003-01-01

    Roč. 10, 2&3 (2003), s. 195-199 ISSN 0218-625X R&D Projects: GA AV ČR IAA1010108 Institutional research plan: CEZ:AV0Z1010914 Keywords : surface electron structure * superlattices * one-step photoemission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.586, year: 2003

  14. Pyridine and phosphonate containing ligands for stable lanthanide complexation. An experimental and theoretical study to assess the solution structure.

    Science.gov (United States)

    Mato-Iglesias, Marta; Balogh, Edina; Platas-Iglesias, Carlos; Tóth, Eva; de Blas, Andrés; Rodríguez Blas, Teresa

    2006-12-07

    We report an experimental and theoretical study of the stability and solution structure of lanthanide complexes with two novel ligands containing pyridine units and phosphonate pendant arms on either ethane-1,2-diamine (L2) or cyclohexane-1,2-diamine (L3) backbones. Potentiometric studies have been carried out to determine the protonation constants of the ligands and the stability constants of the complexes with Gd(III) and the endogenous metal ions Zn(II) and Cu(II). While the stability constant of the GdL2 complex is too high to be determined by direct pH-potentiometric titrations, the cyclohexyl derivative GdL3 has a lower and assessable stability (log K(GdL3)=17.62). Due to the presence of the phosphonate groups, various protonated species can be detected up to pH approximately 8 for both ligands and all metal ions studied. The molecular clusters [Ln(L)(H2O)](3-).19H2O (Ln=La, Nd, Ho or Lu; L=L2 or L3) were characterized by theoretical calculations at the HF level. Our calculations provide two minimum energy geometries where the ligand adopts different conformations: twist-wrap (tw), in which the ligand wraps around the metal ion by twisting the pyridyl units relative to each other, and twist-fold (tf), where the slight twisting of the pyridyl units is accompanied by an overall folding of the two pyridine units towards one of the phosphonate groups. The relative free energies of the tw and tf conformations of [Ln(L)(H2O)]3- (L=L2, L3) complexes calculated in aqueous solution (C-PCM) by using the B3LYP model indicate that the tw form is the most stable one along the whole lanthanide series for the complexes of L3, while for those of L2 only the Gd(III) complex is more stable in the tf conformation by ca. 0.5 kcal mol-1. 1H NMR studies of the Eu(III) complex of L3 show the initial formation of the tf complex in aqueous solution, which slowly converts to the thermodynamically stable tw form. The structures calculated for the Nd(III) complexes are in reasonably

  15. Electrostatic cloaking of surface structure for dynamic wetting

    Science.gov (United States)

    Shiomi, Junichiro; Nita, Satoshi; Do-Quang, Minh; Wang, Jiayu; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav

    2017-11-01

    Dynamic wetting problems are fundamental to the understanding of the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, as surfaces may often be naturally charged, or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. Here we investigate the interplay between electric forces and surface structures in dynamic wetting. While surface microstructures can significantly hinder the spreading, we find that the electrostatics can ``cloak'' the microstructures, i.e. deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties. This work was financially supported in part by, the Japan Society for the Promotion of Science, Swedish Governmental Agency for Innovation Systems, and the Japan Science and Technology Agency.

  16. Enhanced water repellency of surfaces coated with multiscale carbon structures

    Science.gov (United States)

    Marchalot, Julien; Ramos, Stella. M. M.; Pirat, Christophe; Journet, Catherine

    2018-01-01

    Low cost and well characterized superhydrophobic surfaces are frequently required for industrial applications. Materials are commonly structured at the micro or nano scale. Surfaces decorated with nanotube derivatives synthesized by plasma enhanced chemical vapor deposition (PECVD) are of particular interest, since suitable modifications in the growth parameters can lead to numerous designs. In this article, we present surfaces that are selected for their specific wetting features with patterns ranging from dense forests to jungles with concave (re-entrant) surface such as flake-like multiscale roughness. Once these surfaces are functionalized adequately, their wetting properties are investigated. Their ability to sustain a superhydrophobic state for sessile water drops is examined. Finally, we propose a design to achieve a robust so-called ;Fakir; state, even for micrometer-sized drops, whereas with classic nanotubes forests it is not achievable. Thus, the drop remains on the apex of the protrusions with a high contact angle and a low contact angle hysteresis, while the surface features demonstrate good mechanical resistance against capillary forces.

  17. The structure and reactivity of adsorbates on stepped Rh and Pt surfaces investigated by LEED, HREELS, TPD, XPS and STM

    Energy Technology Data Exchange (ETDEWEB)

    Batteas, J.D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Materials Science Div.

    1995-06-01

    Defects on surfaces such as steps play an important role in surface chemistry. In order to obtain an understanding of the influence of steps in surface chemical reactions, the structure and reactivity of small molecules (O{sub 2}, CO, H{sub 2}S, and C{sub 2}H{sub 4}) on atomically stepped surfaces of RH and Pt have been investigated. The detailed structures of CO and oxygen bonded to the Rh(110) surface were determined. The CO molecules bond near the short bridge sites with the CO molecular axis tilted approximately 24{degree} from the surface normal. Oxygen atoms are bound asymmetrically in the 3-fold fcc hollow-sites to the (111) facets of the steps. The interactions of CO and oxygen on the Rh(311) surface were examined. The reaction of CO with the ordered phases of O shows two distinct reaction channels, a low temperature reaction limited channel (200 K) and a high temperature diffusion limited channel (350 K). Models of the reaction geometry and dynamics are proposed. The thermal decomposition of ethylene was examined on the Rh(311) surface. The stable decomposition species (C{sub 2}H, CH and C{sub 2}) are formed near 300 K, approximately 100 K lower on the stepped Rh(311) than on the flatter Rh(111) surface. The formation of these species at lower temperatures is attributed to the stepped nature of the surface. Finally, in situ STM was used to examine surface structural changes of a stepped Pt(111) crystal under coadsorption of sulfur and CO. This is the first direct evidence for a new mechanism by which a surface covered with an unreactive, strongly chemisorbed overlayer can form new sites, for bonding and reactions to occur, by massive surface restructuring at the step edges. This new surface phenomenon answers some of the puzzles of metal surface catalysis and its implications are described. 278 refs.

  18. Global population structure of the stable fly (Stomoxys calcitrans) inferred by mitochondrial and nuclear sequence data.

    Science.gov (United States)

    Dsouli-Aymes, N; Michaux, J; De Stordeur, E; Couloux, A; Veuille, M; Duvallet, G

    2011-03-01

    Stomoxys calcitrans (Diptera: Muscidae: Stomoxyini), a synanthropic fly with a worldwide distribution, is recognized to have an important medical and veterinary impact. We conducted a phylogeographic analysis based on several populations from five major zoogeographic regions of the world in order to analyse population genetic structure of S. calcitrans and to trace its global dispersion. Results from mitochondrial (COI, Cyt-b and ND1-16S) and nuclear (ITS2) DNA show a substantial differentiation of Oriental populations (first lineage) from the Afrotropical, Palearctic, Nearctic, Neotropical and Oceanian populations (second lineage). The divergence time analyses suggest the separation between the two lineages approximately in mid-Pleistocene. Oriental populations are isolated and would not have participated in the colonization of other regions, unlike the Afrotropical one which seems to be the source of S. calcitrans dispersion towards other regions. Demographic analyses indicate that Oriental, Afrotropical and Palearctic regions have undergone a population expansion during late Pleistocene-early Holocene. The expansion time of this cosmopolitan species could have been influenced by continental human expansions and by animal domestication. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Peculiarities of the fundamental mode structure in stable-resonator lasers upon spatially inhomogeneous amplification

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Kostryukov, P V; Telegin, L S; Tunkin, V G; Yakovlev, D V

    2007-01-01

    The structure of the fundamental mode of a laser is calculated by the iteration Fox-Li method in the case of inhomogeneous unsaturated amplification produced by axially symmetric longitudinal pumping. The calculation is performed for different parameters g 1 and g 2 of the resonator within the entire stability region. It is shown that in the case of inhomogeneous amplification, the fundamental mode considerably deviates from the Gaussian mode of an empty resonator only in the so-called critical configurations of the resonator, when the quantity [arccos(g 1 g 2 ) 1/2 ]/π is zero or takes a number of values expressed by irreducible fractions m/n. For the Fresnel number N F = 9, configurations with m/n = 1/2, 2/5, 3/8, 1/3, 3/10, 1/4, 1/5, 1/6, 1/8, and 1/10 are pronounced. As N F increases, the number of critical configurations increases. The expansion in a system of Laguerre-Gaussian beams shows that the fundamental mode in critical configurations is formed by a set of beams with certain radial indices p phased in the active medium. (resonators. modes)

  20. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2010-01-01

    The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants

  1. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    Science.gov (United States)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  2. Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells.

    Science.gov (United States)

    Mahmud, Md Arafat; Elumalai, Naveen Kumar; Upama, Mushfika Baishakhi; Wang, Dian; Zarei, Leila; Gonçales, Vinicius R; Wright, Matthew; Xu, Cheng; Haque, Faiazul; Uddin, Ashraf

    2018-01-03

    The current work reports the simultaneous enhancement in efficiency and stability of low-temperature, solution-processed triple cation based MA 0.57 FA 0.38 Rb 0.05 PbI 3 (MA: methyl ammonium, FA: formamidinium, Rb: rubidium) perovskite solar cells (PSCs) by means of adsorbed carbon nanomaterials at the perovskite/electron transporting layer interface. The quantity and quality of the adsorbents are precisely controlled to electronically modify the ETL surface and lower the energy barrier across the interface. Carbon derivatives namely fullerene (C 60 ) and PC 71 BM ([6,6]-phenyl C71 butyric acid methyl ester) are employed as adsorbents in conjunction with ZnO and together serve as a bilayer electron transporting layer (ETL). The adsorbed fullerene (C 60 -ZnO, abbreviated as C-ZnO) passivates the interstitial trap-sites of ZnO with interstitial intercalation of oxygen atoms in the ZnO lattice structure. C-ZnO ETL based PSCs demonstrate about a 19% higher average PCE compared to conventional ZnO ETL based devices and a nearly 9% higher average PCE than PC 71 BM adsorbed-ZnO (P-ZnO) ETL based PSCs. In addition, the interstitial trap-state passivation with a C-ZnO film upshifts the Fermi-level position of the C-ZnO ETL by 130 meV, with reference to the ZnO ETL, which contributes to an enhanced n-type conductivity. The photocurrent hysteresis phenomenon in C-ZnO PSCs is also substantially reduced due to mitigated charge trapping phenomena and concomitant reduction in an electrode polarization process. Another major highlight of this work is that, C-ZnO PSCs demonstrate a superior device stability retaining about 94% of its initial PCE in the course of a month-long, systematic degradation study conducted in our work. The enhanced device stability with C-ZnO PSCs is attributed to their high resistance to aging-induced recombination phenomena and a water-induced perovskite degradation process, due to a lower content of oxygen-related chemisorbed species on the C-ZnO ETL

  3. Atomic and electronic structure of surfaces theoretical foundations

    CERN Document Server

    Lannoo, Michel

    1991-01-01

    Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.

  4. Analysis and design of functional micro/nano structured surfaces

    Science.gov (United States)

    Xu, Zhenzhen; Kong, Lingbao; Xu, Min

    2016-03-01

    In recent years, more and more attention has been paid to the bionic structure and functional materials. The theoretical research and fabricating ways of the Super-hydrophobic surface have sound achievements. However, the existing methods largely depend on the precision of the equipment and complex chemical substances, and it is hard to ensure the consistence of the material surface. Therefore, construction of microstructure on the surface of the material by using the method of mechanical processing to make the scale of the Super-hydrophobic surface to promote the popularization and application of Super-hydrophobic surface is of great significance. In order to put forward the innovative microstructure and to provide theoretical basis for the subsequent mechanical processing, based on the analysis of the classical theory of Super-hydrophobic, the super-hydrophobic film was by sol gel method. To explore the effects of different ratio of materials on the hydrophobicity, a micro/nano-structured super-hydrophobic coating was obtained by coating a film improved by hexamethyldisilazane (HMDS) after a film improved by polyethylene glycol (PEG) was coated. The microstructure of bilayer films is analyzed, and the double-layer film structure is simplified to design two kinds of microstructure models. For the design of the two models based on the Wenzel and Cassie equations, a roughness factor is adopted to establish the quantitative relationship between the contact angle and the microstructure parameters, and the microstructure parameters is also analyzed by using MATLAB software, and hence the optimized microstructure parameters is obtained.

  5. The effect of temperature on generic stable periodic structures in the parameter space of dissipative relativistic standard map

    Science.gov (United States)

    Horstmann, Ana C. C.; Albuquerque, Holokx A.; Manchein, Cesar

    2017-05-01

    In this work, we have characterized changes in the dynamics of a two-dimensional relativistic standard map in the presence of dissipation and specially when it is submitted to thermal effects modeled by a Gaussian noise reservoir. By the addition of thermal noise in the dissipative relativistic standard map (DRSM) it is possible to suppress typical stable periodic structures (SPSs) embedded in the chaotic domains of parameter space for large enough temperature strengths. Smaller SPSs are first affected by thermal effects, starting from their borders, as a function of temperature. To estimate the necessary temperature strength capable to destroy those SPSs we use the largest Lyapunov exponent to obtain the critical temperature (TC) diagrams. For critical temperatures the chaotic behavior takes place with the suppression of periodic motion, although the temperature strengths considered in this work are not so large to convert the deterministic features of the underlying system into a stochastic ones.

  6. Advances in deployable structures and surfaces for large apertures in space

    Science.gov (United States)

    Santiago-Prowald, J.; Baier, H.

    2013-12-01

    Large apertures in space have applications for telecommunications, Earth observation and scientific missions. This paper reviews advances in mechanical architectures and technologies for large deployable apertures for space antennas and telescopes. Two complementary approaches are described to address this challenge: the deployment of structures based on quasi-rigid members and highly flexible structures. Regarding the first approach, deployable articulated structures are classified in terms of their kinematics as 3D or planar linkages in multiple variants, resulting in different architectures of radial, peripheral or modular constructions. A dedicated discussion on the number of degrees of freedom and constraints addresses the deployment reliability and thermo-elastic stability of large elastic structures in the presence of thermal gradients. This aspect has been identified as a design driver for new developments of peripheral ring and modular structures. Meanwhile, other design drivers are maintained, such as the optimization of mass and stiffness, overall accuracy and stability, and pragmatic aspects including controlled industrial development and a commitment to operators' needs. Furthermore, reflecting surface technologies and concepts are addressed with a view to the future, presenting advances in technical solutions for increasing apertures and reducing areal mass densities to affordable levels for future missions. Highly flexible materials capable of producing ultra-stable shells are described with reference to the state of the art and new developments. These concepts may enable large deployable surfaces for antennas and telescopes, as well as innovative optical concepts such as photon sieves. Shape adjustment and shape control of these surfaces are described in terms of available technologies and future needs, particularly for the reconfiguration of telecommunications antennas. In summary, the two complementary approaches described and reviewed cover the

  7. Stable isotopes indicate population structuring in the southwest Atlantic population of right whales (Eubalaena australis.

    Directory of Open Access Journals (Sweden)

    Morgana Vighi

    Full Text Available From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina and another off central Argentina (Peninsula Valdés. This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n=72 and from contemporary and more recent strandings occurring in central Argentina (n=53. Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas.

  8. Stable isotopes indicate population structuring in the southwest Atlantic population of right whales (Eubalaena australis).

    Science.gov (United States)

    Vighi, Morgana; Borrell, Asunción; Crespo, Enrique A; Oliveira, Larissa R; Simões-Lopes, Paulo C; Flores, Paulo A C; García, Néstor A; Aguilar, Alex; Aguilar, Alejandro

    2014-01-01

    From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina) and another off central Argentina (Peninsula Valdés). This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n=72) and from contemporary and more recent strandings occurring in central Argentina (n=53). Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas.

  9. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  10. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, Keith Ryan [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-σ bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as π-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can give

  11. Intelligent sampling for the measurement of structured surfaces

    International Nuclear Information System (INIS)

    Wang, J; Jiang, X; Blunt, L A; Scott, P J; Leach, R K

    2012-01-01

    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed. (paper)

  12. Controlling molecular deposition and layer structure with supramolecular surface assemblies

    Science.gov (United States)

    Theobald, James A.; Oxtoby, Neil S.; Phillips, Michael A.; Champness, Neil R.; Beton, Peter H.

    2003-08-01

    Selective non-covalent interactions have been widely exploited in solution-based chemistry to direct the assembly of molecules into nanometre-sized functional structures such as capsules, switches and prototype machines. More recently, the concepts of supramolecular organization have also been applied to two-dimensional assemblies on surfaces stabilized by hydrogen bonding, dipolar coupling or metal co-ordination. Structures realized to date include isolated rows, clusters and extended networks, as well as more complex multi-component arrangements. Another approach to controlling surface structures uses adsorbed molecular monolayers to create preferential binding sites that accommodate individual target molecules. Here we combine these approaches, by using hydrogen bonding to guide the assembly of two types of molecules into a two-dimensional open honeycomb network that then controls and templates new surface phases formed by subsequently deposited fullerene molecules. We find that the open network acts as a two-dimensional array of large pores of sufficient capacity to accommodate several large guest molecules, with the network itself also serving as a template for the formation of a fullerene layer.

  13. Buckling control of morphing composite airfoil structure using multi-stable laminate by piezoelectric sensors/actuators

    Science.gov (United States)

    Zareie, Shahin; Zabihollah, Abolghassem; Azizi, Aydin

    2011-04-01

    In the present work, an unsymmetric laminated plate with surface bonded piezoelectric sensors, and actuators has been considered. Piezoelectric sensor were used to monitor the load and deformation bifurcation occurs. Monitoring the shape and load of a morphing structure is essential to ascertain that the structure is properly deployed and it is not loaded excessively ,thus, preventing structural to failure. A piezoceramic actuator is used to provide activation load and to force the structure to change its stability state from one to another. A non-linear finite element model based on the layerwise displacement theory considering the electro-mechanical coupling effects of piezoelectric elements has been developed for simulation purposes. A control mechanism is also employed to actively control the shape of the structure. It is observed that, utilizing multistable composite to design a morphing structure may significantly reduce the energy required for changing the shape. Further controlling the buckling phenomena using piezoelectric sensor and actuator along with an ON/OFF controller can effectively and efficiency enhance the performance of the morphing structure during manoeuver.

  14. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    Science.gov (United States)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  15. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-07

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  16. Application of anti-reflection structures on curved surfaces

    Science.gov (United States)

    Yamamoto, Kazuya; Yamamoto, Takeshi; Takaoka, Toshimitsu; Seigo, Masafumi; Kitagawa, Seiichiro

    2012-02-01

    Conventional lens manufacturing is accomplished by injection molding followed by application of a thin film anti-reflection coating. This requires several production steps, each with the associated constraints. Here we report a technique for production of injection molded lenses with conical sub-wavelength grating anti-reflection structures. While similar structures have been made in the past, our technique allows the sub-wavelength structure to be created on curved surfaces during the injection molding process, reducing the number of steps in the manufacturing process. The advantage of this new technology is that anti-reflection function is created without any additional process(es) conventionally required but by a single injection molding process to make lens normally, through which substantial cost saving will be achieved.

  17. Surface science study of selective ethylene epoxidation catalyzed by the Ag(110) surface: Structural sensitivity

    International Nuclear Information System (INIS)

    Campbell, C.T.

    1984-01-01

    The selective oxidation of ethylene to ethylene epoxide (C 2 H 4 +1/2O 2 →C 2 H 4 O) over Ag is the simplest example of kinetically controlled, selective heterogeneous catalysis. We have studied the steady-state kinetics and selectivity of this reaction for the first time on a clean, well-characterized Ag(110) surface by using a special apparatus which allows rapid (approx.20 s) transfer between a high-pressure catalytic microreactor and an ultrahigh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The effects of temperature and reactant pressures upon the rate and selectivity are virtually identical on Ag(110) and supported, high surface area Ag catalysts. The absolute specific rate (per Ag surface atom) is, however, some 100-fold higher for Ag(110) than for high surface area catalysts. This is related to the well-known structural sensitivity of this reaction. It is postulated that a small percentage of (110) planes (or [110]-like sites) are responsible for most of the catalytic activity of high surface area catalysts. The high activity of the (110) plane is attributed to its high sticking probability for dissociative oxygen adsorption, since the rate of ethylene epoxidation is shown in a related work [Ref. 1: C. T. Campbell and M. T. Paffett, Surf. Sci. (in press)] to be proportional to the coverage of atomically adsorbed oxygen at constant temperature and ethylene pressure

  18. Fouling of Structured Surfaces during Pool Boiling of Aqueous Solutions

    International Nuclear Information System (INIS)

    Esawy, M.

    2011-01-01

    Bubble characteristics in terms of density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over the other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment which is prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led heat exchanger designers frequently to maintain the surface temperature below the boiling point if fouling occurs, e.g. in thermal seawater desalination plants. The present study investigates the crystallization fouling of various structured surfaces during nucleate pool boiling of CaSO 4 solutions to shed light into their fouling behaviour compared with that of plain surfaces for the same operating conditions. As for the experimental part, a comprehensive set of clean and fouling experiments was performed rigorously. The structured tubes included low finned tubes of different fin densities, heights and materials and re-entrant cavity Turbo-B tube types.The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 k W/m 2 and CaSO 4 concentrations of 1.2 and 1.6 g/L. For the sake of comparison, similar runs were performed on plain stainless steel and copper tubes.Overall for the finned tubes, the experimental results showed a significant reduction of fouling resistances of up to 95% compared to those of the stainless steel and copper plain tubes. In addition, the scale formation that occurred on finned tubes was primarily a scattered and thin crystalline layer which differs significantly from those of plain tubes which suffered from a thick and homogenous layer of deposit with strong adhesion. Higher fin densities and lower fin heights always led to better antifouling performance for all investigated finned tubes. It was also shown that the surface material strongly affects the scale formation of finned tubes i

  19. Molecular surface structural changes of plasticized PVC materials after plasma treatment.

    Science.gov (United States)

    Zhang, Xiaoxian; Zhang, Chi; Hankett, Jeanne M; Chen, Zhan

    2013-03-26

    In this research, a variety of analytical techniques including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the surface and bulk structures of phthalate plasticized poly(vinyl chloride) (PVC) at the molecular level. Two types of phthalate molecules with different chain lengths, diethyl phthalate (DEP) and dibutyl phthalate (DBP), mixed with PVC in various weight ratios were examined to verify their different surface and bulk behaviors. The effects of oxygen and argon plasma treatment on PVC/DBP and PVC/DEP hybrid films were investigated on both the surface and bulk of films using SFG and CARS to evaluate the different plasticizer migration processes. Without plasma treatment, SFG results indicated that more plasticizers segregate to the surface at higher plasticizer bulk concentrations. SFG studies also demonstrated the presence of phthalates on the surface even at very low bulk concentration (5 wt %). Additionally, the results gathered from SFG, CARS, and XPS experiments suggested that the PVC/DEP system was unstable, and DEP molecules could leach out from the PVC under low vacuum after several minutes. In contrast, the PVC/DBP system was more stable; the migration process of DBP out of PVC could be effectively suppressed after oxygen plasma treatment. XPS results indicated the increase of C═O/C-O groups and decrease of C-Cl functionalities on the polymer surface after oxygen plasma treatment. The XPS results also suggested that exposure to argon plasma induced chemical bond breaking and formation of cross-linking or unsaturated groups with chain scission on the surface. Finally, our results indicate the potential risk of using DEP molecules in PVC since DEP can easily leach out from the polymeric bulk.

  20. Atomic structure of the SbCu surface alloy: A surface X-ray diffraction study

    DEFF Research Database (Denmark)

    Meunier, I.; Gay, J.M.; Lapena, L.

    1999-01-01

    The dissolution at 400 degrees C of an antimony layer deposited at room temperature on a Cu(111) substrate leads to a surface alloy with a p(root 3x root 3)R 30 degrees x 30 degrees superstructure and a Sb composition of 1/3.We present here a structural study of this Sb-Cu compound by surface X......-ray diffraction (SXRD). The best agreement is obtained for a Cu,Sb surface layer with Sb atoms substituting 1/3 of the Cu atoms, over an essentially unperturbed Cu(111) plane. The largest relaxation is undergone by the Sb atoms which rise by 0.32+0.02 Angstrom over the mean plane of its Cu neighbours....... No substantial in-plane relaxations were observed. (C) 1999 Elsevier Science B.V. All rights reserved....

  1. Surface structure and tribology of legless squamate reptiles.

    Science.gov (United States)

    Abdel-Aal, Hisham A

    2018-03-01

    Squamate reptiles (around 10,000 species of snakes and lizards) comprise a myriad of distinct terrestrial vertebrates. The diversity within this biological group offers a great opportunity for customized bio-inspired solutions that address a variety of current technological problems especially within the realm of surface engineering and tribology. One subgroup within squamata is of interest in that context, namely the legless reptiles (mainly snakes and few lizards). The promise of that group lies within their functional adaptation as manifested in optimized surface designs and locomotion that is distinguished by economy of effort even when functioning within hostile tribological environments. Legless reptiles are spread over a wide range in the planet, this geographical diversity demands customized response to local habitats. Customization, in turn, is facilitated through specialized surface design features. In legless reptiles, micro elements of texture, their geometry and topological layout advance mitigation of frictional effects both in locomotion and in general function. Lately, the synergy between functional traits and intrinsic surface features has emerged as focus of research across disciplines. Many investigations have sought to characterize the structural as well as the tribological response of legless species from an engineering point of view. Despite the sizable amount of data that have accumulated in the literature over the past two decades or so, no effort to review the available information, whence this review. This manuscript, therefore, endeavors to assess available data on surface metrology and tribological behavior of legless reptiles and to define aspects of that performance necessary to formulate an advanced paradigm for bio-inspired surface engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Impact of forest harvesting on trophic structure of eastern Canadian Boreal Shield lakes: insights from stable isotope analyses.

    Directory of Open Access Journals (Sweden)

    Patricia Glaz

    Full Text Available Perturbations on ecosystems can have profound immediate effects and can, accordingly, greatly alter the natural community. Land-use such as forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. The objective of this study was to evaluate the impact of forest harvesting on trophic structure in eastern Canadian Boreal Shield lakes. We measured carbon and nitrogen stable isotopes values for aquatic primary producers, terrestrial detritus, benthic macroinvertebrates, zooplankton and brook trout (Salvelinus fontinalis over a three-year period in eight eastern Boreal Shield lakes. Four lakes were studied before, one and two years after forest harvesting (perturbed lakes and compared with four undisturbed reference lakes (unperturbed lakes sampled at the same time. Stable isotope mixing models showed leaf-litter to be the main food source for benthic primary consumers in both perturbed and unperturbed lakes, suggesting no logging impact on allochthonous subsidies to the littoral food web. Brook trout derived their food mainly from benthic predatory macroinvertebrates in unperturbed lakes. However, in perturbed lakes one year after harvesting, zooplankton appeared to be the main contributor to brook trout diet. This change in brook trout diet was mitigated two years after harvesting. Size-related diet shift were also observed for brook trout, indicating a diet shift related to size. Our study suggests that carbon from terrestrial habitat may be a significant contribution to the food web of oligotrophic Canadian Boreal Shield lakes. Forest harvesting did not have an impact on the diet of benthic primary consumers. On the other hand, brook trout diet composition was affected by logging with greater zooplankton contribution in perturbed lakes, possibly induced by darker-colored environment in these lakes one year after logging.

  3. Impact of forest harvesting on trophic structure of eastern Canadian Boreal Shield lakes: insights from stable isotope analyses.

    Science.gov (United States)

    Glaz, Patricia; Sirois, Pascal; Archambault, Philippe; Nozais, Christian

    2014-01-01

    Perturbations on ecosystems can have profound immediate effects and can, accordingly, greatly alter the natural community. Land-use such as forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. The objective of this study was to evaluate the impact of forest harvesting on trophic structure in eastern Canadian Boreal Shield lakes. We measured carbon and nitrogen stable isotopes values for aquatic primary producers, terrestrial detritus, benthic macroinvertebrates, zooplankton and brook trout (Salvelinus fontinalis) over a three-year period in eight eastern Boreal Shield lakes. Four lakes were studied before, one and two years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. Stable isotope mixing models showed leaf-litter to be the main food source for benthic primary consumers in both perturbed and unperturbed lakes, suggesting no logging impact on allochthonous subsidies to the littoral food web. Brook trout derived their food mainly from benthic predatory macroinvertebrates in unperturbed lakes. However, in perturbed lakes one year after harvesting, zooplankton appeared to be the main contributor to brook trout diet. This change in brook trout diet was mitigated two years after harvesting. Size-related diet shift were also observed for brook trout, indicating a diet shift related to size. Our study suggests that carbon from terrestrial habitat may be a significant contribution to the food web of oligotrophic Canadian Boreal Shield lakes. Forest harvesting did not have an impact on the diet of benthic primary consumers. On the other hand, brook trout diet composition was affected by logging with greater zooplankton contribution in perturbed lakes, possibly induced by darker-colored environment in these lakes one year after logging.

  4. Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology

    Science.gov (United States)

    Jackson, Michelle C.; Donohue, Ian; Jackson, Andrew L.; Britton, J. Robert; Harper, David M.; Grey, Jonathan

    2012-01-01

    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications. PMID:22363724

  5. Polymer masks for structured surface and plasma etching

    International Nuclear Information System (INIS)

    Vital, Alexane; Vayer, Marylène; Sinturel, Christophe; Tillocher, Thomas; Lefaucheux, Philippe; Dussart, Rémi

    2015-01-01

    Graphical abstract: - Highlights: • Sub-micrometric silicon structures were prepared by cryogenic plasma etching. • Polymer templates based on phase-separated films of PS/PLA were used. • Silica structured masks were prepared by filling the polymer templates. • Etching of underlying silicon through silica templates gave original structures. - Abstract: Silica and silicon structures have been prepared at the sub-micrometer length-scale, using laterally phase-separated thin films of poly(styrene) (PS) and poly(lactic acid) (PLA) homopolymer blends. The selective removal of one polymer and the filling of the released space by silica precursor solution led, after calcination, to silica structures on silicon such as arrays of bowl-shape features or pillars, layers with through or non-through cylindrical holes, which has not been observed for some of them. The control of the morphology of the initial polymer film was a key point to achieve such type of structures. Particularly relevant was the use of solvent vapor annealing (vs thermal annealing) of the initial spin-coated films that favored and stabilized laterally phase-separated morphologies. Characteristic dimension of the domains were shown to be coupled with the thickness of the film, thinner films giving smaller domain sizes. Despite a relatively high incompatibility of the two polymers, a macro-phase separation was prevented in all the studied conditions. Sub-micrometric domains were formed, and for the thinner films, nanometric domains as small as 74 nm in size can be obtained. The silica structures formed by the infiltration of the polymer templates were used as hard masks for the cryogenic etching of underlying silicon. New structured surfaces, arrays of silicon pillars which can be plain or hollow at the upper part or arrays of cylindrical holes were formed. A selectivity as high as 21 was obtained using this type of mask for 1.5 μm deep holes having a typical diameter of 200 nm

  6. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  7. Exploration of structure, potential energy surface, and stability of planar C3B3.

    Science.gov (United States)

    Shao, Jingling; Shi, Rongwei; Wang, Cheng; Zhu, Xiaolei; Lu, Xiaohua

    2010-05-01

    The geometrical structures, potential energy surface, stability, and bonding character of low-energy isomers of planar C(3)B(3) were systematically explored and investigated at the B3LYP/6-311+G(d)// CCSD(T)/6-311+G(d) level for the first time. A large number of planar structures for low-energy isomers of C(3)B(3) are located and reported. In particular, isomers 1 (C(s),(2)A') and 2 (C(s),(2)A'), with a belt-like structure corresponding to the lowest-energy structures of planar C(3)B(3), are revealed. Based on molecular orbital (MO) and natural bond orbital (NBO) analyses, delocalized sigma MOs, multi-centered sigma MOs, and delocalized pi MOs play an important role in stabilizing the structures of low-energy isomers of C(3)B(3). It is interesting to note from isomerization analysis that the interconversion of isomers 2 and 7 can be realized through two isomerization channels. The results demonstrate that isomers 1, 2, 3, 4, 7, 9, 12, 17, 19, and 20 of C(3)B(3) are stable both thermodynamically and kinetically at the B3LYP/ 6-311+G(d)//CCSD(T)/ 6-311+G(d) level, and that they are observable in the laboratory, which is helpful for future experimental studies of C(3)B(3).

  8. Structure of aqueous electrolyte solutions near a hydrophobic surface

    Directory of Open Access Journals (Sweden)

    M.Kinoshita

    2007-09-01

    Full Text Available The structure of aqueous solutions of 1:1 salts (KCl, NaCl, KF,and CsI near a hydrophobic surface is analysed using the angle-dependent integral equation theory. Water molecules are taken to be hard spheres imbedded with multipolar moments including terms up to octupole order, and hard spherical ions are immersed in this model water. The many-body interactions associated with molecular polarizability are treated at the self-consistent mean field level. The effects of cationic and anionic sizes and salt concentration in the bulk are discussed in detail. As the salt concentration increases, the layer of water molecules next to the surface becomes denser but its orientational order remains almost unchanged. The concentration of each ion at the surface can be drastically different from that in the bulk. Asa striking example, at sufficiently low salt concentrations, the concentration of I- is about 500 times higher than that of F- at the surface.

  9. Preservation of Archaeal Surface Layer Structure During Mineralization

    Science.gov (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  10. Preservation of Archaeal Surface Layer Structure During Mineralization

    Science.gov (United States)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-01-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record. PMID:27221593

  11. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  12. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  13. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    Science.gov (United States)

    Knox, Kevin R.

    2011-12-01

    In this dissertation, I examine the electronic structure of two very different types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces. The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and micro probe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load

  14. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing.

    Science.gov (United States)

    Kneipp, Janina; Li, Xiangting; Sherwood, Margaret; Panne, Ulrich; Kneipp, Harald; Stockman, Mark I; Kneipp, Katrin

    2008-06-01

    Nanoaggregates formed by metal spheres of different radii and interparticle distances represent finite, deterministic, self-similar systems that efficiently concentrate optical fields and act as "nanolenses". Here we verify experimentally the theoretical concept of nanolenses and explore their potential as enhancing nanostructures in surface enhanced Raman scattering (SERS). Self-similar structures formed by gold nanospheres of different sizes are generated by laser ablation from solid gold into water. These nanolenses exhibit SERS enhancement factors on the order of 10(9). The "chemically clean" preparation process provides several advantages over chemically prepared nanoaggregates and makes the stable and biocompatible gold nanolenses potent enhancing structures for various analytical and sensing applications.

  15. Surface structure, crystallographic and ice-nucleating properties of cellulose

    Science.gov (United States)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest

  16. The challenges of designing a lightweight spacecraft structure for landing on the lunar surface

    Science.gov (United States)

    Cole, Timothy J.; Bassler, Julie; Cooper, Scott; Stephens, Vince; Ponnusamy, Devamanohar; Briere, Marc; Betenbaugh, Theresa

    2012-02-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been working with NASA's Marshall Space Flight Center (MSFC) on a lunar lander design that would take scientific measurements on the surface of the moon. This effort is part of NASA's Robotic Lunar Lander (RLL) Development Project. The requirements imposed on the design of the lander are: (1) Provide a lightweight lander structure to minimize the launch costs and maximize the payload carrying capability, (2) Minimize the lander launch envelope to allow for launching multiple landers on a single launch vehicle, (3) Given specific approach velocities, design a lander with geometric properties (low center-of-gravity, etc.) that maximizes the chances for a controlled landing on the lunar surface, (4) Provide a stable platform for all of the various scientific instruments.The lightweight lander requirement originates from the desire to minimize the launch costs and possibly package multiple landers on a single launch vehicle. The use of lightweight composite materials and advanced manufacturing techniques are employed throughout the design and construction of the structure in order to minimize mass and maximize structural stiffness.Minimizing the launch envelope enables the potential packaging of several spacecraft into one launch vehicle shroud. By having multiple landers, the scientific return is enhanced. Multiple spacecraft on the lunar surface provides independent confirmation of science measurements taken and also highlights any variance in the science data taken at differing lunar latitudes. Naturally, the launch cost per lander is greatly reduced if more than one lander can be packaged on a single launch vehicle.The lunar lander vehicle must arrive at the lunar surface at an upright orientation. In order to accomplish this, the structure geometry must be designed to accommodate attitude errors in roll, pitch and yaw. In addition, the structure must be able to withstand various landing

  17. Enhanced surface structuring by ultrafast XUV/NIR dual action

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Chalupský, Jaromír; Lee, G.H.; Kim, T.K.; Park, S.B.; Nam, Ch. H.; Hájková, Věra; Toufarová, Martina; Juha, Libor; Rus, Bedřich

    2011-01-01

    Roč. 13, č. 5 (2011), s. 1-12 ISSN 1367-2630 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV beam * ultrafast NIR laser pulses * high-order harmonics * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.177, year: 2011 http://iopscience.iop.org/1367-2630/13/5/053049

  18. Structure determination by photoelectron diffraction of small molecules on surfaces

    International Nuclear Information System (INIS)

    Booth, N.A.

    1998-05-01

    The synchrotron radiation based technique of Photoelectron Diffraction (PhD) has been applied to three adsorption systems. Structure determinations, are presented for each system which involve the adsorption of small molecules on the low index {110} plane of single crystal Cu and Ni substrates. For the NH 3 -Cu(110) system PhD was successful in determining a N-Cu bondlength of 2.05 ± 0.03 A as well as values for the anisotropic vibrational amplitudes of the N and an expansion of the 1st to 2nd Cu substrate layer spacing from the bulk value of 0.08 ± 0.08 A. The most significant and surprising structural parameter determined for this system was that the N atom occupies an asymmetric adsorption site. Rather than being situated in the expected high symmetry atop site the N atom was found to be offset parallel to the surface by 0.37 ± 0.12 A in the [001] azimuth. In studying the glycine-Cu(110) system the adsorption structure of an amino-acid has been quantified. The local adsorption geometries of all the atoms involved in the molecule to surface bond have been determined. The glycine molecule is found to be bonded to the surface via both its amino and carboxylate functional groups. The molecule straddles two [11-bar0] rows of the Cu substrate. The two O atoms are found to be in identical sites both approximately atop Cu atoms on the [11-bar0] rows offset parallel to the surface by 0.80 ± 0.05 A in the [001] azimuth, the O-Cu bondlength was found to be 2.03 ± 0.05 A. The N atom was also found to adsorb in an approximately atop geometry but offset parallel to the surface by 0.24 ± 0.10A in the [11-bar0] direction, the N-Cu bondlength was found to be 2.05± 0.05 A. PhD was unsuccessful in determining the positions of the two C atoms that form a bridge between the two functional groups bonded to the surface due to difficulties in separating the two inequivalent contributions to the final intensity modulation function. For the CN-Ni(110) system both PhD and Near Edge

  19. Formation of periodic structures by surface treatments of polyamide fiber

    International Nuclear Information System (INIS)

    Yip, Joanne; Chan, Kwong; Sin, Kwan Moon; Lau, Kai Shui

    2006-01-01

    The processes of UV excimer laser irradiation (both high- and low-fluence) of polyamide fiber were systemically studied, including the surface temperature of the material during the treatment and possible mechanisms for the structure formation. The fluence applied in the high-fluence laser irradiation was above the ablation threshold of the material. The ablation of polymer can be described on the basis of photo-thermal bond breaking within the bulk material. The fluence applied in the low-fluence laser irradiation was far below the ablation threshold of the material. The development of low-fluence laser-induced structures is closely related to the absorption coefficient of the material, the laser fluence used, the polarization of the laser beam, the angle of incidence, and the number of laser pulses applied

  20. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    Noble metal nanostructures support localized surface plasmon (LSPR) resonances that depend on their dimensions, shapes and compositions. Particle LSPR's can be used to spatially confine the incident light and produce enormous electromagnetic (EM) field enhancement spots, i.e. hot spots. Hot spots...... have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...... experimentally and theoretically. Simulations show that that a single Agcoated NP supports two LSPR modes, i.e. the particle mode and the Ag cap resonant cavity mode. The Ag cap resonant cavity mode contributes most to the enhancement of the Raman scattering signal. The electric field distribution calculations...

  1. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    Science.gov (United States)

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  2. Study, using stable isotopes, of flow distribution, surface-groundwater relations and evapotranspiration in the Okavango Swamp, Botswana

    International Nuclear Information System (INIS)

    Dincer, T.; Hutton, L.G.; Kupee, B.B.J.

    1979-01-01

    Stable isotope data collected in the Okavango Delta have confirmed that the central distributary system is more active at present than the peripheral systems. The data also show that there is no groundwater outflow at the western and southern margins of the delta. A salinity-isotope model of the deltaic swamp has been developed to study the relation between the salinity and isotopic composition of the swamp waters. An attempt has been made to separate the atmospheric losses from the swamp into its evapotranspiration components. The results indicate that in winter, when high water levels prevail, these losses are almost entirely due to evaporation whilst in summer, when the water levels are low, evaporation and transpiration contribute almost equally to the total atmospheric losses. (author)

  3. On a free-surface problem with moving contact line: From variational principles to stable numerical approximations

    Science.gov (United States)

    Fumagalli, Ivan; Parolini, Nicola; Verani, Marco

    2018-02-01

    We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.

  4. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  5. Étude expérimentale de structures stables en turbulence bidimensionnelle, comparaison avec une théorie de mécanique statistique

    OpenAIRE

    DENOIX , Marie-Alice

    1992-01-01

    We create two-dimensional flows within a thin layer of mercury, horizontal and subjected to a vertical uniform magnetic field. The fluid is set in motion by injecting electrical currents. We are interested in the inertial organization into stable structures of two-dimensional turbulence. With the experimental conditions in two areas of initial vorticity, we get axisymmetric structures, elliptical, or eccentric. We study these structures using visualizations and also measurements by potential ...

  6. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    Science.gov (United States)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  7. Detection for flatness of large surface based on structured light

    Science.gov (United States)

    He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang

    2016-09-01

    In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.

  8. Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate

    International Nuclear Information System (INIS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman

    2016-01-01

    Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag + ions at different ion fluences ranging from 1 × 10 14 to 5 × 10 15 ions/cm 2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV–Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag + -implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 10 14 ions/cm 2 . Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.

  9. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  10. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  11. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation.

    Science.gov (United States)

    Cao, Jing; Wu, Binghui; Chen, Ruihao; Wu, Youyunqi; Hui, Yong; Mao, Bing-Wei; Zheng, Nanfeng

    2018-01-19

    The power conversion efficiency of perovskite solar cells (PSCs) has ascended from 3.8% to 22.1% in recent years. ZnO has been well-documented as an excellent electron-transport material. However, the poor chemical compatibility between ZnO and organo-metal halide perovskite makes it highly challenging to obtain highly efficient and stable PSCs using ZnO as the electron-transport layer. It is demonstrated in this work that the surface passivation of ZnO by a thin layer of MgO and protonated ethanolamine (EA) readily makes ZnO as a very promising electron-transporting material for creating hysteresis-free, efficient, and stable PSCs. Systematic studies in this work reveal several important roles of the modification: (i) MgO inhibits the interfacial charge recombination, and thus enhances cell performance and stability; (ii) the protonated EA promotes the effective electron transport from perovskite to ZnO, further fully eliminating PSCs hysteresis; (iii) the modification makes ZnO compatible with perovskite, nicely resolving the instability of ZnO/perovskite interface. With all these findings, PSCs with the best efficiency up to 21.1% and no hysteresis are successfully fabricated. PSCs stable in air for more than 300 h are achieved when graphene is used to further encapsulate the cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evolution of subpolar North Atlantic surface circulation since the early Holocene inferred from planktic foraminifera faunal and stable isotope records

    DEFF Research Database (Denmark)

    Staines-Urias, Francisca; Kuijpers, Antoon; Korte, Christoph

    2013-01-01

    of the Faroe Islands, are located in the transitional area where surface waters of subpolar and subtropical origin mix before entering the Arctic Mediterranean. In these areas, large-amplitude millennial variability in the characteristics of the upper-water column appears modulated by changes in the intensity...

  13. Structural, physiological, and stable carbon isotopic evidence that the enigmatic Paleozoic fossil Prototaxites formed from rolled liverwort mats.

    Science.gov (United States)

    Graham, Linda E; Cook, Martha E; Hanson, David T; Pigg, Kathleen B; Graham, James M

    2010-02-01

    New structural, nutritional, and stable carbon isotope data may resolve a long-standing mystery-the biological affinities of the fossil Prototaxites, the largest organism on land during the Late Silurian to Late Devonian (420-370 Ma). The tree trunk-shaped specimens, of varying dimensions but consistent tubular anatomy, first formed prior to vascular plant dominance. Hence, Prototaxites has been proposed to represent giant algae, fungi, or lichens, despite incompatible biochemical and anatomical observations. Our comparative analyses instead indicate that Prototaxites formed from partially degraded, wind-, gravity-, or water-rolled mats of mixotrophic liverworts having fungal and cyanobacterial associates, much like the modern liverwort genus Marchantia. We propose that the fossil body is largely derived from abundant, highly degradation-resistant, tubular rhizoids of marchantioid liverworts, intermixed with tubular microbial elements. Our concept explains previously puzzling fossil features and is consistent with evidence for liverworts and microbial associates in Ordovician-Devonian deposits, extensive ancient and modern marchantioid mats, and modern associations of liverworts with cyanobacteria and diverse types of fungi. Our interpretation indicates that liverworts were important components of Devonian ecosystems, that some macrofossils and microfossils previously attributed to "nematophytes" actually represent remains of ancient liverworts, and that mixotrophy and microbial associations were features of early land plants.

  14. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time

    Directory of Open Access Journals (Sweden)

    Cody Springer Sheik

    2015-05-01

    Full Text Available Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time.

  15. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.

    2004-01-01

    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  16. The structure of alteration layers on cast glass surfaces

    International Nuclear Information System (INIS)

    Oversby, V.M.; Phinney, D.L.

    1991-11-01

    Alteration layers developed on SRL-165 simulated waste glasses in dilute sodium silicate/bicarbonate leaching solutions have been examined by Secondary Ionization Mass Spectroscopy (SIMS) using fine-scale, multiple-element depth profiling. Selected samples were examined with an imaging detector system, which demonstrated the horizontal homogeneity of the layer development at all depths within the layer. After 1 day of reaction at 90 degrees C the reaction layer shows depletion of glass elements to a depth of 0.2 μm. The surface of the layer in contact with the solution shows enrichment of Si, Al, and alkali elements even at this short reaction time, suggesting the early stages of development of secondary aluminosilicate phases. With increased reaction time, the layer thickens to about 1.3 μm at 91 days, while the evidence for aluminosilicate development at the surface of the layer becomes more prominent. Penetration of hydrogen into the ''unreacted'' glass proceeds to a depth of about 0.5 μm deeper than the alkali depletion zone. This suggests the mechanism of initial reaction of the glass is by attack of the silicate structure by molecular water or hydroxide ion rather than by alkali-hydrogen ion exchange. The simple structure of the layers developed in the silicate solution is in contrast to the complexity of layer structure found when glasses are reacted in deionized water. Since the conditions for geologic disposal will be closer to those used in the silicate leaching experiments, these results hold promise for the ability to model the system to predict long-term performance after disposal in a repository

  17. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    Science.gov (United States)

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala 19 can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.

    Science.gov (United States)

    Böttcher, Michael; Hespenheide, Britta; Brumsack, Hans-Jürgen; Bosselmann, Katja

    2004-12-01

    A biogeochemical and stable isotope geochemical study was carried out in surface sediments of an organic-matter poor temperate intertidal sandy surface sediment (German Wadden Sea of the North Sea) to investigate the activity of sulfate-reducing bacteria and the dynamics of the vertical partitioning of sedimentary sulfur, iron, and manganese species in relation to the availability of total organic carbon (TOC) and mud contents. The contents and stable isotopic compositions ((34)S/(32)S) of total reduced inorganic sulfur species (TRIS) and dissolved sulfate were measured. Maximum oxygen penetration depths were estimated from the onset of a blackening of the sediments due to FeS accumulation and ranged from 5 to 10 mm below surface (mmbsf). A zone of relatively moderate relative organic-matter enrichment was found between 5 and 20 mmbsf leading to enhanced activities of sulfate-reducing bacteria with sulfate-reduction rates (SRR) up to 350 nmol cm(-3) d(-1). Below this zone, microbial SRR dropped significantly. Depth integrated SRR seem to depend not only on temperature but also on the availability of reactive organic matter. The sulfur-isotopic composition of TRIS was depleted in (34)S by 33-40 per thousand with respect to coexisting dissolved sulfate (constant at about +21 per thousand vs. Vienna-Canyon Diablo Troilite (V-CDT)). Since sulfate reduction is not limited by dissolved sulfate (open system), depth variations of the isotopic composition of TRIS reflect changes in overall isotope effect due to superimposed microbial and abiotic reactions. Most of the solid-phase iron and manganese was bonded to (non-reactive) heavy minerals. However, a layer of reactive Fe(III) and Mn(IV) oxi(hydroxi)des was found in the uppermost sediment section due to re-oxidation of dissolved Fe(II) and Mn(II) species at the sediment-water interface. Metal cycling below the surface is at least partially coupled to intense sulfur cycling.

  19. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds

    KAUST Repository

    Song, Hyon Min

    2013-01-01

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80°C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs. This journal is © 2013 The Royal Society of Chemistry.

  20. Relaxation and electronic structure of the V 2O 3(0001) surface: ab initio cluster model studies

    Science.gov (United States)

    Czekaj, I.; Hermann, K.; Witko, M.

    2003-02-01

    The electronic structure and geometric relaxation of the (0001) surface of rhombohedral vanadium sesquioxide, V 2O 3, is studied theoretically with large surface cluster models where ab initio density functional theory is used to characterize charging and bonding. Geometric relaxation in the topmost surface region, up to 5 layers, with its three different bulk terminations is determined by minimizing total energies of the clusters. This yields major relaxation effects depending on the termination. The oxygen layer termination OVV ' exhibits strong relaxation of sub-surface vanadium layers resulting in increased ionic charging at the surface (measured by corresponding atom charges). The metal layer termination VV 'O leads to inwards relaxation of the two topmost vanadium layers by over 40% resulting also in increased surface charging. Ionic charging at the surface is the smallest for the half metal layer V 'OV termination where only the topmost vanadium layer relaxes inwards by 30% in addition to some rearrangement of sub-surface vanadium. This termination is believed to be the most stable of the three relaxed bulk-type terminations based also on analogies with experiments for Cr 2O 3(0001). However, total density-of-states and atom-projected partial densities-of-states curves depend relatively little on surface termination to allow a clear discrimination which could assist an unambiguous experimental identification.

  1. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    International Nuclear Information System (INIS)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO—SiO 2 —Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO—SiO 2 —Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO—SiO 2 —Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing. (semiconductor physics)

  2. Accuracy evaluation of structure from motion surface 3D reconstruction

    Science.gov (United States)

    Knyaz, Vladimir; Zheltov, Sergey

    2017-06-01

    Structure from motion approach became a powerful mean for scene 3D reconstruction using only a sequence of images from moving camera as initial data. Such a technique has a significant potential for unmanned aerial or unmanned ground vehicles for navigation in unknown environments. Different techniques are used for estimation the 3D structure of a scene such as optical flow approach, feature detection and matching in the set of images, features tracking through a sequence of images. Robustness and accuracy of scene 3D coordinates measurements are the important characteristics of structure from motion algorithms which has to provide the reliability of the navigation. The technique for scene 3D reconstruction using unmanned aerial vehicle imagery is developed based on preliminary features detection and matching in a set of stereo pairs with appropriate basis which allows reaching reasonable accuracy of 3D measurements. The results of accuracy evaluation for two variants of surface 3D reconstruction from image sequence are presented and discussed: for the case of un-calibrated images and for images with known interior orientation. The ways for improving the accuracy of the developed 3D reconstruction technique are discussed.

  3. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  4. Characterization of Dissolved Organic Matter in Surface, Soil, and Ground Waters of a Small (10 ha) Catchment Using Stable Isotopes (C, N, S) and Chemical Methods

    Science.gov (United States)

    Frentress, J.; Lajtha, K.; Jones, J.; Kendall, C.

    2007-12-01

    In order to better understand sources of dissolved organic matter (DOM) in streams at the small watershed scale, we initiated a one-year investigation of the chemical and isotopic characteristics of DOM at the HJ Andrews Research Forest in Blue River, OR. These data will be used to test two mechanistic hypotheses to explain observed hysteresis patterns where dissolved organic carbon (DOC) concentrations in surface flow are greatest during the ascending limb of the hydrograph during storms and over the water year, with decreased DOC concentrations in surface flow during the descending limb of the hydrograph: Hypothesis 1) A flushing effect with no change in dominant flowpaths; Stream DOC concentrations directly reflect the DOC concentrations in the soil that are initially high and decrease during the event and throughout the water year due to the flushing of DOC. Hypothesis 2) A change in dominance from near-surface to subsurface hydrologic flowpaths during the event, with high-DOC sources in near-surface flowpaths dominating early and low-DOC sources in groundwater dominating later in the event. In order to address this ambiguity, the characterization of DOM using stable isotopes and other fingerprinting techniques (e.g. SUVA, C:N) was used to identify sources of organic matter to streams throughout an individual storm event and through the water year. If the first hypothesis (flushing effect) is correct, DOM in surface water should carry a similar fingerprint to the DOM in soil waters throughout the rain event and water year. If the second hypothesis (change in flowpaths) is correct, the fingerprint of DOM in the surface water should closely resemble that of soil water early in the event and change to reflect a mix of the two fingerprinted DOM sources - groundwater and soil water - later in the event. In addition to established chemical characterization methods like SUVA and C:N, a new technique of DOM isolation via solid-phase extraction using C-18 resin was used

  5. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  6. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  7. Wetting on micro-structured surfaces: modelling and optimization

    DEFF Research Database (Denmark)

    Cavalli, Andrea

    The present thesis deals with the wetting of micro-structured surfaces by various fluids, and its goal is to elucidate different aspects of this complex interaction. In this work we address some of the most relevant topics in this field such as superhydrophobicity, oleophobicity, unidirectional......-off angles. Such behaviour arises when drops are suspended on a micron or submicron texture, so that their contact with the substrate is minute. This suspended state (known as Cassie-Baxter state) is however prone to failure if the liquid-air interface is perturbed, a common situation in real life...... circumstances. We apply the numerical method of Topology Optimization to this problem, in order to find the optimal texture to support the superhydrophobic configuration. Our optimization provides designs which are consistent with strategies employed by Nature to achieve the same effect. Furthermore, our...

  8. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  9. Picosecond laser induced periodic surface structure on copper thin films

    International Nuclear Information System (INIS)

    Huynh, Thi Trang Dai; Petit, Agnès; Semmar, Nadjib

    2014-01-01

    LIPSS (Laser Induced Periodic Surface Structure) formation on copper thin films induced by a picosecond laser beam (Nd:YAG laser at 266 nm, 42 ps and 10 Hz) was studied experimentally. Copper thin films were deposited on glass and silicon substrates by magnetron sputtering. The surface modifications of irradiated zones were analyzed by scanning electron microscopy. Two distinct types of LIPSS were identified with respect to the laser fluence (F), number of laser shots (N) and substrate material. Namely, with a number of laser shots (1000 2 2 ), Low Spatial Frequency LIPSS (LSFL with a spatial period of Λ ∼ 260 nm and an orientation perpendicular to polarization) and High Spatial Frequency LIPSS (HSFL with a spatial period of Λ ∼ 130 nm and an orientation parallel to the polarization) were observed. The regime of regular spikes formation was determined for N ≥ 1000. Moreover, the 2D-map of the relationship among LIPSS formation, laser fluence and number of laser shots on copper thin film with two different substrates was established. A physics interpretation of regular spikes and LIPSS formation on copper thin film induced by ps laser with overlapping multi-shots is proposed based on experimental data and the theory of Plateau-Rayleigh instability.

  10. Andrew Liehr and the structure of Jahn-Teller surfaces

    Science.gov (United States)

    Chibotaru, Liviu F.; Iwahara, Naoya

    2017-05-01

    The present article is an attempt to draw attention to a seminal work by Andrew Liehr “Topological aspects of conformational stability problem” [1, 2] issued more than half century ago. The importance of this work stems from two aspects of static Jahn-Teller and pseudo-Jahn-Teller problems fully developed by the author. First, the work of Liehr offers an almost complete overview of adiabatic potential energy surfaces for most known Jahn-Teller problems including linear, quadratic and higher-order vibronic couplings. Second, and most importantly, it identifies the factors defining the structure of Jahn-Teller surfaces. Among them, one should specially mention the minimax principle stating that the distorted Jahn-Teller systems tend to preserve the highest symmetry consistent with the loss of their orbital degeneracy. We believe that the present short reminiscence not only will introduce a key Jahn-Teller scientist to the young members of the community but also will serve as a vivid example of how a complete understanding of a complex problem, which the Jahn-Teller effect certainly was in the beginning of 1960s, can be achieved.

  11. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.

    Science.gov (United States)

    Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A

    2015-09-30

    Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.

  12. 30 CFR 57.4530 - Exits for surface buildings and structures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exits for surface buildings and structures. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4530 Exits for surface buildings and structures. Surface buildings or structures in which persons work shall have a sufficient number...

  13. Multi-Dimensional Damage Detection for Surfaces and Structures

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or

  14. Tracing the origin of Pb using stable Pb isotopes in surface sediments along the Korean Yellow Sea coast

    Science.gov (United States)

    Park, Jong-Kyu; Choi, Man-Sik; Song, Yunho; Lim, Dhong-Il

    2017-06-01

    To investigate the factors controlling lead (Pb) concentration and identify the sources of Pb in Yellow Sea sediments along the Korean coast, the concentration of Pb and Pb isotopes in 87 surface and 6 core sediment samples were analyzed. The 1 M HCl leached Pb concentrations had a similar geographic distribution to those of fine-grained sediments, while the distribution of residual Pb concentrations resembled that of coarse-grained sediments. Leached Pb was presumed to be associated with manganese (Mn) oxide and iron (Fe) oxy/hydroxide, while residual Pb was associated with potassium (K)-feldspar, based on good linear relationships between the leached Pb and the Fe/Mn concentrations, and the residual Pb and K concentrations. Based on a ratio-ratio plot with three isotopes (207Pb/206Pb and 208Pb/206Pb) and the geographic location of each sediment, sediments were categorized into two groups of samples as group1 and group2. Group 1 sediments, which were distributed in Gyeonggi Bay and offshore (north of 36.5°N), were determined to be a mixture of anthropogenic and natural Pb originating from the Han River, based on a 208Pb/206Pb against a Cs/Pbleached mixing plot of core and surface sediments. Group 2 sediments, which were distributed in the south of 36.5°N, also showed a two endmembers mixing relationship between materials from the Geum River and offshore materials, which had very different Pb concentrations and isotope ratios. Based on the isotopes and their concentrations in core and surface sediments, this mixing relationship was interpreted as materials from two geographically different origins being mixed, rather than anthropogenic or natural mixing of materials with the same origin. Therefore, the relative percentage of materials supplied from the Geum River was calculated using a two endmembers mixing model and estimated to be as much as about 50% at 35°N. The spatial distribution of materials derived from the Geum River represented that of fine

  15. Crystal structure and Hirshfeld surface analysis of pulcherrin J

    Directory of Open Access Journals (Sweden)

    K. Osahon Ogbeide

    2017-10-01

    Full Text Available The title compound, C29H36O4 [systematic name (4aR,5R,6aS,7R,11aS,11bR-4a-hydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl cinnamate], a natural diterpene known as pulcherrin J, was isolated from stem barks of medicinally important Caesalpinia pulcherrima (L.. The crystal structure of pulcherrin J shows it to be composed of a central core of three trans-fused cyclohexane rings and a near planar five-membered furan ring, along with an axially oriented cinnamate moiety and an hydroxy substituent attached at positions 4a and 5 of the steroid ring system, respectively. The absolute structure was established with the use of Cu Kα radiation. In the crystal, molecules are linked by O—H...O hydrogen bonds to generate [100] C(8 chains. Hirshfeld surface analysis indicates that the most significant contacts in packing are H...H (67.5%, followed by C...H (19.6% and H...O (12.9%.

  16. The interior structure of Ceres as revealed by surface topography

    Science.gov (United States)

    Fu, Roger R.; Ermakov, Anton; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford; Zuber, Maria; King, Scott D.; Bland, Michael T.; De Sanctis, Maria Cristina; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-01-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  17. Ordered supramolecular oligothiophene structures on passivated silicon surfaces

    Science.gov (United States)

    Liu, Renjie

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  18. Analysis of pushing exercises: muscle activity and spine load while contrasting techniques on stable surfaces with a labile suspension strap training system.

    Science.gov (United States)

    McGill, Stuart M; Cannon, Jordan; Andersen, Jordan T

    2014-01-01

    Labile surfaces in the form of suspension straps are increasingly being used as a tool in resistance training programs. Pushing is a common functional activity of daily living and inherently part of a well-rounded training program. This study examined pushing exercises performed on stable surfaces and unstable suspension straps, specifically muscle activation levels and spine loads were quantified together with the influence of employing technique coaching. There were several main questions that this study sought to answer: Which exercises challenged particular muscles? What was the magnitude of the resulting spine load? How did stable and unstable surfaces differ? Did coaching influence the results? Fourteen men were recruited as part of a convenience sample (mean age, 21.1 ± 2.0 years; height, 1.77 ± 0.06 m; mean weight, 74.6 ± 7.8 kg). Data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force-in this way, the model was sensitive to the individuals choice of motor control for each task; muscle forces and linked segment joint loads were used to calculate spine loads. Exercises were performed using stable surfaces for hand/feet contact and repeated where possible with labile suspension straps. Speed of movement was standardized across participants with the use of a metronome for each exercise. There were gradations of muscle activity and spine load characteristics to every task. In general, the instability associated with the labile exercises required greater torso muscle activity than when performed on stable surfaces. Throughout the duration of an exercise, there was a range of compression; the TRX push-up ranged from 1,653 to 2,128.14 N, whereas the standard push-up had a range from 1,233.75 to 1,530.06 N. There was no significant effect of exercise on spine compression (F(4,60) = 0.86, p = 0.495). Interestingly, a standard push-up showed significantly

  19. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  20. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  1. Structural and photoluminescence behavior of thermally stable Eu3+activated CaWO4 nanophosphors via Li+ incorporation

    Science.gov (United States)

    Ramakrishna, P. V.; Lakshmana Rao, T.; Singh, Arvind; Benarji, B.; Dash, S.

    2017-12-01

    We have studied the structural and photo physical analogue of Eu3+ activated CaWO4 nanophosphors via Lithium (Li+ = 2, 5 7 and 10 at.%) ion incorporation. As-prepared (APS) samples were annealed at 900 °C to eliminate unwanted organic moieties present in the sample and to improve crystallinity. The samples are characterized employing X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), UV-VIS spectroscopy, photoluminescence studies and lifetime decay studies. FTIR features an absorption band at ∼832 cm-1, which correspond to its antisymmetric vibrations into Osbnd Wsbnd O band in the WO42- tetrahedron. CaWO4 having the scheelite type structure with C4h point group and I41/a space group. The surface morphology of the samples are studied with Scanning Electron Microscopy (SEM). Lithium Co-doped CaWO4:Eu3+ nanoparticles show red luminescence because of strong host contribution and different energy transfer rates from host to Eu3+ ions under 266 nm excitations. Lithium ion enhances the crystallinity and radiative transition rate thus results in higher emissive property. Calculated CIE co-ordinates of these Li+ doped 900 °C annealed samples under 266 nm excitation is x = 0.65 & y = 0.34, which are closer to the standard of NTSC (x = 0.67 & y = 0.33). This material may be potential candidates for white light emitting diodes.

  2. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    Science.gov (United States)

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diametersoil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results highlight the possibilities in high volume application for lignin biomacromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Comparison of 3 methods on fabricating micro- /nano- structured surface on 3D mold cavity

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    limited to flat or simple shaped geometries. In this paper, 3 approaches for fabricating micro and nano- structured surfaces on a mold cavity for injection moulding are investigated and compared. The first approach is to use pre-fabricated plate with micro-structured surface as an insert for the mold......The methods to manufacture micro- or nano- structures on surfaces have been an area of intense investigation. Demands are shown for technologies for surface structuring on real 3D parts in many fields. However, most technologies for the fabrication of micro-structured functional surfaces are still...

  4. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.

    Science.gov (United States)

    Danov, Krassimir D; Kralchevsky, Peter A; Radulova, Gergana M; Basheva, Elka S; Stoyanov, Simeon D; Pelan, Eddie G

    2015-08-01

    The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, E(sh) and η(sh), proportional to the fraction of the conventional protein. However, the experiments show that the effect of mixing can be rather different depending on the nature of the additive. If the additive is a globular protein, like β-lactoglobulin and ovalbumin, the surface rigidity is preserved, and even enhanced. The experiments with separate foam films indicate that this is due to the formation of a bilayer structure at the air/water interface. The more hydrophobic HFBII forms the upper layer adjacent to the air phase, whereas the conventional globular protein forms the lower layer that faces the water phase. Thus, the elastic network formed by the adsorbed hydrophobin remains intact, and even reinforced by the adjacent layer of globular protein. In contrast, the addition of the disordered protein β-casein leads to softening of the HFBII adsorption layer. Similar (an even stronger) effect is produced by the nonionic surfactant Tween 20. This can be explained with the penetration of the hydrophobic tails of β-casein and Tween 20 between the HFBII molecules at the interface, which breaks the integrity of the hydrophobin interfacial elastic network. The analyzed experimental data for the surface shear rheology of various protein adsorption layers comply with a viscoelastic thixotropic model, which allows one to determine E(sh) and η(sh) from the measured storage and loss moduli, G' and G″. The results could contribute for quantitative characterization and deeper understanding of the factors that control the surface rigidity of protein adsorption layers with potential application for the creation of stable foams and emulsions with fine bubbles or droplets. Copyright © 2014

  5. Self-formation and release of arbitrary-curvatured structures utilizing droplet deposition and structured surface

    International Nuclear Information System (INIS)

    Chen, Chin-Tai; Chieng, Ching-Chang; Tseng, Fan-Gang

    2008-01-01

    This paper proposes a method of micro-fabrication for the formation of complex non-planar shapes by depositing a colloid evaporative droplet onto topographically structured surfaces. The micro-droplet composed of polyurethane (PU) was self-driven by surface tension to adjust their three-dimensional (3D) shapes bound with the surface of the micro-well array. The micro-wells formed from poly-dimethysiloxane (PDMS) consisted of vertical sidewalls to constrain the fluids as boundary conditions in the Young–Laplace equation until drying. Two types of wetting regimes (fully and partially), corresponding to different droplet volume and allocation, were categorized to perform the shaping process in which evolving fluid contours were self-formed utilizing the general principle of minimal surface energy with certain features of the shape set by the wetting of the PDMS. Using the heterogeneous surfaces, slight-concave circular terraces and half-moon shapes with high curvature were fabricated with micrometer dimensions (well diameter of 900 µm). The formed structures were observed to release themselves from the hydrophobic wells by the de-wetting (de-pinned) process in the completion of evaporation. Moreover, the effects of the boundaries were further explored for half-moon shapes by giving three distinct footprints of the partially wetting droplets. In these cases, both experimental results and numerical calculations were performed and compared to illustrate the significant influence of the fluid contact angle (∼90°) and position with a curved boundary line on final formed shape, in particular for the change of curvature (κ-bar = 0.62–1.36). Compared to those traditional assays operated on two-dimensional (2D) flat surfaces, this structured-well one could greatly enhance the control of 3D topographic formation in terms of aspect ratio, thickness and curved degree. This novel operation of micro-fabrication is also appropriate for smaller and complex structures by

  6. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta 2 H (δ 2 H) and as delta 18 O (δ 18 O), respectively. The values of δ 2 H and δ 18 O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of δ 2 H and δ 18 O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively

  7. Low-energy structures of benzene clusters with a novel accurate potential surface.

    Science.gov (United States)

    Bartolomei, M; Pirani, F; Marques, J M C

    2015-12-05

    The benzene-benzene (Bz-Bz) interaction is present in several chemical systems and it is known to be crucial in understanding the specificity of important biological phenomena. In this work, we propose a novel Bz-Bz analytical potential energy surface which is fine-tuned on accurate ab initio calculations in order to improve its reliability. Once the Bz-Bz interaction is modeled, an analytical function for the energy of the Bzn clusters may be obtained by summing up over all pair potentials. We apply an evolutionary algorithm (EA) to discover the lowest-energy structures of Bzn clusters (for n=2-25), and the results are compared with previous global optimization studies where different potential functions were employed. Besides the global minimum, the EA also gives the structures of other low-lying isomers ranked by the corresponding energy. Additional ab initio calculations are carried out for the low-lying isomers of Bz3 and Bz4 clusters, and the global minimum is confirmed as the most stable structure for both sizes. Finally, a detailed analysis of the low-energy isomers of the n = 13 and 19 magic-number clusters is performed. The two lowest-energy Bz13 isomers show S6 and C3 symmetry, respectively, which is compatible with the experimental results available in the literature. The Bz19 structures reported here are all non-symmetric, showing two central Bz molecules surrounded by 12 nearest-neighbor monomers in the case of the five lowest-energy structures. © 2015 Wiley Periodicals, Inc.

  8. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  9. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon

    International Nuclear Information System (INIS)

    Barberoglou, M.; Zorba, V.; Stratakis, E.; Spanakis, E.; Tzanetakis, P.; Anastasiadis, S.H.; Fotakis, C.

    2009-01-01

    We report here an efficient method for preparing stable superhydrophobic and highly water repellent surfaces by irradiating silicon wafers with femtosecond laser pulses and subsequently coating them with chloroalkylsilane monolayers. By varying the laser pulse fluence on the surface one can successfully control its wetting properties via a systematic and reproducible variation of roughness at micro- and nano-scale, which mimics the topology of natural superhydrophobic surfaces. The self-cleaning and water repellent properties of these artificial surfaces are investigated. It is found that the processed surfaces are among the most water repellent surfaces ever reported. These results may pave the way for the implementation of laser surface microstructuring techniques for the fabrication of superhydrophobic and self-cleaning surfaces in different kinds of materials as well

  10. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2008-01-01

    the hybridization performance of the immobilized probes on the amino-silane surface, indicating a general benefit of adding a TC tag to DNA probes. In conclusion, our results show that using TC-tagged DNA probes immobilized on an unmodified glass surface is a robust, heat-stable, very simple, and inexpensive method...

  11. Structure sensitivity of CO dissociation on Rh surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Baumer, M.; Freund, H.J.

    2002-01-01

    Using periodic self-consistent density functional calculations it is shown that the barrier for CO dissociation is similar to120 kJ/mol lower on the stepped Rh(211) surface than on the close-packed Rh(111) surface. The stepped surface binds molecular CO and the dissociation products more strongly...

  12. 2,6,10-Tris(dialkylamino)-trioxatriangulenium Ions. Synthesis, Structure, and Properties of Exceptionally Stable Carbenium Ions

    DEFF Research Database (Denmark)

    Laursen, Bo W.; Krebs, Frederik C; Nielsen, Merete F.

    1998-01-01

    is expressed as the pK(R+) value, which is determined in strongly basic nonaqueous solution on-the basis of a new acidity function C-. The pK(R+) value of 5a is measured to be 19.7, which is 10 orders of magnitude higher than the values found for the most stable carbenium ions previously reported...

  13. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    Science.gov (United States)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer

  14. The effect of surface structure on Ag atom adsorption over CuO(111) surfaces: A first principles study

    Science.gov (United States)

    Hu, Riming; Zhou, Xiaolong; Yu, Jie

    2017-12-01

    The interactions of Ag atom with different types of CuO(111) surface, including the perfect, oxygen-vacancy and precovered oxygen surfaces, have been systematically investigated using density functional theory (DFT) calculations to examine the effect of surface structures on Ag atom adsorption. The calculated results indicate that the Cu1-Cu1 bridge site and the oxygen-vacancy site are the active centres for atomic Ag adsorption on the perfect surface and the oxygen-vacancy surface respectively, while atomic Ag preferentially adsorbs at the Op site on the precovered oxygen surface. The activity of the CuO(111) surface for atomic Ag adsorption can be improved both on the perfect and oxygen-vacancy surfaces, while the activity of the CuO(111) surface for atomic Ag adsorption will be suppressed on precovered oxygen surfaces. Furthermore, the adsorption of NO on different CuO(111) surfaces with Ag adsorption was investigated, and the calculation results show that the adsorption of NO on an Ag-loaded CuO(111) surface is greater than that on the pure CuO(111) surface.

  15. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Z.; de Leeuw, N.H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity.

  16. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Materer, Nicholas F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C2H3 and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  17. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  18. Reinforcement Toolbox, a Parametric Reinforcement Modelling Tool for Curved Surface Structures

    NARCIS (Netherlands)

    Lauppe, J.; Rolvink, A.; Coenders, J.L.

    2013-01-01

    This paper presents a computational strategy and parametric modelling toolbox which aim at enhancing the design- and production process of reinforcement in freeform curved surface structures. The computational strategy encompasses the necessary steps of raising an architectural curved surface model

  19. Structural health monitoring and remote sensing of transportation infrastructure using embedded frequency selective surfaces.

    Science.gov (United States)

    2014-07-01

    The objective of this project was to investigate the use of Frequency Selective Surfaces (FSS) for structural health monitoring applications. Frequency Selective Surfaces (FSS) have long been used in the RF/microwave community to control scattering f...

  20. The use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1987-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distribution are discussed in therms of advantages and disadvantages of each. The scattering potential, which is the primary nonstructural parameter needed for analysis, is discussed in terms of recent experimental results. The structures of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo (111) surface and missing row reconstructions on the Au (110) and Pt (110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au (110) and Pt (110) surfaces and reconstructed Mo (111) surfaces, and to ordering of adsorbates on Mo

  1. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    Science.gov (United States)

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

  2. Functional Aspects of the Solution Structure and Dynamics of PAF, a Highly Stable Antifungal Protein from Penicillium chrysogenum

    Science.gov (United States)

    Batta, Gyula; Barna, Teréz; Gáspári, Zoltán; Sándor, Szabolcs; Kövér, Katalin E.; Binder, Ulrike; Sarg, Bettina; Kaiserer, Lydia; Chhillar, Anil Kumar; Eigentler, Andrea; Leiter, Éva; Hegedüs, Nikoletta; Pócsi, István; Lindner, Herbert; Marx, Florentine

    2015-01-01

    Summary PAF is a promising antimycotic without toxic effects on mammalian cells and therefore may be a drug candidate against the often lethal Aspergillus infections in human. The pathogenesis of PAF on sensitive fungi involves G-protein coupled signaling followed by apoptosis. Here, the solution structure of this small, cationic, antifungal protein from Penicillium chrysogenum is determined by solution NMR. We proved that PAF belongs to the SCOP fold class of its closest homologue AFP from Aspergillus giganteus. PAF comprises five β—strands forming two orthogonally packed β—sheets sharing a common interface. The ambiguity in the assignment of two disulfide bonds of three was investigated by NMR dynamics combined with restrained molecular dynamics calculations. The clue could not be resolved: two ensembles with different disulfide patterns and the one with no S-S bond exhibit essentially the same fold. 15N relaxation dispersion and interference experiments did not reveal disulfide bond rearrangements via slow exchange. The measured order parameters and the 3.0 ns correlation time is appropriate for a compact monomeric protein of this size. We demonstrated by site-directed mutagenesis that the highly conserved and positively charged lysine-rich domain region on the surface enhances the toxicity of PAF. However, the efficacy of the OB fold is reduced in PAF compared to AFP, due to less solvent exposed aromatic regions explaining the absence of chitobiose binding. The present work lends further support to the understanding of the documented substantial differences between the mode of action of two highly homologous antifungal proteins. PMID:19459942

  3. Preparation and formation mechanisms of metallic particles with controlled size, shape, structure and surface functionality

    Science.gov (United States)

    Lu, Lu

    Due to their excellent conductivity and chemical stability, particles of silver (Ag), gold (Au), copper (Cu) and their alloys are widely used in the electronic industry. Other unique properties extend their uses to the biomedical, optical and catalysis fields. All of these applications rely on particles with well controlled size, morphology, structure, and surface properties. Chemical precipitation from homogeneous solutions was selected as the synthetic route for the investigations described in this work. Based on the evaluation of key process parameters (temperature, reactant concentrations, reactant addition rate, mixing, etc.) the general formation mechanisms of metallic particles in various selected precipitation systems were investigated and elucidated. Five different systems for preparing particles with controlled size, morphology, structure and surface functionality are discussed. The first system involves the precipitation of Ag nanoparticles with spherical and anisotropic (platy or fiber-like) morphology. It will be shown that the formation of a stable Ag/Daxad complex has a significant impact on the reaction kinetics, and that the chromonic properties of Daxad molecules are responsible for the particle anisotropy. In the second system, Au-Ag core-shell nanoparticles were prepared in aqueous solution by a two-step precipitation process. The optical properties of these particles can be tailored by varying the thickness of the Ag shell. It was also determined that the stability of the bimetallic metallic sols depends on the Cl-ion concentration in solution. The third system discussed deals with preparation by the polyol process of well dispersed Cu nanospheres with high crystallinity and excellent oxidation resistance. We show that the heterogeneous nucleation (seeding) approach has significant merit in controlling particle size and uniformity. The functionalization of Au nanoparticle surfaces with glutathione molecules is discussed in the next section. The

  4. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  5. Surface and interface electronic structure: Sixth year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    Several productive runs were made on beamline U4A at NSLS. An upgrade of angle-resolved photoemission spectrometer was largely completed on the beamline. Progress was made on studies of surface states and reconstruction on Mo(001) and W(001), and of surface states and resonances on Pt(111)

  6. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces is dete...

  7. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  8. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    OpenAIRE

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of kn...

  9. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  10. Fabrication and quantitative roughness analysis of hierarchical multiscale polymer surface structures

    Science.gov (United States)

    Huovinen, Eero; Takkunen, Laura; Suvanto, Mika; Pakkanen, Tapani A.

    2014-05-01

    Nature's functional surfaces are typically hierarchical multiscale structures. There are several techniques for producing such artificial structures on polymers but their mass production is not straightforward. We present here a simple and versatile method for manufacturing hierarchical multiscale polymer surface patterns. The microroughening technique permits the single-step production of multilevel three-dimensional surface architectures in a mechanically durable nickel mold. The molding technique is suitable for area-controlled fabrication of structures with various geometrical shapes on smooth and curved surfaces. The mold structures were transferred to polypropylene surfaces by means of injection molding. The fabricated surface structures were characterized by using a filtered power spectral density method which facilitated a quantitative study of the roughness distributions at different length scales of structure periodicities. Analysis showed that the microroughening technique is an appropriate tool for controlled production of surface roughness at a micro-nanometer scale. Roughness distribution values can be used for predicting surface structure-related properties such as wetting, and the distributions can also be simulated without an experimental preparation process. The work presents a suitable approach for mass production of hierarchical polymer surfaces at different length scales and provides a new route for designing surface structures with tunable wetting properties.

  11. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein.

    Science.gov (United States)

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.

  12. Synthesis, structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    2.2 Crystal data and structure determination. For the structural study we chose a crystal with the dimen- sions of 0.31 × 0.28 × 0.19 mm3. The single crystal was fixed on a Bruker APEXII CCD four-circle diffractometer;. MoKα radiation (λ = 0.71073 Ε) was used in order to study its structural analysis. The crystal structure has ...

  13. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  14. Structural models of activated γ-alumina surfaces revisited: Thermodynamics, NMR and IR spectroscopies from ab initio calculations

    Science.gov (United States)

    Ferreira, Ary R.; Küçükbenli, Emine; de Gironcoli, Stefano; Souza, Wladmir F.; Chiaro, Sandra Shirley X.; Konstantinova, Elena; Leitão, Alexandre A.

    2013-09-01

    The activation of highly catalytic γ-alumina surfaces by thermal treatment and the description of the related chemical processes at atomic scale is a topical issue. According to a recent study [J. Am. Chem. Soc. 134 (2012) 14430], the enhanced reactivity of γ-alumina has been associated to tri-coordinated aluminum sites which supposedly are exposed exclusively on the (1 1 0) surfaces of this oxide. In this work, we explore this possibility by modeling the (1 0 0) and (1 1 0) terminations using Krokidis et al. [J. Phys. Chem. B 105 (2001) 5121] bulk structure and performing an extensive search of the most stable hydrated surface models at conditions consistent with experiment. Among the 156 structures analyzed, we identify several “metastable” models for the (1 1 0) surface with a considerable probability of containing the AlIII centers at OH coverages of 9.0 and 6.0 OH/nm2. We then test the reactivity of these sites through their Lewis acidity by simulating the CO adsorbtion on the surface and our results confirm the high reactivity of AlIII centers. Based on the Gibbs free energy of the explored structures, we carry on a thermodynamical analysis at varying hydroxylation degrees and pretreatment temperatures and simulate the experimental volcano-type behavior reported in [J. Am. Chem. Soc. 134 (2012) 14430] and predict the optimum pretreatment temperature as 700 °C, in very good agreement with experimental findings. We further use infrared and solid state MAS NMR spectroscopies and reproduce the 1H MAS NMR spectra under high vacuum conditions (10-5 Torr). The strong resemblance of spectra to the experimental ones in the literature [J. Phys. Chem. C 116 (2012) 834] validate further the structural models we have generated in this study.

  15. Structural colours and applications to anodised aluminium surfaces

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    to solve the problem. The problem is investigated by first reviewing existing work within colouration and visual appearance. This includes a study on how colours are perceived by humans and an investigation of the characteristics with which a surface appearance is properly described. Subsequently......, nanostructures and surface profiles are investigated using optimisation and topology optimisation in order to understand the limitations and design freedom of colour engineering. This is then followed by a study of the effect of disorder on a nanoscale level in order to tailor surface reflections for a smooth...

  16. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  17. Impact of Surface Treatment on the Structural and Electronic Properties of Polished CdZnTe Surfaces for Radiation Detectors

    Science.gov (United States)

    Tari, Suleyman; Aqariden, F.; Chang, Y.; Grein, C.; Li, Jin; Kioussis, N.

    2013-11-01

    We present the effects of surface treatments on the structural and electronic properties of chemomechanically polished Cd0.9Zn0.1Te before contact deposition. Specifically, polished CdZnTe (CZT) samples were treated with four distinct chemical etchants: (1) bromine methanol (BM), (2) bromine in lactic acid, (3) bromine in methanol followed by bromine-20% lactic acid in ethylene glycol, and (4) hydrochloric acid (HCl). The surface structure and surface electronic properties were studied with atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). AFM images showed that three of the four etchants significantly altered the surface morphology and structure of CZT. All etchants created smoother surfaces; however, all except HCl also introduced high densities of defects. HCl was found to not affect the surface structure. XPS measurements indicated that a thick, ˜3 nm to 4 nm, TeO2 layer formed about 1 h after etching; hence, it is very important to process devices immediately after etching to prevent oxide formation.

  18. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  19. Stable isotope oxygen-18 and deuterium analysis in surface and groundwater of the Jequitibá Creek Basin, Sete Lagoas, MG

    Energy Technology Data Exchange (ETDEWEB)

    Linhares, Giovanna Maria Gardini; Moreira, Rubens Martins; Pimenta, Rafael Colombo; Scarpelli, Raquel Pazzini; Santos, Elizangela Augusta dos, E-mail: giovannagardini@gmail.com, E-mail: rubens@cdtn.br, E-mail: colombopimenta@gmail.com, E-mail: raquelscarpelli@gmail.com, E-mail: elizangela.augusta@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Groundwater is an important source of public and industrial supplies, and inadequate exploitation of water reflects negatively on its quality and production of wells, especially when located in karstic aquifers. The study area includes the Maize and Sorghum National Research / Embrapa, located in the karst region of Sete Lagoas, within of the Jequitibá creek sub-basin, an affluent of the Velhas River. The evaluation of the content of stable isotopes of hydrogen ({sup 2}H), or deuterium, and oxygen ({sup 18}O) of surface waters (lagoons) and groundwater (production and monitoring wells) collected from the study area allowed to know directly the origin of these waters, active climatic processes and interactions between different aquifers and surface bodies, as possible mixtures of water from different sources. The collected samples were analyzed by isotopic ratio mass spectrometry, IRMS Advantege - Thermo Science, from the Center for the Development of Nuclear Technology (CDTN). The mean values found for δ{sup 18}O and δ{sup 2}H in the waters of the monitoring wells were -6.40‰ and -43.21‰, respectively. For the production wells, mean values for δ{sup 18}O and δ{sup 2}H of -5.87 ‰ and -40.09‰, respectively, were obtained. When compared to GMWL, the collected groundwater originates attributed to the precipitations. The lagoon waters had mean values for δ{sup 18}O and δ{sup 2}H of -3.73‰ and -30.08‰. The water collected in the crystalline fissured aquifer presented mean values δ{sup 18}O and δ{sup 2}H of -6.91‰ and -40.26 ‰ respectively, in its rockier portion, and -6.09‰ and -43.05‰. (author)

  20. Stable isotope oxygen-18 and deuterium analysis in surface and groundwater of the Jequitibá Creek Basin, Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Linhares, Giovanna Maria Gardini; Moreira, Rubens Martins; Pimenta, Rafael Colombo; Scarpelli, Raquel Pazzini; Santos, Elizangela Augusta dos

    2017-01-01

    Groundwater is an important source of public and industrial supplies, and inadequate exploitation of water reflects negatively on its quality and production of wells, especially when located in karstic aquifers. The study area includes the Maize and Sorghum National Research / Embrapa, located in the karst region of Sete Lagoas, within of the Jequitibá creek sub-basin, an affluent of the Velhas River. The evaluation of the content of stable isotopes of hydrogen ( 2 H), or deuterium, and oxygen ( 18 O) of surface waters (lagoons) and groundwater (production and monitoring wells) collected from the study area allowed to know directly the origin of these waters, active climatic processes and interactions between different aquifers and surface bodies, as possible mixtures of water from different sources. The collected samples were analyzed by isotopic ratio mass spectrometry, IRMS Advantege - Thermo Science, from the Center for the Development of Nuclear Technology (CDTN). The mean values found for δ 18 O and δ 2 H in the waters of the monitoring wells were -6.40‰ and -43.21‰, respectively. For the production wells, mean values for δ 18 O and δ 2 H of -5.87 ‰ and -40.09‰, respectively, were obtained. When compared to GMWL, the collected groundwater originates attributed to the precipitations. The lagoon waters had mean values for δ 18 O and δ 2 H of -3.73‰ and -30.08‰. The water collected in the crystalline fissured aquifer presented mean values δ 18 O and δ 2 H of -6.91‰ and -40.26 ‰ respectively, in its rockier portion, and -6.09‰ and -43.05‰. (author)

  1. Evaluation of 3-dimensional superimposition techniques on various skeletal structures of the head using surface models.

    Directory of Open Access Journals (Sweden)

    Nikolaos Gkantidis

    Full Text Available To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data.Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch were tested using eight pairs of pre-existing CT data (pre- and post-treatment. These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses.There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05. The AC + F technique was the most accurate (D0.05, the detected structural changes differed significantly between different techniques (p<0.05. Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error.Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

  2. Evaluation of 3-dimensional superimposition techniques on various skeletal structures of the head using surface models.

    Science.gov (United States)

    Gkantidis, Nikolaos; Schauseil, Michael; Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D0.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

  3. Static force fields simulations of reduced CeO2 (110) surface: Structure and adsorption of H2O molecule

    Science.gov (United States)

    Vives, Serge; Meunier, Cathy

    2018-02-01

    The CeO2(110) surface properties are largely involved in the catalysis, energy and biological phenomenon. The Static Force Fields simulations are able to describe large atomic systems surface even if no information on the electronic structure can be obtained. We employ those simulations to study the formation of the neutral 2 CeCe‧ VO•• cluster. We focus on seven different cluster configurations and find that the defect formation energy is the lower for the 1N-2N configurations. Two geometries are possible, as it is the case for the ab initio studies, the in plane and the more stable bridging one. We evidence the modifications of the surface energy and the Potential Energy Surface due to the presence of the 2 CeCe‧ VO•• defect. The physical adsorption of a water molecule is calculated and the geometry described for all the cluster configurations. The H2O molecule physisorption stabilizes the Ce(110) surface and the presence of the 2 CeCe‧ VO•• defect increases this effect.

  4. A Novel Bioinspired Continuous Unidirectional Liquid Spreading Surface Structure from the Peristome Surface of Nepenthes alata.

    Science.gov (United States)

    Chen, Huawei; Zhang, Liwen; Zhang, Pengfei; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2017-01-01

    A novel unidirectional liquid spreading surface with an inclined arc pitted groove, inspired by the continuous unidirectional liquid spreading mechanism on the peristome surface of N. alata, is explored and fabricated by two-step UV lithography. Its superior unidirectional liquid spreading capability to that of other surface patterns is demonstrated, and its unidirectional liquid spreading mechanism is investigated. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and characterization of highly efficient and stable Pr6O11/Ag3PO4/Pt ternary hybrid structure

    International Nuclear Information System (INIS)

    Deng, Jiatao; Liu, Lin; Niu, Tongjun; Sun, Xiaosong

    2017-01-01

    Highlights: • Visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalysts were prepared. • Pr 6 O 11 /Ag 3 PO 4 /Pt showed highly efficient and stable photocatalystic activity. • The photocatalytic mechanism of Pr 6 O 11 /Ag 3 PO 4 /Pt composite was given. - Abstract: Ag 3 PO 4 is an excellent photocatalyst with high efficiency and quantum yield, but suffers from the fast recombination of photogenerated electron-hole pairs and photo-corrosion. Hereby, the highly efficient and stable visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalyst were prepared via a three-step wet chemical approach. The as-prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite was characterized by X-ray diffraction, US-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectra and transient photocurrent as well. Comparing with single Pr 6 O 11 or Ag 3 PO 4 , the prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite exhibited much higher photocatalytic activity and stability for the degradation of Rhodamine B under visible light irradiation (>420 nm). The enhanced photocatalytic performance of Pr 6 O 11 /Ag 3 PO 4 /Pt composite has been attributed to the efficient separation of photo-generated electron-hole pairs through a scheme system composed of Pr 6 O 11, Ag 3 PO 4 and Pt.

  6. Highly stable new organic-inorganic perovskite (CH₃NH₃)₂PdBr₄: synthesis, structure and physical properties.

    Science.gov (United States)

    Liu, Xixia; Huang, Tang Jiao; Zhang, Liuyang; Tang, Baoshan; Zhang, Nengduo; Shi, Diwen; Gong, Hao

    2018-01-11

    Lead halide perovskite has attracted striking attention recently due to their appealing properties. However, toxicity and stability are two main factors restricting its application. In this work, we experimentally synthesized less toxic and highly stable Pd-based hybrid perovskite after exploring different experimental conditions. This new hybrid organic-inorganic perovskite (CH₃NH₃)₂PdBr₄ was found to be an orthorhombic crystal (Cmce, Z=4) with lattice parameters a=8.00 Å, b=7.99 Å, c= 18.89 Å. The Cmce symmetry and lattices parameters were confirmed using Pawley refinement. The atoms positions were testified based on DFT calculation. This perovskite compound was determined to be a p-type semiconductor, with a resistivity of 102.9 kΩ*cm, a carrier concentration of 3.4 ×1012 /cm³ and a mobility of 23.4 cm² /(V*S). Interestingly, XRD and UV-vis measurements indicated that the phase of this new perovskite was maintained with an optical gap of 1.91 eV after leaving in air with a high humidity of 60% for 4 days, and unchanged for months in N₂ ambiance, much more stable than most existing organic-inorganic perovskites. The synthesis and various characterizations of this work further the understanding of this (CH₃NH₃)₂PdBr₄ organic-inorganic hybrid perovskite material. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  8. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  9. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities. © 2016 The Author(s).

  10. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  11. A molecular surface science study of the structure of adsorbates on surfaces: Importance to lubrication

    International Nuclear Information System (INIS)

    Mate, C.M.

    1986-09-01

    The interaction and bonding of atoms and molecules on metal surfaces is explored under ultra-high vacuum conditions using a variety of surface science techniques: high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED), thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES), work function measurements, and second harmonic generation (SHG). 164 refs., 51 figs., 3 tabs

  12. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    in AgNO3 solution. The growth speed, morphologies and structures of the silver dendrites strongly depend on AgNO3 concentration and reaction time. The silver dendrites were formed from nanosheets and the crystal structure is face-centered cubic. Rhodamine 6G was used as probe molecule to show that the silver ...

  13. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    A simple and efficient approach was developed to fabricate silver dendrites by Cu reducing Ag+ in AgNO3 solution. The growth speed, morphologies and structures of the silver dendrites strongly depend on AgNO3 concentration and reaction time. The silver dendrites were formed from nanosheets and the crystal structure ...

  14. Disorder enabled band structure engineering of a topological insulator surface

    International Nuclear Information System (INIS)

    Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei

    2017-01-01

    Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2 X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.

  15. Surface potential domains on lamellar P3OT structures

    International Nuclear Information System (INIS)

    Perez-GarcIa, B; Abad, J; Urbina, A; Colchero, J; Palacios-Lidon, E

    2008-01-01

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place

  16. Surface potential domains on lamellar P3OT structures

    Energy Technology Data Exchange (ETDEWEB)

    Perez-GarcIa, B [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Abad, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Urbina, A [Departamento Electronica, TecnologIa de Computadoras y Proyectos, Universidad Politecnica de Cartagena, E-30202 Cartagena (Spain); Colchero, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Palacios-Lidon, E [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain)

    2008-02-13

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place.

  17. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...

  18. Comparison of 3 methods on fabricating micro- /nano- structured surface on 3D mold cavity

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    limited to flat or simple shaped geometries. In this paper, 3 approaches for fabricating micro and nano- structured surfaces on a mold cavity for injection moulding are investigated and compared. The first approach is to use pre-fabricated plate with micro-structured surface as an insert for the mold...

  19. Surface complexation of carbonate on goethite: IR spectroscopy, structure & charge distribution

    NARCIS (Netherlands)

    Hiemstra, T.; Rahnemaie, R.; Riemsdijk, van W.H.

    2004-01-01

    The adsorption of carbonate on goethite has been evaluated, focussing on the relation between the structure of the surface complex and corresponding adsorption characteristics, like pH dependency and proton co-adsorption. The surface structure of adsorbed CO3-2 has been assessed with (1) a

  20. Finite-difference Time-domain Modeling of Laser-induced Periodic Surface Structures

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Skolski, J.Z.P.; Vincenc Obona, J.; Huis in 't Veld, Bert

    2014-01-01

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures with amplitudes the (sub)micrometer range and periodicities in the (sub)wavelength range. It is thought that periodically modulated absorbed laser energy is initiating the growth of LIPSSs. The “Sipe

  1. Laser-induced generation of surface periodic structures in media with nonlinear diffusion

    Science.gov (United States)

    Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.

    2017-12-01

    A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.

  2. Structural analysis of the indium-stabilized GaAs(001)-c(8×2) surface

    DEFF Research Database (Denmark)

    Lee, T.-L.; Kumpf, C.; Kazimirov, A.

    2002-01-01

    The indium-stabilized GaAs(001)-c(8x2) surface was investigated by surface x-ray diffraction and x-ray standing waves. We find that the reconstruction closely resembles the c(8x2) structure described by the recently proposed unified model for clean III-V semiconductor surfaces [Kumpf , Phys. Rev....

  3. Structural investigation of the ZnSe(001)-c(2×2) surface

    DEFF Research Database (Denmark)

    Weigand, W.; Müller, A.; Kilian, L.

    2003-01-01

    Zinc selenide is a model system for II-VI compound semiconductors. The geometric structure of the clean (001)-c(2x2) surface has recently been the subject of intense debate. We report here a surface x-ray-diffraction study on the ZnSe(001)-c(2x2) surface performed under ultrahigh vacuum using...

  4. Transcription of Small Surface Structures in Injection Moulding - An Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2000-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  5. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  6. Tailoring the wetting response of silicon surfaces via fs laser structuring

    Science.gov (United States)

    Zorba, V.; Stratakis, E.; Barberoglou, M.; Spanakis, E.; Tzanetakis, P.; Fotakis, C.

    2008-12-01

    Control over the wettability of solids and manufacturing of functional surfaces with special hydrophobic and self-cleaning properties has aroused great interest because of its significance for a vast range of applications in daily life, industry and agriculture. We report here a simple method for preparing stable superhydrophobic surfaces by irradiating silicon (Si) wafers with femtosecond (fs) laser pulses and subsequently coating them with chloroalkylsilane monolayers. It is possible, by varying the laser pulse fluence on the surface, to achieve control of the wetting properties through a systematic and reproducible variation of roughness at micro- and nano-scale which mimics both the topology of the “model” superhydrophobic surface—the natural lotus leaf—, as well as its wetting response. Water droplets can move along these irradiated superhydrophobic surfaces, under the action of small gravitational forces, and experience subsequent immobilization, induced by surface tension gradients. These results demonstrate the potential of manipulating liquid motion through selective laser patterning.

  7. Impact of terrain heterogeneity on near-surface turbulence structure

    Science.gov (United States)

    Fesquet, Clément; Drobinski, Philippe; Barthlott, Christian; Dubos, Thomas

    2009-10-01

    This study investigates the impact of terrain heterogeneity on local turbulence measurements using 18 months of turbulence data taken on a 30 m tower at the SIRTA mixed land-use observatory under varying stability conditions and fetch configurations. These measurements show that turbulence variables such as the turbulent kinetic energy or momentum fluxes are strongly dependent on the upstream complexity of the terrain (presence of trees or buildings, open field). However, using a detection technique based on wavelet transforms which permits the isolation of the large-scale coherent structures from small-scale background fluctuations, the study shows that, for all stability conditions, whatever the upstream complexity of the terrain, the coherent structures display universal properties which are independent of the terrain nature: the frequency of occurrence, time duration of the coherent structures, the time separation between coherent structures and the relative contribution of the coherent structures to the total fluxes (momentum and heat) appear to be independent of the upstream roughness. This is an important result since coherent structures are known to transport a large portion of the total energy. This study extends to all stability conditions a numerical study by Fesquet et al. [Fesquet, C., Dupont, S., Drobinski, P., Barthlott, C., Dubos, T., 2008. Impact of terrain heterogeneities on coherent structures properties: experimental and numerical approaches. In: 18th Symposium on Boundary Layers and Turbulence. No. 11B.1. Stockholm, Sweden., Fesquet, C., Dupont, S., Drobinski, P., Dubos, T., Barthlott, C., in press. Impact of terrain heterogeneity on coherent structure properties: numerical approach. Bound.-Layer Meteorol.] conducted in neutral conditions which shows that a reason for such behavior is that the production of local active turbulence in an internal boundary layer associated with coherent structure originating from the outer layer and impinging

  8. Surface-wave analysis and its application to determining crustal and mantle structure beneath regional arrays

    Science.gov (United States)

    Jin, Ge

    We develop several new techniques to better retrieve Earth's structure by analyzing seismic surface waves. These techniques are applied in regional studies to understand a variety of tectonic structures and geodynamic processes in Earth's crust and upper mantle. We create an automated method to retrieve surface-wave phase velocities using dense seismic arrays. The method is based on the notion of using cross-correlation to measure phase variations between nearby stations. Frequency-dependent apparent phase velocities are inverted from the phase-variation measurements via the Eikonal equation. The multi-pathing interference is corrected using amplitude measurements via the Helmholtz equation. The coherence between nearby-station waveforms, together with other data-selection criteria, helps to automate the entire process. We build up the Automated Surface-Wave Measuring System (ASWMS) that retrieves structural phase velocity directly from raw seismic waveforms for individual earthquakes without human intervention. This system is applied on the broad-band seismic data recorded by the USArray from 2006-2014, and obtain Rayleigh-wave phase-velocity maps at the periods of 20-100~s. In total around half million seismograms from 850 events are processed, generating about 4 million cross-correlation measurements. The maps correlate well with several published studies, including ambient-noise results at high frequency. At all frequencies, a significant contrast in Rayleigh-wave phase velocity between the tectonically active western US and the stable eastern US can be observed, with the phase-velocity variations in the western US being 1-2 times greater. The Love wave phase-velocity maps are also calculated. We find that overtone interference may produce systematic bias for the Love-wave phase-velocity measurements. We apply surface-wave analysis on the data collected by a temporary broad-band seismic array near the D'Entrecasteaux Island (DI), Papua New Guinea. The array

  9. Characteristics of surface wind structure of tropical cyclones over the ...

    Indian Academy of Sciences (India)

    Bessho et al. 2006) to create global satellite-only surface wind analysis. The method makes use of a variational data fitting technique on a cylindrical grid that allows variable data weights in combination with bulk quality con- trol (Knaff et al. 2007).

  10. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...

  11. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    the formation of quark stars, with particular attention to the attractive quark-nova scenario which may be connected to r-process nucleosynthesis. 2. Degenerate electron gas in a strong magnetic field. Recently, a few authors [21] pointed out that the deficit of (massive) strange quarks due to surface effects on the star can lead ...

  12. Dynamic and Impure Perovskite Structured Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Traulsen, Marie Lund

    2017-01-01

    on the electrode surfaces. An experimental test of the suggestion that the segregation might happen in the vacuum in the analysis equipment gave a negative result. Formation of particles containing significant amounts of S and Cr from segregation of the trace impurities in the acquired powders were observed...

  13. Laser-induced periodic surface structures: fingerprints of light localization

    NARCIS (Netherlands)

    Skolski, J.Z.P.; Römer, G.R.B.E.; Obona, J.V.; Ocelik, V.; Huis in 't Veld, A.J.; Hosson, J.Th.M. de

    2012-01-01

    The finite-difference time-domain (FDTD) method is used to study the inhomogeneous absorption of linearly polarized laser radiation below a rough surface. The results are first analyzed in the frequency domain and compared to the efficacy factor theory of Sipe and coworkers. Both approaches show

  14. Enhancing the chroma of pigmented polymers using antireflective surface structures

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Christiansen, Alexander Bruun; Kristensen, Anders

    2013-01-01

    In this paper we investigate how the color of a pigmented polymer is affected by reduction of the reflectance at the air-polymer interface. Both theoretical and experimental investigations show modified diffuse-direct reflectance spectra when the reflectance of the surface is lowered. Specifically...

  15. The electronic structure of anodized and etched aluminum alloy surfaces

    Science.gov (United States)

    Mullins, W. M.; Averbach, B. L.

    1988-11-01

    Specimens of 6061 and 5052 aluminum alloys which had been anodized and etched by several commonly used procedures were examined by means of bias-reference X-ray photoelectron spectroscopy (XPS). The spectra were compared with those obtained from single crystals of pure aluminum oxides. The chemical shifts observed from the A12p surface oxide lines were interpreted as differences in the Fermi energy levels relative to those in the bulk oxide crystals, and the Fermi energy levels of the surface oxides were thus determined. Using an earlier experimental correlation obtained for values of the point of zero charge (pzc) with Fermi energy levels in aluminum oxide powders, a value of the pzc of the surface oxide was then determined. The surface exhibited the maximum alkalinity, pzc = 8.9, after a caustic etch, and the maximum acidity, pzc = 3.6, after a phosphoric acid anodizing treatment. The significance of these pzc values in the adhesive bonding of aluminum alloys is discussed.

  16. Study of the local structure of binary surfaces by electron diffraction (XPS, LEED)

    OpenAIRE

    Gereová, Katarína

    2006-01-01

    Study of local structure of binary surface with usage of ultra-thin film of cerium deposited on a Pd (111) single-crystal surface is presented. X-ray photoelectron spectroscopy and diffraction (XPS, XPD), angle resolved UV photoemission spectroscopy (ARUPS) and low energy electron diffraction (LEED) was used for our investigations. LEED and X-ray excited photoemission intensities results represent a surface-geometrical structure. As well, mapping of ultra-violet photoelectron intensities as a...

  17. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  18. Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers.

    Science.gov (United States)

    Watanabe, Koyo; Miyazaki, Ryosuke; Terakado, Goro; Okazaki, Takashi; Morigaki, Kenichi; Kano, Hiroshi

    2012-09-01

    We propose scanning localized surface plasmon microscopy of mixed lipid bilayers with submicron domain structures. Our observation technique, which employs localized surface plasmons excited on a flat metal surface as a sensing probe, provides non-label and non-contact imaging with the spatial resolution of ∼ 170 nm. We experimentally show that submicron domain structures of mixed lipid bilayers can be observed. A detailed analysis finds that the domains are classified into two groups.

  19. The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films

    International Nuclear Information System (INIS)

    Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Zs.; Marti, O.

    2004-01-01

    Poly-carbonate films containing different types of original surface roughness were illuminated by a polarized ArF excimer laser beam having a fluence of 4 mJ/cm 2 . Atomic force microscopy was applied to study the laser-induced periodic surface structure formation process at 0 deg. , 30 deg. and 45 deg. angles of incidence. The effect of initial surface structures on the intensity distribution was investigated in cases of: (a) grains on oriented and amorphous thick films; (b) holes on thin spin-coated films; and (c) nanoparticles arranged along micrometer long sides of hexagons below the spin-coated films. The presence of the scattering objects caused symmetry breaking, if the samples were illuminated by oblique incident 's' polarized beam. The Fourier analysis of the AFM pictures has shown the competition of structures having different periods. The characteristic of the permanent surface patterns proved that the interference of the incoming beam and the beams scattered on previously existing structures is the LIPSS generating feedback process. Ring-shaped structures having 228 nm diameter were produced

  20. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.

    Science.gov (United States)

    Cao, Y Y; Ouyang, G; Wang, C X; Yang, G W

    2013-02-13

    As a promising and typical semiconductor heterostructure at the nanoscale, the radial Ge/Si NW heterostructure, that is, the Ge-core/Si-shell NW structure, has been widely investigated and used in various nanodevices such as solar cells, lasers, and sensors because of the strong changes in the band structure and increased charge carrier mobility. Therefore, to attain high quality radial semiconductor NW heterostructures, controllable and stable epitaxial growth of core-shell NW structures has become a major challenge for both experimental and theoretical evaluation. Surface roughening is usually undesirable for the epitaxial growth of high quality radial semiconductor NW heterostructures, because it would destroy the core-shell NW structures. For example, the surface of the Ge-core/Si-shell NWs always exhibits a periodic modulation with island-like morphologies, that is, surface roughening, during epitaxial growth. Therefore, the physical understanding of the surface roughening behavior during the epitaxial growth of core-shell NW structures is essential and urgent for theoretical design and experimentally controlling the growth of high quality radial semiconductor NW heterostructures. Here, we proposed a quantitative thermodynamic theory to address the physical process of epitaxial growth of core-shell NW structures and surface roughening. We showed that the transformation from the Frank-van der Merwe mode to the Stranski-Krastanow mode during the epitaxial growth of radial semiconductor NW heterostructures is the physical origin of surface roughening. We deduced the thermodynamic criterion for the formation of the surface roughening and the phase diagram of growth and showed that the radius of the NWs and the thickness of the shell layer can not only determine the formation of the surface roughening in a core-shell NW structure, but also control the periodicity and amplitude of the surface roughness. The agreement between the theoretical results and the

  1. Electronic structure of (001) semiconducting MTe surfaces (M = Zn, Cd, Hg)

    International Nuclear Information System (INIS)

    Rodriguez, F.; Camacho, A.; Quiroga, L.; Baquero, R.

    1990-01-01

    By using the tight-binding scheme with ten orbitals per atom (SP 3 s * and two spin orientations) the electronic projected bulk band structure, surface band structure (both anion- and cation-terminated surfaces), and the wave-vector-resolved density of states for these II-VI semiconductors are calculated. A quickly convergent iterative technique is employed for calculating the Green function of the actual semi-infinite crystal. This calculational method allows to precise very accurately, the energy of localized surface states. All the materials considered in this work present surface states with energies lying in the fundamental gap as well as surface states in the lenses opened in the projected bulk valence-band continuum. The atomic weight of each surface state is determined. The states in the fundamental gap turn out to be 'bridge-bond'-type states for anion-terminated surfaces and 'dangling-bond'-type states for cation-terminated surfaces. (author)

  2. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    Science.gov (United States)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  3. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.

    Science.gov (United States)

    Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A

    2016-10-26

    Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNi x Mn y Co 1-x-y O 2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni 2+ (active) and Co 3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7 Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to

  4. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  5. Search for structures, potential energy surfaces, and stabilities of planar BnP(n = 1 ∼ 7).

    Science.gov (United States)

    Shi, Rongwei; Shao, Jingling; Wang, Cheng; Zhu, Xiaolei; Lu, Xiaohua

    2011-05-01

    We have systematically explored and investigated the geometrical structures, stability, growth pattern, bonding character, and potential energy surface (PES) of the possible isomers of each cluster for planar B(n)P (n = 1 ∼ 7) at the CCSD(T)/6-311+;G(d)//B3LYP/6-311+G(d) level. A large number of planar structures for the possible isomers of B(n)P (n = 1 ∼ 7) and transition states are located. Isomers 1a ∼ 7a of B(n)P are the lowest-energy structures and 2a, 4a, as well as 6a are more stable than their neighbors. For the lowest-energy structures (1a ∼ 7a) of B(n)P, P atom lies at the apex and tends to form two B-P bonds with boron atoms. They exhibit planar zigzag growth feature or approximately spherical-like growth pattern. Results from molecular orbital analysis demonstrate that the formation of the delocalized π MOs and the σ-radial and σ-tangential MOs plays a critical role in stabilizing the structures of lowest-energy isomers (2a ∼ 7a) of B(n)P. Importantly, isomers 3a, 3c, 3d, 4a, 4b, 5b, and 5c of B(n)P are stable both thermodynamically and kinetically at the CCSD(T)/6-311+G(d)// B3LYP/6-311+G(d) level and detectable in laboratory, which is valuable for further experimental studies of B(n)P.

  6. The structure of spectral problems and geometry: hyperbolic surfaces in E sup 3

    CERN Document Server

    Cieslinski, J L

    2003-01-01

    Working in the framework of Sym's soliton surfaces approach we point out that some simple assumptions about the structure of linear (spectral) problems of the theory of solitons lead uniquely to the geometry of some special immersions. In this paper we consider general su(2) spectral problems. Under some very weak assumptions they turn out to be associated with hyperbolic surfaces (surfaces of negative Gaussian curvature) immersed in three-dimensional Euclidean space, and especially with the so-called Bianchi surfaces.

  7. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions

    KAUST Repository

    Feng, Zhenxing

    2016-05-05

    Conspectus Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal–air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1–xSrxCoO3−δ and (La1–ySry)2CoO4±δ/La1–xSrxCoO3

  8. Computational challenges about nano structures and bio systems at surfaces

    International Nuclear Information System (INIS)

    Di Felice, R.; Corni, S.; Molinari, E.

    2009-01-01

    The interaction between nano-objects and extended solid surfaces is of paramount importance in the context of nano science and nano technology. It plays a role both in investigating the properties of nano scale materials and in exploiting such properties. We overview selected examples inspired by experimental facts. We focus on bio-nano cases such as the adsorption of small polypeptides and nucleotides on metal surfaces, including the role of an aqueous environment. We highlight evidences that call for interpretation, computational approaches based on density functional theory and molecular dynamics that are currently available to face the open problems, and desired theoretical/ computational developments that may increase the potentialities of theory to guide and interpret technology progress.

  9. Nanometric artificial structuring of semiconductor surfaces for crystalline growth

    Science.gov (United States)

    Eymery, J.; Biasiol, G.; Kapon, E.; Ogino, T.

    2005-01-01

    The coupling of standard self-organization methods with surface artificial nanostructuring has recently emerged as a promising technique in semiconductor materials to control simultaneously the size distribution, the density and the position of epitaxial nanostructures. Some physical aspects of the morphology and elastic strain engineering are reviewed in this article. The emphasis is on the effects of capillarity, growth rate anisotropy, strain relaxation and entropy of mixing for alloys. The interplay among these driving forces is first illustrated by III-V compound semiconductor growth on lithographically patterned surfaces, then by germanium growth on implanted substrates and nanopatterned templates obtained by chemical etching of buried strain dislocation networks. To cite this article: J. Eymery et al., C. R. Physique 6 (2005).

  10. Synthesis, characterization, and selective surface functionalization of structured nanoparticles

    OpenAIRE

    Hofmann, Andreas

    2010-01-01

    In this thesis, open questions in the field of nanomaterials are investigated and answered. These topics are focused on the study of doping agents in the crystal lattice of semiconductor nanoparticles, the use of oleic acid coated iron oxide nanoparticles for applications in biological systems, and the regioselective surface functionalization of gold nanoparticles for a controlled linkage of single particles. In order to better understand the spin properties of dopants in the core of sem...

  11. Surface engineering of glazing materials and structures using plasma processes

    International Nuclear Information System (INIS)

    Anders, Andre; Monteiro, Othon R.

    2003-01-01

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes

  12. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  13. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  14. Structural sensitivity studies of ethylene hydrogenation on platinum and rhodium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, M.A. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States)

    1996-01-01

    The catalytic hydrogenation of ethylene and hydrogen on the well characterized surfaces of the noble metals platinum and rhodium has been studied for the purposes of determining the relative activity of these two substrates as well as the degree of structure sensitivity. The Pt(111) and the Rh(755) single crystal surfaces,as well as Pt and Rh foils, were employed as substrates to study the effect of surface step structure on reactivity. In addition, vibrational spectroscopy studies were performed for ethylene adsorption on the stepped Rh(755) surface. The catalytic reaction were obtained using a combined ultrahigh vacuum chamber coupled with an atmospheric pressure reaction chamber that functioned as a batch reactor. Samples could be prepared using standard surface science techniques and characterized for surface composition and geometry using Auger Electron Spectroscopy and Low Energy Electron Diffraction. A comparison of the reactivity of Rh(111) with the results from this study on Rh(755) allows a direct determination of the effect of step structure on ethylene hydrogenation activity. Structure sensitivity is expected to exhibit orders of magnitude differences in rate as surface orientation is varied. In this case, no significant differences were found, confirming the structure insensitivity of this reaction over this metal. The turnover frequency of the Rh(111) surface, 5 {times} 10{sup 1} s{sup {minus}1}, is in relatively good agreement with the turnover frequency of 9 {times} 10{sup 1} s{sup {minus}1} measured for the Rh(755) surface. Rate measurements made on the Pt(111) surface and the Pt foil are in excellent agreement, both measuring 3 {times} 10{sup 2} s{sup minus}1. Likewise, it is concluded that no strong structure sensitivity for the platinum surfaces exists. High Resolution Electron Energy Loss Spectroscopy studies of adsorbed ethylene on the Rh(755) surface compare favorably with the ethylidyne spectra obtained on the Rh(111) and Rh(100) surfaces.

  15. Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Ta, D. T.; Tieu, A. K.; Zhu, H. T., E-mail: hongtao@uow.edu.au; Kosasih, B. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfield Avenue, Wollongong, NSW 2522 (Australia)

    2015-10-28

    A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger than its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe{sub 2}O{sub 3}(001), and Fe{sub 2}O{sub 3}(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.

  16. Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM.

    Science.gov (United States)

    Zhu, Guo-zhen; Radtke, Guillaume; Botton, Gianluigi A

    2012-10-18

    The determination of the atomic structure and the retrieval of information about reconstruction and bonding of metal oxide surfaces is challenging owing to the highly defective structure and insulating properties of these surfaces. Transmission electron microscopy (TEM) offers extremely high spatial resolution (less than one ångström) and the ability to provide systematic information from both real and reciprocal space. However, very few TEM studies have been carried out on surfaces because the information from the bulk dominates the very weak signals originating from surfaces. Here we report an experimental approach to extract surface information effectively from a thickness series of electron energy-loss spectra containing different weights of surface signals, using a wedge-shaped sample. Using the (001) surface of the technologically important compound strontium titanate, SrTiO(3) (refs 4-6), as a model system for validation, our method shows that surface spectra are sensitive to the atomic reconstruction and indicate bonding and crystal-field changes surrounding the surface Ti cations. Very good agreement can be achieved between the experimental surface spectra and crystal-field multiplet calculations based on the proposed atomic surface structure optimized by density functional calculations. The distorted TiO(6-x) units indicated by the proposed model can be viewed directly in our high-resolution scanning TEM images. We suggest that this approach be used as a general method to extract valuable spectroscopic information from surface atoms in parallel with high-resolution images in TEM.

  17. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  18. 2,6,10-Tris(dialkylamino)trioxatriangulenium ions. Synthesis, structure, and properties of exceptionally stable carbenium ions

    DEFF Research Database (Denmark)

    Laursen, B.W.; Krebs, Frederik C; Nielsen, M.F.

    1998-01-01

    A general synthetic route to a novel type of triamino-substituted planar carbenium ions (5) is reported. The synthetic method is based on a facile and selective nucleophilic aromatic substitution on the 4,6-trimethoxyphenyl)carbenium ion (1) with amines and gives access to a wide variety of more...... complex amino-substituted carbenium ions. X-ray crystallography shows that the cis(N-pyrrolidinyl)-4,8,12-trioxatriangulenium ion (5b) is planar and forms segregated stacks of cations and PF6 anions in the solid phase. The stability of the 2,6, 0-tris(diethylamino)- 4,8,12-trioxatriangulenium ion 5a...... is expressed as the pK(R+) value, which is determined in strongly basic nonaqueous solution on-the basis of a new acidity function C-. The pK(R+) value of 5a is measured to be 19.7, which is 10 orders of magnitude higher than the values found for the most stable carbenium ions previously reported...

  19. Surface plasmon field enhancements in deterministic aperiodic structures.

    Science.gov (United States)

    Shugayev, Roman

    2010-11-22

    In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.

  20. More Stable Ties or Better Structure? An Examination of the Impact of Co-author Network on Team Knowledge Creation

    Directory of Open Access Journals (Sweden)

    Mingze Li

    2017-09-01

    Full Text Available This study aims to explore the influence of co-author network on team knowledge creation. Integrating the two traditional perspectives of network relationship and network structure, we examine the direct and interactive effects of tie stability and structural holes on team knowledge creation. Tracking scientific articles published by 111 scholars in the research field of human resource management from the top 8 American universities, we analyze scholars’ scientific co-author networks. The result indicates that tie stability changes the teams’ information processing modes and, when graphed, results in an inverted U-shape relationship between tie stability and team knowledge creation. Moreover, structural holes in co-author network are proved to be harmful to team knowledge sharing and diffusion, thereby impeding team knowledge creation. Also, tie stability and structural hole interactively influence team knowledge creation. When the number of structural hole is low in the co-author network, the graphical representation of the relationship between tie stability and team knowledge creation tends to be a more distinct U-shape.